
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jon Ryfetten

The Next Generation Index
Structures - Learned Indexes

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg

June 2021

M
as

te
r’s

 th
es

is

Jon Ryfetten

The Next Generation Index Structures -
Learned Indexes

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Index structures are today the answer when it comes to efficient data access. Re-

cently, a new type of indexes called learned indexes surfaced, employing machine

learning at the core. With very recent innovations, the indexes can have the po-

tential to become the "de facto" standard and then be the answer to efficient data

access. In 2017, the first learned index paper surfaced, which marked the begin-

ning of the new research field within databases. For decades, we have seen indexes

been optimized, tweaked, and updated for new hardware. Improvements such as

LSM, bloom filters, and other new indexes have been developed over the years to

improve indexes and optimize performance. All of the improvements and optimiz-

ations had one thing in common; They assumed nothing about the stored data and

only slightly improved the performance over their competitors. Learned indexes

are now about to change the situation completely. It makes a radical paradigm

change in the way indexes are made by focusing on the data being stored instead

of assuming a general distribution of data. It also makes extensive performance

claims.

Recent publications of learned indexes, such as the ALEX and PGM index,

improve the space occupancy by orders of magnitude (from gigabyte to megabyte)

[1][2]. It can also improve query and update time by up to 71% [2] over a B-

tree. Google recently measured over 50% increase in throughput and a significant

increase in lookup time using a learned index in Bigtable [3]. In this thesis, we

will take deep dive into the current landscape of learned indexes. Can learned

indexes be the new "de facto" standard? We will look at the different approaches,

the performance of learned indexes versus traditional indexes, and peek at the

future direction for learned indexes.

iii

Preface

The motivation for this research stemmed from a passion for AI and a passion for

understanding how it is possible to store and access data efficiently. It is interest-

ing to see the opportunities that are in AI and how humans can apply it. When I

first heard about learned indexes, I was instantaneously fascinated. Sadly, when

trying to find information about learned indexes, it was hard, and no literature

that extracted information from the field existed. This master thesis is here to

make it easier to understand the field of learned indexes.

I want to thank my supervisor Svein Erik Bratsberg for giving me the freedom

to pursue the topic of AI optimized indexes and as an incredible resource along

the way.

I hope you enjoy your reading.

Jon Ryfetten

Trondheim, June 9, 2021

iv

Contents

Abstract . iii

Preface . iv

Contents . v

Figures . viii

Tables . xi

1 Introduction . 1

1.1 Databases meets AI . 1

1.2 Purpose . 2

1.3 Goals and Research Question . 2

1.4 Content of thesis . 3

2 Background and related work . 4

2.1 Definitions . 4

2.1.1 Structured and unstructured data 4

2.1.2 Clustered and unclustered index 4

2.1.3 B+-tree . 4

2.1.4 Big data . 5

2.1.5 Linear models . 6

2.1.6 Piecewise linear approximation 7

2.1.7 Neural Network . 8

2.1.8 Cumulative Distribution Function (CDF) 8

2.1.9 Memory fence . 9

2.1.10 Cold and warm cache . 9

2.1.11 Data skew . 9

2.1.12 Database transaction . 10

2.1.13 Write and read locks . 10

2.1.14 Non-volatile memory (NVM) 10

2.2 Related work . 10

v

2.2.1 LSM-tree . 10

2.2.2 ART - The Adaptive Radix Tree 11

3 Learned Indexes . 12

3.1 How big data affects data requirements? 12

3.2 How learned indexes work . 13

3.2.1 Cumulative Distribution Function 14

3.3 Why so fast? . 15

3.4 Is learned indexes provably better than classic indexes? 15

4 Approaches . 17

4.1 The RMI . 17

4.2 FITing-Tree . 19

4.3 LISA . 22

4.4 PGM . 23

4.5 ALEX . 26

4.6 Bourbon . 29

4.7 RadixSpline . 30

4.8 Tsunami . 32

4.9 Comparison . 34

4.9.1 Properties . 35

4.10 Complex models versus linear models 37

4.11 Bottom-down versus top-down . 38

4.12 Secondary indexes . 38

5 Performance of learned indexes . 39

5.1 Practical example - Google Bigtable . 39

5.1.1 Evaluation . 40

5.2 Practical example - Learned indexes in DNA sequence analysis . . . 40

5.3 Difficulties when performance testing indexes 41

5.3.1 Tradeoffs . 41

5.3.2 Optimizations . 42

5.3.3 Hardware specific optimizations 42

5.3.4 Purpose when performance comparing indexes 43

5.4 Performance comparison between indexes 43

5.4.1 Search On Sorted Data Benchmark (SOSD) 44

5.4.2 Extension of SOSD . 46

5.4.3 Why learned index structure perform well 47

vi

5.4.4 Multi-threading . 48

5.4.5 Build times . 48

5.5 Range search . 49

5.6 Summary . 49

6 Limitations and future work of learned indexes 50

6.1 Criticisms and skepticism of learned indexes 50

6.1.1 Learned index can not outperform tuned traditional data

structures . 51

6.1.2 Learned indexes comes from implicit assumptions 51

6.2 Limitations and future work . 52

6.2.1 Author thoughts . 53

6.2.2 Future ideas for research . 55

6.3 New direction in the field of databases 55

7 Conclusion . 57

Bibliography . 59

vii

Figures

2.1 An example of a B-tree with an order of three. Often 64, 128, 256

or more is used. Typically stores millions, or billions of items. . . . 5

2.2 An example of a linear model. Illustration from [6] 7

2.3 An example of a PLA function. The red line illustrate the generated

PLA function of the function highlighted in blue. Illustration from

[7] . 7

2.4 An example of a CDF, where the distribution is in the range [0, 60]

and uniform. Distributions in indexes has a different is very likely

to not be uniform. Image from [8] . 9

3.1 Illustration of a learned index. The goal is to predict the memory

location given a key. The model predict the position with a given

error. 14

3.2 The CDF from a series of different 64-bit datasets. Amzn is book

sales, face is user ids, logn and norm are lognormal (0,2) and nor-

mal distribution respectively), osmc (uniformly sampled) is sampled

locations and wiki is edit times at Wikipedia. Uden is dense interger

and uspr is uniformly distributed spare integers. Image collected

from "SOSD: A Benchmark for Learned Indexes"[16] 15

4.1 An example of the RMI index could be used with use of multiple

stages. Model 1.x predicts the correct model 2.x and model 2.x pre-

dicts the correct 3.x. Model 3.x predicts the position. Illustration is

extracted from [4] . 18

viii

4.2 The design of the FITing-index. In the example illustration, the in-

dex is clustered. Support for non-clustered index, is added by in-

cluding an new layer, which is an additional "indirection layer".

Essentially, an array of pointers. Illustration is extracted from [18] . 19

4.3 The process of creating the index. Illustration is extracted from [20] 23

4.4 An example of how the PGM index could look like. At each level,

we search within a range of [p−ε, p+ε], where p is the predicted

position from the last model. Illustration is extracted from [2] . . . 25

4.5 Design of the ALEX index. The structure of the tree can dynamically

adapt to the dataset. Illustration extracted from [1]. 26

4.6 Performance of ALEX compared to RMI [4], B+-trees and ART [10].

Illustration extracted from [1] . 28

4.7 Example of the radix spline index. The most significant bits is high-

lighted, which is 101 (5). Then a search is performed in the spline

point between the pointer and pointer + 1, which is highlighted in

the illustration. Illustration is extracted from [26]. 30

4.8 Performance results for lookup-optimized index configurations. RS

is short for RadixSpline. Illustration extracted from [26] 32

4.9 The illustration visualize the number of points that are required

to scan using the different indexes. K-d tree is not optimized for

the workload, and Flood is not optimized for the query skew and

correlation. Tsunami has equally sized regions for the workload and

adaptive to the query skew. The number of points to scan is then

significantly less. Illustration extracted from [28] 33

5.1 Performance comparison between learned index (RMI) and the reg-

ular two-level index in Bigtable. Illustration extracted from [33] . . 40

5.2 Lookup results in nanoseconds. Table extracted from [29] 45

5.3 Performance counters. Illustration extracted from [29] 45

5.4 Pareto analysis of the indexes. Lookup time compared to space us-

age for learned indexes and traditional indexes. Illustration extrac-

ted from [22] . 47

5.5 Multi-threading performance on the amzn dataset. With and without

memory fence. Illustration extracted from [22]. 48

ix

5.6 Build times of the different indexes, using the amazon dataset with

different amount of keys. Log scale on the y-axis. Illustration ex-

tracted from [22]. 49

x

Tables

4.1 Properties of the learned indexes . 36

4.2 Time complexity of the learned indexes based on details from pa-

pers. 37

xi

Chapter 1

Introduction

The term learned indexes was coined in 2017 when the paper "The Case for

Learned Index Structures" [4] surfaced. It is written by Tim Kraska (MIT) in collab-

oration with Google as an exploratory research paper. The paper opened a new

field within databases, challenging a decade-old field of traditional indexes. By

considering indexes as models, they were able to replace traditional indexes with

machine learning models. These models learn the patterns in the data and enable

the automatic synthesis of specialized index structures with low engineering cost,

which creates the term learned index.

1.1 Databases meets AI

The paper showed how learned indexes could enhance, improve, and even re-

place traditional indexes such as the B-tree. They describe how indexes are just

models to map keys to positions of records in the memory. Using a model with a

combination of neural networks and linear models, they create an index that uses

a fraction of memory compared to a B+-tree. The index also improves the lookup

time by over three times in some cases. In this preliminary study, the index only

supports read operations.

One of the simplest examples of why a learned index could outperform a B+-

tree is when we have a fixed number of continuous integer keys that have to

be stored. If the first key, 1, points to the first record. Then key, 2, points to the

second record, and so on. A learned index could then, in theory, learn the mapping

between and learns the function f (x) = x . The function could then be used to

1

directly calculate the memory location of the data, given a key. Therefore achieve

a time complexity of O(1). While a B+-tree would assume a general distribution

and, therefore, always has the time complexity of O(log(n)) for insert, delete, and

update. The space complexity of the structure for a learned index is also O(1), as

it is just storing a learned function. It means we can dramatically reduce both the

memory footprint of the index and increase the performance dramatically.

1.2 Purpose

Learned Indexes is one of the most promising index structures to replace the tra-

ditional B-tree. At the time of the invention of the B-tree, data were stored in

magnetic tapes. A storage medium made in the late 1920s with pure sequential

access. Reading an entire block of data at a time was, therefore, critical. Since

then, we have seen an emergence of new hardware and a massive increase in

data volume. In the original B-tree paper from 1971, they expect the B-tree to

theoretically handle an index size of 1500 000 items with the available hardware

at the time [5]. The index would then be able to handle two operations per second.

With today’s hardware and optimizations to the B-tree, the tree could process over

50000 000 operations in a second, and the B-trees can store billions of items.

However, a small effort has been used to make the B-tree take advantage of the

multi-core chips, Non-volatile Memory Express (NVMe) and flash disks, and Non-

volatile Memory (NVM). With the rise of digitization, storing large quanta of data

has never been more critical. Today, B-trees serve as a crucial component in sys-

tems such as filesystems and databases. Performance is crucial for these systems,

yet, B-tree still is one of the best options.

Learned indexes serve as a fresh breeze as the next generation of index struc-

tures to replace B+-trees and other traditional indexes. Currently, there is a lack

of a paper that compares the different learned indexes and describes the field in

detail. The purpose of this thesis is to take a deep dive into the current landscape

of learned indexes and synthesize a comprehensive article about learned indexes.

1.3 Goals and Research Question

Goal Give a comprehensive picture of the current landscape of learned indexes

2

Research question 1 (RQ1) What are the different approaches today at achieving

efficiently learned indexes?

Research question 2 (RQ2) How do learned indexes perform compared to tradi-

tional indexes?

Research question 3 (RQ3) What is the future direction of learned indexes?

1.4 Content of thesis

In Chapter 2, we take a look at the current traditional index solutions and various

backgrounds and definitions needed later. Chapter 3 introduces the fundamentals

behind learned indexes. In Chapter 4 we explore how the different learned indexes

is created, the approaches they use, properties for the indexes, and comments on

drawbacks and performance. There is also a theoretical discussion on complex

models versus simple models as learning components. In Chapter 5, we look at

how learned indexes perform in real-world situations and benchmarks. Then in

Chapter 6, we discuss the limits and skepticism against learned indexes. We also

take a look at the direction of the indexes and what to expect in the future.

3

Chapter 2

Background and related work

2.1 Definitions

2.1.1 Structured and unstructured data

Structured data is data well defined, often in a table. It is usually highly organ-

ized and indexable. There exist a data model which describes the relationship

between the entities. Unstructured data does not have any particular format, no

data model, and stored in a native format. Examples of unstructured data could

be surveillance pictures and newspaper text.

2.1.2 Clustered and unclustered index

Clustered versus unclustered indexes describes the relationship between keys and

the position of data. Clustered indexes means that the data is stored in the index,

such as MySQL InnoDB and Microsft SQL B+-trees. Unclustered index means that

the data is stored a different place, such as on an external disk.

2.1.3 B+-tree

A B-tree [5] is a data structure that enables search, insertion, deletions, and se-

quential access in logarithmic time. Nowadays, it is one of the most used data

structures in databases. We also find it in file systems and operating systems. The

invention completely changed the way of storing data and enormously reduced

the input/output (IO) for databases. It was invented by Bayer and McCreight

nearly 50 years ago as an extension to the binary search tree. The difference

between a binary search tree and a B-tree is that a binary search tree contains

4

two elements per page, while a B-tree could hold multiple elements per page.

Having multiple elements per page improves performance as more elements are

kept in the memory’s cache. Reading an element from disk compared to RAM

could take over four orders of magnitude slower than RAM access. B-trees are

balanced search trees, which makes them high-performance. They have a time

complexity of O(log n) for both search, delete and insert.

An example of a B-tree can be seen in Figure 2.1. A B-tree contains nodes and

leaves. Each node can have m children, where m is the order of the tree. Nodes

have at least m/2 children. The nodes only contain keys and references to other

nodes or leaves. A leaf contains keys that are connected to values. We use the

node’s keys to find the leaf we are searching after. When inserting or deleting the

tree, we always keep the tree balanced, making the search time logarithmic. The

nodes point to other nodes or leaves, while leaves have keys to values.

Figure 2.1: An example of a B-tree with an order of three. Often 64, 128, 256 or
more is used. Typically stores millions, or billions of items.

There exist multiple B-tree types. The most important are the vanilla B-tree

and the B+-tree. The B+-tree does not store any values in a node, and nodes

neither contain values. It also includes links between leaves to speed up the tra-

versal of the tree.

2.1.4 Big data

It refers to large or complex data on a scale that makes it impractical and im-

possible to deal with within traditional data-processing applications (e.g., DBMS).

The speed at which the generated data is often also considered very high, but it

is not a requirement to be categorized as big data. The concept itself of Big Data

gained attraction after Doug Lanyey coined the definition of big data as the three

V’s. Volume, Velocity, and Variety.

5

Volume: Big data is enormous. Data is often collected from multiple sources,

including devices such as the Internet of Things (IoT) that rapidly generate new

data.

Velocity: The rate of inserts and updates is high. The high velocity creates

new requirements, such as the ability to process the operations quickly. Sensors

and IoT devices are examples of sources of data that quickly generate data and is

driving the need to deal with the data in near real-time.

Variety: Data comes in many different types of formats, both structured and

unstructured data. From voice, video, and images to numbers and text.

2.1.5 Linear models

Linear models are one of the simplest examples of a machine learning model. The

goal of a linear model is to fit a straight line to a set of data and then attempt

to model the relationship between two variables. An example could be age and

average height. We can then predict the height by using the age. Since average

height, given age, is not linearly, we would get an error. When creating the model,

we can have different metrics on how we want to fit the line. Sometimes, we want

to reduce the max distances. Other times, we want to reduce the average error.

Once the line is fitted, we end up with two constants, a and b, which is used in

the equation f (x) = a+ bx . An example of a linear model is given in Figure 2.2

6

Figure 2.2: An example of a linear model. Illustration from [6]

2.1.6 Piecewise linear approximation

It is also called piecewise linear function and piecewise linear model. Formally,

a function is defined as a collection of intervals, where each interval contains

an affine function. More simply, it is a linear approximation to a function. The

approximation is divided into multiple segments of linear models. An example is

displayed in Figure 2.3

Figure 2.3: An example of a PLA function. The red line illustrate the generated
PLA function of the function highlighted in blue. Illustration from [7]

7

2.1.7 Neural Network

A neural network is a biologically inspired machine learning method. A network

is a set of connected nodes, where each node is called a neuron. A neuron pro-

cess a signal and output a new signal. Such a signal is a decimal number (could

be integers in some situations). The neuron itself is some non-linear function,

and the output is the sum of all the input processed in this function. Typically, a

neuron has a weight associated, which adjusts the importance of the signal. Of-

ten, the network is organized into several layers, where each layer performs the

same transformations. The training of a neural network is done by initializing the

neurons to specific values (could be random to a certain degree). Then we feed

the network with data and compare the predicted output to the actual values

from the training data. The error between the prediction and actual data is then

back-propagated through the network (backward, from the output layer to the in-

put layer). In the last decade, we saw an explosion in the use of neural networks.

Primarily due to advances in hardware (GPU particularly), available training data,

and new research within deep learning. Although, many of the building blocks for

neural networks have been available for a long time.

2.1.8 Cumulative Distribution Function (CDF)

Used to specify distribution of multivariate random variables.

FX (x) = P(X ≤ x)

Where X is the real-value variable. F takes a value between 0 and 1,R→ [0,1].

The function describes the probability that the variable takes a value less than or

equal to the given x-value. An example is displayed in Figure 2.4.

8

Figure 2.4: An example of a CDF, where the distribution is in the range [0, 60] and
uniform. Distributions in indexes has a different is very likely to not be uniform.
Image from [8]

2.1.9 Memory fence

Also known as a memory barrier. On modern CPUs and compilers, instructions

may be reordered after the program is written. It is often done to improve pipelin-

ing, overall computation and memory access. Enabling the memory barrier pre-

vents the compiler and/or CPU from performing operations issued before the bar-

rier, and operations after the barrier will be performed after the barrier, often used

in concurrent programs to prevent out-of-order execution.

2.1.10 Cold and warm cache

Originally an analogy to a cold and warm engine. A cold cache does not have data

and does not provide a speedup (data must be moved to cache). A warm cache

contains data, and therefore could potentially provide a speedup.

2.1.11 Data skew

Data skew means that the distribution of data is uneven or asymmetric. In the

context of indexes, data skew could also be used about the keys. Bits distribution

in the keys could be uneven or asymmetric. The workload could also have a skew,

such as that some queries is executed more often.

9

2.1.12 Database transaction

Transactions in databases represent a change to the database. They make a set of

operations independent of other operations ongoing in the database. Transactions

provide reliability and isolation. They are atomic; they either fail or complete en-

tirely. They also keep the database in a valid state upon completion (consistent),

do not interfere with other transactions (isolated), and when a transaction is com-

pleted, it remains complete, even if a power loss or crash (durable). These four

properties are often referred to with the acronym ACID.

2.1.13 Write and read locks

They are used for concurrency, where a file or data is "locked". When a process

tries to access a file or data that is locked, it needs to wait until the lock has been

unlocked before it gets access to read or modify the data. Locks are often used

for transactions in database systems. Locks protocols guarantee that transactions

produce the same output, even when they are executed in an overlapping time-

space.

2.1.14 Non-volatile memory (NVM)

Memory that is stored even after the power has been shut down. Many different

types have been deployed, from magnetic tape to spinning disk and flash memory.

In the last decade, we have seen the grown of NVMe, a faster type of memory. Most

recently, a non-volatile dual in-line memory module (NVDIMM). A random-access

memory (RAM) for computers. First products are expected to be on the market

from 2021. The advantage of NVM RAM over volatile RAM is that it enables high

performance and high recovery when storing the database entirely in memory.

2.2 Related work

2.2.1 LSM-tree

LSM-tree was invented in 1996 by Patrick O’Neil, introduced to the world with

the paper "The Log-Structured Merge-Tree (LSM-Tree) and is a competitor to the

traditional B-tree" [9]. The LSM-tree makes itself attractive by providing a worst-

case time complexity of O(1) for insertion operations but has a worst-case time

complexity of O(n) for search and delete. It makes the LSM-tree very attractive

10

for write-intensive applications.

In the original paper, a two-level LSM tree was proposed. The tree divides the

data into two different physical locations, in-memory and on disk. New records are

stored in-memory. Once a set of entries exceeds a certain size, the set of entries is

moved over to disk by merging it. It makes it possible to employ an index structure

optimized for in-memory for the first subset of the data and use a different index

optimized, for example, for disk for the next subset. In an LSM tree, each of the

subsets is called levels. Sometimes we use more levels than two levels.

2.2.2 ART - The Adaptive Radix Tree

ART, presented in the paper "The Adaptive Radix Tree: ARTful Indexing for Main-

Memory Databases" [10], is a modern high-performance index for databases. As

the title of the paper mentions, the index is an in-memory index for main-memory

databases. Main memory databases have grown in popularity since most data-

bases today fit into RAM. In main memory databases, a critical bottleneck is the

index performance. ART is an adaptive radix tree for efficient indexing in main

memory, and at the same time, very space-efficient. Usually, radix trees suffer from

excessive worst-case space consumption. ART solves this by adaptively choosing

compact and efficient data structures for internal nodes in the tree. It adapts the

representation of every individual node locally. ART delivers very high perform-

ance on multi-threading and scales about 1.6x-1.7x using multiple threads.

11

Chapter 3

Learned Indexes

For decades, the CPU power has rapidly increased. From 1965 to 1975, the num-

ber of transistors doubled every year. Since 1975, it doubled every second year and

was known as Moore’s Law. Just until recently, in 2016, CPU performance was rap-

idly increasing. Today, Moore Law is dead, and we can not expect to see an ever-

growing increase in computing performance. In contrast, in the last few decades,

we have seen an explosion in the amounts of data generated, which not seems

to stop. Big data has become a term commonly known. Every day, the amount

of data required to process increases on a much larger scale than the available

computer power [11]. With all this data, we try to crunch out every bit of use-

ful information, which requires us to use sophisticated tools to analyze the data.

We need to index data, which again increases the space requirements. Indexes in

OLTP workloads can consume up to 55% [12] of the memory in state-of-the-art

in-memory DBMS. One of the approaches to deal with this problem is learned in-

dexes. It promises to dramatically improve the performance of data processing in

terms of CPU cycles and, at the same time is also reduce space consumption with

orders of magnitudes.

3.1 How big data affects data requirements?

While we have seen the death of Moore’s law, at the same time, we have seen an

explosion of new research and effort put into the field of AI and Machine Learning.

Not surprisingly, we have seen a series of attempts to apply the inventions from

Machine Learning in databases. One of them is learned indexes, but we have also

seen query optimizations [13] [14] and system tuning [15] using AI. Learned in-

12

dexes made a controversial view on indexes by considering the data distribution

as one of the key elements in developing an index. The results seen from learned

indexes have surprised the database community and shown some solid results in

a series of examples by significantly reducing the space consumption with mag-

nitudes of orders while also improving performance.

In many industries today, data has become an essential resource used in decision-

making. Some also call themself data-driven companies. These companies often

process vast amounts of data to gain insight from the data. Devices such as the

Internet of Things are one of the factors driving this data, finical data (stocks,

time-series, tweets, etc.) and general data generated on the internet drive the

need to process vast amounts of data. This is where learned indexes can be a

game-changer, with the ability to reduce storage requirements with magnitudes

of order and at the same time provide a significant performance improvements.

3.2 How learned indexes work

In the paper "The Case for Learned Index Structures" [4], they introduced the

concept that traditional indexes (with sorting and range queries) are just mod-

els. These models assume nothing about the data distribution. They introduce the

idea that a model can map a key to a certain location in a sorted array. We can

replace the index with models such as neural networks by considering the index

as a model that predicts the position with a given error. In reality, models such

as neural networks have shown to be a bad choice [1] [4]. A rather successful

choice is, for example, is a piecewise linear regression model. The key idea for the

model is to learn the sort order of the data and structure of the data to predict the

location efficiently.

A simple yet surprisingly powerful model for a given case is a linear regression

model such as a+ bx to predict the location. It could, for example, be the case if

you have an index for identification numbers, where the identification numbers

are added by 1 for every new insert. Then it is possible to access the memory

location directly by computing the function f (x) = a+ bx , where x is the key. We

do not need to traverse tree index. An illustration of a learned index is given in

Figure 3.1.

13

Figure 3.1: Illustration of a learned index. The goal is to predict the memory
location given a key. The model predict the position with a given error.

3.2.1 Cumulative Distribution Function

Since the data is a sorted array, the data could be considered as a CDF, where the

function estimates the likelihood of observing a key smaller or equal to the lookup

key. Effectively, a model in terms of an index is approximating a Cumulative Dis-

tribution Function (CDF) with the following formula: p = F(Ke y) ∗ N where p

is the position estimate, F(Ke y) is the estimated CDF, and N is the total number

of keys. Ultimately, this means that indexing does learn the data distribution and

that traditional indexes such as B-trees learn data distributions. The difference is

that traditional indexes learns the distribution, but does not take advantage of it,

by assuming a general distribution.

CDFs come in all shapes, and therefore, the model that learns the data dis-

tribution must handle a wide range of different shapes. In Figure 3.2, a series of

different CDF is displayed to give insight into how the CDF could look like.

14

Figure 3.2: The CDF from a series of different 64-bit datasets. Amzn is book
sales, face is user ids, logn and norm are lognormal (0,2) and normal distribution
respectively), osmc (uniformly sampled) is sampled locations and wiki is edit
times at Wikipedia. Uden is dense interger and uspr is uniformly distributed spare
integers. Image collected from "SOSD: A Benchmark for Learned Indexes"[16]

3.3 Why so fast?

Learned Indexes are data-aware indexes that aim to learn how to create an ef-

ficient index structure based on the data. In some of the ideal cases, such as a

running number in a fixed interval, e.g. [1, 1 000 000 000], the memory loca-

tion of the data can be given by the pattern of the data, and no index structure is

needed. In general, the goal of learned indexes is to take advantage of the data

distribution and find a mapping between the data and the memory location.

In most cases, there exist a pattern in the data that could be detecte extracted

from the dataset. Depending on the degree of the patterns detected, we can reduce

the amount of needed index structure which will significantly improve the access

time and reduce the disk footprint. In the example above of the running number,

we would go from the time complexity of O(logn) to O(1) for both access time

(read, insert, update and delete) and disk footprint.

3.4 Is learned indexes provably better than classic in-

dexes?

Learned Indexes is a complicated topic when it comes to performance and does

have its limitations. While B-trees is a well-understood data structure, highly

tested and used, learned index is a new competitor. Until recently, there existed

no evidence that learned indexes are provably better than classic indexes (e.g.,

B+-trees). Recently, the first proof that learned indexes are provably better than

traditional indexes was released [17]. They proved that the particular learned in-

dex PGM-index [2] answers queries as fast as a B+-tree while improving its space

15

to O(n/B2), where B is the number keys possible to fit in on page in a disk. In

comparison, a B+-tree, typically takes θ (n/B). They also constitute that learned

indexes are an effective and robust choice for modern applications on big data,

where space compression and query efficiency are mandatory.

16

Chapter 4

Approaches

Since the first learned index, RMI (2017), we have seen various approaches to

improve learned indexes. In the beginning, learned indexes were based on neural

networks as a first layer and the linear regression models as the next layers. We

have later seen a switch to the use of piecewise linear regression models. Support

for updates, removal, and insert has also been implemented. Lately, we have also

seen learned index in spatial indexes and in LSM-trees.

4.1 The RMI

RMI was developed in the first paper on learned indexes. The model is based on

the observation that reducing the prediction error is easy, but the difficulty is build-

ing models with high accuracy for the last-mile search. They proposed a Recursive

Model Index (RMI), a hierarchy of models. At each stage, the model predicts to a

new next model until the final model predicts the position. It will efficiently divide

complex sub-ranges into smaller sub-ranges to make use of more specialized mod-

els. Also, each model does not limit how many records it covers, unlike B-trees.

Another benefit is that there is no search process required in between stages. This

approach opens up an exciting space for learned indexes, TPU/GPU acceleration.

The entire index could be represented as sparse matrix multiplication, as there is

no search between stages.

17

Figure 4.1: An example of the RMI index could be used with use of multiple
stages. Model 1.x predicts the correct model 2.x and model 2.x predicts the correct
3.x. Model 3.x predicts the position. Illustration is extracted from [4]

It is important to empathize that the RMI does not have to be a tree. Figure

4.1 is just one example of an RMI index. Using the RMI, we can also choose to

create a custom model for each different model. E.g., the first model (model 1.1

in the example) could be a Neural Network, and the rest of the models can be

linear models. At the end of the prediction (last stage), the model will predict a

minimum and maximum error for the binary search. It is also possible to create a

hybrid model with a B-Tree, which allows us to bound the worst-case performance

to a B-Tree (O(log(n))).

Performance

Based on an optimized configuration of the RMI index and the B-tree, we can

measure a performance boost of up to 2x times on particular weblogs and 3x times

on a map dataset. If we instead tune the index for low memory footprint, we can

see a decrease from 12.92MB to 0.15MB on web data and 13.11MB to 0.15MB

on map data, where the performance of the RMI is on par or better compared to

the B-tree. For map data tuned with a low memory footprint, the index delivered

2.7x better performance. However, it should be noted that there exist critics on

the performance results, claiming the index performs especial good on the dataset

chosen. In Chapter 5, we will take a deep dive to compare the performance of RMI

18

against other learned index approaches and also traditional indexes.

Drawbacks

The index does not support updates, inserts, or delete operations, making it a

read-only index. The model also requires some time to be trained. Although in

the paper, they referred to the training time as relatively fast. In theory, the index

should support multi-threading or GPU/TPUs acceleration, but no experiments

have been executed to test the performance of GPU/TPC acceleration in this ex-

ploratory research on learned indexes.

4.2 FITing-Tree

Figure 4.2: The design of the FITing-index. In the example illustration, the in-
dex is clustered. Support for non-clustered index, is added by including an new
layer, which is an additional "indirection layer". Essentially, an array of pointers.
Illustration is extracted from [18]

FITing-Tree [18] is a paper that surfaced in 2018, co-authored with the primary

author of the original paper on learned indexes. FITing-Tree uses a different ap-

proach to achieving a learned index. The index is using piecewise linear functions,

which includes a bounded error specified when constructing the tree. The error

is tunable, which makes it possible to set a tradeoff between space consumption

19

and performance. Like a series of learned indexes, the FITing-Tree index also can

reduce space consumption by orders of magnitude. In contrast to RMI, FITing-

Tree supports efficient insert operations. A significant feature of the index is that

it supports paging, making it possible to store data in different regions on a disk.

Usually, learned indexes store the data in a contiguous memory region. With the

support for paging, they also support unclustered and clustered mode.

The main goal with the FITing-Tree is to reduce space consumption by provid-

ing the same performance or better than traditional full and fixed-page indexes. To

achieve this, FITing-Tree approximates the CDF function using a piecewise linear

approximation. Choosing polynomial approximation functions would give better

precision, but linear functions are significantly less expensive. One of the main

ideas in FITing-Tree is to define an error between the CDF and the approxima-

tion, then use this error to define segments. Within a segment, there is no larger

error than a specified error threshold. The error between the approximation and

the CDF is defined er ror = max(|pred_pos(k)− t rue_pos(k)|)∀k ∈ ke ys, where

pred_pos is the predicted position and t rue_pos is the actual position. Often,

when making approximations, it is normal to use the least square error, but the

least square error does not guarantee a certain error and is therefore not used here.

The design of the FITing-Tree is illustrated in Figure 4.2. There are three dif-

ferent layers in the design. The first one, the inner nodes, is the same as a B+-tree

by default. The user of the index can choose to use any other index data structures.

It means it is possible to use other indexes optimized, for example, for read-only,

which could improve the performance. When we reach the leaf nodes, we need to

calculate the approximate position. The leaf nodes contain pointers to a segment,

a slope of the segment, and the distance to the starting key. Once the approxim-

ate position has been calculated using this linear regression, a local search has to

start. It could, for example, be a binary or linear search. A key advantage with

the segments, compared to, for example, nodes in a B+-tree, is that that the data

is partitioned into variable-sized segments, which means each segment covers a

variable number of pages. Support for unclustered (non-clustered) index, or sec-

ondary index, is included by adding a fourth layer to the design. They call this

additional layer the "indirection layer" and "Key Pages". The layer is an array of

pointers. Although adding a new layer to support the secondary index adds over-

20

head, the overhead is significantly lower than for a non-clustered B+-tree due to

fewer leaf and internal nodes in the FITing-Tree.

Updates and retraining

The segmentation algorithm in FITing-Tree is based on an existing algorithm for

linear piecewise segmentation, Feasible Space Window (FSW) [19]. The algorithm

does not select the optimal amount of segments, but does perform faster. The

reason to select this particular segmentation algorithm is to achieve the particular

performance properties they want in FITing-Tree, such as fast insert, update, and

low space consumption. When they evaluated the algorithm with an optimal al-

gorithm with a runtime of O(n2), compared their algorithm with time complexity

of O(n), the number of generated segments was relative to the optimal algorithm.

Performance

FITing-tree is able to navigate between using a particular lookup latency, given a

configured threshold (in ns), or a particular storage budget (in MB). Evaluations

show that the index performs comparable to other full index structures but con-

sumes less space by orders of magnitude.

Drawbacks

FITing-tree is a simple yet elegant learned index. Sadly, no open-source imple-

mentation exist, which makes it hard to compare the performance to other learned

indexes. A disadvantage with the design is that in-place inserts can cause large key

shifts if the data is linear or large segments of the data are linear. One of the ideal

datasets for a learned index is a linear dataset, as described in Chapter 3, and the

FITing-tree adds here an unfortunate overhead. FITing-Tree addresses the issue

by implementing a second insert strategy called delta inserts. Another drawback

is that if we compare the index to a B+-tree, FITing-Tree is not able to handle the

same write load.

Summary

Overall, the index can achieve performance on par with traditional index struc-

tures but can reduce storage footprint by orders of magnitude. It is an excellent

21

example of how learned indexes could be used for index compression. It also

shows how existing indexes could be used in learned indexes. The index also re-

lies on existing work done within functions approximation (segment algorithms).

It also puts a second view on how learned indexes could be used for time-series

data to leverage trends in the data, although it does not explicitly predict new

inserts using deep analysis.

4.3 LISA

LISA is likely the first fully-fledged learned index for spatial data [20] and is an

acronym for Learned Index structure for Spatial dAta. For a long time, R-trees

have been the most popular choice for storing spatial data in a database. Lately,

the R-tree has been challenged by increased data, also known as big data. For

massive datasets, the R-tree index could today use more space than the dataset

itself. In combination with rapid updates and inserts in data and the requirements

to keep the tree fresh, the authors of LISA claim that R-tree and its variants fall

short for indexing big spatial data. They, therefore, present LISA, a novel learned

index structure for disk-resident spatial data. The index is the first learned index

for spatial data that support KNN and data updates. Previously, a learned index

ZM [21] was introduced that is a read-only index. The goal with LISA is a new

index that aims to improve the performance and also be a replacement for R-trees

by providing a fully-fledged index for spatial data

The index is created mainly by four steps, based on using shards. They define a

shard to be a preimage of an interval, given a specific mapping function. The first

step is to create grid cells, and then the second step is creating a mapping function,

then a shard prediction function, SP. The last part is to create local models for all

of the shards. The process is illustrated in Figure 4.3. In the first part, when the

grid cells are generated, the goal is to cover every part of the space evenly. Then

in the mapping process, a mapping function is created, which maps the spatial

keys to a 1-dimensional space. Then the interesting parts start, which is the shard

prediction function. The function is the learned component that makes the index

a learned index. The shard prediction function has the mapped key as input. The

output is the shard id. The model they train for the function could be considered

as a regression model. The argument for use of the regression model is that it is

22

hard to implement a neural network. Instead, they propose to use a monotonic

piecewise linear function. In the last step, a local model is created to address the

issue of more keys than a single page. The model keeps track of the pages that

overlap with the shard and provides a lower- and upper bound to search for a

mapped value.

Figure 4.3: The process of creating the index. Illustration is extracted from [20]

Performance

LISA performance is not as impressive as other learned indexes and slightly im-

proves the performance space usage R-tree. It does, however, reduce the response

time and IO. For IO, it significantly reduces the number of required calls. Overall,

the index slightly improves the performance over R-tree. There is also a test where

the index outperforms the KNN-performance of R-trees, with a speedup of 100%.

Drawbacks

Although LISA delivers promising KNN-performance results, the index still suffers

on overall performance and delivers slightly better performance than state-of-art.

The index is also missing support for spatial joins and closest pairs query. Propper

benchmarking of the index against other state-of-art indexes is still missing, using

a broad range of datasets. More research is also at optimizing the learning part of

the index by using a more optimized model.

In general, LISA is a promising step towards implementing learned indexes

for spatial data.

4.4 PGM

Piecewise Geometric Model index [2] (PGM index) was introduced in 2020. It

shares some of the design similarities with the FITing-Tree, where both consider-

23

ing the Piecewise Linear Approximation problem. However, it addresses several of

the issues with FITing-Tree. The PGM index comes with three different variations.

The first index variant is a distribution-aware, the second compress its succinct

space footprint, and the third is a multicriteria variant that auto-tunes itself. The

user has to select the variant it wants to use, and only one. The index being distri-

bution aware is an exciting feature, which means it can adapt to the distribution of

the queries. Along with the interesting variants, the PGM index makes substantial

performance claims. For example, the index matching the same query perform-

ance of a cache optimized static B+-tree but improves space usage by 83x. PGM

uses 1140x less space in a dynamic setting and improved query and updates time

performance by 71%. It is also possible to tune the index using one variable, as

seen with the FITing-Tree index. The variable is a max error tolerance. Compared

to FITing-Tree and RMI does not have any fallback structures, which makes it a,

as they claim, fully-learned index.

The authors claim a uniform improvement of performance compared to RMI

in query and space occupancy, with 15x faster construction. The authors of RMI

have later stressed that this is false and that the authors of the PGM index used an

unoptimized index of RMI that only included linear models [22]. At the time, RMI

was not released as a publicly available source code, and therefore, the authors of

PGM had to implement the index based on the details from the RMI paper. A note

from the author of this paper is that the RMI paper clearly states the use of neural

networks in the first layer. For a better comparison between the performance of

the indexes, see Chapter 5, or [22] for more details.

The general idea behind PGM is to take an array of items, then create segments

with a maximum error, ε. We repeat this process until all items is covered by a

segments. Now we have an array of segments. Then the first key of each segment

is the item in the new array. We repeat the process of creating segments until we

have one segment left. The process is done bottom-up. We start with the items

and then create the structure one level up at a time. See Figure 4.4 for a visual

image of how the structure looks like. Each segment contains a linear model that

estimates the position of an element (the rank) with a maximum error ε. Com-

pared to B+-Tree and FITing, no search cost grows with the node size. Instead, the

nodes can be considered as routing tables and is a fixed size independent of the

24

node size. To find the optimal number of segments, PGM uses an algorithm that

uses O(n) optimal time, and space [23]. Compared to the sub-optimal number

of indexes for the FITing-Tree, the use of this algorithm could reduce the space

consumption by up to 67% [2].

Inserts are implemented with two different approaches in the PGM index. The

first case is when items can be added to the last segment. This happens when the

new item has the largest rank (e.g., time-series data). We can then add the item

in constant time O(1), given that the segment still preserving the ε guarantee.

While, for general, insert, the time complexity is O(logn). A deep dive into the

details of how the index is created is described in the paper [2].

Figure 4.4: An example of how the PGM index could look like. At each level, we
search within a range of [p−ε, p+ε], where p is the predicted position from the
last model. Illustration is extracted from [2]

Performance

The index delivers strong performance results and uses a fraction of the memory of

a traditional index. The index supports different variants with different perform-

ance characteristics. Compared to traditional indexes, they measured memory re-

duction in up to 4 orders of magnitude while achieving the same or better query

performance using the space-optimized variant. They were also able to improve

the latency over the B+-tree with the dynamic PGM variant, with an improvement

between 13% to 71%.

25

Drawbacks

No implementation of the distribution-aware variant of PGM is available. Another

disadvantage is that PGM is built bottom-up, which is claimed and verified by the

authors of RMI, is less effective than building it top-down.

4.5 ALEX

Summer of 2020, the ALEX index [1] was released. A paper from MIT and Mi-

crosoft. The goal of the index is to add updates, insert, short-range queries, and

deletions and base it on the RMI index. They claim to beat the original RMI index

by up to 2.2x on performance with up to 15x smaller index size. Compared to

B+-trees, ALEX beats by up 4.1x and never performing worse and up to 2000x

smaller index size.

Figure 4.5: Design of the ALEX index. The structure of the tree can dynamically
adapt to the dataset. Illustration extracted from [1].

ALEX employs a cost model that predicts lookup and inserts operation latency

and uses it to adapt the RMI structure. It makes the RMI structure dynamic, in

contrast to the RMI index, where the structure was static. Compared to the RMI

index, ALEX uses a similar design and extracts many ideas from a B+-tree. Like

a B+-tree, ALEX uses per node leaf. It allows ALEX to expand and split dynamic-

ally. Another critical element ALEX includes is the Gapped Array, which improves

the search and inserts time in the arrays in the leaf nodes. The goal of ALEX was

26

to achieve competitive insert time with B+-tree while improving the lookup time

over the B+-tree, but also RMI. It also aims to build an index that uses less storage

space than RMI.

ALEX achieves the goals by implementing the design like a B+-tree with linear

cost models at each node. The cost model is used to adjust the height of the B+-

tree and potentially split, expand or retrain the parts of the tree. The tree is built

with two different node types, internal nodes and data nodes, where data nodes

are leaf nodes. An illustration of the design is displayed in Figure 4.5. Each of

the nodes has a linear model which predicts a position. In the internal nodes, the

model point to an array of pointers, just like we have in a B+-tree, but the model

computes the position in the array of pointers. The number of pointers in each

internal node can vary, as the goal of ALEX is to have internal nodes where the

distribution is relatively linear. In each of the data nodes, we find a Gapped Array,

which essentially is an array with strategically placed space between the items.

When a lookup finds a leaf node, a search will begin. In contrast to B+-tree, ALEX

uses exponential search over binary search. Also, in contrast to RMI, ALEX places

items where the model in the data node predicts the item should be, while RMI

does not change the position of records.

To search for an item in the index, we can simply compute the position at each

internal node until we reach the data node (leaf node), as the internal node has

perfect accuracy. The search begins in the data node, where the item’s location is

predicted, but we have to execute an exponential search in this last level to deal

with an error in the prediction. The prediction of the model in the data node does

not contain an error bound. If we want to insert an item, it becomes slightly more

complex. We compute the right data node in the same way as with lookup, but

it could either be full or not once we reach the data node. If it is full, the cost

model is used to either expand the node and retrain or split it either sideways or

downwards. The cost model is used to find the right decision, and we can insert

the item in a non-full data node. To insert the item in a non-full data node, the

model in the node predicts the location. Then we need to ensure we still maintain

sorting order in the node and use exponential search to find the correct position.

If the location we find is a gap, we can simply insert it. If it is not a gap, we need

to shift the items by position in the direction of the closest gap.

27

ALEX also implements a bulk load algorithm, where the index is grown from

the root node. For each node, a fanout tree is built locally. Each node in the fanout

tree represents a possible child of a node in the ALEX tree.

Performance

ALEX has a time to traverse to a leaf of O(logmp), where m is the maximum node

size for both internal nodes. p is the minimum number of partitions for the index,

given the size of the index. Search in the data node (leaf node) has a worst case of

O(logm). For search, the worst case is O(m), while the authors expect O(logm)

for most cases.

Figure 4.6: Performance of ALEX compared to RMI [4], B+-trees and ART [10].
Illustration extracted from [1]

ALEX authors compared the optimized versions of the index against RMI, B+-

tree, model enhanced B+-tree and ART with a few different workloads and data-

sets. The evaluations showed that ALEX achieved up to 4.1x higher throughput

and 800x smaller index size compared to the B+-tree. Compared to ART, 3x higher

throughput and 8000x smaller index size. For write speed, the results were even

better. 4.0x higher throughput and 200x smaller index size versus the B+-tree and

2.7x higher throughput and 3600x smaller index size versus the ART index. The

bulk loading time of ALEX uses a significantly longer time than the B+-tree and

uses 50% more time to build. The ART index uses an even longer time to build

and uses around 50% more time than ALEX. Throughput results from the original

paper are displayed in Figure 4.6.

28

Drawbacks

As with many other learned indexes, ALEX does not support secondary storage.

The authors have mentioned in the paper that they intend to add this in the future.

They also want to add concurrency control techniques tailored to the index and

future work performance.

4.6 Bourbon

Bourbon is a different learned index that is an LSM-tree [24]. The paper is an

initial study of how it is possible to use learned indexes for LSM-trees and how it

possible to combine them with LSM design components. They study WiscKey [25],

a state-of-art LSM system, and focus on how a new learned-based LSM-tree can be

implemented. Since most of the LSM tree is immutable, read-only indexes work

great. It means that LSM-tree can work fine with a read-only index and therefore

does not require a learned index with efficient insert support.

Although, in theory, learned indexes seem to be a good fit for LSM, they en-

counter a few challenges. One of which is the support for a function that can

support a variable amount of keys (as the original RMI only supported a fixed

number of keys). Another challenge they encounter is that the model is built too

early.

The authors conclude that the benefit of using learned indexes for LSM-tree

is to reduce the overhead of indexing the data. It cannot reduce the data-access

time. While using a lookup latency breakdown, it is not uncommon that the in-

dex time could count for around 15-50% [24]. Later, in Chapter 5, we will see

how Google measured dramatically improvement of throughput using LSM with

learned index. Google explains that it is due to decreased index size and side ef-

fects to cache and block decompression.

The authors conclude the initial study with that more studies and experiments

are needed to thoroughly understand the utility of learning approaches for LSM-

trees. However, Bourbon is a significant step forward for using an LSM with a

learned index in a production environment.

29

Performance

Based on the numbers in the paper, the authors expect a 1.23x-1.78x performance

increase over the state-of-art LSMs.

Drawbacks

It uses a simple learning model, which might be ineffective. Other models, such

as the RMI and others presented later in this Chapter, could be more suitable

and can provide better performance. RMI will, for example, provide better read

performance but require more time to train.

4.7 RadixSpline

Figure 4.7: Example of the radix spline index. The most significant bits is high-
lighted, which is 101 (5). Then a search is performed in the spline point between
the pointer and pointer + 1, which is highlighted in the illustration. Illustration
is extracted from [26].

RadixSpline [26] takes a different approach to learned indexes and argues that

some applications do not need individual updates. In some cases, building the

index efficient is more important. It could be highly relevant, for example, in big

data systems, where LSM-trees are often used. Each data file in an LSM-tree typ-

ically stores an index or a filter. These files are periodically merged with other

files. An ideal time to re-build a learned index is when this merge process occurs.

This process is usually done asynchronously, and the process using a traditional

30

approach is an expensive operation. These factors make this an ideal use case for

learned indexes, and especially this optimized index. As mention in the earlier sec-

tions, both FITing-Tree and PGM provide a single-pass build solution that could

also fit this case. The advantage with RadixSpline is that it is the first learned in-

dex with a single-pass constant amount of work per element, O(1), in contrast to

O(logi(n)) where i is the number of levels for other indexes.

The index is created using two steps. The first is to fit a linear spline to a CDF

with a certain error bound. A model is created, S, that predicts the location pi

given a key, ki , and and an error, e, which gives the model S(ki) = pi ± e. The

model is created using an algorithm called GreedySplineCorridor [27] and pro-

duces a set of spline points, such that a linear interpolation between the points

never creates an error larger than the error e. The points are displayed as an ex-

ample in Figure 4.7. The second step in creating the radix spline index is to build

the radix table. It is a table used to find the two spline points that are associated

with a certain key and is based on the Node256, the largest node type in ART [10].

Performance

RadixSpline is an excellent example of how it is possible to make learned indexes

that work great with big data systems. The insert time and build time makes

it ideal for LMS-Trees. Already, a preliminary experiment with RadixSpline in

RocksDB, substitute B-tree, shows a significant improvement in memory reduc-

tion by 45% and 20% improved read time. The write time goes up to around

4%, but still could be worth it for many use cases. The reduction of memory us-

age makes it possible in the future to use larger Bloom filters and increase cache,

making it even more efficient.

The index showed fast building time and lookup times, compared to state-of-

art indexes, such as ART. For comparison, see Figure 4.8

31

Figure 4.8: Performance results for lookup-optimized index configurations. RS is
short for RadixSpline. Illustration extracted from [26]

Drawbacks

The index can be impacted by skew, which could make the index ineffective. An-

other drawback, as seen in Figure 4.8, the index size can spike to achieve the best

lookup performance. The index also becomes less efficient with large indexes or

with many outliers.

4.8 Tsunami

Tsunami is a recent paper on an in-memory learned index from 2021 that out-

performs read-only multi-dimensional indexes. The index is the successor to a

previously learned index named Flood. Tsunami employs advanced features, such

as automatically optimizing against the workload and the dataset. The index can

learn query skew and optimize the index against the skew. Previous work within

learned indexes for multi-dimensional indexes, Flood, did not support skew in

multiple parts of the dimensional space. It also suffered when correlated data

was present. Tsunami elegantly solves the issues and achieves significantly bet-

ter performance. Compared to traditional indexes, such as the K-d tree, Tsunami

can achieve up to 11x faster query processing and 170x smaller index size, which

pushes the boundaries for what is possible. The performance results from Tsunami

represent a breakthrough for learned indexes. The index will have a significant im-

pact on analytic engines in the future and also on filter performance in databases.

For the modern database solution, filtering data is essentials. Today, techniques

such as multi-dimensional index, secondary indexes, and clustered index are used.

The different techniques deliver inconsistent performance on different datasets

and queries. Tsunami tries to solve the issue of inconsistent performance by auto-

matically adapt itself to the workload and the dataset. The index also addresses

32

the shortcoming that an admin has to tune each approach, and no approach dom-

inates the others.

Figure 4.9: The illustration visualize the number of points that are required to
scan using the different indexes. K-d tree is not optimized for the workload, and
Flood is not optimized for the query skew and correlation. Tsunami has equally
sized regions for the workload and adaptive to the query skew. The number of
points to scan is then significantly less. Illustration extracted from [28]

Compared to the traditional index, K-d tree, Tsunami have some significant

differences. In a K-d tree, the data is partitioned based on a threshold in each

region. When a query is executed, each of the regions that are affected by the

query is selected. Then all points in the regions affected are scanned. Since the

K-d tree is created and maintained without knowing the query workload, the par-

titions are not optimized based where it is high query load. If the partitions are

smaller, more fine-grained in areas where the query load is high, we can achieve

much better performance. This created the general idea behind Flood, which op-

timizes against the average query and optimizes the average selectivity in each

dimension. The flaw with this design is that the non-average queries will need

to scan many partitions, which will degrade the performance for other queries.

To solve this, Tsunami implements a grid tree and an augmented grid. The grid

is a space-partitioning decision tree that divides the space into regions. We have

an augmented grid in each region, which essentially is the Flood index structure

updated to support correlations. The comparison between K-d tree, Flood, and

Tsunami is visualized in Figure 4.9.

33

The Flood index, which essentially is the augmented grid in Tsunami, is a

multi-dimensional index that uses RMI as the domain to divide each dimension

into equally-sized partitions. Flood also features advanced features, such as a

machine-learned-based cost model.

Performance

Tsunami delivers consistent performance and outperform Flood. It achieves up

to 6x faster query processing. Compared to the fasted non-learned index, 11x

faster. In addition, the index can quickly adapt to new workloads by running re-

optimizations offline. Experiment shows that it was able to re-organize over 300M

rows within 4 minutes. In terms of scaling, Tsunami can scale better with multiple

dimensions than traditional indexes.

Drawbacks

Currently, Tsunami only supports read workloads. In theory, the index can support

inserts but yet not implemented. Tsunami is also in memory but could be suppor-

ted in the future. There is also a range of further improvements that we will likely

see in the future, such as handling more complex correlations and performance

improvements.

4.9 Comparison

All of the different approaches to achieving learned indexes have advantages and

drawbacks. Some of them work especially great for LSM-trees, while others are

optimized for read-only or as a drop-in replacement for B-trees. Learned indexes

are at an early stage. The approaches covered here have been developed over just

the last four years. Sadly, many of the different indexes have not been released

as open-source or are missing publicly optimized versions online. This makes it

especially hard to compare the indexes. However, in the next chapter, Chapter 5,

we cover an in-depth review of the performance of learned indexes. In the rest of

this chapter, a comparison of the different properties and approaches is described.

34

4.9.1 Properties

In Table 4.1, a comparison of the different properties related to the learned in-

dexes are listed. In Table 4.2, the time complexity for the indexes is listed. For

many learned indexes, the time complexity could be challenging to find. Mainly

due to advanced cost models and prediction-based models are making it more

challenging to model. For reference, a B+-tree is also listed. In contrast to B-trees,

some learned indexes such as Alex grow as unbalanced trees, which could be very

deep in theory.

35

Ye
ar

1
M

L
te

ch
n

iq
u

e
O

pe
ra

ti
on

s
Tr

ai
n

in
g

ap
pr

oa
ch

O
pe

n
So

u
rc

e2

In
de

x
In

se
rt

R
em

ov
e

R
an

ge
sc

an

R
M

I
20

18
(2

01
7)

A
ny

7
.

7
Ø

To
p-

do
w

n
Ø

3

FI
Ti

ng
-T

re
e

20
20

(2
01

8)
Pi

ec
ew

is
e

Li
ne

ar
R

eg
re

ss
io

n
Ø

7
Ø

B
ot

to
m

-d
ow

n
7

LI
SA

20
20

(2
01

9)
Pi

ec
ew

is
e

Li
ne

ar
R

eg
re

ss
io

n
Ø

Ø
Ø

-
7

PM
G

20
20

(2
01

9)
A

ny
4

Ø
Ø

Ø
B

ot
to

m
-u

p
Ø

5

A
LE

X
20

20
(2

01
9)

Pi
ec

ew
is

e
Li

ne
ar

R
eg

re
ss

io
n
Ø

Ø
Ø

To
p-

do
w

n
Ø

B
ou

rb
on

20
20

(2
02

0)
Pi

ec
ew

is
e

Li
ne

ar
R

eg
re

ss
io

n
Ø

6
7

Ø
To

p-
do

w
n

7

R
ad

ix
Sp

lin
e

20
20

(2
02

0)
Pi

ec
ew

is
e

Li
ne

ar
R

eg
re

ss
io

n
7

7
Ø

B
ot

to
m

-u
p

Ø
Ts

un
am

i
20

21
(2

02
0)

A
ny

7
7

8
7

Ø
To

p-
do

w
n

Ø
1

Ye
ar

in
pa

re
nt

he
se

s
is

th
e

ye
ar

it
fir

st
su

rf
ac

ed
.

2
So

m
e

of
th

e
op

en
-s

ou
rc

e
is

no
n

tu
ne

d
va

ri
an

ts
,f

or
ex

am
pl

e
A

LE
X
[1
],

se
e
[1

6]
.

3
O

pe
n-

so
ur

ce
co

de
no

t
re

le
as

ed
w

it
h

or
ig

in
al

pa
pe

r.
Fi

rs
t

re
le

as
ed

in
20

19
w

it
h

SO
SD

be
nc

hm
ar

k
[2

9]
[1

6]
.

4
La

rg
e

pa
rt

of
LS

M
-t

re
e

is
im

m
ut

ab
le

.T
he

in
de

x
su

pp
or

t
in

se
rt

s,
ho

w
ev

er
th

e
in

de
x

is
bu

ilt
in

ba
tc

he
s.

5
N

o
im

pl
em

en
ta

ti
on

of
th

e
di

st
ri

bu
ti

on
-a

w
ar

e
va

ri
an

t
is

re
le

as
ed

.
6

Th
e

in
de

x
su

pp
or

t
an

y
pr

ed
ic

ti
on

m
ec

ha
ni

sm
,b

ut
be

st
re

su
lt

ha
s

be
en

ac
hi

ev
ed

w
it

h
Pi

ec
ew

is
e

Li
ne

ar
R

eg
re

ss
io

n
7

U
se

s
R

M
I

as
a

m
od

el
,w

hi
ch

es
se

nt
ia

lly
co

ul
d

us
e

an
y

m
od

el
.

8
C

an
su

pp
or

t
in

se
rt

s
in

th
e

fu
tu

re
.

Ta
bl

e
4.

1:
Pr

op
er

ti
es

of
th

e
le

ar
ne

d
in

de
xe

s

36

Complexity

Index Create Insert Lookup

RMI O(`n)1 - ?
FITing-Tree O(n) O(logb p) +O(bu f f)2 O(log(s) 3

LISA ? ? ?
PMG O(n) ? O(log(s))3

ALEX O(n log(n)) ? ?
Bourbon ? ? O(log(s))3

RadixSpline ? - ?
Tsunami ? - ?
B+-tree O(n log(n)) O(log(n)) O(log(n))
1 ` is the number of stages.
2 p is the number of pages.
3 s is the number of segements for the given index.

? means unknown time complexity.

Table 4.2: Time complexity of the learned indexes based on details from
papers.

4.10 Complex models versus linear models

As we can see in Table 4.1 the different machine learning techniques used are

very similar. Most of the recently learned indexes are based on piecewise linear

regression. To achieve high performance and low memory footprint, the research

has focused on simple linear models so far. As seen with the different approaches,

except the original RMI model, some type of linear model is deployed. Training

a neural network comes at a high cost and might have to be retrained. The ALEX

paper included an exciting footnote to argue why they used linear models instead

of neural networks in their RMI-based index. In private communications with the

authors of the RMI paper, they concluded that added complexity of a neural net-

work for the root model was usually not worth it. Early experiments with PGM

also suggest that the benefits from using shallow neural networks are small [30].

A reduction of models was achieved, but the overall space usage was not reduced

due to the cost of the neural network.

Research on different models, such as more complex models, deserves further

research. ALEX suggests that the index performs poorly when the distribution is

37

hard to model using linear regression and that a possible further research direction

could be to focus on different types of models, such as polynomial regression

[31]. We know that there are pretty specific patterns of operations to an index for

certain types of usage. For example, inserts could follow sinus wave looking graph

depending on the time of the day. By using more complex models, the pattern

could be recognized, and a more straightforward index structure could be used.

4.11 Bottom-down versus top-down

In general, learned indexes are either trained top-down or bottom-up. Indexes

such as PGM [2], and RS [26], fits the bottom layer to a certain accuracy, then

build the subsequent layers on top. Models that are built bottom-up might have the

disadvantage that search for each level is required, and we can get more cache

misses and branch misses [22]. The authors behind the first paper on learned

indexes, RMI, have experimented with different bottom-up approaches usually

found them to be slower than top-down [22] [4].

4.12 Secondary indexes

Learned indexes can be used as secondary indexes as well. We then use the same

techniques as with B-trees by using indirection. Learned indexes will then have the

advantage of a smaller index size and faster query time. Another option could be

to use Hermit [32], an ML-enhanced mechanism for succinct secondary indexing.

38

Chapter 5

Performance of learned indexes

The performance promised by learned indexes does not always reflect an accurate

picture. Some papers have been criticized [29][22] to use datasets that follow

clear patterns or test the indexes in very particular use cases. In this chapter, we

will go into detail on the performance of learned indexes. Where do they perform

well, and where do they suffer? How do learned indexes perform compared to

traditional indexes?

5.1 Practical example - Google Bigtable

Much criticism against learned indexes is centered around the lack of metrics on

how learned indexes perform in real-world situations and how learned indexes

can deal with dynamic workloads [33]. Recently, in 2020, Google tested the per-

formance of a learned index in a real-world situation in Bigtable. Bigtable is the

proprietary data storage system that Google uses in services and applications such

as Google Maps, YouTube, and Gmail. It has been argued that learned index struc-

tures only improve requests by nanoseconds and that the time used to index data

is a small part of the over all time it takes to process a request.

In the study, they modified the originally learned index, the RMI. Since Bigt-

able is block-based, they have to change the index from assuming that all data is

stored in the same continuous array in memory to support block-based files. They

modify the index to define which records are stored in which block. They also

prevent searching in multiple blocks after a prediction. When introducing learned

indexes, the write performance will not be improved. Since the data is moved

39

into the index and trained in the background during SSTable creation, the write

performance will not be affected. However, read-performance will be improved.

5.1.1 Evaluation

Using 15 clients and five servers running each 4GB RAM and 256 million rows

of data, the index reduced the latency by 36% mean latency for point lookups.

Within the 99% percentile, the reduction in latency was by 38%. For range scans,

the latency was unaffected in the 99% percentile, while we see a reduction of

22% in the mean latency. They also measured the throughput increase, and we

can see an increase of an incredible 55% for point lookups and 28% for range

scans. In the 99th percentile, we see an increase of 54% and 56%, respectively.

The comparison between the learned index and the existing solution in Bigtable,

a two-level index, is displayed in Figure 5.1.

They conclude that the reason for the decrease in latency is the elimination of

disk access to fetch index blocks. The increased throughput is due to the reduced

amount of blocks to access, and that big table has to decompress every block as it

is compressing the data heavily. It is common in other disk-based systems as well.

Figure 5.1: Performance comparison between learned index (RMI) and the reg-
ular two-level index in Bigtable. Illustration extracted from [33]

5.2 Practical example - Learned indexes in DNA sequence

analysis

Recently, a paper on using learned index in DNA sequence search was published

[34] from DSAIL MIT. It is a preliminary proof of concept, where a new learned in-

dex, named LISA (Learned Index for Sequence Analysis), is introduced. It should

40

not be confused with the spatial index with the same name, LISA. The LISA for

DNA covers the exact search problem for DNA sequence alignment in genome ana-

lysis, where the exact search is presented as the bottleneck for the performance.

Initial experiments show that it can improve today’s searching performance of 4x

of exact search. By the authors’ knowledge, this is the first ML-enhanced algorithm

to speed up this particular search problem with the same semantic guarantees as

traditional algorithms. Using techniques from learned indexes, they show how it

could be applied to DNA sequence search and present the first steps. The research-

ers is already working with Broad Institute of MIT and Harvard to implement the

search algorithm in widely used applications for the genomics community. In the

future, they hope this research could be used as a building block for future learn-

based DNA sequence searches.

LISA learns the distribution of suffixes to speed up the search, in a similar

fashion to learned indexes learns the distribution of data. Today’s state-of-art al-

gorithm to perform the particular search builds an FM-index (a method created by

the same author as the PGM index). LISA enhances this method to enable the ap-

plication of learning-based search. One of the key elements it does is to use RMI

when processing chunks. The RMI model used here is to build bottom-up and

therefore have the ability to bound the error. To fully understand the algorithm

and its details, see the original paper [34].

In a follow-up paper on LISA, not yet released, early results indicate a 13.3x

speedup for the SMEM (super-maximal exact match) search problem in DNA se-

quence search [35]. Again, using learned indexes. In this research paper, LISA

performs slightly slower on exact search, by up to 2.2x speedup. Details from the

new SMEM speedup are yet to be disclosed in an upcoming paper.

5.3 Difficulties when performance testing indexes

5.3.1 Tradeoffs

The performance of indexes is hard to quantify. One single metric does explain

the complete picture of how the index performs. Indexes could be optimized for a

range of different use cases, which often affect the performance of other features

related to the index. For example, if the only goal was to optimize lookup time,

41

we could have used a lookup table and avoided cache misses. The downside is

that we would have used a significant amount of memory to store the lookup

table. A better measure to look at the lookup time is, therefore, also to consider

the lookup time given the size of the index. A different factor that makes it even

harder to measure tradeoffs is the building time which also puts new constraints

on the index. With more time to build the index, it is possible to use this time to

build it more efficiently. Making a read-only index also improves the performance

of an index that supports inserts as well. It makes it more challenging to compare

read-only learned indexes to traditional indexes.

5.3.2 Optimizations

When we look at performance results in papers, there could be multiple reasons

why we often see such good results. Indexes could also be optimized against cer-

tain types of data. For example, RadixBinarySearch (RBS) could work great in

some situations, but if we, for example, add certain types of skew, the method

could perform very poorly. E.g., specific numbers of the bits could be nearly use-

less. Avoiding this type of skewed data in the datasets could significantly improve

the results. Another example of how it is possible to improve the numbers, which

is pretty standard, is to use a warm cache rather than cold. It will decrease the

number of cache misses and improve the results significantly. Accessing a cached

value could take around 10ns versus around 100ns for an uncached value [22].

5.3.3 Hardware specific optimizations

Another more complex topic is advanced optimizations against hardware. Indexes

have significant performance differences when memory fences are enabled versus

disabled, and according to [22], the difference when enabled could be a 50%

slowdown. In an application with extensive computation between index lookup,

enabling memory fences would not be beneficial. The issue with such hardware

optimizations is that we get new index aspects that are often not adequately

covered in the original papers. At the same time, the impact of various sets of

features could have a significant impact when finding the correct index for a par-

ticular application.

Some new indexes are also created for new types of hardware, such as flash

memory and NVM memory, which are essential properties but not always possible

42

to cover in a single benchmark.

A different property that is getting more important with indexes is the abil-

ity to scale with more threads. As mention in Chapter 3, Moore’s law is dead.

Much of the performance improvements expected to see in the future on CPUs

are with more threads (cores). The increasing amount of data indexes have to

handle puts pressure on developing indexes that efficiently handle multithread-

ing. Indexes have to divide the workload on multiple threads or support used from

multiple threads. In general, one important property to efficiently scale with mul-

tiple threads is few cache misses. An issue that occurs with many cache misses is

that the latency will be bound by waiting for access to RAM [22]. A new future

direction with learned indexes is that many of the indexes can run GPUs and could

be converted to a sparse matrix multiplication which can be used to GPU/TCP ac-

celerate the index.

5.3.4 Purpose when performance comparing indexes

Some learned indexes, like the RMI [4], is a read-only index and optimized for this

case. At the same time, other indexes focus on different properties, such as fast

insert, small index size, and disk-based index. Therefore, comparing indexes one

by one does not always display the complete picture. Instead, comparing indexes

with a specific use case gives more information. The currently available bench-

marks for learned indexes are done in the context of read-only and are comparing

optimized versions of the indexes against each other and other state-of-art in-

dexes for lookup. It is important to stress that while some of the learned indexes

are read-only, many of the traditional indexes are compared to support updates.

5.4 Performance comparison between indexes

As an effort to answer the question of whether or not learned indexes outperform

traditional indexes on real-world data, a group of authors, including some of the

authors behind various learned indexes covered here, created a special benchmark

framework to measure the performance of learned indexes against traditional in-

dexes, such as ART [10], B+-tree, and FAST [36].

43

5.4.1 Search On Sorted Data Benchmark (SOSD)

In their first paper, they release the benchmark framework Search On Sorted Data

Benchmark (SOSD) [16]. The framework is specially designed to benchmark a

given learned index against several different datasets with a variety of different

CDFs. It is then possible to see how the index performs against traditional indexes

as well. Although the index is specially designed for learned indexes, the bench-

mark works excellent for regular indexes as well. It is carefully designed with

minimal overhead written in C++, which only adds an overhead of eight instruc-

tions and one cache miss per lookup.

In addition to the benchmark, they also released the first performant publicly

available implementation of the RMI. Most likely with the help of the author of

RMI itself, as he is listed as a co-author. The benchmark is available as open-source

code [29]. It also has different modes, making it possible to measure counters such

as branch predictions, instructions, and cache misses.

By default, eight different datasets are included in the benchmark. Some of

them are real-world datasets, while other is just a sampled distribution. Each data-

set is provided in a 32-bit and a 64-bit version with about 200 million records with

very few duplications. The CDFs of datasets is displayed in Figure 3.2, in Chapter

2.

The lookup time results they found using the SOSD benchmark are displayed

in Figure 5.2. As expected, with traditional data structures such as the B-tree, FAST

and BinarySearch (BS), the performance is little affected by the data distribution.

The interpolation search (IS) varies significantly due to data skew. When we look

at the performance of the learned indexes, the RMI and Radix Spline (RS), we

can see a more significant variation in performance between the different data-

sets. In general, we can see the lowest lookup latencies for the learned indexes.

Another interesting takeaway is the size overhead, where we can see that learned

indexes deliver as promised in their respective papers to have a very low memory

footprint. It should be noted that build times from both of the learned indexes are

significantly larger than for the traditional index types.

44

Figure 5.2: Lookup results in nanoseconds. Table extracted from [29]

The benchmark also measures different properties such as branch mispredic-

tions, number of executed instructions, and cache misses. The paper authors did

an experiment where they measured the different indexes on the amzn32 dataset,

where FAST performed slightly faster than the learned indexes. As seen in Figure

5.3, even with a significantly more large number of cache misses, instructions ex-

ecuted, and branch mispredictions, the difference was only up to 31 ns between

FAST and the learned indexes. They conclude that analyzing cache misses alone

is not sufficient to understand search time.

Figure 5.3: Performance counters. Illustration extracted from [29]

Both the RMI model and RadixSpline model is implemented using simple

model (linear models as building blocks), yet they outperform traditional indexes,

such as the B-Tree, which makes the authors of the SOSD paper conclude that

45

simple models are sufficient for efficiently learned indexes. As always, to achieve

the best performance given a particular case, there is rarely one solution that fits

all. In particular, interpolation search outperforms all of the other indexes, includ-

ing learned indexes, for dense uniform integers. Learned Indexes, in this case, still

perform around ten times faster than the B-tree. Due to the lack of updates, and

the requirement for manual tuning on RMI and RadixSpline, the authors of the

benchmarking paper suggest using ART and FAST for 32-bit keys and ART or Radix

Binary Search for 64-bit keys. Later, after the paper was released, indexes includ-

ing Alex [1], FITing-Tree [18] and PGM [2] has been released, which addresses

the updating issue and making it easier to tune the index. Alex is one example of

indexes that auto-tunes itself using a cost model.

5.4.2 Extension of SOSD

One year later, a new complete study on the performance of learned indexes was

released by the same team behind the first paper. This time, they discard the use

of synthetic datasets, as they argue that synthetic datasets either could be incred-

ibly easy to learn as they could be drawn from a know distribution or very hard

to learn. A completely random distribution could make it hard to learn something

from and does often not reflect real-world datasets. To address the tradeoff issue

between index size versus performance, they performed a Pareto analysis to find

the Pareto optimal index. A Pareto optimal index is an index for which no altern-

ative has both a smaller size and improved performance [22].

The paper covers a benchmark on four different datasets.

• amzn: Each key represents the popularity of a particular book

• face: Randomly sampled Facebook user Ids

• osm: Each key represents an embedded location from Open Street Map

• wiki: Each key represents the time an adit in Wikipedia was comitted

They benchmark the PGM- [2], RS- [26] and RMI- [4] index, and compare them

to B-tree, IBtree [37], FAST [36], ART [10] and FST [38]. In addiation, they also

test the performance against hash indexes, which is not covered here. Learned

indexes, such as Alex [1], FITing-Tree [18] is not included, due to tuned imple-

mentation could not be made publicly available.

46

In extension to the Pareto analysis, they also analyze performance counters

and other descriptive statics, CPU interactions, multithreading analyses, and build

times. Since RS and RMI are read-only indexes, update and insert performance

are not measured.

The results from the Pareto analysis is displayed in Figure 5.4. In the analysis,

they are using 10 different configuration, where the size of the index and the

lookup time varies. An interesting pattern we can see, is that the tree based in-

dexes is non-monotonic. They become less effective after a certain size and starts

to decrease their performance. In the paper, they argue that this is because per-

forming binary search is faster than traversing a tree, given a certain point. The

index size become too large.

Figure 5.4: Pareto analysis of the indexes. Lookup time compared to space usage
for learned indexes and traditional indexes. Illustration extracted from [22]

5.4.3 Why learned index structure perform well

When analyzing why learned indexes achieve such good performance, the picture

is rather complex. Single metrics, such as instruction count, branch misses, cache

misses, model size, or the accuracy, could not fully describe the picture alone but

as a combination. They statistically test the explanatory factors and find that cache

misses, branch misses and instruction count explained 95% of the variation [22].

Further, surprisingly, they get a negative coefficient for branch misses. The present

two different explanations. The first is that structures could be over-optimized to

avoid branching. The second is that indexes that frequently experience branch

misses benefit from speculative loads on modern hardware.

47

5.4.4 Multi-threading

They measure the number of cache misses along with increasing of threads. FAST

is the index that benefits the greatest of multi-treading, with a 32x speedup, with

40 threads. FAST takes advantage of the effective overlap of computation with

memory reads. They find that cache misses correlate with the speedup factor but

is not always a direct factor. The learned indexes, along with RBS, achieved the

best results. The performance results is displayed in Figure 5.5.

Figure 5.5: Multi-threading performance on the amzn dataset. With and without
memory fence. Illustration extracted from [22].

5.4.5 Build times

Figure 5.6 shows the build times for the different indexes. In the graph, tuning of

the indexes is not included, but it could take several of minutes. Tuning indexes is

executed for both traditional and learned index, but take significantly longer with

learned indexes compared to B+-tree due to slower build times. Surprisingly, the

traditional indexes, FAST and the hash indexes RobinHash and Wormhole, had

the longest build time. Learned indexes is just right after, with also significant

build times. In theory, learned indexes could speedup build times, by enabling

multi-threading which today no learned indexes support.

48

Figure 5.6: Build times of the different indexes, using the amazon dataset with
different amount of keys. Log scale on the y-axis. Illustration extracted from [22].

5.5 Range search

In theory, most learned indexes will have similar performance for range search as

B-trees, as the data is sorted. All of the described learned indexes here support

range search. Learned indexes for hash indexes has not performed such well and

therefore been little focus on developing

5.6 Summary

We have seen that learned indexes dominated the Pareto analysis by providing

some of the best results. In some cases, other indexes performed better, but in

general, learned indexes shows impressive results. The reason why learned in-

dexes perform such well, is not due to a single factor, but can be explained using

multiple metrics, where cache misses was one of the most significant factors. Al-

though, learned indexes have the best performance / size ratio, the build times

is significant larger than traditional indexes. RMI provides the best ratio, but also

the largest build time. We saw that PGM and RS can achieve comparable perform-

ance, but at a significant faster build time. No benchmark of insert performance

exist yet, but is expected to come when more indexes that support inserts release

their optimized versions publicly.

49

Chapter 6

Limitations and future work of

learned indexes

6.1 Criticisms and skepticism of learned indexes

Learned Indexes take a radically different approach to achieve efficient data ac-

cess and claim substantial memory and performance improvements. For decades,

the research has been centered around making an index that assumes very little

about the data. Understandably, along with the excitement for learned indexes,

there has also been significant skepticism [16]. When the first paper on a learned

index was released, no open-source code existed, no theoretical proof, no bench-

mark tool, and no support for inserts. Today, there is multiple different implement-

ations available as open-source code [2][1], theoretical proofs has been created

[17], a benchmark tool has been developed [16] and there exist multiple learned

indexes with support for inserts [18][2][1]. Another criticism against learned in-

dexes is about the missing support for disk-based systems, where indexes today

matter the most [29]. Today, FITing-Tree [18] addresses this critic by providing

one of the first learned indexes that are disk-oriented.

There is still some skepticism that has yet to be addressed, mainly how learned

indexes will perform in real-world scenarios. The practical example of where

learned indexes have been tested in Google’s Bigtable may be the closest we get

at this point. In addition, LISA for DNA sequence analysis also gives us a pointer.

There has also been raised a more general question regarding indexes if index

size and speed improvements matter since, in practice, indexes only stand for a

50

fraction of the entire query execution. As seen in Chapter 5, index size matters.

By dramatically reduce the size of the index by orders of magnitude, it is possible

to move indexes to the main memory. A smaller index size also means fewer block

fetches. As described by [3], distributed data systems, such as Google’s Bigtable,

faces these challenges with a limited amount of memory per index on each in-

stance and large index size, which together put enormous pressure on the cache.

6.1.1 Learned index can not outperform tuned traditional data struc-

tures

In the article, The Case for B-Tree Index Structure [39], critics are raised against

learned indexes in general, but specifically, the first version of RMI. The question

of whether we need neural networks for learned models is asked. Since optimized

versions of RMI were not available at the time, it was hard to criticize RMI on the

performance results, but an approach is described. The authors of RMI have later

claimed that the approach described had a negative impact on the B+-tree, and

therefore still proving the point to RMI. Another question that is raised is that

machine learning will have great difficulties with updates. Indexes such as ALEX

and PGM proved that it is possible to implement efficient insert in learned indexes.

In 2019, the same author that wrote the critics also wrote an article on why we

should use learning when we can fit instead [40]. A different approach to learned

indexes is described, where he builds a CDF, then fits a linear spline and fits a

polynomial function to the spline nodes. He then compares the index to a B+-

tree and a learned index and measures a lower error than the B+-tree and the

learned index. All indexes use the same space consumption. The article has since

not raised any fuzz, but it might sparked the idea behind RS, of which he is the

co-author.

6.1.2 Learned indexes comes from implicit assumptions

Are learned indexes just based on implicit assumptions? A recent paper from

Brown University in 2020 raises strong criticism against learned indexes [41].

To make their case, they introduce a new index that takes the same assumptions

they mean many of the learned indexes also take; read-only, data sortedness, and

range of the data. With the new index, Hist-Tree, they can beat RMI, PGM, and

RadixSpline by 1.8-2.7x. They argue that the advantage learned indexes have by

taking this assumption makes comparing traditional indexes and learned indexes

51

unfair. The paper delivers a strong case against learned indexes and the assump-

tions made, but further work is required to verify the results. When writing this

thesis, the Hist-Tree paper has not yet been cited by others papers, and we do not

know yet what the impact of the paper could be. Important takeaways from the

paper are that we might compare apples to oranges when comparing learned in-

dexes to traditional indexes. The author still supports learned indexes but doubts

that the performance, currently, is better than traditional indexes. He also argued

that for high-dimensional data, learned indexes are a better approach than tradi-

tional indexes [42].

6.2 Limitations and future work

Learned indexes are still at a research phase and currently yet to be seen in pro-

duction. Even though some of the indexes are starting to be more advanced with

more features, the indexes still need to prove that they could work in a real-world

environment. With some even ready as a drop-in replacement for traditional in-

dexes, such as the PGM, the improvement Google has seen on Google Bigtable,

and the amazing performance with LISA for DNA sequence analysis, it is not un-

likely that we will see learned indexes in production within a couple of years.

However, before that, some issues need to be mined out.

One of the most significant issues with learned indexes was, for a time, the lack

of efficient updates. The PGM index makes a leap forward here by delivering the

first learned index with provable efficient time and space bounds for updates and

range queries. For general inserts, the time complexity is on pair with B+-tree. It

is expected to see further improvements. Building time for learned indexes using

bulk loading, is still significantly higher compared to B+-tree [22]. Progress here

is also expected to be seen in the future. The building time should also be related

to the use case. For example, a read-only index might benefit from a longer build-

ing time, which might compress the index size even more or improve the lookup

time. Models which require better read speed will likely still have significantly

higher building time, while indexes made for faster insert might have improved

building time over today’s performance.

Measuring the performance of learned indexes is another topic, which requires

52

more research. The indexes are currently missing theoretical proofs behind its

techniques, such as more precise worst-case amortization time complexity ana-

lysis. The paper "Why are learned indexes so effective?" [17] provided the first

steps towards proving that learned indexes are probably better. However, there

are still some open questions. Theoretical proofs are still missing and also the

more practical side. Benchmarking learned indexes against traditional indexes,

we are missing publicly available learned indexes to make a complete benchmark

tool, especially for insert performance. There are also missing benchmark results

for write performance. It also needs to be tested against more datasets.

Currently, we do not know how secure learned indexes are. It has been sug-

gested by MITs Data Systems and AI Lab (DSAIL) that it may be vulnerable against

adversarial attacks [43]. Research suggests that, in general, adversarial attacks on

deep learning models should be a severe concern [44]. For RMI-based models that

employ neural networks, this may be a threat that should be investigated further.

DSAIL already proposes to address these security concerns.

6.2.1 Author thoughts

Learned indexes can have the capability to be the one solution that fits "all" truly.

With inventions such as dynamic query handling seen in PGM [2], dynamic work-

load handling by Tsunami, a breathtaking reduction in memory usage with a dif-

ference of magnitudes of order and hyper optimizations against a particular data-

set with RMI [4] to improve performance. To truly take advantage of several of

the indexes, much manual tuning is required, which makes several of the learned

indexes impractical. A future direction we might see with learned indexes is the

ability to dynamically adapt to different use cases with minimal manual tuning,

which we have already seen the start of with PGM and Tsunami, which support

dynamic workload skew. Learned indexes can have the ability to learn its use case,

optimize the index based on how it is being used. It could give the indexes a sig-

nificant advantage over traditional indexes.

A use case where learned indexes could work especially great is big data sys-

tems such as with LSM-trees. As seen with the experiment Google did with Bigt-

able, in Chapter 5, learned indexes contributed to a significant improvement in

both throughput and latency. It is a field where learned indexes could potentially

53

make a massive leap in performance and memory usage that perfectly fits the

current downside of learned indexes. However, a small effort has been seen in

this area, and there is strong reason to believe that future research here could

be fruitful. In combination with the recent research within learned bloom filters

[4][45][45] and other learned structures, makes it likely that new methods will

replace the current solutions for big data with learned components.

There is also reason to believe that making indexes multi-threaded will get

more attention. Moores law is dead, but we still expect to see huge performance

improvements for GPUs and CPUs. They are rapidly increasing the number of

cores. The importance of building indexes that efficiently scales on multiple cores

is getting more critical. Some of the learned indexes can have a considerable ad-

vantage here by removing search processes required between the stages when

searching for an item. It makes it possible to represent the learned index in the

GPU/TPU as a sparse matrix-multiplication [4], and thereby GPU/TPU accelerates

the indexes for search.

Another hardware-related direction we might see with learned indexes is nat-

ive support for NVM memory, which further could accelerate the performance of

learned indexes. When learned indexes getting closer to productions, recovery

code would be essential to add. Using NVM memory, it would be possible to avoid

adding much of the recovery overhead. Another advantage is the improved speed

over storage devices such as spinning disks or SSDs. An exciting feature to learned

indexes is to combine features from the BzTree [46], which is a latch-free NVM

index with a learned index. Bw-Tree [47] is also a latch-free index that effectively

exploits caches of modern CPU chips, where features of it might benefit learned

indexes.

Although there has been some exploration between different types of machine

learning models, learned indexes are just in their infancy and should be expec-

ted more exploration here with different types of models. Currently, primarily

vanilla (shallow) neural networks and linear models have been successful. There

are some indications that neural networks increase the index size in greater size

than the benefits over linear models [2]. More research is expected on, for ex-

ample, polynomial models [48]. Time series prediction, using machine learning

54

methods such as recursive neural networks [49], and attention-based methods

[48] could further extend certain learned indexes to predict the future better and

build an index optimized to handle the predicted workload.

6.2.2 Future ideas for research

Learned indexes can be a complex topic. Creating an entirely new learned index

is a massive task. Fortunately, there exist multiple research ideas that could be

explored, which are a bit smaller. From a personal perspective, implementing an

index like RMI on a GPU/TPC would be an exciting experiment. At the time of

writing this thesis, the number of publicly available versions of optimized learned

indexes is limited. In the near future, more of the learned indexes might become

publicly available. An in-depth benchmark on write performance and performance

on real-world datasets could also be interesting. A different topic that is highly rel-

evant is to explore learned indexes in LSM, where there is some research already

[3][50]. A third good option is working on outliers. It is a well know problem

with some learned indexes, such as ALEX [31]. A research direction here is to

create some logic for handling extreme outliers. The last recommendation is to

develop, implement, and test new models, such as polynomial models to model

CDFs, attention-based LSTM, and shallow neural networks.

6.3 New direction in the field of databases

The team behind RMI [4], DSAIL MIT, is on a mission to transform database man-

agement systems and believes that learned indexes are just a first step. The overall

goal is to replace components in database management systems with learned com-

ponents. Just a year after the final version of the first paper on learned indexes,

they released the vision paper SageDB [15], A Self-Assembling Database System

(2019). SageDB represents a new vision within data processing systems by imple-

menting machine learning at the core. It proposes a radical change in the way we

make database systems. The idea is a database that leverages machine learning

to model data distribution, workload, and hardware. I combination, this enables

SageDB to learn the optimized access of data and execution of query plans. By

taking advantage of patterns in data, databases can be able to learn and automat-

ically optimize by creating structures that can take advantage of the patterns.

55

DSAIL MIT claims that we are just in the beginning of truly understanding

the potential of learned models in context to how they can improve traditional

algorithms and data structures in DBMSs [43]. Currently, the SageDB is under

development at DSAIL MIT, which will enable research for model-driven data

processing engines. Already, there is multiple publications on the way to achieve

SageDB, including, the papers which is covered here RMI [4], ALEX [1], SOSD

[16] and [22]. A collection of papers related to learned query optimizes and ex-

ecutors are also published, and also some others are related to learned indexes

and data access, including multi-dimensional learned indexes, such as Tsnumai

[28] which is also covered here.

56

Chapter 7

Conclusion

Learned Indexes follow the trend of using machine learning to optimize databases.

We have seen that knowledge of the data stored in an index improves the perform-

ance of the index. With more advanced models and cost models in the future, it

would be possible to build learned indexes that optimize the learned indexes not

only for the data but also for how it is used. More advanced indexes could auto-

matically optimize the index for the given hardware, query load, index size, and

which operations to optimize. We have already seen example such as PGM and

Tsunami that optimize the index based on the workload. For some indexes, up-

dates are more critical than lookup performance. For others, only a subset of the

data is getting rapdily updated or read. Learned indexes make a giant leap for-

ward over traditional indexes to truly make a dynamical index that changes based

on the use case without assuming general distributions of the stored data and how

the data is used. Learned index has the potential to adapt itself to the use case, not

the user that has to adapt the index to fit the use case. Therefore, learned indexes

are on their way to make a good candidate for one solution that fits all.

In Chapter 5 we saw that learned indexes outperformed traditional indexes

for reading performance. Learned indexes can deliver faster lookup performance

while also maintaining a smaller index size. Learned indexes also provided some

of the best results for multi-threading, but we can expect improvement as some

of the indexes could be represented as sparse matrix multiplication on GPU/TPUs

[4]. In the future, it is expected to see more indexes optimized for multi-threading

as well. Previously, critics have been raised against learned indexes which claims

the memory size does not matter [3]. We now see the importance of reduced index

57

size. Reduced index size makes it possible to move indexes to in-memory, make

space for larger bloom filters, or improve caching. It also has side effects like

reduced seeks, more straightforward block prefetching, and fewer block reads,

which again also could optimize cache misses [3]. In real-world situations, we

saw a 38% improvement for latency in point lookups and a 54% increment for

point lookup throughput in Google’s Bigtable.

Learned indexes recently entered the space of DNA sequence analysis and

have already shown stunning results, which can have a significant impact. The

new methods for SMEM search and exact search significantly speed up the pro-

cess and dramatically cut costs. Already, the Broad Institute of MIT and Harvard,

in collaboration with the authors of LISA working on integrating it into applica-

tions widely used.

Most of the original critics raised against learned indexes have been answered

with new indexes and papers. Learned indexes now have the first theoretical

proofs that it is faster than traditional indexes, open-source code implementations

are available, inserts are supported, and a proper benchmark of learned indexes

exists, but we are still left with one question. Are learned indexes just based on

implicit assumptions? We might compare apples to oranges in some cases when

comparing indexes with different properties.

With indexes such as PGM that is the first provable index that works as a com-

plete drop-in replacement for traditional indexes, LISA that outperforms today

DNA sequence-analysis search algorithms, RMI that showed big improvements

for Google Bigtable and Tsunami that outperform today’s multi-dimensional in-

dexes, learned indexes proves its position and it is just a question of time before we

see learned indexes in production. Over just a brief period, learned indexes have

taken a huge leap forward and are rapidly developing. In the future, the database

vision SageDB might be the future home for learned indexes. However, there is a

far way. The indexes have provided very promising results and can fit well with a

combination of other learned database components in future database solutions.

Learned indexes provide today some of the fastest access times and seems to be

the answer to tomorrow’s requirements for efficient data access.

58

Bibliography

[1] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang, B. Chan-

dramouli, J. Gehrke, D. Kossmann et al., ‘Alex: An updatable adaptive learned

index,’ in Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data, 2020, pp. 969–984.

[2] P. Ferragina and G. Vinciguerra, ‘The pgm-index: A fully-dynamic com-

pressed learned index with provable worst-case bounds,’ Proceedings of the

VLDB Endowment, vol. 13, no. 10, pp. 1162–1175, 2020.

[3] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T. Kraska, A.

Ly, C. Olston et al., ‘Learned indexes for a google-scale disk-based data-

base,’ arXiv preprint arXiv:2012.12501, 2020.

[4] T. Kraska, A. Beutel, E. H. Chi, J. Dean and N. Polyzotis, ‘The case for

learned index structures,’ in Proceedings of the 2018 International Confer-

ence on Management of Data, 2018, pp. 489–504.

[5] R. Bayer and E. McCreight, ‘Organization and maintenance of large ordered

indexes,’ in Software pioneers, Springer, 2002, pp. 245–262.

[6] Sewaqu. (2010). ‘Linear regression,’ [Online]. Available: https://en.

wikipedia.org/wiki/Linear_regression#/media/File:Linear_regression.

svg.

[7] Krishnavedala. (2011). ‘A function (blue) and a piecewise linear approxim-

ation to it (red),’ [Online]. Available: https://en.wikipedia.org/wiki/

Piecewise_linear_function#/media/File:Finite_element_method_

1D_illustration1.svg (visited on 28/05/2021).

[8] (). ‘Reading (e)cdf graphs,’ [Online]. Available: http://docs.battlemesh.

org/v8/ecdf.html (visited on 08/06/2021).

59

https://en.wikipedia.org/wiki/Linear_regression#/media/File:Linear_regression.svg
https://en.wikipedia.org/wiki/Linear_regression#/media/File:Linear_regression.svg
https://en.wikipedia.org/wiki/Linear_regression#/media/File:Linear_regression.svg
https://en.wikipedia.org/wiki/Piecewise_linear_function#/media/File:Finite_element_method_1D_illustration1.svg
https://en.wikipedia.org/wiki/Piecewise_linear_function#/media/File:Finite_element_method_1D_illustration1.svg
https://en.wikipedia.org/wiki/Piecewise_linear_function#/media/File:Finite_element_method_1D_illustration1.svg
http://docs.battlemesh.org/v8/ecdf.html
http://docs.battlemesh.org/v8/ecdf.html

[9] P. O’Neil, E. Cheng, D. Gawlick and E. O’Neil, ‘The log-structured merge-

tree (lsm-tree),’ Acta Informatica, vol. 33, no. 4, pp. 351–385, 1996.

[10] V. Leis, A. Kemper and T. Neumann, ‘The adaptive radix tree: Artful indexing

for main-memory databases,’ in 2013 IEEE 29th International Conference on

Data Engineering (ICDE), IEEE, 2013, pp. 38–49.

[11] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel,

R. Ramakrishnan and C. Shahabi, ‘Big data and its technical challenges,’

Communications of the ACM, vol. 57, no. 7, pp. 86–94, 2014.

[12] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma and R. Shen, ‘Re-

ducing the storage overhead of main-memory oltp databases with hybrid

indexes,’ in Proceedings of the 2016 International Conference on Manage-

ment of Data, 2016, pp. 1567–1581.

[13] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaem-

manouil and N. Tatbul, ‘Neo: A learned query optimizer,’ arXiv preprint

arXiv:1904.03711, 2019.

[14] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh and T. Kraska, ‘Bao:

Learning to steer query optimizers,’ arXiv preprint arXiv:2004.03814, 2020.

[15] T. Kraska, M. Alizadeh, A. Beutel, H. Chi, A. Kristo, G. Leclerc, S. Madden,

H. Mao and V. Nathan, ‘Sagedb: A learned database system,’ in CIDR, 2019.

[16] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska and T.

Neumann, ‘Sosd: A benchmark for learned indexes,’ arXiv preprint arXiv:1911.13014,

2019.

[17] P. Ferragina, F. Lillo and G. Vinciguerra, ‘Why are learned indexes so ef-

fective?’ In International Conference on Machine Learning, PMLR, 2020,

pp. 3123–3132.

[18] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca and T. Kraska, ‘Fiting-

tree: A data-aware index structure,’ in Proceedings of the 2019 International

Conference on Management of Data, 2019, pp. 1189–1206.

[19] X. Liu, Z. Lin and H. Wang, ‘Novel online methods for time series segment-

ation,’ IEEE Transactions on knowledge and data engineering, vol. 20, no. 12,

pp. 1616–1626, 2008.

60

[20] P. Li, H. Lu, Q. Zheng, L. Yang and G. Pan, ‘Lisa: A learned index structure

for spatial data,’ in Proceedings of the 2020 ACM SIGMOD International Con-

ference on Management of Data, 2020, pp. 2119–2133.

[21] H. Wang, X. Fu, J. Xu and H. Lu, ‘Learned index for spatial queries,’ in 2019

20th IEEE International Conference on Mobile Data Management (MDM),

IEEE, 2019, pp. 569–574.

[22] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper, T. Neu-

mann and T. Kraska, ‘Benchmarking learned indexes,’ arXiv preprint arXiv:2006.12804,

2020.

[23] J. O’Rourke, ‘An on-line algorithm for fitting straight lines between data

ranges,’ Communications of the ACM, vol. 24, no. 9, pp. 574–578, 1981.

[24] Y. Dai, Y. Xu, A. Ganesan, R. Alagappan, B. Kroth, A. Arpaci-Dusseau and

R. Arpaci-Dusseau, ‘From wisckey to bourbon: A learned index for log-

structured merge trees,’ in 14th {USENIX} Symposium on Operating Systems

Design and Implementation ({OSDI} 20), 2020, pp. 155–171.

[25] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau and R. H. Arpaci-

Dusseau, ‘Wisckey: Separating keys from values in ssd-conscious storage,’

ACM Transactions on Storage (TOS), vol. 13, no. 1, pp. 1–28, 2017.

[26] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska and T.

Neumann, ‘Radixspline: A single-pass learned index,’ in Proceedings of the

Third International Workshop on Exploiting Artificial Intelligence Techniques

for Data Management, 2020, pp. 1–5.

[27] T. Neumann and S. Michel, ‘Smooth interpolating histograms with error

guarantees,’ in British National Conference on Databases, Springer, 2008,

pp. 126–138.

[28] J. Ding, V. Nathan, M. Alizadeh and T. Kraska, ‘Tsunami: A learned multi-

dimensional index for correlated data and skewed workloads,’ arXiv pre-

print arXiv:2006.13282, 2020.

[29] (). ‘Search on sorted data benchmark,’ [Online]. Available: https://github.

com/learnedsystems/SOSD (visited on 28/05/2021).

[30] P. Ferragina and G. Vinciguerra, ‘Learned data structures,’ in. Apr. 2020,

pp. 5–41, ISBN: 978-3-030-43883-8. DOI: 10.1007/x78-3-030-43883-8_2.

61

https://github.com/learnedsystems/SOSD
https://github.com/learnedsystems/SOSD
https://doi.org/10.1007/x78-3-030-43883-8_2

[31] Microsoft. (). ‘Alex - a library for building an in-memory, adaptive learned

index,’ [Online]. Available: https://github.com/microsoft/ALEX.

[32] Y. Wu, J. Yu, Y. Tian, R. Sidle and R. Barber, ‘Designing succinct secondary

indexing mechanism by exploiting column correlations,’ in Proceedings of

the 2019 International Conference on Management of Data, 2019, pp. 1223–

1240.

[33] C. Tang, Z. Dong, M. Wang, Z. Wang and H. Chen, ‘Learned indexes for

dynamic workloads,’ arXiv preprint arXiv:1902.00655, 2019.

[34] D. Ho, J. Ding, S. Misra, N. Tatbul, V. Nathan, V. Md and T. Kraska, ‘Lisa:

Towards learned dna sequence search,’ arXiv preprint arXiv:1910.04728,

2019.

[35] D. Ho, S. Kalikar, S. Misra, J. Ding, V. Md, N. Tatbul, H. Li and T. Kraska,

Lisa: Learned indexes for dna sequence analysis, Dec. 2020. DOI: 10.1101/

2020.12.22.423964.

[36] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.

Lee, S. A. Brandt and P. Dubey, ‘Fast: Fast architecture sensitive tree search

on modern cpus and gpus,’ in Proceedings of the 2010 ACM SIGMOD Inter-

national Conference on Management of data, 2010, pp. 339–350.

[37] G. Graefe, ‘B-tree indexes, interpolation search, and skew,’ in Proceedings

of the 2nd international workshop on Data management on new hardware,

2006, 5–es.

[38] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton and

A. Pavlo, ‘Surf: Practical range query filtering with fast succinct tries,’ in

Proceedings of the 2018 International Conference on Management of Data,

2018, pp. 323–336.

[39] T. Neumann. (2017). ‘The case for b-tree index structures,’ [Online]. Avail-

able: http://databasearchitects.blogspot.com/2017/12/the-case-

for-b-tree-index-structures.html (visited on 28/05/2021).

[40] T. Neumann. (2019). ‘Why use learning when you can fit?’ [Online]. Avail-

able: http://databasearchitects.blogspot.com/2019/05/why-use-

learning-when-you-can-fit.html (visited on 28/05/2021).

[41] A. Crotty, ‘Hist-tree: Those who ignore it are doomed to learn,’

62

https://github.com/microsoft/ALEX
https://doi.org/10.1101/2020.12.22.423964
https://doi.org/10.1101/2020.12.22.423964
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2019/05/why-use-learning-when-you-can-fit.html
http://databasearchitects.blogspot.com/2019/05/why-use-learning-when-you-can-fit.html

[42] C. 2021. (2021). ‘Session 7: Data structures - hist-tree: Those who ignore it

are doomed to learn,’ [Online]. Available: http://cidrdb.org/cidr2021/

program.html.

[43] DSAIL. (2021). ‘Sagedb: A self-assembling database system,’ [Online]. Avail-

able: http://dsail.csail.mit.edu/index.php/projects/.

[44] N. Akhtar and A. Mian, ‘Threat of adversarial attacks on deep learning in

computer vision: A survey,’ Ieee Access, vol. 6, pp. 14 410–14 430, 2018.

[45] M. Mitzenmacher, ‘A model for learned bloom filters, and optimizing by

sandwiching,’ arXiv preprint arXiv:1901.00902, 2019.

[46] J. Arulraj, J. Levandoski, U. F. Minhas and P.-A. Larson, ‘Bztree: A high-

performance latch-free range index for non-volatile memory,’ Proceedings

of the VLDB Endowment, vol. 11, no. 5, pp. 553–565, 2018.

[47] J. J. Levandoski, D. B. Lomet and S. Sengupta, ‘The bw-tree: A b-tree for

new hardware platforms,’ in 2013 IEEE 29th International Conference on

Data Engineering (ICDE), IEEE, 2013, pp. 302–313.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.

Kaiser and I. Polosukhin, ‘Attention is all you need,’ arXiv preprint arXiv:1706.03762,

2017.

[49] D. E. Rumelhart, G. E. Hinton and R. J. Williams, ‘Learning internal repres-

entations by error propagation,’ California Univ San Diego La Jolla Inst for

Cognitive Science, Tech. Rep., 1985.

[50] Y. Dai, Y. Xu, A. Ganesan, R. Alagappan, B. Kroth, A. Arpaci-Dusseau and

R. Arpaci-Dusseau, ‘From wisckey to bourbon: A learned index for log-

structured merge trees,’ in 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 20), USENIX Association, Nov. 2020,

pp. 155–171, ISBN: 978-1-939133-19-9. [Online]. Available: https://www.

usenix.org/conference/osdi20/presentation/dai.

63

http://cidrdb.org/cidr2021/program.html
http://cidrdb.org/cidr2021/program.html
http://dsail.csail.mit.edu/index.php/projects/
https://www.usenix.org/conference/osdi20/presentation/dai
https://www.usenix.org/conference/osdi20/presentation/dai

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jon Ryfetten

The Next Generation Index
Structures - Learned Indexes

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Preface
	Contents
	Figures
	Tables
	Introduction
	Databases meets AI
	Purpose
	Goals and Research Question
	Content of thesis

	Background and related work
	Definitions
	Structured and unstructured data
	Clustered and unclustered index
	B+-tree
	Big data
	Linear models
	Piecewise linear approximation
	Neural Network
	Cumulative Distribution Function (CDF)
	Memory fence
	Cold and warm cache
	Data skew
	Database transaction
	Write and read locks
	Non-volatile memory (NVM)

	Related work
	LSM-tree
	ART - The Adaptive Radix Tree

	Learned Indexes
	How big data affects data requirements?
	How learned indexes work
	Cumulative Distribution Function

	Why so fast?
	Is learned indexes provably better than classic indexes?

	Approaches
	The RMI
	FITing-Tree
	LISA
	PGM
	ALEX
	Bourbon
	RadixSpline
	Tsunami
	Comparison
	Properties

	Complex models versus linear models
	Bottom-down versus top-down
	Secondary indexes

	Performance of learned indexes
	Practical example - Google Bigtable
	Evaluation

	Practical example - Learned indexes in DNA sequence analysis
	Difficulties when performance testing indexes
	Tradeoffs
	Optimizations
	Hardware specific optimizations
	Purpose when performance comparing indexes

	Performance comparison between indexes
	Search On Sorted Data Benchmark (SOSD)
	Extension of SOSD
	Why learned index structure perform well
	Multi-threading
	Build times

	Range search
	Summary

	Limitations and future work of learned indexes
	Criticisms and skepticism of learned indexes
	Learned index can not outperform tuned traditional data structures
	Learned indexes comes from implicit assumptions

	Limitations and future work
	Author thoughts
	Future ideas for research

	New direction in the field of databases

	Conclusion
	Bibliography

