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Abstract

The possibilities and challenges with simulation-based verification with Universal Verification Method-
ology(UVM), SystemC and TLM2.0 are investigated in this thesis. The methodology presented deviates
frommost UVM environments with the reuse of a SystemCmodel reference model. This model generates
the expected response from the Design Under Test(DUT) and enables automatic checking. The methodol-
ogy use constrained random stimulus that excels at finding unexpected bugs and reduce implementation
time. The DUT is a complex memory controller previously verified with directed test vectors. It is a
confidential Nordic Semiconductor IP recently implemented in their nRF52 System-on-Chip(SoC).

Traditional directed tests specify each test vector to simulate, and the list can grow huge to cover all
functionality. These lists are very time-consuming to implement and maintain. The DUT has a 3500
lines long file with test vectors and is updated over several years. Constrained random stimuli can
replace the time-consuming lists. Test3 presented in the implementation chapter shows how to generate
configuration and memory transactions concurrently in 19 lines of code in a completed environment. In
addition to fast stimuli generation, enhances this methodology reuse to decrease implementation time.
Protocol components were reused to communicate with the DUT. Only 42% code coverage was reached
due to an inadequate reference model. However, the implementation show that the technology works
and can be used in verification.
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Sammendrag

Mulighetene og utfordringene i simulasjons basert verifikasjon med Universal Verification Method-
ology(UVM), SystemC og TLM2.0 er analysert i denne masteroppgaven. Denne metodikken avviker
fra de fleste UVM verifikasjon miljø ved gjenbruket av en SystemC referanse model. Denne modellen
genererer forventet respons fra Designet Under Test(DUT) og muliggjør automatisk sjekking av respon-
sen. Metodikken presentert bruker begrenset randomisert stimuli til å finne uventede feil og redusere
implementasjons tiden. DUTen er en minnekontroller som er tidligere verifisert med direkte tester. Det
er en konfidensiell enhet fra Nordic Semiconductor som er nylig brukt i deres nRF52 SoC.

Tradisjonelle tester med bestemt stimuli spesifiserer hver eneste test vektor og listen med bestemt
stimuli kan vokse til å bli ekstremt stor for å dekke all funksjonalitet. Listene med stimuli er veldig
tidkrevende å utvikle og vedlikeholde. DUTen har en fil med test vektorer som er 3500 linjer lang
og oppdatert over flere år. Begrenset randomisert stimuli kan erstatte de tidkrevende listene. Test3
presentert i implementasjons kapittelet viser hvordan 19 linjer genererer minne og konfigurasjons
transaksjoner samtidig. I tillegg til hurtig stimuli generasjon, muliggjør metodikken gjenbruk av kode
som også reduserer implementasjons tiden. Protokoll komponenter er gjenbrukt for å kommunisere
med DUTen. Bare 42% kode dekning var oppnådd på grunn av ufullstendig referansemodell. Derimot,
viser implementasjonen at teknologien fungerer og kan bli brukt til verifikasjon.
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1 | Introduction

The complexity of System-on-Chip grows every year as the costumers are expecting better performance
and more features. These chips need to be designed and verified with increasingly demanding time-to-
market as competition hardens. A significant market share is lost if the time-to-market goal is lost, and
a competitor releases similar products first. According to the 2018 Wilson Research Group Functional
Verification Study, the average total project time spent in verification in 2018 was 53 percent[1]. Adopting
new verification technology can shorten the verification time, but can also have mandatory expensive
tools and training to be efficient.

Verification is an essential part of digital design development, and UVM is a promising verification
methodology in simulation-based verification. Mentor’s Verification Horizons blog states 71% of all ASIC
projects have adopted UVM for testbench development in 2018, and the 2020 projection is 74%[2]. UVM
is a new methodology from 2012 and was quickly adopted by companies. UVM is an IEEE standard with
guidelines on how to use UVM. This thesis deviates from most UVM testbenches by the use of a SystemC
reference model. The UVM scoreboard compares transactions from the DUT and the reference model
to check the DUT’s functionality. A standard technique seen in the UVM guidelines and typical UVM
testbenches, where applicable, is to use a predictor and a memory model as a reference model.

Nordic Semiconductor is in the process of developing virtual platforms in SystemC. The virtual platform
is software that can mimic an SoC and enables early software development, architecture exploration,
architecture validation and can be used as a reference model in functional verification. A large part of
SoCs consists of already verified blocks, and the connection between blocks are essential in verification
today. TLM 2.0 with generic payload transaction object enhances interoperability, meaning it is easy to
connect other blocks. The memory controller is a part of an SoC, and more blocks can be connected
to expand the verification possibilities. Nordic Semiconductor can use their own developed SystemC
models and buy SystemC models from vendors. ARM processors is typical in SoC today, and a SystemC
model can be bought from them. Developing and buying SystemC models can be expensive, but can be
very useful in various phases in digital design development.

Traditional testbenches specify each test vector and expected outcome, resulting in thousands of lines
of code to test the functionality of complex DUTs. Constrained Random Verification(CRV) eliminates
or drastically reduce the number of manual written test vectors and is a significant advantage for fast
to implement and easy to maintain tests. This shift in simulation-based verification is unstoppable as
designs grow, and the solutions for the new challenges of simulation-based verification is essential for
verification engineers. There are significant advantages using CRV methodology, but the disadvantages
in the methodology is the increase of testbench complexity and require resources spent on training
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CHAPTER 1. INTRODUCTION 2

and tools. This thesis has components from different technologies, and the challenges of implementing,
simulating and debugging are present. However, these obstacles will decay as the methodology mature
in a company. Unlike traditional testbenches with various structures, UVM testbenches can have very
similar structure and compilation method, so engineers will quickly become comfortable and efficient
with the methodology.



2 | Background

A detailed verification plan can shorten verification time and is important for releasing complex System-
on-Chips before time-to-marked. The verification plan should have details on which systems and
sub-systems are tested, test plan, coverage plan, response methodology and much more. The response
methodology is methods used to check the response from the DUT. The response could be checked
with pre-defined expected result, manually checked or automatically checked with a reference model.
Verification is often performed hierarchically, sub-components are first verified individually, then a
system of these components are verified. Many details should be included for a detailed plan and
needs to be made by a person with a good understanding of the systems. If only the input and output
interfaces are investigated in the test plan, corner cases may be missed. It is important to have the
internal components in mind, so the sub-systems that are not verified have their corner cases tested.
Time invested in the verification plan will reduce the time consumed by the later stages of verification.
Simulation-based verification is investigated in this thesis, but other methods as formal verification are
also possible.

2.1 Simulation-based verification

Simulation-based verification is a common verification technique where test vectors are generated and
simulated to verify the DUT. Low-level assertions can verify specific logic and high-level response
checking can verify the functionality. In figure 2.1 below, test vectors are manually created together with
expected results, simulated and the response are checked with the pre-defined expected results.

Figure 2.1: Traditional directed testing

When the DUT’s response does not match the expected value, the hunt for the bug begins, and it can be
challenging to find the bug with no information from the simulation. It is here assertions are very useful
as they excite an error in the simulation when it detects something has gone wrong. The designers
should make these assertions while they implement the system. The assertions are vital for debugging,
and if a test fails while no assertions excites an error, too few assertions are likely implemented. While
assertions tell where and when an error has occurred, coverage is signalling that something has been

3



CHAPTER 2. BACKGROUND 4

exercised. When the coverage reaches a certain point, the verification can be documented as complete.
Code coverage shows which branches, variables, states and statements has been exercised and howmany
times. It is a good start to show that all individual statements work, but it does not check cross coverage.
Functional coverage can cross-check transitions and succeed in describing complex corner cases where
code coverage fails. Code coverage provide an easy metric of exercised code because simulation tools
often offer this feature. It is a useful and efficient early verification metric, but functional coverage
should be added to complete the coverage of more complex scenarios.

Generating test vectors with expected results can be efficient in verifying small designs, but labour-
intensive and error-prone to unexpected bugs with complex designs. This traditional directed testing can
be insufficient in verifying today’s complex designs and improved tests have automation and reusability
in mind. CRV has automatic stimuli generation and shown in figure 2.2 below.

Figure 2.2: Constrained random stimuli

The random stimuli is constrained to target certain coverage and prevent illegal stimuli. The constrained
random stimuli are simulated on the DUT who generates a response. A predictor is a component that
predicts the expected result. The actual and expected responses are then automatically checked. The
predictor can use different methods to get the expected response. The most common methods are using
a UVM register model or a high-level model. A UVM register model is simple to implement and are used
to model registers. A high-level reference model is a model that can describe complex functionality and
has the same functionality as the DUT. The reference model will receive the same data as the DUT and
produce the expected response. The evaluation step is where the system is verified or if more testing is
needed and if the constraints needs adjustment to target certain coverage. These constraint adjustments
are done manually, but a coverage model could automate this process. The coverage plan should be the
main driver of the stimuli to achieve completeness.

The simulation can stop after a certain number of stimuli has been simulated or when a certain coverage
level has been reached. However, a certain coverage level can require high simulation time with large
designs and few constraints. Complex RTL models can use hours or days to simulate with directed
testing, and the simulation time could increase with CRV. This increase in simulation time is mainly
due to more test vectors may be required in CRV. The directed tests are manually made efficient, while
the randomness in CRV can generate less efficient test vectors. CRV would use longer simulation time
to achieve the same coverage. This increase in necessary test vectors can contribute to a very high
simulation time and results in only small sections of designs can be verified with CRV. Some advanced
methods can be implemented to reduce simulation time. High-quality test vectors that excites bugs or
hit hard to hit coverage can be reused, a filter can only let through novel test vectors and constraints
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can be adjusted. The figure 2.3 below shows an advanced ways to reduce simulation time.

Figure 2.3: Advanced simulation-based test

Simulation time can be huge when the automated stimuli generator is shooting test vectors from the hip,
and each test vector is resource-heavy to simulate. It is common to run tests several times and reuse IPs.
With this in mind, essential test scenarios can be saved in a test database and reused, as shown above
in figure 2.3. Test vectors can be reused from previous simulations or previous projects. A scenario
where disposal tests from a database are first run, followed by constrained random tests can harvest the
strengths from both traditional directed testing and CRV. Expensive expertise is needed in developing
high-quality scenarios for SoC that trigger edge cases. An initiative (Portable Stimulus Working Group)
defines a standardise description language of scenarios to maximise reusability across abstraction levels
[3]. Lowering verification time is important to meet deadlines, and supplying high-quality tests are
becoming important as simulation times increases with large systems. Applying these directed tests
should not remove the advantages we are trying to achieve with CRV, but instead add the efficiency of
some high-quality directed tests.

The use of filter and test database shown in figure 2.3 is not essential in CRV, but it can solve the problem
of high simulation time. CRV can often only be applied to a small section of a design as the simulation
time would be too high to test an entire SoC. A paper from 2012 claims a four days simulation was
reduced to below six hours by applying novel test detection to a constrained random test generation and
simulation environment for a power architecture-compliant processor core[4]. The novel test detector
will filter out the tests that are of little or no value, and CRV can be used in more scenarios by ensuring
high-quality test vectors.

2.2 Languages and technology

Different languages and technology has different strengths and companies are often combining technol-
ogy to obtain all the best features. Combining several languages and technology can be beneficial, but
can also contribute to complex implementation and debugging.

2.2.1 SystemVerilog

SystemVerilog is called the industry’s first Hardware Description and Verification Language (HDVL)
because it combines the features of Hardware Description Languages such as Verilog and VHDL
with features from specialised Hardware Verification Languages [5]. It is used in RTL development,
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implementing SystemVerilog Assertions and in building coverage-driven verification environments
using constrained random techniques. SystemVerilog has object-oriented features from c and c++ which
makes the language richer that is especially useful in testbenches.

2.2.2 UVM

The UVM standard is developed by the UVMWorking Group and improves interoperability and reduces
the cost of repurchasing and rewriting IP for each new project or electronic design automation tool[6][7].
Mentor Graphics, a technology leader in electronic design automation, claims UVM represents the latest
advancements in verification technology and is designed to enable the creation of robust, reusable,
interoperable verification IP and testbench components[8]. UVM is an open-source SystemVerilog
library developed independently by the simulator vendors with support from Aldec, Cadence, Mentor
Graphics, and Synopsys. This thesis uses Mentor Graphics’ Questasim verification tool to compile and
simulate UVM, SystemVerilog, SystemC and TLM 2.0 together.

UVM communicates on transaction-level and is used for testbench development. Two important features
is the object-oriented programming(OOP), and polymorphism that enables reuse and configuration of
classes. A standard library of UVM classes is recommended to be used in the testbench. This means the
designer does not need to be an expert in OOP since the recommended classes is already developed,
and just extending these classes can be the best practise. Pure SystemVerilog testbenches are written
specifically for a single purpose use and often with little guidelines. These testbenches have low or none
reusability, high maintenance cost and hard to understand. All UVM testbenches should use the same
base classes and are easily understandable for engineers worked with UVM before.

UVMwas designed with reuse in mind and encourage the use of the standard classes that can encapsulate
behaviour. While UVM enables reuse, it is not guaranteed that something can be reused between
environments, hierarchies or projects. It is the verification engineers responsibility to design components
that can be reused. The most common reuse is verification components between environments, but
entire verification environments can also be used between different projects or in the same tests. A
common practice is to instantiate umv_environmentmultiple times in the same test, but with a different
configuration.

A reusable UVMVerification Component(UVC) for a particular interface can be used in many testbenches.
A protocol UVC can, for example, generate an AHB transaction item and drive it on the DUT’s interface. A
specific UVC is created for each of the DUT’s interfaces and usually with a uvm_sequencer, uvm_driver
and uvm_monitor components inside as figure 2.4 shows. The dashed line is marking what is included
in the UVC. The role of a UVM agent is to encapsulate the sequencer, driver and monitor into a
single container to enable reuse. Other components as protocol checker, coverage monitoring or other
components can also be added to the agent.
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Figure 2.4: Block scheme of a typical UVC and connections

A sequence consists of sequence items that are passed by the test to the sequencer who communicate with
the driver. The driver drives a particular the interface like AHB or APB. The DUT and the uvm_monitor
is connected to the interface and receives these transactions. The monitor should not set any signal on
the interface, but only listen and broadcast completed transactions.

The high abstraction enables UVM components to be compact with a lot of functionality, but a con-
sequence can be a steep learning curve. A single line of code connects a sequencer with a driver and
establish a handshaking protocol. This is an example of UVM that abstracts away details and force
engineers to implement best practices. This abstraction can contribute to confusion in what is happen-
ing during the simulation, but enables engineers to implement tests quick and reliable when they are
comfortable with UVM.

UVM Connect is an open-source UVM-based library from Mentor Graphics that enable TLM 1.0 and
TLM 2.0 communication between UVM and SystemC. It is used by SystemC designers who want to
leverage SystemVerilog and UVM functionality and opposite where verification engineers wants to
leverage SystemC[9].

2.2.3 UVM code generation

UVM has its upsides, but one of the downside are large base structure needed to start simulating. While
there can be a lot of code, a similar structure is used for every testbench with repeating patterns. UVM
code generators are made to enhance productivity and remove the tedious process of writing the base
structure. Script generated files remove pitfalls done by new and experienced designers and give a
"flying start" to the verification. Using a code generator can further enable cooperation as it is much
easier to understand a structure a designer has previously work with. Many code generators exist, and
Nordic Semiconductor may make their own to suit their needs. Two well-known examples of code
generators is Doulous Easier UVM and Mentor UVM Framework.
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Doulos Easier UVM[10] is a UVM code generator written in Perl that converts files describing the
components and the DUT into basic UVM structure with components and connections. Usually, only
the necessary functions are implemented, and it is up to the designer to implement further functionality.
www.edaplayground.com is an online generator with many examples that simplifying the learning
process.

Mentor’s UVM Framework (UVMF) is a code generator written in Python that promise best-practices
UVM on the code generated. The designer write a YAML file describing the testbench and the generator
create UVM infrastructure that is ready to run and guarantees good model reuse possibilities.

2.2.4 Transaction-level modelling

Transaction-level modelling(TLM) is a communication abstraction where transactions are sent as a
communication object. UVM uses TLM communication between components and a driver to convert the
transactions to signal toggling for the RTL DUT interfaces. The UVM monitor translate signal toggling
on the DUT’s interfaces back to transactions. SystemC is also communicating on a TLM abstraction, but
not compatible with UVM without any bridge between them.

TLM 2.0 is an Open SystemC Initiative transaction-level modelling standard and can together with
UVM Connect connect UVM with SystemC. TLM 2.0 is focused towards the modelling of on-chip
memory-mapped busses and ensures high speed by sending the reference of the object. The generic
payload is the standard transaction object, but an extension can be attached if some attributes are lacking
or it can be replaced by another transaction object. The SystemC reference model used in this thesis
attach an extension on the generic payload to distinguish transactions sent from different sockets. A
bus model can be implemented with an initiator socket at the master and target socket at the slave, and
the generic payload as a transaction object enable maximum interoperability.

High abstraction TLM models can simulate many order of magnitudes times faster than the RTL models
and can be an important factor for reach deadlines. When RTL models are simulated, the simulator is
examining every event or clock cycle and results in slow simulation speed. TLM use function calls for
inter-module communication which ensures high simulation speed.

2.2.5 SystemC

SystemC[11] is an extension of C++ and provides an event-driven simulation interface that was released
in 2000 and had waves with popularity and new releases. It is an IEEE standard that only requires a C++
compiler to simulate, and this is usually an advantage over proprietary technology. SystemC deliberately
mimics the hardware description languages, but at a system-level which makes it an excellent reference
model that is faster to implement and simulate than RTL. SystemC is applied in system-level modelling,
abstract analogue/mixed-signal modelling, architectural exploration, architectural validation, perfor-
mance modelling, software development, functional verification and high-level synthesis[12].

SystemC is used in software-based systems that can fully mirror the functionality of a complex SoC, and
this is called virtual platforming. System architect engineers design the virtual platform and can be used
by several groups in several design phases. Software engineers can use it for application software and
software development, system architect engineers can use it in architecture exploration, and hardware
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engineers can use it as a golden reference model in testbenches. This exchange in executable code be-
tween engineers can also replace or be added to traditional paper specification between teams. Cadence
claims their Virtual System Platform can shave months off system development schedule by facilitating
early software development, higher software developer productivity, and continuous hardware/soft-
ware integration validation[13]. The fact that Cadence, a respected semiconductor company, build
virtual prototypes with SystemC and TLM 2.0 technology, backs up the importance of this technology
today[14].

SystemC TLM models can be untimed, loosely timed or approximately timed, meaning different level of
correct performance representation of an implementation. The real transaction times can be estimated
and specified in the TLM model resulting in an approximately timed model, and the performance of the
system can be analysed. Many SoCs are targeted to embedded system applications which have real-time
constraints. It is often necessary to verify real-time performance goals by simulating complex scenarios
with hardware and software components. Verifying such scenarios can be as important as verifying
the logic design. High-speed transaction-level models with the appropriate level of timing accuracy
can be an excellent way of verifying that performance requirements are met in certain scenarios[15].
Timing accurate SystemC models enable simulation of performance and architecture exploration, but
this thesis uses only the functionality of the model. Therefore, the timing is not essential in this thesis.
A system-level model can be used as a golden reference model regardless of the timing, and only the
functionality has to be correct. By sending the test vectors to the DUT and the system-level model,
functional equivalence check can be performed to verify the functionality of the DUT.

It is possible to make a reference model in RTL, but it is a complex task and will increase time-to-market
versus implementing the reference model with a high abstraction level. Some language options for
designing a high-level reference model is Matlab, Python, C or SystemC, all with different pros and
cons. Python makes it very easy to implement the model, but has a relatively slow simulation speed
and is difficult to interface to SystemVerilog. Matlab makes it easy to implement the model, has a fast
simulation speed and has better interface opportunities than Python, but is not open source and makes
it difficult with reusability. C is fast and have a good interface, but lacks the mimic opportunities that
SystemC has. SystemC is fast, moderate interface difficulty, moderate implementation difficulty and
suitable hardware mimicking. It requires time and effort to implement a reference model in SystemC,
but it has fast simulation speed and mimics the real implementation well [16].

A company can implement TLM models for new IPs to gradually building up a library of TLM models
or implement TLM methodology for all major existing IP blocks. Architectural exploration can be done
early and efficiently when a pool of relevant TLM models is available.

2.3 Coverage-Driven CRV

The two cornerstones of CRV is the automatic check of the DUT’s response and coverage which is the
metric-based completeness. Both features can be challenging to implement and use. The automatic
check of the response can be implemented in different ways. A UVM register model is a common way to
predict values in registers and can be used to produce the expected response from the DUT. The register
model can not predict all types of responses from a DUT that a reference model can. The register model
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is commonly used in simpler DUT’s with registers, and a reference model is implemented to mimic
a more complex DUT. The reference model can be implemented in different languages, as discussed
in chapter 2.2.5. A SystemC reference model is used in this thesis to enable automatic checking. A
challenge arises when the reference model and DUT does not have the same functionality. This scenario
is present in this thesis because the reference model has only the basic functionality of the DUT. The
result is a restriction in what features that can be tested and limitation on the stimulus generation. This
reference model can not be used in complete verification before more functionality is added. This thesis
focuses on the possibilities with this methodology and not the verification of the DUT.

Another challenge is to decide when we are done simulating. A coverage plan monitors exercised
functionality and determine the completeness. Ensuring the completeness with the tests can be difficult
with a complex DUT. Guiding tests with constraints can be mandatory to hit specific functionality, and
achieving boundary scenarios can be non-trivial in complex systems.



3 | Implementation

The DUT is a verified complex memory controller with an existing testbench implemented with directed
test vectors. It is a confidential Nordic Semiconductor IP used in their nRF52 SoC and other products.
The main purpose of the IP is to translate AHB bus-accesses into flash accesses. Internal registers in the
memory controller enables write, read or erase of the flash memory. The internal registers are accessed
with the APB bus-accesses. The flash memory simulated in this thesis is 1MB large and is a detailed RTL
model.

UVM uses transaction-level communication between all UVM components, but the UVM scoreboard
predictors convert the transactions to be able to communicate with the SystemC reference model. The
transactions are converted to TLM2.0 generic payloads and sent over TLM2.0 sockets to the reference
model. Figure 3.1 shows an overview of the test structure.

Figure 3.1: Test overview

3.1 SystemC Reference model

The SystemC reference model is intended to have similar functionality as the DUT, but at a high
abstraction level. It uses function calls as communication method and simulate must faster than RTL.
The model uses TLM 2.0 blocking and non-blocking interface that enables communication to UVM or
other SystemC blocks. The model was designed with the purpose to test the possibilities with a SystemC
reference model in UVM. It has only the basic functionality of the DUT. The functionality is listed in
table 3.1.

11
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Table 3.1: List of the reference model’s features

Configuration registers (APB) Flash memory (AHB)
Write enable Write to memory
Read enable Read from memory
Erase enable
Erase all

A SystemC model can be approximately timed when the functionality is fully developed with non-
blocking communication and approximate timing inserted. The non-blocking can enhance the timing
of the model to approximately timed because it does not block the simulation and has more phases to
model a transaction accurately. The non-blocking has more phases that make it more resource-heavy
and thus slower simulation speed than blocking, but much faster than RTL simulation. Approximate
timing is important for performance modelling and architectural exploration. The reference model
has non-blocking communication implemented, but not the needed details to approximately model
the performance of the memory controller. Both blocking and non-blocking interface is implemented
in UVM, but blocking interface is preferred because it has faster simulation speeds and is easier to
implement. SystemC reference model is shown below in figure 3.2.

Figure 3.2: SystemC reference model block scheme. Figure made by Nordic Semiconductor.

The SystemC model was developed with SystemC and compiler versions not available in the Mentor
Graphics’ Questasim verification tool and never tested for compatibility. It was a challenge to compile,
and different tool versions had different problems. Some functionality as accessing the generic payload
extension exits the simulation without any warning or error from the simulator. Specific obstacles show
up in new methodologies, but can be evaded or fixed as the technology matures in the company.
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3.2 UVM

3.2.1 UVM Verification Component

A Verification IP is commonly known as a component used in testbenches. Similarly, a UVM Verification
Component(UVC) is a component used in UVM testbenches. This thesis uses two protocol UVCs that
have the main purpose of driving transactions to the DUT’s interfaces. The main components inside the
UVCs are uvm_sequencer, uvm_monitor and uvm_driver and shown below in figure 3.3.

Figure 3.3: Block scheme of the UVCs

The sequencer controls the flow of request and response sequence items between sequences and the
driver. The driver has knowledge how to drive signals on a particular interface. The AHB UVC has
a driver for the AHB interface, and the APB UVC has a driver for the APB interface. A monitor is a
component that observes DUT pin level activity and converts its observations into transactions. It also
sends these transactions to analysis components through an analysis port. The UVCs used in this thesis
are made by Nordic Semiconductors and have more features as the choice between master and slave,
protocol checker, coverage monitor and library of sequences. It is a component that can be used as it
is, but it is common to write sequences specially made for the DUT. The sequence library has basic
sequences as random base transaction, burst transfer and pipeline transfers. Custom sequences are
easily made when they are extended from one of these sequences in the library as these have a lot of the
functionality needed.

3.2.2 Scoreboard predictor

The scoreboard predictors are the main components implemented that enables the unique flow presented
in this thesis, the use of a SystemC reference model. The UVCs broadcast their completed transactions
through a uvm_analysis_port. A predictor is implemented for each UVC to receive these transactions
through a uvm_analysis_imp. The APB predictor receives the completed APB transactions, and the
AHB predictor receives the completed AHB transactions. These transactions are transformed into TLM
2.0 uvm_tlm_generic_payload to be compatible with the reference model. Using the generic payload
as a transaction object improves interoperability between blocks because many blocks are compatible.
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When a transaction reaches a predictor, the transaction has already been executed by the DUT meaning
the read transactions have the DUT’s response. The read transactions are converted to two separate
generic payloads objects. The first object has the address and the data; this object represents the actual
response from the DUT and is sent to the scoreboard. The second, has only the address and is sent
to the reference model to retrieve the reference data. This object represents the predicted expected
response and is also sent to the scoreboard. A write transaction is only transformed to one generic
payload since these are only sent to the reference model, not to the scoreboard. Two methods of
transaction-level communication with the reference model are implemented. A simple and fast blocking
socket is implemented with uvm_tlm_b_initiator_socket and a more complex non-blocking socket
is implemented with uvm_tlm_nb_initiator_socket. Only one socket is needed to communicate with
the SystemC reference model, but they demonstrate the possibilities. A compilation flag determine
which socket type is compiled and simulated. Figure 3.4 shows a block scheme of the predictors.

Figure 3.4: Block scheme of the predictors and their connections

The predictors were implemented as separate components to keep the behaviour simple and encapsulated
to enable reuse. An implementation where a predictor received transactions from both UVCs can be
efficient for this testbench, but can be too complex for easy reuse. The predictors can easily be reused
in a test that uses the respective UVC and a reference model with TLM 2.0 sockets with generic
payload.

The non-blocking interface has a unique opportunity to model a transaction accurately and thus, model
performance. The DUT could have a performance demand that arguable can be just as important as logic
bugs. The SystemC model has an opportunity to model these performance demands and can be used
to validate the performance of the DUT. The reference model can provide the information about the
expected response, but could, in theory, give information about expected performance. The scoreboard
could compare the performance and is a reason for the demonstration of non-blocking communication
and why it is included in the predictor despite blocking is almost always best in functional verification.
The non-blocking have advanced features as the possibility to send a new transaction before the previous
is completed. There is a conflict between having as many features as possible versus a simple and easy
to understand component. Every code line written increases complexity, the possibility of bugs and
extra code that decrease simulation speed. The AHB predictor with both blocking and non-blocking
is presented in appendix A.1. This version of the predictor has all the functionality, but is complex. A
version of the AHB predictor with only blocking can be found in appendix A.2. This version has the
functionality needed to use the reference model in functional verification and is simple and easy to
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understand. The predictors was written with reusability in mind, and a simple and easy to comprehend
predictor would decrease implementation time, debugging time and reduce maintenance cost. The APB
predictor is implemented similarly as the AHB predictor.

3.2.3 TLM 2.0 sockets

The generic payload transaction object represents a generic bus read/write access. It is used as the
default transaction in TLM 2.0 blocking and non-blocking transport interfaces. It has common bus
attributes listed in the table 3.2 below.

Table 3.2: List of generic payload attributes

Attribute Explanation
bit [63:0] m_address Address for bus operation.
uvm_tlm_command_e
m_command

Bus operation type.

byte unsigned m_data[] Data read or to be written.
int m_length Number of data bytes.
int m_dmi Not yet supported.
int m_byte_enable Indicates valid m_data array elements.
int m_byte_enable_length m_byte_enable length.
int m_streaming_width Number of bytes transferred on each

beat.
uvm_tlm_response_status_e
m_response_status Status of the bus operation.

The data attribute in the generic payload is a byte array, and the data in a testbench is rarely this format
for practical reasons. A transformation is needed to match the testbench data to the m_data[] generic
payload attribute. The data in this testbench is a 32-bit int and the first transformation performed is
dividing the int into 4 bytes with the SystemVerilog streaming operator "»". The bytes is then switched
to reverse order since SystemC reads the bytes from left to right. The transformation is done in two
steps and shown in the figure 3.5 below. The data returned from SystemC has its byte order switch back
to be comparable.
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Figure 3.5: Packing generic payload data

TLM 2.0 offers many methods of communication, and the reference model has blocking and non-blocking
sockets implemented. One socket type is sufficient for communication, but these sockets have pros and
cons and used in different applications. The blocking socket is simple and fast while the non-blocking
can be complex, timing approximate and more resource-heavy. The blocking socket completes the
transaction in one function call and is therefore not resource-heavy on the simulator. In contrast,
the non-blocking can use several phases and be more resource-heavy. The fast and simple blocking
implementation is preferred in this application, but both blocking and non-blocking are implemented in
the predictor to demonstrate the possibilities. The chart of a typical successful non-blocking transaction
is shown in figure 3.6.

Figure 3.6: Non-blocking transaction chart
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The blue arrow represents a function call and can either be in the forward direction or the backwards
direction. In this protocol, TLM_ACCEPTED is returned to proceed the transaction and TLM_COMPLETED

is returned to terminate the transaction early. If TLM_ACCEPTED is always returned, the transaction
stops after the fourth phase, which is the end response. This means TLM_COMPLETED is not needed to
complete a transaction, but can terminate a completed transaction. The reference model has several
sockets for different access types and uses an extension on the generic payload to specify which socket
the transaction was sent through. An APB and AHB have both address and data, but it is important to
differentiate that one sends data to registers and one to memory.

More detailed information about the transaction can be found in the generic payload transaction object.
The generic payload m_response_status attribute shown in the attributes table above 3.2 has several
states that can be used to determine what to do next. The possible states are shown in table 3.3.

Table 3.3: List of possible response status

UVM TLM generic payload response status
OK_RESPONSE Bus operation completed successfully
INCOMPLETE_RESPONSE Transaction was not delivered to target
GENERIC_ERROR_RESPONSE Bus operation had an error
ADDRESS_ERROR_RESPONSE Invalid address specified
COMMAND_ERROR_RESPONSE Invalid command specified
BURST_ERROR_RESPONSE Invalid burst specified
BYTE_ENABLE_ERROR_RESPONSE Invalid byte enabling specified

The default state is INCOMPLETE_RESPONSE, and the target should only change the state. If the trans-
action has status OK_RESPONSE, the target has completed the transaction and the transaction can in
some cases end early with TLM_COMPLETED. An error will in many scenarios stop the simulation, but for
example, the
ADDRESS_ERROR_RESPONSE can be solved by terminating the transaction and send a transaction with
different address instead. Implementing different solutions to different errors can make a robust simula-
tion.

3.2.4 UVM Connect

UVM Connect connects the SystemC model with UVM in a relatively straightforward process. The
sockets are compiled separately, but with a look up string to later connect them during the link phase.
The AHB transactions are sent through the socket called data_socket, and APB transactions are sent
through the socket called config_socket. SystemC implement target sockets using the tlm.h library with
the following code:
tlm_utils :: simple_target_socket <memctrl , DATA_BUSWIDTH > data_socket;

This target socket in SystemC can be used as blocking or non-blocking by registering local call-back
functions for data interface:
data_socket.register_b_transport(this , &memctrl :: data_b_transport);

data_socket.register_nb_transport_fw(this , &memctrl :: data_nb_transport_fw);
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The SystemC data socket is registered in UVM Connect using the uvmc.h library. The last argument is a
lookup string used for connecting the socket to the UVM socket.

uvmc_connect(mem.data_socket ," data_trans ");

The UVM predictors implement blocking and non-blocking initiator sockets with:

uvm_tlm_b_initiator_socket #() data_socket;

uvm_tlm_nb_initiator_socket #( ahb_predictor) nb_data_socket;

The sockets in the UVM predictors are registered in UVM Connect with identical lookup strings to
the corresponding SystemC socket. Only one of the sockets should be instantiated, either blocking or
non-blocking.

uvmc_tlm #():: connect(m_ahb_pred.nb_data_socket , "data_trans ");

uvmc_tlm #():: connect(m_ahb_pred.data_socket , "data_trans ");

Above is the description of connecting the data socket for AHB and similar is implemented for the APB
config socket.

3.2.5 Scoreboard

Each predictor broadcast two generic payloads through two uvm_analysis_port and the scoreboard
receive these through four uvm_analysis_imp. Four queues implemented as FIFOs are used to store
the incoming transactions. The APB transactions are compared when the queues with the actual
response from the DUT and expected response from the reference model are not empty, and similar
with AHB.

The scoreboard ensures correct functionality on a high-level and have no information about low-level
specific protocol execution or RTL behavior. Assertions check the RTL behaviour and a protocol checker
checks the protocol. The UVCs includes protocol checkers that monitors the interface and signals
an error if an error occurs, similar to assertions. The generic payload is only a summary of the real
transaction, but it is enough to say if the functionality is correct.

The desired number of AHB and APB transactions generated and compared is stored in the UVM
configuration database and retrieved by the scoreboard. If the number of transactions is above zero,
the scoreboard raises an objection that prevents the simulation from ending before all transactions
intended is compared. The scoreboard is almost always tailored towards the test and the DUT, and thus
not entirely reusable. The implementation of the scoreboard is presented in appendix A.3.

3.2.6 Code generator

The UVM structure is made with Easier UVM code generator by Doulus and includes generation of files,
components, the connection between components and an initial script to run the simulation. Easier
UVM gave the project a flying start, and a code generator should always be considered when starting a
UVM project. The result of a company encourage engineers to use this technology are many testbenches
with similar structure. This will enable fast cooperation as every engineer is comfortable with the
structure. The files and generated structure is shown below in figure 3.7.
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Top environment

top_env.sv

top_seq_lib.sv

top_config.sv

top_test_pkg.sv

Top test bench

top_tb.sv

top_th.sv

Top test

top_test.sv

top_test_pkg.sv

Figure 3.7: Initial structure

The initial structure has built a solid foundation were more components can be added. The "Top
environment" is where the UVM components belong and the "Top testbench" is where the RTL models
belong. The "Top test" wraps "Top environment" and can instantiate different configurations of the
environment and start different tests. The package files is used to decide what files are compiled and
marked with "pkg.sv" in the file name. "top_env.sv" is the only UVM environment in this test and all
the UVM components are instantiate here. "top_seq_lib.sv is a virtual sequence that generates other
sequences, AHB and APB sequences in this case. Details about the virtual sequencer is described later in
section 3.3. "top_config" is a UVM object that has interfaces and variables that can be accessed globally
through the UVM config database.

The UVCs are instantiated in "top_env.sv", the RTL models is instantiated in "top_th.sv". Stimuli can
now be generated in the virtual sequencer to exercise the DUT, but we need additional components
to complete the test environment. The predictors are developed as described in section 3.2.2 and
instantiated in "top_env.sv". Similar with the scoreboard, it is developed as described in section 3.2.5
and instantiated in "top_env.sv". The DUT is a memory controller, and the memory it is controlling is
an RTL flash memory model from one of Nordic Semiconductors vendors. It is 1MB in size and is a
complex memory model with many features. A power and clock module from Nordic Semiconductor is
instantiated to control the supply of power and clock. It will ensure low power consumption by turning
off the supply when not needed. top_seq_lib.sv is a virtual UVM sequence and is used to generate
AHB and APB sequences. The virtual sequencer is described in the next section. The overview of the
complete structure is shown in figure 3.8.
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Top environment

top_env.sv

top_seq_lib.sv

top_config.sv

top_test_pkg.sv

APB UVC

apb_predictor.sv

AHB UVC

ahb_predictor.sv

scoreboard.sv

Top test bench

top_tb.sv

top_th.sv

DUT

Power and clock

Flash memory

Top test

top_test.sv

top_test_pkg.sv

Figure 3.8: Complete structure

The code generator accelerated the development and implemented best practices. Writing the structure
manually would be time-consuming and error-prone. The SystemC model is in another folder and is
compiled separately, but connects through UVM Connect in the link stage. The block scheme of the
structure with the SytemC model, UVM and the DUT is shown in figure 3.9

Figure 3.9: Complete block scheme

The constrained random stimuli are generated in the virtual sequencer and simulated on the DUT. It
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generates two types of stimuli, APB transactions to the configuration registers and AHB transaction to
the flash memory. The test is complete when the DUT’s features have been exercised thoroughly, and
this is measured by the coverage. The predictors receive the executed transactions from the UVCs and
simulate them on the reference model and uses the response to produce the expected response. The
responses in this test are the APB and AHB read transactions. Both the expected response and the actual
response are sent to the scoreboard for comparison.

3.3 Tests

The CONFIG register in the memory controller can be read and written to, and it has three states that
either enable read(state 0), write(state 1) or erase(state 2) of flash memory. This means a random stimuli
must be constrained only to write 0, 1 or 2 to the register. The ERASE_ALL register in the memory
controller is a write-only register. The flash memory is erased when 1 is written to the ERASE_ALL
register, and erase is enabled in the CONFIG register. This means random stimuli must be constrained
only to write if the address is the ERASE_ALL register. The constraints on the APB stimuli to prevent
illegal stimuli are:

1 rand bit [DATA_BUS_WIDTH -1:0] data;

2 rand bit [ADDR_WIDTH -1:0] addr;

3 rand bit pwrite; // 1 -> WRITE , 0 -> READ

4

5 constraint c_addr {

6 addr inside { CONFIG_REG , ERASE_ALL_REG };

7 }

8 constraint c_data {

9 data inside { 'h0, 'h1, 'h2};

10 }

11 // Constraint to not read from ERASE_ALL_REG , only write

12 constraint c_pwrite {

13 addr inside {ERASE_ALL_REG} -> pwrite == 1;

14 }

Listing 3.1: APB constraints to prevent illegal transactions

With the constraints mentioned above, an exhaustive constrained random test can be performed on
the registers. Test1 creates a desired number of stimuli with the following code in the virtual se-
quencer:

1 begin // APB - SEND RANDOM READ/WRITE TRANS //

2 apb_rand_seq=apb_transfer #(32 ,32):: type_id :: create("apb_rand_seq");

3 for(int i = 0; i < NUM_APB_TRANS; i++) begin

4 if ( !apb_rand_seq.randomize () )

5 `uvm_error(get_type_name (), "Failed to randomize sequence")

6 apb_rand_seq.start(m_apb_uvc_agent.sqr , this);

7 end

8 end

Listing 3.2: Test1: Constrained random APB sequences
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The range of possible input combinations to the ERASE_ALL and CONFIG registers are small and
simulating some constrained random sequences could test all combinations, but the coverage should
confirm this. Constraints can easily be added to target functionality with the following addition to the
randomization:

1 if ( !apb_rand_seq.randomize ()

2 with {apb_rand_seq.addr = CONFIG_REG ;})

Listing 3.3: Adding a constraint to target functionality

Constraining the randomization can be important in large tests to target functionality. Test1 exercise
a small part of the DUT and the Questa verification tool recorded only 24% code coverage. It is easy
to apply efficient constrained random stimuli to the registers since they can be accessed at any time.
The flash memory is more difficult to access because there are many illegal scenarios. The operations
allowed are: Read from memory if the read is enabled, write to the flash memory if write is enabled and
the memory location is erased, erase memory if erase is enabled. The reference model have not modelled
illegal transactions, and performing these illegal transactions can result in unpredictable behaviour. The
scoreboard could ignore illegal transactions if the reference model recognized the illegal transactions
and flagged them. The specification sheet lists legal transactions, and it is up to the user to avoid illegal
transactions that could lead to unpredictable behaviour. The restrictions of legal flash transactions
results in a manual made test where only the AHB data is random. Test2 tests the memory controller
and the flash memory with the following virtual sequence:

1 begin // APB - ERASE ALL AND ENABLE WRITE //

2 apb_write_seq=apb_write_transfer #(32 ,32):: type_id :: create("apb_write_seq");

3 apb_write_seq.ta_enable_erase(m_apb_uvc_agent.sqr);

4 apb_write_seq.ta_erase_all(m_apb_uvc_agent.sqr);

5 apb_write_seq.ta_enable_write(m_apb_uvc_agent.sqr);

6 end

7

8 begin // AHB - SEND WRITE TRANS //

9 ahb_write_seq = ahb_write_sequental_reg #(32):: type_id :: create("ahb_write_seq");

10 if ( !ahb_write_seq.randomize () )

11 `uvm_error(get_type_name (), "Failed to randomize sequence")

12 ahb_write_seq.start(m_ahb_agent.sqr , this);

13 end

14

15 begin // APB - ENABLE READ //

16 apb_write_seq.ta_enable_read(m_apb_uvc_agent.sqr);

17 end

18

19 begin // AHB - SEND READ TRANS //

20 ahb_read_seq = ahb_read_sequental_reg #(32):: type_id :: create("ahb_read_seq");

21 if ( !ahb_read_seq.randomize () )

22 `uvm_error(get_type_name (), "Failed to randomize sequence")

23 ahb_read_seq.start(m_ahb_agent.sqr , this);

24 end

Listing 3.4: Test2: AHB and APB sequences with only random AHB data

The first sequence created is apb_write_seq, which has pre-defined tasks for specific transactions. The
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three first APB transactions are started by tasks and enable erase, erase all flash-memory and enable
write. The next sequence created is ahb_write_sequental_reg, and this sequence writes random data
to a pre-defined number of addresses. The address is incremented to prevent two writes to an address.
Writing multiple times to a memory address without erasing results in corrupted data not modelled
by the reference model. Simulating such transactions will provoke error that is not caused by a bug,
but user error. The next sequence simulated is an APB sequence started by a task and enable read from
flash memory. The following sequence created is ahb_read_sequental_reg, and this sequence reads
data from the addresses previously written to. The stimuli from Test2 resulted in 42% code coverage,
meaning a lot of the DUT is still not exercised, but this is expected as the reference model has only the
basic functionality of the DUT.

Test2 consist mostly of determined tests testing specific functionality and is similar to the existing
traditional testbench with directed tests. Adding sequences to reach specific coverage will inherit some
of the same weaknesses of a directed test. Instead of developing manual tests, the reference model
should be developed to have the same functionality as the DUT and flag illegal transactions. The virtual
sequencer could then be reduced to constrained random APB and AHB sequences:

1 fork

2 begin

3 APB_SEQ=apb_transfer #(32 ,32):: type_id :: create("APB_SEQ");

4 for(int i = 0; i < NUM_APB_TRANS; i++) begin

5 if ( !APB_SEQ.randomize () )

6 `uvm_error(get_type_name (), "Failed to randomize sequence")

7 APB_SEQ.start(m_apb_uvc_agent.sqr , this);

8 end

9 end

10

11 begin

12 AHB_SEQ = ahb_transger #(32):: type_id :: create("seq");

13 for(int i = 0; i < NUM_AHB_TRANS; i++) begin

14 if ( !AHB_SEQ.randomize () )

15 `uvm_error(get_type_name (), "Failed to randomize sequence")

16 AHB_SEQ.start(m_ahb_agent.sqr , this);

17 end

18 end

19 join

Listing 3.5: Test3: Constrained random APB and AHB sequences

Test3 is not simulated, but is an example of a test that can be performed with an adequate reference
model and test environment. Test3 create constraint random APB and AHB sequences in two concurrent
processes.
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3.4 Makefile

The makefile of a multi-language environment can be complex and an obstacle for engineers new to
the technology and methodology. The engineer will eventually become comfortable with the makefile
as test environments have a similar structure. Executing "make all" will delete old files, compile, link,
optimize and simulate. A summary and description of the makefile is shown below in listing 3.6.

1 all: clean comp sccom vopt qsim

2

3 # comp sccom vopt qsim are operations from Mentor 's Questasim verification tool

4

5 comp:

6 # create work folder

7 vlib work

8

9 # vlog compiles SystemVerilog and UVM

10 # files.f specify UVM and SystemVerilog files for compilation

11 # +define+NON_BLOCKING_TRANSPORT or +define+BLOCKING_TRANSPORT compilation flag

decide TLM socket technology

12 vlog -f ../ files.f -sv +define+BLOCKING_TRANSPORT

13

14 sccom:

15 # sccom compiles SystemC

16 sccom

17

18 # include SystemC library and UVM Connect

19 I../ systemc/sys_lib/src/connect/sc

20

21 # include SystemC source file s

22 -I ref_model/src

23

24 # compile cpp files

25 all_cpp_files ,cpp

26

27 # link the registered SystemC sockets with registered UVM sockets

28 sccom -link -uvmc -lib work

29

30 vopt:

31 # vopt optimize design and enable coverage collection

32 vopt sc_main top_tb -o DesignOpt +cover=sbecft

33

34 qsim:

35 # vsim starts the simulation

36 vsim -64 -gui DesignOpt $(UVMC_LIB) -l questa.log

37

38 clean:

39 rm -rf work $(designfile) $(wavefile) UVM_MESSAGES

40 mkdir UVM_MESSAGES

Listing 3.6: Summary and description of the makefile

Controlling tests from the makefile can be a useful abstraction. The choice between blocking and non-
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blocking communication between SystemC and UVM is controlled with a compilation flag. Implementing
variables in the makefile reduced knowledge acquired of the testbench to operate it. The engineer can
control the variable from the makefile without the need of modifying the complex testbench.



4 | Results

Simulation with UVM and SystemC was successfully demonstrated. The functionality tested was limited
by the reference model’s lack of functionality, and only 42% code coverage was reached. Adding more
functionality to the reference model would enable greater coverage and completeness.

The system developed enabled the SystemC reference model to provide the expected response from
the DUT. One key component developed are the predictors that predicts the expected response with
the use of the reference model. It is not the exact transaction that the DUT received, but a high-level
representation of the transaction with data and address. The predictor was developed to be reusable in
other tests and demonstrate the possibilities with both blocking and non-blocking TLM2.0 sockets. The
scoreboard was explicitly designed for this test and succeeded in comparing the response from the DUT
and the reference model. This thesis is the first large scale simulation of SystemC and UVM at Nordic
Semiconductor, and provides the groundwork that this methodology can be used in verification.

The SystemC model was successfully compiled and simulated, but with some obstacles, because it was
not compatible with the verification tool. It was designed with different gcc compiler and SystemC
language version than what was available in the verification tool. Future SystemC models must be
implemented with compatibility to all tools. The SystemC model was not specifically designed to be
compatible with the verification tool, and a lot of time were used to modify it, so it compiled and
simulated. UVM is a well-established technology and compiled without many obstacles. The verification
tool was generous about giving UVM information in compilation and simulation. However, SystemC
information were sometimes misguiding or non-existing. The use of the SystemC reference model can
be time-consuming when not correctly adapted to tools. The methodology can be efficient in performing
functional verification, but obstacles as SystemC adaptation can limit the efficiency.

A factor in deciding verification methodology is the implementation time. The DUT was previously
verified with a traditional directed test that uses 3500 lines to implement test vectors. Removing the need
to write enormous lists is a motivation to adopt CRV and reduce implementation time. In Test3[Listing:
3.5], 19 code lines is enough to create a test with constrained random APB and AHB sequence when the
reference model is adequate and can replace many directed tests. However, this test requires a large
effort made in the test environment. The reason this is still a promising methodology is the fact that
a lot of the environment is reusable or automatically generated. Chapter 3.2.6 about code generation
demonstrates how to give the any UVM development a flying start. The structure is standardized and
enable effective cooperation. UVM and CRV can drastically decrease development time of test structure
and test generation, and a SystemC model should give no extra implementation time as it should already
exist.

26
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A simple method of calculating implementation time is counting the number of code lines written. Table
4.1 shows the approximate number of code lines in the files. 100% percentage written means I wrote it
myself, 50% means the code generator wrote some of it and 0% means it is reused.

Table 4.1: Code lines and implementation time

Percentage written File(s) Code lines
100% apb_predictor.sv 220
100% ahb_predictor.sv 220
100% scoreboard.sv 160
50% top_env.sv 140
50% top_seq_lib.sv 115
50% top_config.sv 30
50% top_tb.sv 50
50% top_th.sv 440
50% top_test.sv 20
50% pkg 45
0% APB UVC 2700
0% AHB UVC 2300
0% SystemC 900

The number of code lines multiplied with the percentage gives approximately the code lines written by
me. I have written 1000 of the total 7200 lines, or 86%. A project similar to this project can reuse the
predictors and achieve even lower implementation time with 92% reuse. A low implementation time is
possible with UVM, code generator and reusable components.

Another factor in deciding verification methodology is the simulation time. Simulation time is a limiting
factor in simulation-based verification. The test environment in traditional directed test are usually
simple, and the DUT’s complexity is the main contributor for high simulation time. UVM has an
infrastructure more significant than a traditional directed test and also a SystemC reference model to
simulate, this means a slightly higher simulation time is expected. UVM and SystemC use transaction-
level communication that are many times faster than RTL simulation. UVM and SystemC could use
more simulation resources than a traditional directed test, but the DUT is the main contributor to the
simulation time. A more significant reason for the rise in simulation time with this methodology is
that CRV would increase the number of test vectors needed for completeness. Measures to decrease
the number of test vectors required are presented in the background chapter, but would still not be as
efficient as manual made test vectors. Figure 4.1 shows how many minutes to compile and simulate
Test2 with different amounts of test vectors. Different transactions use different simulate time, and
the APB erase all transaction has the highest simulation time. The x-axis shows how many AHB read
and write are performed. Ten thousand on the x-axis include four APB transactions, 5000 AHB write
transactions and 5000 AHB read transactions. The y-axis shows the time in minutes.
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Figure 4.1: Time to complete Test2 with different number of transactions

Many thousands of transactions can be simulated in a couple of minutes on the Nordic Semiconductors
servers and can quickly achieve exhausting testing of a small system. Simulating complex SoC can
significantly increase the simulation time as each transaction takes longer to simulate, and the test needs
more test vectors to test all sub-components. Features discussed in the background as high-quality
reusable tests, novel test detection and constraints adjustment can reduce simulation time and achieve
higher coverage.



5 | Discussion

Simulation-based tests can be implemented with different levels of complexity. The memory controller
simulated in this thesis is a complex design with industry standards and already verified with a traditional
directed testbench. The testbench has a long list of directed tests that covers all functionality and is
updated over several years. Updating the large lists of fixed test vectors is non-trivial for engineers
not familiar with the test. It is fair to say that the existing testbench has high development cost and
high maintenance cost. This means it is possible to verify it with directed tests, but is costly and a more
efficient methodology should be investigated.

5.1 CRV

CRV reduce or eliminate the need of directed tests and is usually implemented in SystemVerilog or
UVM. It is easy and quick to build a single constrained random test that is equivalent to many directed
tests, but the CRV environment is more complicated. Some DUTs are too complex for an engineer
to comprehend fully, and the generation of directed test are error-prone to unexpected bugs. The
randomization can find unexpected bugs, but can also reach unexpected illegal states. Designs today
may not have logic to prevent all illegal scenarios, and it is the user’s responsibility to prevent illegal
states. The stimuli generation have powerful constraints to avoid stimuli that is always illegal, but
sometimes the illegal stimuli are dependent on the DUT state and can be challenging to prevent. This is
visible in Test2[Listing:3.4], because only the data is random to avoid any illegal scenarios. Individual
challenges arrive with every DUT, and it can be challenging to create meaningful constrained random
stimuli that have the freedom to find unexpected bugs, and does not stop the simulation by provoking
illegal states. The technical difficulties of completing verification in CRV is more challenging than
directed tests. Still, the need to tackle these challenges is about time to enhance verification today. The
technical challenges are present, but a company will overcome these challenges by investing time and
resources in these areas.

5.2 UVM

It can be challenging to complete verification with CRV. The challenges can appear in stimuli generation,
response checking, coverage checking or other areas. Different methodologies have different challenges,
and a company should choose to invest in a small number of verification methodologies to adopt the
methodologies properly. The use of many different methodologies can result in many poorly adopted
methodologies. A company with one or few methodologies solves problems when they appear and share

29
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them so coworkers can use the solutions. It is up to the company to enable advanced methodologies
since it can be too much for a few persons to solve all challenges in a reasonable amount of time. UVM is
a new promising standard verification methodology that is built on SystemVerilog and implements best
practises. Company guidelines enhances the benefits from the use of a standard methodology. UVM has a
lot of freedom in implementation, but UVM with strict company guidelines enables efficient cooperation
between coworkers because many test environments are similar. These test environments will arguably
be improved after each project as engineers find smart solutions and share with coworkers.

Some downsides of UVM is complexity and expensive training. SystemVerilog can indeed provide
all features an engineer need. The transition from SystemVerilog to UVM is arguably not worth the
resources spent if only a small percentage of verification engineers do the transition. The result then is
just more unique testbenches with unique problems. The goal should be to standardize the verification
methodology used in the company. Also, the simulation time can be expected to grow since the
test environments are more resource-heavy, and more test vectors are maybe required to complete
verification. Both implementation time and simulation time are important in reaching the required
verification time.

UVM did not invent reuse, but enhances it. The UVCs used in this thesis provoked no challenges, but
that was after some trial and error with bad UVCs. At the start of this thesis, no standard AHB or APB
were made at nordic and the first I tried lacked features, had no documentation and I had to read through
all of the code to understand if I could use it or not. The difference between an excellent reusable UVC
and a bad UVC are huge. One reduces the implementation time, and one increases implementation time.
This is one more example of a whole company must make verification efficient together as a team, and
remove time-consuming tasks.

Starting with UVM is a daunting process where object-oriented programming and polymorphism is
essential, and a whole bunch of standard classes must be understood. However, arguably all the standard
classes are intuitive, and the best-practise classes are already made, so the object-oriented part are
feasible to learn. The tedious process of making the large infrastructure needed to simulate anything is
made easy with code generators, and make UVM usable for everyone. A lot of investment is needed to
be efficient in UVM.

Several techniques of enabling CRV with automatic checking are possible, a high-level model or register
model are the most used. UVM register models are simple and can be the most efficient when modelling
DUTs with registers. The DUT in this thesis could be modelled with a register model and predictor to
produce expected result. This would be efficient in is this scenario, but this thesis is investigating the
SystemC technology and not the DUT. A company that uses SystemC and UVM in verification can also
use other setups as register models and directed testing where it is efficient. However, a lot must be
invested in the technology presented in this thesis to make it efficient, and it would then make sense to
use it widely across the company.

5.3 SystemC

Of the CRV challenges are the prediction of the response the most challenging. A high-level model
can be implemented in various languages, as described in chapter 2.2.5. They have different challenges
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and opportunities. SystemC is arguably the most challenging and most rewarding solution. It is most
rewarding because it can be used in many design phases by different groups. It has unique hardware
mimicking opportunities that can perform functional verification.

The SystemC model compiled easily with the gcc compiler it was designed for, but was a challenge to
compile in the verification tool. The model was developed with different language and compiler versions
than available in the verification tool, and it was developed without the intended use in mind. It is a
complex task to compile the SystemC model that includes c++, SystemC, TLM2.0 and UVM Connect. A
verification tool has approximately four major updates a year, and nearly every version gave different
errors. UVM is the main use in this verification tool and has matured, but the SystemC is a long way
from the same level of consistency. The SystemC compilation and simulation information was often
misguiding or non-existent. It gave errors on internal compiler files inaccessible by the user and could
end the simulation without error. Resources must be spent to investigate what are the possibilities on
what versions. The SystemC technology must be matured and show consistency to be efficient. Just
as the undocumented UVCs increase the implementation time, increase an undocumented SystemC
model the implementation time. The SystemC model had documented gcc compatibility, but none of
the verification tool versions. Again, a company must use considerable resources to make the model
usable because a verification engineer does not have time to read and understand a complex SystemC
model.



6 | Conclusion and Future work

Developing a test with SystemC and UVM from the ground up to verify the functionality of an RTLmodel
is undoubtedly a resource-heavy task for verification engineers. SystemC modelling is time-consuming,
UVM development is complex and compiling and simulating together introduce different challenges.
However, this thesis describes implementing tests when the use of UVM and SystemC is the standard
methodology in a company and resources are available. System architects develop SystemC models
for multi-purpose, reusable UVCs are available, and a standard method of compiling, simulating and
achieving completeness is developed. These prerequisites are necessary to achieve completeness quickly.
Companies unable to create the essential infrastructure this methodology needs, should arguably not
depend their verification on this methodology.

Nordic Semiconductor’s UVCs ensured easy and quick connection between UVM and the DUT, and
made it easy to generate stimuli in the desired protocol. UVM has matured in the company and resulted
in easy use of the technology. The SystemC technology provided difficulties because it has not matured
as a technology in verification. Firstly, the model was not designed for use in verification tools, and
initial compilation was a big challenge. Secondly, the model had only the basic functionality of the DUT,
making it impossible to complete the verification. The verification methodology presented in this thesis
shows great promise in reducing verification time by eliminating the process of manually writing test
vectors and enabling reuse. The SystemC model can be a limiting factor as a considerable amount of
resources must be invested in SystemC development to enable this methodology.

6.1 Future work

• Further develop SystemC model to complete verification of the DUT.

• Investigate the challenges and solutions to illegal scenarios in the DUT.

• Investigate coverage methods to indicate completeness.

• Investigate TLM 2.0 interoperability and easy connection to additional blocks.

• Apply novel test detection to decrease the number of test vectors.

• Implement a test database for high-quality tests.
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A | Source code

1 import uvm_pkg ::*;

2

3 class ahb_predictor extends uvm_component;

4 `uvm_component_utils (ahb_predictor)

5

6 // - output port with the actual DUT response - //

7 uvm_analysis_port #( uvm_tlm_gp) broadcast_AHB_actual;

8

9 // - output port with the expected refence response - //

10 uvm_analysis_port #( uvm_tlm_gp) broadcast_AHB_expected;

11

12 // - input port with UVC trans - //

13 uvm_analysis_imp #(ahb_item , ahb_predictor) imp_trans;

14

15 // - sockets to connect to SC - //

16 `ifdef NON_BLOCKING_TRANSPORT

17 uvm_tlm_nb_initiator_socket #( ahb_predictor) nb_data_socket;

18 `endif

19 `ifdef BLOCKING_TRANSPORT

20 uvm_tlm_b_initiator_socket #() data_socket;

21 `endif

22

23 uvm_tlm_gp trans_ahb_queue[$];

24 bit sc_is_ready = 1;

25 bit end_resp_phase;

26 virtual in_ahb vif;

27 top_config m_config;

28

29 function new (string name = "ahb_predictor", uvm_component parent= null);

30 super.new (name , parent);

31 broadcast_AHB_actual = new("broadcast_AHB_actual", this);

32 broadcast_AHB_expected = new("broadcast_AHB_expected", this);

33 imp_trans = new("imp_trans", this);

34

35 `ifdef BLOCKING_TRANSPORT

36 data_socket = new("data_socket", this);

37 `endif

38 `ifdef NON_BLOCKING_TRANSPORT

39 nb_data_socket = new("nb_data_socket", this);

40 `endif

35
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41

42 endfunction

43

44

45 virtual function void build_phase(uvm_phase phase);

46 super.build_phase(phase);

47 `uvm_info(get_type_name (), "..is alive!", UVM_DEBUG)

48

49 if (! uvm_config_db #( top_config)::get(this , "", "m_config", m_config))

50 `uvm_error(get_type_name (), "ahb config not found")

51

52 if(m_config != null) begin

53 if(m_config.ahb_vif != null) begin

54 $cast(vif , m_config.ahb_vif);

55 end

56 end

57

58 endfunction

59

60 `ifdef NON_BLOCKING_TRANSPORT

61 virtual function uvm_tlm_sync_e nb_transport_bw( uvm_tlm_gp data_trans , ref

uvm_tlm_phase_e ph, uvm_tlm_time delay);

62

63 if(ph == END_REQ) begin

64 `uvm_info(get_type_name (), $sformatf("nb_transport_bw END_REQ phase ,

return UVM_TLM_ACCEPTED"), UVM_HIGH)

65 return UVM_TLM_ACCEPTED;

66 end else if(ph == BEGIN_RESP && data_trans.is_response_ok ()) begin

67

68 if(data_trans.get_command == UVM_TLM_READ_COMMAND) begin

69 fu_reverse_byte_order(data_trans);

70 broadcast_AHB_expected.write(data_trans);

71 end

72

73 end_resp_phase = 1;

74 return UVM_TLM_ACCEPTED;

75 end

76

77 `uvm_error(get_type_name (), $sformatf("ERROR , incorrect state with phase: %

s, and response %s.", ph, data_trans.get_response_string ()))

78

79 endfunction

80 `endif

81

82 // - RECEIVE COMPLETED TRANS FROM APB UVC MONITOR - //

83 virtual function void write(ahb_item trans);

84 uvm_tlm_gp gp_to_ref_model = new;

85 uvm_tlm_gp gp_to_scrb = new;

86 uvm_tlm_gp t_copy = new;

87

88 bit is_write;

89 is_write = trans.ahbHWrite;
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90

91 // if WRITE transactions make generic payload for ref model

92 if(is_write == 1) begin

93 fu_set_gp_for_ref_model(trans , gp_to_ref_model);

94

95 // else if READ transactions make seperate generic payloads for ref model and

scoreboard

96 end else if (is_write == 0) begin

97 fu_set_gp_for_ref_model(trans , gp_to_ref_model);

98 fu_set_gp_for_scrb(trans , gp_to_scrb);

99 broadcast_AHB_actual.write(gp_to_scrb);

100 end else begin

101 `uvm_error(get_type_name (), "apb trans not read or write")

102 end

103

104 // Systemc has different endian

105 fu_reverse_byte_order(gp_to_ref_model);

106 trans_ahb_queue.push_back(gp_to_ref_model);

107 `uvm_info(get_type_name (), $sformatf("TRANS QUEUED = %s ;", gp_to_ref_model.

convert2string ()), UVM_DEBUG)

108 endfunction

109

110 function void fu_reverse_byte_order(uvm_tlm_gp data_trans);

111 byte unsigned temp_data [];

112 int reverse;

113

114 data_trans.get_data(temp_data);

115 reverse = {<<8{ temp_data }};

116 temp_data = {>>{reverse }};

117 data_trans.set_data(temp_data);

118 endfunction

119

120 // - set generic payload attributes to be sendt to ref model - //

121 function void fu_set_gp_for_ref_model(ahb_item ahb_trans , uvm_tlm_gp gp_trans);

122 bit [127:0] bit_data;

123 int int_data;

124 byte unsigned byte_data [];

125 int address;

126 bit is_write;

127

128 is_write = ahb_trans.ahbHWrite;

129 address = ahb_trans.ahbHAddr;

130

131 bit_data = {>>{ahb_trans.ahbHWData }};

132 int_data = bit_data;

133 byte_data = {>>{int_data }}; // stream data

134

135 gp_trans.set_data_length (4);

136 gp_trans.set_streaming_width (4); // = data_length to indicate no streaming

137 gp_trans.set_address(address);

138

139 if(is_write == 1) begin
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140 gp_trans.set_data(byte_data);

141 gp_trans.set_command(UVM_TLM_WRITE_COMMAND);

142 end else if (is_write == 0) begin

143 gp_trans.set_command(UVM_TLM_READ_COMMAND);

144 end else begin

145 `uvm_error(get_type_name (), "apb trans not read or write")

146 end

147 endfunction

148

149 // - set generic payload attributes to be sendt to scoreboard - //

150 function void fu_set_gp_for_scrb(ahb_item ahb_trans , uvm_tlm_gp gp_trans);

151 bit [127:0] bit_data;

152 int int_data;

153 byte unsigned byte_data [];

154 int address;

155

156 address = ahb_trans.ahbHAddr;

157

158 bit_data = {>>{ahb_trans.ahbHRData }};

159 int_data = bit_data;

160 byte_data = {>>{int_data }}; // stream data

161

162 gp_trans.set_data_length (4);

163 gp_trans.set_streaming_width (4); // = data_length to indicate no streaming

164 gp_trans.set_address(address);

165 gp_trans.set_data(byte_data);

166 gp_trans.set_command(UVM_TLM_READ_COMMAND);

167 gp_trans.set_response_status(UVM_TLM_OK_RESPONSE);

168 endfunction

169

170 virtual task run_phase (uvm_phase phase);

171 uvm_tlm_time delay = new;

172 uvm_tlm_gp trans_to_SC = new;

173

174 uvm_tlm_sync_e status;

175 uvm_tlm_phase_e phase1;

176

177 byte unsigned temp_data [];

178 int reverse;

179

180 forever begin

181 @(posedge vif.ckAhb);

182

183 if(end_resp_phase ==1) begin

184 `ifdef NON_BLOCKING_TRANSPORT

185 end_resp_phase = 0;

186 sc_is_ready = 1;

187 phase1 = END_RESP;

188 //`uvm_info(get_type_name (), $sformatf ("APB before nb_transport_fw

= %s.", trans_to_SC.convert2string ()), UVM_HIGH)

189 status = nb_data_socket.nb_transport_fw( trans_to_SC , phase1 ,

delay);
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190 `uvm_info(get_type_name (), $sformatf("after nb_data_socket = %s,

and status: %s, and data_trans.get_response_string () %s.", trans_to_SC.

convert2string (), status , trans_to_SC.get_response_string ()), UVM_HIGH)

191 `endif

192 end

193 else if(sc_is_ready == 1 && trans_ahb_queue.size() > 0) begin

194 `uvm_info(get_type_name (), $sformatf("AHB PREDICTOR STARTING TO SEND

TRANS TO SC, queue size = %x", trans_ahb_queue.size()), UVM_HIGH)

195

196 trans_to_SC = trans_ahb_queue.pop_front ();

197

198 `ifdef NON_BLOCKING_TRANSPORT

199 sc_is_ready = 0;

200 phase1 = BEGIN_REQ;

201 status = nb_data_socket.nb_transport_fw( trans_to_SC , phase1 ,

delay);

202 `uvm_info(get_type_name (), $sformatf("after nb_data_socket = %s,

and status: %s, and data_trans.get_response_string () %s.", trans_to_SC.

convert2string (), status , trans_to_SC.get_response_string ()), UVM_HIGH)

203 `endif

204

205 `ifdef BLOCKING_TRANSPORT

206 // Send transaction to SC model

207 data_socket.b_transport( trans_to_SC , delay);

208 `uvm_info(get_type_name (), $sformatf("after b_transport = %s.",

trans_to_SC.convert2string ()), UVM_HIGH)

209

210 // Brodcast READ transaction to SCOREBOARD

211 if (trans_to_SC.is_read ()) begin

212

213 // Systemc has different endian

214 fu_reverse_byte_order(trans_to_SC);

215

216 broadcast_AHB_expected.write(trans_to_SC);

217 end

218 `endif

219 end

220 end

221

222 endtask

223

224 endclass

Listing A.1: AHB predictor with both blocking and non-blocking interface implemented

1 import uvm_pkg ::*;

2

3 class ahb_predictor extends uvm_component;

4 `uvm_component_utils (ahb_predictor)

5

6 // - output port with the actual DUT response - //

7 uvm_analysis_port #( uvm_tlm_gp) broadcast_AHB_actual;

8
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9 // - output port with the expected refence response - //

10 uvm_analysis_port #( uvm_tlm_gp) broadcast_AHB_expected;

11

12 // - input port with UVC trans - //

13 uvm_analysis_imp #(ahb_item , ahb_predictor) imp_trans;

14

15 // - socket to connect to SC - //

16 uvm_tlm_b_initiator_socket #() data_socket;

17

18 uvm_tlm_gp trans_ahb_queue[$];

19 virtual in_ahb vif;

20 top_config m_config;

21

22 function new (string name = "ahb_predictor", uvm_component parent= null);

23 super.new (name , parent);

24 broadcast_AHB_actual = new("broadcast_AHB_actual", this);

25 broadcast_AHB_expected = new("broadcast_AHB_expected", this);

26 imp_trans = new("imp_trans", this);

27 data_socket = new("data_socket", this);

28 endfunction

29

30 virtual function void build_phase(uvm_phase phase);

31 super.build_phase(phase);

32 `uvm_info(get_type_name (), "..is alive!", UVM_DEBUG)

33

34 if (! uvm_config_db #( top_config)::get(this , "", "m_config", m_config))

35 `uvm_error(get_type_name (), "ahb config not found")

36

37 endfunction

38 // - RECEIVE COMPLETED TRANS FROM APB UVC MONITOR - //

39 virtual function void write(ahb_item trans);

40 uvm_tlm_gp gp_to_ref_model = new;

41 uvm_tlm_gp gp_to_scrb = new;

42 uvm_tlm_gp t_copy = new;

43

44 bit is_write;

45 is_write = trans.ahbHWrite;

46

47 // if WRITE transactions make generic payload for ref model

48 if(is_write == 1) begin

49 fu_set_gp_for_ref_model(trans , gp_to_ref_model);

50

51 // else if READ transactions make seperate generic payloads for ref model and

scoreboard

52 end else if (is_write == 0) begin

53 fu_set_gp_for_ref_model(trans , gp_to_ref_model);

54 fu_set_gp_for_scrb(trans , gp_to_scrb);

55 broadcast_AHB_actual.write(gp_to_scrb);

56 end else begin

57 `uvm_error(get_type_name (), "apb trans not read or write")

58 end

59
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60 // Systemc has different endian

61 fu_reverse_byte_order(gp_to_ref_model);

62 trans_ahb_queue.push_back(gp_to_ref_model);

63 `uvm_info(get_type_name (), $sformatf("TRANS QUEUED = %s ;", gp_to_ref_model.

convert2string ()), UVM_DEBUG)

64 endfunction

65

66 // - set generic payload attributes to be sendt to ref model - //

67 function void fu_set_gp_for_ref_model(ahb_item ahb_trans , uvm_tlm_gp gp_trans);

68 bit [127:0] bit_data;

69 int int_data;

70 byte unsigned byte_data [];

71 int address;

72 bit is_write;

73

74 is_write = ahb_trans.ahbHWrite;

75 address = ahb_trans.ahbHAddr;

76

77 bit_data = {>>{ahb_trans.ahbHWData }};

78 int_data = bit_data;

79 byte_data = {>>{int_data }}; // stream data

80

81 gp_trans.set_data_length (4);

82 gp_trans.set_streaming_width (4); // = data_length to indicate no streaming

83 gp_trans.set_address(address);

84

85 if(is_write == 1) begin

86 gp_trans.set_data(byte_data);

87 gp_trans.set_command(UVM_TLM_WRITE_COMMAND);

88 end else if (is_write == 0) begin

89 gp_trans.set_command(UVM_TLM_READ_COMMAND);

90 end else begin

91 `uvm_error(get_type_name (), "apb trans not read or write")

92 end

93 endfunction

94

95 // - set generic payload attributes to be sendt to scoreboard - //

96 function void fu_set_gp_for_scrb(ahb_item ahb_trans , uvm_tlm_gp gp_trans);

97 bit [127:0] bit_data;

98 int int_data;

99 byte unsigned byte_data [];

100 int address;

101

102 address = ahb_trans.ahbHAddr;

103

104 bit_data = {>>{ahb_trans.ahbHRData }};

105 int_data = bit_data;

106 byte_data = {>>{int_data }}; // stream data

107

108 gp_trans.set_data_length (4);

109 gp_trans.set_streaming_width (4); // = data_length to indicate no streaming

110 gp_trans.set_address(address);
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111 gp_trans.set_data(byte_data);

112 gp_trans.set_command(UVM_TLM_READ_COMMAND);

113 gp_trans.set_response_status(UVM_TLM_OK_RESPONSE);

114 endfunction

115

116 // - Reverse byte order of data - //

117 function void fu_reverse_byte_order(uvm_tlm_gp data_trans);

118 byte unsigned temp_data [];

119 int reverse;

120

121 data_trans.get_data(temp_data);

122 reverse = {<<8{ temp_data }};

123 temp_data = {>>{reverse }};

124 data_trans.set_data(temp_data);

125 endfunction

126

127 virtual task run_phase (uvm_phase phase);

128 uvm_tlm_time delay = new;

129 uvm_tlm_gp trans_to_SC = new;

130

131 uvm_tlm_sync_e status;

132 uvm_tlm_phase_e phase1;

133

134 byte unsigned temp_data [];

135 int reverse;

136

137 forever begin

138 @(posedge trans_ahb_queue.size());

139 if(trans_ahb_queue.size() > 0) begin

140 trans_to_SC = trans_ahb_queue.pop_front ();

141

142 // Send trans_to_SC to the Reference model

143 data_socket.b_transport( trans_to_SC , delay);

144 //`uvm_info(get_type_name (), $sformatf ("after b_transport = %s.",

trans_to_SC.convert2string ()), UVM_HIGH)

145

146 // Brodcast READ transaction to SCOREBOARD

147 if (trans_to_SC.is_read ()) begin

148

149 // Systemc has different endian

150 fu_reverse_byte_order(trans_to_SC);

151 broadcast_AHB_expected.write(trans_to_SC);

152 end

153 end

154 end

155 endtask

156 endclass

Listing A.2: AHB predictor with blocking interface implemented

1 `ifndef SCOREBOARD_SV

2 `define SCOREBOARD_SV

3
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4 import uvm_pkg ::*;

5 `include "uvm_macros.svh"

6

7 `uvm_analysis_imp_decl(_ahb_expected)

8 `uvm_analysis_imp_decl(_ahb_actual)

9 `uvm_analysis_imp_decl(_apb_expected)

10 `uvm_analysis_imp_decl(_apb_actual)

11

12 class scoreboard extends uvm_scoreboard;

13

14 int num_ahb_compares;

15 int num_apb_compares;

16 int num_successfull_ahb_compares;

17 int num_successfull_apb_compares;

18

19 int NUM_AHB_TRANS;

20 int NUM_APB_TRANS;

21

22 uvm_tlm_gp queue_ahb_expected[$];

23 uvm_tlm_gp queue_ahb_actual[$];

24 uvm_tlm_gp queue_apb_expected[$];

25 uvm_tlm_gp queue_apb_actual[$];

26

27 uvm_analysis_imp_ahb_expected #(uvm_tlm_gp ,scoreboard) ahb_expected;

28 uvm_analysis_imp_ahb_actual #(uvm_tlm_gp ,scoreboard) ahb_actual;

29 uvm_analysis_imp_apb_expected #(uvm_tlm_gp ,scoreboard) apb_expected;

30 uvm_analysis_imp_apb_actual #(uvm_tlm_gp ,scoreboard) apb_actual;

31

32 `uvm_component_utils(scoreboard)

33

34 uvm_phase run_ph;

35 top_config m_config;

36

37 function new(string name , uvm_component parent=null);

38 super.new(name ,parent);

39 ahb_expected = new("ahb_expected", this);

40 ahb_actual = new("ahb_actual", this);

41 apb_expected = new("apb_expected", this);

42 apb_actual = new("apb_actual", this);

43 run_ph = uvm_run_phase ::get();

44 endfunction : new

45

46 function void build_phase(uvm_phase phase);

47 `uvm_info(get_type_name () ,"Building scoreboard", UVM_MEDIUM)

48

49 if (! uvm_config_db #( top_config)::get(this , "", "m_config", m_config))

50 `uvm_error(get_type_name (), "ahb config not found")

51

52 NUM_AHB_TRANS = m_config.NUM_AHB_TRANS;

53 NUM_APB_TRANS = m_config.NUM_APB_TRANS;

54 endfunction

55
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56 virtual function void write_ahb_expected(uvm_tlm_gp trans);

57 uvm_tlm_gp t_copy;

58 $cast(t_copy ,trans.clone());

59 `uvm_info(get_type_name (), $sformatf("SB/AHB_expected/RECV = %s ;", t_copy.

convert2string ()), UVM_HIGH)

60 queue_ahb_expected.push_back(t_copy);

61 endfunction

62

63 virtual function void write_ahb_actual(uvm_tlm_gp trans);

64 uvm_tlm_gp t_copy;

65 $cast(t_copy ,trans.clone());

66 `uvm_info(get_type_name (), $sformatf("SB/AHB_ACTUAL/RECV = %s ;", t_copy.

convert2string ()), UVM_HIGH)

67 queue_ahb_actual.push_back(t_copy);

68 endfunction

69

70 virtual function void write_apb_expected(uvm_tlm_gp trans);

71 uvm_tlm_gp t_copy;

72 $cast(t_copy ,trans.clone());

73 `uvm_info(get_type_name (), $sformatf("SB/APB_expected/RECV = %s ;", t_copy.

convert2string ()), UVM_HIGH)

74 queue_apb_expected.push_back(t_copy);

75 endfunction

76

77 virtual function void write_apb_actual(uvm_tlm_gp trans);

78 uvm_tlm_gp t_copy;

79 $cast(t_copy ,trans.clone());

80 `uvm_info(get_type_name (), $sformatf("SB/APB_ACTUAL/RECV = %s ;", t_copy.

convert2string ()), UVM_HIGH)

81 queue_apb_actual.push_back(t_copy);

82 endfunction

83

84 virtual task run_phase(uvm_phase phase);

85 // The transction later compared

86 uvm_tlm_gp excpected_ahb_trans , actual_ahb_trans;

87 uvm_tlm_gp excpected_apb_trans , actual_apb_trans;

88

89 // raise objection to ensure all trans compared

90 if(NUM_AHB_TRANS > 0) begin

91 phase.raise_objection(this);

92 end

93

94 //if(NUM_APB_TRANS > 0) begin

95 // phase.raise_objection(this);

96 //end

97

98 // - FORK APB AND AHB PROCESS - //

99 fork

100 forever begin

101 @(queue_ahb_actual.size() && queue_ahb_expected.size());

102

103 if (queue_ahb_actual.size() && queue_ahb_expected.size()) begin
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104 excpected_ahb_trans = queue_ahb_expected.pop_front ();

105 actual_ahb_trans = queue_ahb_actual.pop_front ();

106 num_ahb_compares = num_ahb_compares + 1;

107

108 if (! actual_ahb_trans.compare(excpected_ahb_trans)) begin

109 `uvm_error("SB/MISCOMPARE", $sformatf("Miscompares\nexpect =%s\nactual

=%s",excpected_ahb_trans.convert2string (),actual_ahb_trans.convert2string ()))

110 end else begin

111 `uvm_info("SB/AHB/COMPARE","Actual and expected is equvalent",UVM_HIGH

)

112 num_successfull_ahb_compares = num_successfull_ahb_compares + 1;

113 end

114 end

115

116 `uvm_info(get_type_name (), $sformatf("Number of succesfull compares: %x, of

total compares: %x",num_successfull_ahb_compares , num_ahb_compares), UVM_HIGH)

117

118 if(num_ahb_compares == NUM_AHB_TRANS) begin

119 if(num_successfull_ahb_compares == NUM_AHB_TRANS) begin

120 `uvm_info(get_type_name (),$sformatf("ALL %d(dec) AHB TEST PASSED.",

num_successfull_ahb_compares),UVM_LOW)

121 `uvm_info(get_type_name (),$sformatf("Number of succesfull APB tests %d(

dec).", num_successfull_apb_compares),UVM_LOW)

122 end else begin

123 `uvm_error(get_type_name (), $sformatf("Not all test passed. %x passed of

%x tests.",num_successfull_ahb_compares , num_ahb_compares))

124 end

125

126 `uvm_info(get_type_name (),"Done comparing AHB. Dropping objection.",

UVM_LOW)

127 phase.drop_objection(this);

128 end

129 end // AHB - end forever begin //

130

131 forever begin

132 @(queue_apb_actual.size() && queue_apb_expected.size());

133

134 if (queue_apb_actual.size() && queue_apb_expected.size()) begin

135 excpected_apb_trans = queue_apb_expected.pop_front ();

136 actual_apb_trans = queue_apb_actual.pop_front ();

137 num_apb_compares = num_apb_compares + 1;

138

139 if (! actual_apb_trans.compare(excpected_apb_trans)) begin

140 `uvm_error("SB/MISCOMPARE", $sformatf("Miscompares\nexpect =%s\nactual

=%s",excpected_apb_trans.convert2string (),actual_apb_trans.convert2string ()))

141 end else begin

142 `uvm_info("SB/APB/COMPARE", $sformatf("Actual and expected is

equvalent , Trans: %s",actual_apb_trans.convert2string ()),UVM_HIGH)

143 num_successfull_apb_compares = num_successfull_apb_compares + 1;

144 end

145 if(num_apb_compares == NUM_APB_TRANS) begin

146 if(num_successfull_apb_compares == NUM_APB_TRANS) begin
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147 `uvm_info(get_type_name (),$sformatf("ALL %d(dec) APB TEST PASSED.",

num_successfull_apb_compares),UVM_LOW)

148 end else begin

149 `uvm_error(get_type_name (), $sformatf("Not all test passed. %x passed of

%x tests.",num_successfull_apb_compares , num_apb_compares))

150 end

151

152 `uvm_info(get_type_name (),"Done comparing ABP. Dropping objection.",

UVM_LOW)

153 phase.drop_objection(this);

154 end

155 end

156 end // APB - end forever begin //

157

158 join_none // - END FORK - //

159 endtask

160 endclass

161

162 `endif // SCOREBOARD_SV

Listing A.3: UVM scoreboard implementation
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