
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Kevin Andre Helgeland

Classification of characters using
modular techniques

Bacheloroppgave i Computer engineering
Veileder: Ole Christian Eidheim

Mai 2021

Ba
ch

el
or
op

pg
av

e

Kevin Andre Helgeland

Classification of characters using
modular techniques

Bacheloroppgave i Computer engineering
Veileder: Ole Christian Eidheim
Mai 2021

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Classification of characters using modular

techniques
Kevin Andre Helgeland

Preface

This project was chosen to have a closer look into how we could better create an Optical

Character Recognition for character sets that have a large variety of different characters. To do

this, we used Japanese, since they use both chinese characters called kanji, hiragana and

katakana. This made Japanese a good fit for our project.

Whereas we first intended to make a fully functional Optical Character Recognition for japanese,

we soon realized that exploring a modular approach for character recognition would be

interesting enough to explore without looking too much into Natural Language Processing and

object detection.

This project was originally started as a part of a project this Autumn where we ended up with

similar results. Because of this, the pre-processing used in the previous project is still used in this

project. All models made and described during this project have been made for this project, as

we redesigned the models for better results because we now have access to the Idun HPC server

hosted by NTNU.

Finally, we would like to thank Ole Christian Eidheim for being an excellent supervisor for this

project that has provided invaluable guidance for this project with quick responses. Thanks to the

experience and fast, concise answers provided by Ole, this project would not have been possible

without Oles support and guidance. We would also like to thank NTNU for allowing access to

the Idun High Performance Computing group for their GPU resources. We would not have been

able to initiate the experiments we did without this.

Signature: 27.05.2021, Trondheim, Kevin Andre Helgeland

1

Assignment text

This project shall explore the possibilities for character recognition using a modular architecture

for a divide and conquer strategy for recognising japanese kanji and hiragana. We will create

models from just standard linear architecture using CNN and also use architectures that are

modular in nature like Mixture of Experts (Jacobs et al., 1991) and Negative Correlation

Learning (Liu & Yao, 1999) to look for a better result.

Summary

During this project, we decided to have a look at modular architecture for training a model for

classifying kanji and hiragana that are being used in japanese writing. The japanese generally use

multiple types of character sets simultaneously, where they use hiragana, katakana and kanji for

different uses. Katakana and hiragana use about 71 different characters each that represent

sounds that often contain a consonant followed by a vocal. Some examples are の (hiragana) and

ノ (katakana) that represents the sounds “no”.

On the other hand, a kanji represents ideas rather than sounds. Because they represent ideas or

things, there has to be a lot of characters that have to be used. JIS recommends 6000 characters

for everyday use in Japan, and has separated them into level 1 and level 2. We will be training for

JIS level 1 to get most of the important characters.

When looking at CNN with a linear architecture, we see that others have managed to get up to

99.5% accuracy with 878 characters (Tsai,2016). As we will come to know, when we tested the

same model on 3036 characters, we only reached 40% accuracy. Because we only reached a

marginal accuracy, we decided to try a divide and conquer tactic to use multiple expert models

that are specialized in their own problem space.

The first method we tried is Mixture of Experts (Jacobs et al, 1991) where we train 12 experts,

where we use a gating model that distributes importance for each expert for each instance. This

will create models that are specialized on separate parts of the problem space. The second

method that we try is using Negative Correlation Learning (Liu & Yao, 1999). This method

creates unique experts by calculating the correlation between the activation of the models, and

rewarding negative correlations.

2

Table of contents

Chapter 1: Introduction 3

Chapter 2: Earlier work 4

2.1 Batch Normalization 4

2.2 Adams optimizer 5

2.3 ReLU family 5

2.4 Similar solutions 5

2.5 Mixture of Experts 6

2.6 Negative Correlation Learning 8

Chapter 3: Methods 8

3.1 Dataset 8

3.2 Pre-processing 10

3.3 Vanilla Concurrent Convolutional Network (CNN) 12

3.4 Mixture of Experts 14

3.5 Negative Correlation Learning 16

Chapter 4: Results 16

4.1 Accuracy 16

4.2 Top N accuracy 19

Chapter 5: Discussion 20

5.1 Solution 20

Chapter 6: References 21

3

Chapter 1: Introduction

Machine learning for detecting handwritten characters has come far, and can with very high

accuracy detect characters. The MNIST dataset is a common dataset to train models for

recognizing handwritten numbers for lab settings (Deng, 2012). In this paper, we shall have a

look at classifying characters when there are thousands of classes to be classified. This is a

substantially more difficult challenge, because the model will now have to account for more

details than earlier. The dataset that is being used is provided by the ETL-9 Character Database,

and contains all level 1 kanji and all hiragana. This all adds up to 3036 classes in the end. Where

machine learning can accurately predict characters with low class count, a single model will

eventually become too big to cheaply train with a monolithic model.

To solve this problem we have decided that we should test the feasibility of using a modular

approach for training our model. When the problem becomes more complex, the size of the

models increases along with it. This means that when a problem becomes big enough it becomes

infeasible to use one monolithic model to solve everything. Because of that we are looking at a

divide and conquer strategy to solve problems for big classed classification.

This report will use techniques such as Mixture of Experts (Jacobs et al, 1991) and Negative

Correlation Learning (Liu & Yao, 1999) to create an Optical Character Recognition for all 3036

characters in the ETL-9 Character Database, and see if a modular approach can improve the

results versus only using a linear architecture.

Chapter 2: Earlier work

During this chapter, we will give a rough explanation of all techniques used during this project.

We will describe techniques used to standardise activation between layers like PReLU (He et al.,

2015), ELU (Clevert, Unterthiner and Hochreiter, 2015) and Batch Normalization (Ioffe and

Szegedy, 2015). In addition, we will show how well solutions in the past have done in the same

problem space. Finally, we will describe how the Mixture of Experts (Jacobs et al, 1991) and

Negative Correlation Learning (Liu & Yao, 1999) architectures are built.

4

2.1 Batch Normalization

Batch Normalization is a technique cited by Sergey Ioffe, Christian Szergedy (Ioffe and Szegedy,

2015) often used in machine learning to stabilize the neural network and to make the model

faster as a result. Batch Normalization does this by reducing the internal covariance shift by

using mini batches to normalize the activation vectors of the layers Batch Normalization is used

in. Batch Normalization normalizes the data by calculating the variance and mean value of the

minibatch and scaling the output by adding the variance and mean value.

When using batch normalization it is sensible to use higher learning rates in your model, since

this method naturally prevents exploding or vanishing gradients by scaling the values in layers

either up or down. Because of the inherent nature of batch normalization regulating any large or

small values into a normalized output.

2.2 Adams optimizer

Adam optimizer is the optimizer proposed by Diedrik P. Kingma and Jimmy Lei Ba (Kingma.

and Ba, 2014) that uses stochastic gradient optimization that uses adaptive learning rates during

training. Adam optimizer combines the Adagrad (Duchi et al, 2011) and RMSProp (Tielman &

Hinton, 2012) in an attempt to get the best of both worlds, where Adam optimizer adds a bias

correction that prevents large initial steps.

2.3 ReLU family

During this project there will also be mentions of PReLU (He et al., 2015) and ELU (Clevert,

Unterthiner and Hochreiter, 2015). These are both variations of ReLU. Whereas ReLU will

output if and if to create a non linear activation, it has a problem of𝑦 = 𝑥 𝑥 > 0 𝑦 = 0 𝑥 <= 0

dying ReLU and exploding gradient. Dying ReLU happens when too many activations are set to

0, and therefore prevents a large portion of the neurons from ever activating. This has been

solved by using PReLU, that uses if where b is a very low number (He et al,𝑦 = 𝑏 * 𝑥 𝑥 <= 0

5

2015). This prevents the layers from setting too many neurons to 0, which means that the model

no longer kills portions of the neurons.

Furthermore, ELU was also found to converge the model with fewer epochs if it used

if because it saturates negative values. This allows us to get the𝑦 = 𝑏 * (𝑎𝑥 − 1) 𝑥 <= 0

benefits from sigmoid activation without the vanishing gradients.

2.4 Similar solutions

There have been multiple previous solutions when solving our problem space. Many of which

we found used techniques to reduce the feature space before training. One of which used PCA to

reduce the feature space (Hyaman et al., 1991), which managed to get an accuracy of 89.1%

when using 160 principal components when classifying 956 characters.

Other methods for recognizing characters have also been proposed to recognize kanji by

detecting strokes and radicals like radical level representation using CNN (Ke & Hagiwara,

2018). This model detects radicals inside a kanji, and uses LSTM to detect the kanji.

Furthermore, it uses highway layers instead of dense layers to employ some natural language

processing as well. A model like this requires many types of data, and would be expensive to

train, even though effective with 93.5% accuracy.

Furthermore, Takuya Okada and Kazuhiro Takeuchi(Okada & Takeuchi, 2018) tried applying a

sparse autoencoder to automatically detect strokes in a character. This would be a cheaper option

to training the model to recognise radicals. They chose to use a dataset that consists of 3036

characters to train their model. The sparse autoencoder managed to reach an accuracy of 85%.

In this report, we will be using a Convolutional Neural Network (CNN) as a gold standard for

classifying Japanese characters. According to Charlie Tsai (Tsai, 2016), he could make CNN

recognize up to 878 classes for kanji with a 99.5% accuracy by using a CNN directly. He did this

by basing his model on VGGNet (Simonyan and Zisserman, 2014), and is currently one of the

better architectures for image recognition out there at the moment. Comparing this model in our

setting, we can see that the model only reaches an accuracy of 38% when there are few changes

to the model at hand. The reason our method likely reaches a much lower accuracy than Tsais

model, is that we are working on a training set consisting of 3036 classes whereas Tsais is

working with 878 classes despite being an otherwise similar dataset.

6

2.5 Mixture of Experts

Robert A. Jacobs (Jacobs et al, 1991) proposed a new model architecture for allowing for a more

modular approach when classifying instances. This approach uses two separate types of training

blocks to train the model. The first block is called the gating model. This is trained to make a

coarse decision in the early layers of the model, and thus adjust the error on the experts so that

only the experts that are predicted to be relevant for the instance will be trained.

Figure 1: This figure represents the architecture of Mixture of Experts (Jacobs et al, 1991). We can see that the

input is being used equally in all sub-networks in the model. The gating network thus decides the significance of

each expert by itself, returning a significance value between 0 and 1.

The second block is the expert block. In this block, the model is making the finer choices for the

model. When the error is calculated, we are using the formula below to train the experts into

localized models. This is great since localized models make each expert model as modular as

possible as opposed to cooperative experts that need to work together to average to the correct

answer.

7

𝐸 =− 𝑙𝑜𝑔
𝑖

∑ 𝑔
𝑖
𝑒

− 1
2 ||𝑦−𝑜

𝑖
||2

Formula 1: This is the error function for MoE where i indicates a single expert, y is the true value, o is the output

from an expert and g is the gating value for that expert in this instance.

2.6 Negative Correlation Learning

Another method for solving a machine learning problem with modularity is Negative Correlation

Learning (NCL) (Liu & Yao,1999). The idea is similar to MoE in that we are creating expert

networks to solve a subset of the problem, but unlike MoE, this method does not require a gating

block to regulate the experts. NCL will instead impose error penalties based on the correlation to

other models. This ensures that experts are as negatively correlated as possible, and each model

is trained on different problems.

𝐸
𝑖

= 1
𝑁

𝑛=1

𝑁

∑ 𝐸
𝑖
(𝑛) = 1

𝑁
𝑛=1

𝑁

∑ 1
2 (𝐹

𝑖
(𝑛) − 𝑑(𝑛))2 + 1

𝑁
𝑛=1

𝑁

∑ λ𝑝
𝑖
(𝑛)

Formula 2: This is the error function used by NCL to train a single expert. N is the total number of experts and

“i” determines a single expert. ƛ is a number between 0 and 1 that signifies how strongly the correlation should

play an effect. “p” is the correlation function.This allows us to adjust how much the correlation should play a

role.

𝑝
𝑖
(𝑛) = (𝐹

𝑖
(𝑛) − 𝐹(𝑛))

𝑗≠𝑖
∑ (𝐹

𝑗
(𝑛) − 𝐹(𝑛))

Formula 3:This is the correlation function that is being used to determine the correlation between an instance

and the current expert. This will be used along with ƛ, to reward negative correlated instances and punish

strongly correlated instances.

Using the two functions above, we can successfully determine the correlation between each

expert so that we can stimulate the experts to train on different parts of the problem space.

Chapter 3: Methods

This chapter will first discuss the dataset we are working with, how we have decided to pre

process the data for use in the models and how the models were built. We will also describe each

8

of our experiments that consists of three vanilla CNN, one Mixture of Experts model and one

Negative Correlation Learning model.

3.1 Dataset

This project is going to classify handwritten Japanese kanji for use in OCR. Japanese writing

generally consists of 3 character systems; hiragana, katakana and kanji. Hiragana and katakana

both use a similar system, where the characters usually represent a consonant and a vowel with

exceptions. For instance な and ナ both represent the sounds na, where the first character is a

hiragana character, and the latter is katakana. The style for each of the character systems are

slightly different, where katakana are written with more straight lines and clear edges, and

hiragana are more curvy.

There are 46 different characters in hiragana and katakana respectively, with 25 characters that

are variations of some of the characters that are called dakuon and handakuon, making hiragana

a total of 71 classes to classify. An example on the variation is は (ha), ば (ba,dakuon) and ぱ

(pa,handakuon). These can be exceptionally difficult to classify without a logic that looks for the

dots or circle on the edge. However, in this project we will choose to ignore this, since they

represent a smaller portion of the dataset, and we will instead løook at the dataset as a whole.

Kanji on the other hand is an entire system entirely. Kanji is an inherited system from China that

consists of thousands of characters that represent entire words or ideas of words. One character

consists of multiple radicals that are repeating patterns. For example, can we look at the

character 字 that means character and the kanji is built off of of the radicals宀 (roof) and 子

(child). This allows humans to more simply learn mnemonics like “A child living under a roof

can read characters”. We hope that these recurring patterns coming from radicals can also be

used by neural networks on a lower level despite not detecting individual radicals before

classifying the characters, since teaching the network about radicals requires much more

granularity in the data.

The dataset we are using for this project is provided by the Electrotechnical Laboratory, Japanese

Technical Committee for Optical Character Recognition, and we will be using the ETL-9

Character Database. This contains handwritten kanji and hiragana, the dataset is using the JIS X

0208 for labeling the characters along with a serial number for easier use in indexing. The kanji

9

is limited to the characters in JIS X 0208 Level 1 class,meaning the dataset consists of 2965 kanji

and 71 hiragana with a total of 3036 classes.

The data comes in a 127x128 pixel format in a greyscale where each pixel is a number between 0

and 255 to represent the whiteness.

Character Classes Writers Records Resolution

Kanji 2965 200 593000 127x128

Hiragana 71 200 14200 127x128

Total 3036 200 607200 127x128

Table 1: This is a description of the dataset. The dataset were made by having 200 separate writers write each

character once. We get 71 different hiragana and 2965 different kanji with a total of 3036 characters. This gives

us a total of 200 instances of each character written by different people.

3.2 Pre-processing

For this project, we decided to pre-process each of the images so that the images are all the same

size and in the center of the image as often as possible. Since we get a resolution of 127x128, we

need to resize the resolution to at least 64x64. The reason we want to resize the images is

because we want to save resources when training without losing much details. This

preprocessing for kanji was developed for the autumn project for the autumn project during the

TDAT3025 subject and reused for this project (Helgeland,2020).

10

Figure 2: Here we see the transformation when resizing the images directly from 127x128, 64x64 and 32x32. We

can see that 32x32 loses a lot of details on even a pretty clear image once the character turns out small. 64x64

seems to be doing fine so far.

As we see in figure 2, there is a lot of space on the image that remains unused. This could

potentially affect the classification negatively, because the deeper layers will have less details to

work with. The image will be clumped into the center and the dimensions are being reduced with

maxpool. To solve this problem, we will first crop the image before we resize the image to

reduce the empty space area.

Cropping is implemented by detecting whole rows and columns that are empty, and removing

them. This cropping method works fine in most cases, but has a weakness with characters that

use empty space as a part of the character. An example of a character that uses empty space is こ

(ko, hiragana), where the character consists of two horizontal lines with space between. That

character will become flattened, and therefore distorted. However, for our case flattening should

not provide any issues, because all of the instances of characters with rows and columns of space

inside will be distorted equally.

Since we are already cropping the image, we decided to also try to crop away noise from the

images. We noticed that the noise almost alway came from edges followed by space. We then

decided to crop any noise that starts at the edges until whole columns or rows that are empty.

This method is dangerous with the risk of cropping away the entire image if there is a lot of

noise. In the scenario of too much noise, we have decided to add a fail safe that cancels the noise

reduction altogether if the function tries cropping more than 25% of the image from each of the

sides. Stopping cropping might affect noisy instances negatively, but with that much noise the

instance will likely be difficult to use anyway.

Further along noise reduction, we also treat all pixel values under 55 as 0. This action crops fait

smudges with no known repercussions.

If we were to resize now, we would risk distorting the image by stretching it. There is no

guarantee that the image has equal dimensions. This problem can easily be solved by padding the

lower dimension sides to make each dimension equal. We choose to pad equally on each side, so

that the character is centered in the middle of the image.

11

Figure 3: This figure shows before and after resize. To the left, we see the original image for reference. In the

middle-left, we can see the cropped and resized image at 64x64. We can see that the image is mostly clear if not a

little bit blurry. This happens because it crops to smaller than 64x64, and has to upscale the image. To the

middle-right, we see an image that is 32x32, and can see that the details are still not lost. To the right, we can see

the image resized to 32x32 before cropping for reference.

We can see that we get overall good results from cropping the image, and it is entirely possible to

downscale to 32x32 when we use figure 3 as reference. However, in our experiments, we

decided to use 64x64 instead. The main reason we decided this is because we wanted to use and

compare our results to Charlie Tsais (Tsai, 2016) model that uses 64x64. In addition, our

cropping method is known to have a fail safe where it will cancel it’s cropping. If this were the

case, we can see based on both figure 2 and figure 3 that uncropped 32x32 is not usable. In order

to keep the few uncropped images usable, we will use the 64x64 resolution. This is further

enabled by getting access to a High Performance Computing Group hosted by NTNU.

3.3 Vanilla Concurrent Convolutional Network (CNN)

For the purpose of comparing the modular methods to a linear approach, we used a model based

on VGGNet pulled from one of Charlie Tsai’s (Tsai, 2016) methods. This is because it’s a tried

and tested method for a problem space with 878 kanji. We first tried training the model as is, but

we also tried increasing the dense depth to 8192 because we have a bigger output space than

Charlie Tsai did to see how much we can gain by doubling the size.

12

Figure 4: Here we can see the way we have set up the models that we have called “Vanilla”. The model to the left

is the closest one to one of the models from Charlie, where The left one is an extended model.

The models are implemented in python using PyTorch. Each Convolutional layer uses kernel size

of 3 and a padding of 1. This means that each layer outputs the same resolution as the input, and

a kernel size of 3 is a very normal size. One could argue for kernel size 5 in the earlier layers to

make the model faster, but we chose to stay at the granularity of size 3. On a higher level, after

each Convolutional layer we use Batch Normalization followed by a PReLU layer. This prevents

exploding gradients in our model, seeing as it is a rather deep model.

The dense layers are only followed by PReLU/ELU, as Batch Normalization seemed to slow

down the model significantly. Another variation of the model to the right in figure 4 was where

we used ELU instead of PReLU, since that has been shown to converge with fewer epochs,

though a bit slower.

13

Each model was trained using a learning rate of 1e-4, because that seemed to be the highest

learning rate that kept a stable loss. At the same time, we chose to train our model using a

minibatch size of 64. Normally a minibatch size of 16 or 32 would be preferred, but because we

wanted to speed up the training process, we chose to use 64 instead. The learning rate and

minibatch size is consistent in all models.

3.4 Mixture of Experts

Seeing how our problem space seemed very big, and had been solved at a smaller problem space,

we decided to try out modular methods to go for a divide and conquer technique by creating

multiple smaller networks dedicated to solving a sub part of the problem space. Mixture of

Experts (MoE) seemed to be a good fit for this problem, seeing as it trains multiple localized

networks that are gated by a separate gating network (Jacobs et al,1991). Each expert needs to be

as negatively correlated as possible to be as effective as possible (. We tried two general

strategies for solving our problem, where the first uses a static pre-trained gating network and the

other uses a dynamic gating network that is being trained along with the experts.

If we were going to use the static gating method, we would have to first decide what characters

are most negatively correlated(Yuksel, Wilson, & Gader, 2012; Masoudnia & Ebrahimpour,

2014). This could be done by extracting features by using either a pre-trained CNN or by using

an auto encoder to detect strokes of the characters, and then use a k-means to cluster the experts

into negatively correlated classes. Once we have the classes ready, we could train the gating

model based on the clusters, and freeze it when training the rest of the experts. This would

require more manual work, but could also provide a model that is easier to debug, since we can

directly have a look at what experts are struggling with, and what characters those are trained on.

Despite this, we realized quickly that a model this rigid did not train well, because it is difficult

to cluster the characters into negatively correlated clusters. There are also no cooperation

between networks that happen to actually be somewhat correlated

On the other hand, the dynamic model seems much more reliable, as it can dynamically find the

best experts to endorse based on the early layers in the model that it trains on. Since these layers

usually tell the model about individual lines and strokes, it has a good leverage for deciding

which experts are likely to output the lowest error. This allows the gating model to adjust to the

expert models as they are training on their own. This technique does have the weakness of not

14

guaranteeing that the experts are training on different “expertises”, which means that experts

could be trained to be correlated in the worst case scenario.

Figure 5: This is a model of the Mixture of Experts implementation that we used. We use the output from the

gating convolutional layers as input for both the gating dense layers and the expert convolution layers. Because

the early layers mostly detect simple shapes like lines, curves and edges, so we can reuse the output from those

layers.

The gating values are normalized to a number between 0 and 1 with the formula 3 as described in

the previous work chapter. Doing this will reduce expert strength for experts that are not well

trained for a certain instance which allows the experts to compete to be used. Just like the vanilla

CNN, we are using Batch Normalization and PReLU after each convolutional layer and PReLU

after each dense layer.

15

3.5 Negative Correlation Learning

Since Negative Correlation Learning (Liu & Yao, 1999) is created to be able to create negatively

correlated experts, we decided to implement this as well as a response to our Mixture of Experts

not being able to guarantee a negative correlation to see if that helps our case. Each expert uses

the same structure as the right model in figure 4 in vanilla CNN. In addition, we tried to separate

a block of the earlier layers into a shared block that we call a stem. The experts branch out from

the stem for the last layers. We do this because the earlier layers find the same simple features

anyway, whereas the later layers are where the uniqueness happens anyway. Using a common

stem could reduce computer resources that are being used.

When training Negative Correlation Learning and Mixture of Experts, we chose to use 12

experts. This seemed to be the limit of the computer resources of what we got. This would

optimally give each expert the domain over 253 classes if there were no overlap.However, when

using models that are competing, there is bound to be overlap. However, seeing as how previous

work seems to handle character recognition fine when categorizing 878 characters, this should be

sufficient.

Chapter 4: Results

This chapter will talk about the results we have managed to accumulate during these

experiments. During this project, we have created three different CNN models to function as a

reference to how well the modular models are working. As for the modular methods, we shall

compare the results from Mixture of Experts (MoE) and Negative Correlation Learning (NCL).

4.1 Accuracy

The models are trained on NTNUs hpc server called idun using tesla P100 GPU. Each model

was given 10 epochs to train where one epoch corresponds to using all training data. The training

data is 80% of the full dataset. We choose to use 80% as training data because the dataset has

inherently a wide problem space, and need as many varieties of writers as possible for a more

stable model. The last 20% of the dataset will be used as a separate test dataset to verify the

accuracy.

16

Model: Accuracy Training time:

Vanilla CNN FC:4096 w/PReLU 39.8% 44 hours

Vanilla CNN FC:8192 w/PReLU 39.8% 45 hours

Vanilla CNN FC:8192 w/ELU 38.5% 46 hours

Mixture of Experts w/stem 40.5% 61 hours

Negative Correlation Learning 40.7% 46 hours

Negative Correlation Learning w/stem 40.7% 60 hours

Table 2: This is a table showing the final results for each model. The training time shows how much time it took

to train the model, including calculating the accuracy. When looking at training time, the models were trained on

the NTNU hpc cluster using Tesla P100 GPU. The times should be read with a grain of salt, since my process

could have been interrupted by another more prioritised process. However, it does give a ballpark estimate.

The idea of stem seems to be making the models that I use it in slower, since it is used in both

Mixture of Experts and the second Negative Correlation Learning model. The reason for this

added time despite less calculations could be that PyTorch works the stem synchronously. If this

is the case, the fact that the cuda cores are somewhat prohibited from working fully

asynchronously across the entire model. However, a stem will reduce resource usage in terms of

memory usage.

17

Figure 6: In this figure, we can see the accuracy growth during the training of the vanilla CNN model. The

model seems to converge after one and two epochs and stay stable. All the vanilla models had the same trend

regardless of model depth and activation function.Doing this again would prefer to measure accuracy mid epoch

after for more granularity.

18

Figure 7: This is the model for displaying the loss and accuracy for the Mixture of Expert model for each epoch.

As one can see, it outputs similarly to Vanilla CNN. This tells us that Mixture of Experts does not seem to have

any other setbacks for working having multiple models working separately and also having to train a gating

model.

Figure 8: this is the model for displaying the loss and accuracy for the Negative Correlation Learning during

training for each epochWe can see that the model trains slowly at first, bus speeds up after 2-3 epochs. This is

likely because the experts are very correlated in the beginning. In this case, the models are encouraged to find

their own problem space instead of increasing accuracy right away.

4.2 Top N accuracy

Because these models have a generally low accuracy as seen in table 2, we decided to have a

look at top n accuracy. If we look at the accuracy when looking at the top n guesses, we would

like to see how much the accuracy increases. This is to have a look at the possibility for Natural

Learning Processing to correct the incorrect accuracies later when context is applied in the

sentences.

19

Figure 9: This figure displays how the accuracy increases as we increase N for checking top N accuracy of the

model for Vanilla CNN. As we can see, if we accept the top 2 characters as an answer, the accuracy reaches 79%

accuracy, and almost linearly increases past that point by 2% per N past that point.

Chapter 5: Discussion

This chapter will discuss the results that we got during this project. We will compare the results

from previous work to what we have achieved and discuss the usages for the different

architectures based on our findings. We will end this chapter by reflecting on what could be

better and future work.

5.1 Solution

As we see in the results chapter, the results have been less than adequate for an OCR that should

be somewhere between 80-90% if it were to be used. Instead we have an accuracy of 38-40%

across all models. On the other hand, we can see from the figure 9 that if we introduce top N

accuracy, the model then reaches an adequate accuracy. This tells us that techniques that employ

context on top of the results like Natural Language Processing could employ our model and still

get decent results.

Another observation we would like to make is that when classifying kanji with a large number of

output classes a very common strategy for doing this is by using techniques that encode the

20

characters into smaller characters like radicals or strokes by some kind of autoencoder. Tanuya

Okada and Kazuhiro Takeuchi (2018) managed to reach 80-90% accuracy with the same dataset

with 3036 classes using autoencoder, whereas we managed to get to 40% accuracy with Mixture

of Experts and Negative Correlation Learning. Our model does not detect smaller components,

despite the fact that it would have likely benefited from an autoencoder. This strengthens the idea

that using smarter feature extractions with a monolithic model seems to be a better way of

approaching a big problem space rather than dividing the problem into multiple models when

using the current techniques.

Whereas Mixture of Experts and Negative Correlation Learning might not be the solution we

had hoped for, the fact that the results stayed mostly the same compared to vanilla CNN tells

us that it might still be used for dividing the problem into multiple computational units. As we’re

solving complex problems, we might encounter problems that require huge models. In this case a

modular architecture will more easily allow for a horizontal scaling instead of a vertical scaling,

which tends to be cheaper.

As we made some tests with PReLU versus ELU, we found that PReLU worked best in our

problem. This could be that when there is a big problem space, PReLU retains information about

which classes are just bad, while others are very bad. On the other hand, ELU will not retain this

information to a high degree because of its logarithmic properties. However, while there is an

increase in accuracy, this could also be a case of bad luck for ELU. If the start bias for the ELU

test were unlucky, the model could find a local minima that the other two vanilla tests did not.

Chapter 6: References
Tsai, C., 2016. Recognizing handwritten Japanese characters using deep convolutional neural

networks. University of Stanford in Stanford, California, pp.405-410.

Yuksel, S. E, Wilson, J. N & Gader, P. D, 2012. Twenty Years of Mixture of Experts. IEEE

transaction on neural networks and learning systems, 23(8), pp.1177–1193.

Masoudnia, Saeed & Ebrahimpour, Reza, 2014. Mixture of experts: a literature survey. Artificial

Intelligence Review, 42(2), pp.275–293.

Liu, Y & Yao, X, 1999. Ensemble learning via negative correlation. Neural networks, 12(10),

pp.1399–1404.

21

Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E., 1991. Adaptive mixtures of local

experts. Neural computation, 3(1), pp.79-87.

Ke, Yuanzhi & Hagiwara, Masafumi, 2018. CNN-encoded Radical-level Representation for

Japanese Processing. Transactions of the Japanese Society for Artificial Intelligence, 33(4),

pp.D-I23–1-8.

Okada, Takuya & Takeuchi, Kazuhiro, 2018. Comparing Sparse Autoencoders for Acquisition of

More Robust Bases in Handwritten Characters. Integrated Uncertainty in Knowledge Modelling

and Decision Making, 10758, pp.138–149.

He, Kaiming et al., 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance

on ImageNet Classification. 2015 IEEE International Conference on Computer Vision (ICCV),

2015, pp.1026–1034.

Clevert, D.A., Unterthiner, T. and Hochreiter, S., 2015. Fast and accurate deep network learning

by exponential linear units (elus). arXiv preprint arXiv:1511.07289.

Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Hyman, S.D et al., 1991. Classification of Japanese Kanji using principal component analysis as

a preprocessor to an artificial neural network. IJCNN-91-Seattle International Joint Conference

on Neural Networks, i, pp.233–238 vol.1.

Deng, L., 2012. The mnist database of handwritten digit images for machine learning research.

IEEE Signal Processing Magazine, 29(6), pp.141–142.

Electrotechnical Laboratory, Japanese Technical Committee for Optical Character Recognition,

ETL Character Database, 1973-1984

Ioffe, S. and Szegedy, C., 2015, June. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In International conference on machine learning (pp.

448-456). PMLR.

Duchi, John, Hazan, Elad & Singer, Yoram, 2011. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research, 12,

pp.2121–2159.

Tieleman, T. and Hinton, G., 2012, Lecture 6.5 - RMSProp, COURSERA: Neural Networks

for Machine Learning. Technical report, .

22

Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Helgeland K. A., 2020, Kevinah rapport_ Gjenkjenning av japansk håndskrift, TDAT3025

Appendix:

Project architecture
|
|____Vanilla
| |___main.py
| |___main_topN.py
| |___Vanilla_CNN_M4.py
| |___Models\
|
|____MixtureOfExperts
| |___train_MoE.py
| |___main_topN.py
| |___MixtureOfExperts.py
| |___Models\
|
|____Vanilla
| |___train_NCL.py
| |___main_topN.py
| |___Vanilla_CNN_M4.py
| |___Models\
|
|____OCR_preprocessing.ipynb
Figure 10: this is the project structure used during this project.Because the models were trained separately, the

training scripts were copied instead of creating scripts that take in parameters to unify the architecture.

Installations and running

Running the scripts require the following dependencies:

Python 3.8.6

PyTorch 1.7.1

CUDA 11.1.1*

23

*Cuda also requires some Nvidia specific hardware to use. The model is trained on the Tesla

P100 GPU, and assumes that a similar or better GPU is equipped.

When running the scripts, the working directory should be the same as the main.

Main.py, train_MoE.py and train_NCL.py are the scripts that should be run to train the models.

Remember to set the training and test data paths accordingly in the get_data functions.

OCR_preprocessing.ipynb requires a jupyter notebook to run and uses both matplotlib and

numpy for visualization ona rescaling.

24

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Kevin Andre Helgeland

Classification of characters using
modular techniques

Bacheloroppgave i Computer engineering
Veileder: Ole Christian Eidheim

Mai 2021

Ba
ch

el
or
op

pg
av

e

