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Preface

This report serves as a Master’s thesis in Applied Computer Science at Norwegian
University of Technology and Science (NTNU) written in the spring semester of
2021. It explores topics surrounding vessel destination prediction for the purpose
of maritime logistics. The author of the thesis has a prior Bachelor’s degree in
Programming (Applications) from NTNU, and the thesis was conducted in collab-
oration with the maritime technology startup company called Maritime Optima
AS (MO) where the author is currently employed as a part-time developer.

Recommended prior knowledge

Since this thesis is written in the context of a Master’s degree in Applied Com-
puter Science, it is assumed that the reader has a background in computer science
and is able to understand code examples, and is familiar with common program-
ming terms, languages, and data structures. Furthermore, as the thesis focuses on
Machine Learning (ML), it is recommended that the reader has an initial under-
standing of ML related, or statistical, concepts and methods.
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Abstract

The shipping industry is a vast and complex trading system that is capitally in-
tensive, involves many companies and businesses, and is generally believed to be
responsible for around 90% of all world trade (Tsaini 2011). Interested parties
are all continuously searching for accurate information that can help them un-
derstand the future ebbs and flows of this volatile market that primarily consists
of cargo demand and vessel supply. Thus, being able to effectively predict future
movements and the availability of shipping vessels can be essential for many of
the people involved in the industry.

Although the industry has traditionally relied on non-digital services, in re-
cent years, there has been an increase in available software solutions that aims to
assist shipping businesses in their decision-making processes. Many of these soft-
ware products are based on the availability of Automated Identification System
(AIS) data. AIS has become a globally adopted standard enforced by the Interna-
tional Maritime Organization (IMO) since 2006 for safety and navigation reasons.
However, since AIS transmitters emit all commercial vessels’ navigational data, it
also has commercial value in that it provides a global overview of shipping vessels’
movements over time. Recent studies into historical AIS data further elaborates
that it is indeed applicable toward predicting future trajectories and movements
of vessels and that Machine Learning (ML) techniques can be applied to this topic
area.

This thesis investigates the area of vessel destination prediction and proposes
a Machine Learning (ML) approach based on a combination of historical AIS
data and technical vessel details such as vessel type, or segments. The proposed
model applies to any vessel, is unrestricted by time or geographical limitations,
and achieved an accuracy level of 72% depending on vessel segments and sub-
segments. The thesis was written in collaboration with the maritime tech startup
company Maritime Optima (MO) who provided the initial data foundation used
to develop the proposed method.
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Chapter 1

Introduction

1.1 Topics covered by project

The topics covered by this project mainly include applying computer science tech-
niques to the problem of predicting shipping vessels’ future destinations and voy-
age patterns to assist various actors in the shipping industry in their daily decision-
making processes. More specifically, the thesis focuses on the aspect of applying
Machine Learning (ML) techniques to vessel destination prediction using different
sources of vessel information such as Automatic Identification Systems (AIS), voy-
age patterns, and individual vessel information such as vessel types, or segments.
The goal of the thesis is to establish a high-quality, general prediction method not
restricted by geographical extent or specific time intervals, and to discuss possible
applications and value of the model in the current state of the art of the shipping
industry.

1.2 Keywords

AIS data, vessel destination prediction, vessel supply, machine learning, maritime
logistics

1.3 Problem description

Many, or most, companies in the shipping industry heavily rely on predicting the
market in order to optimize their return of investment (ROI) and generally make
smarter decisions resulting in beneficial investments. The market is generally de-
fined by supply and demand where, in this case, demand consists of available
cargoes to be shipped, and supply consists of vessels available to ship the car-
goes. Figure 1.1 shows how different factors influence investment cycles within
the shipping industry and the general market. Furthermore, the current methods
for gathering data and conducting analysis are normally manual and paid ser-
vices provided by specialists called brokers. The industry is still prone to using

1
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non-digital methods and external services to provide relevant information about
vessel supply and traveling patterns.

Figure 1.1: Vessel supply’s role in the shipping market and investment cycles
(Stopford 2008)

The data required to make good predictions are generally considered
proprietary in the industry which is hesitant to share information. However, in
recent years, vessel information has become more available through the AIS stan-
dard that provides information including vessel positions, navigational statuses,
and manually inputted voyage information. In 2004, the International Maritime
Organization (IMO) initiated the AIS protocol which all commercial vessels over
299 Gross Tonnage (GT) are required to use. This serves as a plentiful source of
information applicable toward the analysis of vessel availability on a global scale.

Although the usage of AIS has been enforced and globally adopted, man-
ually inputted data within the protocol lacks standardization. These attributes of
the AIS protocol includes non-navigational voyage related information such as the
vessel’s intended destination and Estimated Time of Arrival (ETA). In contrast,
the positional and navigational information within the protocol is automized, and
therefore mostly accurate.

The manually inputted information is managed by the vessel’s crew or
captain and is therefore prone to human error in regards to either format or misin-
formation. Mestl et al. 2016 claims the accuracy of this information to be as low as
4% in certain areas. To use AIS data, existing prediction methods, therefore, only
consider the geographical attributes which are automated including geographical
coordinates, similar to that of GPS, speed, and heading. On the other hand, other
aspects such as vessel type, dimensions, and draft, have extensively been over-
looked in such methods which limits them in terms of accuracy when applied to a
general range of vessels. Therefore, this thesis proposes an approach to vessel des-
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tination predictions that takes advantage of a broader range of vessel and voyage
information to construct a reliable and generally applicable prediction method.

1.4 Justifications, motivation, and benefits

The shipping industry is a vast industry that affects the entire world. It is gen-
erally believed to be responsible for 90% of all world trade (Tsaini 2011) but
is also a massive contributor to global air pollution which negatively affects the
environment (Wan et al. 2016). However, because of the ever-increasing global
demand for products and services, it is presumable that the importance of the ship-
ping industry will only increase in the future. This excludes reduction of shipping
activities as a viable option, but it leaves room for innovation in terms of opti-
mization since even small improvements on voyage routes and traveling patterns
can have huge implications for both revenue and environmental impact. Further-
more, because of the vast volume of vessels and their cargo capacities, shipping
investments generate a massive amount of revenue. For individual investors and
companies, being able to rely on market predictions is key to making beneficial
investments.

As an example, on 23 March 2021, one of the largest container vessels in
the world, Ever Given, ran aground in the Suez Canal. This event was publicized
worldwide because of the blockage’s immense impact. Some estimates say the
blockage cost on global trade lied between 6 and 10 billion USD1, signaling the
tangible impact of the shipping industry on the global economy as a whole.

Although there has been considerable research into vessel destination
and trajectory predictions, the current literature appears to focus on smaller-scale
predictions that emphasize topics such as collision avoidance and anomaly de-
tection (Section 3.1). Furthermore, as mentioned in Section 1.3, existing works
extensively overlook specific vessel details in favor of analyzing the geographical
information provided by AIS. Of the research that offers more general predictions,
such as forecasting the availability of vessels, efforts in this direction have been
comparatively limited. The paper Lechtenberg et al. 2019 which was presented
at the Hamburg International Conference of Logistics (HICL) in 2019 claims: “Re-
garding the forecast of ship-supply so far — to the best of our knowledge — no
research has investigated possibilities to predict the number of available ships in a
certain region of interest.” which supports the observation made above.

To enable research in this direction, as part of this thesis, the collaborat-
ing company Maritime Optima AS (MO) provides high-quality historical AIS data
in a highly available format and has already employed systems that can detect ves-
sel arrivals and departures from a global set of shipping ports. This enables the
thesis to focus more on analysis and applications rather than data collection and
validation. Lastly, the thesis author has been employed at MO since the founding
of the company and has been contributing to the development of their digital plat-

1https://www.bbc.com/news/business-56559073

https://www.bbc.com/news/business-56559073
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form ever since. These factors combined are the main motivating factors behind
this thesis.

1.5 Research questions

The main research question the thesis aims to answer is “How can AIS data com-
bined with specific vessel details be applied to predict future destinations of maritime
vessels?”. To successfully answer the main research question, more sub-questions
are to be answered. Moreover, since the thesis aims to apply additional vessel in-
formation, mainly vessel segmentation, for the proposed prediction method, the
final research question revolves around investigating the possible impact of this
information on prediction methods. The full list of research questions are defined
as follows:

1. How can AIS data combined with specific vessel details be applied to predict
future destinations of maritime vessels?

a. What prediction methods can be used to predict vessel destinations?
b. What information can be used to predict vessel destinations?
c. To what extent do methods proposed in existing work vary in scope of

applicability?
d. How can the validity of predictions made based on different prediction

methods be established?

2. What is the impact of vessel segmentation by type, size, or capacity on pre-
diction methods, or vessels’ general predictability?

a. What types of vessels are more predictable than others?
b. Do larger vessels travel in more predictable patterns than smaller ves-

sels?

1.6 Planned contributions

The main contribution of the thesis consists of proposing a generally applicable,
global vessel destination prediction method that exceeds existing works’ limita-
tions to both geographical and time-related extent. The prediction method also
takes advantage of a broader range of specific vessel details in an attempt to
achieve higher general prediction accuracy for any type of vessel. The proposed so-
lution includes a method of considering spatial trajectories as well as specific ves-
sel details in a Machine Learning (ML) context. Moreover, the developed method
provides a foundation that can be flexibly extended by adding more attributes
about vessels or voyages to further explore their impact on predictions. To this end,
the features used in the proposed solution are further investigated to determine
their impact, or importance, and to determine relationships between features and
predictability rates.
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1.7 Remaining thesis structure

2. Background

This chapter aims to give the reader insight into the topic area in a technical sense
as well as in the perspective of the shipping industry.

In this chapter, concepts, and terminology relevant to the thesis is ex-
plained including technological foundations such as Automatic Identification Sys-
tems (AIS), conceptual foundations such as AIS-based trajectories and trajectory
similarity measurements, and techniques applied to predicting future destination
ports of traveling vessels, namely, Machine Learning (ML).

3. Related work

In this section, related work and literature are presented and discussed in the form
of a systematic literature review to establish the extent to which the current state
of the art provides insight into the research questions listed in Section 1.5.

4. Methodology

In this chapter, the methodology of the proposed solution is explained in detail, as
well as the development process and findings discovered when arriving at the pro-
posed solution. This chapter is divided into sequential sections that each describe
a step in the process used to compose the ML training dataset, the formulation of
the analytical problem to be solved, and the Machine Learning (ML) related data
preparation, training, and evaluation.

5. Results

In this chapter, the results from the proposed solution are described in detail. It
describes the results from the different stages throughout the development pro-
cess and presents the final results and metrics from the trained Machine Learning
(ML) model. Furthermore, insights and interpretation of the results are gathered
from shipping industry experts to qualitatively assess the validity of the proposed
solution.

6. Discussion

In this chapter, a summary of the thesis is provided, followed by discussions re-
garding the proposed solution, the field of study, possible applications, and the
approach’s validity in terms of both academic and commercial values. Finally, lim-
itations of the thesis and proposed future work are presented and discussed.
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Background

In this chapter, concepts, and terminology relevant to the thesis is explained,
mainly, technological foundations such as Automatic Identification Systems (AIS),
conceptual foundations such as AIS-based trajectories and trajectory similarity
measurements, and techniques applied to predicting future destination ports of
traveling vessels, namely, Machine Learning (ML).

2.1 Concepts

This section describes the broader concepts that are important to the thesis’s so-
lution and later discussions. The section’s purpose is to give the reader a base
understanding of conceptual foundations and challenges the thesis later refers to.

2.1.1 Vessel voyage definition

In order to effectively predict a vessel’s future destination, or analyze voyage pat-
terns in general, a vessel voyage must first be defined. This definition is in the
context of constructing voyages from AIS data and is a crucial concept to define
since it affects the outcome of any prediction method that considers historical
voyages and ensures comparability with existing work within this area of study.
The main factor to define is when a vessel arrives at a port, or more specifically,
the conditions that must hold in order to consider a vessel as having arrived at a
specific port.

There might be several different reasons for a vessel to visit a port, not all
of which means that the port was the vessel’s final stop in a voyage. For instance,
larger vessels traveling long distances, often have to bunker (refuel) at bunker
ports between the port they loaded cargo at and the port they eventually will
unload the cargo at. In some cases, vessels anchor outside of such bunker ports
awaiting to be refueled by bunker vessels, while in other cases they can reduce
their speed and be refueled without ever stopping completely. Another common
reason for vessels to physically stop moving is congestion in ports. Very often
vessels of any size have to wait their turn before loading or unloading at busy

6
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ports. It is also common that vessels have to wait to pass through narrow canals. In
these cases, they might anchor closer to a different port than the final arrival port
while they wait for access. However, under such circumstances, vessels may not
consider themselves “arrived” as they intend to discharge their cargo at a different
port. In either case, whether vessels refueling at bunker ports, or stopping for other
reasons, should be considered arrivals or not ultimately depends on the desired
outcome of future predictions and context.

For the purpose of this thesis, an arrival is defined only when the vessel
herself claims to be moored by reflecting this as a navigational status in the Auto-
matic Identification Systems (AIS) data. As vessels usually do not use the moored
signal when bunkering, or for short stops along a voyage, this entails that the pro-
posed solution will be more prone to predicting the final destination of a vessel
even though it might stop for other reasons along the voyage. This voyage defini-
tion is thought to be more beneficial for people working in the shipping industry
who are interested in knowing what vessels are available in different regions for
chartering. However, a disadvantage is that fewer voyages can be constructed
from the available data as longer voyages could have been divided into multiple
smaller voyages if considering bunkering, for instance, as port arrivals.

A literature study, later described in Section 3.1, shows that there are
few studies that consider voyage prediction, however, the most common alterna-
tive method of defining trajectories of vessels is to use some form of clustering.
The most promising of these studies defined port arrivals by detecting clusters of
vessel positions transmitted close to ports. In contrast to using navigational sta-
tuses, this method defines voyages as trajectories between stopping ports, thus
voyages stopping mid-voyage at smaller ports were considered separate voyages.
The main advantage of this characterization is that the constructed voyages are
more easily comparable as they do not include any additional port visits along
its voyage trajectory. When compared to the aforementioned definition based on
navigational statuses, there could be more voyages constructed using the cluster-
based approach as it has a lower threshold for considering a port visit an arrival.
Therefore, in the context of a prediction model, there would be more voyage sam-
ples available for learning when using the cluster-based definition.

As an example, consider a voyage starting in Brazil and ending in Shang-
hai, China. Depending on the speed and fuel consumption of the traveling vessel,
this voyage is around 12 000 nautical miles long and would take between 30
and 40 days. Thus, it is probable that a traveling vessel would stop to refuel at
a bunkering port such as the one in Singapore. In this example (shown in Fig-
ure 2.1), one could either consider one complete voyage from Brazil to China, or
one could consider two voyages; one going from Brazil to Singapore, and another
going from Singapore to China. Assuming the vessel uses the navigational status
“moored” in Brazil and China, but not in Singapore, the approach used in this the-
sis would consider one complete voyage from Brazil to Singapore, since it reflects
the intended voyage while a clustering-based method, in contrast, would consider
the two shorter voyages.
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Figure 2.1: Example voyage, created using MO’s route planner tool, for a trav-
eling vessel (Pacific Harvest), traveling from Brazil to China while stopping at
Singapore to refuel.

In this example, it is commercially more valuable for a prediction method
to predict the vessel’s destination to be in China rather than Singapore, since the
fact that the vessel might stop to bunker at Singapore is somewhat obvious based
on common sea lanes and voyages. This is the main reason for primarily focusing
on the voyage definition using vessels’ navigational statuses in this thesis.

2.1.2 Trajectory similarity

As will be further elaborated on in Chapter 3, the current literature related to
vessel destination predictions almost exclusively relies on some form of trajectory
similarity. Vessels’ current trajectory seems to provide good insight into their in-
tended destination since vessels are unlikely to follow unique trajectories during
a voyage. Vessels are more likely to either follow established shipping lanes or the
most optimal and fuel-efficient route. Trajectory similarity measurements can be
used to find the most similar historical trajectory to the current traveling trajec-
tory to predict where the vessel will travel to. Therefore, trajectory similarity is
also included in this thesis’ proposed approach to vessel destination prediction as
a method of considering spatial information as well as vessel details.

There are three main categories of trajectory similarity measurements:
spatial, temporal, and tempo-spatial. Regarding vessel trajectories derived from
AIS, they are not likely to share similar time intervals values as vessels travel at
different speeds and at different times. Therefore, for the purpose of this thesis,
only spatial trajectory similarity measures are considered. This assumption is fur-
ther corroborated by Zhang et al. 2020 that arrived at a similar conclusion in their
work developing a ML -based approach to trajectory similarity measurements.

There are a number of spatial trajectory comparison methods that have
been widely used for different purposes. The most relevant are the Hausdorff
distance (Magdy et al. 2015), Fréchet distance (ibid.), and Symmetric Segment-
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Path Distance (SSPD) (Besse et al. 2015). Out of these, the SSPD method is the
most appropriate as it handles trajectories of different shapes and lengths well
which is beneficial when comparing a trajectory from an ongoing vessel voyage to
a set of complete historical ones. Figure 2.2 shows an example from ibid. where
two trajectories are compared and their symmetric distances are calculated.

Figure 2.2: Segment Path Distance (SPD) in the SSPD process of comparing two
different trajectories (Besse et al. 2015)

Moreover, the SSPD method is available as a convenient Python library
that also supports different algorithmic similarity measurement methods. For these
methods, a distance function can be specified and used to calculate the distance
between points in the algorithm. This is important as the trajectories are specified
as geographical coordinates, and as these are spherical in nature, the most appro-
priate distance function is the Haversine (Brummelen 2013) formula in contrast
to the Euclidean formula commonly used for planar distances.

The methods mentioned thus far are all algorithmic approaches to mea-
suring similarities between trajectories. However, there are also ML-based meth-
ods as well such as the approach proposed by Zhang et al. 2020 who also compare
their results to the aforementioned methods.

They used a Random Forest (RF) model to measure trajectory similar-
ity to find the most similar historical trajectory to any given traveling trajectory
departing the same port. The most similar historical trajectory’s destination is pre-
dicted to be the traveling vessel’s destination. The study achieved a higher general
accuracy level when compared similar approaches using algorithmic methods such
as SSPD.

Moreover, some unsupervised clustering methods have also been applied
to similar problems such as the Density-based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm (Ester et al. 1996) which is capable of sequen-
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tially finding patterns in points and trajectories. This approach is more frequently
used in trajectory predictions on a small geographical extent such as for collision
detection and anomaly detection.

2.1.3 Machine learning (ML)

Figure 2.3: Machine Learning (ML) hierarchical terminology

Machine Learning (ML) is an umbrella term describing computer algo-
rithms that automatically adapt and improve based on experience. Machine learn-
ing models are built based on a training dataset from which it derives patterns
between underlying features. A trained model can be used to make predictions of
a target value which can either be numerical or categorical.

There is a vast number of different ML algorithms applied to different
problem areas. ML is mainly divided into three broad categories: supervised learn-
ing, unsupervised learning, and reinforcement learning. In supervised learning, in
the training process, both input and the desired output are provided to the model.
The model finds patterns and correlations between input and output data during
the training process, and when the model is trained or fitted, it is capable of guess-
ing output given only input.

In unsupervised learning, no output labels are provided to the model
leaving the model to find patterns in the input set on its own. Clustering is an
example of unsupervised learning as the model finds and labels patterns in in-
put data without any external guidance. Reinforcement learning is a dynamic ap-
proach to ML where the model continuously learns while trying to achieve a goal.
In this method, the model navigates a problem space, and the program rewards
or punishes the model that tries to optimize for rewards. In regards to topics cov-
ered by this thesis, ML-based trajectory comparisons involve unsupervised learn-
ing, while predicting destination ports is supervised as the historical destinations
are known.

Moreover, supervised learning can further be divided into regression and
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Figure 2.4: Example showing the difference between classification and regression
tasks

classification problems. The main difference between the two is that classification
aims at predicting a label, or a class, while regression predicts a quantity that
is not necessarily present in the training data. For instance, a regression model
can be used to predict the price of an item for sale, while classification can be
used to label emails as "spam" or "not spam". Figure 2.4 shows the difference be-
tween classification and regression. The example of classifying emails as “spam”
or “not spam” would be considered a binary classification problem as there are
only two possible labels, however, classification can also involve predicting more
than two outcomes which are commonly referred to as multi-class classification.
In the context of this thesis, predicting a vessel’s destination port can be formu-
lated as a multi-class classification problem as every possible destination port are
different possible labels for a given voyage in progress. Figure 2.3 shows how ML
is hierarchically divided into more specific terms relevant for the scope of this
thesis.

2.2 Technologies and protocols

2.2.1 Database system

All the data that is used throughout this thesis for analysis is collected and stored in
a PostgreSQL database. PostgreSQL, or Postgres, is an open-source object-relational
database management system that supports the extended subset of SQL standards.
One major advantage of using Postgres is the support for plugins such as PostGIS
that provides tools for dealing with GIS and geometric data. In this thesis, PostGIS
is frequently used to store and process geographical trajectory data for vessel voy-
ages. Throughout this thesis, when referring to the proposed methodology and
results, terms such as database, table, row, and column refer to the PostgreSQL
database used and its tables with rows, and columns.
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2.2.2 Programming languages and tools

The main programming languages used throughout this thesis are Golang and
Python. Golang is primarily used in constructing the initial data foundation which
requires dealing with databases, trajectory building, and validation. Golang is cho-
sen for its performance benefits and ease of use. For data analysis and machine
learning, Python is the main programming language of choice. Most code pro-
vided to the reader in this document is written with a focus on readability over
efficiency.

2.2.3 Automatic Identification Systems (AIS) data

Figure 2.5: Vessel positions derived from 200 million AIS positional reports

As already mentioned in Section 1.1, Automatic Identification Systems
(AIS) was initiated by International Maritime Organization (IMO) and since 2004
every commercial and passenger vessel exceeding 299 Gross Tonnage (GT) is re-
quired to carry an AIS transmitter. These transmitters broadcasts AIS messages
following the AIVDM/AIVDO protocol. The AIVDM/AIVDO protocol contains two
main types of reports: positional and static. The positional reports contains au-
tomatically collected information such as the transmitting vessel’s Maritime Mo-
bile Service Identity (MMSI) number, the current timestamp, and the vessel’s cur-
rent navigational data including the current geographical coordinates, Speed Over
Ground (SOG), Course Over Ground (COG), true heading, Rate of Turn (ROT),
and more. The static reports contain additional information about the vessel and
its current voyages, some of which are input manually such as the vessel’s IMO
number, name, dimensions, draft, intended destination, and Estimated Time of
Arrival (ETA).

As an example, Figure 2.5 shows a visualization of 200 million AIS ran-
domly chosen positional reports from a collection of historical AIS positions for
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global collection of shipping vessels. In relation, the historical AIS dataset used in
this thesis consists of more than one billion records ranging from December 2019
to March 2021.

Regarding vessel identification in the AIVDM/AIVDO protocol, there are
mainly two values that are unique to a given vessel: the MMSI and IMO numbers.
Either of these should be unique on their own for a given vessel, however, MMSI
numbers can be recycled under certain conditions such as when a vessel is put
out of commission while the IMO number is specific to a vessel’s hull. Therefore,
IMO is the preferred identifier, however, since the AIVDM/AIVDO protocol divides
these identifiers into positional and static reports, both need to be considered in
order to use both static and positional AIS information.

Since MMSI values can be recycled, a mapping between MMSI and IMO
is required. Throughout this thesis, this mapping is provided by Maritime Optima
AS (MO) and based on the latest combination of IMO and MMSI values found
in the AIS data. This mapping is somewhat flawed as there could be different
combinations between the same IMO and different MMSI values throughout the
historical dataset. However, recycled MMSI is a rare occurrence in the 1.5 years of
historical data provided, thus, the mapping is considered sufficient for the purpose
of the thesis but could yield potential issues for a few number of vessels.

2.3 Initial data foundation

This section describes the form and meaning of the data that forms the foundation
of the thesis’ proposed solution. The data is provided by the collaborative company
Maritime Optima AS (MO) to the author.

2.3.1 Vessel departure and arrival detection

MO collects live AIS messages provided by different sources, and in addition,
they keep track of their navigational statuses as they are transmitted in the AIVD-
M/AIVDO protocol. These status attributes describe the current navigational state
of the vessel for purposes of planning and security. Implicitly, these messages can
indicate that a vessel has arrived or departed from a given port which can be used
to detect voyages. When a vessel has concluded its journey and arrives at a port,
the navigational status is changed to "MOORED", and when departing a port, the
status is changed to "UNDERWAY USING ENGINE" or "UNDERWAY SAILING". There
are also other navigational statuses that could be relevant for voyage information
such as "AT ANCHOR" which could indicate that a vessel is bunkering (refueling)
or is waiting for access to a berth that is congested.

Table 2.1 shows all the available statuses that vessels can emit in the
AIVDM/AIVDO protocol. Currently, transitions from a status that indicates that
a vessel is moving to the status "MOORED", and from "MOORED" to moving are
collected and labeled as arrivals and departures from or to the closest port within
a given radius. This has proven to be a sufficient method of identifying voyages
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Status Description

0 Under way using engine

1 At anchor

2 Not under command

3 Restricted manoeuverability

4 Constrained by her draught

5 Moored

6 Aground

7 Engaged in Fishing

8 Under way sailing

9–13 Reserved for future use

14 AIS-SART is active

15 Not defined (default)

Table 2.1: Available navigational statuses in the AIVDM/AIVDO protocol.

although it is dependent on the quality of the manually managed status value.
Using this approach, voyages are defined by subsequent departure and arrival
events, and positions between such events are collected as the voyage’s trajectory.
As this definition is based on transitioning navigational statuses, throughout this
thesis, the concept is referred to as vessel transitions.

2.3.2 Additional vessel information and segmentation

MO has implemented a system for categorizing vessels into different segments,
subsegments, and further variations. These segmentations are based on various
factors such as the dimensional data provided by AIS messages as well as techni-
cal vessel description provided by external sources and manual user input. One
factor for defining vessels’ segments can be found in the vessel type from the
AIVDM/AIVDO protocol. However, the most important factor is input from exter-
nal sources such as IHS Merkit1 and DNV2. This provides a better segmentation
than the values provided in the AIVDM/AIVDO protocol which only provides a
much broader definition such as whether the vessel carries passengers, dry cargo,
or is a tanker vessel.

For sub-segments, the most important inputs are cargo capacity and carry
range, measured in DWT. This segmentation of vessels is highly relevant to voy-
age patterns as vessels of different types and sizes travel to different ports and
countries for different shipping companies. This is further shown in Figure 2.6

1https://ihsmarkit.com/index.html
2https://www.dnv.com/

https://ihsmarkit.com/index.html
https://www.dnv.com/
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which shows, from an image of MO’s web platform, how different sub-segments
of the dry bulk cargo segment travels in different areas of the world. Since this
categorization provides valuable insights into voyage patterns, vessel segmenta-
tion values are included in this thesis’s proposed approach to vessel destination
prediction.

Figure 2.6: Maritime Optima AS (MO)’s segmentation of vessels where yellow
vessels are smaller than reds

In addition to segment information, MO has done extensive work into
gathering vessel information for their global collection of vessels via sources such
as IHS Merkit and DNV. This information is publicized in their software solution
where users can suggest changes to this public information which are validated
by MO and applied if the information is valid. The extensive information collected
for individual vessels creates a big potential for data analysis and developing ML
models that are highly aware of specific vessels and how they travel. However,
in this thesis, the main focus is on vessel segmentation when developing the pro-
posed solution. This data is later referred to as vessel segments and includes both
the vessels’ segment and sub-segment.

2.3.3 Shipping ports

MO has an extensive port database containing more than 5600 ports. From sources
such as UNECE, it is possible to find a vast number of ports, however, only a subset
of the world’s known ports are used by MO as these are considered relevant ship-
ping ports. A port is deemed relevant if it offers loading, unloading, or bunkering
services and has seemingly valid coordinates and identifiers. The process of de-
termining what ports are relevant shipping ports is a continuous manual process
in MO and it ensures that the available selection of ports is highly relevant for the
industry.
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Furthermore, all ports are identified by their UN/LOCODE. This is a five-
letter unique identifier provided and managed by the United Nations (UN). In the
five-letter code, the first two indicate the port’s country of origin, while the three
last indicate a more specific location within the origin country. As an example, the
UN/LOCODE for the port of Oslo is NOOSL where “NO” stands for Norway, and
“OSL” stands for Oslo. For comparison, a similar system is used for international
airports. For this thesis, only the 5600 relevant ports that are considered relevant
by MO’s standards are used in the analysis.

2.4 Application challenges

Throughout the development process of the proposed solution, various implemen-
tation, or application challenges arose and were handled. This section aims to de-
scribe the background of these issues to help the reader understand the challenges
and their respective solutions.

2.4.1 AIS data quality

One important issue to address is the quality of the underlying dataset. The AIS
standard is globally adopted and enforced for commercial vessels, however, it
lacks standardization for manually managed attributes. This issue affects the cho-
sen voyage definition as it relies on the navigational status in the AIS data. For
instance, if vessels neglect to change their signals, their defined voyage trajectories
will not properly reflect a commercial voyage and might produce trajectories that
are hard to compare with other historical trajectories. Based on manual inspec-
tion, vessels seem to be more consistent at changing their statuses from underway
using engine to moored when arriving at a port, than the opposite when departing.
This can lead to voyages beginning at some distance away from the departure port
while ending more accurately at the arrival port.

AIS data transmitted is collected by either land-based base stations or
orbiting satellites depending on the positions of the vessels. The geographical data
transmitted is mostly reliable, however, as satellites have different orbits, there are
gaps in their coverages. Vessels might travel up to several hours before a satellite
collects their transmitted AIS data. There can also be issues with data transmitted
in congested areas due to interference from other vessels. Some of these issues
cannot be avoided yet affects the outcome of the work conducted in this thesis,
however, some issues are identifiable in the historical data and can be managed
for analytical purposes. For example, one issue with fluctuations in trajectories
was identified and solved in this thesis as described in Section 4.3.2.

2.4.2 Categorical label encoding

Categorical values are values that are a subset of a finite number of possible val-
ues, while numerical values have infinite possible values. The thesis problem can
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be formulated as a multi-class classification problem since the predicted arrival
port is a single value in a finite set of ports. ML models often perform better on,
or expect, numerical values in their training datasets3. Therefore, it is common
practice to use a form of encoding of the categorical values to transform them into
numeric values. There are several different methods of achieving this, however,
two common methods are “Label Encoding”, and “One-Hot Encoding”. In label
encoding, each value in a category is transformed into a numerical value ranging
from 0 to the number of unique values in the column. This is a simple and practical
encoding method, however, since the categorical values are now numeric, implic-
itly, the ML might misunderstand the data to be ordered and derive meaning from
the numerical relationships. In one-hot encoding, when a column of data is en-
coded, the column is split into multiple columns for each different category in the
column. Then, the values are replaced by ones and zeros indicating what column
contains that value. This solves the issue with implicit patterns in numerical val-
ues. However, with high cardinality datasets, ML models struggle with the sparsity
and the large number of features that are generated, and can even perform worse
than label encoding in some instances4.

2.4.3 Imbalanced datasets and sampling methods

Imbalanced datasets are usually problematic in ML as models see more of cer-
tain samples than others making the model biased toward the more frequent out-
comes. This can also lead to misleading accuracy values as, during the evaluation
process, some values occur more often than others. For example, consider a bi-
nary classification problem where the arrival port is either port A or port B. If the
dataset contains 90 samples where the arrival port was port A and 10 where it was
port B, a simple function could be implemented that always predicts the arrival
port to be port A without considering the input values and the “model” would
have an apparent accuracy of 90%. However, this accuracy would be misleading
as the model will never predict port B as the arrival port. The same phenomena
can occur in ML models that are trained on imbalanced datasets. Some ML mod-
els deal with the problem of imbalance better than others, especially decision tree
ensemble methods such as the Random Forest (RF) model, however, these models
might still struggle with highly imbalanced datasets.

There are several methods of dealing with imbalanced datasets includ-
ing providing models with predefined weights, however, not all models provide
this option. For a more general approach, it is possible to manipulate the dataset
before training in an attempt to balance the classes. This can be achieved through
sampling the dataset in a manner that produces a more balanced frequency of the
outcome values. The two methods in question are minority oversampling and ma-
jority undersampling. Minority oversampling is a procedure where the minority
classes, or target values, are duplicated while majority undersampling consists of

3https://www.mygreatlearning.com/blog/label-encoding-in-python/
4https://towardsdatascience.com/d64b282b5769

https://www.mygreatlearning.com/blog/label-encoding-in-python/
https://towardsdatascience.com/d64b282b5769
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removing majority classes until the dataset contains an equal number of classes.
On a general basis, these methods have their accompanying caveats. For instance,
when oversampling the minority classes, the model has a greater chance of over-
fitting as it sees a high number of the same samples. In contrast, when undersam-
pling majority classes important relationships in the datasets might be removed
along with the samples of the majority classes.

There have been some attempts at minority oversampling without sim-
ply duplicating information. A popular approach called Synthetic Minority Over-
sampling Technique (SMOTE) (Chawla et al. 2002) achieves this by synthetically
generating new samples based on closely related samples in the dataset. For ma-
jority undersampling, Edit Nearest Neighbor (ENN) evaluates k nearest neighbors
to find misclassified samples and removes them. This enables majority undersam-
pling with less risk of removing important relationships in the dataset. Santos et al.
2018 describes possible implications that oversampling may have on imbalanced
dataset evaluation. They found that datasets oversampled using SMOTE can lead
to some misleading evaluation results such as that of an over-optimistic evaluation
process. When any oversampling technique has been applied to a dataset, there
is a risk of the evaluation sets containing many similar or duplicate values as the
training set, thus, the model is evaluated using samples it has already seen dur-
ing the training process. In general, they found that using a combination of over
and undersampling using SMOTE and Tomek Links (Tomek 1976) respectively
produced the most reliable results.

2.4.4 Model evaluation

After a Machine Learning (ML) model has been trained it must be validated prop-
erly in order to determine its real performance. The simplest evaluation process
consists of dividing the full dataset into a training and a test dataset by a cer-
tain sample ratio, commonly 80% train and 20% test data. This is important as
to not evaluate the model using samples it has already observed in the training
process and to ensure that the model performs as expected on previously unseen
samples. When the trained model performs well on the training data, but not on
previously unseen samples, the model is overfitted. In such cases, the model essen-
tially remembers the entire training dataset but has not learned it, so it cannot be
applied to previously unseen samples. Moreover, to ensure that the selected por-
tion of test data was representative of the dataset, k-Fold cross-validation can be
employed (Ghojogh and Crowley 2019). In this process, the full dataset is divided
into k parts of equal size, and the model is trained k times, using one different
part as test data and the remaining as training data for each training process. The
average accuracy value can then be extracted from each of the training rounds to
determine a more balanced accuracy value. Furthermore, if the level of accuracy
differs significantly per training round, or the standard deviation of accuracy is
large, it indicates that the model can be overfitting in the training process.
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Related work

The topic of Automatic Identification Systems (AIS) -based predictions has already
been explored quite extensively, especially in recent years as AIS systems have
become an enforced standard for commercial vessels in the industry. However,
the AIS standard has mainly been applied for the purpose of maritime safety and
navigation, and the existing academic work on this topic reflects this. Most of the
related work consists of vessel trajectory predictions for the purpose of foreseeing
possible future collisions or for detecting anomalies from established shipping
lanes. These types of predictions are applicable for predicting a vessel’s future
position in a short time interval, in a limited geographical area, but with high
positional accuracy. In order to establish the current state of the art of the topic
area and establish to what extent the literature answers the proposed research
questions, a literature review was conducted which is described in the following
section.

3.1 Systematic literature review

As indicated in Section 3.3, based on initial research into the thesis’ topic area,
there appears to be a trend toward a focus on short-term predictions for safety
or navigational purposes. In contrast, this thesis aims at using AIS, and other
attributes, for longer-term predictions, or more precisely, port destination pre-
dictions. However, because of the exploratory nature of the thesis, the literature
review conducted was broad in order to include work that might have taken a
different approach to solve the same problem. In order to organize the resulting
papers, a categorical separation of papers based on motivation was defined as
follows:

0. The paper’s motivation deems it completely irrelevant to the topic area.
1. The paper’s motivation includes vessel predictions, but on a smaller time or

geographical scale making it irrelevant for comparison.
2. The paper’s motivation includes destination predictions making it relevant

for further analysis.

19
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Category 0 is defined to filter out papers that were irrelevant but could
not be excluded by narrowing the search query. In this category, relevance is de-
termined by the studies’ topic areas, primary motivators, or methodologies. For
example, topics not falling within the maritime topic area have been excluded as
they did not appear to include specific insight into the thesis goal which involves
specifically analyzing voyage patterns in the shipping industry. Moreover, mar-
itime studies that did not apply any automated or technically applicable solutions
were also excluded. Examples of such studies include financial model studies or
case studies applied at a specific time interval, vessel segment, or geographical
region or country.

Category 1 includes papers that relate to the established trend mentioned
earlier where the proposed method seems relevant on a small scale but is ulti-
mately not applicable to the thesis’ problem area. Such studies use relevant data
sources and technologies but apply them based on different motivations than des-
tination prediction.

Finally, the papers labeled with relevancy 2 falls within Category 2 and
includes papers that fall within the same topic area and are relevant in terms
of providing insight into the proposed research questions. In order to determine
what papers fitted category 1 and 2, papers with a relevance higher than zero were
further analyzed in order to determine the following attributes:

• Motivation — what was the problem the paper aimed to solve.
• Objective — what was the proposed prediction method’s objective (e.g.

classification, prediction, clustering).
• Data source — what data source was used in the proposed solution (e.g.

historical AIS data, port data, vessel, or voyage details).
• Prediction method — what prediction method was applied to solve the

problem.
• Geographical extent — to what geographical scopes was the solution ap-

plicable.
• Time interval — what were the limitations on prediction methods in terms

of time or trajectory duration.
• Validation method — what methods were applied to validate the resulting

prediction method.
• Validation metrics — what metrics were used when establishing the valid-

ity of the solution.

In this literature review, the following search engines/libraries where
used to collect relevant research:

• Scopus1

• Oria2

• ACM Digital Library3

1https://www.scopus.com/
2http://ntnu.oria.no/
3https://dl.acm.org/

https://www.scopus.com/
http://ntnu.oria.no/
https://dl.acm.org/
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These were chosen based on running test queries and evaluating the
relevancy and range of the resulting papers. Furthermore, the proposed query
had too many Boolean operators for search engines like ScienceDirect4, however,
initial testing revealed that there was significant overlap in resulting papers in
search engines not used in the study which indicates that the relevant research
has indeed been covered.

3.2 Search query and filters

The objective of the literature review was to conduct a broad search detecting pa-
pers related to multiple relevant topics such as vessel destination prediction, vessel
trajectory prediction, vessel availability forecasting, and maritime logistics. There-
fore, the search query used in the literature review was designed to find papers
within multiple topics and was derived from testing multiple queries on multiple
search engines. For instance, the following queries were tested using the search
engine provided by ScienceDirect:

• “vessel trajectory” OR “ship trajectory” resulted in 421 papers
• ais AND (“vessel trajectory” OR “ship trajectory”) resulted in 150 papers
• ais AND (prediction OR predicting) AND (“vessel trajectory” OR “ship tra-

jectory”) resulted in 108 papers

The above queries returned a large number of papers relevant to category
1, so in order to find more relevant papers, more specific queries were also tested:

• “vessel destination” OR “ship destination” OR “vessel availability” resulted
in 389 papers
• ais AND (“vessel destination” OR “vessel availability”) resulted in 25 papers.
• ais AND (predicting OR forecasting) AND (“vessel destination” OR “vessel

availability” OR “ship supply”) resulted in 18 papers.

Lastly, in order to find detect research approaching the same problem
from a different direction such as not using AIS data, the following queries were
also tested using Scopus because of boolean operator limits on ScienceDirect:

• (vessel OR ship OR maritime) AND (destination OR availability OR supply)
AND (prediction OR predicting OR forecasting OR logistics) resulted in 894
on Scopus
• (vessel OR ship OR “maritime logistics”) AND (destination OR availability

OR supply) AND (prediction OR forecasting) resulted in 314 on Scopus
• (vessel OR ship OR “maritime logistics”) AND (destination OR availability)

AND (predicting OR forecasting) resulted in 92 on Scopus

The search terms that seemed to return the most relevant papers were
combined into the final query used in the literature review shown in Code list-
ing 3.1.

4https://sciencedirect.com

https://sciencedirect.com
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Code listing 3.1: Search query used in literature review

ais AND (
predict OR predicting OR forecast OR forecasting

) AND (
vessel OR ship OR maritime

) AND (
destination OR availability OR supply OR trajectory OR logistics

)

Moreover, the following filters were used to limit the search result:

• The paper must be published in the last five years.
• The paper must be available in English.
• The paper must be available with the publisher subscriptions provided by

NTNU.

The search query was limited to a five-year publish interval because there
was a drastic decrease in relevant results returned when a ten-year limit was used
during preliminary testing. This could be explained by a recent increase in avail-
ability and easy access to historical AIS data as well as a recent increase in tech-
nological applications within the shipping industry as a whole. However, in an
attempt to reduce the number of irrelevant papers, the five-year limit was applied.

The search query was initially executed on the search engine Scopus, thus
the search query and filters were modified to the search engine’s format as shown
in Code listing 3.2.

Code listing 3.2: Search query used in Scopus including filters

TITLE-ABS-KEY (
ais AND (

prediction OR predicting OR forecast OR forecasting
) AND (

vessel OR ship OR maritime
) AND (

destination OR availability OR supply OR trajectory OR logistics
)

) AND PUBYEAR > 2014 AND (
LIMIT-TO ( DOCTYPE , "cp" ) OR
LIMIT-TO ( DOCTYPE , "ar" ) OR
LIMIT-TO ( DOCTYPE , "re" ) OR
LIMIT-TO ( DOCTYPE , "ch" ) OR
LIMIT-TO ( DOCTYPE , "Undefined" )

) AND ( EXCLUDE ( SUBJAREA , "MEDI" ) )

3.3 Results

Using the aforementioned (Section 3.1) search libraries, the defined search query
returned a total of 109 papers. After removing the overlapping results from the
different search engines there were a total of 90 unique papers that formed the
foundation of the literature review. First, the papers were evaluated based on the
level of relevance as defined in Section 3.1. Out of the 90 papers, 31 fell within
category 0, 54 within category 1, and 5 within category 2.
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The large number of irrelevant papers resulted from the broadness of the
query that was designed to find results in multiple topic areas. Furthermore, there
were some papers that were medical in nature but labeled incorrectly in some of
the search engines. Usually, these occurred as the term AIS is also an acronym of
Arterial Ischemic Stroke. Furthermore, some papers that were not publicly avail-
able appeared in the search, and other papers were deemed irrelevant as they
concerned topics such as mapping fishing areas in a specific region, power and
performance predictions using AIS data, or high-level discussions of potential ap-
plications of AIS data analysis.

The large number of papers within category 1 further confirms the gen-
eral trend of AIS-based predictions as the primary goal of most of the resulting
papers were to predict future positions of vessels within shorter time intervals for
the purpose of either safety and navigation or anomaly detection. None of the
papers within category 1 seemed applicable to predict vessel destination ports at
a global scale, therefore, specific papers within this category are not discussed in
detail throughout this section. However, all papers placed within category 1 are
listed in Tables 3.2 to 3.7

The remaining 5 papers (listed in Table 3.1) were deemed relevant enough
for further analysis in regards to the proposed research questions listed in Sec-
tion 1.5. In addition, Lechtenberg et al. 2019, which was discovered during the
process of testing queries, was also included in the analysis as it seemed highly
relevant toward availability forecasting but did not appear when using the two
search engines in the final review.

3.3.1 Research question 1A

What prediction methods can be used to predict vessel destinations?

Firstly, there was a large number of prediction methods that fell within category 1
that were not directly applicable for destination predictions on a global scale but
were applied to smaller-scale positional predictions. These papers usually pro-
posed some manner of clustering algorithm like DBSCAN to classify trajectories
and patterns with some form of point-to-point search along trajectories using ei-
ther a form of Recurrent Neural Network (RNN), Support Vector Machine (SVM),
or k-Nearest Neighbor (k-NN) search.

A more relevant approach was proposed in Zhang et al. 2020 that used
a Random Forest (RF) -based trajectory similarity measurement combined with
frequencies of port visits to predict traveling vessels’ next destination port. The
DBSCAN algorithm was used to define trajectories by identifying clusters of vessels
around port coordinates. These positions were classified as “port-stay points” so
that every position between two stay points was part of a vessel trajectory. In
the paper, the proposed RF-based approach was compared with several other ML
and non-ML methods of predicting destination ports in a similar fashion based
on trajectory similarity. Using the proposed RF-based approach, they achieved a
“port accuracy” of 66.57%, and a “city accuracy” of 81.65%.
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Paper Goal Pred.
method

Geo-
extent

Time
frame

Validation Metrics

Karataş et
al. 2020

arrival port,
arrival time,
and next
position
prediction
based on
trajectories

LSTM RNN,
DBSCAN, K-
NN

large,
tested
regionally

large 10-fold cross
validation

accuracy,
f1-score,
precision,
recall

Zhang et
al. 2020

Destination
prediction
based on
trajectories
and port
frequencies

Random for-
est, DBSCAN

global any 5-folder cross
validation,
comparison
with other
models

port accu-
racy, city
accuracy,
MAE, mean
distance
error

Roşca et
al. 2018

predicting
arrival times
and desti-
nations of
vessels

nearest
neighbor
search on
trajectories

large,
tested
regionally

large hyperparam.
selection by
genetic algo-
rithm, train /
test data split

general ac-
curacy

Bachar et
al. 2018

predicting
arrival times
and desti-
nations of
vessels

venilia based
on markov
predictive
models

large,
tested
regionally

large train / test
data split (de-
tails lacking)

mean dis-
tance error
for ETA,
general ac-
curacy for
destination

Andrej
Do-
brkovic,
Iacob, and
J. v. Hil-
legersberg
2018

longer term
predictions of
vessel arrival
times

genetic
algorithm
clustering

large,
tested
regionally

large case study
testing, pa-
rameter
testing, and
simulation

general
accuracy,
extraction
quality,
execution
time

Table 3.1: Papers collected from literature review with relevant geographical and
time limitations
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Lechtenberg et al. 2019 used an ensemble approach to forecast vessel
supply for the dry bulk cargo industry in predefined regions. This implicitly in-
volved predicting port destinations in the form of voyage patterns and extrap-
olating port availability into regional availability. They mainly used the Markov
Decision Process to predict the next destination ports together with XGBoost to
predict ETA and anchor time before leaving the current region. The paper claims
a 98% accuracy for regional availability, however, the accuracy for port prediction
was not disclosed as well as the size and extent of the predefined regions that
presumably would have a massive impact of accuracy as the larger the regions
are, the easier it is to predict the next region. This is especially true for smaller
vessels that may rarely or never leave a large enough region.

Roşca et al. 2018 and Bachar et al. 2018 were both published as part of
“The DEBS Grand Challenge 2018” which involved predicting future destinations
of vessels given a dataset containing historical AIS data within the Mediterranean
sea. Roşca et al. 2018 proposes the nearest neighbor search on coordinates within
trajectories where similar points are defined using both distance, speed, and head-
ing. The longest similar sequence, or the longest predicted segment, is used as a
basis for querying a vessel’s arrival port. Bachar et al. 2018 developed a tool called
“Venilia” that uses different ML methods to predict vessels’ destinations, mainly, a
Markov predictive model. Using their model, they were able to correctly classify
50% of the events from the dataset.

Karataş et al. 2020 proposes and compares a number of different ML-
based trajectory similarity approaches including methods proposed in entries to
the “The DEBS Grand Challenge 2018”. They also used a similar dataset contained
with the Mediterranean sea spanning a few months in history. A number of predic-
tion methods trained and evaluated using geographical and navigational parts of
historical AIS data. They were further tested using a grid-based mapping of config-
urable size and resolution. In general, they found that a RF-based model achieved
the best results with accuracy for arrival ports around 86%. They also found that
a Long-Short Term Memory (LSTM) architecture performed well predicting next
positions in a trajectory on a smaller scale.

Andrej Dobrkovic, Iacob, and J. v. Hillegersberg 2018 proposes a genetic
algorithm that is trained to cluster waypoints, and use them to establish a directed
graph of sea lanes. They discuss the differences and limitations of other clustering
algorithms such as DBSCAN which is widely used for trajectory-related clustering.
The proposed genetic algorithm can be applied in a similar fashion to the method
described Pallotta et al. 2013 by clustering waypoints, detecting sea lanes, and
using them to predict vessels’ future destination ports. The genetic algorithm is
supposedly more suited for clustering in busy areas where individual vessel trajec-
tories are hard to distinguish from others. The suggested approach shows promise
toward prediction, however, the main focus of the study is to detect sea lanes while
handling missing or varying data. Therefore, the complete implications in regards
to destination prediction are unknown on a global scale.
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3.3.2 Research question 1B

What information can be used to predict vessel destinations?

From the research within category 1, historical AIS data was almost exclusively the
only source for predictions. Furthermore, for the most part, only purely spatial at-
tributes of the AIVDM/AIVDO protocol were used. However, when compared to
category 2, papers in category 1 were more frequently using navigational informa-
tion such as COG, SOG, and headings as these features proved crucial to detect
collision situations and anomalies in voyage patterns.

All papers listed in category 2 relied on historical AIS data and only con-
sidered the geographical coordinates clustered as trajectories for destination pre-
dictions. They all also relied on a varied collection of port data as this is necessary
to predict destination ports. Since Roşca et al. 2018 and Bachar et al. 2018 were
both published in response to “The DEBS Grand Challenge 2018” they relied on
the same input data that included AIS and port data from a single region covering
the Mediterranean sea. On the other hand, Zhang et al. 2020 had access to 141
million global historical AIS records from 2011 to 2017 and a global port database
consisting of over 10 000 ports.

3.3.3 Research question 1C

To what extent do methods proposed in existing work vary in scope of appli-
cability?

As mentioned frequently in this section, all papers from category 1 were, in some
manner, limited by either geographical extent or time intervals as global desti-
nation prediction was not the focus of these papers. There were slight variances
in these limitations ranging from time limitations of minutes to hours with some
papers considering predictions up to one day. However, since a voyage can last
longer than one month in many cases, positional predictions accurate up to one
day in the future do not seem applicable to this thesis’ problem area.

The papers within category 1, were less limited by time and geographi-
cal extent. For instance, ibid. and Lechtenberg et al. 2019 both were completely
unrestricted by geographical extent or time frames, however, the first did require
a current traveling trajectory to predict the next destination port but was capable
of making predictions for any voyage no matter the length or duration.

However, the solutions proposed from the remaining papers listed in Ta-
ble 3.1 were only applied, or tested, regionally. Roşca et al. 2018 and Bachar et
al. 2018 proposed solutions to the same challenge using the same dataset con-
taining data within the Mediterranean sea, however, it seems as both approaches
are unrestricted in terms of time limitations. Karataş et al. 2020 also proposed an
apparent general destination prediction method, however, they were also limited
by a dataset only covering the Mediterranean sea and only containing records
spanning a couple of months. Additionally, Andrej Dobrkovic, Iacob, and J. v.
Hillegersberg 2018’s proposed solution to long-term predictions was also only
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validated on limited regions which were two Dutch provinces.
In conclusion, even papers that set out for long-term destination pre-

dictions are mostly all focused on a particular area or region, and although the
proposed solutions seem promising, they do not fill the global requirements of
this thesis’ goals. From the related work, it is apparent that only the solutions
proposed in Lechtenberg et al. 2019 and Zhang et al. 2020 are globally extensive.

3.3.4 Research question 1d

How can the validity of predictions made based on different prediction meth-
ods be established?

From category 1, there was a multitude of different validation approaches that
were relevant to smaller-scale predictions. In these methods, the most prevalent
metrics used were distance-based error rates as the positional accuracy of the mod-
els is important for topics such as collision detection. Other standard ML related
validity metrics also occurred such as Root Mean Square Error (RMSE), Mean Ab-
solute Error (MAE), F1-score, and general prediction, or classification, accuracy.

Lechtenberg et al. 2019 does not disclose the evaluation process in much
detail, however, it is mentioned that there is a standard division of 90% training
data and 10% test data. It mentions using both MAE and RMSE as metrics mea-
suring the quality of their approach which are both frequently used metrics ML.

Zhang et al. 2020 describes a more thorough evaluation process using
5-folder cross-validation which is a well-established process to ensure a model’s
accuracy is reliable and not a result of overfitting. The proposed model was com-
pared under similar conditions with several other trajectory similarity measure-
ments such as the aforementioned SSPD algorithm but also a few ML-based ap-
proaches. The metrics used to indicate validity were mainly Average Prediction
Distance Error (APDE) based on the distance from the predicted port to the ac-
tual arrival port, port accuracy which was also extrapolated to city accuracy.

Karataş et al. 2020 employed a 10-folder cross-validation process to val-
idate their approach which was compared to a number of different ML-based
prediction models. General prediction accuracy was the main validity metric in
addition to other standard metrics, namely F1-score, precision, and recall.

Neither Bachar et al. 2018 nor Roşca et al. 2018 does not describe an
evaluation process in high detail. However, in ibid., there are mentions of testing
two different data structures and their impacts on runtime performance as well as
a general best score of 0.8249 for predicting arrival ports and a mean error rate
for ETA predictions.

Finally, Andrej Dobrkovic, Iacob, and J. v. Hillegersberg 2018 is harder
to compare to as destination predictions were not directly applied and tested in
the study. In regards to route construction and pattern extraction, they ran tests
in a simulated environment in order to establish the accuracy of their genetic
algorithm that tries to establish sea lanes and routes. They reported an accuracy
of 87.5% in one simulation case and a lower score of 75% in a scenario including
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missing parts in the input data which the algorithm is trained to handle.

3.3.5 Research question 1 – summary

How can AIS data combined with specific vessel details be applied to predict
future destinations of maritime vessels?

As discussed throughout this section, the existing literature within the thesis’ topic
area seems to exhibit a few trends. First, the majority of the research discovered
mostly focused on short-term navigational predictions of vessels, usually for the
purpose of collision avoidance, anomaly detection, or safety and management
within ports or smaller regions. Second, there is a very limited amount of research
that focuses on longer time intervals or geographical extent, and these studies are
also quite limited in the sense that they rarely consider global port destination
predictions, but rather port destinations within a given region. Lastly, there was
no research found that considered much more than purely geographical attributes
of historical AIS data. When only considering geographical travel patterns of ves-
sels, it is implicitly assumed that all vessels behave in a similar fashion which, as
shown in Figure 2.6, is not the case. This is especially true for highly specialized
vessels such as service vessels for oil platforms, or passenger vessels that are not
at all comparable to dry bulk or tanker vessels. Since the existing literature is also
lacking in general global destination prediction methods that consider specific de-
tails for individual vessels, it can be concluded that the existing literature does not
provide enough insight into RQ1 as a whole.

3.3.6 Research question 2

What is the impact of vessel segmentation by type, size, or capacity on pre-
diction methods, or vessels’ general predictability?

The related work within this field seems to be substantially limited in terms of
considering different vessel types or segmentation. None of the discovered stud-
ies that apply a general methodology to predict any vessels’ future destination or
trajectory consider the differences in vessel size, capacity, or type. Some studies
conducted research on forecasting within one specific segment or sub-segment.
Lechtenberg et al. 2019 in particular, developed a prediction method for dry bulk
cargo vessels. Their developed prediction method achieved a high level of accu-
racy when predicting the future destination region of dry bulk vessels. However,
since they did not apply their method on other types of vessels, or analyze the
prediction results per sub-segment within the dry bulk segment, the study does
not provide insight into the impact of segmentation or correlations between ves-
sel size and predictability. Thus, the existing literature does not provide enough
insight into RQ2 or any of the sub-questions within it.
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Paper Motivation Pred. method Geo-
extent

Time
scale

Validation Metrics

Braca et
al. 2018

detecting vessels
turning off AIS
transmitters

Ornstein-
Uhlenbeck (OU)
mean-reverting
stochastic pro-
cess

large medium
to
large

case study using
scenario/simula-
tion

accuracy,
use-case
effec-
tiveness

Konstantinos
et al. 2018

detecting search
and rescue activ-
ity before they
are emitted

random forest regional N/A cross validation
folder

F1
score,
recall,
preci-
sion

Andrej
Do-
brkovic,
Iacob, and
J. V. Hil-
legersberg
2015

predicting ar-
rivals for Dutch
logistics service
providers (LSPs)

directed graph,
DBSCAN, genetic
algorithm

large 24
hours

simulation extraction
quality,
effi-
ciency,
noise
toler-
ance

El
Mekkaoui
et al.
2020

ETA predic-
tion for known
destinations

FFNN, RNN,
LSTM, GRU

regional large cross validation MAE,
MSE

Jia et al.
2019

destination clas-
sification for
Latin-American
crude oil exports

random forest large cross
valida-
tion

Gaussian naive
Bayes (GNB)
classification

accuracy

Jung et al.
2019

trajectory
anomaly de-
tection (ACM
DEBS GC 2018
challenge)

Hausdorff dis-
tance

region medium predictability
increase af-
ter anomaly
removals

accuracy,
model
perfor-
mance
increase

Lei 2020 constructing a
database for de-
tecting collision
situations

time/distance
at closest point
(DCPA/TCPA),
clustering

regional hourly region analysis,
number and
distribution
of conflicting
trajectories

N/A

Ma et al.
2020

collision avoid-
ance

genetic optimiza-
tion algorithm,
particle swarm
optimization,
neural network

small small cross validation MSE

Table 3.2: Papers gathered from literature study labeled with relevancy level 1
whose objective was classification (part 1/2).
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Murray
and
Lokukaluge
P. Perera
2020

collision avoid-
ance, anomaly
detection

GMM regional N/A top/bottom
eigenvector
analysis, Maha-
lanobis distance
analysis

accuracy

Nguyen et
al. 2018

arrival port and
ETA classification

sequence to se-
quence on a grid

regional medium case study N/A

Patmanidis
et al. 2016

anomaly detec-
tion and route
prediction

linear filtering
using ARMA
models

region small simulation distance
error

Prochazka
and Ad-
land 2020

feature selection
for enhancing
predictions

N/A regional N/A N/A N/A

Rong et al.
2020

collision proba-
bility prediction

Gaussian process small small case study reliability
/ accu-
racy

Shen et al.
2020

improving detec-
tion of fishing ac-
tivities

RNN, LSTM regional N/A cross validation F1
score,
AUC, ac-
curacy

Tang, Wei,
et al. 2020

anomaly detec-
tion and safety
in maritime
navigation

DBSCAN, mesh-
based deviation
detection on
directed graph

regional N/A simulation N/A

Watawana
and
Caldera
2018

collision detec-
tion

SVM, Naive
Bayes, CART

regional small case study prediction
accu-
racy

Wen et al.
2020

defining routes
between con-
nected regions
for route plan-
ning

DBSCAN, ANN global N/A N/A N/A

Table 3.3: Papers gathered from literature study labeled with relevancy level 1
whose objective was classification (part 2/2).
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Paper Motivation Pred. method Geo-
extent

Time
scale

Validation Metrics

Hamada
et al.
2021

Main: effective
information from
marine big data
+ predicting the
demand of ships

"deep learning,
clustering"

global any 25/75 valida-
tion/training

"accuracy,
stan-
dard
devia-
tion"

T. Wang et
al. 2021

Improved trajec-
tory clustering
for prediction
and anomaly
detection

convolutional
auto-encoders
+ clustering
MFA+K-means

tested
on a
single
city area

small "not explained,
compared to
other methods"

"precision,
accu-
racy,
recall,
f1 score"

Alexander
Dobrkovic
et al.
2015

systematic map-
ping of short to
long term predic-
tions

literature review
(N/A)

N/A N/A N/A N/A

Table 3.4: Papers gathered from literature study labeled with relevancy level 1
whose objective was neither classification nor prediction.
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Paper Motivation Pred. method Geo-
extent

Time
scale

Validation Metrics

Alizadeh
et al.
2020

trajectory simi-
larity to predict
positions at time
intervals

spatial distance,
bi-directional
distance, speed
distance

region 10,
20, 30
min.

case study accuracy,
SSI

Alizadeh
et al.
2021

Vessel trajec-
tory prediction
for collision
avoidance

LSTM (RNN)
and trajectory
similarity

region 10-40
min.

cross validation distance
accu-
racy

Borkowski
2017

collision avoid-
ance integrated
in navigation
systems

ANN, data fu-
sion, GRNN

meters minutes integrated and
tested in real
navigational
system

RMSE

Brandt
and
Grawun-
der 2017

moving objects
prediction

moving object
data stream
management
systems, kNN

region 10
min.

test cases not ex-
plained

Burger et
al. 2020

filling in gaps in
AIS data

discrete Kalman
filters, LRM

small small single cases anal-
ysis

distance
error

Chen et
al. 2020

cluster recon-
struction for
short time
frames

NPC clustering
finding best
possible next
points

small small extensive com-
parisons with
other methods

accuracy,
distance
error

Dalsnes et
al. 2018

collision avoid-
ance for au-
tonomous ships

NCDM meters minutes cross validation RMSE

Dijt and
Mettes
2020

collision avoid-
ance for au-
tonomous ships

sequence to
sequence neural
network

meters minutes cross validation RMSE,
MAE

Ding et al.
2020

longer time
trajectory predic-
tions

LSTM meters 5-20
min.

training / valida-
tion sets (8:1)

MSE

Forti et al.
2020

sequence-to-
sequence RNN
approach

RNN, LSTM
encoder-decoder

region small 5-fold cross vali-
dation

RMSE

Guo et al.
2018

regional trajec-
tory predictions

K-order multi-
variate Markov
chain

region small simulation,
experiments

accuracy

Hexeberg
et al.
2017

collision detec-
tion

single neighbor
search

region 10
min.

cross validation,
selected scenar-
ios

RMSE

Jin et al.
2020

predictions for
collision

RNN, LSTM region small model simula-
tion

distance
error,
MAE,
SSE

Table 3.5: Papers gathered from literature study labeled with relevancy level 1
whose objective was prediction (part 1/3).
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Kim and
Lee 2018

predictions for
Vessel Traffic
Service (VTS)

NN small small case study on
region

speed
and
distance
error

J. Li et al.
2018

data mining
for predictions

RBF RNN small hours case study on
river in China

trajectory
accu-
racy

W. Li et al.
2019

collision avoid-
ance

LSTM, LCS,
DBSCAN

meters 15
min.

case studies distance
error

Lian et al.
2019

particle fil-
tering, least
squares esti-
mation

linear pre-
diction, least
squares, parti-
cle filtering

meters minutes simulations distance
error,
speed
error

J. Liu et
al. 2019

real-time pre-
dictions at sea

SVR, ACDE,
RNN

small small cross valida-
tion

distance
error

X. Liu et
al. 2020

predictions for
ship manage-
ment, fill in
missing AIS
data

LSS-VM, cubic
spline interpo-
lation

small small case studies trajectory
accu-
racy

Mao et al.
2018

database for
trajectory pre-
diction and
mining

trajectory in-
terpolation,
grid search,
SLFN

region 20-40
min.

case studies distance
error

Murray
and
Lokukaluge
Prasad
Perera
2018

collision de-
tection for
autonomous
vessels

nearest neigh-
bor search

meters 5-30
min.

cross valida-
tion

RMSE

Murray
and
Lokukaluge
P. Perera
2019

collision avoid-
ance

Gaussian
mixture mod-
elling, PCA

small small case studies distance
error

Murray
and
Lokukaluge
Prasad
Perera
2020

trajectory pre-
dictions for
early warnings
and safety

GMM clus-
tering, dual
auto-encoder

regional 30
min.

case studies accuracy
at time
intervals

Rong et al.
2019

modelling
uncertainty
of trajectory
predictions

Bayesian
model, Gaus-
sian Process

small 10-30
min.

case study
in region,
training /
validation data

accuracy,
distance
error

Suo et al.
2020

trajectory pre-
dictions for
early warnings
and safety

GRU (gate re-
current unit),
DBSCAN,
comp. with
LSTM

tested on sin-
gle port in
china

small,
min-
utes to
hour

training, vali-
dation, test set
(not defined
how much)

accuracy

Table 3.6: Papers gathered from literature study labeled with relevancy level 1
whose objective was prediction (part 2/3).
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Tafa et al.
2019

synthetic route
representation
and predic-
tions

DBSCAN,
route similar-
ity probability
model

regional 10-80
min.

simulation accuracy

Tang, Yin,
et al. 2019

collision
avoidance for
autonomous
ships

LSTM region in china 20
min.

cross valida-
tion

MAE,
MSE

Uney et al.
2019

forecasting
trajectories
from historical
and streaming
trajectories

directed grid
based Bayesian
model / Gaus-
sian mixture
forecast den-
sity

grid-based re-
gion

N/A regional case
study

not ex-
plained

Virjonen
et al.
2018

predictions
for port man-
agement in
Finland

k-NN regional several
hours

leave-one-out
cross valida-
tion (LOOCV)

distance
accu-
racy

C. Wang
et al.
2020

predicting
vessel berthing
trajectory
for safety
and collision
avoidance

Bi-GRU (ten-
sorflow, keras)

port-based small cross valida-
tion

MSE

Xiao et al.
2020

collision avoid-
ance, effective
queries, more
effective pre-
dictions

knowledge
based particle
filtering (PF),
MLNN

small 3-10
min

case studies sog, coc,
and dis-
tance er-
ror

You et al.
2020

sequence-to-
sequence RNN
approach

seq2se1 GRU,
RNN, en-
coder/decoder

small, limited
to 10m trajec-
tories

10
min-
utes

case studies,
cross valida-
tion

AdaGrad,
RM-
SProp

Zheng et
al. 2020

combining
multiple data
sources like
GPS and ARPA
with AIS to
improve pre-
dictions for
safety

LSTM (on
different data
and a fusion
component
to merge the
predictions)

small small cross valida-
tion

MSE

Zhou et
al. 2019

collision avoid-
ance in busy
areas

back propa-
gation neural
network

region (area in
china)

small cross valida-
tion

RMSE

Table 3.7: Papers gathered from literature study labeled with relevancy level 1
whose objective was prediction (part 3/3).
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Methodology

In this chapter, the methodology of the proposed solution is explained in detail.
This section is divided into sequential subsections that each describe a step in the
process used to arrive at the proposed dataset, the formulation of the analytical
problem to be solved, and the Machine Learning (ML) related data preparation,
training, and evaluation.

4.1 General approach overview

Based on the findings from the literature review conducted in Section 3.1, it is
clear that the existing work is limited in terms of a general and global prediction
solution for vessel destination ports. Thus, this thesis proposes a method that is
able to predict vessels’ future destination ports using a combination of positional
data from the AIVDM/AIVDO protocol and vessel segmentation values. This is an
important objective of the thesis as no related studies seem to take additional ves-
sel information into account. The proposed solution is not restricted by specific
geographical regions nor time intervals and should form a foundation of which it
is possible to extend with more features, or data attributes, regarding the travel-
ing vessels and voyages. The method of developing the proposed solution can be
divided into the following steps:

1. Construct voyages and trajectories using a voyage definition derived from
the departure and arrival detection described in Section 2.3.1.

2. Sample, or simplify, the trajectories to make them more comparable using
vessel similarity measurement methods.

3. Calculate the Most Similar Trajectory’s Destination (MSTD) and the similar-
ity value for every voyage’s trajectory.

4. Collect the historical data attributes to be used for Machine Learning (ML)
including departure and arrival ports, vessel segmentation values, MSTD
values, and trajectory lengths.

5. Train a ML model to predict the arrival ports of voyages using the dataset
constructed.

35
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4.2 The initial data processing

This section describes the initial dataset used in the proposed solution which is
later processed and used to train a ML model for predictions. This data foundation
is provided to the author by Maritime Optima AS (MO). Moreover, for this thesis,
data used in the analysis is stored in a separate, dedicated PostgreSQL database
also hosted in MO’s cloud computing environment.

4.2.1 Positional historical AIS data

The first step in the dataset processing is to collect a historical set of AIS data.
In this thesis, this data provided by MO contains more than 1.5 billion positional
records for over 65 000 unique vessels starting from December 2019 and is con-
tinuously collected. In this thesis, circa 1.2 billion records ranging from December
2019 to March 2021 were used for the proposed solution. The historical records
were copied in batches from MO’s database into a separate database used in this
thesis in a table called vessel positions history. This table contains the following
relevant attributes for each historical record:

• id – a sequential identifier
• imo – the IMO number of the vessel that transmitted the position.
• mmsi – the MMSI number of the vessel that transmitted the position.
• position – a geographical coordinate of the vessel in the Mercator projection.
• timestamp – the UNIX timestamp (seconds since Unix Epoch) of when the

position was transmitted by the vessel.

In the process of copying data to the dedicated database, each position’s
coordinate is validated by ensuring that it follows the bounds of its projection,
i.e., that the longitude value is between -180, and 180 degrees and the latitude is
between -90, and 90 degrees. If a coordinate has invalid values, it is disregarded.
Furthermore, positions that lie exactly on the north and south bounds, or exactly
at coordinates (180, 90) and (-180, -90) are also disregarded as these positions
are impossible places to navigate but are still frequently seen in the database. Fig-
ure 2.5 in Section 2.2.3 shows a visualization of an extract of 200 million records
from the historical AIS database which shows the extent of the collected positions.

Furthermore, as also mentioned in Section 2.2.3, IMO numbers and MMSI
numbers are divided up in the positional and static AIS reports. Therefore, MMSI
numbers in positional data must be matched to IMO numbers in the static in-
formation (which contains both) to collect both identifiers in the historical AIS
database. The IMO identifier is required to extract information such as vessel seg-
ments and sub-segments as these are initially constructed using information from
static records. Positions transmitted by a MMSI number that does not map to a
known IMO number, or have invalid values for either, are disregarded. The valid-
ity of both values can be determined following the AIVDM/AIVDO protocol which
defines how these numbers are constructed and used.
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4.2.2 Segments

As described in Section 2.3.2, vessel segmentation values are additional attributes
that indicate a vessel’s type, dimensions, and capacity. These labels are thought
to provide insight into the traveling patterns of vessels. Thus, this information is
important for this thesis’s proposed solution. MO has vessel segmentation infor-
mation for every unique vessel collected by AIS data. This information is collected
and stored in the dedicated database in a table called vessel segments. This table
contains information per vessel and has the following relevant attributes:

• imo – the IMO number of the vessel.
• segment – the vessel’s segment value, e.g. dry bulk, tanker, chemical, etc. . .
• sub-segment – the vessel’s sub-segment value, e.g., mini bulker, handysize,

Panamax, etc. . .

Finally, it is worth noting that some vessels can function as two different
types of vessels such as tanker vessels that also function as chemical transport ves-
sels. These “combo” vessels contain multiple entries in the segmentation database
table for each of the functions it serves. However, they also contain a dedicated
entry where the segment value is “combo” which can have a specific range of sub-
segments. For technical reasons, it is more practical to assume that every vessel
only has one segment and one sub-segment, therefore, for combo vessels, only the
combo segment itself and its sub-segment are considered.

4.2.3 Ports

Next, the traveling vessel’s departure and arrival port are required to predict ves-
sels’ future destinations, as destinations are defined ports. As already described in
Section 2.3.3, MO has a large number of ports available in a port database out of
which around 5600 are considered relevant for the shipping industry. For this the-
sis, only these 5600 relevant ports are considered for the analysis, thus, these are
also stored in the dedicated database in a table called “ports”. This table contains
the following relevant attributes:

• locode – the port’s unique identifier following the UN/LOCODE protocol.
• position – the port’s geographical coordinates specified in the Mercator pro-

jection.
• name – a text value for the name of the port.

4.2.4 Vessel transitions

As described in Section 2.3.1, vessel transitions are historical events where a ves-
sel’s AIS navigational status transitions from a status indicating that it is moving
to the status “MOORED” and vice versa. These events are mapped geographically
to the closest known port within a 25-kilometer radius, thus, vessel transitions
provide a historical record of port arrivals and departures. MO has more informa-
tion available in their transition data, however, only vessel arrival and departure
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data are of relevance to the proposed solution. The relevant data is stored in the
dedicated database as a table called vessel transitions. This table contains vessel
identifiers, the event’s mapped port, the Unix timestamp of when the event oc-
curred, and the transition type indicating whether the vessel arrived or departed.
Table 4.1 shows an example extract from the transitions data for a single vessel
that used the navigational status correctly. It shows that when sorted by time, the
events follow a pattern of sequential arrival and departures from different ports.

IMO MMSI Transition Timestamp Port Code

9824083 538008866 ARRIVAL 1595383670 KRONS

9824083 538008866 DEPARTURE 1596177702 KRONS

9824083 538008866 ARRIVAL 1599869735 BRITQ

9824083 538008866 DEPARTURE 1600002777 BRITQ

9824083 538008866 ARRIVAL 1603942962 CNZNG

9824083 538008866 DEPARTURE 1604191770 CNZNG

Table 4.1: Example rows for a single vessel in the vessel transitions table

4.3 Vessel voyage definition

After the initial data foundation is constructed as described in the previous sec-
tion, the next step is to construct voyages and voyage trajectories based on the
historical AIS data. As described in Section 2.1.1, throughout this thesis, a vessel
voyage has been defined based on vessel transitions derived from AIS navigational
statuses. This is mainly because it is thought to provide more valuable predictions
for the people working in the industry. This hypothesis was confirmed by the col-
laborative company Maritime Optima AS (MO) but has also been corroborated by
interviewing shipping experts as will be later discussed in Chapter 5. This section
describes the methods tested and used to construct voyages from the initial data
foundation described up to this point in Chapter 4.

4.3.1 Cluster-based voyages

As discussed in Section 2.1.1 and as shown in the literature study conducted in
Section 3.1, one alternative vessel definition is based on detecting stopping mo-
tions close to ports in AIS messages. This approach to voyage definitions only
considers geographical, or navigational, information in the AIVDM/AIVDO proto-
col to look for recurring patterns that identify a vessel as stopped close to ports. An
existing example using this approach for voyage destination prediction was used
in the study presented in Zhang et al. 2020. They used the Density-based Spatial
Clustering of Applications with Noise (DBSCAN) clustering algorithm to find clus-
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ters of AIS positions close to ports and defined a voyage as positions transmitted
between two clusters for a vessel. In order to investigate the ramifications of using
such an approach, a similar method was developed in this thesis as well.

First, positional AIS records were fetched per vessel as well as the po-
sitions of every port in the database. Next, the vessel positions were parsed and
passed to the DBSCAN algorithm which detects clusters of positions based on the
parameters epsilon, and minimum samples. The minimum samples parameter de-
fines the minimum amount of positions required for a cluster to form while the
epsilon defines the minimum distance between two points required for points to be
added to a cluster. Since the algorithm is unsupervised, there is no real automatic
method of finding the best parameters, therefore, the parameters must be cho-
sen by using manual inspection. In this approach, the parameters used in Zhang
et al. 2020 were used as a starting point and then changed until fitting param-
eters were found. The epsilon parameter used in the aforementioned paper was
appropriate, however, the minimum samples parameter required a higher value.
Thus, the parameters epsilon and minimum samples were set to 1.095× 10−5 and
5 respectively. After DBSCAN was used to cluster records, each resulting cluster
was mapped to its closest port by measuring the distance between the cluster’s
center-most point to each port. If the closest port was further away than a given
threshold set to 1km, the cluster was disregarded. Code listing 4.1 shows an ex-
tract of Python code used to cluster vessel positions and map them to their closest
port.

Code listing 4.1: Python code used to cluster AIS records using DBSCAN and
map the clusters to their closest ports.

def dbscan_reduce_vessels(df, port_df,
epsilon=0.00001095,
min_samples=5,
algorithm="ball_tree", metric="haversine"):

""" reduce vessel positions to clusters using DBSCAN

returns clusters and each cluster’s closest port in df
"""

# dbscan_reduce wraps sklearn.cluster.DBSCAN and returns df with clusters
clusters = dbscan_reduce(df, epsilon, min_samples, algorithm, metric)

data = []
for cluster in clusters:

(lat, lon) = get_centermost_point(cluster)
# find closest port.
# skip if closest is further away than threshold = 1000m
closest_port = get_closest_port(port_df, [lat, lon], 1000)
if closest_port is None:

continue

timestamp = get_latest_cluster_timestamp(df, cluster)
(imo, mmsi) = get_properties_at(df, lat, lon, ["imo", "mmsi"])
data.append({

"lat": lat,
"lon": lon,
"closest_port": closest_port,



Chapter 4: Methodology 40

"timestamp": timestamp,
"imo": imo,
"mmsi": mmsi,

})

return pd.DataFrame(data)

Figure 4.1 shows an example of positional records being clustered and
mapped to ports. In this example, the vessel called Jonas Oldendorff travels from
Mauritania, stops in Morocco, and finally stops in France. The detected clusters
in the vessel’s positions closely relate to the three ports, however, in other cases,
vessels were found to stop further away from ports. In these cases, the vessel
most likely anchored outside of an area while waiting to arrive at multiple ports.
In these cases it is correct to not consider those clusters as arrivals, however, it
is impossible to know the vessel’s intent when it is stopping without considering
additional information such as the port’s capabilities, restrictions, or the vessel’s
navigational statuses.

Figure 4.1: Example of DBSCAN clustering of AIS records where clusters are
mapped to the closest available port.

Finally, given a number of clusters that were close enough to map to
ports, each position transmitted by the vessel between two clusters was stored as
the vessel’s trajectories. Figure 4.2 shows the same example from Figure 4.1 but
with the resulting trajectories constructed using the clusters.

The resulting voyages shown in Figure 4.2 seemed promising, however,
for other vessels the quality of the extracted voyages was not consistent. For ex-
ample, small vessels traveling very short distances such as passenger vessels trans-
mitted positional records at a much higher density than larger vessels traveling
further, thus, the chosen parameters did not perfectly fit these vessels. Moreover,
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Figure 4.2: Two subsequent voyages derived from DBSCAN clustering and map-
ping to existing ports. The blue dots are detected clusters, the red ones are the
closest mapped port, and the line represents the trajectory of connected AIS
records.

for larger vessels, clusters were often detected mid-voyage whenever the vessel
stopped for longer periods of time such as when bunkering (refueling) during
a voyage. Although this was expected, it is assumed that ignoring shorter stops
during voyages in order to predict the vessels’ final destinations has higher com-
mercial value when compared to often predicting the next bunkering port as the
next destination for many vessels. Lastly, although the DBSCAN method’s process-
ing performance was quite efficient, additional processing such as mapping each
detected cluster to the closest port was less so. The aforementioned factors made
the final cluster-based voyage solution impractical when compared to the alter-
native described in Section 2.1.1 and subsequently in Section 4.3.2 which con-
siders the vessels’ navigational statuses. Therefore, the cluster-based approach
was abandoned in favor of the alternative approach which proved to be more
practical in implementation and potentially more valuable for commercial actors.
Section 4.3.2 describes how this alternate approach was implemented as well as
examples highlighting the aforementioned benefits of the alternate voyage defi-
nition.

4.3.2 Transition voyages

As vessel transitions provide a historical record per vessel of arrivals and depar-
tures based on AIS statuses it can be used to derive vessel voyages. Given two
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entries in the vessel transitions table for a single vessel, sorted by time, where the
first is a departure from a port, and the second is arrival at another port, a voyage
can be defined as starting at the timestamp of the first departure transition and
ending at the subsequent arrival transition. For example, in Table 4.1, there are
six transition events for a single vessel ordered by time. Based on these events,
two different voyages can be defined:

1. Vessel departed port KRONS on the 31st of July 2020 and arrived at port
BRITQ on the 12th of September 2020.

2. Vessel departed port BRITQ on the 13th of September 2020 and arrived at
port CNZNG on the 29th of October 2020.

Using the vessel transition information, the first step is to deduce voy-
ages based on sequential arrival and departures for vessels. After a voyage has
been defined, the second step is to find the trajectory of the traveling vessel. This
can be deduced from the vessel positions history table as every AIS positional re-
port transmitted between the derived departure and arrival timestamps from the
traveling vessel forms a geographical trajectory from the departure and arrival
port.

Constructing voyages

Constructing voyages based on vessel transitions and positional records can be
summarized in the following steps:

1. Extract vessel transitions per vessel ordered by time.
2. Define voyages based on subsequent departures and arrivals from the vessel

transition data (Code listing 4.2).
3. For each voyage, extract every positional record between vessels’ departure

and arrival timestamps sorted by time.
4. Validate the geographical trajectory including applying a “noise filter” (Fig-

ure 4.4).
5. Store voyages with validated trajectories in the transition voyages table.

1. Extracting vessel transitions First, vessel transitions were simply fetched
from the database ordered by vessel identifiers and timestamps. In order to make
the voyage building process idempotent, the last voyage constructed per vessel
was pre-fetched from the voyage table, and only transitions for a given vessel
that occurred after the latest constructed voyage were included in the next steps.
In this way, the voyage builder process could run multiple times when new data
became available without affecting existing data.

2. Define voyages based on subsequent departures and arrivals This next
step was a relatively straightforward process consisting of looking for transitions
following the pattern of departures immediately followed by an arrival at a dif-
ferent port. The algorithm used to compute voyages based on a vessel’s transition
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events is shown in Code listing 4.2.

Code listing 4.2: Golang code used to compute voyage times from vessel transi-
tions. The code has been reduced slightly for readability.

func getVoyageTimes(transitions []VesselTransition) []Voyage {
var voyages []Voyage
j := 0
for i, current := range transitions {

// start at the first departure event
if current.Transition != "DEPARTURE" {

continue
// get the subsequent transition
j = i + 1
if j >= len(transitions) {

break
}
next := transitions[j]

// ensure the next event is an arrival at a different port
if next.Transition != "ARRIVAL" {

continue
}
if current.PortCode == next.PortCode {

continue
}

voyages = append(voyages, Voyage{
IMO: current.IMO,
MMSI: current.MMSI,
DeparturePort: current.PortCode,
DepartureTimestamp: current.Timestamp,
ArrivalPort: next.PortCode,
ArrivalTimestamp: next.Timestamp,

})
}
return voyages

}

3. Construct trajectories from the defined voyage times Next, the voyage
times computed were used to construct geographical trajectories. This process
is, in essence, a simple matter of extracting positional records from the vessel
positions history table for the given vessels between the departure and arrival
times ordered by time. However, some trajectories were found to be invalid or
contained abnormal patterns, therefore, all trajectories were also validated based
on coherence and distance between two points in a trajectory.

4. Trajectory validation During the process of building trajectories, several tra-
jectories were discovered that showed peculiar shapes. For instance, there could
be large gaps in certain parts of the trajectory or fluctuations when the vessel was
stationary. Therefore, a validation step was added to the voyage construction pro-
cess, for instance, if the distance between two points is sufficiently large, there is
most likely missing coverage in the AIS data and the trajectory should probably
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be skipped. Furthermore, another issue was detected where some vessels showed
a seemingly coherent trajectory except for a section of it where the longitude or
latitude value fluctuated with extreme distances. This often happened when a
vessel was stationary or moving slowly and it transmitted many positions in close
proximity.

Figure 4.3: Example showing a “noisy” trajectory presumably caused by GPS
inaccuracy or equipment error

An example of this issue is visualized in Figure 4.3 which shows a voy-
age starting in Monaco and ending in Naples, Italy. During a stopping point in
northern Italy, the vessel transmitted two longitude values placing the vessel in
the middle-east while then continuing the journey arriving in Naples, Italy. This
issue is presumably caused by issues with the GPS signals sent by the AIS transmit-
ter onboard the vessel or by some other equipment error. Excluding the fluctuated
segment of the trajectory, the remaining trajectory is completely valid, thus, if it is
possible to remove the invalid part of the trajectory, the remainder could be fur-
ther used in the analysis. Therefore, a “noise filter” was employed to detect and
cut away fluctuations in otherwise valid trajectories.

The noise filtering employed in the trajectory builder is shown in Fig-
ure 4.4 where the red segment fluctuates in an otherwise valid trajectory and is
therefore excluded from the remaining trajectory. For every point in the trajectory,
the algorithm checks the distance between the current and the next point as well
as the time difference between the two points. Using the distances in space and
time, it calculates the speed the vessel would require to travel from the first to
the second point. If the speed required was more than 50 knots, the segment was
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Figure 4.4: Noise filter algorithm cutting out points in a trajectory detected as
noise. The red segment is cut out and the black segments are tied together as
shown with the green dotted line.

Figure 4.5: The example trajectory shown Figure 4.4 from Monaco to Naples
after noise filtering.
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invalid. The next point is then compared to the first to see if there is a possible
valid path to the third point. If there is, the second point is disregarded from the
trajectory. The algorithm is given a tolerance of four invalid points before it dis-
regards the entire trajectory. Code listing 4.3 shows the function used to find the
next valid point in a trajectory, if it returns an error, the trajectory is disregarded.
Figure 4.5 shows the same trajectory from Figure 4.3 after the following algorithm
has filtered out fluctuating segments.

Code listing 4.3: Golang code used find the next valid point for any given point
in a trajectory.

// nextValidPoint returns the index of the next valid point checking distances to
// every point within tolerance. If no valid distances were found wihin tolerance,
// it returns an error. If the last point in trajectory was reached, -1 is returned
func nextValidPoint(start, tolerance int, positions []VesselPosition) (int, error) {

a := positions[start]
for j := start + 1; j <= start+tolerance; j++ {

if j >= len(positions) {
return -1, nil

}

n := positions[j]
dist := DistanceHaversine(Point{a.Lon, a.Lat}, Point{n.Lon, n.Lat})
// use the absolute value in case the trajecotory is not sorted
timeDiff := math.Abs(float64(n.Timestamp - a.Timestamp))

// calculate the required speed to reach the given point with the
// given time difference * 1.94385 to konvert m/s to knots
requiredSpeed := (dist / timeDiff) * 1.94385
// if required speed was >= 50kt, move on to next point
if requiredSpeed < 50.0 {

return j, nil
}

}
// no reasonable distances were found within tolerance
return -1, errors.New("trajectory segment too noisy")

}

5. Store voyages with validated trajectories in the transition voyages table
Finally, when the voyage trajectories have been constructed and validated, they
are collected in a database table called transition voyages which contains the fol-
lowing relevant attributes:

• imo – an identifier for the vessel.
• mmsi – an identifier for the vessel.
• departure port – voyage departure port’s locode.
• departure timestamp – the time of departure.
• arrival port – voyage arrival port’s locode.
• arrival timestamp – the time of arrival.
• trajectory – 3D linestring with longitude, latitude, and timestamp for each

point.

It is worth noting that the trajectories are stored as 3D PostGIS linestring
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geometries where each point contains an x, y, and z value where the z value holds
the UNIX timestamp of the positional record. Keeping the timestamp value is nec-
essary for sampling trajectories based on time, and keeping the time values stored
directly in the trajectory geometry saves an extra table for trajectory points. Thus,
storage complexity is somewhat reduced while retrieval complexity remains the
same as with a separate trajectory point table. This is becuase the PostGIS func-
tion ST_DumpPoints can be used to retrieve the XYZ coordinates similarly to that
of a JOIN operation on a separate table. The performance benefits are negligible.

4.4 Data processing for Machine Learning (ML)

After the initial data set has been collected and vessel voyages have been defined
and constructed, the next step is to build the final training dataset to be used
for analysis and Machine Learning (ML). This section describes every step in the
process used to construct this dataset based on data described up to this point in
this chapter.

4.4.1 Trajectory sampling

Vessels transmit AIS records at different frequencies and messages collected via
satellite are collected at different frequencies as the satellites have different orbits.
Therefore the frequency, or density, or records in trajectories can not be expected
to be standardized. Furthermore, as vessels travel at different speeds, two trajec-
tories with similar start and end positions might have different shapes and contain
a different number of points. In addition, as discussed in Section 2.1.1, one dis-
advantage of relying on AIS navigational statuses is that vessels can stop during a
voyage for different reasons before arriving at their final destinations. Whenever a
vessel stops moving or moves slowly, many AIS records are transmitted in clusters
which cause noise and redundant data in the constructed trajectories.

The proposed solution includes using similarity between trajectories to
predict traveling vessels’ destination ports, therefore, in order to make the trajec-
tories more comparable, a sampling step was added in the process of constructing
the training data. There were two main approaches considered for trajectory re-
sampling, namely sampling based on distance and time. When sampling based
on a predefined distance, each subsequent point in a trajectory must be the same
distance apart from the next. When sampling based on time, one position is ex-
tracted from a trajectory for every given unit of time. For instance, if sampling
based on time with a six-hour sample rate, starting from the first point, every po-
sition within six-hour intervals are grouped and all positions within each group
are dropped except for the first one. Both methods achieve the goal of making
trajectories more comparable, however, sampling based on time simplifies, or re-
duces, the amount of data in each trajectory the most. It also provides an indica-
tion of trajectory duration implicitly through the trajectory length or the number
of points in a trajectory.
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Figure 4.6: Example of a trajectory sampled by both distance (2 km) and time
(6 hours). The red trajectory is not sampled, the blue is sampled based on 2 km
in distance, and the green is sampled based on six hour time intervals.

For these reasons, throughout the rest of the implementation, sampling is
done based on the time using a time interval of six hours. It is worth noting that for
trajectories shorter than six hours, only the first and last point in the trajectory is
returned reducing the trajectory to a straight line. In order to sample any trajectory
based on either time or distance, a Golang package was written called “sampler”
which can parse and handle both 3D trajectories including timestamps for time
sampling and 2D trajectories for distance sampling. The complete code for this
package can be found in Appendix B. Code listing 4.4 shows an extract from this
package of the function used to resample trajectories based on time.

Code listing 4.4: Golang code from a sampler package written to sample a tra-
jectory based on time.

// resampleTime resamples trajectory based on s.SampleRate given in hours.
// Extracts the first position within intervals based on sample rate
func (s *Instance) resampleTime() (string, error) {

var err error
trajectory, err := s.parse3DTrajectory()
if err != nil {

return "", err
}

intervals := s.getTimeIntervals(trajectory)
reducedCoords := []geom.Coord{}
coords := trajectory.Coords()

// within each interval add the first coord to reducedCoords
for _, interval := range intervals {

var first *geom.Coord

// get first coord in interval
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for i := range coords {
// roundTime uses s.SampleRate when rounding
coordInterval := s.roundTime(int64(coords[i][2]))
if coordInterval == interval {

first = &coords[i]
break

}
}
if first != nil {

reducedCoords = append(reducedCoords, *first)
}

}

// if the last coord wasn’t the last in reduced, add it
lastReduced := reducedCoords[len(reducedCoords)-1]
if !lastReduced.Equal(geom.XYZ, coords[len(coords)-1]) {

reducedCoords = append(reducedCoords, coords[len(coords)-1])
}
if len(reducedCoords) <= 1 {

return "", errors.New("too few points in sampled trajectory")
}
reduced, err := geom.NewLineString(geom.XYZ).SetCoords(reducedCoords)
if err != nil {

return "", err
}

return geomwkt.Marshal(reduced)
}

The function listed in Code listing 4.4 is used in a batch process that sam-
ples every voyage’s trajectory and keeps the sampled voyages in a separate table
called “sampled transition voyages”. The batch process extracts 5000 voyages at
a time, samples their trajectories, and batch-inserts them into a separate table. By
not mutating the original voyage data, different sampling methods can be applied
and tested to find differences in trajectory comparisons. The final structure of the
sampled transition voyages database table is described in Table 4.2

4.4.2 Most Similar Trajectory’s Destination (MSTD)

In order for the proposed solution to take into account both geographical tra-
jectories as well as additional vessel information for predictions, in the training
set, the trajectories have been abstracted into the categorical and numeric values
Most Similar Trajectory’s Destination (MSTD), the similarity value for the MSTD,
and then the length of the trajectory. The MSTD value is essentially an initial pre-
diction of the vessel’s final destination purely based on geographical, or spatial,
trajectories. This is similar to other approaches found in other studies such as
Zhang et al. 2020. Purely spatial trajectory predictions works quite well when the
trajectories are complete, or close to the vessels’ final destination, however, when
a vessel has just recently departed a port for a long voyage, there are many pos-
sible destination ports and routes the vessel might take. The closer the vessel is
to its final destination, the fewer possible candidate ports are there. When con-
sidering short trajectories of recently departed vessels, the most similar historical
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Column Type Description

voyage_id int reference to the original voyage id

imo int identifier for the traveling vessel

mmsi int identifier for the traveling vessel

departure_port string UN/LOCODE of the vessel’s departure port

departure_timestamp int Unix timestamp from when the vessel de-
parted the departure port

arrival_port string UN/LOCODE of the vessel’s arrival port

arrival_timestamp int Unix timestamp from when the vessel arrived
at the arrival port

trajectory geometry 3D linestring with longitude, latitude, and
timestamp for each point

Table 4.2: Structure of the “sampled_transition_voyages” table.

trajectory is not likely to be a good estimation of where the vessel is traveling to.
In these cases, relying on more general traveling patterns seem more appropriate.
For example, the vessel’s departure port, segment, and sub-segment are likely to
be much better indicators as to the vessel’s final destination. Therefore, the MSTD
is only part of the final dataset used for predictions.

The MSTD for a given voyage is found by measuring the similarity be-
tween the given voyage’s trajectory and every historical trajectory in the sampled
transition voyages table. The most similar trajectory is found using a given trajec-
tory similarity measurement, and its destination and similarity value are added
to the final dataset. As described in Section 2.1.2, there are several different tra-
jectory similarity measurements available, however, for this thesis the Symmetric
Segment-Path Distance (SSPD) is used to calculate the MSTD values. However,
the process and the dataset are structured in such a way that it is possible to use
different similarity measurement methods in this process.

The MSTD value for a given voyage is calculated in the following steps:

1. Given a sampled voyage, fetch every historical voyage with the same depar-
ture port from vessels of the same segment and sub-segment.

2. Use a given similarity measurement method, SSPD in this case, to calcu-
late the similarity between the given voyage’s trajectory and every historical
voyage’s trajectory. The given similarity measurement method must return
a similarity value. For SSPD, this value is a Haversine distance value.

3. Find the most similar historical trajectory or the trajectory with the smallest
similarity value.

4. Extract the most similar historical trajectory’s destination port as the MSTD
value and extract the similarity value for future use.

Figure 4.7 shows an example of finding the most similar historical tra-
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Figure 4.7: Example of MSTD for a given historical trajectory where the red line
is the given trajectory and the green line is the most similar historical trajectory.

jectory (green line) for a given voyage (red line). The given voyage departed the
port of Rotterdam and arrived in Mo i Rana, Norway. Every other historical voyage
that departed Rotterdam from vessels of the same segment and sub-segment was
then extracted and SSPD was used to find the most similar historical trajectory.

4.4.3 Building ML data training set

After the data has been collected, and the MSTD method has been implemented
to translate geographical trajectories into categorical and numerical values, the
last step is to collect data attributes from the initial data foundation and to calcu-
late MSTD values for every historical trajectory. The final dataset is used to train
a Machine Learning (ML) model that aims to predict the arrival port of voyages
based on these values. Furthermore, to ensure that the training data is reflective of
real-life scenarios, the full historical trajectories were divided into several incom-
plete voyages when calculating MSTD values. This ensures that the final model
is able to predict the arrival port of traveling vessels before they reach their fi-
nal destination. Thus, the process of constructing the final training dataset can be
summarized in the following steps:

1. Extract the values listed in Table 4.2 from the sampled voyages.
2. Divide the trajectory up to four different smaller trajectories based on the

length of the trajectory.
3. Calculate the MSTD for every trajectory.
4. Collect the values from each voyage as well as the MSTD, similarity value,



Chapter 4: Methodology 52

and length of the voyage trajectory for the training data.

The process of dividing a trajectory into multiple shorter lengths is rel-
atively straightforward and is shown in Code listing 4.5. It is worth noting that
trajectories containing less than four points are skipped as the constructed tra-
jectories must have at least two points. Trajectories with exactly four points are
divided into two parts instead of four for the same reason.

Code listing 4.5: Python code used to create incomplete voayges by dividing
them into multiple lengths.

def get_incomplete_trajectories(df, parts=4):
"""divides trajectories in df into n parts

Given a trajectory of length 8.
We want to create the following sub-trajectories by incrementing with 8/4=2
0 1
0 1 2 3
0 1 2 3 4 5
0 1 2 3 4 5 6 7 # original
"""
ret_df = pd.DataFrame(columns=df.columns)
for _, r in df.iterrows():

row = r.copy(deep=True)
traj = row["trajectory"]
length = len(traj)

# we cant make trajectories of length 1
# so we use half the number of parts
if length == parts:

parts = math.floor(parts/2)

inc = math.floor(length/parts)
if inc == 0:

# skip trajectories shorter than parts
continue

for i in range(inc, length, inc):
new_traj = traj[:i]
if len(new_traj) < 2:

continue

row["trajectory"] = new_traj
row["trajectory_length"] = len(new_traj)
ret_df = ret_df.append(row, ignore_index=True)

return ret_df

As an example, Figure 4.8 shows a voyage traveling from China to Ar-
gentina. The code listed in Code listing 4.5 was used to divide the voyage trajec-
tory into four parts that are highlighted by the different colored segments of the
trajectory.

The similarity value derived from the MSTD calculation and the length
of the trajectory is also included in the training set so that a ML model can find
correlating patterns between the length of the trajectory, the similarity value, and
the MSTD value. The length of the trajectory indicates how long the vessel has
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Figure 4.8: A voyage (ID 3305) from China to Argentina divided up into four
subsets emulating incomplete voyages.

been at sea and thus how close it is to its destination. Therefore, both the trajec-
tory length and the derived similarity value serve as weights for the MSTD value.
The expected pattern from the constructed incomplete voyages is exemplified in
Table 4.3. When the trajectories are short and the SSPD distance is high, it should
indicate that the MSTD value is more likely to be wrong. When the vessel is closer
to the destination, the trajectory length is longer and the MSTD is more likely to
be correct. In the example of the vessel traveling from China to Argentina, the
SSPD-based MSTD value was not correct until the last quarter of the voyage. The
similarity value is also lower for the final entry which should indicate that the
MSTD value for this row is likely to be correct which, in this case, it is.

Voyage ID SSPD-based
MSTD

Arrival port Trajectory
length

SSPD dist.

3305 INTUT ARSLO 37 1520108

3305 MYPEN ARSLO 74 150733

3305 BRRIG ARSLO 111 454581

3305 ARSLO ARSLO 148 148770

Table 4.3: Extract from ML training data exemplifying a voyage divided into four
shorter voyages.
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4.4.4 The final dataset – Summary

As described in Section 2.3, Maritime Optima AS (MO) provided the initial data
foundation consisting of historical AIS data, a global set of shipping ports, vessel
segmentation data, and transition events of vessels’ navigational statuses. Histor-
ical AIS data was extracted, validated and MMSI numbers was mapped to the
appropriate IMO number. The port data was extracted and filtered on a “visible”
attribute which indicates that the port was deemed relevant by MO. Vessel transi-
tions were extracted filtering only arrival and departure events, excluding events
such as “detected” while the vessel segmentation data was purely copied without
processing. Based on this initial data foundation, the final process of creating the
dataset used in the analysis can be summarized in the following steps:

• Voyages are defined using time intervals provided by the vessels’ AIS navi-
gational status. They are constructed and stored in a voyage database table
containing the full geographical trajectory, arrival and departure ports, and
additional information for the traveling vessel.

◦ The resulting table “transition_voyages” contains 1.7 million voyages.

• The voyage table’s geographical trajectories are sampled, or simplified, based
on a certain time interval to make trajectory comparisons easier.
• Every sampled historical trajectory is split into multiple parts to emulate

incomplete voyages not yet arrived at a port. Furthermore, the MSTD is
calculated for every one of these voyages. Trajectory similarity is defined
using the SSPD algorithm, however, this data is interchangeable with other
similarity measurements.
• Finally, the MSTD, similarity value, trajectory length, departure and arrival

ports, and vessel segmentation information is collected and stored as the
ML training data.

◦ The resulting table “ml_training_data” contains 4.3 million voyages.

An overview of the process described in this chapter thus far is shown
in Figure 4.9 from the data provided by Maritime Optima AS (MO) to the final
ML training data. The final dataset is collected in the database table called ML
training data, the attributes it contains are listed in Table 4.4.



Chapter 4: Methodology 55

Figure 4.9: Overview of the process used to construct the dataset used in further
analysis and ML

Column Type Description

id serial int unique identifier

voyage_id int the original voyage id from sampled transition
voyages

imo int identifier for the traveling vessel

mmsi int identifier for the traveling vessel

segment string the vessel’s segment

sub_segment string the vessel’s sub-segment

departure_port string UN/LOCODE of the vessel’s departure port

trajectory_length int number of points in the sampled trajectory

sspd_mstd string UN/LOCODE of the MSTD value for the voyage
trajectory

sspd_dist int similarity value between the voyage trajectory and
the most similar historical trajectory

arrival_port string UN/LOCODE of the vessel’s arrival port

Table 4.4: Final structure of the ml_training_data database table.
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4.5 ML-based training and destination prediction

After building the Machine Learning (ML) training dataset, the next part of the
process included finding a ML model that suits the dataset, prepare and train it to
predict values for the arrival port column in the training dataset. This section de-
scribes the process starting from the training dataset to the final trained prediction
model.

4.5.1 Dataset imbalance

Due to the nature of vessel voyage patterns based on vessels of different types
and sizes, there is a substantial imbalance in the number of voyages arriving at
different ports. In other words, there is a severe imbalance in occurrences of arrival
port values in the training set. Figure 4.10 shows the distribution of frequencies of
voyages arriving at different ports, and as it shows, there is a significant imbalance
in this distribution.

Figure 4.10: Graph showing the distribution of frequencies among the arrival
port classes.

Because of the severe imbalance in the training set, simply applying over-
sampling techniques on the full dataset such as SMOTE (Chawla et al. 2002) to
the original dataset increases the total data size to an unmanageable amount of
203 million samples. On the other hand, using a simple majority undersampling
method removes most of the data, reducing it so almost no data is left. Figure 4.11
shows how different sampling methods perform using a limited version of the
original dataset. As it shows, SMOTE (purple graph), oversamples the dataset
massively, undersampling (red graph) reduces the dataset by 92%, while SMOTE
+ ENN increases data size, but does a better job keeping relationships in the data.

Because of the significant outliers in the data, an ensemble of both under
and oversampling was used to balance the dataset without generating a massive
amount of synthetic data while also not removing too much information. The
ensemble approach first undersamples classes that occur more than 20% of the
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Figure 4.11: Different sampling methods compared based on the increase in data
size.

most frequent class to remove the most severe spikes, applies “SMOTE + ENN”
over and undersampling method to balance the dataset while still keeping im-
portant patterns in the dataset, then finally an undersampling step is added to
flatten out frequency spikes to arrive at a final dataset size that is similar to the
original. However, since SMOTE is used during this process, there are synthetic
samples in the new dataset. These generated values are based on similar samples
in the dataset, however, in the case of segment and sub-segment, specific sub-
segments belong to certain segments, so when these are structured as separate
values, SMOTE can synthetically generate invalid combinations of segments and
sub-segments. To ensure the model doesn’t waste time training on impossible seg-
ment and sub-segment combinations, the segment, and sub-segment values were
combined into one segmentation value before encoding and balancing. This also
reduces the complexity of the ML model structure as there is one fewer feature to
consider. The segment and sub-segment values are concatenated using a delim-
iter, so they are easily divided again after training to further evaluate the results
based on these values.

4.5.2 Categorical label encoding

In the training dataset, there are both numerical values as well as categorical val-
ues. Categorical values are values that are a subset of a finite number of possible
values, while numerical values have infinite possible values. In the training data,
the data concerning ports and vessel segments are examples of categorical values,
and the length of the vessel trajectories and the similarity values derived from the
MSTD value is numerical. The underlying problem of encoding categorical val-
ues and possible solutions have been described in Section 2.4.2, and as described,
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choosing an appropriate encoding method depends on the cardinality of the fea-
tures in the dataset. For instance, there are more than 5000 possible ports in the
data foundation, therefore, columns concerning ports such as arrival port, depar-
ture port, and MSTD have high cardinality. On the other hand, features such as
segment and sub-segment have low cardinality, however, as these features have
been combined into one “segmentation” feature, the combined feature has 107
possible values. One-hot encoding, therefore, seems impractical for either type of
feature, thus, traditional label encoding was applied to the entire dataset before
training. Code listing 4.6 shows an example of categorical values being label en-
coded as preparation before the training process.

Code listing 4.6: Example of training data before and after label encoding being
applied.

[main] categorical training data features:
departure_port sspd_mstd arrival_port segmentation

0 CNRZH CNWIT CNSHG dry_bulk-supramax
1 CNRZH CNNDE CNSHG dry_bulk-supramax
2 CNRZH CNSHG CNSHG dry_bulk-supramax
3 TRHER TRZEY RUNVS dry_bulk-handysize
4 TRHER TRZEY RUNVS dry_bulk-handysize

[main] encoded categorical training data features:
departure_port sspd_mstd arrival_port segmentation

0 574 593 464 27
1 574 557 464 27
2 574 574 464 27
3 3745 3666 2552 19
4 3745 3666 2552 19

4.5.3 Model selection

At this stage, the final data is fully processed and prepared for model training.
However, first, the model that best fits the dataset must be chosen. In this process,
several different classifiers were tested out with a smaller extract of the training
data. Using Python libraries such as “Scikit-Learn” and XGBoost, the ML models
tested are listed in Table 4.5.

Note that One vs. Rest (OVR) classifiers differs from the multi-class clas-
sification methods as they convert the multi-class problem to multiple binary clas-
sification problems. For instance, instead of predicting which port a voyage will
arrive at, the OVR classifiers consider the perspective of a port so that the problem
becomes: will the vessel arrive at this specific port? Moreover, the best performing
model was the Random Forest (RF) model, followed closely by the two variants
of XGBoost implementations. The RF and XGBoost models are somewhat similar
methods. They are both ensemble decision tree methods meaning they configure
multiple decision trees, or a forest, that vote on outcome values. This is based
on the concept “wisdom of crowds” where multiple relatively uncorrelated trees
acting as a committee is capable of outperforming a single decision tree classifier.
In the RF method, the decision trees are constructed using bagging and boot-
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Model Description Acc. %

Random Forest Ensemble tree-based algorithm where trees are
built using a random number of features.

91.6

XGBoost Extreme gradient boosting. Ensemble tree-based
algorithm where trees are constructed building on
mistakes from previous trees..

89.9

One vs. Rest XG-
Boost

Train a binary XGBoost classifier for every possible
arrival port.

89.5

k-Nearest Neigh-
boor

kNN - samples look at their n neighbors to classify
themselves.

77.4

Tensorflow +
keras DNN

Deep neural network for multiclass classification.
Nodes in sequential hidden layers are fitted based
on an activation function.

50

One vs. Rest
Multi-layered
perceptron

Deep neural network -based binary classifier for ev-
ery possible arrival port.

10

Table 4.5: Classifiers tested out in the model selection phase. Every classifier was
trained using 50 thousand samples from the training data.

strapping as methods of randomizing the construction of decision trees either by
randomizing what features to use when constructing a tree or what samples to
use. The goal is that the trees gain their own unique perspective by being con-
structed in a particular way. In the XGBoost model, trees are created in a process
called boosting wherein each boosting round a new tree is constructed based on
the previous mistakes made by the previous trees.

Initially, the RF model was explored further for the final training process.
However, the “RFClassifier” Python implementation seemed problematic for larger
datasets as the memory requirements are considerable because of the size of the
model as well as the high number of possible arrival ports which requires a large
tree ensemble to learn. Furthermore, the Python implementation does not support
out-of-core learning or incremental batch learning so it is less practical in the final
training process. On the other hand, the XGBoost implementation seems more apt
at handling larger data sizes as it uses less memory in general as well as it supports
both out-of-core and incremental learning which provides more options in terms
of computing resource requirements.

4.5.4 Configuration and parameter optimization

For different ML methods, there are usually many different configurations avail-
able to tune how the model learns. For the selected Extreme Gradient Boosting
(XGBoost) model, based on the library’s documentation, the most important pa-
rameters to configure are the following:
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• n_estimators – the number of boosting rounds used. Default is 100.
• max_depth – the max depth per tree in the model. Default is 6.
• subsample – the fraction of samples from the training data considered when

building each tree. Default is 1.0.
• colsample_bytree – the number of features to consider when building each

tree. Default is 1.0.
• min_child_weight – the minimum weight required for a child node. Default

is 1.0.
• gamma – the minimum loss reduction required to split a node in the tree.

Default is 0.

The parameters n_estimators, max_depth, min_child_weight, and gamma
helps control the complexity of the model, while the others introduce randomness
to the tree building process. All of these parameters can be tuned to prevent over-
fitting and produce a well-performing model. In order to find the best parameters
to use, the model was trained several times using different configurations on a
subset of the original dataset in a process called hyper-parameter optimization.
First, the parameters listed above were listed with a range of different values for
each to test. Initially, these ranges were large to get an initial idea of what pa-
rameters fit the best. A random grid search was used to find a rough estimate of
what values perform the best. In this process, 100 different configurations were
randomly selected from all the possible permutations in order to get a feeling of
what types of ranges fit the different parameters without attempting to train on
all of them. The best result from this process provided insight into what general
values seemed to work for the dataset. Code listing 4.7 shows an example of how
parameters are defined and used in a random search. Next, a grid search was ap-
plied using smaller ranges based on the best result from the random search to
further fine-tune the parameters. The grid search methods both use cross folder
validation to arrive at the best performing configuration to consider overfitting in
the final result, so the resulting parameters are a good place to start in the initial
training process.

Code listing 4.7: Python example of parameters used for random grid search in
hyper-parameter optimization process.

random_grid = {
"n_estimators": [100, 200, 300],
"max_depth": [6, 8, 10],
"subsample": [0.6, 0.8, 1.0],
"learning_rate": [0.1, 0.2, 0.3],
"colsample_bytree": [0.7, 0.8, 0.9, 1.0],
"min_child_weight": [1, 2, 5, 8],
"gamma": [0.0, 0.1, 0.2, 0.3],

}

# ...

best_params = best_random.random_search_cv(X_train, y_train, random_grid)
print("Best params from random search")
pprint(best_params)
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# ...

def random_search_cv(self, X, y, param_grid, folds=3):
# Random search of parameters, using X-fold cross validation,
# search across 100 different combinations, and use all available cores
self.classifier = RandomizedSearchCV(estimator=self.classifier,

param_distributions=param_grid,
n_iter=100, cv=folds, verbose=3,
random_state=42, n_jobs=-1)

# Fit the random search model
self.classifier.fit(X, y)
return self.classifier.best_params_

4.5.5 The training process

After finding appropriate parameters for the model, the next step was to con-
duct the training process. The process is straightforward, however, the size of the
training set resulted in high computing requirements, especially in terms of avail-
able RAM on the running computer. XGBoost supports both iterative and external
memory training routines, therefore, these alternatives were also evaluated to see
what method works best. In total, the three alternatives available for the train-
ing process were: training the model iteratively by dividing the training data into
multiple batches, using the computer’s hard drive as memory using XGBoost’s ex-
ternal memory mode, or simply training the model normally using a computer
with sufficient hardware requirements. The training process was conducted using
the full dataset containing 4.3 million voyages which were encoded and balanced
beforehand. The training set was divided into 80% training data and 20% testing
data which was used to estimate the performance of the model.

Moreover, the aforementioned approaches were initially tested using a
computer with an AMD Ryzen 7 2700 processor with 8 physical CPU cores and 8
additional virtual ones, an NVIDIA GeForce GTX 1080 GPU, and 48GB of available
RAM.

First, the full training set was used in the standard training process. How-
ever, this process demanded more memory than available on the machine. By trial
and error, it was established that 48GB of memory was only sufficient to train on
a subset of around 1 000 000 samples. Thus, the iterative training approach was
tested using a limited subset of the available data in different batches. In this pro-
cess, the full dataset was fetched, encoded, and balanced before it was split into
batches. As the entire dataset was kept in memory during the batch process, the
batch size was set to 600 000 for the iterative training process. For this process,
the additional parameters updater and process_type were set to “refresh” and “up-
date” respectively in order to ensure that the model correctly adapts to exposure
to new samples. Code listing 4.8 shows the code used to prepare data into batches
and iteratively train the model.
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Code listing 4.8: Python functions used to batch train the XGBoost model.

def prepare_training_data(config):
df = get_all_data()
df = df.groupby(config["t_column"]).filter(lambda x: len(x) >= 20)

X, y = encode(df, config)

if config["sample"] == True:
X, y = ensemble_sampler(X, y)
inc = (len(X)-len(df))/len(df)*100
print("[main] sampled data: {:.2f}% increase".format(inc))

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.20, random_state=42)

batches = []
for x in batch(range(0, len(X_train)), config["batch_size"]):

batches.append(x)

return batches, X_train, X_test, y_train, y_test

def batch_train_model(batches, X_train, X_test, y_train, y_test):
params = {

# ... other params
"updater": "refresh",
"process_type": "update",
"num_class": len(np.unique(pd.concat([y_train, y_test]))),

}

# XGBoostClassifier is a custom wrapper around the XGBClassifier class.
classifier = XGBoostClassifier(target_column="arrival_port", params=params)
trained_model = None
for t_indices in batches:

# subset training data
X = X_train.iloc[t_indices]
y = y_train.iloc[t_indices]

# eval set using the total training data
dtrain = xgb.DMatrix(data=X_train, label=y_train)
dtest = xgb.DMatrix(data=X_test, label=y_test)
watchlist = [(dtest, ’eval’), (dtrain, ’train’)]

# train the model
trained_model = classifier.train_model(

X, y, model=trained_model, num_boost_round=100, watchlist=watchlist)
classifier.print_evaluate_summary(X_test, y_test, matrix=True)

return classifier, X_train, X_test, y_train, y_test

Next, the external memory version of XGBoost was tested by running the
training process in one batch using the machine’s hard drive as additional mem-
ory. In this process, the full dataset was fetched, sampled, and balanced before it
was written to a libsvm file as recommended by the library’s documentation. The
algorithm then produces a memory-optimized cache file on the computer’s disc
which is then used in the training process. Code listing 4.9 shows how XGBoost’s
“train” API can be modified to use external memory where the file name specifies
“train.txt” as the input file using “dtrain.cache” as a temporary cache file.
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Code listing 4.9: Python code showing how a XGBoost model can be trained
using external memory.

# internal memory version
# dtrain = xgb.DMatrix(data=X, label=y)

# external memory version
train_file = "train.txt#dtrain.cache"
dtrain = xgb.DMatrix("{:s}/{:s}".format(data_folder, train_file))

clf = xgb.train(self.params,
dtrain,
#... other parameters

)

Finally, in order to establish the differences and to find the most opti-
mal training process, a standard training process was tested on the full dataset on
a more powerful computer. In this process, a virtual machine hosted on the col-
laborative company Maritime Optima AS (MO)’s cloud computing environment
was used in the training process. This machine has 256GB of available memory
and 32 virtual CPU cores. This was sufficient to train the full dataset and was the
preferred method as it also allowed testing other ML models that do not support
incremental or external memory training processes. Code listing 4.10 shows the
code used to train the final model. An evaluation set was provided to the model to
continuously evaluate it after each decision tree has been built in the model. It also
allows for plotting performance metrics over each “boosting round” which can be
helpful to detect when in the training process the model can become overfitted.

Code listing 4.10: Python code showing how the XGBoost model was trained in
one iteration

def train_xgb_classifier(df, target_column):
params = {

"use_label_encoder": False,
"objective": "multi:softmax",
"learning_rate": 0.1,
"n_estimators": 100,
"max_depth": 4,
"subsample": 0.8,
"gamma": 0.2,
"eta": 0.2,

}

classifier = XGBoostClassifier(target_column=target_column, params=params)

X_train, X_test, y_train, y_test = classifier.train_test_split(df, balance=True)

# eval_set allows continuous evaluation during the training process
eval_set = [(X_train, y_train), (X_test, y_test)]

# fit the model (esr = early_stopping_rounds)
classifier.fit_model(X_train, y_train, eval_set=eval_set,

esr=5, plot_results=True)

return classifier, X_train, X_test, y_train, y_test

The results from the training processes are later discussed in Chapter 5.
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Evaluation process

For all of the different training processes tested, the same evaluation process was
used in order to establish the performance of the model. First, to detect if the
trained model is overfitted, three-fold cross-validation applied during the training
process. In this process, the model is trained three times using different parts of
the training set as training and evaluation data. If the performance of each training
process does not deviate significantly, the model is less likely to be overfitted and
should be able to efficiently predict previously unseen samples. Moreover, plotting
performance metrics for each iteration of the training process also provides insight
into when the model stops learning and starts to overfit.

Based on ML conventions and related works, several performance met-
rics were used in addition to conventional accuracy. As already mentioned in Sec-
tion 4.5.1, accuracy can be a misleading metric in some cases such as for imbal-
anced datasets. This is, however, a smaller issue after sampling has been used
to balanced the dataset beforehand, but other performance metrics still provide
more insight into the performance of the model. In addition to accuracy, the met-
rics, logarithmic loss, classification error, precision, recall, and F1 score were used.
Furthermore, to gain more insight into the model performance on the particu-
lar dataset, accuracies per segment and sub-segment were also collected as listed
in Code listing 4.11. Furthermore, this helps to gain insight into the traveling
patterns of different vessel types as it pertains to the predictability of vessels of
different types and sizes.

Code listing 4.11: Python code used to calculate accuracies per segment and
sub-segment to gain insight into the predictability of different vessels.

def column_accuracy(correct, incorrect, columns=["segment", "sub_segment"]):
cr = correct.groupby(columns).size()
cr.name = "correct"
icr = incorrect.groupby(columns).size()
icr.name = "incorrect"

df = pd.concat([cr, icr], axis=1).fillna(0)
df["total"] = df["correct"] + df["incorrect"]
df = df.astype({ "correct": "int32", "incorrect": "int32", "total": "int32" })
df["accuracy"] = df["correct"]/df["total"]

# sort groups by accuracy if grouped by more than 1 column
if len(columns) > 1:

g = df["accuracy"].groupby(columns[0], group_keys=False)
res = g.apply(lambda x: x.sort_values(ascending=False))
return res

return df.sort_values(by=["accuracy"], ascending=False)
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4.6 Vessel destination prediction method summary

After the training process, the final trained model is saved and can then be used
to predict the outcome of new samples of traveling voyages. To predict a travel-
ing vessel’s next destination, the steps described throughout this chapter must be
replicated for that single vessel. Given the trained model, the overall prediction
process for a single traveling vessel can be conceptualized using the following
steps:

• The current trajectory of the traveling vessel is collected using AIS records
ranging from the last transmitted “MOORED” status to its current position
along with the id (UN/LOCODE) of the departure port where it was moored
and the vessel’s segmentation values.
• The vessel’s trajectory is then sampled based on a predefined time interval,

then compared to every historical outgoing trajectory from the same depar-
ture port from vessels of the same segment and sub-segment to establish
the Most Similar Trajectory’s Destination (MSTD).
• The vessel’s segment, sub-segment, departure port, trajectory length, MSTD,

and the MSTD similarity value is then passed to the trained XGBoost model
that predicts the traveling vessel’s arrival port.
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Results

In this chapter, the results from the proposed solution are described in detail. It
describes different results from the different stages throughout the development
process and presents the final results and metrics from the trained Machine Learn-
ing (ML) model. Furthermore, insights and interpretation into the results are gath-
ered from experts in the shipping industry and described in order to determine
the validity of the proposed solution.

5.1 Constructed dataset and ML problem formulation

The initial dataset was copied and validated from Maritime Optima AS (MO)’s AIS
database. The database table “vessel_positions_history” was last updated in March
2021 and consists of 1.2 billion positional AIS records. Each vessel that transmit-
ted positions belongs to a given segment and sub-segment that was made avail-
able by the “vessel_segment” table. This table contains eight different segment val-
ues, and 107 different combinations of segments and sub-segments. The provided
“ports” data contains 5200 ports world-wide that all follows the UN/LOCODE
naming standard. In total, as of March 2021, there were 6.4 million vessel tran-
sitions in the “vessel_transitions” table which was used to construct voyages.

This data formed the initial data foundation for the final processed Ma-
chine Learning (ML) training dataset. All the data that was copied and processed
from MO’s databases were processed in batches. Ports, segments, and transitions
were quickly copied and processed, however, the 1.2 billion positional records
took several days to migrate and validate. This was mostly because of the time re-
quired to validate coordinates and correctly map MMSI and IMO values. Through-
out this process, the latest identifiers and timestamps were fetched from the ded-
icated project database to only update data that occurred after the latest records
already processed. In this way, this process was idempotent so that running the
process multiple times did not affect existing data. This made the system simple
to update throughout the development process and as many records as possible
were used in the final approach only limited by the thesis time limitation.

66
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5.1.1 Voyage definition and construction

Based on the initial 6.4 million vessel transitions, 1.7 million voyages were ini-
tially constructed by finding positional records transmitted from a vessel between
subsequent departure and arrival transitions. The resulting voyages were, there-
fore, defined based on transitioning AIS statuses that indicate the vessel is moored
or moving. As a consequence of this definition, the quality of the resulting trajecto-
ries is very much affected by how well the AIVDM/AIVDO protocol is followed by
the traveling vessels. Since the navigational status attribute is manually inputted
by the vessel’s captain or crew, the resulting trajectories are prone to human error
but result in more complete voyages disregarding intermediate stops for purposes
such as bunkering.

As an example, Figure 5.1 shows a voyage from China to Argentina
where the vessel stopped at Singapore, most likely to bunker. In the chosen voy-
age definition, the beginning and end of the voyage are defined based on input
from the vessel’s captain which results in a voyage starting from China and ending
in Argentina. Further implications and consequences of the chosen definition are
later discussed in Chapter 6.

Figure 5.1: Transition voyage from China to Argentina that visits the port of
Singapore exemplifying the properties of the chosen voyage definition.

The 1.7 million voyages constructed using the vessel transitions were
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sampled based on 6-hour intervals and collected in “sampled_transition_voyages”
that formed the foundation for trajectory similarity measurements. In the process
of constructing the final dataset, these sampled voyages were divided into multiple
incomplete voyages up to a factor of four. The resulting training dataset collected
in the table “ml_training_data” consisted of 4.3 million voyages.

5.1.2 Trajectory similarity and MSTD

Using the foundation of the sampled trajectories, each trajectory was compared to
every other trajectory departing the same port to calculate the Most Similar Tra-
jectory’s Destination (MSTD). The MSTD value was used primarily as a method of
abstracting geographical trajectories into categorical and numerical values that a
Machine Learning (ML) model could work with. This process converted a voyage’s
geographical trajectory into MSTD, the similarity value to the most similar trajec-
tory, and trajectory length. Thus, the MSTD value served as an initial prediction
purely based on geographical trajectory similarity measurements using Symmetric
Segment-Path Distance (SSPD). The SSPD method was chosen for its ability to ef-
fectively handle different lengths and shapes of trajectories when estimating simi-
larity. Furthermore, the approach proposed by Zhang et al. 2020 the SSPD method
performed the best out of the algorithmic approaches evaluated, although, their
own Random Forest (RF) based approach performed the best. However, the way
the training data is structured, the trajectory similarity method of choice is com-
pletely interchangeable with others. The only requirement for a given trajectory
similarity measurement is that it also produces a similarity value that serves as a
weight for the MSTD value.

MSTD as an initial prediction seemed to be a decent initial indicator as
to where the vessel would be arriving. In total, there were 4 306 271 entries
in the final training data generated where exactly 1 423 476 of which has the
same arrival port and MSTD value. Thus, it can be assumed that the purely spatial
prediction using incomplete sampled historical voyages based on SSPD was 33%
accurate. In other words, when using an algorithmic prediction approach based
on purely spatial trajectory similarity measurements, voyage destinations can be
predicted correctly one-third of the time. This formed a baseline accuracy to beat
with the ML-based solution.

5.1.3 ML data preparation

After the final training dataset was built, it was discovered that in terms of arrival
port frequencies, the dataset was imbalanced thus making it harder for ML models
to learn. Although some models can better handle dataset imbalance, a sampling
approach was used to balance the dataset before training to support different
ML models. Several different sampling approaches were evaluated, however, the
traditional over and undersampling methods either produced massive amounts
of synthetic data or removed almost all the original data which was shown in
Figure 4.11 in Chapter 4. Thus, an ensemble sampling method of majority under-
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sampling and “SMOTE+ENN” was employed to balance the dataset before train-
ing. Figure 5.2 shows the results from the ensemble sampling method that uses a
combination of under and oversampling techniques. As Figure 5.2 shows, using a
subset of the full dataset, the final result is 8% smaller than the original dataset,
is a lot more balanced, but still has differences in class frequencies that persisted
from the original dataset.

Figure 5.2: Final ensemble sampling method (right) compared to original dataset
(left) where the final ensemble produces a dataset similar in size to that of the
original.

5.2 Model training and prediction performance

After the training dataset was constructed, encoded, and balanced, the model
was trained using different approaches as described in Section 4.5.5. This section
describes the results from the training processes, the final approach used, and
the resulting model’s performance and predictions resulting from the evaluation
process described in Section 4.5.5.

5.2.1 Training process

As described in Section 4.5.5, multiple training processes were evaluated in or-
der to find the most appropriate method of training a larger model on an exten-
sive dataset. For the Extreme Gradient Boosting (XGBoost) model, three different
training processes were evaluated in this process.

First, the iterative approach was evaluated by training the model in batches
of 600 000 samples at the time. This approach seemed to work as intended, how-
ever, it was discovered that during subsequent training batches, the performance
of the model dropped off for each iteration. It seemed as if the model did not
handle continuous training of the same model as well as it does when training
one model from scratch using the complete dataset. Furthermore, the parameter
“early_stopping_rounds” was used in the other approaches as a method of telling
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the model to stop training if it does not see any improvements after the given num-
ber of rounds. When this parameter is set using the iterative approach, the model
can stop producing new trees before it has constructed the total number of trees
allowed by the “n_estimators” parameter. Since the first iteration can produce a
model with fewer trees than allowed, the next iteration fails as the number of al-
lowed trees does not match the previous model’s actual number of trees. Although
there are ways around this issue, as using the early stopping rounds parameter is
useful to avoid overfitting, the iterative approach did not seem the most appro-
priate during the development process.

Next, it was attempted to train the model using the external memory,
or the “out-of-core” memory version of XGBoost. In this approach, the XGBoost
library is provided a libsvm file which it converts to an optimized matrix format
that is kept on the computer’s file system. However, all attempts at training the
model using external memory were unsuccessful as the training process consumed
all of the running computer’s available memory and resulted in a “bad allocation“
memory error. There seems to either be a misconfiguration or an underlying issue
with the Python library used in the implementation. However, since the expected
results from this approach should be the same as training the model in one itera-
tion on a capable computer, these issues were not further looked into. However, it
could be beneficial to use this option to reduce the resource requirements for the
training process for future use. Therefore, it could warrant more investigation for
future work.

Finally, the entire dataset was used to train the final model in one it-
eration on a computer capable of running the process. The training process ran
over the course of two days and consistently required around 200GB of memory.
The vast memory consumption could be somewhat reduced by not evaluating the
model during the training process which is appropriate for future training pro-
cesses after the model has been trained and the training configuration has been
validated. As described in Section 4.5.5, an extra copy of the training and test
datasets was kept in memory to continuously evaluate and monitor the training
process.

5.2.2 Performance

During the training process, the performance of the model was continuously eval-
uated to measure logarithmic loss and multi-class classification error. Figure 5.3
shows these metrics plotted over each boosting round in the training process. Both
graphs start converging at 100 decision trees have been constructed at around 1.5
log loss and around 0.3 classification error. This corresponds to around 70% ac-
curacy. Since the graphs have not completely converged, it is possible to either
increase the learning rate parameter or increase the number of estimators in the
tree, although it seems as if the graphs are very close to converging, so it might
not increase performance noticeably and increases the risk of overfitting. As there
is very little difference between the performance on the training set and evalua-
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tion set, it indicates that the model is not overfitting, however, it might indicate
that the model is over-optimistic. This could occur when there are several similar
samples in the training and the test datasets and could be a consequence of the
sampling techniques used to balance the dataset.

Figure 5.3: Logarithmic loss and classification error metrics tracked per boosting
round in the training process.

After the training process finished, the test dataset was used to make
predictions to further evaluate the results. From the resulting predictions, ac-
curacy was calculated to be 72%, and a class report was generated that shows
more metrics for each possible class, or encoded arrival port, that might provide
more insight into the model’s performance than accuracy. Code listing 5.1 shows
a summarized output from this class report showing the metrics precision, recall,
f1-score, and support for each class as well as the aggregated mean values from
all of the classes. F1-score is based on precision and recall and is particularly ap-
propriate for measuring performance on imbalanced datasets. As Code listing 5.1
shows, the f1-score does not deviate much from the estimated accuracy of 72%, or
0.72. This indicates that the accuracy value is reliable and is not biased by dataset
imbalance.

Code listing 5.1: Class report based on prediction results from the test dataset.
The performance of the classifier is evaluated per class by using precision, recall,
f1-score, and support.

[XGBoostClassifier] Class Report:
precision recall f1-score support pred

0 0.378049 0.240310 0.293839 258.0 164.0
1 0.816850 0.810909 0.813869 275.0 273.0
2 0.722222 0.541667 0.619048 312.0 234.0
3 0.672727 0.377551 0.483660 294.0 165.0
... ... ... ... ... ...
3067 0.824675 0.849498 0.836903 299.0 308.0
3068 0.833922 0.778878 0.805461 303.0 283.0
3069 0.773050 0.762238 0.767606 286.0 282.0
3070 0.614035 0.557325 0.584307 314.0 285.0
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... ... ... ... ... ...
avg / total 0.718698 0.715150 0.712737 878049.0 878049.0

Lastly, in order to ensure the model is not overfitted, a three-fold cross-
validation process was employed. Code listing 5.2 shows the results from the three
folds that the model was trained on which used a weighted F1-score as the per-
formance metric. It is recommended, or common to use more folds ranging from
five to 10, however, because of the long training time and time limitations, only
three folds were used. As shown in Code listing 5.2, the mean F1-score across each
fold was 73% which is slightly higher than the initial training round. Lastly, as de-
scribed in Section 2.4.4, since the standard deviation (noted as “std. dev.” in Code
listing 5.2) is very low (9.025× 10−5), the model is likely to not be overfitted.

Code listing 5.2: Output from 3-fold cross validation.

Folds: [0.73393717, 0.73398, 0.73414641]
Mean: 0.7340211926682213
Std. dev.: 9.025433684824043e-05

5.3 Prediction results

After the model was trained and evaluated, 20% of the total training dataset was
used to evaluate the model. This evaluation process resulted in around 880 000
example predictions. These predictions were further analyzed to discuss the im-
pact and meaning of the different features used in the dataset. These results are
presented in this section.

5.3.1 Feature importances

An added benefit of using a tree-based model such as the Extreme Gradient Boost-
ing (XGBoost) or Random Forest (RF) model is that they can provide insight into
the importance of features, or attributes. In a decision tree-based ensemble, when
constructing a tree, the training data is analyzed to find the best features to make
splits, or branches, in the trees. After the training process, the models can then
produce a ranking over what features best divided the dataset best. This is referred
to as feature importance.

Table 5.1 shows an overview of the produced feature importances after
the XGBoost training process. As it shows, the most important feature was the
MSTD value at a ranking of 0.44 out of 1.0, followed by the vessel’s departure
port, segmentation value, and then the similarity value and voyage length. This
analysis can further help decide if features are worth dropping from the dataset,
and insight into what attributes are good indicators during voyage predictions.
As mentioned in Section 4.5.1, the attributes “segment”, and “sub-segment” were
combined into one segmentation value in order to ensure that no invalid segment
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Feature Importance

sspd_mstd 0.443659

departure_port 0.226288

segmentation 0.180907

sspd_dist 0.083816

trajectory_length 0.065331

Table 5.1: Feature importances based on the XGBoost decision tree ensemble
process

and sub-segment combinations could be generated by sampling methods. A disad-
vantage of this is that the feature importances of the two attributes are lost in fa-
vor of the combined value. However, from test runs made during the development
process with and without sampling, the importance of segment and sub-segment
were usually ranked where segmentation is in Table 5.1 with sub-segment being
more important than segment.

Furthermore, the results from test dataset predictions were analyzed to
find the impact of the attributes that mostly served as weights for the MSTD value,
namely, the similarity value (sspd_dist) and trajectory length. Code listing 5.3
shows an output from the evaluation process which shows that the distance value
was smaller, on average, for correct predictions while trajectory length did not
considerably differ between correct and incorrect predictions. It makes sense that
the distance, or similarity, value is lower for correct predictions as the more sim-
ilar the most similar historical trajectory is, the more valuable the MSTD value
is. For instance, if a voyage’s most similar historical trajectory has a sspd_dist of
0, it is following an exact path of a previous voyage. In this case, the similarity
value for correct predictions was on average around 43% lower than for incor-
rect predictions. For the trajectory length, it would make sense that the longer the
voyage had traveled, the easier it would be to predict its destination, thus, the
length should be longer for correct predictions. However, this is not the case for
these predictions. This could be explained by the fact that shorter voyages might
be easier to predict than long voyages for small vessels. For instance, it is presum-
able that, passenger vessels with very short but frequent trajectories are very easy
to predict, thus reducing the average length for correct predictions. To confirm this
hypothesis, further investigations into the specific segments and sub-segments are
required.

Code listing 5.3: Mean values of similarity value and trajectory length for correct
and incorrect predictions.

mean ssp_dist for correct predictions: 115642.48170757179
mean trajectory_length for correct predictions: 17.662729492637958
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mean ssp_dist for erroneus predictions: 201713.174255885
mean trajectory_length for erroneus predictions: 18.841843522761508

5.3.2 Segment predictability

As it relates to research question 2 (Section 1.5), the 880 000 predictions from
the test dataset were further analyzed in search of patterns in the predictability of
different types of vessels. These results also serve to gain further insight into the
value of the performance metrics. Figure 5.4 shows a bar chart of the initial accu-
racy of predictions per segment, and it shows that there are some differences in
accuracy per segment overall, but most of the segments have a similar level of pre-
dictability. For example, vessels of the segment “other” were the easiest to predict
and had the highest accuracy of 76%. This is likely to be caused by different types
of passenger’s vessels that lie within this segment. These vessels produce many
predictable voyages as they travel between a few ports with a high frequency.
Furthermore, the “other” segment also includes very specialized vessels that are
limited in terms of possible destination ports.

Figure 5.4: Accuracy of predictions from test set per segment.

As Figure 5.5 shows, and as expected, the accuracy of the passenger-
related sub-segments was very high. Since these are so high in frequency and
have shorter trajectories, they may be the main cause that the average trajectory
length was lower for correct predictions than incorrect ones. On the other hand,
container and car “roll-on/roll-off” (RORO) vessels travel longer distances less
frequently but were also relatively predictable.

Another segment that could affect the average trajectory length and sim-
ilarity values for correct predictions is the oil service segment. The oil service ves-
sels should be easy to predict as these vessels travel to oil platforms and often back
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to the same or another nearby port. However, for these vessels, their trajectories
would have been harder to consider as they often do not use the “moored” AIS
navigational status when arriving at oil platforms. This can lead to very long tra-
jectories that are hard to compare to others, therefore, these vessels should rely
more on the departure port rather than the MSTD related values.

Figure 5.5: Accuracy of predictions per sub-segment within the “other” segment.

The dry bulk cargo industry is one of the primary segments focused on
by MO, and Figure 5.6 shows the accuracy per sub-segment for the dry bulk cargo
segment. The dry bulk sub-segments are based on the vessels’ cargo capacities and
sizes, however, as Figure 5.6 shows, there seems to be little correlation between
vessel size and accuracy. The two most accurately predicted sub-segments are
large vessels, however, they are followed closely by the smaller sub-segments,
and the two least predictable types are some of the largest. Thus, the uniqueness
of the sub-segment value itself had more impact on predictions than the implied
size and capacity of the vessels.

The prediction results for tanker sub-segments show similar results as
to the dry bulk ones, however, some other segments do seem to show that size
and capacity indeed might be correlated to predictability in different ways. For
instance, in the chemical segment, the two largest sub-segments have the highest
accuracies of 90% and 85%, however, the remaining sub-segments do not show
much difference correlated to size. There seem to be a slight correlation in chem-
ical vessels that show that larger vessels are easier to predict than smaller ones,
however, for other segments the opposite correlation seems to occur. The Liquefied
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Figure 5.6: Accuracy of predictions per sub-segment within the “dry_bulk” seg-
ment.

Figure 5.7: Accuracy of predictions per sub-segment within the “LPG” segment.
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Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) vessels have the highest
correlation between size and accuracy, but in the opposite direction compared to
the chemical vessels. Figure 5.7 shows that the three smallest LPG sub-segments
coaster, handy, and MGC have the highest accuracy, while the two largest sub-
segments VLGC and LGC have lower accuracies. This is similar to that of the LNG
vessels (Figure 5.8) where the largest sub-segments QMax, and QFlex are harder
to predict than the smaller sub-segments. This is quite unexpected as these vessels
are very limited in possible loading and discharging port. However, it could be ex-
plained by there being very few samples of these vessels in the dataset compared
to the smaller vessels.

Figure 5.8: Accuracy of predictions per sub-segment within the “LNG” segment.

Another interesting segment to analyze is the combo segment. These
combination vessels can serve multiple functions in that they can carry different
types of cargoes. In Figure 5.4, the combo segment showed a mid-range general
accuracy level, however, when looking into the sub-segments, there are substantial
differences in accuracies across the different types of combo vessels (Figure 5.9).
The “Klaveness Combination Carriers” (CABU) and “Oil-Bulk-Ore” (OBO) vessels
have the highest accuracies. However, there are only 12 CABU vessels and 5 OBO
vessels in the world, or in Maritime Optima AS (MO)’s vessel database. On the
other hand, there are 4700 chemical product tankers in the world that were also
quite predictable. These vessels drive the general accuracy of the combo vessels up
in Figure 5.4 as the remaining sub-segments have substantially lower accuracies.
It does, however, make sense that combo vessels are generally difficult to pre-
dict as they serve multiple functions which results in them having more possible
destination ports they can load and unload at.
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Figure 5.9: Accuracy of predictions per sub-segment within the “combo” segment.

In regards to RQ 2 (Section 1.5), vessel segments and sub-segments seem
to have a substantial impact on the predictability of vessels. As shown in Table 5.1,
the vessel segmentation had a feature importance close to that of the vessel’s de-
parture port. Furthermore, as discussed throughout this section, there are differ-
ences in accuracies for different segments and sub-segments, therefore, the vessel
segmentation, with sub-segments in particular, had a significant impact on the
predictions in the test dataset used during the evaluation process.

In regards to RQ 2a the most predictable segment overall was the “other”
segment (Figure 5.4). This was not entirely surprising as the sub-segments includ-
ing passenger’s vessels are very predictable (Figure 5.5). Moreover, the tanker,
chemical, and combo vessels were similar in their accuracy levels, while LPG, dry
bulk, and LNG vessels were slightly less predictable. The sub-segment “chemical
product tanker” drove the accuracy of the combo segment up to a similar level to
that of the tanker and chemical vessels. This can be explained by the fact that this
specific sub-segment overlaps into the two other segments. In other words, sev-
eral tanker and chemical vessels are also present in the “chemical product tanker”
combo sub-segment, so the accuracies are expected to be similar between the spe-
cific sub-segment and the tanker and chemical segments.

In response to RQ 2b, and as mentioned earlier in this section, there
seems to be some correlation between vessel size, capacity, and predictability,
however, this only seems to be the case for some segments while for others, the
uniqueness of the sub-segment value was the more important factor than the im-
plied size or capacity. Thus, in regards to RQ2b, the prediction results do not conclu-
sively indicate that larger vessels are more predictable than others. This is likely to
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be caused by there being few voyages available for larger vessels traveling further
as the original dataset only contains one and a half years of historical data.

5.4 Applications and validity

After the final training process, the resulting model is capable of predicting the
future destination ports of traveling vessels with a general accuracy of 72%. This
section describes the intended usage and applications of the developed model as
well as validation from experts in the industry.

5.4.1 Usability

As summarized in Section 4.6, the process of predicting a single vessel’s future
destination port consists of four steps. First, the current traveling trajectory is con-
structed by fetching the positional AIS records from the last detected “moored”
navigational status was transmitted to the last transmitted position. Next, this
trajectory must then be simplified as described in Section 4.4.1. Then the Most
Similar Trajectory’s Destination (MSTD) of the must be calculated using the SSPD
method with the traveling trajectory and every other historical trajectory depart-
ing the same port. The vessel’s MSTD, segmentation, the distance returned from
the SSPD method, and the length of the trajectory can be used to predict the ves-
sel’s next destination. The final trained model is saved to a file so it can quickly
be loaded when making predictions. Thus, a program can be written that reads
the trained model, receives an outgoing voyage, and predicts its next destination
port.

In regards to re-training the model with new data, two approaches can
be used. The simplest but more time-consuming approach is to completely retrain
the model after a substantial amount of new data is available. The training pro-
cess takes around two days to complete using the complete historical dataset on
a capable computer. Another approach could be to use Extreme Gradient Boost-
ing (XGBoost)’s support for iterative, or continuous learning as described in Sec-
tion 4.5.5. After the training process has completed, the XGBoost model can be
saved to file for future evaluation and predictions.

Finally, since the proposed solution can predict a vessel’s future destina-
tion ports, it could also be applied to forecast the availability of vessels. By pro-
viding the model with the current trajectories of all traveling vessels in the world,
the model’s output would indicate how many vessels of different segments will
be positioned at different ports around the world. Given a method for estimating
the time taken for each vessel to reach their predicted destination port, the model
can be used to indicate what vessels will be positioned at a port in a given time in-
terval. The model itself has no aspect of time, or ETA, however, there are existing
methods and tools available today that can estimate how long it takes for vessels
to travel between ports such as established distance tables1 or software provided

1https://sea-distances.org/

https://sea-distances.org/
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routing estimators. For instance, Maritime Optima AS (MO) offers a routing es-
timator to their customers that is capable of finding the shortest path between
any given two positions across the seas. The proposed solution could therefore be
integrated with this tool to forecast the supply of vessels at different ports in a
given time interval.

5.4.2 Expert validation

Furthermore, in order to establish the validity of the proposed solution from a
commercial perspective, a select number of shipping experts were interviewed in
order to establish the validity of the process taken and the final results. These
experts were contacted via the collaborative company Maritime Optima AS (MO)
which has a substantial network in the shipping industry. They were presented
with the proposed solution as well as the steps taken throughout the development
process and asked questions in a semi-structured manner in order to gain insight
into their perspective on the following topics:

• Existing methods used to obtain predictions of vessel positions or vessel
availability.
• Aspects of the thesis’ solution that may prove to be valuable, and areas to

improve before commercial consideration.
• Validity of the proposed voyage definition and possible alternative approaches.
• The impact of vessel segmentation and possibly other information that could

provide more insight into vessels’ voyage patterns thus improving predic-
tions.

The people interviewed hold executive positions in well reputable com-
panies and are very experienced shipping professionals. In respect to their privacy,
their names, positions, or related companies will not be disclosed in this thesis,
only a summary of the obtained information is presented.

Existing methods of obtaining information

One interviewee explained they did not use many digital tools in their decision-
making processes. They had been using Maritime Optima AS (MO) to gain some
overview, but mostly relied on non-digital methods of obtaining information. It
was clear the source considered the most reliable was information and analysis
provided by shipping brokers. These brokers provide information and predictions
regarding the relevant segment’s market, cargo, and vessel supply. It was also
clear that information provided by any digital solution would require extensive
testing and validation before it could be considered as any form of replacement
or addition to the information provided by trusted brokers. It was also suggested
that tools such as proposed in this thesis would probably have high value for the
brokers themselves, to aid in their information gathering processes.

Another interviewee explained they were extremely reliant on making
market predictions for multiple vessel segments. In addition to input from ship-
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ping brokers, they have spent considerable effort toward conducting their own
analysis using several sources of information including historical AIS. Therefore,
they rely more on internally conducted analysis than external ones and expressed
high interest in similar analysis to that of the one presented in this thesis.

Valuable aspects of the proposed solution, and areas of improvement

From the imagined usability described in Section 5.4.1, the aspect of obtaining
a forecast of vessel supply in different ports and regions seemed to be the most
promising aspect of the thesis from a commercial perspective. The interviewees
explained that the aspect of cargo supply is, to some degree, quite predictable as
the production of different supplies is quite cyclic and there are many detectable
factors that indicate ebbs and flows in productions. Since the areas of high cargo
supply are known, knowing how many competing vessels are available in these
areas could be valuable information because it helps operators decide whether to
focus on certain cargoes in the different areas or not. Interviewees with different
commercial motivations all expressed interest in the proposed solution as a com-
petitor analysis tool as well as general input into different commercial analyses.

Some interviewees expressed some skepticism of a generally applicable
prediction model as it was thought that an immense amount of data would be re-
quired to make accurate predictions. They further expressed the need for extensive
testing and validation before it would be considered valuable to them. One inter-
viewee especially expressed that it was of no interest to them to study segments
outside of their own vessels, and suggested that a model specially trained for their
segment could potentially be of higher value to them.

Other interviewees also expressed the complexity and broadness of mak-
ing reliable vessel supply predictions as well as vessel destination predictions.
However, they were adamant that any input of information is of value in the com-
plete picture. For example, if a vessel’s arrival port prediction is wrong it is still
useful input as it might allude to the intended destination region or country. There-
fore, as long as the performance and limitations of a prediction model are well
known, its input is valuable even if it is not extremely accurate.

Validity of the proposed voyage definition

The chosen vessel voyage definition was explained and the example described in
Section 5.1.1 was presented to the interviewees for their evaluation. Based on
their response, it seemed that the suggested voyage definition would be a techni-
cally correct solution as it is based on the vessels themselves expressing via AIS
that they are moored at different ports. However, another promising approach
was suggested by one of the interviewees and corroborated by another. They sug-
gested that the navigational status could be ignored if additional port information
were to be used. For instance, when vessels stop at loading ports, they are likely
to load or depart, and at known unloading ports the visiting vessels are likely to
unload, or arrive. This could be implemented by using additional port informa-
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tion in combination with the clustering approach described in Section 4.3.1. An
imagined issue with this approach, however, was that some bunkering ports also
serve other functions such as unloading, therefore, it could be more difficult to
separate bunkering visits from unloading activities. This approach would attempt
to deduce the context surrounding a vessel’s port visit, and although it seems
promising, it requires additional port information, and potentially more analysis
into the vessels’ trajectories during port visits.

Additional vessel, or voyage information for prediction improvement

Lastly, the interviewees were asked what vessel or voyage features they imagined
could gain insight into voyage patterns and subsequently improving destination
predictions. In addition to the vessels’ segment and sub-segment, they thought
that the loading condition of the vessels would have a substantial impact on pre-
dictions. For example, if a vessel is loaded, it has fewer possible destination ports
as it must arrive at a discharge port to unload. On the other hand, if the vessel
is unloaded, or in ballast condition, it will probably visit a loading port next. It
is possible to estimate a vessel’s loading condition by looking at the vessel’s cur-
rent draft in static AIS messages. The draft of a vessel describes how deep the
vessel is traveling, in meters, in the water. This value is higher when the vessel
carries cargo, and lower if it is in ballast. Thus, if the information regarding ves-
sels’ loaded conditions were known during a voyage, the model could easily be
trained to recognize these patterns and most likely be more accurate.

Moreover, it was suggested that ports’ depth restrictions could be con-
sidered when making predictions. As the current draft or depth of the vessel is
known, it can only arrive at ports that are deep enough to receive it. This type of
information could also serve as valuable input to determine what ports are rele-
vant shipping ports, as mentioned in Section 2.3.3. In terms of predictions, larger
vessels have a fewer number of ports that have the capability of receiving them in
contrast to smaller vessels, thus, it could limit the number of possible arrival ports
for some vessels. Lastly, based on the experts’ opinions, other factors such as the
current season, or month, could also have an impact on predictions as voyages are
quite cyclic in nature, especially for some cargoes such as grain which is harvested
at certain times of the year at different locations in the world.
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Discussion

In this chapter, a summary of the thesis is provided, followed by discussions of
the proposed solution, the field of study, possible applications, and the approach’s
validity both in terms of academic and commercial value. Finally, the limitations
of the thesis and proposed future work are presented and discussed.

6.1 Summary

This thesis has investigated the topic of destination prediction for vessels in the
shipping industry by using historical Automatic Identification Systems (AIS) data
and additional vessel information. AIS is a globally adopted tracking system that
transmits all commercial vessels’ geographical and navigational information sim-
ilar to that of GPS.

The thesis objective was to develop a methodology for predicting travel-
ing vessels’ future destination ports on a global scale unrestricted by specific vessel
types, geographical regions, or time intervals using historical AIS data. The the-
sis was based on a collaboration with a technological maritime start-up company
Maritime Optima AS (MO) who provided the data foundation used throughout
the thesis, as well as access to experts to validate the solution. In doing so, the
thesis sought to answer two primary research questions:

1. How can AIS data combined with specific vessel details be applied to predict
future destinations of maritime vessels?

2. What is the impact of vessel segmentation on prediction methods, or vessels’
general predictability?

Related work within the area of vessel destination or trajectory predic-
tion was investigated to determine to what extent existing literature had already
answered the research questions. It was found that the majority of related work
was motivated by collision avoidance for safety reasons, anomaly detection to de-
tect vessels deviating from established shipping lanes, automated collision avoid-
ance systems to be installed on autonomous vessels, or short-term trajectory pre-
dictions to aid in port management and scheduling. Existing works motivated by

83
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these factors did not consider the future destination port of the traveling vessels,
but rather the vessels’ specific positions or future trajectories in a short time in-
terval ranging from minutes to a few hours.

The few related studies that considered future destinations of vessels
were almost all limited, or exclusively tested on a specific region or area such
as the Mediterranean sea. One study was found that considered a general port
destination prediction approach, however, this study, presented in Zhang et al.
2020, exclusively considered the geographical information provided by the AIS
standard, and did not consider additional vessel information such as the type,
size, or capacity of vessels. Since the research questions were not fully answered
by the existing literature, the thesis goal was refined to developing a global and
general vessel destination prediction method that is capable of considering more
than purely spatial voyage information such as vessel segments and sub-segments
as provided by the collaborative company Maritime Optima AS (MO).

In order to use spatial voyage trajectories derived from AIS data in the fi-
nal prediction method, the thesis formulated a voyage definition that determined
what conditions had to be true to consider a vessel arrived at a specific port.
Based on related works, a clustering-based approach was initially evaluated that
detected “clusters” of AIS records close to shipping ports using the Density-based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm. When posi-
tional records were transmitted in a high enough density close to a port, the vessel
was considered arrived. However, this approach was later abandoned in favor of
a voyage definition that considered the vessels themselves expressing an arrived
state via the navigational status “moored” in the AIS data. The latter approach
was favored as it ignored intermediate port visits during a voyage such as when
vessels stopping to refuel at bunker ports, therefore, it produced more realistic
voyage characterizations of higher predictive value, taking into account where
the vessel finally unloads cargo and considers itself moored.

Using the predefined voyage definition, historical AIS data ranging from
December 2019 to March 2021 provided by MO was constructed into 1.7 million
voyages and trajectories defined as positional records transmitted between sub-
sequent departures and arrivals. These voyages formed the initial training data
to be used to train a Machine Learning (ML) model to predict voyages’ arrival
ports. In order to consider specific vessel information, voyage information, and
spatial trajectories, a method of structuring spatial trajectories as categorical and
numerical values was proposed.

In this approach, every historical trajectory was compared with every
other trajectory outgoing from the same departure port from vessels of the same
type in order to find the most similar historical trajectory. The Symmetric Segment-
Path Distance (SSPD) algorithm was used to determine trajectory similarity. The
trajectories had been simplified prior to this comparison by only using one point
at every six-hour interval in each trajectory in order to make comparisons easier.

Furthermore, in the process of trajectory comparisons, each voyage was
divided into at most four incomplete versions of the same trajectory to emulate
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realistic voyages not yet reached their final destination. The most similar histori-
cal trajectory’s destination port (MSTD), the value indicating the similarity value
of the trajectories, and the trajectory length became the categorical and numer-
ical values representing a voyage’s spatial trajectory. The final training set only
contained categorical and numerical values, consisted of 4.3 million incomplete
voyages, and formed the final training dataset used to train a ML model.

An Extreme Gradient Boosting (XGBoost) ML model was then configured
and trained to predict a voyage’s arrival port by considering the vessel’s segmen-
tation, or type, departure port, MSTD, MSTD similarity, and trajectory length, or
duration. The training process used 80% and 20% as training and evaluation data
respectively and achieved an accuracy score of 72%, and an F1-score of 0.734 val-
idated by additional metrics and cross-folder validation. The 20% of the dataset
used to evaluate the initial training process resulted in around 880 000 example
predictions that were then analyzed in order to gain insight into research question
2 (Section 1.5). It was found that the segmentation value had a large impact on
the model’s performance, and some vessel segments were easier to predict than
others. For some segments, accuracies for underlying sub-segments defined by
vessels’ size and capacities seemed to indicate some correlation between vessel
size, capacity, and predictability, however, in other segments, this did not seem to
be the case.

Finally, in order to determine the validity of the proposed solution, sev-
eral high-ranking commercial shipping actors were interviewed. They provided a
valuable perspective into the commercial validity of the thesis and had numerous
suggestions for possible applications and future improvements.

6.2 Research questions

This thesis has aimed to answer two main research questions, as listed in Sec-
tion 6.1, as well as a number of sub-questions as specified in Section 1.5. This
section describes how each research question was answered as part of the pro-
posed solution or preliminary literature review.

6.2.1 RQ 1: How can AIS data combined with specific vessel details
be applied to predict future destinations of maritime vessels?

The existing literature was unable to fully answer this research question which
further motivated the developed model proposed in this thesis. Thus, the thesis
proposes a method of predicting the future destinations of vessels based on his-
torical AIS and specific vessel details. Vessel voyages were defined and trajectories
were constructed using historical AIS records. These trajectories were structured
as categorical and numerical values by making initial predictions purely based
on the spatial trajectories by calculating the Most Similar Trajectory’s Destination
(MSTD). The resulting training dataset was extended to include additional vessel
details such as the vessels’ segments and sub-segments. Thus, any classification-
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oriented ML model could be trained to predict voyages’ arrival ports.

RQ 1a: What prediction methods can be used to predict vessel destinations?

In addition to the thesis’ proposed method, existing literature showed a few meth-
ods capable of predicting destination ports. The only study found unlimited by
specific geographical regions developed a Random Forest (RF) -based trajectory
similarity measurement method that was used to find a traveling vessel’s most
similar historical trajectory’s destination port similar to that of the MSTD value
used in this thesis. They also used the frequencies of port visits to normalize the
predictions. In the solution proposed in this thesis, their ML-based trajectory sim-
ilarity method could replace the SSPD method when calculating the MSTD value
in the training dataset and when making predictions.

In terms of ML models, when the problem of destination prediction is
formulated as a classification problem it seems that the most viable models are
tree-based ensemble methods such as the Random Forest (RF) or Extreme Gra-
dient Boosting (XGBoost) models. In contrast, for short-term trajectory predic-
tions, many different models were applied in related works. For these predictions,
nearest neighbor search-based approaches were common as well as a variety of
feedforward neural networks.

RQ 1b: What information can be used to predict vessel destinations?

The related work showed that purely spatial attributes in historical AIS data had
been used to make predictions regarding vessels’ future trajectory or destination. A
few studies used the vessels’ heading and speed as well as their geographical coor-
dinates when making predictions, however, it was most common to only consider
trajectories derived from geographical coordinates when making predictions. In
the thesis’ proposed solution, the vessels’ departure ports and vessel segmentation
proved to be highly impactful on destination predictions.

Furthermore, shipping experts interviewed explained that in addition to
vessel segments and sub-segments, vessels’ current drafts (depth underwater) in
addition to port restrictions can indicate where vessels will travel. Large vessels
are particularly affected as there are few ports that are capable of receiving and
loading them. Weather also has a large impact on vessels’ traveling patterns but
usually does not affect vessels’ final destination port as this is already decided
before the voyage begins. The experts also explained that seasonality may be an
impact factor as some wares are only exported during particular seasons. However,
in areas affected by ice, it may also impact vessels’ voyage trajectories as some
areas are unnavigable for most vessels during winter months such as the Northeast
passage.
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RQ 1c: To what extent do methods proposed in existing work vary in scope
of applicability?

Time extent Based on the results from a review of the current literature, most
prediction methods did not consider future destination ports, but rather vessels’
future short-term trajectories. The development of such methods was often moti-
vated by security improvement and used to detect possible collision scenarios. As
collision scenario detection is only relevant in shorter time-frames, these predic-
tion methods were limited to restricted time intervals ranging from minutes to a
few hours at most.

Geographical extent As most related studies are motivated by goals such as se-
curity improvement, port management, and anomaly detection, they are not only
limited by temporal extent but also geographical extent. For collision detection,
the geographical area is not very relevant because the developed methods should
be applicable to any given area, port, or region. Moreover, anomaly detection
studies were usually limited to specific geographical regions in order to reduce
the amount of noise or irrelevant data. For example, for detecting illegal, or irreg-
ular, fishing activity, only fishing vessels in a particular area are considered. The
few longer-term prediction methods discovered that did consider logistics were
also mostly limited by a single geographical region. Seemingly, this was often a
result of limited access to global historical AIS data, or the studies themselves
were conducted in collaboration with a specific maritime organization. Only one
study was found to consider destination predictions on a global scale independent
of both geographical and time limitations.

Data depth In terms of the broadness of data considered for related studies,
most studies only considered geographical data. Some studies considering colli-
sion detection additionally took advantage of additional navigational attributes of
the AIS data such as the vessel’s heading, Course Over Ground (COG), and Speed
Over Ground (SOG). The few studies that considered destination port predictions
were dependent on port data, however, they only considered vessels’ spatial tra-
jectories in their predictions and ignored specific vessel details such as their types
or segments.

The fact that most related work is generally motivated by safety improve-
ment and collision detection reflects the original intent behind the AIS initiative.
The main intention behind the AIS initiative was not economical, or commercial,
in nature, but rather implemented for safety and navigation reasons. However, in
recent years, the commercial shipping industry has begun using AIS for commer-
cial purposes as it has become a trusted source of information. Thus, it is probable
that more studies will focus on AIS for destination prediction and logistics in the
future.
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RQ 1d: How can the validity of predictions made based on different predic-
tion methods be established?

There were many different validation approaches taken in the existing literature.
The most common validation method included using some manner of k-fold cross-
validation with multiple performance metrics such as F1-score, Mean Distance
Error (MDE), and accuracy. Error measurements based on distances were mostly
used in short-term predictions that required high positional accuracy, however, it
was also applied for a few papers that considered destination prediction as well.
In these studies, the distance from the predicted destination port was measured
from the actual destination port. This provides further insight into the level of
error for incorrect predictions. For example, if a predicted arrival port was wrong
but very close to the actual arrival port, the trajectory-based prediction did still
perform quite well. This is a good candidate for future work for this thesis as the
proposed evaluation process did not provide much insight into the level of error
for incorrect predictions.

6.2.2 RQ 2: What is the impact of vessel segmentation by type, size,
or capacity on prediction methods, or vessels’ general predictabil-
ity?

During the model evaluation stage in this thesis, almost 900 000 sample predic-
tions were produced and analyzed in order to determine accuracy levels across
vessels of different segments and sub-segments. Moreover, as a tree-based en-
semble model was used, a sense of feature importance was produced during the
training process. The resulting feature importance showed that the combined seg-
mentation value had feature importance of 0.18 or 18% which was close to that of
the departure port value at 0.23, or 23%. A full overview of feature importances
is shown in Table 5.1.

These feature importances indicate that the vessel segmentation values
play a significant part in the predictability of vessels. This is expected since many
shipping ports are specialized and different countries and regions produce, export,
and import different types of goods and services. The prediction model proposed
in this thesis was generally applicable to any vessel of any segment. However, it
could be possible that separate models trained on different vessel segments could
provide more insight into the predictability of different vessel segments. For large
vessels of specialized segments such as LNG vessels, there are very few possible
loading and discharging ports. Therefore, a ML model could perhaps be more
effective when trained on a segment-specific, low cardinality dataset with only a
few possible arrival ports.

In the generalized approach presented in this thesis, there are also more
samples available for smaller vessels than larger ones as there are fewer larger ves-
sels in the world. Larger vessels usually travel over longer distances making their
voyages less frequent. Therefore, the model could have had a harder time learn-
ing patterns for larger vessels, thus, being somewhat biased toward smaller vessels
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even though larger vessels would have been assumed to be more predictable than
smaller ones.

RQ 2a: What types of vessels are more predictable than others?

Based on the resulting predictions from the evaluation process, the accuracy levels
of the eight different segments are shown in Figure 5.4. The segment “other” had
the highest total accuracy of 76% which resulted from a high number of very
predictable passenger vessels as well as container and car carriers that were also
quite predictable. The tanker and chemical vessels were slightly more predictable
than dry bulk, Liquefied Petroleum Gas (LPG), and Liquefied Natural Gas (LNG)
vessels.

Combination vessels within the segment “combo” also showed a high
accuracy since it includes a sub-segment that overlaps into the tanker and chemi-
cal segments otherwise, the other sub-segments showed low prediction accuracy.
The oil service vessels also showed a high accuracy level caused by a singular sub-
segment including oil platform supply vessels. It is logical that combo vessels are
hard to predict as they can serve multiple functions giving them a broader range
of possible loading and unloading ports.

RQ 2b: Do larger vessels travel in more predictable patterns than smaller
vessels?

The resulting predictions from the evaluation processes showed that there seemed
to be some correlation between size, capacity, and predictability, but only for some
segments. This was investigated by looking at specific sub-segment accuracies for
sub-segments that were based on the size or capacity of vessels. The sub-segments
within the chemical segment somewhat indicate that larger vessels were easier
to predict, however, LNG, and LPG vessels indicate a stronger correlation in the
opposite direction where the smaller sub-segments showed higher accuracies. For
segments such as tanker and dry bulk, no strong correlation was found between
size, capacity, and predictability. Thus, based on the proposed general prediction
method, there is no strong indication of larger vessels being easier to predict than
others.

There are likely to be multiple factors responsible for this conclusion.
Firstly, there are fewer voyages available for larger vessels in the 1.5 years of
AIS data available than for smaller vessels because longer voyages take longer to
complete. Thus, the models know fewer samples of large vessels in the training
dataset and might be slightly biased toward smaller vessels.

Moreover, the longer trajectories are more likely to contain intermediate
port visits along a voyage as vessels stop to refuel at bunker ports. Such trajectories
would then be harder to compare with other voyage trajectories that did not refuel
at the same bunker port. This is less likely to impact smaller vessels traveling short
distances.
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Lastly, there is a trade-off between the size of the vessels and whether
trajectory predictions or port frequency is the best indicator of where it is trav-
eling to. For smaller vessels on shorter voyages, trajectory predictions are more
reliable than port frequencies as the trajectories are shorter and quite compara-
ble, but there are many different possible arrival ports that the vessel can arrive
at. For larger vessels, trajectory predictions are harder because of the length of the
voyages, but there are few possible arrival ports that can receive large vessels. As
Table 5.1 shows, the model found MSTD to be the most important feature. This
could further indicate that the model could be somewhat biased toward smaller
vessels which are likely to have better MSTD estimations because of more com-
parable trajectories. The fact that trajectory-based predictions are more effective
for smaller vessels is further alluded to by the trajectory length being shorter for
correct predictions than for incorrect predictions.

6.3 Limitations and application challenges

This section aims to disclose and discuss important application, or implementa-
tion, challenges as well as other possible impact factors and limitations that might
have affected the analysis conducted throughout the thesis.

6.3.1 Vessel voyage definition

As summarized in Section 6.1, the thesis composed a specific voyage definition
that was used to construct voyages from historical AIS data. This definition was
an important aspect of the proposed solution as it forms the foundation of what
voyages are and how resulting voyage predictions are characterized. Related work
granted little insight into this area as few studies considered individual voyage
predictions, however, one approach was proposed in Zhang et al. 2020 that in-
volved using the DBSCAN algorithm to detect clusters of positional AIS data trans-
mitted by individual vessels close to ports. A similar approach was investigated in
this thesis (Section 4.3.1) where clusters were detected, mapped to their closest
port, and labeled as an arrival at the port. The main disadvantage of this approach
was that it defined vessels bunkering (refueling) as arrivals as it cannot distinguish
between vessels stopping at ports to load or unload and vessels stopping close to
ports because they are held up or bunkering and vessels stopping to load or unload
cargo.

An alternative approach was proposed in this thesis where the naviga-
tional status attribute in the AIS data was used to determine when a vessel has
arrived at a port. A vessel is considered to arrive when the status is set to “moored”
close to a port. This navigational status is a manual input attribute that the cap-
tain or crew onboard a ship manages. This means that when the signal is set to
“moored”, it is the captain of the vessel that considers the vessel as arrived at
a port. Thus, the alternative definition trusts the vessels themselves to manage
their moored and moving statuses which have the advantage of producing more
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commercially viable voyages but are affected by human error and lacking stan-
dardization. This latter approach was the chosen voyage definition throughout
the thesis as the cluster-based solution proved difficult and time-consuming to
configure in order to get a good voyage definition for all vessels, while the latter
definition, on average, produced high-quality voyages.

From expert validation, some additional opinions were given on the topic
of voyage definitions. One promising suggestion was given that mostly revolved
around using additional port information to determine what the purpose of port
visits was. For instance, vessels are likely to load at loading ports, likely to un-
load at unloading ports, and likely to bunker at bunkering ports. Thus, a third
alternative could have been constructed using a combination of the clustering ap-
proach with additional port data to determine why vessels stop at different ports.
Although the required information per port was not available when developing
the thesis’ proposed solution, it shows promise as a future improvement on the
thesis work.

6.3.2 Geographical trajectory abstraction and MSTD

Another challenge discussed throughout the thesis is the method of which to con-
sider both geographical trajectory and additional vessel and voyage information
in a Machine Learning (ML)-based prediction method.

In this thesis, a vessel’s spatial trajectory is reconstructed in the categor-
ical value Most Similar Trajectory’s Destination (MSTD) and the numerical values
MSTD similarity, and trajectory length. The MSTD value is a preliminary guess of
the vessel’s destination purely based on its trajectory by comparing it to every his-
torical trajectory outgoing from the same departure port. The MSTD is found us-
ing a trajectory similarity measurement algorithm called Symmetric Segment-Path
Distance (SSPD). This method is especially apt at handling trajectories of different
lengths and shapes which was beneficial for comparing incomplete voyages not
yet arrived to complete historical trajectories. In the training dataset which con-
sisted of 4.3 million incomplete voyages, the MSTD value corresponded exactly
to the actual arrival port for 33% of the voyages. This means that a purely spatial
algorithmic approach could be 33% accurate using this approach.

In regards to related work, the method proposed by Zhang et al. 2020
was a purely spatial trajectory similarity-based approach. Their Random Forest
(RF) based ML approach achieved an accuracy of 67%. Although the accuracies
are not comparable as two different voyage definitions were used, there could be a
method of combining both approaches to construct a more efficient geographical
trajectory abstraction and ultimately improve the final prediction method. This
combined approach could also be improved by more data attributes such as vessel
segmentation and the loading condition of vessels which could result in a highly
accurate MSTD value.
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6.3.3 Dataset imbalance

During the preparation stage for ML training, it was discovered that the dataset
suffered from a significant imbalance in terms of the frequency of arrival port
classes. When ML models are trained on imbalanced datasets, the models see
more examples of some outcomes than others which can lead to the model be-
coming biased to the classes with the highest occurrences. Methods of dealing
with class imbalance have become its own area of study within ML disciplines,
thus, implications of solutions to such problems are mostly open-ended. Common
methods of dealing with imbalance include undersampling majority classes and
oversampling minority classes both of which come with their own problems. Un-
dersampling can lead to overfitting as samples are duplicated, or synthetically
generated, and oversampling can lead to removing lots of important information.

In this thesis, a combined approach including both under- and oversam-
pling was used to balance the dataset. The results seem to indicate that the model
did not overfit and still reach a high accuracy, thus, it did not remove too many
important samples, however, cross-validation and other evaluation methods can
be inefficient in some cases of oversampled datasets. Santos et al. 2018 suggest
that model evaluation can be over-optimistic if the training and testing datasets
contain much of the same data. This is common when severe oversampling of mi-
nority classes has been used. In this thesis, oversampling was used very sparingly
and only in combination with additional undersampling techniques. The resulting
dataset did not increase much in size, thus an almost equal amount of majority
classes were removed as minority classes were synthetically generated using Syn-
thetic Minority Oversampling Technique (SMOTE). However, further analysis into
the data preparation stage and evaluation process might be warranted in order
to determine the implications of this sampling process as well as further research
into which sampling techniques are the most appropriate for the training dataset.

6.3.4 External impact factors

Lastly, the predictability of vessels ultimately depends on the model’s ability to find
global voyage patterns for different types of shipping vessels. Thus, the level of
predictability can be affected by external factors that have a significant impact on
these patterns. For instance, shipping traffic is orthogonal to the demand of cargo
freight which reflects the production of goods and services, thus, fluctuations in
production, as well as consumerism, results in fluctuations in shipping traffic and
voyage patterns. Therefore, it must be considered that changes in commercial
supply and demand have an effect on the validity of the presented prediction
model.

Moreover, the foundation dataset used in this thesis was collected from a
historical set of AIS data ranging from December 2019 to March 2021, therefore,
and significant impact factor could be that of the outbreak of the COVID-19 virus
that affected the entire world in the year 2020 (Velavan and Meyer 2020). The
outbreak has had a significant impact on the shipping industry in the time range of
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available AIS data used in the thesis. For instance, the virus outbreak has to lead to
various port closures, less demand for cargo, and extensive layups (vessels brought
out of commission)1. Oil prices have also been affected, and some countries like
Norway have had an overflow of resources that could not be shipped to other
countries. In these cases, tanker vessels have been recommissioned for oil storage
purposes. Furthermore, a study presented Michail and Melas 2020 claims there
has been a significant impact on especially the tanker and dry bulk cargo segments
and found a measurable correlation between the increase in COVID-19 cases and
decrease in dry bulk and tanker freight indices.

Because of the extensive impact of the outbreak, it must be considered
that the model trained for arrival port prediction presented in this thesis is also
affected. In the predefined dataset, there is not enough data to measure the impact
since it should at least cover a full year of data before the virus broke out for
comparisons. However, given more historical AIS data ranging back further in
time, a study could be conducted to investigate this relationship.

6.4 Commercial applicability

This thesis has been developed in collaboration with the maritime technological
startup company Maritime Optima AS (MO) where the author is also employed
and has been involved with since it was founded in 2018. Therefore, there are
interests in regard to future use and commercial applicability. After the proposed
model was trained and evaluated, other external shipping contacts provided by
MO were also interviewed in order to gain insight into possible future applications
and validity. It was clear from this information gathered that the most promising
aspect of the thesis involves the possible applications toward forecasting vessel
availability within specific segments in specific ports and regions.

A path toward implementing such as system would involve combining
resulting arrival port predictions with a method of estimating the Estimated Time
of Arrival (ETA) to the predicted arrival port from the vessel’s last known position.
This could relatively easily be implemented by using a route estimating tool such
as the one provided by MO. This tool finds the most optimal route from any two
given points at sea returning the distance of the calculated route. Thus, given a
prediction of the next arrival port and ETA for every currently traveling vessel,
an estimate of which vessels will be arriving at different ports at different times
can be calculated. This functionality enables shipping operators and investors to
make more informed decisions when deciding what cargoes to bid on and what
areas to focus on. It also helps the cargo owners decide when to ship this cargo.

Today, such information is currently provided as a service through ship-
ping brokers who conduct extensive analysis and sell their analysis to charterers,
ship owners, investors, and cargo owners. A point made from one of the inter-
viewees was that the work presented in this thesis would probably be of high

1https://www.mondaq.com/marine-shipping/958770

https://www.mondaq.com/marine-shipping/958770
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value to the brokers as additional insight into voyage patterns rather than to the
charterers themselves. The brokers are trusted sources of information while tech-
nological solutions are less so and can currently not cover all of the services that
brokers provide. Thus, the presented solution can help brokers collect data more
effectively, or from a different perspective, as well as be integrated into existing
software solutions such as MO.

6.5 Conclusions and future work

The shipping industry is a vast and complex ecosystem that has extensive influence
on every country in the world as well as the global economy. For the companies
and investors involved, being able to make effective market predictions is key to
making good decisions and beneficial investments. The shipping market is volatile
and mainly affected by the supply of vessels and the demand for cargo. This thesis
has presented a method for vessel destination forecasting based on historical AIS
which is capable of considering additional information such as vessel segments
when making predictions. When applied to a global set of vessels, it could be ap-
plied to forecasting the availability of vessels in ports and regions thus providing
insight into the vessel supply aspect of the shipping market. This possible appli-
cation of the thesis was confirmed to be of interest to shipping experts who were
interviewed to confirm the validity of the thesis.

Effectively predicting future destination ports and vessel availability is a
complex problem, and there are many factors that affect vessels’ voyage patterns.
Therefore, the proposed method was focused on supporting multiple vessel, or
voyage, features. By abstracting spatial trajectories into categorical and numeri-
cal values, additional features can be later added to investigate what information
impacts the model’s performance. The trajectory similarity measurement used in
this abstraction can also be exchanged with another so different similarity mea-
surements can be explored and improved upon without changing the underlying
data structure.

The trajectory similarity measurement initially used in this thesis was
the Symmetric Segment-Path Distance (SSPD) algorithm. When applying this al-
gorithm to a range of historical incomplete voyages, it achieved an accuracy level
of 33%. Since the structure of the dataset provides high flexibility in replacing
the SSPD-based MSTD value with another, for future work, it is suggested that
different trajectory similarity measurements are implemented and evaluated. For
instance, a promising method for trajectory similarity measurement was presented
in Zhang et al. 2020 which could be combined with the proposed solution to im-
prove the performance of the model.

The final trained Machine Learning (ML) model had a measured accu-
racy of 72% and was applicable toward analyzing the predictability of different
vessel segments and sub-segments as well as determining correlating relation-
ships between size, capacity, and predictability. However, the evaluation process
presented in the thesis could be further expanded upon to gain further insights
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into the validity of the model. For instance, applying a distance-based error metric
to the sampled predictions could be telling as to how close the model was when
predicting incorrect arrival ports.

Moreover, the thesis used a specific voyage definition when constructing
voyages from the historical AIS data. The advantages of this definition have been
discussed, and alternate definitions have been suggested. As a candidate for future
work, it is suggested that the alternate voyage definition that takes advantage of
additional port data should be explored. A combined approach using positional
clustering and port data could be used to determine the intent, or context, of
vessels stopping at different ports. Implications on prediction performance as well
as validity for commercial users should be described during such as study.

The problem of multi-class classification on imbalanced datasets should
also further be investigated to determine the most appropriate method of manag-
ing imbalance within the constructed training dataset. Santos et al. 2018 found
promising results using a specific combination of SMOTE oversampling and Tomek
Links undersampling to balance the dataset before training while avoiding over-
fitting and over-optimism in evaluation. The impact of the current sampling ap-
proach could also further be investigated as it relates to the validity of the trained
model. Another approach to mitigate this issue could be to train specific models
for different vessel segments. For vessels within the same segment, there are fewer
possible arrival ports thus reducing the cardinality of the training datasets. This
could also be beneficial to gain further insights into the predictability of different
vessel segments.

Furthermore, as already mentioned, the structure of the training process
and dataset provides a foundation that can easily be extended with additional fea-
tures. The trained Extreme Gradient Boosting (XGBoost) model can also estimate
feature importances which makes it easy to add and evaluate new features. For
future work, additional features should be applied to the training set such as sea-
sonality, or time of year, whether the traveling vessel is in a ballast (unloaded) or
laden condition (loaded), and current draft (depth in water). The aforementioned
features are thought to provide more insight into voyage patterns by experts in-
terviewed as part of this thesis.

Lastly, in terms of future commercial applications, it is suggested that
predictions from the presented model can be combined with a route estimator
or a distance table in order to calculate the Estimated Time of Arrival (ETA) to
predicted arrival ports from vessels’ last known positions. Given an overview of
every available vessel’s predicted next arrival port and its ETA, it is possible to
estimate what vessels are thought to be available at different ports and regions
at different times. Thus, an overview can be produced that includes how many
vessels of different segments and sub-segments are thought to arrive at different
ports which has been confirmed to be of high commercial value.
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6.6 Concluding remarks

This thesis has set out to investigate the topic of AIS-based vessel destination
predictions and maritime logistics as it can benefit the maritime industry. Although
it has its limitations, it has, hopefully, provided insights into the challenge and
complexity of this topic area and shaped a foundation that can be further extended
upon in both an academic and commercial sense.
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Appendix A

Feasibility study - Summary

As already mentioned, the main motivation behind the thesis is derived from the
observation that the existing methods of vessel destination prediction neglect data
depth in their models. Especially, not considering the type and dimensions of ves-
sels is presumed to be a major limitation of the existing literature. In order to
establish this in an empirical manner, a feasibility study was conducted on the as-
pect of Maritime Optima AS (MO)’s novel segmentation of vessels. As part of the
course work for the prior NTNU course called “IMT4894 Advanced Project Work”,
such a feasibility study was conducted to estimate the impact of vessel segmenta-
tion on the aspect of port frequencies. Port frequencies, or patterns of port arrivals
and departures should reflect the fact that different vessels of different types travel
in different patterns. Thus, if it is possible to show that segmentations have a sig-
nificant impact on these patterns through port frequencies, it can be concluded
that it will have an impact on vessel destination predictions.

The dataset used in this feasibility study mainly consisted of vessel tran-
sitions, and port data. The dataset also includes the vessel’s segment and sub-
segment. For a given port, every visiting vessel was assigned the attribute NextPort
that indicated the next arrival port after departing the given port. Figure A.1 shows
an example of vessels arriving at the port of Oslo (NOOSL).

Figure A.1: A sample of the dataset used in the feasibility study

In the feasibility study, there were two main steps in the analysis pro-
cess. Firstly, a single-case analysis was conducted on a port known to the author
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to establish a more thorough overview of the traveling patterns of different vessel
types and to gain an understanding of how to interpret the results. Secondly, a
trend analysis was conducted on a collection of ports in order to establish a recur-
ring pattern. In the study, a few major ports were selected combined with a few
ports known to the author and experts in MO. The complete list of ports are listed
in Appendix A.2.

A.1 Single-case analysis

For the single-case analysis, the port of Oslo (NOOSL) was selected as it is fre-
quented by both dry bulk cargo vessels as well as several passenger vessels. It
was presumed that the higher traveling frequency of the passenger vessels would
heavily skew the most frequent next port for all vessels visiting NOOSL. Firstly, the
distribution of the next frequented ports from the port was mapped as shown in
Figure A.2 which shows that the port of Lysaker (NOLYS) is the most frequented
next port by far. Lysaker port is a very small port that mostly receives passenger
vessels that, as expected, would have high frequency because passenger vessels
frequently travel back and forth over short distances. This also means that few pas-
senger vessels could be responsible for almost all voyages, and predictions would
be heavily skewed toward NOLYS.

Figure A.2: Distribution of NextPorts from NOOSL

When looking into the distributions of NextPorts per segment it is even
more apparent that the Other segment (which includes passenger vessels) are
responsible for the high number of voyages to NOLYS. Figure A.3 shows this as
well as the Other is the only segment that shares the same most frequent next
port NOLYS. This means that a prediction algorithm using port frequencies would
accurately predict the next destination ports for these other vessels, but not for
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the rest. Since the other vessels are responsible for 1568 out of 2009 transitions
(78.05%), considering vessel segmentation for predictions, and assuming every
vessel always travel to its segment most frequent next port, a prediction algorithm
could also become accurate for the remainder of the vessel segments which adds
up to 21.95% of all transition and probably most of the unique vessels. This is the
basis used to estimate an improvement, or impact, factor for vessel segmentation
on destination predictions.

Figure A.3: Distribution of NextPorts from NOOSL per segment

Furthermore, as Figure A.4 shows, when looking at the port frequency
of the dry bulk cargo vessels, it is apparent that NOLYS is not even a contender
for the most frequent next port. Therefore, a prediction method considering port
frequencies would not be able to accurately predict the next destination port for
any other vessel other than passenger vessels.

Figure A.4: Distribution of NextPorts from NOOSL for the dry bulk segment

Investigating sub-segments further confirms that a few numbers of ves-
sels are responsible for most of all total transitions. Figure A.5 shows that the
specific sub-segment ‘other - passenger’, or passenger vessels, are responsible for
49.52% of all transitions and nearly all voyages arrive at NOLYS after NOOSL. This
means a prediction model could potentially be improved by 50% if it would be
aware of the sub-segment of each vessel for this particular port. NOOSL seems to be
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a port that shows the problem area quite well because it is a smaller port that re-
ceives a lower number of different vessels, and when there are multiple passenger
vessels frequently arriving at it, they heavily skew the results in their favor.

Figure A.5: Distribution of NextPorts from NOOSL per sub-segment

A.2 Trend analysis

As already mentioned, for the trend analysis, a number of ports were selected
based on their size and traffic. There were also a couple of known ports included
in this dataset to easier interpret the results. The ports used in the analysis were:

• NLRTM — Rotterdam, Netherlands
• NOOSL — Oslo, Norway
• CNSHG — Shanghai, China
• NLMSV — Maasvlakte, Netherlands
• SGSIN — Singapore, Singapore
• USHPY — Baytown, USA
• BEANR — Antwerpen, Belgium
• TWKHH — Kaohsiung, Taiwan
• JPYOK — Yokohama, Japan

The same process as for the single-case analysis was conducted, but on
a higher level as the main purpose of this study was to establish a trend in terms
of a impact factor of vessel segmentation on port frequencies. Figure A.6 shows a
similar version of the table used for the single port analysis (Figure A.2) but also
shows the number of transitions that differed from the most frequent next port
when considering segments (i.e. the estimated improvement factor).

It is apparent that there are variances in improvement factors for dif-
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Figure A.6: Port frequencies and transition distribution as they relate to the most
frequent next port for the selected ports

Figure A.7: Distribution of improvement factors for each origin port considering
segments
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ferent ports ranging from as low as 1.25% to as high as 91.40%. In the case of
NLRTM, which is mostly a dry bulk port, there were no considerable improvements
as almost all vessels are of the same segment. For the port NLMSV, the opposite
was the case as there were a plethora of different types of vessels that frequented
the port. Figure A.7 shows the distribution of the improvement factor considering
segments for each origin port as well as the overall average impact factor for these
9 ports which was 36.88%.

Furthermore, when looking at the impact of sub-segments, as Figure A.8
shows, it seems that the improvement factor has increased overall. For example, in
the case of NLRTM, the improvement factor has increased from 1.25% to 19.66%,
and although this varied for the different ports, the overall average improvement
factor increased from 36.88% to 50.28%.

Figure A.8: Distribution of improvement factors for each origin port considering
sub-segments

A prediction method considering the frequencies of ports for vessel des-
tination predictions would choose the most frequent next port for the predicted
next destination. In this scenario, ignoring the vessel’s type (segmentation) would
give the wrong prediction for a lot of vessels from different segments in a lot of
ports. The results from the feasibility study clearly indicates that applying the as-
pect of vessel segmentation to such models would definitively have an impact on
prediction accuracy and, therefore, is worth investigating further.
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Trajectory sampler Golang
package

Code listing B.1: Trajectory sampler package

1 // Package sampler can be used to sample 2D trajectories based on distance as well as 3D
trajectories based on time

2 package sampler
3
4 import (
5 "errors"
6 "sort"
7 "time"
8
9 "github.com/paulmach/orb"

10 "github.com/paulmach/orb/encoding/wkt"
11 "github.com/paulmach/orb/geo"
12 "github.com/paulmach/orb/resample"
13 "github.com/twpayne/go-geom"
14 "github.com/twpayne/go-geom/encoding/ewkbhex"
15 geomwkt "github.com/twpayne/go-geom/encoding/wkt"
16 )
17
18 // Metric either time or distance used for sampling
19 type Metric string
20
21 const (
22 // Time sampling uses hours as SamplRate unit
23 Time Metric = "time"
24 // Distance sampling uses meters as SamplRate unit
25 Distance Metric = "distance"
26 )
27
28 // Instance of sampler
29 type Instance struct {
30 // Trajectory in (E)WKT format, e.g. (LINESTRING Z (x, y, timestamp))
31 WKTTrajectory string
32 // Trajectory in (E)WBT format, e.g. (01020000800801058A1A4CC312424025B5548F949B5454240000)
33 WKBHexTrajectory string
34 Metric Metric
35 // SampleRate unit is hours for time and meters for distance
36 SampleRate int
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37 }
38
39 // Parsers
40
41 // parse2DTrajectory parses a trajectory not containing Z coordinates
42 // we want orb.Geometry for the resampling method which doesn’t support 3D geometry,
43 // so we use parse3DTrajectory and flatten the coords
44 func (s *Instance) parse2DTrajectory() (orb.LineString, error) {
45 geoLine, err := s.parse3DTrajectory()
46 if err != nil {
47 return nil, err
48 }
49 lineString := orb.LineString{}
50
51 coords := geoLine.Coords()
52 for _, c := range coords {
53 lineString = append(lineString, orb.Point{c[0], c[1]})
54 }
55
56 return lineString, nil
57 }
58
59 // parse3DTrajectory parses a 3D trajectory where the Z coordinate contains time
60 func (s *Instance) parse3DTrajectory() (*geom.LineString, error) {
61 var (
62 geometry geom.T
63 err error
64 )
65
66 if s.WKBHexTrajectory == "" && s.WKTTrajectory == "" {
67 return nil, errors.New("specify either WKTTrajectory, or WKBHexTrajectory")
68 }
69
70 if s.WKBHexTrajectory != "" {
71 geometry, err = ewkbhex.Decode(s.WKBHexTrajectory)
72 if err != nil {
73 return nil, err
74 }
75 }
76
77 if s.WKTTrajectory != "" {
78 geometry, err = geomwkt.Unmarshal(s.WKTTrajectory)
79 if err != nil {
80 return nil, err
81 }
82 }
83
84 line, ok := geometry.(*geom.LineString)
85 if !ok {
86 return nil, errors.New("geometry was not a valid linestring")
87 }
88
89 return line, nil
90 }
91
92 // Resample runs resampling based on given config
93 func (s *Instance) Resample() (string, error) {
94 switch s.Metric {
95 case Distance:
96 return s.resampleDistance()
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97 case Time:
98 return s.resampleTime()
99 default:

100 return "", errors.New("metric was not specified to a valid metric")
101 }
102 }
103
104 func (s *Instance) resampleDistance() (string, error) {
105 parsed, err := s.parse2DTrajectory()
106 if err != nil {
107 return "", err
108 }
109
110 sampled := resample.ToInterval(parsed, geo.DistanceHaversine, float64(s.SampleRate))
111 return wkt.MarshalString(sampled), nil
112 }
113
114 // resampleTime resamples trajectory based on s.SampleRate given in hours.
115 // Extracts the first position within intervals based on sample rate
116 func (s *Instance) resampleTime() (string, error) {
117 var err error
118
119 trajectory, err := s.parse3DTrajectory()
120 if err != nil {
121 return "", err
122 }
123
124 intervals := s.getTimeIntervals(trajectory)
125 reducedCoords := []geom.Coord{}
126
127 coords := trajectory.Coords()
128
129 // within each interval add the first coord to reducedCoords
130 for _, interval := range intervals {
131 var first *geom.Coord
132
133 // find coord first within interval
134 for i := range coords {
135 coordInterval := s.roundTime(int64(coords[i][2]))
136 if coordInterval == interval {
137 first = &coords[i]
138 break
139 }
140 }
141
142 if first != nil {
143 reducedCoords = append(reducedCoords, *first)
144 }
145 }
146
147 // if the last coord wasn’t in the reduced coords, add it
148 lastReduced := reducedCoords[len(reducedCoords)-1]
149 if !lastReduced.Equal(geom.XYZ, coords[len(coords)-1]) {
150 reducedCoords = append(reducedCoords, coords[len(coords)-1])
151 }
152
153 if len(reducedCoords) <= 1 {
154 return "", errors.New("too few points in sampled trajectory")
155 }
156
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157 reduced, err := geom.NewLineString(geom.XYZ).SetCoords(reducedCoords)
158 if err != nil {
159 return "", err
160 }
161
162 return geomwkt.Marshal(reduced)
163 }
164
165 // time sampling helpers
166
167 func (s *Instance) roundTime(ts int64) time.Time {
168 return time.Unix(ts, 0).UTC().Round(time.Duration(s.SampleRate) * time.Hour)
169 }
170
171 func (s *Instance) getTimeIntervals(trajectory *geom.LineString) []time.Time {
172 times := make(map[string]time.Time)
173 for _, coord := range trajectory.Coords() {
174 rounded := s.roundTime(int64(coord[2]))
175 times[rounded.Format("2006.01.02:15:04")] = rounded
176 }
177
178 ret := make([]time.Time, 0, len(times))
179 for _, value := range times {
180 ret = append(ret, value)
181 }
182
183 sort.Slice(ret, func(i, j int) bool {
184 return ret[i].Before(ret[j])
185 })
186
187 return ret
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