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Abstract
Bayesian neural networks refers to an extension of neural networks made by treating
each parameter as a stochastic variable rather than a point estimate. From a probabilis-
tic perspective, neural networks limit themselves to a maximum likelihood estimation
for its parameters. �is method is prone to over��ing, as we o�en see happen. Typi-
cally regularization techniques are applied to avoid this, which, if we look at it from a
probabilistic perspective, is equivalent to maximum a posteriori estimation. Although
this works well in practice, neural networks are still restricting themselves to point
estimated parameters. By instead predicting the full posterior on each weight, we can
model both the epistemic and aleatory uncertainty in the data. Current implementa-
tions for Bayesian neural networks rely on approximating the posterior distribution
with variational distributions. Some of these methods can severely limit the �exibility
of the posterior and thus the performance of the model. Joining ongoing work in the
�eld, this thesis aims to improve the �exibility of the approximate posterior.

In our work, we use both theoretical and experimental approaches to develop a
novel method for Bayesian inference in neural networks. We provide the mathematical
foundation for a new method of approximating posterior distributions, and support it
with experimental results. We present a new method for generating posterior distribu-
tions in Bayesian neural networks through generative adversarial networks. Initially,
we show that neural networks are able to approximate the KL-divergence between two
distributions, and go on to use this with a generative network to learn the posterior dis-
tribution of theweights in a Bayesian neural network. In experiments we show that this
method is able to compete with the state-of-the-art methods in the �eld with respect
to both accuracy and predictive uncertainty.
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Sets and Graphs
A A set
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{0, 1, . . . , n} �e set of all integers between 0 and n
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Chapter 1

Introduction

�is chapter presents themotivation behind the research conducted for this report. Our
research questions and goals will be stated, and we will give a description of how we
aim to achieve those goals. We then brie�y discuss the contributions we have made to
the �eld. Finally we outline the structure and content of the report.

1.1 Background and Motivation

Bayesian deep learning is a sub-�eld of deep learning that aims to implement Bayesian
statistics into traditional deep learning methods. Within this �eld there is ongoing re-
search on Bayesian neural networks, an extension of neural networks which treats the
weights as stochastic variables, rather than point estimates. �emotivation behind this
is to give the neural network the ability to represent uncertainty. Uncertainty comes
in two forms:

Aleatory uncertainty: �is is the uncertainty in the data we are using. It could be
from inaccurate measurements, human error, or because the method that generates the
data is a random process. �is uncertainty is unavoidable.

Epistemic uncertainty: �is uncertainty stems from a lack of data. With a �nite
dataset, there will always be some uncertainty about what the correct prediction should
be at any point that is not included in the dataset. �is uncertainty is called the epis-
temic uncertainty.

Bayesian neural networks aim to capture both of these uncertainties by introducing un-

1



2 CHAPTER 1. INTRODUCTION

certainty to every parameter of the model. Successfully capturing this uncertainty has
great bene�ts to many applications of deep learning. Deep learning models are known
to make predictions with unprecedented accuracy, but sometimes even when mistakes
are far in-between, they can be devastating. �e instances where it makes mistakes
are o�en due to lack of data similar to the ones it is making predictions for. In these
cases Bayesian deep learning models would be able to communicate this uncertainty,
essentially preventing the model from being overcon�dent in its predictions.

1.2 Goals and Research�estions

Goal Increase the �exibility of the posterior distribution in Bayesian neural network
by avoiding strong assumptions about the distribution.

Research question 1 What is state-of-the-art on Bayesian neural network?

Research question 1.1 How do we maximize ELBO without making assump-
tion on the distribution?

Research question 2 Can generative adversarial networks be used for variational in-
ference of more �exible distributions in Bayesian neural networks?

1.3 �esis Structure

Chapter 2 - Background �eory: We give necessary background theory in deep
learning and statistics. We start by iterating on fundamental theory that we expect
the reader to be relatively familiar with, and go on to present more advanced details
necessary to understand the rest of the report.
Chapter 3 - State of the Art: We introduce some state-of-the-art methods in Bayesian
neural networks.
Chapter 4 - Method: We present our novel work and necessary mathematical proofs
for a theoretical foundation of our work. We also give details related to the implemen-
tation of our method and how to achieve desirable results with it.
Chapter 5 - Evaluation and Results: We show the performance of our model on
classic problems in the �eld, and discuss how these compare to current state-of-the-art
methods.
Chapter 6 - Discussion and Conclusion: Based on both the theoretical and exper-
imental work, we discuss how our method �ts into current advancements in the �eld.
We present ways that our method can be extended upon, and other opportunities for
future work.



Chapter 2

Background�eory

�is chapter introduces some fundamental theory in machine learning and statistics. It
should provide the reader with enough information to understand the rest of the thesis.

2.1 Deep Learning

�is section gives a brief introduction to deep learning. We �rst present the core idea
and inspiration behind deep learning, followed by a theoretical background on the fun-
damentals of deep learning. �e background skips many important contributions to
deep learning, instead focusing on the key concepts necessary for this thesis. For a
more complete introduction to the �eld of deep learning we refer the reader to Good-
fellow et al. [2016].

2.1.1 Objective

�e objective of any machine learning algorithm can be described as an optimization
problem. In an optimization problem, we have some function f : A→ R, and wish to
�nd an element a∗ ∈ A, such that f(a∗) ≤ f(a) ∀a ∈ A. �e function we want to
optimize, f , is called the objective function, whileA is called the search space. Inmachine
learning, the search space is typically a subset of the function space A : Rn → Rm.
�is means that we want to �nd the some function a from the inputs x ∈ Rn, to the
outputs y ∈ Rm, that minimizes the objective function f(a).

To see why this interpretation is helpful in deep learning, we need to consider what
we actually want to achieve. We typically have some data D = {(x(i),y(i))|1 ≤ i ≤
d}, and want to learn to predict y fromx. �is is equivalent to �nding a function a such

3



4 CHAPTER 2. BACKGROUND THEORY

that a(x(i)) = y(i). To be able to search for such a function, we let a be an element in
a function-space A, where each function in A is parameterized by vw. Our objective
then becomes to �nd a function aw , so that aw(x(i)) ≈ y(i).

2.1.2 Representation

Neural networks are a way of de�ning aw , inspired by the neurons in our brain. We
start by de�ning an arti�cial neuron. Each neuron is a function parameterized by w
and b, and is de�ned as

ϕ

b+

n∑
i=1

xi · wn

 , (2.1)

where ϕ is some function ϕ : R → R. �is function is referred to as the activation

function. An illustration of a neuron can be seen in Figure 2.1a.
Individual neurons are then combined to form a neural network, as seen in Figure

2.1b. �is speci�c composition of neurons is a feedforward neural network with one
hidden layer. Composing neurons like this creates a much more complex function that,
assuming some conditions on ϕ, is able to represent the relationship between x and
y very well. In fact, Leshno et al. [1993] showed that if ϕ is a nonpolynomial locally
bounded piecewise continuous function, then a multilayered feedforward neural net-
work with su�ciently many hidden nodes can approximate any function to any degree
of accuracy. �is is known as the universal approximation theorem.

Di�erent activation functions can be used in the same neural network, but each
layer generally have the same activation function. Figure 2.2 shows some of the most
common activation functions.

2.1.3 Loss Function

Wehave looked at how a neural network is able to represent a functional relationship in
data. Wewill now look at howwe can search for the optimal parameters of the network,
the ones that makes the network represent a good approximation of the function from
x to y. �is is where the learning part comes in; we say that we learn the functional
relationship between x and y.

To be able to �nd the optimal parameters, we �rst have to de�ne what properties
they hold. We start by looking at the data-generative process X → Y as a stochastic
process. �is means that the output of our network is pw(y|x). We now want to �nd
the parameters w that makes our observations most probable, which means maximiz-
ing
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Σ ϕx2
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Figure 2.1: (a) Illustration of an arti�cial neuron with n inputs and activation function
ϕ. (b) Illustration of a fully connected feedforward neural network with one hidden
layer.
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Figure 2.2: Some of the most common activation functions.
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pw(y1. . . . ,y1|x1, . . . ,xn) =

n∏
i=1

pw(yi|xi).

Equivanlent would be maximizing the log-likelihood, which has the bene�t of being
be�er numerically,

log

n∏
i=1

pw(yi|xi) =

n∑
i=1

log pw(yi|xi).

We will be use L(w;x,y), L(w) (data implied) or L(ŷ,y) to symbolize the loss func-
tion1 throughout the thesis.

In machine learning it is common to formulate the optimization problem as a min-
imization problem. Usually we call the objective function to be minimized the loss

function. To maximize the log-likelihood we therefore use the negative log-likelihood

(nll) as a loss function. �e most common loss functions for neural networks are neg-
ative log-likelihood functions for di�erent distributions. �e mean squared error loss
function equates to minimizing the nll for a Gaussian distribution, while mean absolute
error does the same for a Laplace distribution.

2.1.4 Optimization

Now we have to �nd out how to change the parameters in the network so that we
minimize the loss. For this we will use a method called gradient descent. We start by
randomly initializing the parameters of the network, and then compute the gradients
of the loss function with respect to each of the parameters. We will then change each
parameter in the direction that minimizes the loss function.

w ← w − η∇wL(w)

η is the learning rate parameter that decides how much to move in the direction of the
negative gradient. �is is typically set to a small number e.g. 10−3. Using the chain
rule we can formulate the gradient as

∂L
∂wij

=
∂L
∂nj

∂nj
∂wij

,

where nj is the input to the activation function of neuron j. Because nj =
∑n
i=1 wijoi,

the partial derivative ∂nj

∂wij
is simply the output of the previous neuron oi. We are then

1Not just likelihood-based loss function
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le� with having to calculate ∂L
∂nj

for each neuron. For the output layer of neurons this
is simply ∂L

∂ŷi
, the derivative of the loss function with respect to the output. For an

arbitrary neuron in the network, however, it is less obvious. For this we use a method
called backwards propagation of error, or backpropagation for short. Figure 2.3 shows
how we can create a recursive formulation for the partial derivative ∂L

∂nj
by utilizing

the partial derivatives for all the succeeding neurons (all neurons that depend on the
value of this neuron).

Σ fj
nj

∂L
∂nj

=
∂oj
∂nj

∑
k∈K

∂L
∂nk

∂nk

∂ok

=
∂fj
∂nj

∑
k∈K

∂L
∂nk

wjk

o j
· w j

k1

oj · wjk2

oj · wjk3

o
j · w

jk
4

∂L
∂n

k 1

∂L
∂nk2

∂L
∂nk3

∂L∂n
k
4

o
i · w

i
1 j

oi · wi2j

oi · wi3j

o i
· w i4

j

∂L∂n
j

∂L
∂nj

∂L
∂nj

∂L
∂n

j

Figure 2.3: An illustration of backpropagation through one neuron.

First notice that

∂L
∂nj

=
∂oj
∂nj

∑
k∈K

∂L
∂nk

∂nk
∂ok

=
∂fj
∂nj

∑
k∈K

∂L
∂nk

wjk,

where K is the set of neurons that directly depend on the neuron’s output oj , and
fj is the neuron’s activation function. �is requires that the activation function is
continuous everywhere and di�erentiable almost everywhere2. By iteratively applying
this calculation for every neuron in the network, we are able to �nd the gradient of the
loss function with respect to all the parameters.

When updating the weights of the networkwith this gradient wewill move towards
a minimum, where any small change of the parameters will increase the loss value.

2
Almost everywhere is a term from measure theory. We use it to simply say that there is a countable

amount of non-di�erentiable points.
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Underfi�ed Good fit Overfi�ed

Figure 2.4: An illustration of three models ��ed on a noisy 3rd degree polynomial with
varying degrees of success.

Although this is a minimum, there might exist other minima too, so it is not necessarily
the global minimum. �is is a limitation to the gradient descent algorithm, but in neural
networks it is generally agreed upon that most local minima are very close in loss-value
to the global minimum [Choromanska et al., 2015], hence it is usually not necessary to
reach a global minimum for good performance.

We now know how to �nd parameters of the network that will make it approximate
a functional relationship between x and y. Hopefully this function also generalizes to
data that it has not seen before. �is is the goal. Next we will look at how we can help
the function generalize be�er to unseen data.

2.1.5 Regularization

We are now able to learn a functional relationship between inputs and outputs, but for
this to be useful, we also need it to generalize to data that we have not seen during
training. We want to make sure that our model is complex enough to be able to learn
the relationship between the data points, but not �t the noise in the data. �is is illus-
trated in Figure 2.4, where we can see that the under��ed model is unable to learn the
complexity of the data, while the over��ed model is ��ing the noise in the data. �is
will prevent the model from generalizing well to new data.

Under��ing is generally easy to solve in deep learning. We simply increase the
number or size of the hidden layers in the model. �is will make the model able to
�t more complex functions, hence preventing under��ing. A greater challenge is to
prevent the model from over��ing, while still remaining complex enough to be able to
model the data. Here we employ what is called regularization. Regularization involves
adding information to the learning process in order to restrict the function space of the
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model.
One of the simplest regularization techniques in deep learning is to include an extra

term in the loss function that penalizes parameters that are far away from zero. L1 and
L2 regularization are two such methods illustrated below.

RL1(θ) = λ

n∑
i=1

|θi| (2.2)

RL2(θ) = λ

n∑
i=1

θ2
i (2.3)

�e regularization term R(θ) is added to the existing loss function. �is penalizes
models with large parameters, hence imposing a trade-o� between complexity and
accuracy. λ ∈ R+ is a regularization parameter that controls the magnitude of the
regularization. A larger value for λ will penalize large weights more,

Another common regularization technique is called dropout. Dropout involves se-
lecting a random set of neurons every iteration dring training, and se�ing their output
to zero. �is ensures that the function cannot become overly reliant on certain neurons,
since if that neuron is dropped then the model will completely fall apart. It therefore
needs to model the trend in the data multiple times, so that they are not dropped,
causing the model to focus less on ��ing noise in the data. �ere exist many more
regularization methods, but it is beyond the scope of this thesis to introduce them all.

2.2 Probabilistic AI

�is section introduces the foundations of probabilistic AI. We introduce the statistical
theory required to understand the state of the art methods introduced in Chapter 3 and
the theoretical work in Chapter 4. We assume familiarity with probability theory and
statistics.

2.2.1 Bayesian Inference

Bayesian statistics is one approach to statistics that views probability as a degree of belief
in a certain event. �is contrasts with the frequentist interpretation of probability,
which sees probability is the relative frequency of events.

�e process of deducing properties of a model underlying a distribution of data is
called statistical inference. Bayesian inference views the parameters of the underly-
ing model as random variables, rather than �xed values, as is the case in frequentist
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inference. �e distribution of the parameters is calculated using Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (2.4)

where θ are the parameters of the chosen model, and D is the data.

p(θ|D): �e distribution of the parameter a�er we have observed data. �e poste-
rior (distribution).

p(D|θ): �e likelihood of the data being observed given the parameter.
�e likelihood.

p(θ): �e probability over the parameters before observing any data.
�e prior (distribution).

p(D): �e probability of the data under any parameters.
�e normalizing constant, or evidence.

We consider both p(θ|D) and p(D|θ) to be be functions ofθ. In that case the likelihood
is a property of the model we choose to explain the data. It is not a probability, and
does therefore not need to sum to one. �e likelihood p(D|θ) is however proportional
to the probability p(θ|D) divided the prior p(θ).

To use Bayesian inference in order to get a posterior distribution we must choose
a prior distribution. �e prior can be chosen based on domain knowledge, intuition, or
as we will see later, as a regularization parameter. �e choice of prior will a�ect the
posterior distribution, though with more data the e�ect the prior has on the posterior
will diminish. In the case where the likelihood comes from a very simple distribution,
we can sometimes choose a prior that will cause the posterior and prior to have the
same distribution family. �e prior is then called a conjugate prior to that likelihood
function. Conjugate priors are known for all exponential family distributions, but for
deep learning, where the likelihood is de�ned by a neural network, we do not have
conjugate priors. In Bayesian deep learning, we do not have a good idea of what the
parameter values should be before we start training, but by using a prior distribution
that pushes them closer to zero we restrict the freedom of the model, making it less
likely to �t noise in the data.

�e normalizing constant p(D) =
∫
p(D|θ)p(θ) dθ, is generally intractable to

compute. In the case where we have a conjugate prior, we can bypass the calculation
of the normalizing constant, but in other cases wewill we have to resort to approximate
methods.
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2.2.2 Rejection Sampling

Rejection sampling is a technique that can be used to sample from a posterior distribu-
tion, without knowing the normalizing constant. Here is an outline of the method:

Given a probability density function f(x) with �nite support, �nd its maximum
value. Now create a �nite bounding box encompassing all non-zero values of f(x).
Sample uniformly fromwithin this bounding box, and accept a candidate x∗ with prob-
ability f(x∗)

max f . �e non-rejected samples will be from the distribution f(x). Intuitively
this makes sense, as any less than f(x1) will be half as likely to be accepted as a point
less than f(x2) if f(x1) = 2f(x2). Now if f(x) has in�nite support, we cannot sam-
ple from a bounding box encompassing all non-zero values f(x) as we just did. We
instead �nd a function cg(x), such that f(x) ≤ cg(x) for all x, and g(x) is a pdf, and
1 < c < ∞. g(x) is called a proposal distribution. We can now sample points under
g(x), and accept with probability f(x)

cg(x) .
�is method can sample points under the curve of any positive real function f(x),

making it a useful tool for sampling from a posterior distributionwhere the normalizing
constant is unknown. We can see from the acceptance probability that a larger value
for c will cause a lot of samples to be rejected, hence as we want c to be as close to 1 as
possible. Finding suitable proposal distributions can be very di�cult, thus this method
is not widely used in practice.

2.2.3 Markov Chain Monte Carlo Methods

Markov ChainMonte Carlo (MCMC)methods are a family of algorithms used to sample
from intractable posterior distributions. �ese algorithms all construct Markov chains
with an equilibrium distribution equal to the target distribution. �ere are many meth-
ods for constructing Markov chains with this property. As our number of samples goes
to in�nity, the samples from these methods will perfectly �t the distribution we are
sampling from. As opposed to rejection sampling, however, we don’t have to �nd an
encompassing function. Because of this it is usually used as a benchmark for other
methods. Although the method is exact in the long run, the Markov chain introduces
auto correlation between samples, meaning that a smaller number of samples will not
be representative samples from the distribution. Most newer improvements to MCMC
are a�empts to reduce the auto correlation between samples, thus needing fewer sam-
ples for a good approximation.

Metropolis Hastings is an MCMC algorithm based on rejection sampling. Given a
posterior distribution p(θ|D), we use a conditional proposal distribution g(θt|D; θt−1).
�is means that a sample proposal θ′t is conditioned on the previous sample θt−1.
�e acceptance ratio is a product of the relative probability of the next sample compared
to the previous sample, and the relative probability of ge�ing that sample given the
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Algorithm 1: Metropolis Hastings
Select an initial sample θ0.
De�ne a proposal density g(θt|D; θt−1).
For n iterations:

1. Draw a proposal θ′t ∼ g(θt|D; θt−1).

2. Calculate the acceptance probability A = min

{
p(θ
′
t|D)g(θ

′
t|D;θt−1)

p(θt−1|D)g(θt−1|D;θ
′
t)
, 1

}
3. Accept θt = θ

′
t with probability A, otherwise θt = θt−1.

current sample and vice versa. We can simplify computation by choosing a symmetric
proposal distribution, which would eliminate the la�er ratio. Because the acceptance
probability relies on the likelihood ratio we can approximate non-normalized posterior
density functions. �e downside of this method is that it introduces autocorrelation
between samples. A wider proposal distribution will decrease autocorrelation, but will
also decrease acceptance rate, hence there is a trade-o� between the two. For aGaussian
proposal distribution Roberts et al. [1997] proved that an acceptance ratio of about
∼ 0.23 is optimal. A lot of newer MCMC algorithms are relying on the gradient of the
posterior to move further away from the current sample without sacri�cing acceptance
rate, and have generally proved much more e�cient.

One of the most important points to take away from MCMC is that we can achieve
an approximation to any degree of accuracy, as long as we have enough samples. Be-
cause of these two factors, it is o�en used as a gold standard to evaluate the performance
of other methods. However, because MCMC only lets you sample from the posterior
distribution, and not evaluate probabilities, it is not suitable for all tasks, and can be
very slow at estimating properties such as mean and variance of a distribution.

2.2.4 Variational Inference

Variational inference is a faster inference method than MCMC, but as opposed to
MCMC, does in general not have the property that it converges to the exact distribu-
tion. It is based on the asssumption that the posterior p(θ|D) can be approximated by a
variational distribution q(θ). By de�ning a dissimilarity measure between the posterior
and the variational distribution D[p(θ|D); q(θ)], we e�ectively have an optimization
problem that we need to solve. By minimizing the dissimilarity measure we �nd the
q(θ) that best approximates p(θ|D). What ’best approximates’ means depends on the
dissimilarity measure.

A common choice of dissimilarity measure is the Kullback-Leibler (KL) divergence
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[Kullback and Leibler, 1951], and is de�ned as

DKL[q(θ)‖p(θ|D))] = Eθ∼q[− log p(θ|D)]− Eθ∼q[− log q(θ)]. (2.5)

You might notice that the KL-divergence relies on p(θ|D), which is intractable; the
whole reason we want to use variational inference to begin with. We will manipulate
the form to get rid of it:

DKL[q(θ)‖p(θ|D)] = Eθ∼q[− log p(θ|D)]− Eθ∼q[− log q(θ)]

= Eθ∼q[log q(θ)]− Eθ∼q[log p(θ|D)]

= Eθ∼q[log q(θ)]− Eθ∼q

[
log

p(θ,D)

p(D)

]
= Eθ∼q[log q(θ)]− Eθ∼q

[
log p(θ,D)

]
+ Eθ∼q[log p(D)]

= Eθ∼q[log q(θ)]− Eθ∼q
[
log p(θ,D)

]
+ log p(D) (2.6)

We are still le� with the intractable normalizing constant p(D), but since this is now
an optimization problem we can ignore it. Hence

DKL[q(θ)‖p(θ|D)] = Eθ∼q[log q(θ)]− Eθ∼q
[
log p(θ,D)

]
+ const. (2.7)

We use Equation 2.7 to �nd the variational distribution q∗ ∈ Q that minimizes the
KL-divergence to the posterior, whereQ is a family of distributions. How to chooseQ
is further discussed below.

q∗ = arg min
q∈Q

Eθ∼q[log q(θ)]− Eθ∼q[log p(θ,D)]

= arg max
q∈Q

Eθ∼q[log p(θ,D)]− Eθ∼q[log q(θ)]

= arg max
q∈Q

elbo(q)

Here elbo stands for evidence lower bound, from the fact that it create a lower bound
for the logarithmic evidence log p(D). From Equation 2.6 we can see that

log p(D)−DKL[q(θ)‖p(θ|D)] = Eθ∼q[log p(θ,D)]− Eθ∼q[log q(θ)]

= elbo(q). (2.8)
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Since the KL-divergence is always positive, this indeed shows that elbo provides a
lower bound for the log evidence. Additionally, since log p(D) does not depend on q,
maximizing elbo will minimize the KL-divergence.

Mean Field

We now have a way of approximating the posterior via maximizing the evidence lower
bound for a variational distribution. Now we need to choose a variational distribution
that will make this optimization problem computationally feasible. A mean �eld vari-
ational family refers to a class of multivariate distributions that can be expressed as
a product of independent partitions of the latent space. Speci�cally for a mean �eld
family Q that factorizes intom partitions, any q ∈ Q is such that

q(θ) =

m∏
i=1

qi(θi).

Typically m = dim(θ), but we sometimes have multidimensional partitions. �is
assumption means that the optimal q∗(θ), with respect to maximizing the evidence
lower bound, is identical to the product of each optimal q∗i (θ|D). To see how this helps
us, we start by noting that

Eθ∼q
[
log q(θ)

]
=

m∑
i=1

Eθ∼q
[
log qi(θi)

]
,

and through the chain rule we get that

Eθ∼q
[
p(θ,D)

]
= Eθ∼q

log

p(D)

m∏
i=1

p(θi|θ1:(i−1),D)




= log p(D) +

m∑
i=1

Eθ∼q

[
log p(θi|θ1:(i−1),D)

]
.

We can now substitute these into the de�nition of elbo given in Equation 2.8 to get
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elbo(q) = Eθ∼q
[
log p(θ,D)

]
− Eθ∼q[log q(θ)]

= log p(D) +

m∑
i=1

Eθ∼q

[
log p(θi|θ1:(i−1),D)− log qi(θi)

]
=

m∑
i=1

Eθ∼q

[
log p(θi|θ1:(i−1),D)− log qi(θi)

]
+ const

= −
m∑
i=1

DKL[qi(θi)‖p(θi|θ1:(i−1),D)] + const.

�is shows us that maximizing elbo(q) over mean �eld is equivalent to maximizing
elbo(qi) over qi(θi), for each i = 1, . . . ,m:

arg max
q∈Q

elbo(q) =

m∑
i=1

arg max
qi∈Q

elbo(qi)

=

m∑
i=1

arg max
qi∈Q

Eθ∼q

[
log p(θi|θ1:(i−1),D)− log qi(θi)

]
. (2.9)

For each qi, we will now consider elbo as a function of that qi instead of q. Each time
we rearrange Equation 2.9 so that qi is the last variable in the sum. Doing this lets us
see that

arg max
qi∈Q

elbo(qi) = arg max
qi∈Q

Eθ∼q
[
log p(θi|θ−i,D)− log qi(θi)

]
,

whereθ−imeans a vector containing all elements ofθ except element i. We can further
rearrange this to get
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arg max
qi∈Q

elbo(qi) = arg max
qi∈Q

Eθ∼q
[
log p(θi|θ−i,D)

]
− Eθi∼qi

[
log qi(θi)

]
= arg max

qi∈Q

∫
θ

q(θ) log p(θi|θ−i,D) dθ

−
∫
θi

qi(θi) log qi(θi) dθi

= arg max
qi∈Q

∫
θi

q(θi)Eθ−i∼q−i

[
log p(θi|θ−i,D)

]
dθi

−
∫
θi

qi(θi) log qi(θi|D) dθi,

We now want to set the derivative of elbo equal to zero, so that we can �nd its maxi-
mum. Note that qis(θi) is a PDF, hence

∫
θi
qi(θi) = 1. We will use a Lagrange multi-

plier to include this constraint when �nding the derivative.

elbo(qi) =

∫
θi

q(θi)Eθ−i∼q−i

[
log p(θi|θ−i,D)

]
dθi

−
∫
θi

qi(θi) log qi(θi) dθi

+λ

(∫
θi

qi(θi) dθi − 1

) (2.10)

We defer the calculation of the derivative to the appendix, but note that it gives us the
following expression for the optimal q∗i

q∗i (θi) =
exp (Eθ−i∼q−i

[
log p(θi|θ−i,D)

]
)∫

θi
exp

(
Eθi∼q−i

[
log p(θi|θ−i,D)

])
dθi

∝ exp (Eθ−i∼q−i

[
log p(θi,θ−i,D)

]
). (2.11)

We are now le� with an optimization problem for each qi that only uses the joint prob-
ability distribution p(θ,D), which we know we can calculate. One way to solve this
optimization problem is with the optimization algorithm coordinate ascent. A high
level algorithm for mean �eld variational inference with coordinate ascent mean �eld
variational inference [Ghahramani and Beal, 2001] is detailed in Algorithm 2. �is al-
gorithm updates each qi separately, utilizing Equation 2.11. For exponential family
distributions this update has a closed form, but cannot be used for an arbitrary varia-
tional family. When using coordinate ascent we need to make sure that when updating
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qi according to Equation 2.11 qi is still in its distributional family. Usually this means
that we have a distribution in the exponential family, such as a Gaussian distribution.
Another downside of this algorithm is that we have to construct a new updating scheme
for the parameters of q whenever we change its variational family.

Algorithm 2: Coordinate Ascent Mean Field Variational Inference

input: Data D
Varitional distribution q(θ)
Joint probability p(θ,D)

Initialize all variational distributions q1, . . . , qm with random parameters;
do

for i← 0 tom do
Update qi according to Equation 2.11;

Calculate elbo(q) = Eθ∼q
[
log p(θ,D)

]
− Eθ∼q[log q(θ)];

while elbo(q) has not converged;

Black Box Variational Inference

To tackle the limitations of coordinate ascent Ranganath et al. [2013] employs stochas-
tic optimization in an algorithm they call Black Box Variational Inference (BBVI). With
BBVI we only have to make the assumption that we can evaluate p(θ,D) almost ev-
erywhere, as well as sampling from q and evaluating its gradient with respect to its
parameters. �ese assumptions are much weaker than those for coordinate ascent
variational inference. We would like to calculate∇elbo(q) = ∇Eθ∼q

[
log p(θ,D)

]
−

∇Eθ∼q[log q(θ)], so that we can use gradient descent as an optimization scheme, but
even though we can evaluate p(θ,D), we have made no assumption that we can eval-
uate Eθ∼q

[
log p(θ,D)

]
, let alone its gradient. �is is where we resort to stochastic

optimization.
Stochastic optimization generalizes gradient descent to noisy gradients. Let f(x) be

the function that we wish to optimize, andG(x) be a random variable with expectation
E[G(x)] = ∇f(x). To update x at step t would then look as follows

g(xt) ∼ G(xt)

xt ← xt + ρtg(xt),

where ρt is the learning rate at step t. Robbins and Monro [1951] showed that this
converges to a local maximum of f if ρt satis�es the following conditions
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∞∑
t=1

ρt =∞

∞∑
t=1

ρ2
t <∞.

One learning rate ρt satisfying these condition suggested by Robbins andMonro [1951]
is ρt = 1

t .
To use stochastic optimization to maximize elbo(q), BBVI needs to de�ne an unbi-

ased estimator for the gradient ∇elbo(q). �ey derive the following expression

∇elbo(q) = Eθ∼q
[
∇ log q(θ)(log p(θ,D)− log q(θ))

]
.

With this estimator we can compute an unbiased estimate for the gradient with Monte
Carlo samples.

∇elbo(q) ≈ 1

S

S∑
s=1

[
∇ log q(θs)(log p(θs,D)− log q(θs))

]
,

where θs ∼ q(θ).

By combining this stochastic optimization scheme with the mean �eld assumption we
get Algorithm 3. Ranganath et al. [2013] goes on to further improve this algorithmwith
methods to reduce the variance of the estimator for the gradient, but the details for the
improved algorithm is outside the scope of this thesis.

2.2.5 Normalizing Flows

�is section will show how we can increase the �exibility of a simple variational distri-
bution. We present Normalizing Flows [Rezende and Mohamed, 2016] as background
for a state of the art Bayesian neural network model presented in Section 3.2.

Change of Variables in Probability Density Functions

�e change of variables formula tells us that if we have two random variables, θ and
z ∼ qz, where θ = f(z) with f : Rn → Rn being a bijective, di�erentiable function,
then
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Algorithm 3: Black Box Variational Inference

input: Data D
Varitional distribution q(θ)
Joint probability p(θ,D)

Initialize all variational distributions q1, . . . , qm with random parameters;
t← 0;
do

for s← 0 to S do
θ[s] ∼ q

for i← 0 tom do
// Let λi denote the parameters of

distribution qi

λi ← λi + ρt∇λi

∑S
s=1 log qi(θ[s])

(
log p(D,θ[s])− log qi(θ[s])

)
t← t+ 1;
Calculate elbo(q) = Eθ∼q[log q(θ)]− Eθ∼q

[
log p(θ,D)

]
;

while elbo(q) has not converged;

qθ(θ) = qz

(
f−1(θ)

) ∣∣∣∣∣∣det

(
∂f−1(θ)

∂θ

)∣∣∣∣∣∣ (2.12)

log qθ(θ) = log qz

(
f−1(θ)

)
+ log

∣∣∣∣∣∣det

(
∂f−1(θ)

∂θ

)∣∣∣∣∣∣ .
Using z = f−1(θ), and det

(
A−1

)
= det (A)

−1, we can alternatively formulate Equa-
tion 2.12 as

qθ(θ) = qz (z)

∣∣∣∣∣det

(
∂f(z)

∂z

)∣∣∣∣∣
−1

(2.13)

log qθ(θ) = log qz (z)− log

∣∣∣∣∣det

(
∂f(z)

∂z

)∣∣∣∣∣.
Given that we know f−1, Equation 2.12 makes it is easy to evaluate the likelihood of
a sample θ; you simply insert the value into the equation. If we only have the inverse
transformation, however, it is very di�cult to sample from θ since we cannot simply
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calculate θ = f(z). �is is where Equation 2.13 comes in handy. Here z is typically a
random variable that is easy to sample from, such as from a Gaussian distribution. We
can then sample z ∼ z and calculate θ = f(z), while at at the same time evaluating
its likelihood with Equation 2.13. �is means that even when we do not have access to
f−1, we can still evaluate the likelihood of samples. We need Equation 2.12 if we want
to calculate probabilities of events.

Normalizing Flow Models

Normalizing �ow models [Rezende and Mohamed, 2016] takes advantage of change of
variables to create very complex distributions. If we consider the mapping between θ
and z to be a function fλ parameterized by λ, then we get

log qθ(θ) = log qz (z)− log

∣∣∣∣∣det

(
∂fλ(z)

∂z

)∣∣∣∣∣.
We can now see that qθ can be a very complex variational distribution, given the right
parameterized function fλ. We can imagine this being very useful in black box vari-
ational inference to be�er approximate multi-modal or otherwise complex posterior
distributions. To be�er understand normalizing �ows we will look at what the words
mean.

1. Normalizing comes from the fact that a�er the transformation we end up with a
normalized distribution.

2. Flow comes from howwe can chain transformations together to create arbitrarily
complex distributions. �e transformations create a ”�ow” of random variables.

We will look at why we want to chain simple transformations together. Consider a
function

fλ(z) = fλn ◦ fλn−1 ◦ · · · ◦ fλ1(z).

We can now have a complex transformation composed of multiple parameterized trans-
formations. Typically the same transformation is repeatedmultiple times with di�erent
parameters, but we can also compose completely di�erent transformations. Consider-
ing the formulation of Equation 2.13, all we need is an analytical form for det

(
∂f(z)
∂z

)
,

and then we can sample a variable z, and iteratively apply the transformation. To cal-
culate the likelihood of that sample we can iteratively apply Equation 2.13 to obtain
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log qθ(θ) = log qz(z0)−
n∑
i=1

log

∣∣∣∣∣det

(
∂fλi(zi−1)

∂zi−1

)∣∣∣∣∣.
Here zi refers to the result a�er an initial sample z0 has passed through i transforma-
tions. �at means that θ = zn.

Variational inference �nds a q ∈ Q that maximizes elbo and normalizing �ows
gives us a way to extend the variational family Q. With a su�ciently complex trans-
formation we minq∈QDKL[q‖p] → 0. In other words, our variational approximation
could in theory converge to the true posterior.

Planar Flow

One transformation suggested by Rezende and Mohamed [2016] is planar �ow:

f(z) = z + uh(wT z + b), (2.14)

where u,w ∈ Rd, and b ∈ R are the parameters; h is a non-linear continuously
di�erentiable function. For this transformation we have∣∣∣∣∣det

(
∂f(z)

∂z

)∣∣∣∣∣ = |1 + h′(wT z + b)uTw|.

Not all transformations of the form Equation 2.14, are invertible. Rezende and Mo-
hamed [2016] shows that for h(x) = tanh(x), f(z) is invertible when wTu ≥ −1.
�ey further go into detail about how to enforce this constraint, but we consider the
details for that as outside the scope of this thesis. Still, even when the inverse exists
it is usually not easy to compute analytically, meaning we cannot evaluate integrals
over θ. Figure 2.5 shows how a single planar transformation can transform a normal
distribution.

Real-Valued Non-Volume Preserving Flow

Dinh et al. [2017] presents a class of invertible transformations with tractable Jaco-
bians which they call Real-Valued Non-Volume Preserving (RealNVP) �ow. We will
�rst dissect the name. If

∣∣∣det ∂f(z)
∂z

∣∣∣ = 1, then f is called a volume preserving �ow. �is
means that qθ(θ) = qz(z) with θ = f(z), hence the transformed random variable still
integrates to 1 and is thus volume preserving. RealNVP is based on a volume preserv-
ing transformation by Dinh et al. [2015], which they call an additive coupling layer.
Consider the following transformation
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Figure 2.5: Shows qz for a standard normal distribution on the le� together
with qθ

(
f(z)

)
, the result of a planar �ow transformation, with parameters u =[

2 0
]T
, w =

[
3 0

]T
, b = 0, h = tanh.

θ1:k = z1:k

θk+1:d = zk+1:d +mλ(z1:k).

Here we have split θ and z into two disjoint subsets of size k and d−k. mλ is called the
coupling function. We will use a neural network as this function. �is transformation
has a very simple Jacobian determinant. Because ∂fi

zj
= 0 for i < j we have a lower

triangular Jacobian. �is means that the Jacobian determinant is just the product of
the diagonal entries. Furthermore, we have ∂fi

∂zi = 1, so the Jacobian determinant
det
(
∂f
∂z

)
=
∏d
i=1

∂fi
∂zi = 1. We also have a tractable inverse for this transformation,

namely

z1:k = θ1:k

zk+1:d = θk+1:d −mλ(θ1:k).

We can see that the inverse, or reverse mapping, is no more di�cult to compute than
the forward mapping. Because the Jacobian determinant of this transformation equals
1 this is volume-preserving. RealNVP combines this mapping with a scaling function
in the following fashion



2.3. GENERATIVE ADVERSERIAL NETWORKS 23

θ1:k = z1:k

θk+1:d = zk+1:d � exp
(
sλ1

(z1:k)
)

+mλ2
(z1:k),

where� denotes element-wise multiplication. �e Jacobian determinant for this trans-
formation is simply exp

(∑d−k
i=1 sλ1

(z1:k)i

)
. It still does not depend on a derivative of

s or m, so we can let those functions be arbitrarily complex. �e reverse mapping is
still just as simple

z1:k = θ1:k

zk+1:d =
(
θk+1:d −mλ2(θ1:k)

)
� exp

(
−sλ1(θ1:k)

)
.

What is important about these coupling transformations is that they only alter some
dimensions at a time. �is means that we have to compose multiple transformations
where z is split into di�erent subsets in order to transform all the dimensions. Dinh
et al. [2015] found that you have to compose at least 3 transformations in order for all
dimensions to be able to a�ect one another. By chaining together these transformations
we are able to create arbitrarily complex variational distributions that we can both
sample from as well as evaluate. Normalizing Flows can give us complex variational
distributions to use for the Black Box Variational Inference algorithm.

2.3 Generative Adverserial Networks

In 2014, Ian Goodfellow and his colleagues [Goodfellow et al., 2014] invented a ma-
chine learning algorithm capable of generating photo-realistic images through what
they called a generative adversarial network (GAN). Although most commonly used
for generating and manipulating photos and videos, it is a method that can be used as
a generative model for any sort of data. �e method was originally proposed as an un-
supervised algorithm, but has since been extended to be used for both supervised and
reinforcement learning. In this section wewill present the original GAN by Goodfellow
et al. [2014], along with some of the main improvements that has has been proposed
since.

2.3.1 Method

A generative adversarial network is comprised of two parts, a generator (G) and a dis-
criminator (D). Each part is a neural network. �e generator takes as input random
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Figure 2.6: An illustration of the structure of a generative adversarial network.

noise and outputs a candidate. In the context of image generation, the candidate will
be an image. �e discriminators job is to evaluate whether this image is real or gener-
ated. Figure 2.6 illustrates the structure of a generative adversarial network model. �e
discriminator will output a number between 0 and 1, indicating whether it believes it
is seeing a fake or a real image. A number closer to 0 means it is more sure that it is
seeing a fake image, and a number close to 1 means that it predicts more strongly that
it is a real image.

Loss function

Because we have two neural networks to train, we also need two loss functions. �ose
loss functions are as follows

Discriminator loss: −Ez[log (1−D(G(z)))]− Ex[log (D(x))] (2.15)
Generator loss: Ez[log (1−D(G(z)))], (2.16)

where G is the generator function, D is the discriminator function, z is the random
noise input to the generator, and x is the real image. �e loss functions re�ect that
the discriminator tries to learn to distinguish between real and fake images, while the
generator tries to fool the discriminator. In the original paper [Goodfellow et al., 2014]
they found that in the early phases of training, when the discriminators job is very easy,
it can get stuck and stop learning. �is happens because the gradient of the generators
loss function is too small when the discriminator is very good. To tackle this issue they
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proposed an alternative loss function for the generator:

Alternative generator loss: − Ez[log (D(G(z)))]. (2.17)

Because log has a much larger gradient near 0 than 1, when the discriminator becomes
very good, this alternative generator loss will have a larger gradient, hence combating
the vanishing gradient problem.

Training

Generally when training GANswe alternate between training the discriminator and the
generator. Because both loss functions need D(G(z)), this value can be shared if the
networks are trained alternatingly. If either network starts dominating however, it can
be more e�cient to train one network more o�en than the other. Arjovsky et al. [2017]
found that this was particularily e�ective when using an alternative loss function called
the Wasserstein distance. GANs are notorious for how di�cult they are to train. One
problem is that it is di�cult to know when the training has converged. In a standard
neural network, the loss function will stabilize at a low level, and you know that you
have reached a local minimum. Because GANs have two competing loss functions, the
value will not always converge, but can keep oscillating. Another thing that makes
GANs hard to train is that the model can be subject to mode collapse. �is means
that instead of learning a distribution over the entire dataset, it learns to generate very
realistic datapoints in a small portion of the dataset. �e discriminator will then learn
that it is seeing too many samples from this portion of the sample-space, and start
predicting anything from that subset as fake. �is will punish the generator for only
replicating a small portion of the dataset, but what o�en happens is that it then starts
generating samples from a di�erent portion of the distribution.

2.4 Bayesian Neural Networks

In this section we will de�ne Bayesian neural networks, and discuss the di�erences
between these and standard neural networks. We reserve the discussion of speci�c
implementations of Bayesian neural networks for Chapter 3.

�e term Bayesian neural networks refers to an extension of standard neural net-
works, that treat each weight as a random variable. We will get to what this means, but
we �rst need to look at standard neural networks from a probabilistic standpoint. A
standard neural network can be seen as a probabilistic model p(ŷ|θ,x), that given a set
of weights θ and an input vector x, outputs a value ŷ. When training a standard neural
network, what we do is to try to �nd arg maxθ

∏n
i=1 p(yi|θ,xi); the parameters θ,

that makes the network best predict the training data. �at means that we want ŷ to
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be the value y that we expect to see given x. �is is also called maximum likelihood
estimation.

In Bayesian neural networks, the probabilistic interpretation of the model is
p(θ|x,y). Instead of �nding the parameters that maximizes the likelihood that the
model’s output is the true output value, we try to �nd out for every set of parame-
ters how likely it is that a model with these parameters generated the data that we are
looking at. �e important di�erence is that Bayesian neural networks give us a random
variable as an output instead of a �xed point. �is means that when we θ to make our
prediction, p(ŷ|θ,x) will also have a distribution. �is gives us the very valuable abil-
ity to see how certain the network is with its predictions. �e standard network will
give an output ŷ, but we do not know if this is something close to the data it has trained
on, or if it is making unjusti�ed extrapolations. In this case a Bayesian neural network
will give a high uncertainty if it has not seen any training data that is similar to what
it is predicting. �is makes Bayesian neural networks particularly good for small data
sets.

For standard neural networks one can usually �nd a simple loss function, that will
steer the gradient descent towards a local maximum likelihood. Usually a negative
log likelihood is employed as a loss function, and for many distributions this is a sim-
ple expression. In Bayesian neural networks, the natural loss function, the posterior
probability − log p(θ|D) is not computationally tractable. �is means that we have to
resort to approximate methods. �ese methods generally build on variational infer-
ence, which we discussed in Section 2.2.4. We discuss the speci�cs of these methods in
Chapter 3, but we will present the general structure behind those methods here.

First, we start by de�ning some variational family of distributions. We denote this
and element in this family by q(θ|λ) ∈ Qλ, where λ ∈ Ω is the set of indices in the
variational family. For simplicity we usually omit λ, and write q(θ). Now that we have
a variational family of distributions we will try to �nd the distribution in this family
that has the minimum KL-divergence to the true posterior. To do this we employ the
evidence lower bound introduced in Section 2.2.4. We replace our de�nition of q∗(z)
with q(z|λ∗), where λ∗ is

λ∗ = arg max
λ∈Ω

elbo(q(z|λ))

�e terms in the evidence lower bound can be easily approximated through Monte
Carlo simulations, by simply running the network multiple times over the same data
and averaging the loss function. All the methods discussed in Chapter 3 follows this
structure. �e di�erence is how they represent the variational distribution, and how
they approximate the evidence lower bound. In chapter 4 wewill present a newmethod
for approximating the posterior in Bayesian neural networks.



Chapter 3

State of the Art

In this chapter we will introduce some state of the art Bayesian deep learning algo-
rithms, along with their respective pros and cons. �ese methods build on the back-
ground presented in Section 2.2, particularly on variational inference discussed in Sub-
section 2.2.4, as well as the introduction to Bayesian neural networks in Section 2.4.

3.1 Bayes by Backprop

Bayes by Backprop is a method by Blundell et al. [2015] for approximating the poste-
rior distribution in a neural network. �e method assumes that independent Gaussian
distributions on each weight is su�cient to approximate the posterior distribution. By
making this assumption, variational inference can be used to �t the marginal Gaus-
sian distributions to the true posterior. Our aim is then to minimize the KL-divergence
between the posterior and the variational distribution. We can formulate that in the
following way:

F(D,λ) = DKL(q(θ|λ)‖p(θ|D))

∝
∫
q(θ|λ) log

q(θ|λ)

p(θ)p(D|θ)
dθ

∝ DKL[q(θ|λ)‖p(θ)]− Eq[log p(D|θ)]

∝ Eq
[
log q(θ|λ)− log p(θ)− log p(D|θ)

]
(3.1)

where θ are the (sampled) weights of the network, and λ are the parameters (µ and
Σ) of the variational distribution. �is optimization function can be approximated by

27
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Monte Carlo sampling by the following sampling procedure

F(D,λ) ≈ 1

n

n∑
i=1

log q(θ(i)|λ)− log p(θ(i))− log p(D|θ(i)),

where θ(i) is the i-th sample from the variational posterior q(θ(i)|λ). To be able to
di�erentiate F(D,λ) with respect to λ, a few tricks has to be employed. First we use a
reparameterization trick, that will allow us to di�erentiate a normal distribution with
respect to its mean and standard deviation, as shown in Equation 3.2. �e random
variable is now independent on the parameters we di�erentiate on, so straightforward
di�erentiation will work for both parameters.

N (µ, σ2) = µ+ εσ, where ε ∼ N (0, 1). (3.2)

Second, we do not actually di�erentiate with respect to the standard deviation σ. In-
stead we try to optimize a parameter ρ such that σ = log(1 + exp(ρ)). �is transfor-
mation ensures that we can only �t a valid range for σ, i.e. the interval (0,∞). It also
increases precision for representing small values of σ.

Blundell et al. [2015] found that a sample size of one was su�cient for the method
to converge to a good local minimum. Algorithm 4 shows the Bayes by Backprop pro-
cedure for training a Bayesian neural network with one sample for each Monte Carlo
approximation.

One of the strengths of this algorithm compared to the other algorithms we will
discuss is that it is very fast. It only requires twice as many parameters as compared
to a regular non-Bayesian neural network for the same model structure. �e number
of forward and backward operations is also not signi�cantly increased. Its limitation is
that it is only able to express a posterior that consists of independent Gaussian distribu-
tions on each weight. Subsequent methods have generally been trying to deal with this
limitation and increase the posterior space beyond independent Gaussian distributions.
�is is also the goal of the algorithm we propose in Chapter 4.

3.2 Multiplicative Normalizing Flow

Multiplicative normalizing �ow [Louizos and Welling, 2017] can be seen as an exten-
sion of Bayes by Backprop [Blundell et al., 2015]. It starts with the same posterior ap-
proximation of independent Gaussian distributions for the posterior, but then applies
normalizing �ows to augment the posterior to form a more accurate approximation.
Normalizing �ows are discussed in Section 2.2.5.
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Algorithm 4: Bayes by Backprop (taken from Blundell et al. [2015])
For each iteration:

1. Sample ε ∼ N (0, I)

2. Let θ = µ+ log (1 + exp (ρ)) ◦ ε
3. Let λ = (µ,ρ)

4. Let f(θ,λ) = log qλ(θ)− log p(θ)− log p(D|θ)
5. Calculate the gradient with respect to the mean

∆µ =
∂f(θ,λ)

∂θ
+
∂f(θ,λ)

∂µ

6. Calculate the gradient with respect to the standard deviation parameter ρ

∆ρ =
∂f(θ,λ)

∂θ

ε

1 + exp (−ρ)
+
∂f(θ,λ)

∂ρ

7. Update the variational parameters

µ← µ− η∆µ

ρ← ρ− η∆ρ

Normalizing �ows need the Jacobian of the transformation to calculate the log-
likelihood. If we use normalizing �ows directly on the weights in the neural network,
the Jacobian will have dimension |w|2. �is matrix would not be tractable to compute
or even store. To keep the computations tractable, they needed to limit the dimen-
sions of the normalizing �ow. For this they chose to parameterize the posterior in the
following way

z ∼ qλ(z)

θ ∼ qφ(θ|z),

where qλ(z) is a density that has been modi�ed by the normalizing �ow. λ are the
parameters of the normalizing �ow, and φ are the mean and standard deviation pa-
rameters of qφ(θ|z) de�ned as

qφ(θ|z) =

Din∏
i=1

Dout∏
j=1

N (ziµij ,Σ
2
ij), (3.3)

where Din and Dout are the number of input and output nodes for the layer, respec-
tively. �is parameterization scheme is illustrated in Figure 3.1. Applying normalizing
�ow to transform q(z) is possible because z is much lower dimension than θ. �e
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Figure 3.1: Illustration of weight parameterization in Multiplicative Normalizing Flows

distribution we are interested in is the variational posterior q(θ). To get this they ap-
proximate

q(θ) =

∫
qφ(θ|z)qλ(z) dz. (3.4)

through Monte Carlo sampling. �ey can now reformulate the KL-divergence between
the variational posterior and the true posterior as follows

F(D, z,θ) = DKL(q(θ)‖p(θ|D))

∝
∫
q(θ) log

q(θ)

p(θ)p(D|θ)

∝ DKL(q(θ)‖p(θ))− Eq[log p(D|θ)]

∝ Eq
[
log q(θ|z) + log q(z)− log p(D|θ, z)− log p(θ)− log q(z|θ)

]
We would like to use this function as the loss function, but the posterior q(z|θ) =
q(θ|z)q(z)
q(θ) is intractable. To handle this, Louizos andWelling [2017] introduced another

variational distribution r(z|θ), that is also parameterized by a normalizing �ow. �is
results in the following loss function

f(θ,λ) = log q(θ|z) + log q(z)− log p(D|θ, z)− log p(θ)− log r(z|θ), (3.5)

where λ is now used to describe all parameters of q, including the mean and standard
deviation, and all the parameters in the normalizing �ow.
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�e optimization procedure for this algorithm ismuchmore involved than for Bayes
by Backprop [Blundell et al., 2015], but we give a rough outline of the procedure in
Algorithm 5.

Algorithm 5: An outline of the multiplicative normalizing �ow algorithm for a fully con-
nected layer.
Requires:

• x, the input value to the current layer.
• λ, the parameters of the layer (includes mean, standard deviation and parameters of the normalizing
�ow).

For each iteration, for each layer:

1. Sample z0 ∼ q(z)
2. Transform with normalizing �ow zTf

= NF (z0)

3. Calculate output mean µO = (x� zTf
)µN

4. Calculate output variance ΣO = x2ΣN

5. Sample ε ∼ N (0, I)

6. Let θ = µO +
√

ΣO � ε
7. Update λ← λ− α∇λf(θ,λ)

Louizos and Welling [2017] show that it is possible to parameterize the posterior
through multiplicative normalizing �ows, and that this gives a more accurate posterior
approximation. Results show predictive ability on par with other state-of-the-art meth-
ods, while providing signi�cantly be�er uncertainty estimates than Bayes by Backprop.
Although this method increases the �exibility of the posterior, the multiplicative nature
of the parameterization limits its ability to model arbitrary relations between weights.

3.3 Bayes by Hypernet

Bayes by Hypernet [Pawlowski et al., 2017] is a di�erent approach to approximating
the posterior distribution. Instead of making strict assumptions about the shape of the
posterior and minimizing the KL-divergence analytically, they let the variational poste-
rior be almost arbitrarily �exible, and use an approximation to the KL-divergence. �e
complex variational posterior is generated from a neural network, which they choose
to call a hypernet. �e hypernet is fed a set of random samples from some simple dis-
tribution, and then outputs a new distribution. �is functionality is equivalent to that
of a generator in a generative adversarial network (see Section 2.3). To calculate the
KL-divergence between this distribution and the prior, a kernel function is used. �is



32 CHAPTER 3. STATE OF THE ART

requires multiple samples from both the prior and the posterior. Equation 3.6 shows
the kernel they used to estimate the KL-divergence, and is taken from Jiang [2018].

DKL(q(θ)‖p(θ)) ≈ d

n

n∑
i=1

log
minj ‖θiq − θjp‖

minj 6=i ‖θiq − θjq‖
− log

m

n− 1
(3.6)

Pawlowski et al. [2017] use �ve samples from the prior and �ve from the posterior
for each KL-approximation. Increasing the number of samples used will naturally lead
to a more accurate approximation, but will also be more computationally demanding
since each posterior sample is generated by a neural network. Algorithm 6 shows the
procedure for updating the parameters of the hypernet.

Algorithm 6: Bayes by Hypernet
We denote the function described in Equation 3.6 as f(θq ,λ|θp), whereλ is the set of weights of the neural
network q.

For each iteration:

1. Sample θiq , for i = 1, . . . , n from the hypernet.

2. Sample θjp, for j = 1, . . . ,m from the prior.

3. Update λ← λ− α
(
∇f(θq ,λ|θp) +

∂ log p(D|θq)

∂θq

)
.

Notice that only the hypernet is being trained. �e network used for making predic-
tions doesn’t actually have any parameters itself. It depends on the hypernet to supply
it with parameters every time it makes a prediction.

�e algorithm is fairly straightforward, but there are a few varieties in how the
hypernet generate the weights that can have an impact on performance. Pawlowski
et al. [2017] tried a few di�erentmethods. �e �rst method they triedwas to use a single
hypernet to generate all the weights of the network in slices. �e network takes as an
input a random vector z, together with a one-hot encoded vector c describing which
subset of the weights it is generating. �is is to avoid having a hypernet with too many
outputs. Secondly they tried using a single hypernet for each layer. �irdly, they tried
using a combination of these methods, where each layer has a hypernet, which splits
the weights by its output dimension. �ey found that the layer-wise approach was the
most computationally demanding, but also gave the best result in terms of accuracy
and uncertainty.



Chapter 4

Method

In this chapter we will present a novel method for approximate Bayesian inference in
neural networks. �is method builds upon material previously discussed in this thesis.
In particular generative adversarial networks [Goodfellow et al., 2014] and Bayes by
Hypernet [Pawlowski et al., 2017].

4.1 Concept and Motivation

�e general concept of the method we propose is to use a generative adversarial net-
work to get the posterior of the weights in a Bayesian neural network. �e generator
will generate samples from the posterior distribution of the weights given the training
data, while the discriminator approximates the KL-divergence between this sampling
distribution and the prior. �e discriminator acts only as a penalty while training the
model, and is not necessary for inference. �is means that once the model is fully
trained, we no longer need the discriminator. Figure 4.1 illustrates the concept. �e
yellow diamonds represents the values necessary to assemble a loss function.

Recall from Section 2.4 that a Bayesian neural network can use variational inference
andminimize the evidence lower bound to approximate the posterior distribution of the
weights. Also recall that the evidence lower bound can be represented as the sum of the
KL-divergence from q(θ) to p(θ) and the negative log likelihood, −Eθ∼q[log p(D|θ)].

elbo(q) = Eθ∼q[log p(θ,D)]− Eθ∼q[log q(θ)]

= DKL[q(θ)‖p(θ)]− Eθ∼q[log p(D|θ)]

We know that the negative log likelihood, −Eθ∼q[log p(D|θ)], can be easily approxi-
mated by assuming that p(D|θ) is part of a known family of distribution that we can

33
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Figure 4.1: An illustration of the primary concept.

evaluate, such as a Gaussian for regression or a Bernoulli for binary classi�cation. So
for elbo, the di�cult part is calculatingDKL[q(θ)‖p(θ)]. We wantQ to be as �exible
as possible to more accurately model the true posterior, but this makes an analytical
solution for the KL-divergence di�cult to obtain. Our Q is a complex warping of a
multivariate normal distribution modeled by a generator network, meaning Q can be
highly �exible. We then want to use a discriminator to calculate DKL[q(θ)‖p(θ)].

4.2 Details

�is section goes into more detail on the method we have developed.

4.2.1 �eoretical Foundation

First we have to show that it is possible to use a discriminator to approximate
the KL-divergence between two distributions. In Proposition 1 we prove that an
optimal discriminator1 with respect to the loss `(D) = −Ex∼p[log (D(x))] −
Ex∼q[log (1−D(x))], approximates the KL-divergence between two distributions to

1An optimal discriminator is one that yields the minimum mean loss over an in�nite number of samples.
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arbitrary precision. �is means that we can get an arbitrarily good approximation of
DKL[q‖p] by increasing the complexity of the discriminator and the number of samples
for the discriminator to evaluate.

Proposition 1
Let p(x) : Rn → R+ and q(x) : Rn → R+ be two pdfs.

Furthermore, let D(x) : Rn → (0, 1), and let ` be an operator on D, such

that `(D) = −Ex∼q[log (D(x))] − Ex∼p[log (1−D(x))]. Finally, denote

D∗ = arg minD `(D).

�en,

DKL[q‖p] = Ex∼q
[
log (D∗(x))− log (1−D∗(x))

]

Proof.

`(D) = −Ex∼q[log (D(x))]− Ex∼p[log (1−D(x))]

=

∫
x

[
−q(x) log (D(x))− p(x) log (1−D(x))

]
dx

= −
∫
x

[
q(x) log (D(x)) + p(x) log (1−D(x))

]
dx

Using the fact that

arg max
y

a log (y) + b log (1− y) =
a

a+ b
,

we can pointwise optimize D so that we get

D∗ = arg min
D

`(D) =
q(x)

q(x) + p(x)
.

Because there are no constraints onD (as opposed to a PDF, it does not have to integrate
to 1), a pointwise mimunum function of `(D) is valid, and must be at least as small as
any other function.
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We now have that

Ex∼q
[

log (D∗(x))− log (1−D∗(x))
]

= Ex∼q

[
log

(
q(x)

p(x) + q(x)

)
− log

(
1− q(x)

p(x) + q(x)

)]

= Ex∼q

[
log

(
q(x)

p(x) + q(x)

)
− log

(
p(x)

p(x) + q(x)

)]

= Ex∼q

[
log

(
q(x)

p(x) + q(x)

p(x) + q(x)

p(x)

)]

= Ex∼q

[
log

(
q(x)

p(x)

)]
= DKL[q‖p].

Now that we have shown that a discriminator can be used to approximate the
KL-divergence between two arbitrary PDFs, we will use it to approximate the KL-
divergence between the prior and posterior in a Bayesian neural network. �is has
a few key advantages compared to other state of the art methods. Bayes by Backprop
does not make any assumptions about the prior distribution, but is only able to make
independent Gaussian approximations of the posterior. Bayes by Hypernet does not
make any assumptions about the shape of the prior or posterior distribution, but uses
a KL-approximations that is not well understood, and that we will show in Chapter 5
does not approximate the KL-divergence well with few samples. My method does not
make any assumptions about the shape of the prior or posterior distribution either, but
has a theoretical guarantee of an arbitrarily precise approximation.

Figure 4.1 illustrates the general structure of our proposed method. �e generator
takes in random noise, and outputs a set of weights for the Bayesian neural network.
�e Bayesian neural network then acts as a regular neural network, using the generated
weights to predict y from x. At the same time, the discriminator approximates the
probability that these sets of weights comes from the posterior distribution. We use
this probability to estimate the KL-divergence between the prior and the posterior.
Nowwe can sum the estimated KL-divergencewith the negative log likelihood from the
prediction that our Bayesian neural net made to get the loss function for the generator.
We now end up with the following loss functions:
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Discriminator loss: − Eθ∼G(Z)[log (D(θ))]− Eθ∼p(θ)[log (1−D(θ))] (4.1)
Generator loss: Eθ∼G(Z)

[
− log (p(D|θ))︸ ︷︷ ︸

prediciton loss

+ log (D(θ))− log (1−D(θ))︸ ︷︷ ︸
Normal generator loss

]
(4.2)

Comparing the loss functions with those of a standard GAN, we can see that the dis-
criminator loss in Equation 4.1 is the same as the one for a regular GAN shown in
Equation 2.15. �e generator loss, however, is slightly di�erent. It is a combination of
the regular generator loss from Equation 2.16, the modi�ed loss from Equation 2.17,
and the negative log likelihood from regular neural networks.

4.2.2 Tackling dimensionality

For this method to work, there are a few requirements. Firstly, the discriminator must
be able to learn to di�erentiate between two distributions. In small dimensions, this will
not be a problem, but all neural networks tend to struggle with very large unstructured
input spaces. �e size of the input space for the discriminator equals the number of
weights in the Bayesian neural network. Neural networks can havemillions of weights,
so we know that this will pose a problem. We need a way of reducing the input space
for the discriminator.

Layer independence

In Section 2.2.4 we introduced mean �eld, a family of distributions characterized by
how they factorize in such a way that we can easily perform our desired operations.
If we apply the mean �eld assumption that q(θ|D) factorizes into

∏N
l=1 ql(θl), where

θl are the weights in layer l of the Bayesian neural network, we can ensure that this
assumption holds by giving each layer its own generator, and giving each generator
independent noise samples when generating weights. Now that we have ensured in-
dependence between each layer, we can actually give each layer its own discriminator
too. We can show that the KL-divergence between the weights and priors for the whole
network is the sum of KL-divergences for each layer:
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Figure 4.2: Shows how two layers with independent generators and discriminators can
be chained together.

DKL[q(x,y)‖p(x,y)] = E(x,y)∼q

[
log

(
q(x,y)

p(x,y)

)]

= E(x,y)∼q

[
log

(
q1(x)q2(y)

p1(x)p2(y)

)]

= E(x,y)∼q

[
log

(
q1(x)

p1(x)

)
+ log

(
q2(y)

p2(y)

)]

= Ex∼q

[
log

(
q1(x)

p1(x)

)]
+ Ey∼q

[
log

(
q2(y)

p2(y)

)]
= DKL[q1(x)‖p1(x)] +DKL[q2(y)‖p2(y)]. (4.3)

Now that we have shown that by sacri�cing association between weights in di�erent
layers, each layer can have its own generator and discriminator. �is means that we
can turn our Bayesian neural network into Bayesian layers and chain them together.
Figure 4.2 shows how we can chain multiple layers together.

Partial weight independence

Separating the network into independent layers reduces the dimension of the discrim-
inator’s input somewhat, but each layer still has Nin ×Nout, where Nin and Nout are
the number of input and output nodes for the layer respectively. �is means that we
can still have millions of weights per layer. Just as for Louizos and Welling [2017], the
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Figure 4.3: Illustration of how weights are separated into subspaces, each color repre-
senting its own subspace.

complexity required to model an arbitrary transformation of the entire weight space is
computationally very complex even for medium sized layers.

Wewill now propose a method to reduce this number toNin+Nout. We can extend
the argument for spli�ing the network into layers to giving each weight its own gener-
ator and discriminator, but this is not computationally feasible. It would also take away
the goal of the method, to improve the capacity of variational posterior to model as-
sociation between weights, since this would make the posterior fully factorized. What
we can do instead is to divide the weights into independent subspaces where we can
model dependencies between weights in each subspace. Figure 4.3 shows a natural way
of dividing the weights into such subspaces. If we otherwise follow the samemethod as
for separating layers we end up with Nout generators and discriminators, each gener-
ator generating Nin weights, and each discriminator handling Nin weights. With this
method we have reduced the dimensionality of the discriminators input space consid-
erably, while still being able to model association between weights connected to the
same node. �is dimensionality reduction is similar to the one made in MNF [Louizos
and Welling, 2017], in that we are both able to model arbitrary dependencies between
weights going into the same output node.

Having Nout generators and discriminators for each layer is still very demanding
computationally. We will now borrow a trick from Pawlowski et al. [2017], where they
append a one-hot vector to the noise input vector for the generator so that they can use
a single generator to generate all the weights of a layer slice-wise. For our situation,
this means that the input vector to the generator will be a vector [z, c], where z is the
noise vector, and c is a one-hot encoded vector denoting which subspace of weights



40 CHAPTER 4. METHOD

we are generating. c will have dimensionality Nout. We can extend this method to
the discriminator, so that we also only use one discriminator for each layer. Figure 4.4
shows a complete picture of how we group the weights for the whole Bayesian net-
work into vectors that the discriminators can handle. �ere are a few reasons that this
method works. First, spli�ing the weights up into subspaces based on their output node
connection means that subspace of weights will have the same dimensionality. �is is
a necessary requirement in order to be able to use a single generator and discrimina-
tor. Second, as long as we use independent noise input to the generator for each weight
batch we generate, we can assure independence between the weight subspaces. Finally,
concatenating a one-hot encoded vector to the input allows the generator and discrim-
inator to learn the function that all the multiple generators/discriminators would learn.
We can see that this is the case, by creating a function G(z, c) such that

G(z, c) =

Nout∑
i=1

ciGi(z),

where ci is the ith entry in the one-hot encoded vector c, and Gi(z) is the generator
that generates the weights connected to the ith output node. Because G is a neural
network, by the universal approximation theorem it should be able to approximate this
function. Algorithm 7 is a rough pseudo-code implementation of the algorithm.
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(b) Spli�ing weights for each layer into sep-
arate vectors for each output node.

Figure 4.4: An illustration of how the weight space in the network is decomposed into
subspaces.

4.2.3 Implementation details

We have so far described our idea on a conceptual level. Now we will discuss details
necessary to successfully implement our algorithm.
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Algorithm 7: Bayesian neural network with discriminator KL-approximation
Parameters for the discriminator: θ
Parameters for the generator: λ
Pw predicted probability that a samplew from q comes from q.
Pw predicted probability that a sample p from p comes from q.
`(Pw, Pp) = − log (Pw)− log (1− Pp)
f(Pw) = log (Pw)− log (1− Pw)

For each iteration, for each layer:

1. Generate a random sample zi ∼ i.i.d U(−0.5, 0.5) for i = 1, . . . , Nout.
2. Append a one-hot encoded vector to the random samples, ζi =

[
zi ci

]
.

3. Generate weightsw =
[
Gλ(ζ1) . . . Gλ(ζN )

]
.

4. Sample priors p ∼ i.i.d N (0, 1).
5. Calculate discriminator predictions for weights Pw = Dθ(w).
6. Calculate discriminator predictions for priors Pp = Dθ(p).
7. Update λ← λ− α∇λ

[
log p(D|w) + f(Pw)

]
8. Update θ← θ− α∇θ`(Pw, Pp)

Batching and stochastic gradient descent

Regular neural networks, as well as GANs use batching to reduce the variance in the
gradient. Averaging the gradient over multiple examples means a more steady conver-
gence to a local minimum. Because of the reduced variance, it also allows for a higher
learning rate, leading to faster convergence. In our algorithm there are a few di�erent
ways of doing batching

• Sample weights w ∼ G(z). Use the weights to make prediction on a mini-batch
of the training data Di ⊂ D. Calculate the average loss across the mini-batch.

• Sample multiple weights w1,w2, . . . ,wn ∼ G(z). For one datapoint di ∈ D
make n predictions, one for each set of weights. Calculate the average loss across
all predictions.

• Combine the above and run a mini-batch of data through multiple sampled
weights and calculate the average loss.

Each of these methods have their own advantages and disadvantages. Running a batch
through the same sampled weights works like regular batching, bene�ts from hardware
acceleration in the form of fast matrix multiplication, thus it is computationally cheap
to apply. �e bene�ts, however, are lesser than for the other methods. �is batching
scheme only reduces the variance in the gradient with respect to the likelihood. Unfor-
tunately, most of the variance in the gradient comes from the KL term. To reduce this
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variance we can use the second batching scheme. By sampling the weights multiple
times and running them through the discriminator, and taking the mean predicted KL-
divergence, we will have reduced the variance of the gradient with respect to the KL
term. �is process is unfortunately much more di�cult to hardware accelerate, which
means it also costs more. We found the third scheme to work best. We can calculate the
full loss and its gradient multiple times, but only update the weights for every N data
point with the average gradient. �is method cannot be hardware accelerated, hence
has similar computational costs as the previous method, but reduces the variance of
the gradient further than method 2 with minimal performance penalty.

Whether we are using batching or not, we are still only seeing a subset of the data
at a time. �is means that the negative log-likelihood part of our loss is only calculated
on this subset of data we are seeing, while in Proposition 1, we are assuming that the
nll is calculated across the whole dataset. Usually this is not a problem, because we
assume that the gradient of that subset of datapoints gives us an approximate gradient.
For Bayesian neural networks, it is di�erent. For the loss, we have one component, the
negative log-likelihood, that depends on the data and the sampled weights, and one
component, the KL-divergence, that depends only on the sampled weights.

L(D,θ) = −
|D|∑
i=1

log p(y(i)|x(i),θ) +DKL[q‖p] (4.4)

�e negative log-likelihood for the whole dataset is the sum of the nll for each data
point, so when we are using a subset of all the data points, we are underestimating the
total nll for the whole dataset. �is means that the KL-divergence will contribute too
much to the loss, and cause it to overestimate the uncertainty. To counteract this, we
�rst make sure to average the nll loss for each batch across all the data points. �is
means that we would be underestimating the nll by a factor of |D|. We can then divide
the estimated KL-divergence by this same factor.

Noise Vector

We can drastically alter the behavior of the generator by changing the dimensionality
of the noise vector that we give it as input. A vector with few dimensions will force
dependency between weights, as we cannot transform a set of independent random
variables into more independent random variables2. �is means that if we want to be
able to model independence between all weights we will need the noise vector to con-
tain at least as many elements as the output vector, i.e. the number of input vectors for

2Assuming our generated set of random variables does not contain almost surely constant random vari-
ables. In our case, our generator will generate these distributions with probability 0, so we do not have to
consider this case.
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its associated layer. Having a noise vector this size will keep the input size to the gener-
ator O(n) with respect to the layer size, which is important for training to be feasible.
Increasing the dimensionality of the noise vector beyond the minimum requirement
to model independent random variables for each weight will make the task for the
generator more di�cult and subsequently increase training time. We hypothesize that
providing a smaller noise vector will, despite its limitations in modelling capacity, pro-
vide be�er results due to simplifying the generators task. Experimental results shows
that this is in fact the case.

Another factor is the distribution of the noise vector. Typically in GANs, each el-
ement is sampled from either a Gaussian or uniform distribution. We found that our
model performed be�er with uniform samples. We also experienced some convergence
issues with Gaussian noise on certain tasks, hence we recommend using uniformly
sampled noise for the generator.

Network Parameters

Our algorithm consists of three neural networks, the Bayesian neural network whose
weights are generated by the generator, said generator, and the discriminator. �e
Bayesian neural network is used to predict p(y|x,w), and is hence comparable to a
regular neural network. We can therefore choose to use the same number of layers,
the same activation functions, and the same node count as in a regular neural network;
and hopefully expect similar predictive performance. A more di�cult task is to deter-
mine the best network for the generator and discriminator. We �nd that increasing
the size of the generator and discriminator will quickly slow down training. Another
consideration is the relative performance between the generator and discriminator. �e
correctness of the method relies on having a perfect discriminator. While this is impos-
sible in practice, it is crucial that it is much stronger than the generator. In a regular
GAN, a very strong discriminator can be detrimental to performance [Arjovsky and
Bo�ou, 2017], but because we are also using the log-likelihood p(y|x,w) to train the
generator, our situation is di�erent. To get an accurate estimate for elbo for each it-
eration we need the discriminator to not only predict the correct distribution that the
sample comes from, it needs to do it with correct certainty, a much more di�cult task.
Finding the best parameters for a speci�c task is a di�cult problem, but Table 4.1 shows
some general guidelines we have found to work well.

Annealing

Louizos and Welling [2017] and Pawlowski et al. [2017] use annealing during their
training phase to ensure convergence. �is means that we alter the loss to
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Generator learning rate 10−3

Discriminator learning rate 10−3

Generator size 2 hidden layer with 0.25x and 0.5x as many nodes
compared to the maximum of input and output
nodes in the Bayesian layer.

Discriminator size 3 hidden layers with 0.5x as many nodes compared
to the maximum of input and output nodes in the
Bayesian layer.

Noise vector length ≤ 10.

Table 4.1: Suggested network parameters.

L(ŷ,x,θ) = log p(ŷ|x,θ) + ηDKL [q, p] ,

where η is a variable depicting the importance of the KL-divergence in the loss func-
tion. By starting with a small value for η and slowly increasing it to 1 we can make the
network learn accurate predictions before needing to focus on uncertainties. We can
think of this as speeding up convergence by �rst moving to a good point estimate, and
from there develop appropriate uncertainties for each weight. �is makes sense if a
good local minimum in our search space is close to a maximum likelihood solution. We
believe this is a fair assumption; we imagine going from an MLE solution to an approx-
imate posterior by increasing the variance of each weight according to its importance
in making an accurate prediction. �is way we still make good predictions, but move
our weight distribution closer to the prior, hence reducing the KL-divergence.

Another advantage of annealing for our method is that we do not have to worry
about training the discriminator while the weights are far from the optimum. Because
we assume that a good local minimum for the generator(s) is close to the MLE solution,
we can move there quicker if we don’t have to also consider the noisy loss from the
discriminator. Once we are close to a local minimum in the MLE search space we can
train the discriminator on this solution until we are satis�ed with its performance, and
then proceed to train them together.

Batch Normalization

Radford et al. [2016] presents a few architectural guidelines for training deep convolu-
tional generative adversarial networks (DCGAN), and while our use of GANs does not
�t their description, we still found some of their tips useful. �ey suggest using batch
normalization in the generator and discriminator to avoid training problems arising
due to poor initialization, and to help gradient �ow in deep models. Our generative
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networks are rather shallow, but we still found batch normalization layers in the gen-
erator achieves signi�cantly be�er results. We suspect that batch normalization makes
it much easier to approximate the prior distribution by limiting large activations. We
can only use batch normalization when we have multiple batches that we feed into the
generator. �is means that we cannot use it for layers that have a 1-dimensional output.
�is is typically only the case for output layers, so we expect to be able to use batch nor-
malization for most layers. For the discriminator network, we found that it performed
signi�cantly worse with batch normalization. Limiting large activation values for the
discriminator likely causes it to underestimate the KL-divergence between the distribu-
tions, hence the poor results. We suspect that for regular GANs limiting the predicted
KL-divergence results in more stable gradients, hence the improved performance.

Multiple samples

Reducing noise in the gradient of KL-approximation can signi�cantly improve perfor-
mance as Ranganath et al. [2013] showed when reducing the noise in the gradient for
Black Box Variational Inference. One of the ways we thought we could do this was
to give the discriminator multiple samples from the generator and the discriminator
for each prediction, as described above. By increasing the input dimensions to the dis-
criminator and giving it multiple samples each time we can expect the discriminators
task to be easier. From Equation 4.3 we can see that giving the discriminator n sam-
ples, and then dividing the resulting predicted KL-divergence by n we get the same
KL-divergence we expect from a single sample. �e problem with this approach is that
as we are giving the discriminator more samples, because the KL-divergence is calcu-
lated from the log of the output from the discriminator, it must become exponentially
more certain about each prediction. Consequently, implementing this idea actually
signi�cantly hinders training performance.
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Chapter 5

Evaluation and Results

�is chapter presents and discusses the performance of ourmethod introduced in Chap-
ter 4. We compare our method to the methods presented in Chapter 3, and discuss pos-
sible future work in the use of discriminator networks for Bayesian neural networks.

5.1 Evaluation

�ere are no standard performancemetrics for Bayesian neural network. For predictive
performance we can use the same measures as for regular neural networks (accuracy,
precision, recall, F1-score, etc), but evaluating uncertainty is much more di�cult. We
can generate data with a known noise level, but we cannot set the epistemic uncertainty
(uncertainty about the model generating the data) in the experiment. �e papers pre-
sented in Chapter 3 all partially rely on qualitative analysis of their method. Still, there
are quantitative ways of measuring how well our method models uncertainty. One
such method used in Louizos and Welling [2017] is to train a model on one dataset (for
instanceMNIST), then run themodel on a di�erent dataset (for instance notMNIST [Bu-
latov, 2011]), recording the distribution of entropy in the output predictions. Because
we are running the model on a dataset it has no training data on, we want the model
to exhibit a high entropy, meaning it exhibits no con�dence about any prediction.

In order to be able to reference our method in comparison to existing methods we
have coined the term Bayes by GAN (BbG) for our method. �roughout this chapter
we will refer to our method as BbG.

47
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5.1.1 KL-approximation

First we start by showing that a discriminator can approximate the KL-divergence be-
tween two distributions. To do this, start by de�ning p and q as two distributions with
known KL-divergence. For two Gaussian distributions,N (µq,Σq) andN (µp,Σp), we
have

DKL[q‖p] =
1

2

(
log

∣∣Σp

∣∣∣∣Σq

∣∣ − k +
(
µq − µp

)T
Σ−1
p

(
µq − µp

)
+ tr

(
Σ−1
p Σq

))
.

(5.1)
If we choose p and q to be two Gaussian distributions we can use Equation 5.1 to calcu-
late the true KL-divergence between the distributions, and compare this to the estimates
from the discriminator. Let X ∼ N (0, 1) with PDF q(x), and Y ∼ N (0, 42) with PDF
p(y), we then get

DKL[q‖p] =
1

2

(
log

42

1
− 1 +

(0− 0)2

42
+

1

42

)

= 2 log 2− 15

32
≈ 0.92.

Let us now de�ne a discriminatorD with input and output size 1, and one hidden layer
of size 5. We will then use D to approximate the KL-divergence between p and q and
compare to our analytical KL. Figure 5.1 shows the estimated KL-divergence between p
and q for samples drawn from each training iteration. Notice that while the analytical
KL-divergence must always be positive, the estimated KL-divergence can sometimes
be negative. �is is because the KL-divergence is the expected value Eθ∼q

[
log q(θ)

p(θ)

]
,

and while this is positive, the Monte Carlo estimate 1
S

∑S
s=1 log q(θs)

p(θs) can be negative.
�is is particularly likely to happen when we have a very few number of samples, as
can be seen in Figure 5.1a. Intuitively, for our case this means that the discriminator
sees the sample from q as more likely to come from p. Since this can in fact be the
case, we expect to sometimes get a negative estimate for the KL-divergence, even with
a perfect discriminator, but with enough samples S the mean should approach the true
KL-divergence. We now have empirical evidence that a neural network can be used to
approximate the KL-divergence between two distributions by using Proposition 1. �is
is the foundation that BbG builds on, so both the convergence rate and the accuracy of
this result is critical to the performance of BbG.

Having shown that a discriminator will converge to the correct KL-divergence for
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Figure 5.1: Shows predicted and true KL-divergence between two univariate Gaussian
distributions.

two univariate Gaussian distribution, we will compare its performance to the kernel
method used in BbH [Pawlowski et al., 2017]. Figure 5.2 shows the mean and standard
deviation of the predicted KL-divergence for both methods between two univariate
Gaussians, and between two multi-variate Gaussian distributions. In Figure 5.2a we
can see that the mean of the discriminator’s estimate for the KL-divergence between
two distribution is almost exactly correct, regardless of the number of samples. It makes
sense that the mean prediction for the discriminator will be constant with respect to
the number of samples it gets, as it does not take multiple samples into account, but
rather averages the prediction over each sample individually. �e kernel method on
the other hand performs poorly with few samples. We can see that it severely underes-
timates the KL-divergence, while at the same time having a much larger variance in its
predictions. �is is especially noticeable in the multi-variate case (Figure 5.2b), where
it even predicts a negative KL-divergence with few samples. Pawlowski et al. [2017]
use 5 samples from the prior and posterior distribution of the weights to estimate the
KL-divergence. Our graph shows that this is not at all su�cient to accurately estimate
the KL-divergence. �is means that the BbH network will underestimate uncertainty,
and become overcon�dent in its predictions.

5.1.2 Fitting priors

A�er showing that our discriminator is able to approximate the KL-divergence between
two distributions, a logical next step is to see if the generator is able to �t a prior distri-
bution. To test this we train our Bayesian neural network without a log-likelihood loss.
Because our model only outputs samples from the posterior distribution, to quantita-
tively compare the posterior and prior distributions, we will assume that the generated
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Figure 5.2: Mean and standard deviation of predicted KL-divergence between two dis-
tributions. In (a) and (c) the KL-divergence is predicted from N (0, 12) to N (0, 22). In
(b) and (d), the KL-divergence is approximated between two 9D Gaussian distributions.
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posterior is Gaussian. �is might seem like a strong assumption, and it is, but it will al-
low us to look at the KL-divergence between the prior and posterior distributions of the
weights as the network sees more andmore samples. Once this measure has converged,
we can compare samples of a weight to the prior distribution for that weight. Figure 5.3
shows that the KL-divergence between the prior and posterior distribution for weights
in a Bayesian neural network layer trained without a negative log-likelihood reaches
close to zero with both a kernel and a discriminator approximation. We can also see
that we are able to �t the prior distribution in a neural network with a discrimina-
tor in fewer steps than with a kernel approximation, despite having to train both the
generator and the discriminator.
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Figure 5.3: KL-divergence between prior and posterior for weights in a Bayesian layer
trained solely to minimize KL-divergence.

Knowing that we are able to �t a prior distribution with the discriminator we will
compare the ��ed distributions with those made with a kernel approximation. Figure
5.4 shows the approximate distribution ��ed by the kernel approximation a�er 3 000,
6 000, and 9 000 iterations. We can see that both methods are able to �t a univariate
Gaussian distribution, but we can also see that BbG, using a discriminator, converges
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much quicker than BbH, using the kernel approximation. �is con�rms the results in
Figure 5.3.
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Figure 5.4: Generator ��ing a standard normal distribution with a kernel KL-
approximation. Numbers denote number of training steps.
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Figure 5.5: Generator ��ing a standard normal distribution with a discriminator KL-
approximation. Numbers denote number of training steps.

5.1.3 Regression on toy dataset

Regression is a simple qualitative test of Bayesian neural networks. With a one-
dimensional regression problem with a known generative model we can plot the mean
and standard deviation against the true generative model. �is will show us the pre-
dictive performance of BbG while also being able to inspect the uncertainty estimates
by the model. We would expect a large variance in prediction in regions with li�le to
no data. To have comparable results to other methods we will use the same regression
problem used for evaluation in [Louizos and Welling, 2017; Pawlowski et al., 2017]. We
let x be 20 values sampled from U(−4, 4), and yi = x3

i + εi, where εi ∼ N (0, 32). Fit-
ting this cubic function should be a simple task formost methods, but �nding the uncer-
tainty around each prediction is a more di�cult task. Figure 5.6 shows BbG compared
to some other state-of-the-art methods. All methods were used to train a neural net-
work with two hidden layers of 100 nodes. �e implementation of all other state-of-the
art methods were borrowed from Pawlowski et al. [2017]’s o�cial GitHub repository at
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https://github.com/pawni/BayesByHypernet. We will note that our
results do not entirely match up with the ones presented by Pawlowski et al. [2017]’s
for BbB, MNF, and BbH. In their paper none of these methods seem to have converged,
and does not �t the polynomial as well as the non-Bayesian methods. �ey do, how-
ever, present have a larger predicted accuracy, but we do not see it as a fair result to
stop training before the model has ��ed the data in order to preserve predicted uncer-
tainty. For this reason we have opted to run the experiment for longer. As we trained
their model for longer, however, we saw that the variance in their prediction started
going to zero. We therefore had to stop the training once the model seemed to have
��ed the dataset and started reducing the variance in its prediction. �is phenomenon
was not present when training BbG, which meant that we could train the model for
longer. We can see in Figure 5.6 that BbG outperforms all other methods with respect
to both predictive accuracy and uncertainty. We have made further details on how we
obtained these results available in Appendix A.

5.1.4 MNIST

MNIST [LeCun et al., 2010] is a dataset containing 70 000 handwri�en digits. Each data-
point is a 28×28 pixel grey-scale image with a corresponding label indicating the digit
in the picture. �e dataset is split into a training set of 60 000 images and a test set of
10 000 images.

We will begin by training the network described in Table 5.1 using a variety of
methods. Table 5.2 shows the classi�cation error results for this tasks. We ran ex-
periments with dropout and BbG. �e rest of the results are taken from the Bayes by
Hypernet paper [Pawlowski et al., 2017]. Wewere not able to replicate the performance
of Dropout that they claim in their paper, which might indicate that the changes re-
quired to get dropout to perform as advertised would also increase the performance
of BbG. We therefore can’t de�nitely say that our method is signi�cantly worse than
BbB, MNF, and BbHwith respect to predictive performance. We can see that just like in
their results dropout outperforms the Bayesian neural network methods with respect
to predictive performance. We have a few hypotheses as to why it seems to perform
worse than the other Bayesian neural network methods when it outperforms them on
the regression task. First of all, the increased complexity in the model makes it much
more di�cult to �nd the optimal network size for the generator and discriminator.
It might be that the method would perform much be�er with much larger networks
for the generator and discriminator, but this would also mean a much longer training
time. We also saw on the regression problem that the model only started outperform-
ing other state of the art methods a�er very many epochs, and while the model seemed
to have converged, this is notoriously di�cult to con�rm for GANs since there are two
competing loss functions.

https://github.com/pawni/BayesByHypernet
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Figure 5.6: Predictive distribution on a 1d regression task for di�erent methods. �e
datapoints were sampled from yi ∼ x3

i + εi, where xi ∼ U(−4, 4), and εi ∼ N (0, 32).
Orange curve is the mean prediction. Orange shaded area corresponds to 1, 2, and 3
standard deviations away from the mean. Blue curve is the third degree polynomial
that the datapoints were sampled from. Blue points are the datapoints used to train the
model.
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(a) MNIST. (b) notMNIST.

Figure 5.7: Sample of images from two di�erent datasets.

Layer Size Channels Kernel Size Stride Activation
1 Input 28× 28 1 - - -
2 Conv 28× 28 6 5× 5 1 relu
3 MaxPool 24× 24 6 2× 2 2 -
4 Conv 12× 12 16 5× 5 1 relu
5 MaxPool 8× 8 16 2× 2 2 -
6 Fla�en 4× 4 16 - - -
7 Dense 256 - - - relu
8 Output 10 - - - so�max

Table 5.1: Neural network structured used to classify MNIST images.

Method Dropout Dropout* BbB* MNF* BbH* BbG
Error (%) 0.89 0.47 0.72 0.63 0.56 1.12

Table 5.2: Error on the MNIST test set. * Results as reported by Pawlowski et al. [2017].
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To quantify uncertainty for this task we made predictions on a di�erent dataset and
measured the cumulative distribution of the entropy for each prediction �is method
was also used to measure the quality of the predicted uncertainty in Louizos and
Welling [2017]. �e entropy for a prediction is de�ned as:

H(ŷ) = −
n∑
i=1

p(ŷi) log p(ŷi).

�e minimum entropy is always 0. For MNIST, which has 10 classes, the maximum
entropy is log 10 ≈ 2.3. We predict the entropy of the prediction on all the elements in
the test set for bothMNIST and notMNIST. Figure 5.8 shows the cumulative distribution
of the entropy on the whole test set. We can see that most predictions on MNIST have
a very low entropy. �is means that it is very sure in its prediction. We can explain that
the curve for the dropout model is higher in this case because of its higher accuracy. It
might, however, not be be�er to have a lower entropy in its predictions, considering the
model actually does make wrong predictions, and a low entropy in those cases would
mean that it predicts the wrong class with high certainty. For this reason, we can’t
necessarily say that it performs be�er than BbG in terms of uncertainty on the MNIST
dataset. On the notMNIST dataset we want the model to have a very low entropy
in its predictions, considering none of the classes are correct. We can see that BbG
has a much lower entropy in its predictions, meaning it signi�cantly outperforms the
dropout model with respect to uncertainty. We do not have a similar comparison to
other Bayesian neural network models, but we hypothesize that it would be di�cult to
stop training at the right time to preserve a good predictive uncertainty, just as we saw
with the regression problem.
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Figure 5.8: Cumulative distribution of entropy on the MNIST and notMNIST dataset
for dropout and BbG trained on the MNIST dataset.
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Chapter 6

Discussion and Conclusion

In this �nal chapter we discuss our contribution to the �eld of Bayesian deep learning.
We discuss how ourworkmight be extended upon, andwhat newmethods could spring
from our work.

6.1 Discussion

When we started our research into a new method for Bayesian inference in neural net-
works we were wondering if generative adversarial networks could be used to generate
a �exible posterior distribution over the parameter space in a Bayesian neural network.
We hoped that the use of generative adversarial networks for generating posterior dis-
tributions could achieve be�er predictive uncertainty than existing methods.

Proposition 1 gives a theoretical proof that a neural network can indeed be used
to approximate the KL-divergence between two distributions. In Figure 5.1 we back
this up with empirical evidence. �is provides an essential foundation for the viabil-
ity of our method. We go on to to show that using the KL-divergence estimated by
the discriminator we can train a generative network to approximate a distribution. We
see in Figure 5.3 that the KL-divergence between the approximated distribution and
the true distribution is almost zero. Finally, in Figure 5.6 we show the performance
of our method relative to other known methods on a regression problem. All these
results show that it is possible to use generative adversarial networks to approximate
the posterior distribution in neural networks. Because quantitative evaluation of pos-
terior approximation is di�cult, we opted to use the same regression problems found
in multiple other papers [Pawlowski et al., 2017; Louizos and Welling, 2017]. �ese
results show that the mean prediction of our model makes a good �t compared to
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other Bayesian neural network methods. Yao et al. [2019] show that Bayesian infer-
ence methods in general underestimates uncertainty, which we also see in Figure 5.6,
particularly in areas with li�le data. �is is a�ributed to the fact that we are mini-
mizing the KL-divergence between the variational posterior and the posterior. Other
divergences between distributions might perform be�er with regard to uncertainty es-
timation [Steinbrener et al., 2020]. Our method seems to perform at least on par with
existing methods with regards to uncertainty and accuracy. We should note, however,
that we were not able to reproduce the results presented in [Louizos andWelling, 2017]
and [Pawlowski et al., 2017].

Our method most closely resembles that of Bayes by Hypernet, as we are both
using generators as our parameterized distribution. Our methods di�erentiate in how
we approximate the KL-divergence. While their method uses a kernel approximation,
we are training a model to approximate the KL-divergence. We hypothesized that a
discriminator is more e�cient at approximating the KL-divergence, e.g. needs fewer
samples to achieve a be�er approximation of the KL-divergence. We base this on the
fact that the kernel approximation has no information about the shape of the prior
distribution, while the discriminator will learn the shape of the posterior distribution
in its e�ort to di�erentiate between the two distributions. �is also means that the
discriminator will not be able to generally calculate the KL-divergence between two
distributions, only between that speci�c distribution and a prior.

6.2 Contributions

We show that generative adversarial networks can be used to approximate posterior
distributions in Bayesian neural networks. We �nd that it is possible to use discrimi-
nators to approximate the KL-divergence between distributions, and that this approx-
imation can be used to train generators on ��ing a prior distribution. We have de-
veloped a method using generative adversarial networks for posterior approximation
in Bayesian neural networks. We have shown through experimental results that our
method outperforms other state-of-the-art implementations of Bayesian neural net-
works on a standard regression problem both with respect to predictive accuracy and
uncertainty. We have further results that shows that our method scales to larger net-
works and achieves high predictive accuracy on theMNIST [LeCun et al., 2010] dataset.

6.3 Future Work

�ere were a few ideas that presented themselves during development and evaluation
of our method, but that we found to be outside the scope of this report. �e following
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ideas could be interesting to explore

1. We believe that our method should generalize to recurrent neural networks, and
it would be interesting to see the performance of our method on those architec-
tures. �ere seems to be particularly li�le work on predicting Bayesian posteriors
in recurrent neural networks.

2. Optimize the network structure of the generator and discriminator, along with
other hyper-parameters. It is not clear what is a su�cient generator or discrim-
inator size for good convergence. Because our method does not behave like reg-
ular neural networks or GANs, it is also interesting to see how other hyper-
parameters can a�ect convergence and performance. It is also interesting to see
whether the right hyperparameters could make our model competitive with re-
spect to predictive accuracy on the MNIST dataset.

3. Look at di�erent loss functions for both the generator and the discriminator. It
would be interesting to see if it is possible to use GANs to minimize other diver-
gence measures besides KL-divergence. �is could possibly reduce the underes-
timation of variance.

4. Look at the performance of BbG on reinforcement learning problems compared
to existing models, and whether or not it has a favorable exploration/exploitation
trade-o�. Blundell et al. [2015] looked at the performance of Bayes by Backprop
on reinforcement learning problems in their paper.
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Appendix A

Implementation of all other Bayesian neural network methods are from https:
//github.com/pawni/BayesByHypernet. Each model has a single hidden
layer of width 100. BbB, MNF, and BbH was trained for 3 000 epochs. BbG was trained
for 70 000 epochs. �e prior was an independent Gaussian with mean 0 and standard
deviation 1 for all weights for all models. Other model speci�c parameters are listed
below.

Bayes by Backprop

Learning rate is 0.001.

Bayes by Hypernet

�e hypernet has two hidden layers of width 32 and 64, respectively. We are using 5
samples from the prior distribution and 5 samples from the posterior distribution in the
kernel approximation of the KL-divergence. Learning rate is 0.001.

Multiplicative Normalizing Flow

We use a composition of 2 planar �ows (Equation 2.14) for the �rst layer, and 2 NVP
�ows with a single layer network of width 50 for the second layer. �e auxiliary distri-
butions are identical, except with a width of 100 instead of 50. Learning rate is 0.001.

Bayes by GAN

For our method we use a neural network with a two hidden layers of width 32 and 64,
respectively, as the generator. �e discriminator is a three-layer network, all of width
64. �is applies to both layers of the network. �e noise vector is of size 10. Learning
rate is 0.0001.

https://github.com/pawni/BayesByHypernet
https://github.com/pawni/BayesByHypernet
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Appendix B

Proof for Section 2.2.4 (Variational Inference)

Lemma 1

arg max
qi∈Q

elbo(qi) =
exp (Eθ−i∼q−i

[
log p(θi|θ−i,D)

]
)∫

θi
exp

(
Eθi∼q−i

[
log p(θi|θ−i,D)

])
dθi

Proof.

elbo(qi) =

∫
θi

q(θi)Eθ−i∼q−i

[
log p(θi|θ−i,D)

]
dθi

−
∫
θi

qi(θi) log qi(θi|D) dθi

+λ

(∫
θi

qi(θi) dθi − 1

)
Now to �nd the maximum we will take the functional derivative with respect to qi and
set it equal to zero, in the same fashion we would optimize any other function.

δelbo(qi)

δqi
= Eθ−i∼q−i

[
log p(θi|θ−i,D)

]
− log qi(θi|D)− 1 + λ = 0

delbo(qi)

dλ
=

∫
θi

qi(θi) dθi − 1 = 0

�is gives us the following relation for the optimal function

q∗i (θi) = expEθ−i∼q−i

[
log p(θi|θ−i,D)

]
− 1 + λ

λ = 1− log

∫
θi

exp
(
Eθi∼q−i

[
log p(θi|θ−i,D)

])
dθi,

which altogether gives us

q∗i (θi) =
exp (Eθ−i∼q−i

[
log p(θi|θ−i,D)

]
)∫

θi
exp

(
Eθi∼q−i

[
log p(θi|θ−i,D)

])
dθi

.


