@ NTNU

Norwegian University of
Science and Technology

DEPARTMENT OF COMPUTER SCIENCE

TDT4900 - COMPUTER SCIENCE, MASTER’S THESIS

A CRDT-based file
synchronization system

Erik Liu

Supervisor: Svein Erik Bratsberg

June 14, 2021



Abstract

This paper designs and implements a Conflict-free Replicated Data
Type file synchronization system with a custom made CRDT used as an
index to track file updates. The system designed to be modular such that
each module can be swapped to accommodate different needs. Conflict-
free Replicated Data Types has the property of strong eventual consis-
tency which when implemented correctly ensures that any concurrent op-
erations across an arbitrary network are able to converge to be same state,
regardless of the operation order. This is used to implement system to
work in a peer-to-peer network. The paper carefully breaks down the
different aspects of a file synchronization system, implements a proof-of-
concept guided by the designed architecture, and verifies the functional
requirements by a series of tests.



Contents

[1__Introductionl

1.1 Purposel . . . . . . ..o

.................................
I1.4  Report structure] . . . . . ... ... L oo

|12 Background|
2.1 Filesharing| . . . .. ... .. oo o

2.3 Consistency| . . . . . . . ...

[2.3.2  Eventual Consistency] . . . ... ... ... ........

2.3.3 trong Eventual Consistencyl . . . . . .. ... ... ...

2.4.1  Operational transtormation| . . . . . . . .. ... ... ..
2.4.2  Conflict-free Replicated Data Types| . . . . ... ... ..
[2.4.3 Examples of CRDTs . . . . ... ... ... ........
5 Conflict resolving] . . . . . . . ... L
2.6 ypes of timestamps| . . . . .. ..o
2.6.1 Lamport timestamp| . . . . . . .. ... ...,

13__Architecturel
[3.1 Conceptual Architecture] . . . . . .. ... ... ... ... ... .
3.2 ata object representation ot a file] . . . . . ... .. ... ..
3.2.1 epresentation of a Tomb| . . . . . . ... ... ... ...

[3.3.2  Conflict Examples| . . .. ... ... ... .........

3.3.3 esting s for File Content Interleaving| . . . . . . .
3.4 Details: TOl . . . . . .. oo
8.4.1 File Distribution System|. . . . . . .. ... ... ... ..




3.7.2  Startup/Exit Process|. . . . . .. ... ... ..

3.7.3 File Update Process| . . . . . . . ..o

4  Implementation|

[T Choice of Language and Libraries|. . . . . . . . . .« ... ...

4.2 Item object| . . . . .

4.4 CRDT-Index: Cargolist|. . . . .. ... ... .. .. .......

45 10[ .. ... ...

1.6 PToxy

[5 Testing and Evaluation|

0.2.2  Arbitrary Updates| . . . . . . . .. ... ... ...

.3 Memory Usage| . . .
[0.4 Coverage Criteria . .

[5.5 Resolve Policies of Existing Services| . . . . . . . . . .. ... ..

[6_Conclusion|
7 _Future Work

IB Conflict resolves in Google Drive

ii



1 Introduction

1.1 Purpose

Popular cloud storage systems like Google Drive, One Drive, and Dropbox uti-
lize a centralized server architecture to provide the necessary functionalities of
file sharing and collaboration. When it comes to everyday users, the thought of
”where” the user’s files are stored rarely crosses their mind. Only the fact that
the files are easily accessed matters. In these aforementioned systems, the files
are primary stored on a server, possibly far away from the users. Consequently,
the files need to relay through the server, adding unnecessary transmission la-
tency, and forcing any conflicts from concurrent user operation to be resolved at
the server. This results in the server being a potential bottleneck, and a single
point of failure.

This paper will take a look at how Conflict-free Replicated Data Types work
and how they simplify the conflict resolving process in a P2P network. CRDTs
are an integral part of resolving file update conflicts, such as concurrent file
modification, that can occur in a file synchronization system. The goal of this
paper is to both design and implement a Conflict-free Replicated Data Type
index that can be used to keep track of files and folder, and then, integrate it
into a peer-to-peer file synchronization system. Additional care will be given in
the designing phase to ensure a modular system. The storage scheme can be
changed from storing files on the local file system to storing files in a database.
The communication protocol should be swappable, such that the system can
easily upgrade to a better communication protocol. This paper aims to develop
a minimal viable product of the file synchronization system, and the correct-
ness of the system, i.e. the different ways to fix conflicts, will be verified by tests.

A peer-to-peer file-sharing system can be easily used to distribute of illegal
content, this paper is not a encouragement of this kind of behavior.

1.2 Research Goals
G1: Design a CRDT-index to keep track of files.
G2: Make a proof-of-concept CRDT-based file synchronization system.

G3: Analyze the set of resolve policies for each conflict.

1.3 Scope

Due to the time of effort for one person to design, develop, and test the new
system. Some limitations need to be set to avoid spending unnecessary time in
non-core features. This involves limiting the communication protocol to only
http with no added encryption schemes.



1.4

Report structure

This report is the continuation of the previous report ” Designing a CRDT-based
file-syncing system” from " TDT4501 - Specialization Project” Fall 2020. Thus
the relevant background theory and previous design aspects from the previous
report will be reiterated and reinforced in this report. The core of the report is
split into 7 chapters.

Chapter 1 introduces the general problem of the most popular file-
sharing /syncing services, provides a potential solution, and presents the
goals which the paper aims for.

Chapter 2 presents the current state of file-sharing/syncing services, the
common network architectures in such services, and all the relevant back-
ground theory and concepts which will form the basis of the new system’s
architecture.

Chapter 3 describes the overall architecture and the individual compo-
nents of the system.

Chapter 4 takes a deeper look into the implementation details of the
system prototype.

Chapter 5 presents the testing environment which shall verify the cor-
rectness of the system, and discusses the trade-offs between the system
prototype and existing file-sharing/syncing services.

Chapter 6 summarizes the paper, and discusses the goals of the paper.

Chapter 7 provides a roadmap for the future development of the system.



2 Background

This chapter is split into three parts. The first introduces the concept of file
sharing and file synchronization and the common network architecture used.
The second part presents the theories which will forge a new file synchronization
system. The last part takes a look at, and discusses the related within the field.

2.1 File sharing

As the amount of digital data keep increasing, the need to easily access data
becomes a major part of our life. There are many services that accommodate
this need with some popular choices being: BitTorremﬂ DropboxEL and Google
Driveﬂ The later two being cloud-based services. Cloud-based file-sharing sys-
tems use a centralized server to process and store the data. For most users, this
does not pose a problem as they do not care where their data is stored. How-
ever, a file-sharing system which prioritized the local storage on each user’s daily
devices(phones, laptops, and external storage systems), could better utilize the
empty storage space these devices. In addition, leaving the responsibility for
keeping the data safe to the users themselves, instead of trusting the businesses
could be valuable. In cloud-based, when a user shares a file to another user, the
file has to relay through the data-center, which may result in additional travel
time before reaching the user.

P2P-based file-sharing systems are not something new or foreign. Many are
currently in use. A popular P2P file-sharing system is BitTorrent. However,
BitTorrent is mostly used with static files. Once a file is distributed, it is
assumed that it will never be updated. While there exists a workaround to
support file updates, it involves the user, or an external mechanism redistribut-
ing(removing and re-adding) the file. Which This extension has been used by
file synchronizing services like Resili(ﬂ a proprietary system. However, working
around the BitTorrent protocol might involve unnecessary overhead, and this
report will try to design a similar system in functionality, but with P2P file
synchronization, i.e. the ability to update files, as the foundation.

One particular advantage cloud-based file synchronizing services have over P2P-
based file synchronizing services is the ability to collaborate on files, i.e. multiple
users can edit the same document at the same time. Take Google Docs as an
example or any of the other Google documents. By relaying all update infor-
mation through a centralized server, the server knows everything can apply all
updates without the worry that the files get desynchronized.

Thttps://www.bittorrent.com
2https://www.dropbox.com/
Shttps://www.google.com/intl/en_in/drive/
4https://www.resilio.com/



From hereon, the usage of ”file-sharing” represents both the act of replicat-
ing the file across multiple nodes and the act of synchronizing any arbitrary
changes to the said files in a deterministic and consistent manner. File col-
laboration will be referred to as content-based synchronization. Additionally,
the usage of "files” will represent both ”files” and ”folders”, and ”file update”
consist of the actions:

e Create new file

Modify existing file
e Delete existing file
e Rename existing file

e Move existing file

2.1.1 TUse-cases

To get a better grasp on what a file-sharing system should do, several use-cases
of such a system are presented below. These will also be used to evaluate the
system in the later chapters.

e Team collaboration: A group of users that know all the other users, or
at least can trust that the other users will not engage in malicious behavior
to danger the integrity of the shared resources. Examples of this kind of
groups could be: students collaborating on a common task and require
some form of shared workspace. Another characteristic of such use-cases
is that everyone have access to the full set of file manipulations, i.e. create,
change, delete, rename, and move files.

e Content distribution/sharing: A group of users where each is either a
provider or consumer. The providers are the ones that have the permission
to add new files and to remove or modify existing files in the network. The
consumers can only access the files, but can not change these in any way.
This use-case represents individual users who want to share some content,
and larger organizations which distribute a large amount of content.

2.2 Network architectures

As mentioned, a file-syncing system could be cloud-based or P2P. Take main-
stream file-syncing services like Google Drive or One Drive as examples. Both
utilize the centralized server architecture, which puts a huge amount of respon-
sibility on the server. On the other end, the peer-to-peer(P2P) architecture is
designed to handle an arbitrary network topology.



° -

Figure 1: An centralized server architecture vs an ideal p2p network.

2.2.1 Centralized

The particular network architecture used by most popular file-syncing systems,
or most application in general, is cloud-based. This involves a centralized server
architecture, with two distinct types of nodes, the servers, which are known to
all nodes and consist of powerful hardware, and the clients, which consist of
arbitrary hardware. The types of jobs the servers and the client are responsible
for are usually split in such that the servers, with its powerful hardware can
perform heavy jobs relatively fast and within an expected amount of time. The
clients on the other hand, mostly performs easy jobs since putting a strong hard-
ware requirement on the client side is usually too high of an entrance-barrier
to the application. In P2P networks, the term ”peer” are used to represent a
node, and both will be used interchangeably.

This architecture is easy to work with, as the centralized server is a common
node for processing, where all data have to pass through at some point, i.e.
there are no direct communication between the clients. The server has no need
to fetch additional data from other clients to perform its jobs. If there are
multiple servers, then there will be some coordination between the servers. In
a centralized server architecture, all the servers, by design, know each other,
such that the coordination can be handled in an efficient manner, i.e. there is
no need to speculate that there are unknown servers with critical data that are
needed for other servers to perform correctly.

Key notes of centralized server architecture:
e Two types of nodes, the servers and the clients.

e The server is a node where all necessary data are present, or can be easily
acquired, to perform any jobs.

e Lax hardware requirements for the client.



e The application owner or maintainer needs to ensure the capacity of the
server at any time.

e Sending data from client to client is usually indirect, as it has to pass
through the server.

e The jobs for servers and clients are straightforward in the sense that the
is no need to compensate for unknown nodes.

e The uptime of the system is directly correlated to the number of servers
and their capacity, the amount of request a server can handle.

2.2.2 P2P

The indirectness of the data transfer, adds unnecessary latency when sending
data from client to client. This is from the fact that data are stored primary
on the centralized server, not on the client’s local device. A P2P architecture
is a network architecture where each individual node keeps track of a subset of
the network. No node knows the entire network, but only which nodes itself
is connected to. shows a node A not knowing node D, but both are
indirectly connected. Each node are both the server and the client. All the
nodes are then identical and have the same responsibility.

But such network architecture poses a challenge when a node is performing
an important job and requires additional data from other unknown nodes. The
node do not have the complete data which is stored across the network. An
example could be each node holds a counter and one node got the job of com-
puting the sum of all the counters in the network. In this case, the node has no
guarantee that the result is the correct result it was looking for.

A system built on a P2P network is able to be scaled indefinitely, since each
node essentially serves as a server. With no necessary need for the owner of
maintainer to be involved. But that is at the cost of each node requiring to
perform extra work to ensure that the network is not partitioned.
shows an example where node B leaves. To avoid the network to be partitioned,
B tells A about C, and tells C about A, such that they can set up a connection
before B leaves.

Key notes of P2P architecture:
e One type of node, everyone has the same responsibility.

e There is a need for additional coordination between the nodes when per-
forming jobs.

The network scales automatically with the number of nodes.

The uptime scales with the number of active nodes, nodes that are cur-
rently connected to the network.



Benefits for a P2P architecture over a centralized server architecture:

e Availability: A centralized server architecture need to keep the central
server online and therefore gives a single point of failure. A p2p architec-
ture can statistically be always online, provided a sufficient user base.

e Latency: All data need to relay through the central server, possibly mak-
ing the data take a longer path than necessary. While a p2p architecture
does not guarantee a lower transmission/propagation latency than central
server architecture, it does guarantee a lower average transmission latency.

e Scalability: The processing capacity of the central server needs to always
accommodate a growing user base. In P2P, each node is functionally a
server and therefore automatically distributes the processing load.

X

Figure 2: A can not see D.

2.3 Consistency

The term ”consistency” was briefly mentioned in the previous section. Consis-
tency in this context means that the data, e.g. a file, is identical across the
whole the network. The same file on all the nodes are called replicas, and the
process in which the replicas become identical is called convergence. In a file-
syncing system, when a file gets updated, the replicas on the other nodes are



?
i
' m i
¥
é

Q
A~
h 4
@

Figure 3: Node B leaving a P2P network

updated as soon as possible. This is the preferred property in a file-syncing
application, but this property would not be without challenges. Specifically, the
CAP-theorem[T].

2.3.1 CAP

File-syncing applications as described in section [2.1| are a distributed system,
where data are spread across on different nodes in the network. According to
the CAP-theorem, a distributed system have to choose two of the three prop-
erties: Consistency, Availability, and Partition tolerance. All three properties
are central in a distributed system, and choosing which one to be excluded is
dependent on the application itself.

A simplified description of the three properties in the context of file-syncing.
e Consistency: The same files across the network are identical.
e Availability: It is always possible to access the files in the network.

e Partition tolerance: The system must be able to tolerate arbitrary network
partitions.

Often in distributed systems, the property of Partition tolerance is non-negotiable.
The system has to tolerate any kind of network partition. Then, the choice fall
between Awvailability or Consistency. Excluding the first means that, in the case
of a network partition where a node is unable to communicate with the rest of
the network, the node has to abstain itself from performing any changes to the



local data. Such that the local data do not diverge, and can be easily updated
when the network partition dissolves. On the other hand, in the same network
partition, but this time the Consistency property is excluded, the node can per-
form any changes to the local data. Here a file conflict will occurs. The same
file in is now different in both the network partitions, and they can not be syn-
chronized in a trivial manner. While files can diverge in the first example, the
files may only be "behind” the main replica, and the same sequence of updates
can be applied to the diverged files to become the same as the main.
shows a visual representation of the file when Consistency is excluded.

v

partition 1

partition 2

network partition

Figure 4: File timeline with network partition (No Consistency).

Since the P2P file-syncing system need both Partition tolerance and Availability
to enable file updates when the node is offline/disconnected from the network,
the Consistency property needs to the compromised. One common solution is
to adopt the weaker property known as Fventual Consistency.

2.3.2 Eventual Consistency

Instead of system-wide consistency, this property is slackened into Ewventual
Consistency. While immediate file synchronization is desirable, in situations
where a network partitions, files are allowed to diverge, but the system requires
a mechanism for synchronizing the files when the network partition dissolves.
This is usually be done in such a way that after file updates have been retrieved,
the node will hold on to the update until the node is idle, i.e. all updates have
propagated through the network. Only after that, the system will try to apply
the updates in the correct order. Replicas in different network partitions are
no longer required to be identical, but the problem is the assumption that the
system will have an idle period. Which in some scenarios might not happen.
For example, in systems where a file is constantly being written to, the system
will never have a idle period, thus the stored updates will never be applied. In
other words, this property gives to time guarantee that the convergence will be
achieved. While this property could be applicable in file-syncing as one could
reasonable argue that file updates do not happen frequently enough, having to
wait a relative long time for the updates to be applied can diminish the user
experience, and a stronger consistency model is needed.



2.3.3 Strong Eventual Consistency

A stronger version of Eventual Consistency which can capture ”when” conver-
gence has been achieved is known as Strong Eventual Consistency[2]. Which
can be easily defined as ”Replicas have converged if they have seen and applied
the same set of operations”. This is split into two part. The first, all the up-
dates will eventually be transmitted to every node. The second, the retrieved
update can be applied immediately on the local data. Together, the replicas
will converge only when the same set of updates have been observed by both
sides. Additionally, this should hold true even is the updates are applied in
a different order. Strong Fventual Consistency allows both the other proper-
ties in the CAP-theorem to exist together, while having a desirable consistency
model. A network can be partitioned, but Strong Eventual Consistency still
holds since both network partitions have seen different sets of operations and
can later, when the networks merge, merge the two sets of operations to achieve
convergence.[3]. In the next section, two families of algorithms/datastructures
that incorporates Strong Eventual Consistency will be introduced.

2.4 CRDT and OT

The two families are Conflict-free Replicated Data Types and Operational trans-
formation, where the later will be the basis of the primary datastructure used
in the file-syncing system. A desired property in any syncing application is to
ensure that the same replicas for any user converges. This can be visualized in
where two users, Alice and Bob, are concurrently modifying a shared
folder stored on their local computer. Alice adds a new file under ”folderl” and
Bob renames "folderl” to ”"animals”. After applying their own operation and
getting their desired outcome locally, both operations need to be applied on the
other end. It is at this point a conflict occurs. On Alice’s end, ”folderl” gets re-
named to ”animals” and on Bob’s end the new file is added under another folder.
In short, concurrent updates to replicas can result in inconsistencies between
the replicas that need to be solved to achieve consistency. To solve such conflicts
there are two families of algorithm: the older Operational Transformations and
the newer Conflict-free Replicated Data-types.

2.4.1 Operational transformation

Operational transformation(OT) was first introduced in 1989[4]. The first it-
eration did not require a centralized server architecture. But as more research
was invested in OT, it soon became obvious that most of the methods did not
work as they were expected, and in the end, required a centralized server to
work. Currently, the only OTs that work are either too complex to implement
or require a central server architecture. OTs work in a fashion where an external
maintainer detects structural changes and modifies the incoming update so that
the update is correct relative to the local state. This family of techniques is
commonly used in collaborative real-time text editing to ensure eventual consis-
tency between the editors. In our previous example, that would correspond to

10



add folderi/file2 rename folder to animals
rename folder to animals add folderi/file2

Figure 5: Diverged systems

changing the incoming update on Bob’s end to add a new file under the renamed

folder instead. As shown in

2.4.2 Conflict-free Replicated Data Types

For CRDTs, the way to solve consistency issues is built into the data type itself.
The data type is designed in a way that allows for commutative execution of
operations such that the CRDT results to the same state(SEC). This means
that the operations can be executed immediately on arrival, instead of being
executed in a chronological sequence. There are two main classes of CRDTs:
state-based CRDTSs, and operation-based CRDTs. The difference between these
two lies in how the updates are propagated to each other.

Operation-based: Operation-based CTDTs send the update directly in form
of metadata containing the descriptor of the operation and the data associated
with the operation. For example to add the value "apple” into a set, an ” ADD”
operation descriptor is accompanied with the value ”apple”. The operations in
operation-based CRDTs are commutative, order of operations applied does not

11



matter, but depend on a reliable communication protocol to ensure that the
operations are broadcast to other peers. All updates have to be received by all
nodes for convergence to be achieved. Consequently, there must be an operation
deduplication mechanism to handle duplicated operations.

State-based CRDT are the other class of CRDT, which instead of only send-
ing the update, i.e. the data necessary to change the old state to the new state,
whole local state of the CRDT is sent to the other replicas. The other repli-
cas then merge the incoming state with their local state. The merge operation
in state-based CRDTs must satisfy the commutative, associative, and idempo-
tent criteria. The order of states that get merged is irrelevant (commutative”
and ”associative), and merging the same state twice has no effects (idempotent).

Both classes of CRDT can be converted to the other class, and which class
to choose depends on the properties of the classes. State-based CRDTSs are
easier to implement as they only require a best-effort communication protocol
to transmit the local-state to the other replicas, but have the disadvantage of
potentially high cost of transmission size. Operation-based CRDTs on the other
hand, only send the required data to the other replicas. However, depends on a
reliable communication protocol to ensure SEC as it relies on all replicas having
seen the same set of operations. State-based CRDTs can drop transmissions
since the state itself implicit contains the whole local set of operations.[2]

Continuing on the previous example, a possible CRDT implementation to re-
solve the consistency issues in could be done:

o Leave a tombstone if a folder gets removed /renamed/moved. For renamed
or moved folders, the tombstone points to the new location.

e If an operation involves a tombstone, check the new location if it exists
and perform the operation there.

An example of the difference in how OTs and CRDTs resolve conflicts can be

2.4.3 Examples of CRDTs

Several general-use CRDTs have already been implemented[2][5][6], and this re-
port will focus on the Last-write-wins-element-set(LWW-element-Set) to build
the file-syncing system in section [3] For short, a LWW-element-Set is func-
tionally an extension to the classic hash-table, where an additional timestamp
parameter is required in the ”add”, "remove”, and ”update” operation, and
the values in the hash-table are associated with the timestamp during their
insertion. The LWW-element-Set, as its name suggest, follows the rule of last-
write wins. As an example below, when the ”"update” operation is called, a
comparison between the passed timestamp and the stored timestamp is made
to determine the outcome of the operation. Only when the passed timestamp

12



9

11

12

add foldert/file2
rename foldert to animals.

rename foldert to animals.

a0d animals/file2

rename folde!

eri/file2

r1 to animals

rename folde!

add fold

r1 to animals

eri/file2

Figure 6: Convergence with OT(left), and CRDT(right)

is ”later” than the stored timestamp, will the operation be completed. The
pseudo-code of the new update, and merge function is shown below. In the
next chapter, a CRDT will be designed from the LWW-element-Set, due to the
similarity to the hash-tables used as cache in database systems.

function update(key, value, hash_table, new_timestamp) {

0old_timestamp = hash_table.get_timestamp (key)

if new_timestamp > old_timestamp:
hash_table.update(key, value)
return true

return false

}

function merge(local_hash_table, remote_hash_table) {
for key, value, time_stamp in hash_table2
update(key, value, local_hash_table, time_stamp)

13



2.5 Conflict resolving

On the topic of consistency, when a conflict happens, it needs to be resolved at
two levels, system-level and application-level. Resolving the conflict at system-
level means that the system itself is at a state where it can continue working.
Whereas an application-level resolve means that the resolved state is desirable
for the user. Sometimes resolving at one level automatically resolves both.
This can be seen on systems where only the latest data is important, like the
LWW-Element-Set previously described. An example where the resolve mech-
anism is not the same for system-level and application-level would be a ”git
merge-conflict”. To briefly explain, a git merge conflict happens when two users
concurrently commits the same code file, but with different content, and the
system is unable to know if the parts should be kept or throw away. At that
point the system has two version of the same file, and to solve at the system-
level, Git keeps changes from both version. But even if the conflict is resolved
at system-level and Git can continue working, the resolved state is not what
either of the users want. Therefore, Git temporary halts, and forces the users
to manually select the changes they want, thus solving at application-level. An-
other example of an application specific conflict resolve is the case in Amazon
Dynamo where two different shopping carts were stored on the servers, and both
were kept until the user had to manually selected the wanted items from both[7].
A detailed description of the different conflicts that can occur in a file-syncing
system can be found in section [3.3.2

2.6 Types of timestamps

In a distributed network, the matter of ordering event is no longer trivial. There
needs to be a mechanism for to determine a deterministic ordering that can
be reproduced in any of the peers in the network. One family of techniques
commonly used are different type of timestamps. Two type of timestamp will
be of great importance for the problem of determining an deterministic ordering
in a distributed network.

2.6.1 Lamport timestamp

The simplest form of ordering is with the use of Lamport timestamps[§]. Lam-
port timestamps is a logical clock, which is only capable of tracking the causal
ordering between events and not the time in-between. It accomplish that by re-
quiring each process have an interval counter which increments for each event.
In the process PO gives the first event an 1 and the next a 2.

New event at the local process:
1. Retrieve the current counter.
2. Increment the counter.

3. Assign the the new value of the counter to the event.

14



A

Po ) <

v

P1 5_0.,“ ¥ ‘A{

-~ .. 4
P2 el N

¥

v

time

Figure 7: Causal order with Lamport timestamp.

(1.00) (200 (3.4.1)
0,00 Po Q 9 >
Y120 (1.3.1)

(0,00) P 5—0 P O >
(1.1.0) (1.4.1)

©0.1)," e (122
(0,0,0) P2 o= o) »

Al

time

Figure 8: Causal order with vector clock.

When an event is sent to another process, the process compares the arrived
event’s Lamport timestamp with its own counter. The process then fast-forwards
its counter to the highest of the two, increments the counter, and at last assign
the newly incremented value to the event. In P1’s event with times-
tamp 5 is sent to PO, and the P0’s internal counter is 2. After PO compares its 2
with the event’s 5, PO fast-forward its counter to 5 and increments the counter
to 6. The event from P1 which was sent to PO has a Lamport timestamp of 6.

Event from another process:
1. Retrieve the current counter and the incoming event’s timestamp.

2. Fast-forward the process’ interval counter to the maximum of the two
value.

3. Increment the counter.
4. Assign the the new value of the counter to the event.

While this time stamping scheme is simple, it does not provide a sufficient
ordering capability. It is known that if an event A happens before event B then

15



the Lamport timestamp of A (LA) is strictly lower than the timestamp of B
(LB). In short, A - B = L(A) < L(B). But it not possible to determine
if A happened before B by their timestamps. L(A) < L(B) = A — B is
undetermined. An example from P1’s event 5 and P2’s event 4 happens
concurrently. Therefore Lamport timestamps can not be determine the ordering.
But vector clock, which is an extension of it the Lamport timestamp can resolve
the ordering. The benefit of Lamport timestamps compared to vector clocks is
that the size of the timestamp is independent from the the number of processes.

2.6.2 Vector Clocks

While Lamport timestamp is only a single value associated with an event, the
vector clock[9] is an array of values where each element in the array correspond
to a process. Each process have its counter, just like in Lamport timestamps,
but only uses its own position in the array. Process 0 only increments the first
element, process 1 increments the second element, and process n increment the

n-th element. Example from [Figure 8 P0’s (1,0,0) increments to (2,0,0).

New event at the local process:

1. Retrieve the current counter.
2. Increment the counter.

3. Copy the last vector clock seen and update the process’ position in the
vector clock with the new value.

4. Assign the new vector clock to the event.

Following the same example from Lamport timestamps, where the event from
P1 is sent to PO. This time, the incoming event’s vector clock and the vector
clock last seen in PO are compared. PO merges the two vector clock by an pair-
wise maximum to get a new vector clock. For example, the event (1,4,1) and
(2,0,0) gives (2,4,1). After incrementing the process’ counter, the new event
becomes (3,4,1).

New event at the local process:

1. Retrieve the current vector clock and the incoming event’s vector clock.
2. Merge the two vector clocks by a pair-wise maximum.
3. Increment the corresponding counter of the merged vector clock.

4. Assign the new vector clock to the event.

This ordering scheme has the same property where for event A and B, A —
B = V(A) < V(B). The V(A) < V(B) is a pair-wise greater-than comparison.
This time, the reverse also holds, V(A) < V(B) = A — B. Therefore this
scheme can determine the ordering from the vector clocks. When V(A) < V(B)
doesn’t hold, event A and B happens concurrently, and a tiebreaker is needed
for a deterministic ordering of concurrent events.

16



2.6.3 Physical clocks

While logical clocks such as Lamport timestamps and vector clocks are efficient
in tracking the causal order of updates, the time between each event is lost.
Physical clocks encapsulates this property by using a real-world representation
of the time. One in particular is the Unix timestamp, which is the number of
seconds elapsed since January 1st 1970. But using a physical clock requires
the different users to synchronize their clocks in some way. This can lead to
situations where two events A and B in the order ”A then B” get registered
as "B then A” because the clocks at location A and location B were out of
sync. If the assumption is made that two clocks are relatively synchronized,
i.e. the deviations between the two clocks are "small”. Then, a mostly correct
causal order can be achieved. But the most important aspect, a deterministic
ordering is still valid. This kind of ordering is will be used in the later chapters
as the tiebreaker for when vector clocks are unable to determine and ordering,
i.e. concurrent events.

2.7 Related Works

CRDT on file systems[I0] investigated the use of CRDTs in file systems,
and laid the basis for this report. The paper described the general setup of
a CRDT-based file system, and investigated the possible conflict which could
occur in the Ficus Replicated File System[I1]. To list the few conflicts: concur-
rent file updates, concurrent insertion of same-name files, and when the file get
deleted and updates concurrently. It presented conflict resolve policies similar
to section [3:3:2] and constructed automatic conflict resolves. For cases where
a satisfiable state was unclear, the system opted for duplication of files for the
user to then resolve manually. Furthermore, a conflict awareness mechanism was
provided for the user. This report extends on the work of the paper. Where the
paper designed the CRDT on top of a specific Ficus file system, with has lim-
ited conflicts, this report looks at application-level synchronization/replication
support, which has inherent cross-platform capability, and is not dependent on
a specific file-system.

Survey of data replication in P2P systems[I2] investigated several p2p
system, and constructed a list of properties which defined a proper p2p system.
The different properties are the following:

e Data type independence: When sharing data, the system should be capa-
ble of replicating any type of data across the network.

e High level of autonomy: Coordination should be made optimistic and
deterministic, so that minimal requirements are put on each peer. Peers
should be able to safely perform operations with just the information they
have and no additional network communication with other peers.

e Multi-master replication: Data should be replicated across multiple peers,
and allow concurrent updates to the replicas.

17



e Semantic conflict detection: Concurrent operations can cause conflict,
which need to be resolved to a desirable state.

e Eventual consistency: Global consistency is impossible in a proper p2p sys-
tem. Replica divergence should be allowed, but should be converged once
all peers are in a resting state after all changes are propagated through
the network.

e Weak network assumptions: No assumption about the network infras-
tructure should be made. The system should work on all types of network
infrastructures: Ethernet, Cellular, fast/slow, reliable/unreliable, etc.

File Synchronization Systems Survey[13] by Zulqarnain Mehdi and Hani
Ragab-Hassen analyzed the different aspects of some of the most popular file-
syncing services currently in the market. Including the most known ones like
Google Drive, OneDrive, iCloud, and Dropbox. They looked at the different
network architectures the services are built to work in, the advantages and
disadvantages, how the files are stored, and whether or not file collaboration is
supported. From the services they looked at, only the cloud-based(centralized
server architecture) was capable of collaboration. At last they conclude that
P2P-based, file-syncing systems are both preferred and better than cloud-based
file synchronization systems.

18



3 Architecture

This chapter presents and discusses the overall architecture of the system, the
roles and functions of the individual modules, the modifications to the concepts
presented in the previous chapter and its trade-offs, and the general process
diagram of the system under action.

CRDT-index €

¥

Controllar

Peers R —

Figure 9: Conceptual architecture

3.1 Conceptual Architecture

To make the system as comprehensive as possible, it is split into four distinct
parts, each responsible for one area. The conceptual architecture is shown in

CRDT-index is the CRDT data structure responsible for keeping track of
all the files in the system, and merging all updates in a deterministic manner
such that regardless which order the updates were applied, the end result after
all updates have been applied, the state of the data structure is identical across

19



the network. To be more specific, as long two nodes have applied the same set
of updates, the state is the same on both ends.

IO is the module responsible for interacting with the persistent storage sys-
tem, e.g. the local file system. This module will constantly watch all files in the
designated folder, and will trigger the corresponding event based on whether
it is a file or folder, and the type of action, file creation, file deletion, or file
modification. All I/O-operations such as read and write operations are passed
to this module.

Peers handles all the communications to the rest of the network. Such commu-
nications include, peer management, file updates, file retrievals, index synchro-
nization, and etc. All remote file updates will be processed in a similar manner
as the local file updates triggered by the I/O-module.

Controller is the brain of the system, that takes the file updates that were
triggered by I/O-module, and sends it to the CRDT-index. After the index
has finished processing an update, and have determined that the update is not
outdated, it tells the controller to broadcast the Item to all known nodes. Con-
sequently on the connected nodes that receive the update, the peers-module
passes the update to the controller which then forwards it to the index. Just
like the first node, after the index has finished processing, the update needs
to be broadcast again due to the nature of P2P-networks that nodes are not
guaranteed to be connected to all nodes. At last the controller is responsible
for managing the user configurations.

3.2 Data object representation of a file

The most important part of the system is determining the data structure that
should be the object representation of the individual files. The mapping be-
tween the file and the data object must be unique, and it must be unique in
the context of the file. In other words, a file that has the same path as an
deleted file are not related to each other, and thus not regarded as the same
ﬁleﬂ Specifically an Item represent the a file at a given timestamp.
presents the core fields for the data object.

Path represent the relative path from the root folder where the system is watch-
ing. There are several advantages in only using the relative path instead of the
full/absolute path. One being that the absolute path is longer than the relative
path and can get unnecessary long depending on where the root folder is lo-
cated. If the root folder is located deep within several folders in the file system,
the memory footprint of the path field would be misspent. Another advantages
is that the path field can be kept the same across all nodes in the system, as
each individual node can get the absolute path of each file by joining the relative

50verwriting a file with another file is considered a file modification not a pair of file
creation and file deletion, therefore sharing the same data object.

20



Path String

Id String

VectorClock Array([String, int])
LastModified | float

LastActionBy | String

LastAction String

Tomb Tomb

Table 1: Item object

path with the root path.

Id is the unique identifier assigned to the individual files. During the lifetime
of the system, a file may have been created, deleted, and then created again,
which in this case is assigned two different ids, on upon the first creation, and
on the second creation. If the two peers concurrently creates the same file, i.e.
the path is the same, then the two files are also considered as unrelated, and
then assigned two different ids.

Vector clock is the main tool used to detect conflicts arose from concurrent
updates. An empty vector clock is the same as a vector clock where all clock
are set to 0, and each subsequent update increments the clock associated clock.
By only tracking the clocks for the nodes that have performed some kind of
change to the associated file, trades a longer processing time, by requiring the
node’s to find its clock before incrementation, for a smaller memory footprint.
It can be argued that this change is in favor of the scalability of the network. By
assuming a network with size n, the original vector clock’s memory footprint
would scale with n, with incrementation be of constant time. The modified
vector clock’s scalability in memory footprint and incrementation time will be
of n/, where n’ is the average amount of users working on the same file, and
this value can be argued to be much smaller than n. As for a large network,
it is highly unlikely that all n nodes are modifying the same node and only a
small subset do. For small networks its more likely that n’ is close to n, but
for small sized networks the linear scalability is not really an important issue.
Additionally it could be said that the use of a resizable vector clock is more
desirable as it is more important to accommodate a constant change of nodes
in a network as new nodes can join the network and old nodes can permanently
leave the network. In contrast to reallocating and recomputing the vector clock
whenever the network grows or shrinks. But whether this modification truly is
in favor during practical use is yet to be verified.

Last modified is a physical clock tracking when the last change was observed,
and is used as a tie breaker together with last action by to determine a de-
terministic ordering when the vector clock observes a concurrent update. The
ordering favors the more recent update as it is often more important.

21



bob: 1 . alice: 0 bob: 1 charlie: 0

Figure 10: Unlisted peers are treated as 0.

bob: create file alice: 0 bob: 1 charlie: 0
alice: change file alice: 1 bob: 1 charlie: 0 time
bob: delete file alice: 1 bob: 2 charlie: 0

A4

Figure 11: Incrementation of the vector clock.

Last action by is the globally unique id of the node that performed the last
update, and is used as the final tiebreaker for the last modified comparison.
While that scenario may be highly uncommon, depending on the physical clock
used, but for the sake of correctness this last tiebreaker is required.

Last action is the identifier of the specific type of update. Update types include
creation of new files, deletion of existing files, and modifications of existing files.
Furthermore, the system can be tailored to include specific resolve mechanics
on concurrent updates depending on the combination of the last update type,
and the incoming update type.

Tomb is a optional field which indicate if the file has been deleted or re-
name/moved.

22



3.2.1 Representation of a Tomb

The Tomb object is shown in and indicated when a file is deleted,
renamed, or moved. For operations such as renaming a file, or moving a file,
the object includes an additional field which contains the new path after renam-
ing/moving.

Field name ‘ Type
Type String
MovedTo String

Table 2: Tomb object

CRDT comes with its drawbacks. To ensure a convergence between replicas,
an indication of deleted data must remain in form of tombstones. Any changes
that removes, renames, or moves must leave behind a tombstone indicating what
happened to the file. As the Item is connected to a file by the path, and any
actions that changes the path, e.g. rename and move, will result in a new Item.
These tombstones will remain permanently as there are no guarantee that all
peers have observed the same tombstone, leaving the size of the CRDT to grow
continuously.

Type is the the action that created the tomb. E.g. deleted, renamed, or moved.

Moved to is a value indicating where the file has been renamed to or moved
to. For deleted files, this value is null.

3.3 Details: CRDT index

The module responsible for keeping a deterministic state of the files regardless of
when a certain update is applied, is based on a CRDT version of the hash-table.
The key used for each element in the hash-table is the file’s relative path from
the root. While only using the file’s relative path keeps the process of retrieving
the corresponding "Item” for the file simple, it does not accommodate the use
of tombstones as discussed in section [3.2.1]

One simple solution to this is extending the key to not only require the rel-
ative path, but also the file’s unique id. That way, the tombstones can exist
alongside the regular "Items”. But doing makes the act of retrieving a file’s
"Item” data problematic. This assumes that both the file’s relative path and its
id is trivial to get or at least there is an external mechanism that keeps track of
the id of each existing file. This will pose a problem when the local file system is
used for file persistence, in which only the file path is retrievable upon detecting
a file update event. That is without writing a custom file update detector. The
main problem with only having the file path to find the corresponding ”Item”
object it that the path is not enough as an unique identifier since over time
multiple files might have had the same name. A common scenario where two

23



unconnected ”Item” objects have the same file path is when an existing file gets
deleted and sometime later a new file with the same name, or more accurately
the same path, is created. Therefore, choosing this method puts an unnecessary
restriction upon the choice of persistent storage system.

Another way could be merging the path and the id to one value, or just use
the id as the path. But then, the files may be indistinguishable for the user, e.g.
"recipes - 0917...b30a.txt”. The id is a 64 characters long SHA-256 hash. Other
applications such as the default Windows File Explorer may need to adapt to
the new naming scheme by removing the id part to show a comprehensive list
of files to the user.

A method which solves this problem, or at least solves to a degree, is to ex-
tend is to have the result of the hash-table lookup be a linked list or any data
structures that is iterable and dynamically resizable. This way, a two-phase
hash-table lookup is enough to get the corresponding ”Item” object for a given
file. The first phase is to get the list of ”Item” objects by the file path and then
the second phase is to find with the correct "Item” by comparing with the id
field. Although this method also rely on knowing the id before performing the
lookup, the advantage is the ability to find "Item” objects under the same path.
Thus enables a way to infer the correct id and as a result the correct ”Item”
object. One way to infer the correct "Item” from the list is to always take the
one with the latest modified timestamp that is not a tomb, since local updates
such as "remove” and ”change” assumes an existing ”Item” that correspond
to the file, and add updates assumes either no "Item” for the given path or no
non-tomb ”Item” objects, thus is assigned a new id. This method is comparable
to a range search in a B4 tree with (path, id) as the key.

The matter of assigning the corresponding id to a file is only present for the
local node, as previously described in the file update event assumptions, and for
incoming updates from remote nodes the id have already been assigned, thus
skipping the pre-processing all together. The only step aside applying the up-
date to the hash-table is to rebroadcast the update to its neighbors, due to the
nature of P2P networks.

One important remark is that during the step of applying the update to the
hash-table, only one update per path can be executed at the same time. Not
doing so will cause race conditions within the update applying process to result
in undesirable outcomes such as updates been overwritten instead, i.e. when
two nodes makes changes to the same file on their local ends, and the timing
works out such that on one node, or both, both the local update and the in-
coming remote update get applied at the same time. The desirable outcome is
that both updates are kept, either by deterministic keeping one of the updates
as an alternate file or merging both updates with a CRDT specific to the file
type. Sequence CRDTs can be used to merge concurrent updates for text files.

24



3.3.1 Conflicts and Resolve Policies

The most important aspect of using CRDT is whether or not the state after
merging is the desired state. What should happen if concurrent file updates
occurred on the same file? Depending on the situation there could be several
ways to solve such merge conflicts. As described before, concurrent file updates
will result in the corresponding Item objects to have concurrent vector clocks,
and then have to use the other information in the Item objects to resolve the tie
and set a deterministic ordering between the two Items. In this case, the ”last
modified” value of the Items will be the tiebreaker. But this value can too end
in a tie, and while this is highly unlikely due to the fact of how physical clocks
work, a final tiebreaker is needed for correctness. Which in this case will be the
user that performed the update, i.e. the "last action by” value. Since the each
individual user id is globally unique, no further ordering schemes are necessary.
Once the global ordering the two conflicting Items are determined, the latest
Item will have its path changed to a new location. The system follows a ”better
safe than sorry” policy to make sure no information is lost.

e Last-write-wins: Default resolve policy. The latest update take prece-
dence.

e Rename: Concurrent vector clocks. One file is deterministic renamed
based on the ordering from ”last modified”.

While an automatic resolve policy may be practical, no need for the user to be
involved, sometime situations will still occur where the users need to manually
resolve the conflict. Like the previously mentioned ”better safe than sorry”
policy. Depending on the use-case, or the preference of the user, personalized
resolve policies could be added to fully remove the manually part of the resolve
policy. It is therefore important to at least give the users an conflict awareness
tool to let the user determine which files are in conflict and where they are
located.

3.3.2 Conflict Examples

This section provides an overview of the conflicts that can occur in this kind
of file-syncing system, and shows that different resolve policies way be used on
each conflict depending on the intended behaviors of the actions. This will be
more comprehensive by showing a few examples of conflicts and how the con-
text behind the conflicts may change the intended behavior. A selected subset
of the conflicts are listed below and the complete set of conflict can be found in
Append A

Concurrent addition of files with the same name. The simplest con-
flict that can occur is when two or more users add a new file to the same folder
in their local replica, but the files have the same name. If the conflicting files are
not related to each other, i.e. the names were chosen just by coincidence, the
system should then keep and deterministic rename the files. E.g. two users add

25



their own picture of a cat, but by laziness both users name the file ”cat.jpg”,
and the resolved state would then be two files ”cat.jpg” and ”cat (2).jpg”. This
is the case duplicates are the intended outcome, but there exist another case
where one would only like to keep one of the duplicate. E.g. two users want to
add an instruction text file to the shared folder, but they did not decide who
should do it, and in the end both added the instruction file. In this case a
simple resolve policy would be last-write-wins. The file addition with the latest
timestamp overwrites the older one. The two policies is illustrated in

a0d foldert/catjpg a0d foldert/catjpg add foldert manual tit add foldert manual tit

(=) (=)
e &

O
O—®

catipg catipg manual tit manual tit

(=) (=) (=) (=)
fe) ¢ - -
AN N\

N N

catjpg cat (2).Jpg catjpg cat (2)jpg manual bt manual bt

Figure 12: Two different resolve policies for concurrent addition of files with the
same name. Left(deterministic rename) and right(last-write-wins).

Concurrent modification and move. This conflict involves an user modify-
ing a file and another user moving the file to another location. An naive solution
would be re-adding the modified file at the old location. Resulting the ”same”
file appearing at two different locations. This is certainly not a state that the
users desire. The modification needs be applied at the new location, and can be
achieved with the use of tombstones like in In case when the parent
folder was moved, tombstones of all the moved files must be created at the old
location for the resolve.

26



file1 file1

v Y

move file1 update filel

file1

®
SO

(=)
SR SR

Figure 13: The file update is applied to the correct file for the other user. File
before update (Yellow) and file after update (RED).

Folder cycle. There exist a special type of conflict which do not involve con-
flicting files. When one user moves a folder A under folder B, and another user
moves folder B under folder A, a problematic state will occur. As shown in
the concurrent moves could cause the inner folders to form a cycle,
and thus inaccessible. Among all the conflicts this would be considered as the
most dangerous as a large amount of files could be lost forever.

27



¥ ¥

Move A to be Move B to be
child of B child of A

O O
OO 020, ()
Q O
O O
OO 020, ()
Q O

Figure 14: Right side moved A to be child of B, left side moved B to be child
of A. A naive merge resolve will result in both A and B to be lost.

28



As a side note, depending on the use-case of the file-syncing system, some con-
flict might occur more frequently or less frequently, or maybe not occur at all.
The creator of the shared folder could set up the shared folder in a way that
only the creator can add, remove, or change files, then there will practically be
no concurrent operation and thus no conflicts. If the shared folder is set up such
that only files are allowed, no nested folder, then all conflicts involving moving
files would not occur.

3.3.3 Nesting CRDTs for File Content Interleaving

To this point, the synchronization has only being applied to the files are the
whole, but having an CRDT-based synchronization on the file content itself
could allow for even less manual interaction from the user. An example for this
is the use of CRDT for text. There exists many CRDT, that are tailored for
the use for text collaboration, which as a reference would allow Google Docs
collaboration. Such CRDTs for text are called ”Sequence CRDTSs” | examples of
this kind of CRDTs are RGA[I4] and Woot[I5]. Therefore, file types for which
there exist an CRDT to enable content-based synchronization could integrate a
CRDT nested within the Item object. This could resolve the concurrent mod-
ification conflict, where two user concurrently modifies the same file. Instead
of resulting in two files for the two versions, a single with both modifications
are merged in a deterministic manner. Of course not all file type would want
this collaboration feature, e.g. JPEG, mp3, and etc, as there is no proper way
collaborate on these in the first place.

3.4 Details: 10

The system should associate an update method to the three types of update
events: creation of new files, deletion of existing files, modifications to existing
files. The choice of having only these three base types of updates methods is
due to the fact at these updates are the most trivial file events to detect. More
advanced updates such as moving or renaming files can be inferred from pairs
of file creation and deletion events. There should be two ways to execute the
update events, the first is to bind these five update events to an off-the-shelf
file watcher library to listen to changes on the local file system. This should
be relatively easy to accomplish as most file watchers is able to differentiate
between these three file events. The second, more general scenario, is to use the
three update methods as the application programming interface(API) to the
file-syncing system. This way, other developers could integrate this file-syncing
system into their own applications.

The file-syncing system could implement the basic I/O operations read and

write, to which the remote updates can be writing to local file system, and
remote request for files can the retrieved and sent to others.

29



3.4.1 File Distribution System

The file update detection and file access should be split into two separate mod-
ules, such that in some use-cases one can decide to drop either one of them. If a
node only wants to read the files, the node can drop the file detection module.
In scenarios where the network is used as a file distribution system where nodes
are either providers or consumers, the consumers do not need to keep tracking
files for changes, and providers do not need to perform any incoming updates to
the local persistent storage, since there would not be incoming updates at all.
In conjunction with a permission module where an admin node can regulate the
permissions the individual nodes have, the system can easily be turned into a
file distribution system.

A slight remark on the notion of providers not requiring the file detection mod-
ule, if the are multiple providers that have files with the same relative path, but
of different context, then the providers need the file detection module to resolve
the conflicted files.

3.5 Details: Peers

The peers-module encompasses all communication between all other nodes. At
the basic level, the module should maintain a collection of communication chan-
nels to all known. Each communication channel do not need to be of the same
protocol, such that the individual nodes have a choice between which to use.
While the ideal scenario is that regardless of which protocols a node chooses to
use, the node may not be able to avoid mainstream protocols such as http(s).
A globally default protocol needs to be assigned to be able to make sure proper
propagation through the network. As seen in the are two distinct
group of nodes, the bigger one that are communicate over http and the smaller
one that communicates over a lesser known another protocol, to connect the
two groups, node d from the smaller group communicates with node b from the
bigger group through the designated default protocol, which in this case is http.
The motivation for not limiting the communication over a single protocol is to
allow seamless changes to the default protocol. In the future when new com-
munication protocols that are deemed to be superior to older ones, and have
gained a significant traction in the user base, the system can start to designate
the newer protocol as the default protocol.

To make the implementation of newer protocols more developer-friendly, there
needs to be a predefined set of the necessary remote procedure calls (rcp) to
ensure each rcp are available on each peer. The set of remote procedure calls
includes:

e a method to send updates
e a method to request remote files

e a method to request the state of the remote node’s index

30



http protocol 2

[¢«——nitp L hitp— proteol 2

hitp

hiip’
profcol 2 profcol 2

htp hitp

———nitp

Figure 15: Two distinct group in the network.

a method to request the permission to join the network when joining for
the first time

e a method to add itself to the remote node’s list

a method to a specific permission like, e.g permission to add new files

a method to quickly determine if the index between the two nodes are
equal

After a local update have been processed and saved to the index. The update
will be broadcast to all known nodes over the individual node’s protocol, e.g.
if a node is connected by http(s), then the update will be sent over http(s).
When a remote update is received, its processed and save to the index, and
then written to the local file system.

3.6 Extra Modules

This section lists a few optional modules with are not required for a working
file-syncing system, but can enhance the system in different aspects.

3.6.1 Replication

Due to a p2p network never have a permanent population, a certain degree
of replications is desirable. On the other end, having full replication over the
network would create unnecessary storage space usage as the preference of full
replication or partial replication is highly dependent on the peer. Therefore, a
certain degree of replication is always required, and the each peer is given the
choice between streaming files over the network or a full replication on the local
computer.

31



3.6.2 Permissions

An important consideration in a file-syncing system is who can write or read
the files. In the most basic configuration everyone has both the read and write
privileges. But this can lead to a chaotic system where users can maliciously
mess with the files. A type of privilege management mechanism should be
included to restrict or grant specific privileges, depending on the use-case of the
file-syncing system.

3.6.3 Availability

To ensure a high degree of availability of the P2P-network. Some nodes should
play the role of seeds. Seeds form a complete graph between themselves, and
normal nodes must be connected to one or more seeds. A certain amount of
seeds should always be active to ensure high availability. When a seed leaves,
a new seed is selected from the leaving node’s list, and the seed replacement is
propagated through the whole network. At the creation of a new P2P network,
the creator becomes the first seed, and new node which joins the network au-
tomatically becomes a seed. This process repeats until a desirable number of
seeds is reached. shows an example of seeds and normal nodes.

- .
4 M,
"\ /
. -
~ .
4 %,

Figure 16: Seeds (red)

32



3.7 Process Flows Charts

This sections contains diagram to make the file-syncing systems program flow
more comprehensive.

3.7.1 Node states

The states of a node/peer and the transition between the states are show below.
e off: The system is not running.
e idle: The CRDT-index should be initialized and ready,
e on: I/O-module is ready and is listening for file updates.

e online: The connection to the P2P network is established and can send
and retrieve updates.

Figure 17: Node states

3.7.2 Startup/Exit Process

The system distinguishes between three ways a node can join the network. The
first, is when a node creates a new network, i.e. the first node in the network.
The second, is when a node first joins an existing network. The last, is when a
node rejoins a network after being offline. Because the three ways have different
prior configurations, i.e. what information is known before the actual method
call to join the network, the process for three differs slightly. shows
the process for the three scenarios.

New marks the start of a brand new sharing network, i.e. a node sets up
a sharing token which identify this particular sharing network. In this scenario,
the least amount of work needs to be done before transitioning from off to
online. Before switching from off to idle, all local files in the root folder are
added to the CRDT-index, or may be skipped if no such files exist. The next
transition from idle to on, requires no addition work as there are only the de-
fault configuration that needs to be set up. At last, the transition from on to
online, requires no additional configuration.

Joining a net network requires the joining node to ask for access and per-

form initial CRDT-index and file synchronization. In the transition from off
to idle, if the network is private, the joining node must request access from

33



an existing node that have the permission to add new nodes. If the network
is public, then this step is skipped as public, in this case, imply that all nodes
have both the permission to read and to write. Then, as the same as New,
there may be pre-existing files that should be added to the network. From idle
to on, the local CRDT-index needs to be synchronized with the ones that the
local node are connected to. If the local node joins the network by connecting
to multiple nodes, then the local CRDT-index must be synchronized with all
the connected CRDT-indices. The transition from on to online, requires no
additional configuration.

Rejoining a network implies that the node has previously been connected to
the network and later disconnected. Previous configurations needs to be loaded.

3.7.3 File Update Process

illustrates the complete sequence of steps from when a new event is
triggered. As previously mentioned in section , applying a remote update is
significantly easier due to the Item preprocessing step is already done on the
local end before transmitting the update.

Description of the local update step in

(L1) The I/O-module detects a file update and calls the corresponding method
associated with the action and type.

(L2) A new Item object is created with the type, either file or folder, the file’s
path in the persistent storage, the specific action performed, the time,
and who the action was performed by. Additionally a new vector clock is
initialized and incremented.

(L3) Check whether if file or folder.
L3.5) If file, then compute hash.
( ; p

(L4) Check for existing Item object that corresponds to the same file. As
discussed earlier in section if the action is file creation then there is
no need to search for an existing Item object. For other cases, the path is
used to lookup a set of objects from the CRDT-index, and then iterated
through to find the latest object that do not have a Tomb object.

(L4.5) There is an existing object, and the id and vector clock from the existing
object are copied over to the new object and the vector clock is incre-
mented.

(L5) The preprocessed Item object are sent to the CRDT-index to be applied.
(L6) Broadcast the update to connected peers.
(L7) Finished.

34



Description of the remote update step in |Figure 19

(R1)
(R2)

(R2.1)

(R2.2)
(R3)

Incoming update is detected.

The incoming Item object are sent to the CRDT-index to be applied. If
the object sent to the CRDT-index is discarded, i.e. the object’s vector
clock is older than the existing object in the CRDT-index, then no further
action is needed.

Apply necessary I/O-operations which correspond to the Item object.
Such as write, delete, rename, or move.

Broadcast the incoming update as the network may no be fully connected.

Finished.

35



join rejoin

send notice to
s
add local files network
v v
li%?jil;ofﬁzl delete settings
v v
. optional drive
5 ]
load settings cleaning
¥ h 4 v
start server start server start server
h 4 v
fetch invite fetch index
¥ h 4 v
;et_ update files update files
permissions

Figure 18: Startup procedure for each scenario.

36



(L1)
new event

(R1)

incoming item

L2}
create new
item

(L3)
check type

Compute is folder

hash

(L4)
check for valid
existing

use existing id
and clock
(R2)

applied apply to index,

(R2.1)
apply update
o persistent

applied

discarded
(L6)
broadcast

(R2.2)
broadcast

Figure 19: Processing steps for local updates (left) and remote updates (right)

37



4 Implementation

This chapter goes through the implemented architecture, shown in [Figure 20|
and discusses the various choices made during the development process.

The latest version is located at:
https://www.github.com/waffelroffel/Magellan

The state of implementation at the end of the project period:
https://github.com/waffelroffel/Magellan/commit/a4dea371ad83f48ad
01ddic35afcd6f8bcab3b158

4.1 Choice of Language and Libraries

For the implementation of the file-syncing system, TypeScript was chosen. This
file-syncing system is designed to run on most platform, and therefore required
a cross-platform programming language. The reason languages like Python,
Java, C#, C++/C, or any others were not considered is because of the author’s
proficiency in TypeScript is higher. Additionally, Typescript can be used on
another platform, the browsers. This factor was considered because of ever
increasing of web-based applications. Browsers also recently added access to
the native file system, e.g. the Chrome browser added the File System Access
API in version Bdﬂ The system will be developed in the runtime environment

Node.jsﬂ

) chokidaﬁ A highly customizable wrapper of the built-in file update
watcher, with better event types and easy nested folder support.

o fastify’} Easy setup of a HTTP server.
e node-fetch™t A HTTP client for the node runtime environment.

e uuid™} Generate globally unique identifiers.

4.2 Item object

shows the interface of the Item object in TypeScript. In addition
to the values mentioned in section [3.2] a new value hash is introduced. This
value is used for multiple checks. As an example, when a remote peer requests

Shttps://developers.google.com/web/updates/2020/10/nic86
Thttps:/ /nodejs.org/
8https://github.com/paulmillr/chokidar
9https://github.com/fastify /fastify
Ohttps://github.com/node-fetch /node-fetch
Uhttps://github.com /uuidjs/uuid

38


https://www.github.com/waffelroffel/Magellan
https://github.com/waffelroffel/Magellan/commit/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158
https://github.com/waffelroffel/Magellan/commit/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158

readiwrite to persistent storage.

defect file updates

Storage
Interface

]

trigger file update sven adhrite files

Watcher

CRDT-index Controller

Peers

Recaivers Proxies

remote update
: K o :
broadcast

Vessel* method (Local)Proxy (Local)Proxy method Vessel*

o (. JRecsiver (. )Proxy o

Figure 20: System Architecture

a file by the Item object, the local file’s hash is computed and compared against
the hash in the Item object. ItemType, ActionType, and TombType are
enumerated types, which are data types that only contains a predefined set of
values.

4.3 Controller: Vessel

Implementation: Vessel.ts

The controller component of the system is the Vessel class, which can be found
in the aforementioned link, is the brain of the system. To simplify the use of
the system, all interactions between the human operator or an external program
have to pass through this component. The Vessel therefore provides an API,
containing all the necessary functionality to access or modify the remaining
components of the system. The Vessel provides five functions corresponding to

39


https://github.com/waffelroffel/Magellan/blob/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/src/Vessel.ts

lastActionB
actionId:

Remove
Change

Figure 21: Item Interface

the three event types described in section [3.4]

Specific file updates implemented in Vessel:
e File added
e File removed

File modified

Folder added

e Folder removed

These five functions are used by the watcher component to pass the relative
filepath to the Vessel, or can be used by other developers to create their own
system.

It has an unique network identifier(NID) which correspond to how the peer
can be reached in the network. The NID contains a set of values, the first
denotes the protocol, and the subsequent values are the values the protocol’s
identification values. In this case the NID is an HTTP server identifier, the first
value is then "http” and the subsequent values are the IP address and the port
number which the peer’s HT'TP server operates on. An example of a NID can

40



path: "recipes.txt",

id: "9471c64f-97da-4302-88a9-bal19311e9296",

type: "F",

lastModified

lastAction: y

lastActionBy: "dave”,

clock: [["dave", 111,

hash: "0917b13a9@91915d54b6336145909539cce452b3661b21F386418a257883b30a",

path: "recipes.txt",
id: "9471c64f-97da-4302-88a9-bal19311e9296",
type: "F",
lastModified:
lastAction: y
lastActionBy: "evan",
clock:
["dave", 1],
["evan", 1],

Hash: "b3a141f79a292ddb62735d@aca®@69f@2db550135861dda26347d08cb@532cb3",

path: "recipes.txt",
id: "9471c64f-97da-4302-88a9-bal19311e9296",
type: "F",
lastModified:
lastAction: y
lastActionBy: "dave",
tomb: {
type: "D",

clock: [
["dave", 2],
["evan", 1],

Hash: "b3a141f79a292ddb62735d@aca@@69f02db550135861dda26347d@8cb@532cb3™,

Figure 22: Example of states of the Item object. Dave creates new file (top).
Evan modifies the file (middle). Dave deletes the file (bottom).

be found in But as mentioned in section a peer may be reached
by multiple protocols. Thus requiring each peer to have a set of NIDs, where
each NID correspond to the specific protocol that the peer actually uses. The
peer do not need to artificially create NID for unused protocols. At the time
of this report, only HT'TP have been incorporated into the system, thus the
incorporation of other protocols is then added to future works.

Type http
1P 132.120.144.46
Port 8888

Table 3: Example of an NID object

41



4.4 CRDT-Index: CargolList

Implementation: CargoList.ts

As mentioned in section the time when an Item object is been processed
in the index should be considered as a critical region. The index should then
set a lock on itself immediately before the index begins processing an Item, and
the lock is released when the Item has been fully processed and stored in the
index.

This is implemented in the way of an process queue which temporary holds
the Item objects, and an interval timer which in each cycle, checks if the lock
is set and retrieves the next Item to be processed.

After an Item object has been processed, the index constructs a Resolution
object, which informs any deviations from the default processing behavior. The
default behavior is the clean last-write-wins, where the new Item object’s vector
is strictly larger than the existing one’s. The full set of values in the Resolution

object are given in

before The Item object before processing.
after The Item object after been processed.
ro The specific resolve mechanism performed.
E.g. last-write-wins, rename, etc.
new Flag for indicating new files.
The new Item’s vector clock is later than the existing one,
rename The conflicting file shall be renamed.
overwrite | Flag for the rename resolve mechanism denoting.
The conflicting file shall overwrite the existing file.

Table 4: Resolution object

Currently there are only five valid states for the Resolution object, which can
be seen in Two for the last-write-wins mechanism, and three for the
rename policy. The first state "lww 17 is the default behavior, where the result is
the old Item been updated with the new Item. The second state ”lww 2” is where
the new Item’s earlier than the existing one, and thus can be ignored since it is
an older Item that has already been applied. The rest of the states correspond
to the new Item being concurrent with the existing Item, and have to be ordered
by the last modified and user id value. The third state "rename 1”7, appears
when the new Item is concurrent and later than the existing Item, by the ”last
modified” value, thus requiring the new Item to change its name/path. The last
two states "rename 2” and ”"rename 3” occurs at the same time. This is when
the new Item is concurrent and earlier than the existing Item, thus requiring
the existing Item to change its name/path, and the new Item to overwrite the
existing file’s content. Which is why two Resolution objects are created when
processing one Item.

42


https://github.com/waffelroffel/Magellan/blob/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/src/CargoList.ts

10

11

12

13

14

Iww 1 | Iww 2 | rename 1 | rename 2 | rename 3
before - - Ttem Ttem Ttem
after Item | Item | Item* Item* Item
ro Ilww lww rename rename rename
new true false true false true
rename - - true true false
overwrite | - - false false true

Table 5: The five valid states for the Resolution object. * denotes the Item
object where its path value has been changed.

The code for adding new Item objects and the function called by the timer is
given below.

// CargoList instance methods
putInQueue(item, post) {

}

this.queue.push(item, post)

processNext () {

if (this.queue.length === 0) return
if (this.busy) return

this.busy = true

const qitem = this.queue.shift()
const resarr = this.apply(qitem.item)
gitem.post?. (resarr)

this.busy = false

Explanation:

(1

)

The method takes in two parameters. The first is the Item object, and
the second is the post-processing actions which will be performed after
the Item has been processed by the index. Such post-processing actions,
are for example broadcasting the Item to other peers or I/O operations.

The Item object and the post function are added to the internal queue as
a single entry.

Quit if no Item in queue to process.
Quit if the index is processing another Item.
Set the lock on the index.

Get and delete the first Item in the internal queue

43



(11) Process the Ttem object and get the processing result.
(12) Call the post-processing function, if any, with the result.
(13) Release the lock on the index.

One particular observation is that, only Item objects with the same path will
cause unexpected behaviors. As there are no shared resources between con-
current Item objects with different paths. Therefore, the global lock on the
index can be modified to individual locks on the specific paths which are been
accessed. Allowing more Item objects to flow through the index.

4.5 10
Implementation: [Vessel.ts# L1265

readiwrite to persistent storage
detect file updates

: 10 i
H ]
1 1
! k4 i
H ]
H ]
H ]
: Storage |
i .' '
i Vatcher Interface 1
| |
H ]
H ]
H ]
H ]
H ]
H ]
H ]
S ] [ |
trigger file update even readiwrite files
Controller

Figure 23: Close up view of the I/O part of the system

4.5.1 Watcher

The previously described responsibility for file update detection and handling
1/0 operations are split into two components. The Watcher component is the

44


https://github.com/waffelroffel/Magellan/blob/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/src/Vessel.ts#L265

input of the system, detecting each file update event specified in section [3.4| and
calling the corresponding Vessel method (section are called. The watcher
component listen to every file under the designated root folder, with exceptions
of system configuration files, such as the configuration of the system and the
list of known peers.

The implementation of the component is mostly accomplished by the Choki-
dar library, where the three basic file events are incorporated. One particular
annoyance with the Chokidar library is the lack of advanced file events, such as
file renaming and file moving. Both are represented by a delete event followed
by a create event. Thus needs an additional mechanism to detect the advanced
file events. One example to achieve the two advanced file events is to tempo-
rary keep the deleted Item in a list such that when the following create event
is triggered and the file’s hash matches the ITtem in the list, the rename/move
event can be incorporated.

4.5.2 ABCStorage

Implementation: |Storages

On the side, the way the system access or modify the local file system, or
the persistent storage system of choice, is through the ABCStorage, an inter-
face comprising the full the set of methods that are required for the system.
The set of methods are given below, all methods takes requires an Item as
the parameter. With the exception of the "Move” operation, which takes two
parameters, the Item with the current path, and the Item with the destination
path. Currently, only the local file system, LocalStorage (see7 are im-

plemented. Access to other storage system, e.g. databases, can be accomplished
by implementing the specified set of methods in ABCStorage.

o Exists: Check if the file exist locally.
e Lastmodified: Find the time for when the last file update occurred.

e Computehash: Calculate the hash of file with a predesignated hash
function. Is not applicable to folders.

e ApplyFilelO: Perform write or delete on the file.

e ApplyFolderIO: Create or delete the folder.

e GetData: Read the whole file into memory.

e CreateRS: Create a readable stream of the file. For large files.

e Move: Move a file from one path to another. A combination of both
rename and move, as both is a change in the path.

45


https://github.com/waffelroffel/Magellan/tree/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/src/Storages

==zinterface==

ABC Storage

+ LastModified(item : ltem) : number

+ ComputeHash(item : Item) : string

+ ApplyFilelO(item : Item, data ?: string) : boolean
+ ApplyFolderlOfitem : Item) : boolean

+ Move(from : Item, to : ltem) - boolean

+ GetData(item : Item) - string

v

o

implements
.

LocalDrive

- Root : string
- CanWrite - siring(]

+ RelPath{item : ltem) : string

Figure 24: Relation of ABCStorage(interface) and LocalDrive(class)

4.5.3 Files Caching

As the I/0 operations requires a significantly larger time to execute, a temporary
file cache can be used to reduce the amount I/O operations. This caching scheme
stores the file content when a file has been accessed, and updates whenever the
Watcher detects a change in file content or an update from another peer. The
cache of a file is then removed when the file event for file deletion is triggered.
This way the concept of ”"temporal locality”, an accessed file is more likely
to be accessed again, is utilized. Each entry in the cache has a timestamp,
and after a certain duration the entry will be removed. ”TempDeleted” is a
history of deleted files, and is used to make rename/move updates easier. While
the rename/move is not explicitly implemented, the file is first deleted then
refetched from another peer. The ” TempDeleted” history, then skips the refetch
part and used the local file instead. Temporary deleted files are stored in the
”TempDeleted” folder. shows the types for each datastructure.

LocalDrive (Extended)

- Root : string

- CanWrite : sfring[]

- TempFolder : string

- TempDeleted : Map=string, [string, number)=
- 10Cache : Map=string, string=

+ RelPath{item : ltem) : string

Figure 25: LocalStorage with caching.

4.6 Peers

This module consist of sending(Proxy)/receiving(Receiver) messages to/from
other peers. Due to time limitations, only the http protocol is incorporated.

46



Figure 26| shows a simplified version the of the peer module.

Controller

Peers

remote update .
Receivers Proxies

broadcast
HTTP
u Receiver (HTTP)Proxy D

Figure 26: Peers module with only http

4.6.1 Proxy

Implementation: Proxies

The communication between peers is split into two components, one respon-
sible for sending messages, and the other for receiving messages. By having
two separate components to handle the communication, the overall structure of
the components can be simplifies. On the sending side, each individual remote
peer are represented as a Proxy object. A Proxy is the local representation
of the remote peer, such that all the remote procedure calls are hidden as lo-
cal methods defined in the Proxy interface. The default protocol used for all
the communications is HTTP, and the implementation(HTTPProxy) hides the
complexity of the HTTP-calls behind its methods, hiding the ”"remote” part of
the procedure calls. All protocols must implements the base Proxy interface,

such that broadcasting to all known peers is simplified to iterating through all
Proxy instances.

Methods defined in the Proxy interface:
e Send: Transmit Item and file to peer.
e Fetchltem: Request file from peer.
e FetchIndex: Fetch index from peer.
e Getlnvite: Request access to the network.
e AddPeer: Add itself to the peer’s list.
e ReqPerm: Request a specific permission.

e GrantPerm: Grant a specific permission to peer.

47


https://github.com/waffelroffel/Magellan/tree/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/src/Proxies

e CheckIndexVer: Check index version.

==lnterface==
Proxy

+nid : NID

+ Send(item : Item, data ?: string) : void

+ Fetchltem(item : Item) : string

+ Fetchindex(item : ltem) : IndexArray

+ Getlnvite(src : NID) : Invite

+ AddPeer(src: MID) : void

+ RegPerm{src : Permission) : string

+ GrantPerm(target : NID, perm : Permission): void
+ CheckindexVer(id : string) : IndexArray

A

i
implements
i

HTTPProxy

- URLBase : string

Figure 27: HTTPProxy implements Proxy.

4.6.2 Receiver

Implementation: [VesselServer.ts

Splitting the message sending and message receiving into its own components
is advantageous because protocols have different ways to receive messages. For
high-level protocols like HTTP, all incoming messages are funneled through a
single destination, i.e. a single HTTP-server for all the peers. While low-level
protocols like the Transmission Control Protocol, requires manual management
of the individual connections between the peers. Thus splitting the sending and
receiving part simplifies the implementation of each protocol, and puts no re-
striction on how each protocol should communicate. Currently, only the HTTP
protocol is implemented in the system.

4.7 Extra: Permissions

Implementation: [Permissions.ts

Some use-cases of the system, require a dynamic permission rights system, where
an admin can grant or revoke certain permissions such as read or write.

There are two default permission states for the two scenarios described in sec-
tion In 7 AlI2AIl”, every peer is immediately given the permission to write
and read files. For "One2All”, it starts with one admin that has permission
to both write and read files, while other peers can only read files. The admin

48


https://github.com/waffelroffel/Magellan/blob/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/src/VesselServer.ts
https://github.com/waffelroffel/Magellan/blob/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/src/Permissions.ts

can then grant the permission to write to files, to whom the admin sees trust-
worthy. One observation is that the system deals with files stored on the local
device, thus making the write and read permissions harder to restrict, in case of
permissions revoked. Instead. the revoking of write or read permissions result
in skipping local file events or incoming remote updates. No write permissions
stops all file events triggered by the Watcher, and no read permission stops all
remote updates received by the Receivers.

49



5 Testing and Evaluation

This chapter evaluates the intended behavior of the implemented system by
executing specific tests that simulate the different conflict situations from [A]
Additionally, the overall code quality will be evaluated, and the implemented
system will be compared to existing systems.

5.1 Setup

First of all, the specific version of both the runtime environment and the depen-
dencies used are listed. The full dependency list can be found in the package.json
file.

e Runtime environment:
— Node.js version 14.15.0

e Dependencies:

chokidar: version 3.5.1

fastify: version 3.14.0

node-fetch: version 2.6.1

— uuid: version 8.3.2

5.2 Test Cases

Four test sets was made in the development process. Two of these are unit
tests for the different components. One set tests the system where the local file
update, the Item processing, and the broadcasting happens in distinct separate
phases, i.e. no file updates when Items are being processed. The last set tests
the system for arbitrary file updates to assess the overall performance of the
system. This section will look at the test sets for distinct phases and arbitrary
file updates.

5.2.1 Distinct Phases

The implementation of the test set can be found in the tests/Conflicts.test.ts file.

This set of tests are responsible for verifying the resolve policy discussed in
section and are automatically executed. The first two tests check for the
correct use of the vector clock, where the first checks if the logic non-concurrent
updates are applied correctly by overwriting the existing file. The second test
checks if concurrent files are ordered deterministic across the peers. The third
test checks if the base updates in the composite updates such at rename or move

50


https://github.com/waffelroffel/Magellan/blob/5eabb14d9d49500c8e088924e5a8fd0be78fd68f/package.json
https://github.com/waffelroffel/Magellan/blob/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/tests/Conflicts.test.ts

are applied correctly regardless of the order which the base updates are broad-
cast. The separated phases are done by performing file updates while offline,
and then reconnect for the updates to be broadcast to other peers. This ensures
that only the conflict resolve mechanism are tested.

Test # | Description Intended behavior
1 Add a line of text to an existing | The modification is propagated
file. to the correct file on the other
peers.
2 On two peers, create a file with | One of the files are renamed ac-
the same name. cording to the specified resolve
policy.
3 Test composite file updates such | The composite updates are prop-
as rename/move. agated correctly regardless of the
order of the base updates.

Table 6: Tests from the ”Distinct Phases” set.

Due to the the advanced file updates, file renaming and moving, not being
implemented. Both updates correspond to a remove followed by add. Therefore,
conflicts which involve one or both of the updates, will result in duplicate files.
This includes the folder cycle conflict.

5.2.2 Arbitrary Updates

The implementation of the test set can be found in the tests/arbitrary.ts| file.

This set consist of a test where an arbitrary amount of file updates are per-
formed with a stochastic interval. These updates is a random selection between
three actions, creating a new file, modify an existing file, and deleting an exist-
ing file. The random selection is more weighted towards modifying existing files
as it is the most likely action that a peer may perform. After file modification,
the test assumes that the peer is more likely to create a new file than to delete
an existing file. The time between each action is a stochastic value, and is to
separate the time when each peer performs a file update. A lower bound to
the stochastic value is set to simulate a realistic scenario. This test is manually
executed because of the latency of I/O operation.

Due to the latency of I/O operations, a minimum of 2 seconds a set as the
lower bound between each update. This lower bound is artificially high as all
the peers are executed on the same process. Thus is not a limiting under real
use since a peer will have a whole process designated to it, and the fact that a
peer performing multiple file updates on the same file is highly unlikely.

o1


https://github.com/waffelroffel/Magellan/blob/a4ea371ad83f48ad01dd1c35afcd6f8bca63b158/tests/arbitrary.ts

Test # | Description Intended behavior

4 Set up a network of 3 peers, | The files and indices of all peers
and assign each peer an arbitrary | should converge regardless of the
amount of arbitrary file updates | sequence of local updates and re-
to perform. mote updates.

Table 7: Test from the ” Arbitrary Updates” set.

5.3 Memory Usage

As mentioned in section the main concern with CRDTs is the inability
to remove tombstones. Therefore, an analysis of the memory footprint needs to
be made to determine whether an eviction mechanism needs to be implemented
to avoid extensive memory footprint. The footprint will only include the index,
since it is the only component that is strictly increasing. Before even the begin-
ning of the calculation, one can already see that the overall memory footprint
will not be of significant size. Mainly due to the index only containing the meta-
data of the files and not the file content itself. Needless, it is still rewarding to
do the estimation due to the implication of nested CRDT mentioned in section
Where each index entry can have its own CRDT to enable content-based
synchronization, and the size of the nested CRDT is usually larger than the file
itself.

A rough estimate can be calculated by analyzing the primitive values in the
Item object. The size in bytes for each primitive will be calculated by the
ECMA-262[16] standard. For simplicity, special primitives such as undefined
will be ignored.

e String: length x 2 bytes
e Number: 8 bytes

The process to determining the memory foot will first start by determining the
average Item objects in the index for each use-case. Then, determine an average
size of each field, including nested objects. Again for simplicity, the overhead
of objects and list will be ignored since the main concern is the amount of Item
objects.

92



Key Size Description
Path 25 x 2 =52 bytes | Assume average file path of 25 characters
Id 36 x 2 =72 bytes | 36 character id from uuid library.
Type 1 x 2 = 2 bytes Single character.
LastModified 8 bytes Number
LastAction 1 x 2 = 2 bytes Single character.
LastActionBy | 36 x 2 =72 bytes | 36 character id from uuid library.
Hash 64 x 2 = 128 bytes | 64 character from build-in crypto library.
TombType 1 x 2 = 2 bytes Single character.
MovedTo 36 x 2 =72 bytes | Assume average file path of 25 characters
Clock 36 x 2 =72 bytes | 36 character id from uuid library.

8 bytes Number

n' Vector clock entries

Table 8: Breakdown of individual sizes values in Item objects

sizeriem =Path + Id + Type + LastModi fied + LastAction+

LastActionBy + Hash + TombType + MovedT o + Clock
=52+ T724+2+8+2+T72+128+2+ 72+ (72+8) xn'
=410 + 80n’

S1Z€¢otal =S1ZCItem X Nitems

=Nitems (410 + 80n")

Nitems =7 of items in index

n’ =average # of users modifying a file

\v)

(=)
e DD D DO —

A~ N N N~~~
ot

oo

With an estimate for each scenario can be calculated. Starting with
Team collaboration from section 2111

Use-case ‘ n ‘ n ‘ Nitems ‘ Size (mB)

Team - small | 10 | 10 30 0.06
Team - large | 100 | 20 | 1000 2.01
Sharing - 1 | 10000 4,90

Table 9: Estimates of memory footprint in different use-cases

Acknowledgments The estimate of the total index size in bytes ignored many
aspects of the index, e.g. overhead, but to provide a comprehensive estimate,
these aspects had to be ignored. The choice of values for n, n’, and n;iems was
not based on any empirical observations, but solely on subjective assumptions.
A future analysis with empirical data is highly encouraged, but should include
the use of nested CRDTs for the result to be of any significance.

93



5.4 Coverage Criteria

Apart from evaluating the functionality of the system, the code itself should be
evaluated. A common method is to examine the code coverage. Code coverage
is a measure of how many of the statements, branches, functions, and lines were
covered by all the tests. Usually in a percentage. The measure also shows all
the lines that was not tested. To have a high code coverage means that there
is a lower probability of a bug occurring since most of the ways the code could
run are covered in the tests. The most desirable is to have the code coverage as
high as possible, testing the last percentage of the code is much harder due to
parts of the code being hard to reach, i.e. hard to artificially create a situation
where the code gets executed. Examples of this could be a multiple level fail-
safe, where a certain condition is checked in multiple parts of the code, but only
the first check could trigger the fail-safe. For this implementation, the aim is to
reach a minimum code coverage of 70%. shows that the percentage
of code branches did not reach the goal, but with a average coverage of 70%-,
its considered good enough.

File % Branch

All files 66.97

SIc 67.35
CargolList.ts 67.71
Permissions.ts 50
ProxyList.ts 75
Vessel.ts

VesselServer.ts

apis.ts

defaultconf.ts

enums.ts

resolvesPolicies.ts

utils.ts

src/Proxies

HTTPProxy.ts

Proxy.ts

src/Storages

ABCStorage.ts

LocalDrive.ts

Figure 28: Code Coverage

5.5 Resolve Policies of Existing Services

This section will look at the conflict resolve policies in other file-syncing sys-
tems, specifically Google Drive.

As previously mentioned, Google Drive was chosen as the comparison against

o4



our implementation since it is one of the most well known applications for file-
syncing. Three interesting cases are presented below, and the remaining cases

can be found in

Add file A || Add file A: For concurrent insertions of files with the same
name, but different content, were added into the system. One through the local
folder with Google Backup and Sync, and the other though the web interface.
The result was that the local file, diverged from the remote file. The content
depended on which interface were used to access the file. It was only after one
of the replicas were manually modified afterwards that both files converged.

Rename file A to B || Rename file A to C: Two users concurrently rename
the file. The result was two diverged file names. For the user who renamed the
file to B got C instead, and the user who renamed to file to C got B. Both was
still the file internally in the system as deleting the file on one side removed both.

Remove/Rename/Change file A || Replace file A: When one user re-
names, removes, or changes a file, and concurrently another user replaces the
file, resulted in a system error which did not get resolved. An interesting obser-
vation from the Remove file A || Replace file A case was that it showed a
different error message than the others. It said that the synchronization failed
due to pending updates that have yet to be synchronized, and thus hints that
under the hood a causal order mechanism is used.

The Folder cycle conflict is not tested, but it is known that Google Drive en-
counters a system error[I7].

99



6 Conclusion

This paper has presented the current state of file-syncing services, where most
of them choose to use a cloud-based network architecture. The viability of
a CRDT-based P2P file-syncing has been discusses. It is shown that with a
carefully designed CRDT index to keep track files, the system can resolve any
concurrent file updates in a deterministic manner, with no additional coordina-
tion with the other peers. This paper choose to design a hash-table CRDT due
to the similar use of hash-tables as cache in database systems.

This paper has presented a list of possible file conflicts that can occur in daily
use, and proposed several reasonable resolve policies to each individual conflict.
It is shown that the "best” resolve policy of each conflicts is determined by the
context of the file updates, i.e. what the user intended to achieve with the file
update. For the proof-of-concept, the resolve policy is designed to keep conflict-
ing file updates as separate files. This ensures that no information is lost. For
conflicts that can not be resolve by vector clocks, one of the updates are kept
as a separate file. Unfortunately, only the basic file updates were accounted for.
Other updates such at file renaming or moving required an external mechanism
to identify. Even without the advanced updates, the amount of conflicts is still
huge, and to ensure the resolve policies worked through the whole development
process, several tests were created to verify the correctness of the system.

An extension of the CRDT-index has been proposed to further streamline the
conflict resolves to merge concurrent file updates into the same file. Much like
how text collaboration services like Google Docs functions. This is a hard feature
to implement correctly as this essentially stores the whole file into CRDT-index,
which will drastically increase the memory footprint. A further note in chapter

[

96



7 Future Work

Stream-based file transfers: Currently the whole file are read into memory
before sending the file to other peers. The same when files are received, before
writing to persistent storage. This would be ineffective with large files, thus
should use streams file transmissions. The current implementation did not use
streams, due to this being a proof-of-concept, and the asynchronous nature of
streams caused an additional source of bugs.

Security: As for now, the updates and files are send over the internet in plain-
text. Which is not acceptable in today’s standards. An encryption scheme
should be implemented, in the form of end-to-end encryption for all communi-
cation. In addition to forcing all communication over HTTPS.

Alternative CRDT-based index As mentioned in section [3.3.3 and [5-3] the
inclusion of nested CRDTs for content-based synchronization may drastically
increase the memory footprint. At that point, an eviction scheme will be needed
to temporary store unused Item objects (with the nested CRDT) to the persis-
tent storage. A possible scheme is to is to introduce a bloom filter to manage
infrequently accessed files, but has the cost of periodically reconstructing the
bloom filter. There is an alternative structure that would be interesting to
mention, a tree-structured CRDT. Which could be more appropriate, as the file
system is similarly structured like a tree. And an similar eviction strategy like
the one in Leanstore[I§] could then be adopted.

o7



References

[1]

[10]

S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” SIGACT
News, vol. 33, mno. 2, p. 51-59, Jun. 2002. [Online]. Available:
https://doi.org/10.1145/564585.564601

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski, “Conflict-free repli-
cated data types,” in Stabilization, Safety, and Security of Distributed Sys-
tems, X. Défago, F. Petit, and V. Villain, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 386-400.

V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford,
“Verifying strong eventual consistency in distributed systems,” Proceedings
of the ACM on Programming Languages, vol. 1, no. OOPSLA, p. 1-28,
Oct 2017. [Online]. Available: http://dx.doi.org/10.1145/3133933

C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,”
ACM SIGMOD Record, 1989.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski, “A comprehensive
study of Convergent and Commutative Replicated Data Types,” Inria
— Centre Paris-Rocquencourt ; INRIA, Research Report RR-7506, Jan.
2011. [Online]. Available: https://hal.inria.fr/inria-00555588

M. Kleppmann and A. R. Beresford, “A conflict-free replicated JSON
datatype,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 10, pp. 27332746, Apr. 2017.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst.
Rev., vol. 41, mno. 6, p. 205-220, Oct. 2007. [Online]. Available:
https://doi.org/10.1145/1323293.1294281

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, p. 558-565, Jul. 1978. [Online].
Available: https://doi.org/10.1145/359545.359563

C. J. Fidge, “Timestamps in message-passing systems that preserve the
partial ordering,”,” in Proc. 11th Austral. Comput. Sci. Conf. (ACSC ‘88),
1988, pp. H6-66.

M. Ahmed-Nacer, S. Martin, and P. Urso, “File system on CRDT),”
CoRR, vol. abs/1207.5990, 2012. [Online]. Available: http://arxiv.org/ab
s/1207.5990

98


https://doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/3133933
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/359545.359563
http://arxiv.org/abs/1207.5990
http://arxiv.org/abs/1207.5990

[11]

R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page, Jr., G. J. Popek,
and D. Rothmeier, “Implementation of the Ficus replicated file system,”
in USENIX Conference Proceedings. Anaheim, CA: USENIX, Jun. 1990,
pp. 63-71. [Online]. Available: http://www.isi.edu/%7ejohnh/PAPERS/
Guy90b.html

V. Martins, E. Pacitti, and P. Valduriez, “Survey of data replication
in P2P systems,” INRIA, Research Report RR-6083, 2006. [Online].
Available: https://hal.inria.fr/inria-00122282

Z. Mehdi and H. Ragab-Hassen, “File synchronization systems survey,”
2016.

H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee, “Replicated abstract data
types: Building blocks for collaborative applications,” Journal of Parallel
and Distributed Computing, vol. 71, no. 3, pp. 354 — 368, 2011. [Online].
Available: http://www.sciencedirect.com /science/article/pii/S074373151
0002716

G. Oster, P. Urso, P. Molli, and A. Imine, “Data consistency for
p2p collaborative editing,” in Proceedings of the 2006 20th Anniversary
Conference on Computer Supported Cooperative Work, ser. CSCW ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
259-268. [Online|. Available: https://doi.org/10.1145/1180875.1180916

ECMA International, Standard ECMA-262 - ECMAScript Language
Specification, 5th ed., June 2011. [Online]. Available: http://www.ecma-i
nternational.org/publications/standards/Ecma-262.htm

M. Kleppmann, D. P. Mulligan, V. B. F. Gomes, and A. R. Beresford,
“A highly-available move operation for replicated trees and distributed
filesystems,” 2020. [Online]. Available: https://martin.kleppmann.com/p
apers/move-op.pdf

V. Leis, M. Haubenschild, A. Kemper, and T. Neumann, “Leanstore: In-
memory data management beyond main memory,” in 2018 IEEE 34th In-
ternational Conference on Data Engineering (ICDE), 2018, pp. 185-196.

M. Letia, N. Preguica, and M. Shapiro, “Crdts: Consistency without con-
currency control,” 2009.

99


http://www.isi.edu/%7ejohnh/PAPERS/Guy90b.html
http://www.isi.edu/%7ejohnh/PAPERS/Guy90b.html
https://hal.inria.fr/inria-00122282
http://www.sciencedirect.com/science/article/pii/S0743731510002716
http://www.sciencedirect.com/science/article/pii/S0743731510002716
https://doi.org/10.1145/1180875.1180916
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://martin.kleppmann.com/papers/move-op.pdf
https://martin.kleppmann.com/papers/move-op.pdf

A List of conflicts

A.1 Intra-folder conflicts

Operations such as "rename”, "move”, and ”replace” can be decomposed into
a "remove” followed by ”add”.

Add file A || Add file A: Users concurrently create a file with the same name.

e Overwrite: Last write wins solution where the resolved file is determined
by the creation timestamp of each file.

e Keep all: Keep all files and deterministic rename. First file gets the orig-
inal name while the others get "userid” or ”(n)” appended to the name.

Remove file A | Add file A: Users concurrently create and remove a file
with the same file.

e Overwrite: New operation overwrites the tombstone based on timestamp.
As mentioned in [subsubsection 3.2.1] tombstones must be preserved for
correctness, and overwriting the tombstone in this way may lead to unex-
pected behaviors.

e Extend: In case a new file gets created with the same name. A tactic
similar to extended hashing can be used to preserve both the old tombstone
and the new file.

Rename file A to B || Add file A: An user renames a file from A to B, and
another user creates a new file A.

e Follow: Go to the new location of the file and apply concurrent add resolve
logic. Depending on the intention and the context of the add file operation,
one user could be not synchronized with the others, and therefore the file
is still at the old location. The user then plans to replace the old file with
the new file. In this case treated as Add file B || Add file B.

e Extend: On other circumstances new file could be unrelated to the old
file, and should appear at the former location.

Rename file A to B || Add file B: An user renames a file from A to B, and
another user creates a new file B. Treat as Add file B || Add file B.

Change file A || Add file A: Users concurrently create and modify a file with
the same file.

o Overwrite: Overwrite: Last write wins solution where the resolved file is
determined by timestamps.



e Rename: There is a possibility where a user have been offline for a while,
and adds a new file with name A. But on the rest of the network a file A
has already been created, and modified a couple of times. In this situation,
this should be treated as a duplicate.

Remove file A | Remove file A: Trivial case.

Rename file A to B || Remove file A: An user renames a file from A to B,
and another user removes the file A.

e Follow: Treat as Add file B || Remove file B
e No follow: Treat as Remove file A || Remove file A

Change file A || Remove file A: Users concurrently remove and modify a
file with the same file.

e Timestamp: The operation with the latest timestamp wins. In cases where
the modify operations ”wins”, the file will reappear on users where the
file has been deleted.

e Remove-priority: If the timestamp difference sufficiently small, this could
be an situation where the intended outcome is to delete the file. If the
difference between the timestamps are larger than a threshold, then the
logic could default to Timestamp.

Rename file A to B || Rename file A to C: Users concurrently rename the
same file to different names.

e DAG: The operation timestamp will serve as a deterministic consensus,
the one with the latest timestamp determine the final location of the file.
The file tombstone in its previous locations (in all replicas) must point to
the final location, and the tombstones need to be added on all peers to
ensure SEC.

Rename file A to C || Rename file B to C: Users concurrently rename
different files to the same names. Treat as Add file C || Add file C.

Change file A || Rename file A to B: A new file gets deleted, but another
user moved it to a new location. Treat as Change file A || Add file A.

Change file A || Change file A: Users concurrently modify the same file.

e Timestamp: Only the changes with the latest timestamp gets applied.
If the peers are not communicating when they try to modify the same
file, some peers might get annoyed that their edits suddenly disappeared,
and replaced with someone else’s. Here the importance of an awareness
mechanism is a necessity, to quickly tell the peer that someone else is
modifying the file. In cases where the system functions as a read-only
archive, the frequency will be greatly reduced.



e CRDT-based files: A way to keep the concurrent changes is to implement
a kind of CRDT-based mechanism for the file content. Then, in the case
of text files, existing CRDT implementations can be used.|[19][14] [15]

Add file A || Replace file A: Users concurrently creates and replace the same
file. Treat as Add file A || Add file A.

Remove file A || Replace file A: Users concurrently remove and replace the
same file. Treat as Remove file A || Add file A.

Rename file A || Replace file A: Users concurrently rename and replace the
same file. Treat as Rename file A || Add file A.

Change file A || Replace file A: Users concurrently modify and replace the
same file. Treat as Change file A || Add file A.

Replace file A || Replace file A: Users concurrently replace the same file.
Treat as Add file A || Add file A.



A.2 Inter-folder conflicts

Add file A || Move file A: Users concurrently create and move the same file.
As "move” is functionally the same as "rename”, treat as Add file A to B ||
Rename file A.

Change file A || Move file A: Users concurrently modify and move the same
file. As ”move” is functionally the same as "rename”, treat as Change file A
to B || Rename file A.

Remove file A || Move file A: Users concurrently remove and move the same
file. As ”move” is functionally the same as "rename”, treat as Change file A
to B || Rename file A.

Replace file ... to ... || Move file ... to ...: Users concurrently replace and
move the same file. As "move” is functionally the same as "rename”, treat as
corresponding Replace file ... to ... || Rename file ... to ...

Rename file ... to ... | Move file ... to ...: Users concurrently rename and
move the same file. As "move” is functionally the same as "rename”, treat as
corresponding Rename file ... to ... | Rename file ... to ..

Move file ... to ... || Move file ... to ...: Users concurrently move the same
file. As "move” is functionally the same as "rename”, treat as corresponding
Rename file ... to ... || Rename file ... to ....

Add folder A || Add folder A: Users concurrently add a folder with the same

name.

e Merge: In most cases, the two folders could just be merged together as
the content in both folders are of the same context. This assumes that
the folder name is not a commonly used name like (misc, temp, pictures,
etc.). Conflicting files inside the folders will follow Add file A || Add
file A.

e Rename: In case of generic folder names, The same logic as Duplicate in
Add file A || Add file A should be followed.

e Hybrid: Instead of either just Merge or Rename, a both methods can be
used at the same time. With Merge prioritized over Rename.

Remove folder A || Add folder A: Users concurrently delete and add a
folder with the same name. Analogous to Remove file A || Add file A.

e Overwrite: New operation overwrites the tombstone based on timestamp,
but overwriting the tombstone in this way may lead to unexpected behav-
iors. Applies for all sub-files.



e Extend: In case a new file gets created with the same name. A tactic
similar to extended hashing can be used to preserve both the old tombstone
and the new file. Applies for all sub-files.

Move folder A to B || Add folder A: Users concurrently move and add a
folder with the same name. Analogous to Move file A || Add file A, and
follows the same logic.

e Follow: Go to the new location of the file and apply concurrent add resolve
logic. Depending on the intention and the context of the add folder oper-
ation, one user could be not synchronized with the others, and therefore
the file is still at the old location. The user then plans to replace the old
folder with a new folder. In this case treated as Add folder B || Add
folder B.

e Extend: On other circumstances the new folder could be unrelated to the
old folder, and should appear at the former location.

Move folder A to B || Add folder B: Users concurrently move and add a
folder with the same name. Analogous to Move file A to B | Add file B,
and treat as Add folder B || Add folder B.

Rename folder A to B || Add folder A: An user renames a folder from A
to B, and another user creates a new folder A. Treat as Move folder A to B
|| Add folder A.

Rename folder A to B || Add folder B: An user renames a folder from A
to B, and another user creates a new folder B. Treat as Move folder A to B
|| Add folder B.

Change folder A | Add folder A: Users concurrently change the folder
structure and add a folder with the same name. Analogous to Change file A
|| Add file A.

o Overwrite: Overwrite: Last write wins solution where the resolved file is
determined by timestamps.

e Rename: There is a possibility where a user have been offline for a while,
and adds a new folder with name A. But on the rest of the network a
folder A has already been created, and changed a couple of times. In this
situation, this should be treated as a duplicate.

Remove folder A || Remove folder A: Trivial case.
Move folder A to B || Remove folder A: Users concurrently move and re-

move a folder with the same name. Analogous to Move file A to B || Remove
file A.



e Follow: Treat as Add file B || Remove file B
e No follow: Treat as Remove file A || Remove file A

Rename folder A to B || Remove folder A: Users concurrently rename
and remove a folder with the same name. Treat as Move folder A to B ||
Remove folder A.

Change folder A || Remove folder A: Users concurrently change and remove
a folder with the same name. Analogous to Change file A | Remove file A.

e Timestamp: The operation with the latest timestamp wins. In cases where
the modify operations "wins”, the folder will reappear on users where the
folder has been deleted.

e Remove-priority: If the timestamp difference sufficiently small, this could
be an situation where the intended outcome is to delete the folder. If the
difference between the timestamps are larger than a threshold, then the
logic could default to Timestamp.

Move folder ... to ... || Move folder ... to ...: Users concurrently move
the same folder. Apply the same DAG logic as Move file ... to ... || Move
file ... to ...:.

Rename folder A || Move folder A: Users concurrently rename and move
the same folder. Treat as Move folder ... to ... || Move folder ... to ...:.

Change folder A || Move folder ... to ...: Users concurrently change and
move the same folder. Analogous to the corresponding Change file A | Move
file ... to ....

Rename folder ... to ... || Rename folder ... to ...: Users concurrently
rename the same folder. Treat as the corresponding Move folder ... to ... ||
Move folder ... to ....

Change folder A || Rename folder ... and ...: Users concurrently change
and rename the same folder. Treat as the corresponding Change folder A ||
Move folder ... to ...

Change folder A || Change folder A: Users concurrently change the same
folder.

e Merge: Merge and apply Change file A | Change file A to all con-
flicting files.

e Rename: Have the two diverged folder as separate folder.

Add folder A || Replace folder A: Users concurrently add and replace a
folder with the same name. Treat as Add folder A || Add folder A.



Remove folder A || Replace folder A: Users concurrently remove and re-
place a folder with the same name. Treat as Remove folder A || Add folder
A.

Rename folder A || Replace folder A: Users concurrently rename and re-
place a folder with the same name. Treat as Rename folder A || Add folder
A.

Move folder A | Replace folder A: Users concurrently move and replace a
folder with the same name. Treat as Move folder A || Add folder A.

Change folder A || Replace folder A: Users concurrently change and replace
a folder with the same name. Treat as Change folder A || Add folder A.

Replace folder A || Replace folder A: Users concurrently replace and re-
place a folder with the same name. Treat as Add folder A | Add folder A.

Folder cycle: This is a special case where a peer moves folder A to be under
folder B, and another peer moves folder B to be under folder A. If not treated
carefully, a situation will arise where both folders are removed from the root.
See In the best case we get a system error, which need to be re-
covered from, and in the worst case both folders are inaccessible (equivalent to
being deleted). A resolve method involving a deterministic procedure of undos
and redos exist.[I7]

Folder operation || file operation: All folder operations will recursively
perform a corresponding file operation, and there is no need for extra logic
involving both folder and file operations.



B Conflict resolves in Google Drive

Add file A | Add file A: For concurrent insertions of files with the same
name, but different content, were added into the system. One through the local
folder with Google Backup and Sync, and the other though the web interface.
The result was that the local file, diverged from the remote file. The content
depended on which interface were used to access the file. It was only after one
of the replicas were manually modified afterwards that both files converged.

Rename file A to B || Add file A: One user creates a new file A and quickly
changed the name to B, and concurrently another user creates a different file
A. The end result was that both files were preserved, the file renamed to B and
the new file A. Follows the ”extend” resolve policy.

Rename file A to B || Add file B: One user creates a new file A and quickly
changes the name to B, and concurrently another user creates a different file B.
The end result was that both files were preserved, the file renamed from A to
B kept its name, and the new file B was renamed to "B (2)”. Follows the "keep
all” resolve policy.

Change file A || Add file A: One user creates a new file A and quickly changes
the content, and concurrently another user creates a different file A. The end
result was that both files were preserved, a ”A” and ”A (2)”. Follows the "keep
all” resolve policy.

Remove file A || Remove file A : Trivial case.

Rename file A to B | Remove file A: One user renames file A, and con-
currently another user deletes the file. The end result was the file being deleted
regardless of the time-order of the operation, but that may be a result of time-
deviation due to the aforementioned synchronization issue in section [2.6)

Change file A || Remove file A: One user updates the file, and concurrently
another user deletes the file. The end result was the file being deleted regardless
of the time-order of the operation, but that may be a result of time-deviation
due to the aforementioned synchronization issue in section [2.6

Rename file A to B || Rename file A to C: Two users concurrently rename
the file. The result was two diverged file names. For the user who renamed the
file to B got C instead, and the user who renamed to file to C got B. Both was
still the file internally in the system as deleting the file on one side removed both.

Change file A || Rename file A: One user updates the file, and concurrently
another user renames the file. The end result was the update being applied to
the renamed file, and stays true to the user’s intention.



Change file A || Change file A: Two users concurrently update the file. The
latest change was applied while the other did not. Follows last-write-wins policy.

Remove/Rename/Change file A || Replace file A: When one user re-
names, removes, or changes a file, and concurrently another user replaces the
file, resulted in a system error which did not get resolved. An interesting obser-
vation from the Remove file A || Replace file A case was that it showed a
different error message than the others. It said that the synchronization failed
due to pending updates that have yet to be synchronized, and thus hints that
under the hood a causal order mechanism is used.



	Introduction
	Purpose
	Research Goals
	Scope
	Report structure

	Background
	File sharing
	Use-cases

	Network architectures
	Centralized
	P2P

	Consistency
	CAP
	Eventual Consistency
	Strong Eventual Consistency

	CRDT and OT
	Operational transformation
	Conflict-free Replicated Data Types
	Examples of CRDTs

	Conflict resolving
	Types of timestamps
	Lamport timestamp
	Vector Clocks
	Physical clocks

	Related Works

	Architecture
	Conceptual Architecture
	Data object representation of a file
	Representation of a Tomb

	Details: CRDT index
	Conflicts and Resolve Policies
	Conflict Examples
	Nesting CRDTs for File Content Interleaving

	Details: IO
	File Distribution System

	Details: Peers
	Extra Modules
	Replication
	Permissions
	Availability

	Process Flows Charts
	Node states
	Startup/Exit Process
	File Update Process


	Implementation
	Choice of Language and Libraries
	Item object
	Controller: Vessel
	CRDT-Index: CargoList
	IO
	Watcher
	ABCStorage
	Files Caching

	Peers
	Proxy
	Receiver

	Extra: Permissions

	Testing and Evaluation
	Setup
	Test Cases
	Distinct Phases
	Arbitrary Updates

	Memory Usage
	Coverage Criteria
	Resolve Policies of Existing Services

	Conclusion
	Future Work
	References
	List of conflicts
	Intra-folder conflicts
	Inter-folder conflicts

	Conflict resolves in Google Drive

