
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Johanne Bognøy
IG

 Coder: Enabling Visual Coding of Institutional Statem
ents

Johanne Bognøy

IG Coder: Enabling Visual Coding of
Institutional Statements

Master’s thesis in Applied Computer Science
Supervisor: Christopher Frantz

June 2021

M
as

te
r’s

 th
es

is

Johanne Bognøy

IG Coder: Enabling Visual Coding of
Institutional Statements

Master’s thesis in Applied Computer Science
Supervisor: Christopher Frantz
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

IG Coder: Enabling Visual
Coding of Institutional

Statements

Johanne Bognøy

01-06-2021

Master’s Thesis
Master of Science in Applied Computer Science

30 ECTS
Department of Computer Science

Norwegian University of Science and Technology,

Supervisor: Associate Professor Christopher Frantz

Abstract

This thesis presents IG Coder, a web application for the interactive encoding of
statements in the Institutional Grammar (IG) syntax.

Institutions are behavioral directives such as those found in policies and regu-
lations. The Institutional Grammar is a device for analyzing institutions by decom-
posing them into their base components. The process of decomposing institutions
is commonly referred to as encoding.

However, no software applications currently exist that facilitate the encoding
process in a way suited to the Institutional Grammar and that produce output
usable for analysis. Two general-purpose applications have been adapted for en-
coding, both of which have considerable shortcomings. A new encoding tool could
be designed specifically for the needs of the Institutional Grammar, and this thesis
does exactly that.

To investigate how the new tool should be designed, I conduct a study of the
current encoding tools. This results in insights about the strengths and weaknesses
of the current tools, as well as about what is needed in an encoding tool in general.

The IG Coder prototype is built on a new way of regarding institutional state-
ments. It represents statements as trees, and this representation is visualized in an
interactive, color coded tree graphic which serves as the basis of the coding inter-
face. This is significant because institutional statements, like sentences in natural
language, are complex and often have a hierarchical structure. The current en-
coding tools fail to visualize coded statements in such a way.

I evaluate the completed prototype via user testing and interviews with the
participants, which yield in-depth insights about the prototype on several levels.
This serves to guide its future development as well as show that there is interest in
this tool in the IG research community. With IG Coder I have produced a tangible
starting point for a brand new encoding tool for the Institutional Grammar.

iii

Sammendrag

Denne oppgaven presenterer IG Coder, en webapplikasjon for interaktiv koding
av institusjonelle setninger i Institutional Grammar-syntaksen.

Institusjoner er direktiver for oppførsel, slik som de som finnes i lovverk og
regelverk. Institutional Grammar er et verktøy for analyse av institusjoner ved å
oppdele dem i deres grunnleggende komponenter. Denne oppdelingsprosessen er
ofte kalt koding.

Problemet er at det i dag ikke finnes noe programvare som gjør kodeprosessen
enkel på en måte som er tilpasset Institutional Grammar og som produserer anal-
yserbar utdata. I dag er to allsidige applikasjoner gjenbrukt til koding, og begge
har store mangler for dette formålet. Ett nytt kodeverktøy kan designes spesielt
med tanke på Institutional Grammar, og det er nøyaktig det denne oppgaven gjør.

For å undersøke hvordan dette verktøyet burde designes, gjennomfører jeg
en studie av de to kodeverktøyene som brukes nå til dags. Dette resulterer i en
forståelse av styrkene og svakhetene ved disse to verktøyene, samt av hva som
egentlig trengs i et kodeverktøy.

Prototypen IG Coder bygger på en ny måte å se institusjonelle setninger. Den
representerer setninger som trær, og denne representasjonen visualiseres i form
av en interaktiv, fargekodet tregrafikk som fungerer som grunnlaget til kodegrens-
esnittet. Dette er betydningsfullt ettersom institusjonelle setninger, akkurat som
setninger på naturlig språk, er komplekse og ofte har en hierarkisk struktur. De
nåværende kodeverktøyene er ikke i stand til å visualisere kodede setninger på en
slik måte.

Jeg evaluerer den ferdige prototypen ved hjelp av brukertesting og intervjuer
med deltagerne, noe som gir innsikt om prototypen på flere nivåer. Dette tjener
til å veilede dens fremtidige utvikling samt vise at det er interesse i dette verk-
tøyet innen IG-forskingsmiljøet. Med IG Coder har jeg produsert et håndgripelig
utgangspunkt for et helt nytt kodeverktøy for Institutional Grammar.

v

Acknowledgements

I would like to thank my supervisor, Christopher Frantz, for introducing me to
the Institutional Grammar, guiding and advising me throughout this project, and
helping me realize our idea of making the Institutional Grammar accessible to
computing. We have had a great cooperation over these past two years.

I would like to thank the three participants who were kind enough to test my
prototype and participate in interviews:

Angelo Baldado
Dr. Ute Brady
Dr. Bartosz Pieliński

Last but not least, I would like to thank my mother for her everlasting support
and love.

Johanne Bognøy

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgements . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
1 Introduction . 1

1.1 Research Questions . 2
1.2 Outline . 3

2 Research Methods . 5
2.1 Phase 1: Design . 5
2.2 Phase 2: Development . 6
2.3 Phase 3: Evaluation . 7

3 Background . 9
3.1 Content Analysis and Policy Coding . 9
3.2 Prominent Coding Schemes . 10
3.3 The Institutional Grammar . 11

3.3.1 Regulative Statements . 12
3.3.2 Constitutive Statements . 13
3.3.3 Mapping and Order of Components 14
3.3.4 Nesting . 15
3.3.5 IG Extended Features . 16
3.3.6 IG Logico Features . 17

3.4 Literature Review . 18
3.5 Current Tools . 21

3.5.1 Spreadsheets . 21
3.5.2 Text Annotation Tools . 24
3.5.3 Inline Coding . 27
3.5.4 Automated Approaches . 28

4 Review of Current Tools . 29
4.1 Introduction . 29
4.2 Method . 30
4.3 Results . 33

ix

x Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

4.4 Discussion . 42
5 Development of IG Coder . 45

5.1 Initial State . 45
5.2 Technical Design . 46
5.3 Requirements . 48
5.4 Development Process . 52
5.5 User Interface Design . 53
5.6 Implementation and Tests . 57

5.6.1 Tools . 57
5.6.2 Data Model . 58
5.6.3 Tests . 62

5.7 Deployment . 63
6 Evaluation of IG Coder . 65

6.1 Introduction . 65
6.2 Method . 65

6.2.1 Recruitment . 66
6.2.2 User Testing . 66
6.2.3 Interviews . 67

6.3 Results . 68
6.3.1 Interview 1: Angelo Baldado . 68
6.3.2 Interview 2: Dr. Ute Brady . 69
6.3.3 Interview 3: Dr. Bartosz Pieliński 71
6.3.4 Overall Findings . 73

7 Discussion . 77
8 Conclusion . 81

8.1 Summary . 81
8.2 Limitations . 82
8.3 Future Work . 82

Bibliography . 83
A Excel Questionnaire . 87
B Early Interview Questions . 91
C INCEpTION+Excel Questionnaire . 93
D IG Data Model . 97
E Test Statements . 107
F Interview Guide . 109
G IG Coder Public Repository . 111

Figures

3.1 Spreadsheet template for IG 2.0 with example 23
3.2 INCEpTION user interface with examples 26

4.1 Questionnaire A: Level of experience with Microsoft Excel 33
4.2 Questionnaire B: Level of experience with Microsoft Excel 34
4.3 Questionnaire A: Microsoft Excel’s suitability as a coding tool 34
4.4 Questionnaire B: Microsoft Excel’s suitability as a coding tool 35
4.5 Questionnaire B: Level of experience with INCEpTION 35
4.6 Questionnaire B: INCEpTION’s suitability as a coding tool 35

5.1 System architecture of IG Coder . 47
5.2 IG Coder: List of test statements . 54
5.3 IG Coder: Uncoded entry . 54
5.4 IG Coder: After creating a root node 55
5.5 IG Coder: Statement editor . 55
5.6 IG Coder: Component editor . 56
5.7 IG Coder: Junction editor . 56
5.8 IG Coder: Fully coded statement . 57
5.9 Sample tree representation of a statement with the IG data model . 61

xi

Tables

3.1 Comparison of the TEI, Akoma Ntoso and the IG 12
3.2 Mapping of regulative and constitutive components 14
3.3 Selected papers on the IG . 19

4.1 Table format for structuring the raw data 32
4.2 Identified advantages of Microsoft Excel as a coding tool 36
4.3 Identified advantages of INCEpTION as a coding tool 37
4.4 Identified disadvantages of Microsoft Excel as a coding tool 38
4.5 Identified disadvantages of INCEpTION as a coding tool 39
4.6 Identified needs in a coding tool for the IG (1/2) 40
4.6 Identified needs in a coding tool for the IG (2/2) 41

xiii

Code Listings

5.1 Interface for the elemental node in the IG data model 59

xv

Chapter 1

Introduction

Institutions are a fundamental object of analysis within the area of policy studies.
The term encompasses behavioral directives ranging from social norms to pub-
lic policies, which describe expectations for behavior under given circumstances
and sanctions associated with given behaviors. In the Institutional Grammar (IG),
individual such directives are called institutional statements.
The Institutional Grammar is a syntax for decomposing, or encoding, institutional
statements. It defines a flexible syntactical structure that allows statements to
be broken down to their base components, not unlike linguistic grammars. This
in turn allows for the systematic analysis of policy structure and meaning. Most
institutional statements prescribe expected actions for actors within given contexts
and under given circumstances, often conveying either an obligation, prohibition
or permission. The IG also defines another type of statement that describes the
composition of institutional systems such as boards and committees.
The practice of encoding institutional statements using the IG is commonly re-
ferred to as policy coding. Researchers perform policy coding for various ends,
though a common use case is the extraction and statistical treatment of syntactical
components. The IG offers a native syntax that can be used to annotate statements
inline but this method of coding does not lend itself to data extraction and anal-
ysis. To gain analytical capabilities, researchers have taken to using spreadsheets
like Microsoft Excel as the primary policy coding tool. A spreadsheet template has
been developed that separates IG components into columns, for one statement to
be coded per row. This tool has served researchers well enough for over a decade
but has notable limitations, most glaringly its incompatibility with complex state-
ments, i.e., statements that contain inner statements or logical combinations.
One other tool has notably been used for policy coding, namely the text annotator
INCEpTION. An altogether different approach to coding, this tool accommodates
annotation of text selections in a source text. It allows for overlapping annotations,
unlike inline coding in a text editor. INCEpTION’s main limitations are the lack of
visual overview when reviewing a coding and the reliance on exporting the coded
data in order to perform analysis.
This brings us to the problem: current policy coding tools are inadequate. As

1

2 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

general-purpose applications, both spreadsheets and INCEpTION depend on cus-
tomization to be used for policy coding, and their underlying data structures are
unsuited to the domain-specific and graph-based nature of the IG. It is an insti-
tutional grammar, not a linguistic one. On top of this, neither has support for
validation of correctness.
On account of the specific and unique needs of policy coding, researchers would
be best served by a brand new coding tool. This thesis will provide exactly that: it
will take you through the design, development and evaluation of IG Coder, a web
application for policy coding. The thesis is a blend of development and research.
IG Coder is relevant because the IG is gaining popularity among researchers and
their students. The Institutional Grammar Research Initiative (IGRI) is a collec-
tive of researchers around the world engaged in policy analysis and was founded
to stimulate the theoretical and methodological advancement of the Institutional
Grammar1. My supervisor, Christopher Frantz, is a member of this initiative. In
fall 2020, IGRI researchers held an online course that taught policy coding in
Microsoft Excel to students2. Furthermore, a paper (Frantz & Siddiki, 2021) pub-
lished in 2021 formally introduces IG 2.0, a large overhaul of the grammar with
numerous syntactical refinements that is expected to see high uptake in the com-
munity. This overhaul is also available in an accompanying codebook (Frantz &
Siddiki, 2020) which offers detailed reference and coding guidelines.

Important terminology The term policy coding is not unique to the IG, but in
the remainder of this thesis it is used to mean encoding of institutional statements
using the IG. Furthermore, I often abbreviate the term policy coding tool to coding
tool but the two have the same meaning. Section 3.1 will explain these terms
further.

Target audience This thesis is aimed at those familiar with or interested in the
Institutional Grammar as well as computer scientists in general.

1.1 Research Questions

To cover the design and evaluation parts of this thesis, I pose the following re-
search questions:

State of the art

RQ1 What are the strengths and weaknesses of current coding tools?

RQ1a What features from existing tools should the new coding tool retain?

RQ1b What features from existing tools should the new coding tool dis-
card?

1https://institutionalgrammar.org
2https://institutionalgrammar.org/teaching-institutional-analysis/

https://institutionalgrammar.org
https://institutionalgrammar.org/teaching-institutional-analysis/

Chapter 1: Introduction 3

User needs

RQ2 What features do coders need in a coding tool for the IG?

RQ2a What are the essential features a coding tool for the IG should pos-
sess?

RQ2b What are the fringe features a coding tool for the IG should possess?

Evaluation of the new coding tool

RQ3 To what extent does IG Coder satisfy the needs identified in RQ1 and RQ2?

RQ3a To what extent is IG Coder aligned with coders’ understanding of
institutional statements?

RQ3b How satisfied are users with the coding interface of IG Coder?

RQ3c To what extent can IG Coder improve the coding workflow?

The purpose of RQ1 is to determine the state of the art in policy coding tools
and identify ways the new tool can improve upon this state. It does so by finding
strengths and weaknesses of the current tools that will guide the design of the new
tool. I deem the strengths and weaknesses of current tools to translate directly to
the respective sub-questions of RQ1.
RQ2 also seeks to guide the new tool’s design but this time by focusing on user
needs irrespective of the current tools. Its sub-questions separate essential and
fringe system features. By essential features is meant features needed by many
users, and fringe features are those suggested by at most two. The purpose of this
is to help prioritize the features to implement.
RQ3 evaluates the completed prototype. By "needs identified in RQ1 and RQ2"
I mean the features a new coding tool should and should not possess, whether
they come from an existing tool or not. RQ3 evaluates the new tool against these
needs and assesses its suitability as a policy coding tool, but does not compare it
to the current tools. The primary reason for this is the very low number of people
experienced with both current tools, of which a higher number would be needed
for a reliable comparison.
The methods by which the research questions will be answered are described in
Chapter 2.

1.2 Outline

Chapter 2 describes the phases of the research and how the research questions
are mapped onto those phases, and gives an overview of the research methods
used in each phase along with the reasoning behind them. Chapter 3 contextual-
izes the area of study, taking you from the high-level area of content analysis and
policy coding to the Institutional Grammar itself. It furthermore offers a detailed
explanation of the grammar, a brief history of its literature and descriptions of the

4 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

current coding tools. We then move on to the design phase in which Chapter 4
conducts a study of the current coding tools and answers RQ1 and RQ2. The de-
velopment phase is covered by Chapter 5, detailing various aspects of IG Coder’s
development. In the evaluation phase, Chapter 6 conducts an evaluation of the IG
Coder prototype via user testing and interview feedback, answering RQ3. All re-
search questions answered, Chapter 7 discusses what I learned in this project and
what it achieved. Finally, Chapter 8 concludes the thesis and suggests directions
for future work.
The IG Coder prototype developed in this thesis is a web application, work on
which was already started before the thesis began. Section 5.1 describes the state
of the application at the outset of this thesis.

Chapter 2

Research Methods

The research project is divided into three phases: design, development and eval-
uation.

2.1 Phase 1: Design

The design phase is governed by RQ1 and RQ2, and as such investigates a) the
state of the art in policy coding tools and b) the needs of coders. The resulting
artifact of this phase will be a list of system features that will be considered and
prioritized for implementation during the development phase.
The review of current tools conducted in Chapter 4 covers the design phase and
answers RQ1 and RQ2. It selects Microsoft Excel and INCEpTION as the two cur-
rent coding tools, with emphasis on the former since it is the most widely used
tool. RQ1’s sub-questions are answered for each of these tools.
The review of current tools employs a number of data sources, predominantly
qualitative:

1. A questionnaire of students at the end of a coding course1 asking about their
perceived advantages and disadvantages with Microsoft Excel as a policy
coding tool as well as their needs in a policy coding tool. This questionnaire
employed both open, long-text questions and Likert scale (Robinson, 2014)
rating tasks.

2. My notes from the aforementioned course where I noted the students’ im-
pressions, challenges and discussions

3. An older interview with my supervisor, where he took the role of a coder,
on the policy coding experience in Microsoft Excel

4. A questionnaire of IG researchers. The questions were the same as those in
the first questionnaire but also included equivalent questions on INCEpTION.
This is the only data source on INCEpTION.

To answer the research questions, I extracted sentiments and ideas from these

1https://institutionalgrammar.org/teaching-institutional-analysis/

5

https://institutionalgrammar.org/teaching-institutional-analysis/

6 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

samples in six categories: advantages and disadvantages with each of the two
coding tools and essential and fringe features needed in a coding tool. I used se-
mantic clustering to group and count similar sentiments. The questionnaire results
(sources 1 and 4) are weighted more heavily than sources 2 and 3, because for
source 2, the data is potentially biased as the notes were taken by a single person,
and for source 3, the data is collected from a single participant as well as being
partially outdated as the interview was conducted pre-IG 2.0.
RQ2 is divided into essential and fringe features. I classify identified features based
on the number of people suggesting them, again giving particular weight to the
questionnaire results. As source 2 lacks information connecting sentiments to par-
ticipants, each of its results is counted only once.
I chose a combination of data sources to answer RQ1 and RQ2, primarily because
a questionnaire alone would perhaps not be reliable enough due to the small pop-
ulation of researchers and students familiar with policy coding in spreadsheets.
As of the time of writing, the IGRI has fewer than thirty members2. The additional
data sources, while limited, have the potential to bring out additional viewpoints
because they represent different methods of data collection, i.e., observation and
interviews as opposed to fixed-form questioning.
As the research questions pertain to software applications, reliability is also helped
somewhat by the diversity of backgrounds in the population. Policy analysis at-
tracts researchers from various disciplines and a minority of IG researchers are
computer scientists. To put it bluntly, when asked about what a piece of software
should and should not do, knowledge of how software is made might influence
one’s response.
Of the two current coding tools, Microsoft Excel is represented far more heavily
than INCEpTION in the data sources. This reflects the former’s popularity as a
policy coding tool but also the difficulty of finding reliable data on the latter.
All in all, the limitations in these methods mean their results should not be com-
pletely relied upon. At the same time, the methods have the potential to give a
general understanding of the advantages and disadvantages with current coding
tools as well as needs in a coding tool.

2.2 Phase 2: Development

The development phase is not associated with any research questions. From a re-
search perspective, it simply produces the artifact to be evaluated in Phase 3. This
artifact, the IG Coder prototype, is to be a functional interface for policy coding
and its development is detailed in Chapter 5. Nevertheless, the prototype is a vital
part of the research because without it, Phase 3 is not possible. While the eval-
uation of the prototype is the primary contribution of this thesis, this evaluation
depends on the prototype.

2"IGRI Personnel - Institutional Grammar Research Initiative (IGRI)", Institutional Grammar Re-
search Initiative, https://institutionalgrammar.org/igri-affiliates/. Accessed 20 May 2021.

https://institutionalgrammar.org/igri-affiliates/

Chapter 2: Research Methods 7

2.3 Phase 3: Evaluation

The evaluation phase is governed by RQ3 and described in Chapter 6. In this
phase, the completed prototype is deployed to testers whose task is to code a
given set of institutional statements using the tool. This is followed by a round of
semi-structured interviews with the testers to gain insight into the suitability of
IG Coder as a policy coding tool and answer RQ3.
The testers are selected from members of the IGRI3, including affiliates and in-
terns.
The SAGE Encyclopedia of Qualitative Research Methods (Given, 2008) gives the
following definition of semi-structured interviews: “The semi-structured interview
is a qualitative data collection strategy in which the researcher asks informants a
series of predetermined but open-ended questions.” (Given, 2008, p. 811) I chose
this style of interview because of the need to gain a deeper understanding of
the testers’ experience with the tool. With semi-structured interviews I have the
ability to ask participants for clarification and elaboration where necessary while
also having a core set of questions for all participants.
As part of this phase, I prepared an interview guide with questions sorted by topic.
RQ3 and its sub-questions were incorporated into this list either directly or indi-
rectly. To answer the research questions, I compare and synthesize the interview
responses for each interview question linked to a research question.
The method of investigating RQ3 is qualitative. This means the research questions
will be answered in words only, and no scales or other metrics will be used to
measure extent. The primary reason for this is the limited number of participants,
which is too low to perform reliable statistics on. To be able to participate in this
study, participants must be experienced with policy coding in either Microsoft
Excel or INCEpTION, resulting in a very small eligible population. Another factor
is time constraints limiting the number of interviews I am able to conduct.
All in all, the evaluation of IG Coder is a small-scale study, serving as a first look at
how well the IG Coder prototype functions as a policy coding interface and how
it should be developed further.

3https://institutionalgrammar.org/igri-affiliates/

https://institutionalgrammar.org/igri-affiliates/

Chapter 3

Background

In this chapter, Sections 3.5.1 and 3.5.3 are based on the similar sections in my
Advanced Project Work1 report but have been modified.

3.1 Content Analysis and Policy Coding

Stepping away from the Institutional Grammar and looking at the greater context
around it, content analysis is a research technique for analyzing qualitative text
data (Hsieh & Shannon, 2005). The data source can be any instance of commu-
nicative language, and the method can be either qualitative or quantitative. The
goal of content analysis is to understand, interpret and make inferences about the
content of the text (Elo & Kyngäs, 2008; Hsieh & Shannon, 2005).
Content analysis is typically conceptual, focusing on words, themes and concepts
within the text. It is a systematic and objective method of describing and quanti-
fying such concepts (Elo & Kyngäs, 2008).
For conceptual analysis, the process is generally as follows. The researcher begins
by deciding upon one or more concepts to examine. The level of analysis, i.e.,
whether to code on the level of words, phrases, sentences or themes must also be
decided, as well as the level of implication, i.e., whether to only allow words that
explicitly state the concept or also words that imply it to a set degree.
The text is then coded into categories. This means reducing the text into man-
ageable categories that represent and describe the selected concept(s) (Elo et al.,
2014). Each category will hold a set of words, themes or concepts occurring in
the text that are deemed to have the same meaning, depending on the level of
implication. While the term category is used here, the resulting set of categories
could also be viewed as a taxonomy or classification scheme for the text.
The next step is to actually code the text according to the categories. Depending
on the level of analysis, the text is split into fragments which are then catego-
rized, a process which can be done by hand or with the help of software. If using
software, the researcher need only input categories and the coding can be done

1Course code: IMT4894

9

10 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

automatically, but the resulting coding is very sensitive to how the categories were
defined. Coding by hand can be time-consuming but could be the only option if
there is no software that suits the researcher’s needs.
Finally, the coding can be analyzed. The researcher makes inferences, identifies
trends and patterns and draws conclusions. For instance, he or she might examine
the language used in the text to search for bias. For quantitative analysis the results
can be examined statistically, such as counting the number of occurrences in each
category.
Content analysis uses coding to facilitate analysis of the content of a text. The
coding process distils the text down to its core concepts, which the researcher has
complete control of. The technique is very flexible; the researcher can code for
whatever he or she wishes to investigate.
The term coding can mean both the process of creating a classification scheme
and of applying the scheme to a text. However, the latter meaning is more aptly
expressed by the term encoding.
This brings us to a more specific form of content analysis, namely policy coding.
As the term implies, policy coding means encoding of policy documents or other
legal texts in a predefined syntax. The Institutional Grammar is a specific example
of policy coding with a well-developed classification scheme for individual direc-
tives. Another example can be found in Lane et al.’s coding framework for social
distancing policies during the COVID-19 pandemic (Lane et al., 2020). The coding
framework consists of a number of domains, i.e., categories, which are different
community arenas such as gyms and movie theaters. It is a classification scheme
for a specific type of policy.

Further terminology While the term policy coding is not unique to the IG, it is
commonly used by the IG community to mean encoding of institutional statements
with the IG and this thesis will do the same. Furthermore, in the remainder of
this thesis the term coding is used to mean encoding, i.e., applying an existing
classification scheme to a text. By coder is meant a person who codes institutional
statements with the IG. However, code when used as a noun means computer code.

3.2 Prominent Coding Schemes

Before moving on to the Institutional Grammar itself, we will look at two notable
text coding schemes and relate them to the IG to help contextualize the grammar.
The Text Encoding Initiative (TEI) is an international consortium which main-
tains the TEI Guidelines (TEI Consortium, 2021), a recommended text markup
standard (Cummings, 2013) which originated at a 1987 conference (Cummings,
2013; Vanhoutte, 2004). The Guidelines “apply to texts in any natural language, of
any date, in any literary genre or text type, without restriction on form or content.
They treat both continuous materials (‘running text’) and discontinuous materi-
als such as dictionaries and linguistic corpora.” (TEI Consortium, 2021, iv. About
These Guidelines). The Guidelines are expressed in the XML markup language but

Chapter 3: Background 11

are not restricted to it. Key characteristics of the Guidelines are their broad scope
yet in-depth coverage (Cummings, 2013). The current version of the Guidelines
is P5 (Wittern et al., 2009), which stands for Proposal 5.
Since the TEI Guidelines are designed for the immense scope of any text writ-
ten in any natural language, it does not offer domain-specific schemas for fields
such as political science. It does, however, offer a module for simple semantic and
syntactic annotations of a linguistic nature. As we will see in Section 3.3, institu-
tional statements are sentences in natural language and can thus be analyzed as
such. However, this approach completely misses out on the institutional content
of statements, which is what the IG was designed to be able to analyze. Therefore,
the use cases of the TEI and the IG are mutually exclusive.
More closely related to policy coding is the framework Akoma Ntoso. It orig-
inated from the United Nations Department for Economics and Social Affairs
(UN/DESA)’s project "Strengthening Parliaments’ Information Systems in Africa"
in 2004 and 2005 (Barabucci et al., 2010; Vitali & Zeni, 2007). Akoma Ntoso is a
set of XML schemas for representing parliamentary, legislative and judiciary doc-
uments, developed to enable open access to these materials. Open access means
not only physical and online access but making the documents machine read-
able, opening the door for high value information services. Akoma Ntoso aims to
be a Legal XML standard (Palmirani & Vitali, 2011). One of the pillars of Legal
XML is to “[provide] a representation of the main structures of legal and legisla-
tive documents using a principled approach that provides the best combination
of technological excellence and sophisticated juridical competency” (Palmirani &
Vitali, 2011, p. 76).
The main difference between Akoma Ntoso and the IG is that the former aims to
represent documents themselves while the latter is focused on analysis at a lower
level. Whereas Akoma Ntoso supports the complete annotation of a number of dif-
ferent types of documents within the legal domain, the IG concentrates on policies
and regulations only. Also, while the IG does provide guidelines for preprocessing
such documents, the analysis of institutional statements (i.e., rules) is at its core.
There has in fact been work on representing legal rules with XML markup, as
exemplified by the Legal Knowledge Interchange Format (LKIF) (Gordon, 2008).
LKIF is rooted in artificial intelligence, and the format was created to allow for
computer reasoning with legal rules. Thus, the IG is different in that its funda-
mental goal is institutional analysis.
Table 3.1 gives an overview of the differences between the TEI, Akoma Ntoso and
the IG discussed above.

3.3 The Institutional Grammar

This section will describe the as of writing most recent version of the Institutional
Grammar, IG 2.0 (Frantz & Siddiki, 2021).
IG 2.0 offers three separate versions, or levels of expressiveness, of its syntax: IG
Core, IG Extended and IG Logico. IG Core is the most fundamental version, suited

12 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

TEI Akoma Ntoso IG

Scope of
texts

Any texts in natural
language

Legislative, parlia-
mentary and judi-
ciary documents

Institutional state-
ments extracted
from policies and
regulations

Language XML XML Specification only

Table 3.1: Comparison of the TEI, Akoma Ntoso and the IG

for coding simpler institutional statements and for analysis with a focus on the
individual syntactical components. IG Extended, on the other hand, focuses on
more fine-grained coding and capturing the structure of institutional statements
more closely. At the highest level of expressiveness, IG Logico is intended to help
achieve an understanding of the semantic relationships in and among institutional
statements. IG Extended will be described further in Section 3.3.5 and IG Logico
in Section 3.3.6.
The IG deals with institutional statements, which are written sentences that ex-
press a rule or norm, i.e., an institution. Frantz and Siddiki define institutional
statements as follows: “Institutional statements regulate actions for actors within
the presence or absence of particular constraints, or constitute or otherwise pa-
rameterize features of systems in which actors interact.” (Frantz & Siddiki, 2021,
p. 2). The IG defines two types of institutional statements, regulative and consti-
tutive, both of which are covered by this definition. However, when people think
of institutional statements, they typically think of the regulative type, which we
will begin with.

3.3.1 Regulative Statements

Regulative statements are behavioral directives, defined in the first half of Frantz
and Siddiki’s definition of institutional statements. Following are two examples of
regulative statements2:

Certified farmer must submit an organic system plan annually.

The Program Manager shall send a written notification of proposed suspension
or revocation of certification to certified organic farmer.

In the IG, institutional components are classified as either mandatory (always
present) or optional (may or may not be present) in a statement. Optional com-
ponents allow for the construction of each of Crawford and Ostrom’s statement
types: shared strategies, norms and rules (Crawford & Ostrom, 1995).
The following regulative components exist:

Attributes (A) The actor that carries out the action (i.e., the AIM), who may be an

2Examples of institutional statements in this chapter are taken from the IG 2.0 codebook (Frantz
& Siddiki, 2020).

Chapter 3: Background 13

individual or a group. The actor may be described by their attributes,
hence the name. This component is always present.

Deontic (D) An operator that specifies whether the statement conveys an obliga-
tion (e.g., "must"), permission (e.g., "may"), prohibition (e.g., "must
not") or some other type of prescription. This component may or
may not be present.

Aim (I) The intent of the actor (i.e., the ATTRIBUTES), whether through an
action or an intended outcome. This component is always present.

Object (B) The recipient of the action carried out in the AIM, which may be
animate or inanimate. An object may be direct (Bdir) or indirect
(Bind), where the indirect object is the recipient of the direct ob-
ject instead of the AIM. Each of the OBJECT components may or may
not be present.

Context (C) Defines the circumstances under which the statement applies or
qualifies the action in the statement. It is divided into two: Acti-
vation Conditions (Cac) and Execution Constraints (Cex). If there
are no explicit Activation Conditions in the statement, the default
context clause is "under all conditions". If there are no explicit Exe-
cution Constraints in the statement, the default context clause is "no
constraints". This component is always present, whether its content
is explicit or implicit.

Or else (O) A sanction for violating the action prescribed by the statement, which
is an institutional statement of its own, i.e., a nested statement. This
component may or may not be present.

3.3.2 Constitutive Statements

Defined in the latter half of Frantz and Siddiki’s definition of institutional state-
ments, constitutive statements describe features of institutional systems. Follow-
ing are two examples of constitutive statements:

There is hereby established a public Food Security Advisory Board.

Commissioner of Agriculture and Markets shall be the Chairperson the Council.

Like regulative components, constitutive components are either mandatory or op-
tional in a statement. The following constitutive components exist:

Constituted Entity (E) The entity being constituted or directly affected in the system as
specified by the CONSTITUTIVE FUNCTION. This component is always
present.

Modal (M) An operator that specifies whether the system constitution is nec-
essary, possible or impossible. This component may or may not be
present.

Constitutive Function (F) A verb specifying the role of the CONSTITUTED ENTITY in the system.

14 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

If CONSTITUTING PROPERTIES are present, links the CONSTITUTED

ENTITY to those. This component is always present.
Constituting Properties (P) A physical or abstract object linked to the CONSTITUTED ENTITY by

the CONSTITUTIVE FUNCTION. Provides parameters to the CONSTI-
TUTED ENTITY. This component may or may not be present.

Context (C) Identical to regulative CONTEXT, except it qualifies the CONSTITU-
TIVE FUNCTION instead of the action. Like its regulative counterpart,
this component is always present, whether its content is explicit or
implicit.

Or else (O) The consequence of the CONSTITUTED ENTITY not being constituted
or established, a consequence that is existential in kind. This com-
ponent may or may not be present.

3.3.3 Mapping and Order of Components

There exists a syntactical correspondence between regulative and constitutive
components as shown in Table 3.2. This is relevant for polymorphic statements,
which are explained in Section 3.3.5.
The mapping implies that regulative and constitutive statements are structurally
identical. While this is true on the level presented here, there are lower-level syn-
tactical differences such as the OBJECT being divided into DIRECT OBJECT and
INDIRECT OBJECT. The similarities are born of the fact that both types of state-
ments use the same linguistic sentence structure, and as detailed above, there are
notable semantic differences between the corresponding components.

Table 3.2: Mapping of regulative and constitutive components

Regulative Constitutive

Attributes (A) ⇔ Constituted Entity (E)

Deontic (D) ⇔ Modal (M)

Aim (I) ⇔ Constitutive Function (F)

Object (B) ⇔ Constituting Properties (P)

Context (C) ⇔ Context (C)

Or else (O) ⇔ Or else (O)

On another note, readers familiar with the IG may have noted that the order of
the regulative components presented here differs from the traditional ABDICO se-
quence (and similarly for constitutive components). I chose to present them in the
order ADIBCO because in natural English, the sentence object (i.e., the regulative
OBJECT) almost always takes place after the predicate (i.e., the regulative AIM),
and institutional statements are almost always written in natural language. This
order allows for easier reading of coded statements.

Chapter 3: Background 15

3.3.4 Nesting

IG 2.0 uses the term atomic institutional statement for the elementary form of an
institutional statement. This is a regulative or constitutive statement that contains
no more than one value for each component and has no inner statements. In
practice, however, institutional statements are seldom expressed in atomic form;
they might contain multiple actors, actions or objects and there may exist linkages
between specific actors, actions and/or objects. Furthermore, specific syntactical
components may take the form of a separate institutional statement.
IG 2.0 distinguishes between two forms of nesting: vertical nesting and horizontal
nesting. Vertical nesting occurs when a syntactical component takes the form of a
separate statement and the top-level statement thus contains an inner statement.
The term nested institutional statement means a statement, which may or may not
be atomic, that is contained within a component of another statement.
The OR ELSE component is a special case that always has an inner statement.
It is an abstract component that actually is a separate institutional statement.
Where an OR ELSE component exists, the top-level statement is referred to as the
monitored statement, and the statement contained in the OR ELSE is known as the
consequential statement. Following is an example of vertical nesting with the OR

ELSE component:

"Organic farmers must comply with organic farming regulations",
OR ELSE
"Certifiers must revoke the organic farming certification"

Note in the example that there are two complete institutional statements, the
second being embedded within the OR ELSE component of the first. The first state-
ment is monitored for compliance (i.e., the monitored statement) and the second
expresses a consequence of noncompliance with the first (i.e., the consequential
statement). Furthermore, the first statement may be referred to as the top-level
statement whereas the second is the nested statement.
In IG Core, vertical nesting is only allowed in the form of statement-level nest-
ing. This is another term for nesting a statement within the OR ELSE component.
However, IG Extended allows vertical nesting in a number of components, namely
ATTRIBUTES, OBJECT, CONSTITUTING PROPERTIES, CONSTITUTED ENTITY and CON-
TEXT as well as OR ELSE. This is referred to as component-level nesting, and is
here exemplified as follows:

"Organic farmers may sell their produce under the organic label {under the
condition that organic farmers apply for certification}"

In the above example, the nested institutional statement is denoted by curly braces
and belongs to the CONTEXT (EXECUTION CONSTRAINTS) component of the top-
level institutional statement. The nested statement contains all mandatory com-
ponents of a regulative statement.
Moving on to horizontal nesting, this is the side-by-side combination of syntactical
components or entire statements. It occurs when there are multiple of the same

16 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

syntactical component in a statement. Such combinations are characterized by a
logical operator, typically a conjunction (e.g., "and") or disjunction (e.g., "or").
Exclusive disjunctions (logical XOR, e.g., "either or") also occur in institutional
statements but may be subject to interpretation if they are visually identical to an
inclusive disjunction. Following is an example of horizontal nesting:

"Organic farmers must commit to their organic farming standards and accom-
modate regular reviews of their practices"

The above statement has two actions (i.e., AIMs), linked by a conjunction ("and").
Furthermore, each action is associated with a separate OBJECT.
An institutional statement that features horizontal nesting may be split into mul-
tiple atomic statements. The above example may be decomposed as follows:

"Organic farmers must commit to their organic farming standards" AND
"Organic farmers must accommodate regular reviews of their practices"

Since the original statement has multiple AIMs, splitting results in one statement
for each AIM. Additionally, since the OBJECTs are dependent on their respective
AIMs, the statements are not split further.
More complex statements with multiple independent combinations may also be
normalized in this way. Following is an example of a statement with two indepen-
dent combinations:

"Certified operations or handlers must accept and comply with organic farming
regulations."

Containing two combinations of two components each, this statement may be
decomposed into four atomic statements:

"Certified operations must accept organic farming regulations"
AND
"Certified handlers must accept organic farming regulations"
AND
"Certified operations must comply with organic farming regulations"
AND
"Certified handlers must comply with organic farming regulations"

3.3.5 IG Extended Features

IG 2.0 accommodates the decomposition of actors and objects into descriptors and
properties. As an example, in the OBJECT "written notification" the descriptor is
"notification" and "written" is a property of the "notification". IG Core allows only
a simple property per syntactical component, but IG Extended offers the Object-
Property Hierarchy for coding complex property configurations. It allows proper-
ties to have properties, where any property may be substituted by an object, and
a property or object may be functionally dependent on or independent from their
parent property or object.

Chapter 3: Background 17

IG Extended furthermore offers the Context Taxonomy for semantic annotation of
CONTEXT components (ACTIVATION CONDITIONS and EXECUTION CONSTRAINTS).
This allows for coding institutional context more closely, such as whether the con-
text is of temporal, spatial or some other nature. The taxonomy is structured in a
hierarchy with generic labels at the base level, e.g., "temporal" and more specific
labels at deeper levels, e.g., "point in time".
Sometimes a complex institutional statement includes statements of both regula-
tive and constitutive kinds. For example, the top-level or leading statement may
be regulative and contain a nested statement of constitutive kind. This is referred
to as a hybrid institutional statement; the aforementioned example is specifically
a regulative-constitutive hybrid. The inverse form also exists. The resolution of
hybrid institutional statements is optional in IG Core and a central feature of IG
Extended.
For most institutional statements, it is not difficult to identify its kind. However,
some statements can feasibly be coded as both regulative and constitutive, and
these are referred to as polymorphic institutional statements. Refer to the map-
ping of components in Table 3.2; in a polymorphic institutional statement, each
component may be interchangeably regulative or constitutive. Often, such state-
ments are coded in both forms, i.e., generic form and the analyst may choose a
form based on his or her preference.

3.3.6 IG Logico Features

One of IG Logico’s central features is the annotation of references. Many insti-
tutional statements make reference to another section of a policy or a policy as
a whole. This could be the policy the original statement belongs to or a differ-
ent one, and the referenced section could be another institutional statement or a
division at any level in a policy. IG Logico offers a syntax for annotating such ref-
erences with an identifier of the referenced entity. References signal relationships
between institutional statements and policies, and this allows those relationships
to be coded.
Another feature of IG Logico is cross-component semantic annotations. Taxonomies
are offered for annotating syntactical components with labels such as the actor, ac-
tion or object’s role in the institutional setting, whether it is animate or inanimate
and whether it is concrete or abstract. There are also taxonomies for annotating
commonly occurring types of regulative and constitutive functions.
Finally, IG Logico is concerned with making logical relationships explicit. Institu-
tional statements often contain lists, with an implied logical conjunction between
all the list items. As explained in Section 3.3.4, statements containing logical re-
lationships can be decomposed into multiple atomic statements, which IG Logico
emphasizes. Where there are multiple logical relationships, the coder may need
to establish precedence, although for a list where all items have the same logi-
cal operator this is not necessary. Moreover, the CONTEXT component can always
be regarded as a list of conditions and constraints, meaning there is an implicit

18 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

conjunction between ACTIVATION CONDITIONS and EXECUTION CONSTRAINTS.

3.4 Literature Review

This section is based on the literature review in my Research Project Planning3

report but the text has been modified. Since there is no published literature specif-
ically on the coding tools of the IG, this literature review will simply give an
overview of the Institutional Grammar’s development. In light of this develop-
ment, it will also make an argument for a specialized coding tool.
The concept of an Institutional Grammar was first proposed by Sue Crawford
and Elinor Ostrom in 1995 (Crawford & Ostrom, 1995). Emerging in the field of
political science, it was motivated by a need to define institutions in enough detail
that they could be analyzed. Crawford and Ostrom presented a simple grammar
with definitions for five basic components of institutions: ATTRIBUTES, DEONTIC,
AIM, CONDITIONS, and OR ELSE. The sequence was given the acronym ADICO.
Furthermore, they defined three types of institutions: shared strategies, norms and
rules, where a shared strategy consisted of an ATTRIBUTES, AIM and CONDITIONS,
a norm consisted of a shared strategy plus a DEONTIC and a rule consisted of a
norm plus an OR ELSE, reflecting how the types of institutions were composed.
This sequence of components was mapped onto institutional statements, where
CONDITIONS in practice often served as a catch-all for text that did not fit any other
component. However, the fundamental idea of components had been conveyed
and the grammar would gradually be refined to capture institutional statements
more closely.
After that initial proposal, no new literature on the IG emerged until 2008 with
Smajgl et al.’s simulation study applying the grammar (Smajgl et al., 2008). At
this point the field started to gain momentum. In 2010, Basurto et al. proposed
the first set of coding guidelines (Basurto et al., 2010) for applying the grammar
which laid the foundation for a majority of later research on the IG.
The literature on the IG can be roughly divided into two types of contributions: a)
those that apply the grammar and b) those that propose refinements to it (Siddiki
et al., 2019). The former type is far more numerous but this discussion will focus
on the latter because it studies the IG’s syntactical structure, which is relevant to
creating a data structure for a new coding tool.
Table 3.3 gives an overview of the papers discussed in this chapter and what they
contribute to the IG. Three of these papers are marked with Refinement and are,
strictly considered, the only papers that propose syntactical refinements to the
grammar.

3Course code: IMT4205

Chapter 3: Background 19

Ta
bl

e
3.

3:
Se

le
ct

ed
pa

pe
rs

on
th

e
IG

Ti
tl

e
A

u
th

or
Ye

ar
C

on
tr

ib
u

ti
on

R
ef

.

A
G

ra
m

m
ar

of
In

st
it

ut
io

ns
C

ra
w

fo
rd

an
d

O
s-

tr
om

19
95

O
ri

gi
na

lp
ro

po
sa

lo
f

IG
C

ra
w

fo
rd

an
d

O
st

ro
m

,1
99

5

A
Sy

st
em

at
ic

A
pp

ro
ac

h
to

In
st

it
ut

io
na

l
A

na
ly

si
s:

A
pp

ly
in

g
C

ra
w

fo
rd

an
d

O
s-

tr
om

’s
G

ra
m

m
ar

B
as

ur
to

et
al

.
20

10
A

pp
lic

at
io

n:
C

od
in

g
gu

id
el

in
es

B
as

ur
to

et
al

.,
20

10

D
is

se
ct

in
g

Po
lic

y
D

es
ig

ns
:

A
n

A
pp

lic
a-

ti
on

of
th

e
In

st
it

ut
io

na
lG

ra
m

m
ar

To
ol

Si
dd

ik
ie

t
al

.
20

11
R

efi
ne

m
en

t:
O

B
JE

C
T

co
m

po
ne

nt
Si

dd
ik

ie
t

al
.,

20
11

nA
D

IC
O

:
A

N
es

te
d

G
ra

m
m

ar
of

In
st

i-
tu

ti
on

s
Fr

an
tz

et
al

.
20

13
R

efi
ne

m
en

t:
N

es
ti

ng
Fr

an
tz

et
al

.,
20

13

In
st

it
ut

io
na

lG
ra

m
m

ar
2.

0:
A

sp
ec

ifi
ca

-
ti

on
fo

r
en

co
di

ng
an

d
an

al
yz

in
g

in
st

i-
tu

ti
on

al
de

si
gn

Fr
an

tz
an

d
Si

dd
ik

i
20

21
R

efi
ne

m
en

t:
IG

2.
0

ov
er

ha
ul

Fr
an

tz
an

d
Si

dd
ik

i,
20

21

20 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

In the first syntactical refinement paper, Siddiki et al. propose the addition of a
new syntactical component, the OBJECT, which addresses a challenge with the
original grammar to differentiate between the AIM and the CONDITIONS (Siddiki
et al., 2011). The new component closely corresponds with linguistic sentence
objects and as such allows for more precise coding of statements that contain
an object. The OBJECT component is given the symbol "B", turning ADICO into
ABDICO.
Frantz et al. propose a powerful new feature to the grammar: a syntax for nest-
ing a statement within another and combining statements side-by-side with logi-
cal operators (Frantz et al., 2013). These concepts are referred to as vertical and
horizontal nesting, respectively. Vertical nesting is useful for coding complex state-
ments where a component of the top-level statement contains a whole other state-
ment. Most prominently, this is always the case for the OR ELSE component. Hori-
zontal nesting allows for coding logical combinations between individual compo-
nents or entire statements. This proposal solved several problems related to the
coding of complex statements into the flat, uniform structure of the original gram-
mar. It is an important contribution because in the real world, policies are written
by humans in natural language and complicated statements are prevalent.
Frantz and Siddiki’s paper presents IG 2.0, an overhaul of the grammar (Frantz
& Siddiki, 2021). It is accompanied by a comprehensive codebook (Frantz & Sid-
diki, 2020) for the new grammar. IG 2.0 retains a simple version relatively close
to the original grammar labelled IG Core and presents two new versions at dif-
ferent levels of complexity. All three versions encapsulate existing syntactical re-
finements over the original grammar, and IG Core includes some new concepts
proposed in the paper that are considered fundamental. IG Extended covers con-
cepts such as the Object-Property Hierarchy, Context Taxonomy and hybrid and
polymorphic statements. IG Logico is a layer on top which emphasizes logical
relationships, higher-level semantic annotations and inter- and intra-policy refer-
ences. The three versions are kept separate on account of their different use cases.
The paper notably also introduces constitutive statements as a new kind of insti-
tutional statement and names the traditional kind regulative. One of its minor
changes is renaming the CONDITIONS component to CONTEXT.
As mentioned before, the first set of guidelines for policy coding were proposed by
Basurto et al. These guidelines (Basurto et al., 2010) include step-by-step instruc-
tions for how to use the grammar to code institutional statements taken from poli-
cies. As part of introducing the OBJECT component, Siddiki et al. refine the afore-
mentioned guidelines to accommodate their new syntactical component (Siddiki
et al., 2011). The latest guidelines can be found in the IG 2.0 codebook (Frantz
& Siddiki, 2020), a comprehensive manual with coding instructions for IG Core,
Extended and Logico.
IG 2.0 introduces a plethora of features to the syntax. The new grammar is com-
plex, powerful and no longer uniform, intended to accurately capture complex
real-world statements. For example, an institutional statement may have two AT-
TRIBUTES combined by a logical operator such as "and". This statement may be

Chapter 3: Background 21

flattened into two statements, one for each ATTRIBUTES, with the "and" operator
between the statements, as exemplified in Section 3.3.4. To code this in a tabular
data structure such as a spreadsheet, one needs to use two rows. If the statement
also has two independent AIMs, there are now four atomic statements requiring
four rows. IG 2.0 is capable of coding this compactly in a hierarchical structure.
Furthermore, vertically nested statements are equally unsuitable for a tabular
structure. To code such a statement in a spreadsheet, one needs to use multiple
rows as well as maintain a reference between the parent and child statements.
There is no standard answer to whether the reference should be coded from the
parent to the child, from the child to the parent or both ways, adding to the com-
plexity. (This is explained further in Section 3.5.1.) A statement that features both
horizontal and vertical nesting coded in a spreadsheet easily surpasses the limit
for how much complexity a human coder can keep track of.
The Institutional Grammar has never been a linguistic grammar. Crawford and Os-
trom intended for it to provide a definition of institutions by breaking them down
to their core components. Even though some components have a strong corre-
spondence to certain linguistic parts of sentence or parts of speech, the grammar
belongs to a domain. This is an important argument for a specialized coding tool:
while general-use tools can be repurposed to function as policy coding tools, they
will always have shortcomings.

3.5 Current Tools

3.5.1 Spreadsheets

A spreadsheet is “a computer program that allows the entry, calculation, and stor-
age of data in columns and rows” 4. Spreadsheets like Microsoft Excel have been
the primary coding tool for the Institutional Grammar since it was first applied.
Even after the publication of the IG 2.0 codebook (Frantz & Siddiki, 2020), many
IG researchers still prefer it over newer tools like INCEpTION. Note that while Mi-
crosoft Excel is probably the most well-known spreadsheet, any spreadsheet may
be used in place of it.
Coding in spreadsheets uses a template which may be regarded as the IG cus-
tomization layer. The template consists of a number of columns and the intent
is to code one statement per row so that each cell holds the value of a syntac-
tical component. There are columns for constitutive and regulative components,
properties, logical operators, forward and backward reference, metadata such as
section and statement identifiers, and more. Coding in a spreadsheet entails copy-
ing and pasting text into the appropriate columns, or alternatively typing, which
is discouraged because of the potential for error.
Figure 3.1 shows the spreadsheet template in Microsoft Excel with an example of
a coded statement. Due to the template’s length, the image has been wrapped. In

4"Spreadsheet". Merriam-Webster.com Dictionary, Merriam-Webster, https://www.
merriam-webster.com/dictionary/spreadsheet. Accessed 12 May 2021.

https://www.merriam-webster.com/dictionary/spreadsheet
https://www.merriam-webster.com/dictionary/spreadsheet

22 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

the template, the gray columns are fixed, meaning they are always visible when
scrolling horizontally. The blue columns are for coding regulative statements, and
past these (not pictured) are a set of corresponding green columns for constitutive
statements.
As Figure 3.1 shows, references are made by assigning a unique identifier to each
atomic statement. Such identifiers can often be taken from the policy; otherwise,
they must be assigned manually. The example statement is complex, featuring
two nested statements each containing logical combinations, the coding of which
is explained below.
Institutional statements that contain multiple components of the same kind must
be normalized to multiple atomic statements in order to code them in a spread-
sheet. The logical operator column of either row is then filled to code the relation-
ship between the statements. There is no standard answer to which row should
hold the logical operator, which relies on consensus among coders. It has been
decided that the logical operator columns in both rows are to be filled.
Vertical nesting, which is always encountered in the OR ELSE component, also
takes multiple rows to code. The parent and child statements are coded in sepa-
rate rows. To code their relationship, the child statement’s identifier is filled into
the parent’s forward reference column, and vice versa with the child’s backward
reference column. Again, there is no standard answer to which row should hold
the reference, so it has been decided that a double reference is to be used.
As we can see from Figure 3.1, spreadsheets are better suited to coding simple
statements and coding in IG Core. However, once data has been coded in a spread-
sheet it is very easy to move on to statistical analysis thanks to the statistical capa-
bilities of software like Microsoft Excel and the R system5 as well as the fact that
the standard spreadsheet format, comma-separated values (CSV), is so common.

5https://www.r-project.org/

https://www.r-project.org/

Chapter 3: Background 23

Fi
gu

re
3.

1:
Sp

re
ad

sh
ee

t
te

m
pl

at
e

fo
r

IG
2.

0
w

it
h

ex
am

pl
e

24 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

3.5.2 Text Annotation Tools

Text annotation is the process and result of adding notes to a text without altering
the text’s content. It is a common method in Natural Language Processing (NLP),
in which annotations are structured so as to be machine-readable. Many text an-
notation projects revolve around large knowledge bases or corpora and so require
teams of annotators working together. Thus, several annotation platforms have
been developed to facilitate these projects.
One such platform is the BRAT Rapid Annotation Tool6, an online environment
for collaborative, structured text annotation. While BRAT is still being maintained
as of writing, another text annotation platform, WebAnno7, is based on BRAT
(Yimam et al., 2013). WebAnno is a general-purpose linguistic annotation tool
with support for project collaboration (Eckart de Castilho et al., 2016). However,
around 2018 it was superseded by INCEpTION8, a larger platform with a broader
scope including knowledge base population and fact linking (Klie et al., 2018).
What is interesting is that INCEpTION has notably been used for policy coding
with the IG.
INCEpTION is an open source text annotation platform developed by UKP Lab at
TU Darmstadt. It facilitates a number of semantic annotation tasks and has ma-
chine learning capabilities to assist annotators. Moreover, it is a multi-user plat-
form that allows users to collaborate on projects. One of its use cases is working
with knowledge bases but its customizability and capabilities for text annotation
make it an ostensibly viable tool for policy coding.
I underline that INCEpTION has only recently been taken up as a coding tool and
has not gained much popularity yet. According to my supervisor, only around four
or five researchers use it at the time of writing.
In INCEpTION, all annotations belong to a layer and layers are used to separate
different kinds of annotations. IG researchers have therefore created a custom set
of IG-specific layers for policy coding. There are separate layers for regulative and
constitutive sets of components, and one for institutional statements which sup-
ports both monitored and consequential statements. Component layers support
providing an inferred text value for the component and specifying whether the
component contains an institutional statement and whether it implies negation.
Whereas the spreadsheet template is the "customization layer" for spreadsheets,
these layers make up the "customization layer" for INCEpTION.
Figure 3.2 shows INCEpTION’s user interface with examples of coded statements.
The current layer and the currently selected annotation are shown on the right
pane. The figure shows the "IG Core Regulative Syntax" layer and what options it
offers for each annotation. To add an annotation one selects the text to be anno-
tated, and a new annotation is created using the current layer and is visualized
above the marked text directly in the source, with color coding. Annotation fields

6https://brat.nlplab.org/
7https://webanno.github.io/webanno/
8https://inception-project.github.io/

https://brat.nlplab.org/
https://webanno.github.io/webanno/
https://inception-project.github.io/

Chapter 3: Background 25

may then be filled if necessary. Conveniently, the IG layers include keyboard short-
cuts for marking syntactical components, e.g., while a component annotation is
active, one can press the D key to mark it as a DEONTIC. The visualization shows all
annotations on all layers but each layer can be hidden. Furthermore, annotations
can overlap, which is useful in policy coding for annotating a whole institutional
statement in addition to its syntactical components.
Even though layers can be individually disabled, a fully annotated, complex pol-
icy text tends to look cluttered in INCEpTION. It is often difficult to read a coding
when revisiting or reviewing it due to the sheer amount of information presented
all at once. Note that coder reviews are a reliability testing method commonly
employed by IG researchers, and this need may not be reflected in the scope
INCEpTION was designed for.
For the purposes of data analysis, INCEpTION offers exportation in around 20 for-
mats including text annotation and natural language processing (NLP) formats.
One such format is UIMA CAS. Unstructured Information Management Architec-
ture (UIMA) is a middleware architecture for processing unstructured information
(Ferrucci & Lally, 2004), and its standard format is the Common Analysis Struc-
ture (CAS), an object-based data structure. While UIMA is not an information
management application itself, Apache UIMA9 is an open-source implementation
of the UIMA specification (Ferrucci et al., 2009).
To my knowledge, it is not possible to automatically convert an INCEpTION coding
to a spreadsheet format. Thus, to perform analysis of data coded in INCEpTION
one needs additional tools and knowledge of unstructured information frame-
works such as UIMA.

9https://uima.apache.org/

https://uima.apache.org/

26 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Fi
gu

re
3.

2:
IN

C
Ep

TI
O

N
us

er
in

te
rf

ac
e

w
it

h
ex

am
pl

es

Chapter 3: Background 27

3.5.3 Inline Coding

IG 2.0 offers an inline syntax for coding institutional statements. It is not a coding
tool but a noteworthy approach to coding nonetheless. Commonly referred to as
shorthand coding or inline coding, the IG syntax allows for coding institutional
statements directly inline. It is fully documented in the IG 2.0 codebook (Frantz
& Siddiki, 2020). Following is an example of a regulative statement:

"Certifier must monitor farmers at all times."

In shorthand, this would be coded as

"Certifier (A) must (D) monitor (I) farmers (Bdir) at all times (Cex)."

As illustrated by this example, an annotation is inserted after each syntactical
component. Every component in the IG is associated with an alphabetical symbol
as specified in Sections 3.3.1 and 3.3.2, and in the above example the compo-
nents are respectively ATTRIBUTES, DEONTIC, AIM, OBJECT (DIRECT) and CONTEXT

(EXECUTION CONSTRAINTS).
As an inline syntax, shorthand coding can be used with any text processor or
even written by hand. However, inline coding is by its nature greatly limited in
its capabilities for data analysis. Rather, one of its use cases is helping the coder
figure out a statement, not unlike a sketch before data entry in a coding tool.
The above example is straightforward, with simple values for each syntactical
component. Now consider the following complex statement:

"When an inspection of an accredited certifying agent by the Program Man-
ager reveals any noncompliance with the Act or regulations in this part, a written
notification of noncompliance shall be sent to the certifying agent."

This statement is written in passive voice and should first be rephrased into active
voice to make explicit the actors, actions and objects. This will make it easier to
code. We rephrase the statement as follows:

"When Program Manager reveals any noncompliance by the accrediting certi-
fying agent with the Act or regulations in this part under the condition that Program
Manager performs inspection of an accredited certifying agent, Program Manager
shall send a written notification of noncompliance to the certifying agent."

The statement is then coded as follows:

"{When [Program Manager (A)] reveals (I) any noncompliance (Bdir) [by the
accrediting (Bind,prop1) certifying (Bind,prop2) agent (Bind)]with the Act or regu-
lations in this part (Cex,eff) {[under the condition that] Program Manager (A) [per-
forms] (I) inspection (Bdir) of an accredited (Bind,prop1) certifying (Bind,prop2)
agent (Bind)} (Cac)} (Cac), [Program Manager (A)] shall (D) [send (I)] a writ-
ten (Bdir,prop1) notification (Bdir) of noncompliance (Bdir,prop2) to the certifying
(Bind,prop1) agent (Bind)."

To briefly explain the syntax, curly braces denote a nested statement and square

28 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

brackets explicitly specify an implied component. The IG 2.0 codebook contains
the full documentation. As evidenced by this example, even shorthand coding can
be hard to manage when used for complex statements. Even if a coder is able to
annotate the text with relative ease, the resulting inline coding tends to be difficult
to read when vertical and/or horizontal nesting is involved.

3.5.4 Automated Approaches

Manual policy coding is a tedious and time-consuming process, requiring that pol-
icy texts first be decomposed into institutional statements before those statements
may be coded (Rice et al., 2021). Almost since the IG was first applied, researchers
have looked for ways to make the work easier. Automating the coding process us-
ing computational tools has long been an attractive goal for the IG community.
As a step toward this goal, Rice et al. propose a supervised machine learning ap-
proach to automating policy coding with the IG (Rice et al., 2021). Their dataset
comes from an existing body of manually coded policy texts (Siddiki, 2014). Rice
et al. also attempt to use Stanford CoreNLP (Manning et al., 2014) to automat-
ically identify IG syntactical components by leveraging the fact that components
may be mapped to certain parts of speech, but this turned out to be too simplistic
to produce useful results. However, they find the supervised learning approach to
show promise as they attain a relatively high accuracy in applying it.
While automated approaches could one day be the primary method of data collec-
tion for researchers studying policy design, manually coded data is a prerequisite
for developing those approaches. Siddiki’s dataset (Siddiki, 2014) is coded using
an older, more coarse-grained version of the IG and as such, a dataset using IG
2.0 would be required to train a machine learning model to code in IG 2.0. One
of the motivations behind IG Coder is to make it easier to build such a dataset.
Therefore, this thesis investigates the usability and workflow of current coding
tools and evaluates IG Coder for the same.

Chapter 4

Review of Current Tools

This chapter is based on my Advanced Project Work1 report but the study has been
supplemented with a questionnaire on both Microsoft Excel and INCEpTION, and
as such, the text has been heavily modified.

4.1 Introduction

This study will investigate RQ1 and RQ2 of this thesis. As a reminder, they are as
follows:
State of the art

RQ1 What are the strengths and weaknesses of current coding tools?

RQ1a What features from existing tools should the new coding tool retain?

RQ1b What features from existing tools should the new coding tool dis-
card?

User needs

RQ2 What features do coders need in a coding tool for the IG?

RQ2a What are the essential features a coding tool for the IG should pos-
sess?

RQ2b What are the fringe features a coding tool for the IG should possess?

As RQ1 refers to current coding tools, these must first be determined. By coding
tools I mean software applications that can be used for manual policy coding,
not inline coding or machine coding. Based on information given to me by my
supervisor, who is an IGRI affiliate, the two most used software applications for
policy coding are Microsoft Excel and INCEpTION. This has also been touched
on in Chapter 3. Technically, any spreadsheet can be used in place of Microsoft

1Course code: IMT4894

29

30 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Excel but it is probably the most well-known spreadsheet and will therefore be
investigated specifically in this study.
Of the current coding tools, spreadsheets are significantly more popular than
INCEpTION at the time of writing. This discrepancy is reflected in the data sources
for this study, which are described in Section 4.2. Furthermore, INCEpTION’s low
uptake impacts my ability to collect data on the tool, the implications of which
have been mentioned in Chapter 2 and will be reiterated in this chapter.

4.2 Method

This study seeks answers in the following six categories derived from the research
questions:

1. Advantages of Microsoft Excel as a coding tool (RQ1a)
2. Disadvantages of Microsoft Excel as a coding tool (RQ1b)
3. Advantages of INCEpTION as a coding tool (RQ1a)
4. Disadvantages of INCEpTION as a coding tool (RQ1b)
5. Essential features needed in a coding tool (RQ2a)
6. Fringe features desired in a coding tool (RQ2b)

The categories are mapped to research questions as shown in the parentheses.
Here, I consider advantages to translate to strengths and disadvantages to weak-
nesses.
This study uses four different data sources, the reasoning behind which has been
explained in Section 2.1. The sources are as follows, and are explained below:

1. Questionnaire of students on Microsoft Excel
2. Notes from IGRI coding course on Microsoft Excel
3. Interview conducted in spring 2020 on Microsoft Excel
4. Questionnaire of researchers on Microsoft Excel and INCEpTION

In fall 2020, researchers from the IGRI held an online coding course2 for students
at several universities. Students were taught the Institutional Grammar and how
to code institutional statements in Microsoft Excel. My supervisor, Christopher
Frantz, was among the professors. At the end of this course, a questionnaire was
sent out asking the students for feedback on the course.
On this occasion, I sent out my own questionnaire to the students to inquire about
their views of Microsoft Excel as a coding tool and needs of coders in a coding tool.
This is data source 1. I asked about what they saw as advantages and disadvan-
tages with Microsoft Excel as a coding tool as well as what features they thought
were needed in a coding tool. Note that questions referred to Microsoft Excel
specifically, not spreadsheets in general. Additionally, I asked some demographic
questions regarding study level, study area and experience level with Microsoft
Excel. Three questions were inserted by my supervisor which are irrelevant to this
study, and the final question which was a catch-all for additional comments re-

2https://institutionalgrammar.org/teaching-institutional-analysis/

https://institutionalgrammar.org/teaching-institutional-analysis/

Chapter 4: Review of Current Tools 31

ceived no relevant responses. Different types of questions were used for different
purposes: open long-text questions for advantages, disadvantages and needs, Lik-
ert scale (Robinson, 2014) rating tasks for experience level with Microsoft Excel
and single choice questions for other demographic information. The course was
attended by 12-14 students (varying from session to session) and I received 10
responses. The full questionnaire sheet is shown in Appendix A. In the remainder
of this chapter, this questionnaire will be referred to as Questionnaire A.
I also attended the aforementioned Microsoft Excel coding course as an observer
and noted down comments and discussions related to the coding experience in
Microsoft Excel. The resulting notes make up data source 2. It should be noted
that this data source lacks information connecting specific comments to specific
people, and the group of students and professors in the course has significant
overlap with the group I sent the aforementioned questionnaire to. Therefore, I
treat this data source more carefully than the questionnaires, giving more weight
to the latter as will be explained later in this section.
Data source 3 is an older interview conducted by my classmate and myself in
spring 2020 as part of the course Integration Project3. Our objective was to gain
insight about policy coding in Microsoft Excel, such as what the process is like,
what the challenges are, why spreadsheets are used and how the coded data is
used. The interviewee was Christopher Frantz, my supervisor. It is important to
note, however, that this interview was conducted before IG 2.0 was in use. In
this study I therefore filter out the sentiments that do not apply to IG 2.0. This
interview is included as a data source for this study because it contains relevant
insights, even though some of the information no longer applies. The interview
questions are shown in Appendix B.
Finally, I conducted another questionnaire in spring 2021, which is data source 4.
This questionnaire differed from the first in two ways: first, it was aimed at and
sent out to researchers only, and second, it investigated both Microsoft Excel and
INCEpTION. There is no overlap between the groups the two questionnaires were
sent out to. In this questionnaire, the questions on Microsoft Excel were identi-
cal to those in Questionnaire A, and it furthermore asked equivalent questions on
INCEpTION. I received five responses to this questionnaire. Also, as with Ques-
tionnaire A, questions referred to Microsoft Excel specifically and not spreadsheets
in general. The full questionnaire sheet is shown in Appendix C. In the remainder
of this chapter, this questionnaire will be referred to as Questionnaire B.
Data source 4 is the only source on INCEpTION in this study, reflecting its low
uptake compared to Microsoft Excel. However, this also means the data on the
former will be less reliable. It is yet early in the adoption of INCEpTION for policy
coding, so results at this stage will have limited reliability.
Before we continue, I must clarify that part of this study was first conducted in
the course Advanced Project Work4. That study covered categories 1-2 and 5-6,
except categories 5-6 were combined as simply "needs of coders in a coding tool".

3Course code: IMT4807
4Course code: IMT4894

32 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

In other words, the study investigated Microsoft Excel only and did not cover
INCEpTION. Furthermore, it was built on data sources 1-3 only. The study in this
thesis supplements the aforementioned with data source 4 and merges the results
from that data source directly into those of the original study. All six categories
are thus covered.
Of these data sources, the questionnaires are relatively structured whereas the
rest are largely unstructured. The approach taken to structure this information
was semantic clustering. I set up five tables, one for each of the categories with
the fifth table representing both categories 5 and 6. The fifth table will be split into
two, separating essential and fringe features of a coding tool. The table structure
is described in Table 4.1.

Cluster Count Sources

A grouping of similar
data points

Total number of data
points belonging to this
cluster

A list of the sources
the data points were
extracted from, with a
count for each source

Table 4.1: Table format for structuring the raw data

Next, I inspected each of the data sources and extracted data points from them.
Here, a data point means a single sentiment, idea or opinion, formulated in a sen-
tence (the sentence does not need to be complete). I placed each data point in an
appropriate category. In the two questionnaires, I had formulated questions with
the intent to map them directly to each of the categories, whereas with the other
two data sources I had to use my discretion. The hardest part was distinguishing
needs from advantages, as an advantage could often translate directly to a need
and a disadvantage could simply be inverted to generate a need. To solve this,
my rule of thumb was to look at the context around the sentiment and ask myself
"is the context related to a specific coding tool or coding tools in general?". More-
over, the questionnaire responses often contained more than one data point as the
respondent listed multiple ideas. These were treated as individual data points if
they differed in meaning, otherwise as one.
Once I finished extracting data points, I inspected each table and formed clusters
by merging all data points I deemed to have the same general meaning. To merge I
first decided on a main sentence, preferably from a questionnaire response. I then
slightly rephrased this sentence to include words from the sentences that would
be merged into it, to capture the breadth of each cluster, as well as fixing grammar
and spelling errors. Thus, each cluster was represented by one sentence. For each
cluster, I counted the number of data points for each data source to populate the
columns Count and Sources.
When counting, I observed the following rules. For the questionnaires, each ques-
tionnaire respondent counted no more than once in each cluster. For each of the
other data sources, all data points in a cluster counted as a total of one even if
multiple data points fit that cluster. The reasoning behind this is that firstly, the in-

Chapter 4: Review of Current Tools 33

terview was of a single person and secondly, the course notes lacked information
connecting specific sentiments to specific people, as mentioned before. Further-
more, this somewhat reduces the potential for bias by weighting questionnaire
responses more heavily than my notes which are potentially subjective and an
interview which is in some ways outdated.
Finally, I sorted the tables, primarily by count in descending order, secondarily by
cluster in alphabetical order. This resulted in five tables listing and ranking my
findings in each category. However, categories 5 and 6 have not yet been sepa-
rated, as the fifth table currently contains all identified needs in a coding tool. To
answer RQ2 and distinguish between essential and fringe features, these needs
must be prioritized. In Section 1.1, I defined these as “By essential features is
meant features needed by many users, and fringe features are those suggested by
at most two.” Therefore, I set a threshold at three: needs with a count of three
or more are deemed essential features, whereas needs with a lower count are
deemed fringe features. This will help me perform requirements engineering for
IG Coder and prioritize the features to implement.

4.3 Results

Before presenting the main results and answering the research questions, I will
present the demographics of the two questionnaires. It must be noted that with
only 10 and 5 respondents, respectively, these results are not generalizable and
are included to contextualize the main results.
In Figures 4.1 and 4.2 we can see how respondents in each of the questionnaires
rated themselves in terms of experience level with Microsoft Excel. Both source
questions are a 5-point Likert scale and all available options are shown. Overall,
we see that respondents of Questionnaire B reported a slightly higher level of
experience with Microsoft Excel.

Figure 4.1: Questionnaire A: Level of experience with Microsoft Excel

Note that in all of the tables pertaining to demographics, I have adjusted the y-axis
to one higher than the most popular option.

34 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Figure 4.2: Questionnaire B: Level of experience with Microsoft Excel

Figures 4.3 and 4.4 show how respondents in the two questionnaires rated Mi-
crosoft Excel’s suitability as a coding tool for the IG. Both source questions are a
Likert scale of 7 points, and all available options are shown. Comparing the two
questionnaires, the results are quite similar. Both groups of respondents reported
a fairly strong positivity toward the tool.

Figure 4.3: Questionnaire A: Microsoft Excel’s suitability as a coding tool

Finally, Figures 4.5 and 4.6 show the Questionnaire B respondents’ level of ex-
perience with and perceived suitability of INCEpTION. The source questions and
options were identical to those on Microsoft Excel. Overall level of experience
with INCEpTION in this group is slightly lower than that of Microsoft Excel but
again the results are very similar. INCEpTION’s reported suitability is also slightly
lower than that of Microsoft Excel in the same questionnaire.

Chapter 4: Review of Current Tools 35

Figure 4.4: Questionnaire B: Microsoft Excel’s suitability as a coding tool

Figure 4.5: Questionnaire B: Level of experience with INCEpTION

Figure 4.6: Questionnaire B: INCEpTION’s suitability as a coding tool

Moving on, the ranked findings in each of the six categories, without distinguish-
ing between categories 5 and 6, are shown in Tables 4.2 to 4.6. According to the
weighting method described in Section 4.2, they are weighted roughly by the num-

36 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

ber of people who reported a sentiment or idea in each cluster, giving emphasis
to the questionnaires. In the source lists, "Quest" is short for questionnaire.
Since the categories outlined in Section 4.2 map to research questions, we can
now answer the research questions.

RQ1: What are the strengths and weaknesses of current coding tools? Since
I in Section 1.1 deemed strengths and weaknesses to directly translate to RQ1’s
respective sub-questions, this question is answered by those sub-questions.

RQ1a: What features from existing tools should the new coding tool retain?
This research question is answered by Tables 4.2 and 4.3. In the two question-
naires, I asked participants "In your opinion what makes Excel / INCEpTION a
useful coding tool?" I believe this formulation helps participants think about the
advantages of the tools, which is what I am after. This question came after asking
participants to rate their level of experience with the tool and to rate it as a policy
coding tool.
As we can see, there is a higher number of clusters related to Microsoft Excel than
to INCEpTION. I remind the reader that the data pertaining to Microsoft Excel
is significantly richer than that on INCEpTION, and that this applies to the next
research question as well (RQ1b).

Cluster Count Sources

Represents data in an organized fashion 8 QuestA (6), Notes (1), In-
terview (1)

Easy to navigate, simple 4 QuestA (4)

The parsed information is easy to see, in-
terpret, compare, and manipulate

4 QuestB (2), Interview (1),
Notes (1)

Coded data can almost immediately be
used for analysis

3 Interview (1), Notes (1),
QuestB (1)

"Everyone" knows how to use a spread-
sheet, easy to share

2 Interview (1), QuestA (1)

Quick and easy to populate cells that
contain the same information by copy-
pasting

2 QuestA (1), QuestB (1)

Ability to freeze cells is useful 1 QuestA (1)

The tabular format enforces thinking
about each category, which is good for
less experienced coders

1 QuestB (1)

Very good educational tool for the IG,
easy to understand for beginners

1 QuestB (1)

Table 4.2: Identified advantages of Microsoft Excel as a coding tool

Chapter 4: Review of Current Tools 37

Cluster Count Sources

Allows cross-statement annotation 2 QuestB (2)

Allows duplicate annotations 1 QuestB (1)

Allows sharing and collaboration 1 QuestB (1)

Coding directly on the document is intu-
itive

1 QuestB (1)

Easy to create new layers/tag sets 1 QuestB (1)

Free and open source 1 QuestB (1)

Layers/tag sets are specifically designed
for coding in the IG

1 QuestB (1)

Table 4.3: Identified advantages of INCEpTION as a coding tool

RQ1b: What features from existing tools should the new coding tool discard?
This research question is answered by Tables 4.4 and 4.5. In the two question-
naires, participants were asked "What challenges have you encountered coding
in Excel / INCEpTION?" I chose to use the word "challenges" because it helps
the participants think about their own experience with the tools, as opposed to
asking something akin to "What are the weaknesses of the tools?". This question
immediately followed the question asking about advantages with the tool.

RQ2: What features do coders need in a coding tool for the IG? This overar-
ching research question is answered by Table 4.6. In both of the questionnaires,
I asked participants "If you could design a new coding tool for IG 2.0 (i.e., new
software), what three capabilities should that tool possess?" My intent with asking
for three features was to avoid "intimidating" the respondents, because without
the "three" qualifier, this question might as well have asked for a complete re-
quirements document for the application. Several respondents thus listed multiple
ideas, which I extracted and organized as explained in Section 4.2. One response
was hard to split up: "Accountability, accuracy, efficiency". This was left as is be-
cause it describes non-functional requirements, which are also useful to me in
requirements engineering for IG Coder.
In both of the questionnaires, the above question immediately followed the one
asking about disadvantages with the tool (INCEpTION in the case of Questionnaire
B). This may have had an effect on the responses, as respondents by this point had
thought about advantages and disadvantages with the tool and were now asked
to come up with features a coding tool should have. This should be taken into
consideration when inspecting the identified needs.
Note that the interview (data source 3) yielded no data points pertaining to needs.
This is because the interview focused on the coding experience in Microsoft Excel,
and coding tools in general were not discussed.

38 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Cluster Count Sources

Time-consuming and tedious to code by
copy-pasting

5 QuestB (3), Notes (1),
QuestA (1)

Confusion and loss of overview in larger
tables

4 QuestA (2), Interview (1),
Notes (1)

Difficult and cumbersome to code and
keep track of nested statements

4 Interview (1), Notes (1),
QuestA (1), QuestB (1)

Annoying to move back and forth be-
tween far apart columns

2 QuestA (2)

No ability to capture inter-statement or
inter-document linkages

2 QuestB (2)

No coding completeness or quality con-
trols

2 Notes (1), QuestB (1)

Hard to rephrase a statement 1 Notes (1)

Hierarchies between components and
properties cannot be represented

1 QuestB (1)

Limited cell space, words are often cut
off

1 QuestA (1)

Metadata has to be manually populated 1 QuestA (1)

No standard way of indicating "not yet
coded"

1 Interview (1)

Not a good tool for big projects with sev-
eral documents and several team mem-
bers

1 QuestB (1)

Not computationally tractable 1 Notes (1)

Rows full of "n/a" are hard to read 1 Interview (1)

Table 4.4: Identified disadvantages of Microsoft Excel as a coding tool

RQ2a: What are the essential features a coding tool for the IG should possess?
According to the threshold defined in Section 4.2, needs with a count of three or
higher are deemed essential features. As we can see in Table 4.6, three needs were
identified that belong to this category:

• Ability to export coded text in different formats (e.g. Excel CSV)
• An overview area underneath each statement with organized fields for IG

components to visually double-check one’s coding
• Color coding for components distinguishing between regulative and consti-

tutive

All of these had a count of three and are sorted alphabetically. They will have
priority in defining the requirements for IG Coder.

RQ2b: What are the fringe features a coding tool for the IG should possess?
According to the threshold defined in Section 4.2, needs with a count of two or

Chapter 4: Review of Current Tools 39

Cluster Count Sources

Editing an annotation requires deleting
and recreating it

2 QuestB (2)

Graphic representation of coded data is
unreadable

2 QuestB (2)

Missing output/export of coded text into
a usable format

2 QuestB (2)

Missing validation of correctness and
completeness

2 QuestB (2)

Changing layers/tag sets during coding
is impractical

1 QuestB (1)

Coding in the IG requires the use of sev-
eral layers/tag sets

1 QuestB (1)

Table 4.5: Identified disadvantages of INCEpTION as a coding tool

lower are deemed fringe features. Refer to Table 4.6; 27 needs were identified
that belong to this category. Eight of these had a count of two, meaning they were
reported by two people. All of the needs will be considered during requirements
engineering for IG Coder but the ranking will help me prioritize what features to
invest in.

40 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Ta
bl

e
4.

6:
Id

en
ti

fie
d

ne
ed

s
in

a
co

di
ng

to
ol

fo
r

th
e

IG
(1
/2

)

C
lu

st
er

C
ou

n
t

So
u

rc
es

A
bi

lit
y

to
ex

po
rt

co
de

d
te

xt
in

di
ff

er
en

t
fo

rm
at

s
(e

.g
.E

xc
el

C
SV

)
3

Q
ue

st
B

(3
)

A
n

ov
er

vi
ew

ar
ea

un
de

rn
ea

th
ea

ch
st

at
em

en
t

w
it

h
or

ga
ni

ze
d

fie
ld

s
fo

r
IG

co
m

po
ne

nt
s

to
vi

su
al

ly
do

ub
le

-c
he

ck
on

e’
s

co
di

ng
3

Q
ue

st
B

(2
),

Q
ue

st
A

(1
)

C
ol

or
co

di
ng

fo
r

co
m

po
ne

nt
s

di
st

in
gu

is
hi

ng
be

tw
ee

n
re

gu
la

ti
ve

an
d

co
ns

ti
tu

ti
ve

3
Q

ue
st

A
(2

),
N

ot
es

(1
)

A
bi

lit
y

to
di

re
ct

ly
co

nn
ec

t
re

la
te

d
in

st
it

ut
io

na
l

st
at

em
en

ts
w

it
hi

n
th

e
sa

m
e

do
cu

m
en

t,
e.

g.
us

in
g

se
ct

io
n

m
ar

ke
rs

2
N

ot
es

(1
),

Q
ue

st
B

(1
)

A
bi

lit
y

to
dr

ag
co

m
po

ne
nt

s
fr

om
or

ig
in

al
st

at
em

en
t

in
to

ca
te

go
ry

fie
ld

(e
.g

.,
se

le
ct

th
e

ac
to

r
an

d
dr

ag
it

in
to

A
tt

ri
bu

te
fie

ld
)

2
Q

ue
st

A
(1

),
Q

ue
st

B
(1

)

A
bi

lit
y

to
fla

g
ex

te
rn

al
po

lic
y

do
cu

m
en

ts
re

fe
re

nc
ed

in
an

in
st

it
ut

io
na

ls
ta

te
m

en
t,

e.
g.

us
in

g
se

ct
io

n
m

ar
ke

rs
2

N
ot

es
(1

),
Q

ue
st

B
(1

)

A
bi

lit
y

to
ge

ne
ra

te
an

ou
tp

ut
fil

e
fo

r
ac

ce
ss

ib
le

vi
ew

in
g

of
co

de
d

da
ta

2
Q

ue
st

B
(2

)

A
cc

om
m

od
at

e
im

pl
ic

it
(t

ac
it

)
co

m
po

ne
nt

s
2

N
ot

es
(1

),
Q

ue
st

B
(1

)

C
le

ar
re

pr
es

en
ta

ti
on

of
co

de
d

st
at

em
en

ts
fo

r
re

vi
ew

2
Q

ue
st

B
(2

)

Fa
st

no
n-

re
du

nd
an

t
ha

nd
lin

g
of

ne
st

ed
/m

ul
ti

pl
e

st
at

em
en

ts
an

d
lo

gi
ca

lr
el

at
io

ns
hi

ps
2

Q
ue

st
A

(2
)

M
or

e
sp

ac
e

fo
r

ea
ch

co
m

po
ne

nt
2

Q
ue

st
A

(2
)

A
bi

lit
y

to
ch

an
ge

ne
st

in
g

le
ve

ls
w

it
ho

ut
lo

si
ng

an
no

ta
ti

on
co

nt
en

t(
e.

g.
,i

fa
pr

op
er

ty
is

sh
if

te
d

to
le

ve
l3

,i
t

sh
ou

ld
no

t
lo

se
it

s
co

nt
en

t)
1

Q
ue

st
B

(1
)

A
bi

lit
y

to
re

vi
ew

ea
rl

ie
r

co
de

d
st

at
em

en
ts

1
Q

ue
st

B
(1

)

A
bi

lit
y

to
ta

g
IG

co
m

po
ne

nt
sd

ir
ec

tl
y

w
it

hi
n

th
e

do
cu

m
en

t(
w

it
ho

ut
ha

vi
ng

to
co

py
an

d
pa

st
e)

1
Q

ue
st

B
(1

)

A
bi

lit
y

to
up

lo
ad

te
xt

do
cu

m
en

ts
fo

r
co

di
ng

,a
nd

ab
ili

ty
to

m
an

ip
ul

at
e

up
lo

ad
ed

te
xt

1
Q

ue
st

B
(1

)

A
cc

ou
nt

ab
ili

ty
,a

cc
ur

ac
y,

ef
fic

ie
nc

y
1

Q
ue

st
A

(1
)

Chapter 4: Review of Current Tools 41

Ta
bl

e
4.

6:
Id

en
ti

fie
d

ne
ed

s
in

a
co

di
ng

to
ol

fo
r

th
e

IG
(2
/2

)

C
lu

st
er

C
ou

n
t

So
u

rc
es

C
on

te
xt

-s
en

si
ti

ve
"c

od
e

co
m

pl
et

io
n"

(e
.g

.,
A

tt
ri

bu
te

s
fie

ld
sh

ou
ld

dr
aw

on
pr

ev
io

us
ly

en
te

re
d

A
tt

ri
bu

te
s

an
d

po
ss

ib
ly

ev
en

O
bj

ec
ts

)
1

Q
ue

st
B

(1
)

D
et

ec
ti

on
of

st
op

w
or

ds
fo

rr
em

ov
al

in
an

no
ta

ti
on

pr
oc

es
s(

e.
g.

,"
Th

e
fa

rm
er

"s
ho

ul
d

be
co

de
d

as
"F

ar
m

er
")

1
Q

ue
st

B
(1

)

D
is

co
ur

ag
e

m
an

ua
lt

yp
in

g
an

d
of

fe
r

al
te

rn
at

iv
es

1
N

ot
es

(1
)

Fa
ci

lit
ie

s
to

su
pp

or
t

in
te

r-
co

de
r

re
lia

bi
lit

y
as

se
ss

m
en

ts
(o

r
at

le
as

t
pr

ep
ar

at
io

n
of

da
ta

to
fa

ci
lit

at
e

th
is

)
1

Q
ue

st
B

(1
)

IG
is

al
re

ad
y

qu
it

e
co

m
pl

ic
at

ed
,s

o
a

co
di

ng
to

ol
m

us
t

no
t

ad
d

to
th

e
co

nf
us

io
n

1
N

ot
es

(1
)

N
ot

fo
rc

e
co

de
rs

to
m

ak
e

an
up

fr
on

t
de

ci
si

on
ab

ou
t

w
he

th
er

a
st

at
em

en
t

is
re

gu
la

ti
ve

or
co

ns
ti

tu
ti

ve
1

N
ot

es
(1

)

Pr
ep

op
ul

at
ed

ca
te

go
ri

es
/t

ag
s

fo
r

ca
pt

ur
in

g
IG

sy
nt

ac
ti

c
co

m
po

ne
nt

s
1

Q
ue

st
B

(1
)

Q
ui

zz
es

fo
r

se
lf-

st
ud

y
1

Q
ue

st
A

(1
)

R
em

in
de

r
to

ex
po

rt
da

ta
be

fo
re

cl
os

in
g

br
ow

se
r

w
in

do
w

1
Q

ue
st

B
(1

)

Se
pa

ra
te

re
gu

la
ti

ve
an

d
co

ns
ti

tu
ti

ve
st

at
em

en
ts

1
Q

ue
st

A
(1

)

Su
pp

or
t

al
lt

hr
ee

le
ve

ls
of

IG
co

di
ng

1
Q

ue
st

B
(1

)

Va
lid

at
io

n
of

co
de

d
st

at
em

en
ts

1
Q

ue
st

B
(1

)

Vi
su

al
iz

e
hi

er
ar

ch
y

of
st

at
em

en
t

an
d

co
m

po
ne

nt
s

1
Q

ue
st

A
(1

)

Vi
su

al
ly

lin
k

si
m

ila
r

ca
te

go
ri

es
1

Q
ue

st
A

(1
)

42 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

4.4 Discussion

With this study I have answered RQ1 and RQ2 of this thesis, to the extent possible
at this stage in the development of the Institutional Grammar. My findings give
a picture of the state of the art in policy coding tools as well as the needs of IG
students and researchers in a new policy coding tool.
The ranking of the findings gives a rough idea of what features and needs are
the most wanted and what disadvantages are the most reported among coders.
However, given the small population of the study and crude weighting method,
this ranking should not be relied upon completely. All of the findings should be
given consideration in the design of IG Coder.
As touched on before, advantages with existing tools can be regarded as features
a new coding tool should retain, i.e., needs. Furthermore, disadvantages can sim-
ply be inverted to generate features or needs. Most of these features manifest
as functional requirements, whereas a few are non-functional (e.g., the response
"Accountability, accuracy, efficiency"). However, this does not mean I will directly
adopt these findings as requirements for IG Coder. I must first and foremost design
IG Coder according to RQ3, i.e., in a way such that it can be tested as a coding
interface, and I must prioritize its requirements according to the time frame of
this thesis. The requirements engineering process is described in Section 5.3.
Three needs were identified that were categorized as essential. It should be noted
that they were deemed essential only because they had a count of 3, and that
all the needs should be given consideration because of the negligible difference
in count. The first, "Ability to export coded text in different formats (e.g. Excel
CSV)" was reported exclusively by researchers in Questionnaire B. This is related
to a disadvantage with INCEpTION, "Missing output/export of coded text into a
usable format", which was reported by two researchers in Questionnaire B. For
researchers to make use of their coded data it must be in a usable format, such as
CSV (the standard spreadsheet format).
The second of the essential needs is "An overview area underneath each statement
with organized fields for IG components to visually double-check one’s coding".
This was reported in both of the questionnaires. Microsoft Excel fulfills this need
to an extent, as a coded statement is organized into separate fields for syntactical
components. INCEpTION does not offer such a visualization of the coded data,
as supported by the disadvantage is "Graphic representation of coded data is un-
readable" (count of 2). As institutional statements can be quite complex, I agree
that a readable visual representation is important in a coding tool.
The final essential need, "Color coding for components distinguishing between
regulative and constitutive" was reported in Questionnaire A and my coding course
notes. In other words, it was reported mostly by students who were learning the
IG. This is related to the previous need as color coding is a powerful tool for visu-
alization. Given a coding interface in IG Coder, this would be a low-hanging fruit,
easy to implement and to great effect.
Note that some of the findings contradict each other to an extent, such as the ad-

Chapter 4: Review of Current Tools 43

vantage "Quick and easy to populate cells that contain the same information by
copy-pasting" (count of 2) and the disadvantage "Time-consuming and tedious to
code by copy-pasting" (count of 5), both with Microsoft Excel. These two clusters
are not directly equivalent, as I interpret the first to mean copying cells that are
intended to hold the same information, and the second to mean coding new con-
tent. This shows that coders can disagree on what is the best way to code, which is
important because it means there is no gold standard, no single solution that will
please everyone. I am under no illusion that IG Coder will be the end-all be-all of
policy coding tools, but I believe I can prototype a viable alternative to the current
tools.
On another note, the top reported advantage with Microsoft Excel is that it "Rep-
resents data in an organized fashion". With a count of 8, this cluster is far more
popular than most other clusters. It appears that the students from Questionnaire
A value the organized nature of Microsoft Excel, as they reported this 6 times.
However, none of the researchers from Questionnaire B reported this.
Compare the above with the Microsoft Excel disadvantage "Difficult and cumber-
some to code and keep track of nested statements". These two findings conflict
because tabular and nested data structures are fundamentally incompatible. Mi-
crosoft Excel and INCEpTION are designed for their respective data structures,
and as touched on above, coders have different personal preferences. Therefore,
in IG Coder I should find a way to capture the best of both worlds of tabular
and nested data structures as well as to make it flexible with regards to coding
preferences.
In summary, many interesting and useful ideas about policy coding tools were
identified in this study. I am unable to point out any one finding as more important
than the rest, in part because of the limitations of the ranking method and also
because I believe all the findings are worth considering. In the next chapter I
describe the development of IG Coder, including its system requirements which
take the results of this study into consideration.

Chapter 5

Development of IG Coder

5.1 Initial State

The web application IG Coder was first started as a student project in the course
Applied Computer Science Project1. Christopher Frantz’s (my thesis supervisor)
project was to prototype a web application for policy coding, which two fellow
students and I took on. We made several technical and architectural decisions at
this stage which will be elaborated on later in this section. The first version of
IG Coder featured a rudimentary implementation of the Institutional Grammar
pre-IG 2.0, a user interface with a tree visualization of what a coded statement
might look like and a simple backend set up with a graph database. While its
functionality was very limited, it was the first step toward a brand new policy
coding tool.
As a side note, the naming of the application was not a conscious choice; IG Coder
came naturally to us.
The implementation of the Institutional Grammar in IG Coder has been largely my
responsibility and is a significant part of my contribution to the application. It is
hereafter referred to as the data model. IG 2.0 was a work in progress at the time
of the aforementioned course, and the first version of the data model reflected
this. Moreover, this version had several flaws in its design as I was learning about
the IG at the same time. The current version of the data model is discussed in
Section 5.6.2.
The IG Coder project was carried over to the course Integration Project2. Here
I also worked with two other students, one the same as in the first course. This
course emphasized integration of technologies and innovation, and we further ex-
plored the graph database as well as implementing some simple add functionality
on the backend. On the frontend we further developed the tree visualization and
made simple dialogue boxes for editing the different nodes, each of which repre-
sented a different element of the tree. The data model saw minor improvements
only.

1Course code: IMT4886
2Course code: IMT4807

45

46 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

In 2020, one other student and I worked on IG Coder as a summer project. The
goal of this project was not to develop the coding interface but build a user
management system around it with coding projects and levels of permission; it
was thus dubbed Management Project. As part of this, we designed and built an
SQL database and implemented a backend API for it. Our intent was to store the
coded statements themselves in the graph database and everything else in the SQL
database. On the frontend we implemented user sign-up and sign-in, and designed
(but did not fully implement) pages for project and document management.
Finally, during fall 2020 I worked some more on IG Coder outside of course work.
First and foremost, since an early version of the IG 2.0 codebook (Frantz & Siddiki,
2020) had been published at this point, I set out to overhaul the design of the
data model. This was both to update it to IG 2.0 and fix the many mistakes I saw.
I refer throughout to the new data model as version 2, in line with the naming
of IG 2.0. This work was primarily writing requirements for the data model but I
also started implementing it. This consisted of creating stubs for new classes that
would replace old ones, moving the class that held raw statement text higher up in
the hierarchical data structure and creating a stub class for constitutive statements
which the old data model did not support. The rest of the implementation I left
to my thesis project. Other than that, I made a small addition to the Management
Project by writing unit tests for the API endpoints.
This brings us to the start of this thesis. The initial state of IG Coder in this thesis
was a largely unfinished application, yet conveniently an existing codebase I was
intimately familiar with.

5.2 Technical Design

In this section I detail IG Coder’s technology stack and the decisions that were
made before the start of this thesis. I will focus on the frontend because the IG
Coder prototype developed in this thesis does not use a backend, a decision which
is explained in Section 5.3. I use the term code in noun form to mean software
code, whereas the term coding still means encoding and has nothing to do with
software development.
IG Coder is a React3 app bootstrapped using Facebook’s Create React App4 scripts.
The decision to use React as a frontend framework was made in the Applied Com-
puter Science Project course and the primary reason was its popularity. React was
ranked the number one frontend framework in the State of JavaScript 2019 survey
(State of JavaScript, 2019). I also note that both of my teammates had worked in
the development industry, so being less experienced myself, I had a certain level
of trust in their suggested technology choices.
Originally, IG Coder’s frontend was written primarily in JavaScript and only the
data model was written in TypeScript5. Over the years the frontend was gradually

3https://reactjs.org/
4https://github.com/facebook/create-react-app/
5https://www.typescriptlang.org/

https://reactjs.org/
https://github.com/facebook/create-react-app/
https://www.typescriptlang.org/

Chapter 5: Development of IG Coder 47

converted to TypeScript, and at the start of this thesis only a few remaining files
had the .js extension as opposed to .ts. However, even at the end of this thesis
the frontend source code is not fully typed using TypeScript, though mostly.
TypeScript adds optional, static type definitions to JavaScript and is compiled to
JavaScript. The developer annotates their code with types, which are then val-
idated during compilation. In the Applied Computer Science Project course, we
decided to use it to make the data model more robust. Part of what TypeScript
offers is interfaces, which are blueprints for JavaScript objects with type annota-
tions and which we believed would make it easier for us to work with the data
model throughout the application. Type annotations generally improve the clarity
of the code and its intent as well as making debugging easier, and for these rea-
sons we decided to make use of TypeScript more and more in our frontend code.
In developing the prototype for this thesis I have continued to type annotate my
frontend code because I value predictability and consistency in my code.
IG Coder’s frontend uses the Redux library for managing application state. Specifi-
cally, it uses the React-Redux6 bindings. Redux offers a centralized state container
and mechanisms for updating immutable state, and React-Redux offers APIs that
enable React components to interact with Redux state. The main benefits of im-
mutable and centralized state are improved predictability and consistency in the
application’s behavior as well as making it easier to test. The Create React App
scripts support a Redux option which automatically generates stub code for Re-
dux in the new application.
Using Redux was another decision we made during the Applied Computer Science
Project course. During my bachelor’s project, which also revolved around creating
a web application, my group also used Redux for state management and I had a
positive experience with it, which is why I agreed to use it for this project.

Figure 5.1: System architecture of IG Coder

Figure 5.1 gives an overview of IG Coder’s system architecture with key technolo-
gies, including the databases that are part of the Management Project. The back-

6https://react-redux.js.org/

https://react-redux.js.org/

48 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

end server is written in Python, and Flask7 is used to build the backend API. Com-
munication between the client and server is based on the REST architectural style
(Fielding, 2000), but since it does not follow all REST principles it is strictly an
HTTP API. The Management Project uses Google Firebase8 for user management
and authentication, while it has a MariaDB relational database to store projects
and documents as well as associate these with users and coded statements in the
other databases. Not part of the Management Project is the graph database Neo4j9

for storing coded statements, though this component of the system is the most in-
complete.
To describe the technologies used in the frontend, I separate it by presentation,
business logic and data storage layers. The client application is written in Type-
Script, and both the presentation and business logic layers are built using React.
To explain more closely, the frontend consists of React web components, each of
which contains code for both presentation and application logic. On the presen-
tation layer generally, the Data-Driven Documents (D3) library10 for manipulat-
ing Scalable Vector Graphics (SVG) is used for visualizing coded statements in
graph form. For styling the user interface IG Coder uses Bootstrap CSS via the
React-Bootstrap11 library. The user interface design will be explained further in
Section 5.5. Next, the business logic layer features the data model which is a set
of classes for coding institutional statements and which will be explained in depth
in Section 5.6.2. Also part of business logic is the Axios HTTP client12, used for
HTTP communication with the backend server. Finally, the data storage layer is
built with React-Redux.
Ever since the first course, the IG Coder project has been housed in a private
GitLab repository, including the Management Project which previously resided in
its own branch, but now has been merged into the development branch. Thus,
all team members have been using Git13 for version control. At the end of this
thesis, the repository was cloned to a public GitHub repository which is linked in
Appendix G.

5.3 Requirements

The system requirements for the IG Coder prototype in this thesis were determined
first and foremost to allow me to investigate and answer RQ3. At the same time,
they were guided by my findings on RQ1 and RQ2, the method of which will be
described in this section. As the first step of the requirements engineering process,
I formulated the following objective for the prototype:

7https://flask.palletsprojects.com/
8https://firebase.google.com/
9https://neo4j.com/

10https://d3js.org/
11https://react-bootstrap.github.io/
12https://github.com/axios/axios/
13https://git-scm.com/

https://flask.palletsprojects.com/
https://firebase.google.com/
https://neo4j.com/
https://d3js.org/
https://react-bootstrap.github.io/
https://github.com/axios/axios/
https://git-scm.com/

Chapter 5: Development of IG Coder 49

Provide a rich user interface that allows for the coding of raw institutional
statements with IG 2.0.

Note that I do not refer to this prototype as a Minimum Viable Product (MVP)
even though the term fits a prototype made for a specific objective. I did not have
an MVP mindset when developing the system requirements because both my su-
pervisor and I wish to take IG Coder further as a policy coding application in the
future. For this reason and the fact that IG Coder already had both a frontend and
backend it did not make sense to impose strict limitations on it.
A set of requirements for the prototype were still necessary, of course, so next
I made a number of decisions based on the aforementioned objective. This was
done during the design phase of this thesis but before I had completed my re-
view of current tools. These decisions can be regarded as high-level requirements,
whereas I defined lower-level requirements following the aforementioned review.
My decisions at this stage, along with my reasoning behind them, were as follows:

The Management Project will be excluded from this prototype. User, project
and document management are not necessary in a prototype user interface.

The prototype should work without a backend server. I have limited time for
development in this project. A prototype user interface can function without
a backend, and thus I can save a great deal of time I would otherwise have
spent on a component of the application that users never see anyway. This
will furthermore allow me to safely skip TLS encryption of the web server
(see Section 5.7). For the purposes of the prototype, I know I can rely on
the browser for simple data storage. I am aware that the lack of a backend
means NLP tools will not be available, which means the prototype cannot
process coded data using NLP technologies.

Support all of IG Core, IG Extended and IG Logico. They are all part of IG 2.0,
have different use cases and are all expected to have high uptake. However,
I prioritized IG Logico lower than the rest in case I was unable to cover them
all due to time constraints.

• IG Core – must have
• IG Extended – must have
• IG Logico – should have

Support constitutive as well as regulative statements. As a major addition in
IG 2.0, constitutive statements are crucial for a coding tool to support.

Implement export and import of coded statements. In addition to browser stor-
age, this serves as a save/load mechanism and allows coded data to be
shared. Support the following formats:

• JSON (native format; export and import) – must have

◦ A JSON schema for the native format should be offered.

50 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

• CSV (for spreadsheets; export only) – should have
• UIMA CAS (for text annotators; export only) – should have
• Shorthand (for reading; export only) – nice to have

Support viewing of all entries in a document in addition to coding of each entry.
For the user tests, a list of entries should be given for the users to code.

Do not support creation nor deletion of documents. A document with entries
should be pre-made for the user tests.

Some of the decisions above are labelled with one of "must have", "should have"
and "nice to have". This indicates the decision’s priority from highest to lowest.
Decisions on the top level were not prioritized, as all were considered necessary.
The decisions were in part decided based on responses to Questionnaire B, all
of which I had received at the time. Specifically, the list of export formats came
from these responses. Additionally, my supervisor advised me on what would be
important for the new tool, such as full support for IG 2.0. It was expressly my
decision to leave out the backend, a result of concerns about the time frame for
development because my past experiences have taught me to be conservative in
estimating development times.
Before this thesis and in the very beginning of it, my supervisor and I discussed
a few possible features of the coding interface that would assist the user when
coding text. One was auto-completion, i.e., when coding an ATTRIBUTES compo-
nent the interface would suggest previously coded ATTRIBUTES. The other was
automatic detection and removal of stop words, i.e., to code "The Program Man-
ager" as "Program Manager". The latter required NLP tools to implement and thus
needed to be performed on the backend. When I decided to leave out the backend
from the scope of the prototype, I therefore also had to leave out this feature. The
former feature was brought into the lower-level requirements, only as suggestions
instead of auto-completion, as described later in this section.
Two practical concerns related to development emerged from these decisions.
First, in the codebase, the Management Project branch had been merged into the
development branch because I at one point before this thesis believed I would need
the backend API as part of this prototype, and the former branch held the newest
version of the API. Therefore, all functionality related to the Management Project
needed to be disabled for this prototype. I solved this by adding switches, or flags,
in the application’s central state and implemented checks of these switches in all
the relevant code, allowing the Management Project to be turned on and off as
necessary. I ensured that switching it off would disable all backend server requests,
because that was
Second, the coding interface for this prototype had to be rebuilt from scratch, for
several reasons: the data model had changed too much in version 2, the original
node editors (dialogue boxes for editing each element of a tree) were inconsistent
and poorly planned, and to make it easier to accommodate the new requirements.
This brings us to the lower-level requirements coming from the review of current

Chapter 5: Development of IG Coder 51

tools. They were not comprehensive, only a list of features I decided to include in
the prototype. These requirements were as follows:

Visualize coded statements as trees. This feature already existed since before
this thesis but was to be updated to version 2 of the data model as well as
enhanced in two major ways. The first was color coding for the different
elements of the tree (different types of nodes) but not for different syn-
tactical components nor differentiating between regulative and constitutive
statements, as all of those would be labelled with text. The second was
text labels for each node showing the coded text. This tree would fulfill the
need for an overview of the coded statement with organized "fields" (nodes)
for syntactical components as well as for visualizing the hierarchy between
statements, components and properties. It would make it easier to revisit as
well as review coded statements.

Each node in the tree should be clickable, bringing up a node editor. The idea
of node editors has existed since the very first version of IG Coder. The dif-
ferent types of nodes are explained in Section 5.6.2 but the basic idea is
each node editor allows the manipulation of the node’s own fields as well
as controlling its child nodes. This system dictates the coding workflow, and
while I realized at an early point it might not be more time-efficient than
the current coding tools, I decided to move ahead with it as an experiment
for this thesis.

Offer alternatives to manual typing. Since manual typing as a coding method
is prone to error, the interface should allow selecting and dragging text from
the full statement to components. As an alternative to dragging, text should
also be able to be copied and pasted into components. However, I decided
not to support direct annotation of the text at this stage. (I still wanted to
support this in the future, just not for the prototype.)

Suggestions of previously entered component values. Since manual typing was
to be discouraged as a coding method, I decided it would be unnecessary
to implement auto-completion but the interface should still show a list of
suggestions. I furthermore decided that since an actor in one statement can
be an object in another, ATTRIBUTES and OBJECT as well as their constitu-
tive counterparts should all draw on the same pool of previously entered
component values.

Allow rephrasing of components and entire statements. The interface should
allow the coder to rephrase the entire statement and code that version, while
also allowing them to rephrase individual components.

Accommodate implicit components. The interface should allow explicitly spec-
ifying the values of implicit components. This feature should be able to be
used in combination with the above (rephrasing of components).

52 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Offer help text in each node editor. This feature did not come from the review
of current tools but is something I came up with around the same time.
I realized it would be necessary to explain the different node types (i.e.,
different elements of a tree) to the users. Therefore, each node editor should
display a short help text which briefly explains the node type and serves as
quick reference for the available actions.

As is apparent, the system requirements for the prototype were not all that de-
tailed. I did not write low-level use cases because I felt it was not necessary as
the sole developer on this project. I had decided on the requirements myself and
was going to implement them myself, so I had my own ideas about what exactly I
would implement. I know detailed specifications are necessary for communicating
requirements in projects with multiple people.

5.4 Development Process

As the sole developer on this project, my development process was rather straight-
forward. To manage the work, I took the requirements described in Section 5.3
and split them into manageable issues, which I placed in my backlog. I kept a
personal implementation log which was divided into backlog, current issues and
completed issues. Underneath each issue I kept all my personal notes about its
implementation, including lists of possible approaches to a solution and a brief
summary of my final solution for future reference. I also noted down bugs with
reproduction steps, causes and solutions. This way, all the information I discov-
ered during my work on each issue was accessible for future reference.
I worked on the issues sequentially, for the most part. As a rough outline, I began
by updating the data model implementation to version 2, then updated and re-
fined the tree visualization, and finally built the node editors. However, I ended
up revisiting a small number of issues because I later found better (i.e., more ef-
ficient or elegant) solutions. When I got stuck on an issue I moved on to the next
to give myself time to think about the former.
During the development phase, I had a two-hour meeting with my supervisor ev-
ery two weeks. No other people were involved in the development process. In
these meetings I demonstrated the features I had implemented since last time
and he gave me feedback, most of the time from the perspective of a user. Even
though he is a computer scientist, we spent very little time discussing technical so-
lutions. After each meeting, I implemented his suggestions before resuming work
on issues, showing I was able to respond to and adapt to feedback in an agile
way. Granted, the feedback was for the most part lists of small or even minute
enhancements, but a handful of items required several hours each to implement.
The largest feature that was introduced because of feedback from my supervisor
was a preferences panel with three configurable settings pertaining to the coding
interface. These were not part of the system requirements but were added during
development of the user interface, after my supervisor suggested them.

Chapter 5: Development of IG Coder 53

I used Git14 for version control, like I had been doing since the very beginning of IG
Coder. The IG Coder repository has two main branches: master and development,
where master is for the production build while development is for work. There is
also a branch for the Management Project but it was merged into development
and has not been in use since. It is kept in case that specific project is taken up
again.
When I was in a team working on IG Coder, we used a branching model in which
a new branch is created for every issue that is being worked on. After the issue
is completed, a merge request (also known as pull request) is submitted, another
team member reviews the code and when it is accepted, the branch is merged
into development and deleted. This method allows team members to coordinate
their changes. However, when working on a project alone such coordination is not
necessary. Therefore, during the development phase in this thesis, I did not create
a new branch for every single issue. I did, however, work on a branch separate
from development, which I merged into the latter every 2-3 issues. I was aware
that this meant multiple issues were bundled into each commit, so I made an effort
to make each commit message descriptive of the changes in that commit.
Since IG Coder was only a prototype and a work in progress, I did not write com-
prehensive documentation for it in this thesis. The data model was and is the most
well documented component of the application. The project’s GitLab repository
has a wiki which contains documentation of the backend API and the Manage-
ment Project but very little of the client, except for a page about the data model.
This page specifies the design of the data model in detail, including class descrip-
tions with fields but not data types, as well as rules for how the classes should
be used to comply with the IG 2.0 specification. It is shown in Appendix D but I
discuss it further in Section 5.6.2.
While there is limited formal documentation of the client, all the code I wrote in
this thesis is tidy and fairly well commented, in my opinion. All classes and nearly
all functions are documented with JSDoc15.

5.5 User Interface Design

Since the very first version of IG Coder, there has been a base user interface
(UI) with a background, a navbar along the top and a body container. As I men-
tioned in Section 5.2, IG Coder uses Bootstrap for styling the interface (specifically,
React-Bootstrap which wraps Bootstrap components in React components). These
reusable components make it easy to compose a user interface with a consistent
style, so that I can focus on functionality.
Thus, I created UI for each feature as part of implementing it. This means I never
made drawings of what the user interface for the prototype should look like. While
I had some ideas about the user interface in mind, I only made some small notes

14https://git-scm.com/
15https://jsdoc.app/

https://git-scm.com/
https://jsdoc.app/

54 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

in my implementation log and spent very little time planning the user interface.
Figure 5.2 shows the page listing all statements. For this page I thought the most
practical solution to display the list would be a table. This would allow me to
add columns if more information needed to be displayed for each statement, and
this turned out to be useful since I added the "Status" column much later. While
this page shows the list of test statements, it is intended to represent a specific
document (i.e., policy or regulation) containing a chronological list of statements.
This page also contains the "Load file" and "Save file" buttons, since they pertain
to the document as a whole.

Figure 5.2: IG Coder: List of test statements

Figure 5.3: IG Coder: Uncoded entry

In Figure 5.3 we see the entry page (in IG Coder, an entry represents an institu-
tional statement, as described in the data model specification). It shows the raw
statement, which is read-only but allows the statement to be rephrased after click-
ing the "Rephrased" bar. When no coding exists for the entry, a new coding can be
started by creating a new root node, which has three possible types.

Chapter 5: Development of IG Coder 55

Figure 5.4: IG Coder: After creating a root node

Figure 5.4 shows the entry page after clicking the "Regulative" button in the pre-
vious figure. Creating a Statement node of regulative or constitutive kind auto-
matically creates Component child nodes for its mandatory components. This is
where the D3 tree visualization comes in. The tree is an SVG graphic made of SVG
circles, lines and text boxes, and is generated as well as styled by D3 code. This
means Bootstrap cannot be relied on for styling the tree. This page also contains
a button "Clear tree", which upon confirmation deletes the coding.

Figure 5.5: IG Coder: Statement editor

The next figure, Figure 5.5, shows the result of clicking on the Regulative State-
ment node in the previous figure. When clicking on any node, this dialogue box
(hereafter referred to as a node editor) appears on top of the entry page. In the
editor, both kinds of Statement node display a grid of their child nodes, where op-
tional components are absent by default but can be created and deleted. Clicking
on a child node takes you directly to that node’s editor.

56 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

All node editors have a question mark in the upper half, which when hovered
over displays a block of help text in the blank area below it. Furthermore, the
upper bar shows the node type and component type if applicable as well as a
number of controls depending on the node type. Nodes of all types can be marked
as Negated, and most node types can be labelled with a Context type (of IG 2.0’s
Context Taxonomy).

Figure 5.6: IG Coder: Component editor

Figure 5.6 shows the node editor of the Component node of type Attributes in
the tree from Figure 5.4. Component, Junction and Property nodes can all have
text content, which the four text fields are for. The full statement is shown in a
read-only field, and text can be selected and then dragged or copied into the text
fields.

Figure 5.7: IG Coder: Junction editor

Moving on, Figure 5.7 shows the node editor of a Junction node, which is not
pictured in Figure 5.4. A Junction node represents the logical combination of its
two children, and thus two empty slots for child nodes are shown. Only one text
field is available, and the upper bar allows its logical operator to be set.

Chapter 5: Development of IG Coder 57

Figure 5.8: IG Coder: Fully coded statement

Finally, Figure 5.8 shows the tree representation of the fully coded example state-
ment. Activation Conditions (Cac) and Execution Constraints (Cex) have text la-
bels by default when no constraints have been coded. Nodes outlined in red are
marked as Negated. Hovering over any node in the tree displays a tooltip contain-
ing node type, component type if applicable and text content if applicable. For
Property nodes (purple), dashed lines mean the Property is functionally indepen-
dent from its parent node. A Property node can be set to functionally dependent
on its parent node, in which case the line to its parent node becomes solid, and
back. The Property editor is not shown among these images, because it is very
similar to the Component editor.
I reiterate that using Bootstrap made it easy to have a consistent style across the
app. I only had to ensure the D3 tree visualization fit in as well as being easy
to read. The user experience (UX) could certainly be improved as I am not a UX
designer, but that is a matter for the future.

5.6 Implementation and Tests

5.6.1 Tools

For developing IG Coder in this thesis, I used JetBrains’ WebStorm16 as my IDE.
It is a professional IDE with helpful facilities for working with both React and
TypeScript, and is free for students.
As described in Section 5.2, IG Coder is a React app with built-in React scripts.

16https://www.jetbrains.com/webstorm/

https://www.jetbrains.com/webstorm/

58 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

During development, I used the start script to run a development version of the
app, which compiles the TypeScript code and serves the app locally. Changes to the
code automatically trigger a new compilation of the app and refresh of the page.
For production (i.e., deployment), however, the build script should be used. This
produces a build folder containing a bundled and optimized version of the app,
ready for deployment.
I used the Node package manager (NPM)17 for dependency management. NPM is
the largest software registry for JavaScript packages, and practically all the client-
side technologies mentioned in Section 5.2 were installed into IG Coder as NPM
packages. NPM offers a command-line interface (CLI) for managing packages, and
furthermore lists all the package dependencies for an application in a file called
package.json. This list is divided into main dependencies, which are required
to build the application for production, and "dev" dependencies, which are only
required during development (i.e., testing-related packages).

5.6.2 Data Model

In this section, I will primarily discuss the data model but also bring up some com-
ponents of the prototype that are related to it. I see the data model as my main
contribution to the IG Coder project, and therefore I do not detail the implemen-
tation of the rest of the prototype in this chapter.
The data model is my class-based implementation of IG 2.0 in IG Coder, and has
a unique format for representing institutional statements. It is implemented after
my specification, which is shown in Appendix D. I have been developing this spec-
ification since the very beginning of IG Coder, and its current version is v2, in line
with the naming of IG 2.0.
The data model was created because IG Coder needed to facilitate coding of in-
stitutional statements, and in the very first course, my teammates and I explored
the representation of statements in a tree structure. Therefore, the data model is
built on a few fundamental ideas and concepts:

Institutional statements are represented as trees. My supervisor, who was our
Product Owner in the very first project, advised us that this was a good
choice in a new coding tool, presumably because he was familiar with the
disadvantages of coding in a tabular structure. The primary advantage of
such a tree structure is the ease of representing vertical and horizontal nest-
ing. Therefore, the data model has a hierarchical structure, consisting of
nodes which contain child nodes. The elemental node structure is described
below.

Different node types represent different elements of the tree. This was a con-
sequence of representing statements as trees: we needed to determine ex-
actly how the trees are structured. Note that node types do not correspond
to syntactical components of the IG. The Component node type represents

17https://www.npmjs.com/

https://www.npmjs.com/

Chapter 5: Development of IG Coder 59

components, and has a field specifying the type of component. The node
types and their roles are described below.

Code listing 5.1 shows the TypeScript interface for the base Node class. Note the
final field, children, which is an array of Node objects. This is the building block
for a hierarchical structure: a Node points to its child Nodes, which again point to
their child Nodes. To clarify, in JavaScript and thus TypeScript objects are passed
by reference, meaning that in memory, child Nodes are not actually contained
within their parent nodes. However, if printing the tree structure as a JavaScript
Object Notation (JSON) string, they are.

Code listing 5.1: Interface for the elemental node in the IG data model

/**
* The base contract for all Nodes
*/
export interface INode {

/* ID of this Node, unique within its Document */
id: number,
/* ID of the Document this node belongs to */
document: number,
/* This Node’s type/archetype/role in the statement tree */
nodeType: NodeType,
/* Whether this Node’s meaning is negated */
isNegated: boolean,
/* Optional context type for using the Context Taxonomy on this Node */
contextType?: ContextType;
/* ID of the node this node is a child of (undefined if root) */
parent?: number,
/* The time and date this Node was created */
createdAt: Date,
/* The time and date this Node was last changed */
updatedAt: Date,
/* Array of child nodes of this Node */
children: INode[]

}

The data model contains classes for different node types, all of which extend the
base Node class. Summarizing the node type specification in Appendix D, the node
types and their roles are as follows:

Statement Common base class for Regulative Statement and Constitutive State-
ment, not to be used directly.

Regulative Statement Represents a regulative statement, with a child Com-
ponent node for each regulative component.

Constitutive Statement Represents a constitutive statement, with a child
Component node for each constitutive component.

Junction Represents the logical combination of its two child nodes. Has a field
specifying its logical operator and a field for text content. Common base
class for the following three classes, not to be used directly.

60 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Statement Junction Represents a side-by-side combination of two State-
ment nodes.

Component Junction Represents a side-by-side combination of two Com-
ponent nodes.

Property Junction Represents a side-by-side combination of two Property
nodes.

Component Represents a regulative or constitutive component. Has a field spec-
ifying its component type and a field for text content. Depending on its
component type, has a variety of rules for what child nodes it can have.
For instance, the OR ELSE component type can have a Statement node as its
child.

Property Represents an object or property in the Object-Property Hierarchy of IG
2.0. Has a field for text content. Can show up in the tree only as child of a
Component node or of another Property node.

To build statement trees, i.e., code institutional statements in the data model, one
first needs a Document object that contains a list of Entries. An Entry is a wrapper
class for an institutional statement containing the root node as well as fields for
the full statement text and rephrased text. The Entry class has a function to create
a root node, and from there, all node classes have functions to create child nodes.
All nodes have an ID as one of its fields, which are unique within each Document.
As a temporary solution before fully implementing the backend, my original team
wrote a simple counter class to increment a numeric ID for each node that was
created in each Document. This works well as long as the application is client-only
but will of course have to be replaced in a multi-user situation, since numeric IDs
will conflict.
To ensure the tree is syntactically correct in IG 2.0, all node creator functions have
built-in checks that validate the desired action in the current context. In other
words, correctness is enforced while coding, not validated afterward. The various
data model-specific errors that can be produced are enumerated in a custom error
class.
Figure 5.9 illustrates how a complex statement can be represented (i.e., coded)
in the current version of the data model. It exemplifies most features of the data
model, excluding only constitutive statements, the OR ELSE component and con-
text types. The original statement is given as part of the figure. Note that I built
this figure before starting development in this thesis, so this illustration was an
important step for me to figure out what IG Coder should do as well as look like.
For instance, the figure shows the color coding I decided on for the different node
types, which I then emulated when implementing the user interface. To a high
extent, this illustration served as a plan for the tree visualization in the user in-
terface, but I note that a very basic D3 tree existed in IG Coder before this thesis,
which I built the illustration on.

Chapter 5: Development of IG Coder 61

Fi
gu

re
5.

9:
Sa

m
pl

e
tr

ee
re

pr
es

en
ta

ti
on

of
a

st
at

em
en

t
w

it
h

th
e

IG
da

ta
m

od
el

62 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

The data model is at the core of IG Coder, providing the data structure with which
coded institutional statements are manipulated, stored and exchanged. The cen-
tral state of the application stores the working document in its current state, and
this state is furthermore persisted to browser storage upon every change. Thus,
the user’s work is saved automatically in the browser, which I find very conve-
nient. However, since the user might lose this data, e.g., if they have to reinstall
their browser or use a different machine, I needed to offer an alternative storage
method.
Therefore, one of the system requirements given in Section 5.3 was to implement
export and import of coded statements. To implement these functions, I simply
print the tree structure to a JSON file and download the file, and conversely let
a file be uploaded and build a tree structure from it. For the purposes of the pro-
totype, the entire Document is exported and imported. My intent with these was
as a save/load mechanism in the absence of a backend database, as well as an
alternative solution to the browser storage on the client’s machine. While work is
saved automatically in the browser, the save/load mechanism backs it up.
Furthermore, the export/import functions allow documents to be shared between
users. After the user tests, which are detailed in Chapter 6, I was able to import
my participants’ coded documents into IG Coder and inspect how they coded the
sample statements. I elaborate on this in Section 6.2.2.
Unfortunately, due to a lack of time I was not able to implement all the require-
ments listed in Section 5.3. Most importantly, I did not have the time to implement
export in any other formats than the native data structure. I bring up and discuss
these missing requirements in Chapter 7.

5.6.3 Tests

This section will describe the unit testing of the prototype. User testing is con-
ducted in a separate study, described in Chapter 6.
To facilitate unit testing in IG Coder, I used ts-jest18, a library building on Jest19,
a JavaScript testing framework, providing full TypeScript support to it. I focused
on writing automated unit tests for the data model, and did not have the time to
write such tests for the user interface. I instead tested the user interface manually,
and my supervisor tried it out at the end as well. The prototype was small enough
that this worked for us. I tested the prototype in Google Chrome, Mozilla Firefox
and Microsoft Edge, all of which I had access to. I did not have access to Safari,
however, so I used an online service to test in this browser.
The unit tests covered practically all the functions in the data model. However, the
child node creators were numerous, so they were tested by simply calling them,
storing the returned child node in a variable and then calling a function on the
child node. If something was wrong, a TypeScript error or data model error would
be produced and the test would fail, showing me this error. Other functions were

18https://github.com/kulshekhar/ts-jest
19https://jestjs.io/

https://github.com/kulshekhar/ts-jest
https://jestjs.io/

Chapter 5: Development of IG Coder 63

more thoroughly tested, verifying their output with different inputs. There was
furthermore a large test which ran dozens of data model functions in sequence,
building a statement tree using all possible functionalities, the way it would be
done in the coding interface.
While the unit tests in combination called all the data model functions, they did
not check every possible case with every possible input, as there are simply too
many possibilities. Again, I found that this level of testing was sufficient for the
size of the prototype and the time frame in this thesis. In the future, however, it
will be advantageous to expand the unit tests prior to expanding the functionality
of the application.

5.7 Deployment

To deploy IG Coder to users for the evaluation described in Chapter 6, I used
the virtualization platform OpenStack via NTNU Gjøvik’s installation, SkyHiGh20.
Among other services, it offers virtual machines that can be connected to NTNU’s
internal as well as external networks. My supervisor and I have a space in SkyHiGh
for the IG Coder project.
In this space, I set up a virtual machine and pulled IG Coder’s Git repository. Once
I had finished the prototype, I built the newest version of the app as described
in Section 5.6, producing a build folder. I then used the open source web server
NGINX21 to statically serve the contents of the build folder on the machine’s HTTP
port and set this as the default access port. Finally, I claimed a public IP address
from SkyHiGh’s pool and allocated this to the machine, enabling public access to
the app. I shared this IP address with the test participants.
The virtual machine had the following ports open for ingress (incoming packets):
80 (HTTP), 443 (HTTPS) and 22 (SSH). Both my supervisor and I had SSH access
to the machine.
Note that I did not set up TLS or SSL security on this web server. This is because the
app runs entirely on the client and does not communicate with any remote server,
meaning there is no network communication to encrypt. The web server only hosts
the bundled and minified22 JavaScript code, the base HTML document in which
the app’s content is dynamically displayed and the accompanying CSS stylesheets.
The JavaScript code runs on the client’s machine. TLS encryption, even via free
certificate authorities such as Let’s Encrypt23, requires a domain name which is
rarely free. For all the aforementioned reasons, I saw no need to go to the trouble
of this.

20https://www.ntnu.no/wiki/display/skyhigh
21http://nginx.org/
22Minification compresses code and markup by removing all unnecessary characters (i.e., whites-

pace and comments) and shortening variable names without changing its functionality, dramatically
reducing its file size. This improves load times and bandwidth usage, resulting in a better user ex-
perience.

23https://letsencrypt.org/

https://www.ntnu.no/wiki/display/skyhigh
http://nginx.org/
https://letsencrypt.org/

Chapter 6

Evaluation of IG Coder

6.1 Introduction

This chapter will conduct an evaluation of IG Coder, investigating RQ3 of this
thesis. As a reminder, RQ3 is as follows:
Evaluation of the new coding tool

RQ3 To what extent does IG Coder satisfy the needs identified in RQ1 and RQ2?

RQ3a To what extent is IG Coder aligned with coders’ understanding of
institutional statements?

RQ3b How satisfied are users with the coding interface of IG Coder?

RQ3c To what extent can IG Coder improve the coding workflow?

As was done with RQ1 and RQ2, RQ3 and each of its sub-questions will be an-
swered separately. Furthermore, while questions are phrased using "To what ex-
tent" and "How satisfied", I will answer them entirely in words and not using scales
or other metrics, as mentioned in Section 2.3.
I also reiterate that by "the needs identified in RQ1 and RQ2" I mean the identified
features a new coding tool should and should not possess, whether they come from
an existing tool or not.

6.2 Method

The evaluation consists of two major activities. First, the IG Coder prototype is de-
ployed to a group of testers whose task is to code a given set of institutional state-
ments using the prototype. Second, I conduct a semi-structured interview with
each of these testers to gain insight into their experience with the prototype and
gather information with which I can answer the research questions. Section 6.2.1
describes how I recruited participants for the evaluation, and the two activities
are detailed in Sections 6.2.2 and 6.2.3, respectively.

65

66 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

6.2.1 Recruitment

Before I could begin the evaluation of IG Coder, I needed a group of testers. There-
fore, going back to Questionnaire B, there was a final question at the end (not
shown in Appendix C) where I asked participants if they would be interested in
testing a new policy coding tool. At this stage, I informed them that participa-
tion would consist of testing the tool with sample statements and participating in
an interview with me. The question linked to a separate, small questionnaire for
sign-up.
Additionally, my supervisor took it upon himself to contact a few people within
IGRI who might be interested, and one other researcher contacted some of his
students who had been working with the IG.
At the beginning of the evaluation phase I sent out an email to all prospective
participants mentioned above. It included all the information they needed to par-
ticipate: an information letter with detailed information on the evaluation activi-
ties and steps to ensure their privacy, an interview guide with possible questions
for the interview, a link to the IG Coder prototype, a video tutorial of the proto-
type and instructions for the testing activity. I collected participants’ consent in a
separate questionnaire linked from this email. Asking for consent was necessary
because I needed to record and transcribe the interviews, being on my own and
unable to take sufficient notes.
The interview guide is shown in Appendix F and is used as a guideline for the
semi-structured interviews, described in Section 6.2.3.
As mentioned above, I recorded a video tutorial of the completed IG Coder pro-
totype. I populated the prototype with five sample statements, and in the tutorial
I demonstrated how to code them. However, to save time, I only coded the first
statement completely; for the rest, I coded their unique features only. Altogether,
the video covered most features of the prototype but due to the small number of
sample statements and time constraints it did not cover some of the more complex
features. In terms of a technical solution, the video was a simple recording of my
screen and microphone as I did not have the time nor knowledge to edit it.
The final list of participants would come from the responses to the aforementioned
consent questionnaire. Having recruited participants, I could begin the user test-
ing.

6.2.2 User Testing

To test the IG Coder prototype, I deployed it to the testers as described in Sec-
tion 5.7, sending them the link by email as mentioned in Section 6.2.1. In the
email I also gave the following instructions:
“Past the welcome screen you will see a table of statements. Your task is to code
as many of these statements as possible. Following this, please download your
coding using the "Save file" button and send the file to me.”
Prior to sending the email, I populated the prototype with 14 institutional state-
ments which the testers were to code. These statements are shown in Appendix E.

Chapter 6: Evaluation of IG Coder 67

I started with simple, atomic statements and gradually introduced IG 2.0 features
such as the OR ELSE component, simple and complex properties, and vertical and
horizontal nesting. A majority of the statements were regulative but I included a
few constitutive statements as well. The last four statements were highly compli-
cated, and because of this and the relatively high number of statements I formu-
lated the instructions as "code as many of these statements as possible" instead of
"code all statements".
After the testers had finished coding, they had been instructed to download the
coding and send it to me. The "Save file" functionality of IG Coder was to be used
for this (while I used the term "download", this functionality simply generates a
file on the client and saves it). I could then load their coding into IG Coder myself
using the "Load file" functionality and inspect it. This was not strictly part of the
evaluation as I did not analyze their coded data in any way but having the codings
available helped me discuss their experience with them during the interviews.
This brings us to the interview part of the evaluation.

6.2.3 Interviews

As part of the email correspondence between each of the testers and I, we sched-
uled an interview following the testing activity. I encouraged them to make time
as soon after the testing activity as possible, as far as their schedules allowed, so
that their experience using the prototype would still be fresh in their memories.
As mentioned in Section 2.3, these interviews were semi-structured. I used an
interview guide, shown in Appendix F, as a starting point for asking questions.
Participants had been given this guide in advance. The interview guide included
RQ3 and its sub-questions either directly or indirectly but they were not high-
lighted or otherwise called out as particularly important. Having the interview
guide close at hand during the interviews allowed me to be flexible, adapting my
questions to the participant and steering the discussion in a useful direction while
ensuring I covered the most important topics.
In practice, I ended up asking only around half of the questions in the interview
guide. Furthermore, in all the interviews I skipped the questions labelled "Review-
ing your tool of choice" because I feared they would take up too much time and
because the participants’ tool of choice came up in the discussions anyway. I also
skipped the question "How did you code multiple properties on the same com-
ponent?" because it turned out difficult to explain in a remote interview setting,
even with examples. Outside of the interview guide I asked participants about
their area of research.
In terms of practicalities, I hosted each interview in a Zoom online meeting except
one which was hosted by the participant, also using Zoom. To collect data from
the interviews I recorded them locally on my computer and wrote a transcription
afterward, which participants had been informed of in advance and had consented
to. In the next section I give a detailed summary of each interview conducted in
this evaluation.

68 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

6.3 Results

6.3.1 Interview 1: Angelo Baldado

My first interview was with Angelo Baldado, an IGRI intern studying toward a
Master of Public Administration at Syracuse University. As an intern, he has been
part of research projects as well as internal discussions about the development of
the Institutional Grammar.
I asked him some questions about his policy coding background, such as what
tool he prefers. While Angelo has coded in both spreadsheets and INCEpTION,
he prefers the latter. He also said he has not really performed analysis of coded
statements yet, rather focused on testing and comparing the different methodolo-
gies, i.e., coding tools. For instance, he has taken part in an experiment to code
the same policy in spreadsheets and INCEpTION, then compare the processes.
In addition to INCEpTION, he likes inline coding because it allows him to play with
the statement as a piece of text as opposed to copying and pasting into boxes. He
used the word organic to describe inline coding, and I can see that INCEpTION
offers a similar kind of freedom as a text annotation tool. In terms of complexity
level, Angelo tries to decompose as much as possible using IG Extended.
Moving on to IG Coder itself, I first asked him how he approached the coding
exercises and he said he coded them all in one go. He later added he tried to do
them in the frame of 30-40 minutes, as he had exams coming up at the time.
We then started discussing the workflow in IG Coder and comparing it to that in
INCEpTION. Angelo came to the conclusion that INCEpTION is faster. I believe
this is because essentially, one is tagging the statement directly and immediately
as opposed to having to explicitly create a new statement node to code a nested
statement, for instance. Thus, IG Coder requires more clicks than INCEpTION
to perform the same action. When coding nested statements in IG Coder, such as
ACTIVATION CONDITIONS, Angelo described it as a different “mental mode” because
one has to explicitly make a new statement node, whereas in INCEpTION he only
needs to “click and highlight”. He had some trouble figuring out how to code
nesting and logical combinations in IG Coder as he did not know what it would
look like in the tree nor how to make it the way he wanted.
What he liked about IG Coder is that it has built-in defaults, such as it shows that
a regulative statement can have a Direct Object but does not have to. This reminds
the coder about his or her options, which is helpful. He also really liked the tree
visualization, saying he loved seeing the sentence structure that way and that it
added some depth to his understanding of institutional statements.
One aspect Angelo found confusing was the placement of Junction nodes and
their labels. As a reminder, a Junction node represents the logical combination
of its two child nodes, meaning the two nodes being combined are shown below
the Junction node. While he saw how it made sense, he found this difficult to
read because he wanted to read the left child first and then the Junction, but in
the tree the Junction came first. He later added that “it would be great to see it
flip-flopped”, with the Junction shown below the two elements being combined.

Chapter 6: Evaluation of IG Coder 69

Furthermore, Angelo suggested a minor enhancement to IG Coder. This was a
button to go backward, i.e., to move directly from a node to its parent node.
While from my perspective as a developer, this would require traversing the tree
since a node does not have access to its parent, I can see how convenient it would
be for users. This would make it easy to go back to a Junction node, for instance.
I next asked him how he used the Prefix and Suffix fields. He liked the idea but
ended up skipping them and lumping everything together. He again pointed out
that he has not really performed analysis yet and could see how coding Prefix and
Suffix could help filter out the noise. Bringing up a conversation in his research
team, he pointed out that the decision whether to code prepositions and other
stop words is often a matter of personal preference as well as time constraints.
When asked about my choice of the terms Prefix and Suffix, Angelo said they
were intuitive to understand but that thinking about it, there might be linguistic
terms for them that could be even more appropriate.
In general, Angelo thought there was a lot to keep track of in IG Coder. He said
this about creating Junction nodes, and that Prefix and Suffix were just another
layer on top. I did not bring this up, but having to tick a box to mark a node as
Negated is in the same category.
Near the end, I asked Angelo what INCEpTION did better than IG Coder. He reiter-
ated that he had only spent 30-40 minutes on IG Coder and so was still learning it,
but also that INCEpTION is decidedly faster. Contrasting the two, he said IG Coder
“makes you think harder about structure” whereas INCEpTION lets you just code.
He saw this as a good thing about IG Coder and came to the conclusion that it is
a great tool for teaching and practicing the Institutional Grammar because of its
focus on structure. It has a lot to keep track of inherently because of this focus. On
the other hand, he was unsure whether it was a good tool for research analysis. He
again raised the visual representation as a strength of IG Coder that INCEpTION
does not have, since in INCEpTION the numerous lines tend to get confusing.
I followed up on this by asking whether if I could make IG Coder’s workflow faster,
it would be an overall better tool. Angelo pointed out to me that this might not
be the right way to look at it because in his experience, "better" is subjective. He
said, “it’s about recognizing what is the strength and maximizing that”, and that
IG Coder could be optimized more for teaching. He furthermore said IG Coder has
a different way of seeing the IG and institutional statements.
Overall, Angelo was excited about the new tool and said he would love to see it
taken further.

6.3.2 Interview 2: Dr. Ute Brady

My second interviewee was Dr. Ute Brady, a postdoctoral scholar at Syracuse Uni-
versity. As an environmental social scientist, her area of interest within institu-
tional analysis is assessing policy design in international conservation treaties and
governance.
I first asked about her policy coding background. Dr. Brady primarily uses spread-

70 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

sheets for policy coding but has tried INCEpTION as well. As part of her disser-
tation, she coded a large dataset of institutional statements, nearly 4,000, in Mi-
crosoft Excel because it was the only tool available at the time. She is thus very ex-
perienced with and accustomed to spreadsheet coding. INCEpTION, on the other
hand, she finds hard to adjust to and finds its visual representation of coded state-
ments hard to read.
When coding the dataset for her dissertation, due to the sheer number of state-
ments she coded at a level of complexity akin to IG Core. She focused on identi-
fying the constraints and did not decompose them unless absolutely necessary.
Having performed spreadsheet coding for so long, Dr. Brady has developed her
own approach for efficient coding. She told me she cuts the whole institutional
statement, pastes it into each column and deletes all the text that does not fit in
the columns. I imagine this is useful because in Microsoft Excel, selecting only
part of the text in a cell to copy into another requires double-clicking the cell first,
which is inconvenient.
We then moved on to discussing IG Coder. When doing the coding exercises in
IG Coder, Dr. Brady tells me she tried to code them all in one go but got stuck in
several places and so ended up jumping around the statements, coding intermit-
tently over around five days. She had to consult the video tutorial to check out
how to perform some functions.
I then asked her to compare her workflow in IG Coder to that in spreadsheets.
Dr. Brady pointed out to me that this might not be a fair comparison since she
has been coding in spreadsheets for a long time and any new tool has a learn-
ing curve. When we discussed the speed of coding in IG Coder, spreadsheets and
INCEpTION, we agreed that INCEpTION is probably the fastest way to code. For
atomic statements, IG Coder and spreadsheets are much the same but as state-
ments become more complex, she wondered if IG Coder might not be more time
efficient than spreadsheets, provided the coder has overcome the hurdle of figur-
ing out IG Coder.
Dr. Brady tells me she found the tree visualization of statements very appealing,
being a visual person. The tree made much more sense to her visually than a
spreadsheet of multiple rows for one complex statement. It allowed her to eas-
ily see what she had coded and double-check her coding in a way that neither
INCEpTION nor spreadsheets offer. She brought up that she has two very similar
treaties where one is modelled after the other, and she pictured the coded trees
side by side which would allow them to be compared visually. While I did not tell
her this, it spurred me to think of program functionality that could compare two
trees and quantify their differences, e.g., for assessing inter-coder reliability. This
could be an interesting future direction.
We next discussed the output of the different coding tools, i.e., what file formats
the coded data can be exported to. Dr. Brady is familiar with running statistics on
spreadsheets using the R system1. She furthermore said INCEpTION has no usable
output for her, and we agreed that IG Coder needs some sort of output and that

1https://www.r-project.org/

https://www.r-project.org/

Chapter 6: Evaluation of IG Coder 71

the most useful format would probably be CSV.
When I asked about the Prefix and Suffix fields in IG Coder, she told me she first
mixed them with properties but understood them when she went back to the
video tutorial. We agreed that the term "stop words" is useful for communicating
the intent with the Prefix and Suffix fields.
Overall, Dr. Brady found IG Coder to be very intuitive for simple statements but
struggled more with complex ones. In discussing her specific challenges, a deep-
rooted issue with IG Coder came to light. I made a very early design decision
in IG Coder that logical relationships are not to be decomposed and statements
are to be coded as compactly as possible. This is because I wanted to keep the
data structure, i.e., the representation of a coding, as small as possible. It is still
possible to decompose relationships but not at all intuitive, which I realized when
Dr. Brady pointed out there is no way to copy a statement. She was attempting to
decompose a logical relationship into two statements that were identical save for
the one component that had two values combined by a logical operator. It is not
the first time I have encountered this issue, so this will be an important problem
to solve moving forward.
Another issue she struggled with was deleting specific elements, or nodes. Unfor-
tunately, for her it meant she had to delete the entire statement on a few occasions,
which I do not think a user should have to put up with. This was because it was
not intuitive to her that a node can only be deleted from its parent node. From a
computer scientist’s perspective it makes total sense but most users are not com-
puter scientists, so this kind of feedback is very useful to me and appreciated. On
a similar note, Dr. Brady pointed out to me that it might be helpful if I explain
terms like "child node" further for most people.
Toward the end, we discussed two possible minor enhancements to IG Coder. First,
Dr. Brady found that when she used the Rephrased field to rephrase a statement,
in the node editor she could not tell if she was looking at the original statement
or the rephrasing, and therefore she manually added brackets to the rephrasing.
IG Coder could add these automatically to help the user. Second, she suggested it
would be great if there was also functionality to export a tree as a graphic, such
as PDF or JPEG. This would be a way to compare similar statements, for instance.
All in all, Dr. Brady thinks IG Coder addressed some of the weaknesses with the
spreadsheet, especially since she is a visual person. She further said I took the
feedback from the questionnaire (Questionnaire B) and did something great with
IG Coder.

6.3.3 Interview 3: Dr. Bartosz Pieliński

For my third and final interview I sat down with Dr. Bartosz Pieliński, an Associate
Professor at the University of Warsaw’s Faculty of Political Science and Interna-
tional Studies. While he usually specializes in analyzing non-profit organizations,
he currently focuses on methodological issues, which is where the Institutional
Grammar comes in. He has worked on implementing the IG in social policies and

72 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

currently works with colleagues from other fields of political science.
While I previously believed Dr. Pieliński is a computer scientist, he is not. He tells
me he found people in the Warsaw computer science community who are also
interested in the Institutional Grammar and has been working together with them
for two years.
When asked about his policy coding background, Dr. Pieliński told me he started
with INCEpTION and attempted spreadsheets later, so he has experience coding
in both. While there are numerous reasons he does not find Microsoft Excel ap-
propriate for annotation, he concedes that it is currently the best tool for analysis.
I followed up on this by asking how coded data in INCEpTION can be exported for
analysis. Similarly to what Dr. Brady told me, Dr. Pieliński said it is very difficult
and that he has not quite reached that level.
Dr. Pieliński’s long-term goal is to create a public policy observatory that uses
the IG. He imagines a system that collects a huge amount of policy documents
worldwide and lets all of these documents be coded with the IG and furthermore
analyzed so that policies from different countries and cultures may be compared.
In the meantime, he practices his skills with the IG and cooperates with colleagues
in multiple research projects as an IG advisor of sorts. This also gives him oppor-
tunities to apply the grammar in different fields, broadening his knowledge.
After this, we moved on to discussing IG Coder. I began by asking, as before, how
he approached the coding exercises, to which he said he approached IG Coder
at least five to six times. He also said he showed it to other people to help teach
them the Institutional Grammar and how to code, and he thinks it is a very good
tool for this purpose. Pursuing this, I asked the admittedly leading question of
whether he thinks INCEpTION is a good tool for teaching. Dr. Pieliński asserted
that INCEpTION is only for experienced users of the IG, and even then it is not user
friendly when used for the IG. Therefore, it is particularly ill-suited for teaching
the grammar.
I then asked the same question about IG Coder. Dr. Pieliński thinks it is a very good
educational tool because one has to think about the decision before one makes it,
and he described IG Coder as “clean” and its interface as “very user friendly”.
He pointed out it is easy to present the Institutional Grammar as something very
complex and stated that IG Coder is not over-complicated. I believe he also liked
the fact that I offered an instructional video of how to use it.
One issue he found was that when coding the last few statements of the exercises,
which were highly complicated, the tree visualization became very crowded and
text labels overlapped. This was due to the high number of nested statements. In
fact, Angelo Baldado also told me this. To that, I told Dr. Pieliński of my idea to
add functionality that would allow nodes to be collapsed, hiding their child nodes.
We agreed that this would be a good solution, though he pointed out that this was
an edge case since few statements reach that level of complexity.
When we discussed the coding workflow in IG Coder, Dr. Pieliński brought up a
possible optimization to the process in the form of a shortcut to move directly be-
tween nodes without having to leave the node editor. He suggested that keyboard

Chapter 6: Evaluation of IG Coder 73

shortcuts for this would be great, which prompted me to mention INCEpTION’s
keyboard shortcuts. However, Dr. Pieliński thought it was important to limit the
number of keyboard shortcuts in the program because many people use a lot of
different text editors, each of which have their own set of shortcuts, so another
one might be too much for some people.
We then discussed the terms Prefix and Suffix. Dr. Pieliński pointed out that dif-
ferent users and teams will have to decide on their own approach for how to use
them, because every team uses their own subset of the IG’s features, according to
their research goals. He then brought up spreadsheets, saying one could always
add more columns to the IG template, including columns for Prefix and Suffix,
but he thinks there are already too many.
When I mentioned the Inferred / Rephrased field, he told me he used it sparingly.
He furthermore told me his computer science colleagues prefer not to rephrase
because “then it’s easier for the system to learn how to [automate] the IG coding”,
from which I presume they are working on machine learning with the IG. However,
many other teams have a habit of rephrasing a lot, so he thinks this functionality
is important for a universal tool.
On the topic of a universal tool, Dr. Pieliński stated that IG Coder is the first func-
tional tool that accommodates all or nearly all IG 2.0 features. We agreed that its
flexibility is a strength, because again, teams use different subsets of features.
He raised one minor point of annoyance, namely the fact that the default relation-
ship between an entity and its property is functionally independent. He believed
the default should be functionally dependent because he does not use the former
relationship in his research, and suggested that the relationship could even be
disabled entirely for those that do not use it. We agreed that from a logical stand-
point, functionally independent is the weaker relationship and I pointed out that
the default should be whichever occurs most often, resulting in fewer extra clicks.
At the end, Dr. Pieliński reiterated that IG Coder is a great educational tool and
expressed his interest in seeing the tool taken further.

6.3.4 Overall Findings

With all interviews summarized, we can now compare them and answer the re-
search questions.

RQ3: To what extent does IG Coder satisfy the needs identified in RQ1 and
RQ2? IG Coder addresses several of the identified weaknesses with spreadsheets
and INCEpTION, particularly the lack of a readable graphic visualization of coded
statements. The tree visualization satisfies multiple needs: providing an overview
of the coded statement; visualizing the hierarchy between statements, compo-
nents and properties; allowing the coder to visually double-check their coding;
and helping a reviewer quickly understand the coding.
Furthermore, the tree visualization is color coded, which helps to quickly iden-
tify the different elements of the tree. The color coding does not differentiate

74 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

between regulative and constitutive components, which was one of the top iden-
tified needs, but this is very easy to change.
However, a considerable limitation of the IG Coder prototype is the lack of export
formats, another top need. The bare minimum of export and import in a native
format is met but without the ability to convert to common formats such as CSV,
statements that have been coded in IG Coder cannot be analyzed. This greatly
limits IG Coder’s usefulness as a coding tool.
User needs pertaining to coding workflow were less clear-cut, meaning it is diffi-
cult to say whether IG Coder satisfied these needs. From my interviews with the
participants who had tested IG Coder, I understand that coding workflow is sub-
ject to personal preference above all. I believe the best way to respond to this is
flexibility. To meet the needs of a variety of users, IG Coder should offer multiple
methods of coding.

RQ3a: To what extent is IG Coder aligned with coders’ understanding of in-
stitutional statements? I identified one major issue with the implementation
of the IG 2.0 specification, stemming from my design decision to avoid decompo-
sition of logical relationships as much as possible. Two of my three interviewees
reported confusion with this. In fact, I realized at a late point that this decision was
based on an incorrect assumption of mine. Take the following example statement:

Organic farmers must commit to their organic farming standards and accom-
modate regular reviews of their practices.

This statement has two AIMs, each associated with a separate OBJECT. The first
AIM is directly linked to the first OBJECT, and likewise with the two others. To
make these logical relationships explicit, the statement must be decomposed as
follows:

Organic farmers must commit to their organic farming standards AND
Organic farmers must accommodate regular reviews of their practices.

If keeping the logical combinations compact, as was my intent, the exact meaning
of the institutional statement is unclear. This means IG Coder should accommo-
date explicit decomposition of statements after all. My reasoning behind the orig-
inal design decision was to save space in the data structure and avoid redundancy,
but perhaps there is a way to get the best of both worlds. This will be an important
future direction to investigate.
Other than that, my interviewees seemed to agree with my design decisions per-
taining to IG 2.0. The tree representation may take some getting used to, especially
for more complex statements, but one interviewee who was relatively new to the
IG reported that it actually added to his understanding of institutional statements.

RQ3b: How satisfied are users with the coding interface of IG Coder? First
of all, my interviewees seemed very satisfied with the tree visualization – it is so
far proving to be a success, and is perhaps the greatest strength of the prototype.

Chapter 6: Evaluation of IG Coder 75

Minor enhancements can always be made to the tree but all in all, its fundamen-
tally unique way of seeing institutional statements brings something new to the
table for policy coding tools.
Multiple interviewees commented that the tree visualization could be a great tool
for teaching the Institutional Grammar. They reported that this is because it has
a strong focus on the structure of institutional statements and because the coder
has to think about their decision before they make it. On the other hand, this has
an impact on the coding workflow, which the next question addresses.
This research question has some overlap with the next (RQ3c), and outside of the
tree visualization, I did not speak in depth with my interviewees about parts of
the user interface not related to the coding workflow. We will therefore move on
to the final research question.

RQ3c: To what extent can IG Coder improve the coding workflow? After
conducting and summarizing the interviews, I realized that this question might
not have been the right one to ask at this stage. This is because users have to
understand the tree structure before the coding workflow can be reliably assessed,
and the user tests were not sufficient for my participants to completely figure out
IG Coder. Also, this question was based on an assumption of mine that IG Coder
would actually be comparable to the current coding tools as a tool for research
analysis. This evaluation shows that it is too early to make such a comparison.
However, most of the interviewees as well as I agreed on one point: out of all the
coding tools including IG Coder, INCEpTION is the fastest way to code.
I originally posed this question out of an aspiration to make a complete coding
tool that could be used for research analysis. There are two criteria for a coding
tool to be suitable for research analysis: first, the coded data must be exportable
into a useful format and second, the coding workflow needs to be efficient enough
for coding a large dataset of statements as painlessly as possible.
My interviewees pointed out a few ways in which IG Coder’s workflow may be
optimized over its current state. For instance, the ability to move directly from
one node to another without closing and reopening the node editor would go a
long way. I believe this applies to both parent and sibling nodes in addition to
child nodes, the latter of which is currently supported. Keyboard shortcuts would
be convenient as well, though they add to the learning curve.
On the topic of the learning curve, it will in any case take time for users to un-
derstand and become fluent in building statement trees in IG Coder. The tree
representation is a powerful new approach to policy coding but it remains to be
seen to what extent users prefer this method over traditional annotation. How-
ever (please note that this is based on only one interviewee’s response), given that
coders are fluent in building statement trees, this method of coding may be more
efficient for complex statements than coding in spreadsheets.

The evaluation is discussed as part of the Chapter 7 discussion.

Chapter 7

Discussion

In this section I discuss various aspects of this thesis, including what I learned from
the research and development experiences in this project and what I achieved with
IG Coder.
First of all, there are a few features listed in the system requirements I ended up
not having the time to implement. I did my best to prioritize requirements so that
if I had to leave anything out, it would be the least impactful features.
Unfortunately, the most noticeable shortcoming in the IG Coder prototype is the
missing export formats, i.e., CSV, UIMA CAS and shorthand. These turned out to
be more time-consuming to implement than I first thought, since they all require
converting the native data structure to completely different formats. In the case
of UIMA CAS, I was not even familiar with this format to begin with, meaning I
would have to read up on it first. I will need to verify that this format is indeed
useful for people before I embark on implementing it. CSV, on the other hand, I
am confident is useful as long as I can implement a conversion to the template
spreadsheet. Finally, while the shorthand syntax had the lowest priority in my
requirements, it would be convenient for printing and reading simple statements.
Also, I believe it would be the easiest to implement out of the three, because it is
the native IG 2.0 syntax which my data model is designed after, and because it is
a simple text format.
On a related note, I did not create a JSON schema for the data model. This is
because I was planning to update the data model after this thesis anyway, so I
did not want to spend time on something I would discard before long. However,
I am aware that if the native data structure is to be used by other developers, a
machine-readable schema is a huge benefit to them.
Furthermore, the IG Coder prototype has limited IG Logico support. This was pri-
oritized slightly lower than IG Core and IG Extended because it has a narrower
set of use cases. Admittedly, due to this prioritization I spent less time reading up
on and understanding IG Logico, meaning I did not have a clear enough idea of
what to implement. At the same time, the uptake of IG Logico should be verified
before spending time implementing support for it.
The final requirement I left out was user assistance via suggestions of previously

77

78 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

entered component values. This feature would have been interesting to test with
users and find out how useful it is to them. While it would have enhanced the
coding interface and made it slightly "smarter", I deemed it a non-essential feature
and had to leave it behind in favor of more critical ones.
It was difficult for me to estimate the time required to implement many of the
requirements, because for several of them, I did not have an idea beforehand of
how to solve the problems they posed. Thus, I did not know whether I would be
able to solve it in two hours or two days, for instance. I know that as I gain more
experience as a developer, I will have solved a variety of problems which will make
it easier to make such estimates in the future.
One experience I will remember from this project is that as the sole developer, I
had to drastically prioritize what features to implement despite all the interesting
and compelling ideas given to me in the two questionnaires I conducted. Read-
ing through the responses was very inspiring, motivating me to make IG Coder
an engaging application. To put it simply, creation is fun. Fortunately, nothing is
stopping me from continuing to work on IG Coder in the future.
As a software developer, I have little experience designing user interfaces. I also
did not emphasize graphical design nor user experience in the evaluation of IG
Coder, and when I built the user interface, I focused on implementing a func-
tional interface over finding the optimal user experience. Therefore, my supervi-
sor’s feedback was very helpful to tell me what aspects were difficult from a user
perspective. A majority of his feedback to me during development pertained to the
user interface, and as a result, the UI was gradually improved rather than planned
out in advance. In a project with a single developer, I believe this approach worked
well.
Moving on to the user tests and following interviews, I learned memorable lessons
from this project phase as well. In my experience, the semi-structured interview
format worked very well for my purpose. I had the interview guide at hand while
conducting the interviews and thus had the opportunity to skip or rephrase a
question on the spot. Also, not having to note down responses was very freeing
and enabled me to listen to the participant. Listening to what the respondent is
saying a prerequisite for being able to adapt the interview to them and ask the
most productive questions.
In retrospect, however, I could have kept the research questions separately when
conducting the interviews, e.g., as part of the interview guide and clearly high-
lighted. This would have helped me made sure my discussions with the partici-
pants covered the areas necessary for me to answer the research questions. The
way I did it, they were interwoven among the rest of the questions, and I could
not remember which ones were the research questions.
As mentioned before, my original aspiration was and still is to make a complete
coding tool that can be used for research analysis. The IG Coder prototype I made
in this thesis is a significant step toward such a tool. I made a draft of a functional
coding interface, and while it may not have been the optimal solution in every
way, it served to start a cycle of user feedback and improvement, producing real

Chapter 7: Discussion 79

results. I believe that is more important than having a flawless plan.
One of my key findings in the evaluation of IG Coder was that its flexibility is a
strength. As I have touched on before, I believe flexibility is the way to go in the
future, because the evaluation has shown that different coders have different pref-
erences. I imagine that if the application offered multiple alternatives for coding
methods, including methods similar to those of the current coding tools, and was
also capable of exporting coded data into useful formats, then it would be a good
tool for research analysis.
The aspect of IG Coder I am the most proud of, and that I would argue is my most
important contribution to the Institutional Grammar, is the tree structure and its
graphic visualization. Its success is in part thanks to my supervisor, who originally
came up with the idea of representing institutional statements as trees. In this
thesis I realized that idea.

Chapter 8

Conclusion

8.1 Summary

In this thesis I have taken you through the design, development and evaluation
of the web application IG Coder. This application facilitates the interactive coding
of statements in the Institutional Grammar syntax. The IG is at the core of this
thesis.
After giving an overview of the project phases and the research methods used
in each, the thesis began in earnest with a contextualization of the Institutional
Grammar within the bigger picture. Following this, I gave a primer of the IG along
with an overview of its literature. I then described the current state of policy cod-
ing tools for the IG, setting the stage for what was to be created in this thesis.
The design phase followed, conducting a review of the current coding tools. This
review was primarily based on two questionnaires aimed at two different groups
of coders. It resulted in insights about the strengths and weaknesses of the current
tools but also about what is needed in a coding tool, all of which would help me
design the new tool.
I began the development chapter by telling the history of IG Coder. The chapter
otherwise described all important aspects of IG Coder’s development, including
its system requirements which built on the review of current tools, as well as the
IG data model and tree visualization, which I believe are the two most noteworthy
aspects of the IG Coder prototype.
In the evaluation phase, the IG Coder prototype was tested by users familiar with
the Institutional Grammar. Following the user tests, I interviewed each participant
to gain insights about their experience with the tool and determine the extent to
which it responded to the needs identified earlier in the thesis. The evaluation
uncovered a few shortcomings in the prototype which I might not have noticed
on my own, as well as suggestions for large and small improvements to the appli-
cation, helping to guide future work on it.
The IG Coder prototype developed in this thesis is a big step toward a new coding
tool. A great deal of work remains, but it has already received attention from and
garnered interest in a few people in the IGRI.

81

82 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

8.2 Limitations

This thesis had a few considerable limitations as a research project. First and
foremost, the small population of people familiar with the Institutional Grammar
means the two studies (i.e., the review of current tools and the evaluation of IG
Coder) are built on sparse amounts of data. This negatively impacts the reliability
of their results. All of this only goes to show that it is yet early in the development
and uptake of the Institutional Grammar.
Furthermore, the amount of software development I could do in this thesis was
limited because I am only one person and there were research objectives to be in-
vestigated both before and after the development phase. There are several things I
wanted to do with IG Coder that I did not have the time for, but I hope to continue
working on the tool in the future.

8.3 Future Work

To live up to its aspirations as a complete policy coding tool, IG Coder must be
developed further. On a high level, flexibility should be valued and prioritized in
the eventual development of the coding interface.
On a lower level, I believe the two most important features to be implemented
next are as follows:

1. Accommodate decomposition of logical combinations while keeping the data
structure compact

2. Ability to export coded data in common formats, primarily CSV but also
other formats

However, it may be prudent to strengthen unit testing of the existing features
before adding new ones.
To make the coding interface more flexible, future work should look into adopting
direct text annotation as an alternate coding method. This would require finding
a way to interface text annotation against the IG data model.
In addition, an interesting research direction emerged from my interviews about
IG Coder. Future work could look into functionality that compares two statement
trees and quantifies their differences, which could enable automatic assessment
of inter-coder reliability.
Stepping back, the contribution of this thesis to the Institutional Grammar is a
new way of regarding institutional statements which is also actualized in a new
coding interface. I hope this is the start of a complete coding application which
will make it easy to apply the IG in all kinds of research.

Bibliography

Barabucci, G., Cervone, L., Palmirani, M., Peroni, S., & Vitali, F. (2010). Multi-layer
Markup and Ontological Structures in Akoma Ntoso (P. Casanovas, U. Pa-
gallo, G. Sartor, & G. Ajani, Eds.). In P. Casanovas, U. Pagallo, G. Sartor,
& G. Ajani (Eds.), AI Approaches to the Complexity of Legal Systems. Com-
plex Systems, the Semantic Web, Ontologies, Argumentation, and Dialogue,
Berlin, Heidelberg, Springer Berlin Heidelberg.

Basurto, X., Kingsley, G., McQueen, K., Smith, M., & Weible, C. M. (2010). A Sys-
tematic Approach to Institutional Analysis: Applying Crawford and Os-
trom’s Grammar. Political Research Quarterly, 63(3), 523–537. https://
doi.org/10.1177/1065912909334430

Crawford, S. E. S., & Ostrom, E. (1995). A Grammar of Institutions. American Po-
litical Science Review, 89(3), 582–600. https://doi.org/10.2307/2082975

Cummings, J. (2013). The Text Encoding Initiative and the Study of Literature.
In A Companion to Digital Literary Studies (pp. 451–476). John Wiley &
Sons, Ltd. https://doi.org/10.1002/9781405177504.ch25

Eckart de Castilho, R., Mújdricza-Maydt, É., Yimam, S. M., Hartmann, S., Gurevych,
I., Frank, A., & Biemann, C. (2016, December). A Web-based Tool for the
Integrated Annotation of Semantic and Syntactic Structures, In Proceed-
ings of the Workshop on Language Technology Resources and Tools for Digital
Humanities (LT4DH), Osaka, Japan, The COLING 2016 Organizing Com-
mittee.

Elo, S., Kääriäinen, M., Kanste, O., Pölkki, T., Utriainen, K., & Kyngäs, H. (2014).
Qualitative Content Analysis: A Focus on Trustworthiness. SAGE Open,
4(1). https://doi.org/10.1177/2158244014522633

Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of
Advanced Nursing, 62(1), 107–115. https://doi.org/10.1111/ j .1365-
2648.2007.04569.x

Ferrucci, D., & Lally, A. (2004). UIMA: An Architectural Approach to Unstructured
Information Processing in the Corporate Research Environment. Natural
Language Engineering, 10(3-4), 327–348. https : / /doi . org /10 . 1017 /
S1351324904003523

Ferrucci, D., Lally, A., Verspoor, K., & Nyberg, E. (2009). Unstructured Information
Management Architecture (UIMA) Version 1.0. https://docs.oasis-open.
org/uima/v1.0/uima-v1.0.html

83

https://doi.org/10.1177/1065912909334430
https://doi.org/10.1177/1065912909334430
https://doi.org/10.2307/2082975
https://doi.org/10.1002/9781405177504.ch25
https://doi.org/10.1177/2158244014522633
https://doi.org/10.1111/j.1365-2648.2007.04569.x
https://doi.org/10.1111/j.1365-2648.2007.04569.x
https://doi.org/10.1017/S1351324904003523
https://doi.org/10.1017/S1351324904003523
https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html

84 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Soft-
ware Architectures (Doctoral dissertation). University of California, Irvine.

Frantz, C. K., Purvis, M. K., Nowostawski, M., & Savarimuthu, B. T. R. (2013).
nADICO: A Nested Grammar of Institutions (G. Boella, E. Elkind, B. T. R.
Savarimuthu, F. Dignum, & M. K. Purvis, Eds.). In G. Boella, E. Elkind,
B. T. R. Savarimuthu, F. Dignum, & M. K. Purvis (Eds.), Prima 2013: Princi-
ples and practice of multi-agent systems, Berlin, Heidelberg, Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-44927-7_31

Frantz, C. K., & Siddiki, S. N. (2020). Institutional Grammar 2.0 Codebook [arXiv
preprint arXiv:2008.08937]. arXiv preprint arXiv:2008.08937. https://
doi.org/10.1111/padm.12719

Frantz, C. K., & Siddiki, S. N. (2021). Institutional Grammar 2.0: A specifica-
tion for encoding and analyzing institutional design. Public Administra-
tion, n/a(n/a), 1–21. https://doi.org/10.1111/padm.12719

Given, L. (2008). The SAGE Encyclopedia of Qualitative Research Methods. Thou-
sand Oaks, California. https://doi.org/10.4135/9781412963909

Gordon, T. F. (2008). Constructing Legal Arguments with Rules in the Legal Knowl-
edge Interchange Format (LKIF) (P. Casanovas, G. Sartor, N. Casellas, & R.
Rubino, Eds.). In P. Casanovas, G. Sartor, N. Casellas, & R. Rubino (Eds.),
Computable Models of the Law, Berlin, Heidelberg, Springer Berlin Heidel-
berg. https://doi.org/10.1007/978-3-540-85569-9_11

Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content
Analysis [PMID: 16204405]. Qualitative Health Research, 15(9), 1277–
1288. https://doi.org/10.1177/1049732305276687

Klie, J.-C., Bugert, M., Boullosa, B., de Castilho, R. E., & Gurevych, I. (2018). The
INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Inter-
active Annotation, In Proceedings of the 27th international conference on
computational linguistics: System demonstrations, Association for Compu-
tational Linguistics. http://tubiblio.ulb.tu-darmstadt.de/106270/

Lane, J., Garrison, M. M., Kelley, J., Sarma, P., & Katz, A. (2020). Strengthening
policy coding methodologies to improve COVID-19 disease modeling and
policy responses: a proposed coding framework and recommendations.
BMC Medical Research Methodology, 20(1), 298. https://doi.org/10.1186/
s12874-020-01174-w

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D.
(2014). The Stanford CoreNLP Natural Language Processing Toolkit, In
Proceedings of 52nd annual meeting of the association for computational
linguistics: System demonstrations, Baltimore, Maryland, Association for
Computational Linguistics. https://doi.org/10.3115/v1/P14-5010

Palmirani, M., & Vitali, F. (2011). Akoma-Ntoso for Legal Documents. In G. Sar-
tor, M. Palmirani, E. Francesconi, & M. A. Biasiotti (Eds.), Legislative XML
for the Semantic Web: Principles, Models, Standards for Document Manage-
ment (pp. 75–100). Dordrecht, Springer Netherlands. https://doi.org/10.
1007/978-94-007-1887-6_6

https://doi.org/10.1007/978-3-642-44927-7_31
https://doi.org/10.1111/padm.12719
https://doi.org/10.1111/padm.12719
https://doi.org/10.1111/padm.12719
https://doi.org/10.4135/9781412963909
https://doi.org/10.1007/978-3-540-85569-9_11
https://doi.org/10.1177/1049732305276687
http://tubiblio.ulb.tu-darmstadt.de/106270/
https://doi.org/10.1186/s12874-020-01174-w
https://doi.org/10.1186/s12874-020-01174-w
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1007/978-94-007-1887-6_6
https://doi.org/10.1007/978-94-007-1887-6_6

Bibliography 85

Rice, D., Siddiki, S., Frey, S., Kwon, J. H., & Sawyer, A. (2021). Machine cod-
ing of policy texts with the Institutional Grammar. Public Administration,
n/a(n/a), 1–15. https://doi.org/10.1111/padm.12711

Robinson, J. (2014). Likert Scale. In A. C. Michalos (Ed.), Encyclopedia of Qual-
ity of Life and Well-Being Research (pp. 3620–3621). Dordrecht, Springer
Netherlands. https://doi.org/10.1007/978-94-007-0753-5_1654

Siddiki, S. N. (2014). Assessing Policy Design and Interpretation: An Institutions-
Based Analysis in the Context of Aquaculture in Florida and Virginia,
United States. Review of Policy Research, 31(4), 281–303. https ://doi .
org/10.1111/ropr.12075

Siddiki, S. N., Heikkila, T., Weible, C. M., Pacheco-Vega, R., Carter, D., Curley, C.,
Deslatte, A., & Bennett, A. (2019). Institutional Analysis with the Insti-
tutional Grammar. Policy Studies Journal. https://doi.org/10.1111/psj.
12361

Siddiki, S. N., Weible, C. M., Basurto, X., & Calanni, J. (2011). Dissecting Policy
Designs: An Application of the Institutional Grammar Tool. Policy Studies
Journal, 39(1), 79–103. https://doi.org/10.1111/j.1541-0072.2010.
00397.x

Smajgl, A., Izquierdo, L. R., & Huigen, M. (2008). Modeling Endogenous Rule
Changes in an Institutional Context: The ADICO Sequence. Advances in
Complex Systems, 11(02), 199–215. https://doi.org/10.1142/S021952590800157X

State of JavaScript. (2019). The State of JavaScript 2019: Front End Frameworks
[Accessed 18 May 2021]. https://2019.stateofjs.com/front-end-frameworks/

TEI Consortium. (2021, April). TEI P5: Guidelines for Electronic Text Encoding
and Interchange (TEI Consortium, Ed.) [Version 4.2.2. Accessed 26 May
2021]. http://www.tei-c.org/Guidelines/P5/

Vanhoutte, E. (2004). An Introduction to the TEI and the TEI Consortium. Literary
and Linguistic Computing, 19(1), 9–16. https://doi.org/10.1093/llc/19.
1.9

Vitali, F., & Zeni, F. (2007). Towards a country-independent data format: the Akoma
Ntoso experience, In Proceedings of the V Legislative XML Workshop.

Wittern, C., Ciula, A., & Tuohy, C. (2009). The making of TEI P5. Literary and
Linguistic Computing, 24(3), 281–296. https ://doi .org/10.1093/ llc/
fqp017

Yimam, S. M., Gurevych, I., de Castilho, R. E., & Biemann, C. (2013). Webanno:
A flexible, web-based and visually supported system for distributed an-
notations, In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics: System Demonstrations.

https://doi.org/10.1111/padm.12711
https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.1111/ropr.12075
https://doi.org/10.1111/ropr.12075
https://doi.org/10.1111/psj.12361
https://doi.org/10.1111/psj.12361
https://doi.org/10.1111/j.1541-0072.2010.00397.x
https://doi.org/10.1111/j.1541-0072.2010.00397.x
https://doi.org/10.1142/S021952590800157X
https://2019.stateofjs.com/front-end-frameworks/
http://www.tei-c.org/Guidelines/P5/
https://doi.org/10.1093/llc/19.1.9
https://doi.org/10.1093/llc/19.1.9
https://doi.org/10.1093/llc/fqp017
https://doi.org/10.1093/llc/fqp017

Appendix A

Excel Questionnaire

This is also referred to as Questionnaire A.

87

Survey on Excel Coding of Institutional Grammar Statements

* Obligatorisk

First off, what level are you currently studying at? * 1.

Undergraduate

Graduate (master's)

Graduate (doctoral)

I'm not currently studying

Annet

Since you answered "I'm not currently studying", what is your occupation?2.

Since you answered "Graduate (doctoral)", what is your area of research (e.g., water management)?3.

No experience Limited experience
Neither experienced nor

inexperienced Somewhat experienced Experienced

Experience level

You’ve been coding institutional statements in Excel. What is your level of experience with Microsoft Excel?4.

Totally unsuitable Mostly unsuitable Somewhat unsuitable Neutral Somewhat suitable Mostly suitable Perfectly suitable

Excel as a coding tool

How would you rate Microsoft Excel as a coding tool for Institutional Grammar 2.0?5.

In your opinion what makes Excel a useful coding tool?6.

5/3/2021

What challenges have you encountered coding in Excel?7.

If you could design a new coding tool for IG 2.0 (i.e., new software), what three capabilities should that tool possess?8.

Thinking about the instructions you received for coding IG 2.0 in Excel, what additional instructions would have been useful for you to clarify the
coding process in Excel (e.g., types of statements, complexity)?

9.

Were the associated resources (e.g., coding manual, cheat sheet) provided to you useful in coding IG 2.0 in Excel?10.

Yes

No

If no, please list one thing that would have been more useful.11.

If you have any additional thoughts, please leave those below.12.

5/3/2021

Appendix B

Early Interview Questions

These questions were asked in the policy coder interview in the course Integration
Project1. At the time, Microsoft Excel was the only policy coding tool in use.

• How does your typical day look like as a policy coder?
• What are your biggest struggles as a policy coder?
• Why do you use the spreadsheet?
• Have you used or do you use any other tools than the spreadsheet?
• What are the pros and cons of the spreadsheet?
• When using the spreadsheet, how do you know you’ve coded a statement

correctly? Do you need someone to review it?
• After you’ve filled out the spreadsheet, what do you do with it?

1Course code: IMT4807

91

Appendix C

INCEpTION+Excel Questionnaire

This is also referred to as Questionnaire B.

93

Survey on Coding of Institutional Statements in INCEpTION
and Excel

INCEpTION Coding
First, let's start with your experience and impression of INCEpTION as an IG 2.0 coding tool.

No experience Limited experience
Neither experienced nor

inexperienced Somewhat experienced Experienced

Experience level with
INCEpTION

What is your level of experience with the text annotation tool INCEpTION in general?1.

Totally unsuitable Mostly unsuitable
Somewhat
unsuitable Neutral

Somewhat
suitable Mostly suitable Perfectly suitable

INCEpTION as a coding
tool

How would you rate INCEpTION as a coding tool for Institutional Grammar 2.0?2.

In your opinion what makes INCEpTION a useful coding tool?3.

Which challenges have you encountered when coding in INCEpTION?4.

5/3/2021

Excel Coding
In the following, we will have a look at Microsoft Excel as an IG 2.0 coding tool. If you are using a tabular coding tool equivalent to Microsoft Excel (e.g.,
LibreOffice), please relate to this experience when responding to the questions.

No experience Limited experience
Neither experienced nor

inexperienced Somewhat experienced Experienced

Experience level with
Excel

What is your level of experience with Microsoft Excel in general?5.

Totally unsuitable Mostly unsuitable
Somewhat
unsuitable Neutral

Somewhat
suitable Mostly suitable Perfectly suitable

Excel as a coding tool

How would you rate Microsoft Excel as a coding tool for IG 2.0?6.

In your opinion what makes Excel a useful coding tool?7.

Which challenges have you encountered when coding in Excel?8.

5/3/2021

Appendix D

IG Data Model

Version 2

Version 2 of the data model makes several major changes:

• Supports constitutive as well as regulative statements
• Supports IG Extended features: component-level nesting, Object-Property

Hierarchy and Context Taxonomy
• Declarative way of differentiating between statement and component level

for the purposes of horizontal nesting: the Junction node type has statement
and component level variants

• The Or else component is now a Component type rather than a special node
type

• Negation is supported on all nodes, and is now a field on the base node class
instead of its own node type

• Object and Context subtypes (direct and indirect object, activation condi-
tions and execution constraints) are unpacked to the same level as the other
components, eliminating the Subcomponent node type for the sake of sim-
plicity

Example Tree

Figure 5.9 shows a coding of the below institutional statement according to ver-
sion 2 of the data model. The coding follows IG Extended. The statement exem-
plifies most features of the data model.
Furthermore, the figure makes the following simplifications:

• In the top-level statement, all optional components are shown, even though
the original statement does not have an Or else component.

• Nested statements that have no Activation Conditions or Execution Con-
straints have those children truncated to a single node labelled Context.
The top-level statement shows the correct way.

97

98 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

Node types are color coded according to the key in the figure. The Or else com-
ponent type is treated specially, having the same color as a Statement Junction,
because this component can be seen as a junction between two statements, the
monitored statement on the left side and the consequential on the right, joined
by an implicit XOR operator. However, the data model finds it more practical to
implement as a Component.

Example Statement

«The Program Manager may initiate suspension or revocation proceedings against
a certified operation:

(1) When the Program Manager has reason to believe that a certified operation
has violated or is not in compliance with the Act or regulations in this part;
or

(2) When a certifying agent or a State organic program’s governing State official
fails to take appropriate action to enforce the Act or regulations in this part.»

Glossary

policy = a written legal document or document of rules
document = the class that represents a policy
statement = a sentence in a policy that ends with a period
entry = the class that represents a statement
text content = a field on a node that holds text data extracted from a statement
Statement = umbrella term for RegulativeStatement and ConstitutiveStatement
(Node types)
Junction = umbrella term for StatementJunction, ComponentJunction and Prop-
ertyJunction (Node types)
Context= umbrella term for ActivationConditions and ExecutionConstraints (Com-
ponent types)

Deviations from the IG 2.0 Specification and Limitations

• When a statement has e.g. multiple Aims, IG 2.0 splits the original statement
into two or more statements. However, because such duplication of data is
inefficient in a computer system, this data model stores logically combined
components within the same statement. Such statements can be split at the
time of exporting to shorthand or other formats.

• IG Logico features are not yet supported.
• Polymorphic institutional statements are not yet supported.

Chapter D: IG Data Model 99

Document

• A complete policy is represented by a Document. It has a field entrieswhich
is an array of Entries, each representing a statement in that policy. The En-
tries have a fixed chronological order.

• It holds an entryMap which is a mapping of entry IDs to their respective
indices in the entries array.

• Other fields on a Document are name, description and id.
• All Entry and Node IDs are unique within a Document.

Entry

• A statement in a policy is represented by an Entry. It has a field root which
contains the root node of the tree representing that statement.

• It further has a field original which contains the raw, unedited text of the
statement, and an optional field rephrased which holds a rewritten version
of the statement.

• Also has a field document to hold the ID of the Document it belongs to.

Node

• Nodes represent and compartmentalize the various elements of a statement:
the root statement, nested statements, regulative and constitutive compo-
nents of those statements, properties of Attributes and Objects as well as
logical combinations of those elements.

• All Nodes have the following common fields:

◦ id: A number unique to the Node within its Document
◦ document: The ID of the Node’s Document
◦ nodeType: The Node’s role in the tree
◦ isNegated: Whether the Node’s meaning is negated (default: false)
◦ contextType: [Optional] A Context Taxonomy label for the node
◦ parent: [Optional] The ID of the Node’s parent Node, if it has one
◦ createdAt: The date and time this Node was created - for debugging
◦ updatedAt: The date and time this Node was last changed - for debug-

ging
◦ children: An array of Nodes that are this Node’s children

The updatedAt field is set to the current date when a node’s own fields are changed,
when a child node is added to it and when a child node is deleted from it.

Trees

• Valid node types for the root of a tree are Statement and StatementJunction.

100 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

• Invalid node types for the root of a tree are Component, ComponentJunc-
tion, Property and PropertyJunction.

• Ignoring the existence of Property nodes, all leaf nodes in a tree must be
Component nodes and have text content, and only leaf nodes can have text
content.

• To read the coded statement, the tree should be traversed depth-first. Ac-
cording to the IG specification, the Object comes directly after the Attribute
but you can read the Object after the Aim for the statement to make better
sense in English.

Text Content

• If a Component or Property node has text content, it represents a primitive.
• The text content of Junction nodes contains the string from the raw state-

ment that constitutes a logical conjunction or disjunction, usually "and" or
"or".

• Component, Property and Junction nodes have a text field which must al-
ways be defined.

• The text field is an object consisting of:

◦ main - the text that most narrowly fits the Component, Property or
Junction, taken directly from the raw statement

◦ prefix - text from the statement that precedes the main part, e.g.
prepositions and articles

◦ suffix - text from the statement that succeeds the main part, e.g. "sus-
pects (I) that"

◦ inferredOrRephrased - an explicit specification of an inferred Com-
ponent or Property, a rephrased version of the text in the main field, or
a combination of both

− An inferred Component or Property can be empty in the raw text,
and can thus be specified explicitly.

− A common use case for rephrasing text is if the raw text is written
in passive voice and the coder rewrites it to be active.

• The existence of text content is determined by whether at least one of the
main and inferredOrRephrased fields is non-empty. This is because an in-
ferred component may be completely absent in the source text, so that main
is empty and inferredOrRephrased is not.

• The text field supports two coding states.

◦ The main OR inferredOrRephrased fields are a non-empty string, e.g.
"Program Manager" for nodes whose content has been coded.

◦ The main AND inferredOrRephrased fields are both an empty string
"" for nodes whose content has not yet been coded.

Chapter D: IG Data Model 101

• The previous version of the data model supported a third state, "intention-
ally empty". The empty string was reserved for this state, and the "not yet
coded" state was signified by an undefined main field. This is no longer the
case, as there is no need for this state due to optional components.

• The following exceptions apply: The main and inferredOrRephrased fields
are always empty strings for Component nodes of type ActivationCondition-
s/ExecutionConstraints and Property nodes whose child is a Statement/S-
tatementJunction.

• If the main and inferredOrRephrased fields are both empty strings, the
prefix and suffix fields are to be ignored.

Negation

• A Component, Property or Junction node should be marked as negated if
its text source in the raw statement indicates a logical negation, or in other
words, the text source has a negative meaning.

• The text content of a negated node should retain any negation strings (e.g.
"not", "no") from the raw statement.

Node Types

• Statement

◦ Common base class for RegulativeStatement and ConstitutiveState-
ment; not to be used directly

◦ Can be a root
◦ RegulativeStatement

− Represents an regulative statement where DirectObject, Indirec-
tObject, Deontic and Or else are optional

− Must have exactly eight Component children: Attribute, Direc-
tObject (optional), IndirectObject (optional), Deontic (optional),
Aim, ActivationConditions, ExecutionConstraints, OrElse (optional)

− Optional children must exist but can be empty

◦ ConstitutiveStatement

− Represents a constitutive statement where ConstitutingProperties,
Modal and Or else are optional

− Must have exactly seven Component children: ConstitutingProp-
erties (optional), Modal (optional), ConstitutiveFunction, Consti-
tutedEntity, ActivationConditions, ExecutionConstraints, OrElse (op-
tional)

− Optional children must exist but can be empty

102 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

• Junction

◦ Represents a logical combination of two elements (nodes)
◦ Common base class for StatementJunction, ComponentJunction and

PropertyJunction; not to be used directly
◦ Has a field junctionType that holds a logical operator out of [AND,

OR, XOR]
◦ Has a field text that holds text content
◦ Must have exactly two children
◦ StatementJunction

− Used for horizontal nesting of statements
− Each of its children must be of type Statement or StatementJunc-

tion, independently of each other
− Can be a root

◦ ComponentJunction

− Used for horizontal nesting of components within a statement
− Has a field componentType that holds one of those listed below;

used to pass down component type from ancestor Component
node

− Each of its children must be of type Component or Componen-
tJunction, independently of each other

− Cannot be a root

◦ PropertyJunction

− Used for horizontal nesting of Property nodes
− Has a field isFunctionallyDependent that is used to pass de-

scendant Property node’s state to ancestor Component or Property
node

− Each of its children must be of type Property or PropertyJunction
− Cannot be a root

• Component

◦ Represents a component of a regulative or constitutive statement
◦ Has a field text that holds text content
◦ Has a field componentType that holds one of those listed below; its

component type gives it additional rules that override those on this
level

◦ If it has text content, it must not have children
◦ If it has children, it must not have text content
◦ If it has children, all its descendant leaf nodes that do not come from

another Statement node or a Property node must be of a component
type matching its own. For the purposes of this, ActivationConditions
and ExecutionConstraints are not valid component types.

◦ Cannot be a root

Chapter D: IG Data Model 103

• Property

◦ Represents a property or object in the Object-Property Hierarchy
◦ Has a field text that holds text content
◦ Has a field isFunctionallyDependent that holds whether or not the

property or object this node represents is functionally dependent on
its parent

◦ Must have either one child or none
◦ Its child, if it has one, must be of type Statement, StatementJunction,

Property or PropertyJunction
◦ If it has text content and a child, the child must be of type Property or

PropertyJunction
◦ If its child is of another type than Property and PropertyJunction, it

must not have text content
◦ Cannot be a root

Component Types

Common:

• ActivationConditions

◦ Can have any number of children, including 0
◦ Cannot have text content
◦ Each of its children must be of type Statement, StatementJunction,

Component or ComponentJunction
◦ If its child is of type Component, that child must have the component

type SimpleContext

• ExecutionConstraints

◦ Can have any number of children, including 0
◦ Cannot have text content
◦ Each of its children must be of type Statement, StatementJunction,

Component or ComponentJunction
◦ If its child is of type Component, that child must have the component

type SimpleContext

• OrElse

◦ Must have either one child or none
◦ Cannot have text content

− EXCEPTION: The above rule is not implemented in the codebase,
which treats Or else as able to have text content.

◦ Its child, if it has one, must be of type Statement or StatementJunction

Regulative:

• Attribute

104 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

◦ Must have either one child or none
◦ Its child, if it has one, must be of type Statement, StatementJunction

or ComponentJunction
◦ If it has text content, it can have any number of children if each of

them is of type Property or PropertyJunction

• DirectObject

◦ Must have either one child or none
◦ Its child, if it has one, must be of type Statement, StatementJunction

or ComponentJunction
◦ If it has text content, it can have any number of children if each of

them is of type Property or PropertyJunction

• IndirectObject

◦ Must have either one child or none
◦ Its child, if it has one, must be of type Statement, StatementJunction

or ComponentJunction
◦ If it has text content, it can have any number of children if each of

them is of type Property or PropertyJunction

• Deontic

◦ Cannot have children
◦ Must have text content

• Aim

◦ Must have either one child or none
◦ Its child, if it has one, must be of type ComponentJunction

Constitutive:

• ConstitutingProperties

◦ Must have either one child or none
◦ Its child, if it has one, must be of type Statement, StatementJunction

or ComponentJunction
◦ If it has text content, it can have any number of children if each of

them is of type Property or PropertyJunction

• Modal

◦ Cannot have children
◦ Must have text content

• ConstitutiveFunction

◦ Must have either one child or none
◦ Its child, if it has one, must be of type ComponentJunction

• ConstitutedEntity

◦ Must have either one child or none

Chapter D: IG Data Model 105

◦ Its child, if it has one, must be of type Statement, StatementJunction
or ComponentJunction

◦ If it has text content, it can have any number of children if each of
them is of type Property or PropertyJunction

Special:

• SimpleContext

◦ Matches the ActivationConditions and ExecutionConstraints types
◦ Cannot have children
◦ Must have text content

Context Types

Context types are the same as in the most recent version of the IG 2.0 codebook.
They are in a hierarchy, although the hierarchy is syntactically inconsequential.
Also, they are numerically indexed, and the recurring "Beginning" and "End" types
are prefixed with either "t" (for temporal) or "sp" (for spatial) to make them dis-
tinct.

Lists of Context Components and Properties

Component nodes of types Attribute, DirectObject, IndirectObject, Constituting-
Properties and ConstitutedEntity can have any number of Property children. Like-
wise, Component nodes of types ActivationConditions and ExecutionConstraints
can have any number of children. These children are implicitly combined with the
logical AND operator. Optionally, properties can be coded using PropertyJunction
nodes to make the logical combination explicit.
To find the index of such a child, all nodes have a function that takes a node ID
and returns the children array index of the child node if it is a child of the current
node. This method is preferred to keeping a mapping of IDs to indices on the node
itself, because the latter method adds unnecessary data to the document tree.

Validity of a Tree

While a tree is saveable and loadable in any state, in order to export it to another
format, the tree’s completeness must be validated. Below are the conditions that
must be checked for during validation. The rules system is built into the data
model and enforces all but the below rules.

• For every node, each of its children must have the node’s ID in their parent
field

• Each leaf node that is not BaseNode must have non-empty text content

106 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

• Each Component node whose first child is Property/PropertyJunction must
have non-empty text content

• For each Junction node, neither of its children can be BaseNode
• Each TextContent object with empty main AND inferredOrRephrased fields

must also have prefix, and suffix empty

Appendix E

Test Statements

1. American homeowners mow their lawns.
2. Dog owners pick up after their dogs.
3. The Commission may appoint its own Secretary and staff.
4. For the purposes of this Act, working hours means time when the employee

is at the disposal of the employer.
5. Normal working hours must not exceed nine hours per 24 hours and 40

hours per seven days.
6. The employer and the employee may agree in writing that overtime hours

shall wholly or partly be taken out as off-duty time on agreed dates.
7. "Contracting Government" means any Government which has deposited an

instrument of ratification or has given notice of adherence to this Conven-
tion.

8. Night work is not permitted unless necessitated by the nature of the work.
9. The Ministry may issue regulations with further provisions concerning the

activities of the committee, including provisions concerning procedure and
concerning the duty of secrecy for members of the committee.

10. All male U.S. citizens, 18 years of age and older, must register with the
Selective Service by filling out a form at the U.S. Post Office or else face
arrest for evading registration.

11. Employees who have children in their care are entitled to leave of absence:
a) when necessary to attend a sick child, b) if a child shall be accompanied
to a medical examination or other follow-up in connection with sickness,
or c) if the person responsible for the daily childcare is sick or has leave of
absence pursuant to this section owing to another child.

12. Certified organic farmers must not apply synthetic chemicals to crops at
any time once organic certification is conferred, or else certifier will admin-
ister official notice of noncompliance and revoke or suspend certification of
farmer.

13. The notification shall provide: (1) A description of each noncompliance;
(2) The facts upon which the notification of noncompliance is based; and
(3) The date by which the certifying agent must rebut or correct each non-

107

108 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

compliance and submit supporting documentation of each correction when
correction is possible.

14. Drivers must hand their driver’s license to the police officer when stopped
in traffic control, or else the police officer must enforce this under any cir-
cumstances and, depending on severity, must either fine the driver or arrest
him, or else internal investigators must follow up on this issue in any case.

Appendix F

Interview Guide

The below document was sent out to participants of the IG Coder evaluation as
part of the invitation to participate. It was then used as a guide for conducting the
semi-structured interviews for evaluation.

Interview Guide

Following are the topics and questions we will discuss in a semi-structured inter-
view held remotely. This implies that any response to the below questions can lead
to follow-up questions (e.g., for clarification).
Topics:

• Some demographic questions

◦ Are you a student or researcher?
◦ What is your preferred tool for policy coding? Further questions will

refer to this tool as well as IG Coder.

• Your use of IG in your research

◦ What data structure do you usually use for your analysis?
◦ What kinds of statements are you usually coding?
◦ In what level of detail are you coding institutional statements? For

example, are you coding combinations of statements, nested statement
structures?

◦ Which aspects of institutional statements do you find more useful in
your research?

◦ Which export formats would you like to be available in a coding tool?

• Reviewing your tool of choice

◦ What are the main strengths of your tool of choice?
◦ What are the main challenges with your tool of choice?

• Your coding workflow using IG Coder

◦ When you performed the coding exercises in IG Coder, did you code

109

110 Johanne Bognøy – IG Coder: Enabling Visual Coding of Institutional Statements

them all in one go or intermittently?
◦ How does your workflow in IG Coder compare to that in your tool of

choice?
◦ How would you rate your efficiency with IG Coder compared to that

with your tool of choice?

• Your coding preferences

◦ When coding in IG Coder, how did you use the "prefix" and "suffix"
fields, if at all?

◦ Regarding the terms "prefix", "main content", "suffix" and "inferred /
rephrased", would other terms have been easier to understand for you?

◦ How did you code multiple properties on the same component? (An
example will be given.)

◦ When coding nested statements in IG Coder, did you code breadth-first
or depth-first?

• Your understanding of institutional statements

◦ How well does IG Coder align with your understanding of institutional
statements?

• Your evaluation of IG Coder

◦ To what extent does IG Coder retain the strengths you see in your tool
of choice?

◦ To what extent does IG Coder respond to the challenges you see in
your tool of choice?

◦ To what extent does IG Coder respond to your needs when coding
institutional statements?

◦ Can you think of aspects that your tool of choice does better than IG
Coder?

Appendix G

IG Coder Public Repository

The source code for IG Coder is public in a GitHub repository available at the
following link:

https://github.com/bjohanne/ig-coder

111

https://github.com/bjohanne/ig-coder

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Johanne Bognøy
IG

 Coder: Enabling Visual Coding of Institutional Statem
ents

Johanne Bognøy

IG Coder: Enabling Visual Coding of
Institutional Statements

Master’s thesis in Applied Computer Science
Supervisor: Christopher Frantz

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Research Questions
	Outline

	Research Methods
	Phase 1: Design
	Phase 2: Development
	Phase 3: Evaluation

	Background
	Content Analysis and Policy Coding
	Prominent Coding Schemes
	The Institutional Grammar
	Regulative Statements
	Constitutive Statements
	Mapping and Order of Components
	Nesting
	IG Extended Features
	IG Logico Features

	Literature Review
	Current Tools
	Spreadsheets
	Text Annotation Tools
	Inline Coding
	Automated Approaches

	Review of Current Tools
	Introduction
	Method
	Results
	Discussion

	Development of IG Coder
	Initial State
	Technical Design
	Requirements
	Development Process
	User Interface Design
	Implementation and Tests
	Tools
	Data Model
	Tests

	Deployment

	Evaluation of IG Coder
	Introduction
	Method
	Recruitment
	User Testing
	Interviews

	Results
	Interview 1: Angelo Baldado
	Interview 2: Dr. Ute Brady
	Interview 3: Dr. Bartosz Pielinski
	Overall Findings

	Discussion
	Conclusion
	Summary
	Limitations
	Future Work

	Bibliography
	Excel Questionnaire
	Early Interview Questions
	INCEpTION+Excel Questionnaire
	IG Data Model
	Test Statements
	Interview Guide
	IG Coder Public Repository

