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Problem

Picterus AS, a Norwegian company developing an application for diagnosing jaundice in newborns
by smartphone images, are looking into different models to accomplish this task. As neonatal
jaundice in the worst cases might be lethal, accurate and reliable diagnoses are required. The task
of this thesis, is to look into machine learning models, which takes in multiple images of newborns
at once, doing bilirubin prediction on these sets of images. The goal is to explore whether such
models might achieve better accuracy in these estimations than existing models.
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Abstract

Jaundice in newborn babies is a common occurrence. It is usually harmless, and caused by elevated
levels of the pigment bilirubin. In severe cases, however, the condition may become lethal, or lead
to permanent brain damage of the infant. Diagnosing this condition is therefore an important task.
This is complicated in some regions of the world, as access to equipment for diagnosing is lacking.
Therefore, much effort has been made into creating systems using digital images, which can be
taken by smartphones, to estimate bilirubin levels. This thesis looks into the use of the hot field
of multi input machine learning models, for the use in bilirubin estimation. Two such models are
proposed, and compared both to a popular existing model, and a similar single image machine
learning model. Though conclusive results were not obtained, these proposed models showed great
promise.
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Sammendrag

Gulsott hos nyfødte babyer er vanligvis et normalfenomen, som er forårsaket av økte nivåer i blodet
av fargestoffet bilirubin. Unntaksvis kan disse nivåene stige til såpass høyde at tilstanden kan føre
til permanente hjerneskader, eller i værstefall død. Diagnostisering av tilstanden er derfor svært
viktig. Dessverre er dette ofte vanskelig å gjennomføre i enkelte verdensdeler, der tilgangen til
nødvendig utstyr er liten. Derfor er det de siste årene vært mye forskning på å skape systemer
som kan bruke digitale bilder fra smarttelefoner til å estimere bilirubin nivåer. I denne oppgaven
undersøkes det om teknologi fra det nye og populære feltet om multi input maskinlære modeller kan
brukes til bilirubin estimering. To slike systemer blir foreslått, og deretter sammenliknet med en
populær eksisterende modell, og en liknende singel input maskinlæremodell. Selv om resultatene
ikke kunne gi en difinitiv konklusjon, viser de foreslåtte modellene lovende egenskaper.
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Chapter 1

Introduction

1.1 Motivation

Neonatal jaundice is the name of a common condition in newborn babies, where their skin and
whites of the eyes is yellowed. The cause of this condition, is an elevated level of a pigment called
bilirubin. This condition is usually completely harmless, and a reflection of a normal transitional
phenomenon that usually clears out after 10-14 days [1]. Sometimes, however, the accumulation
of unconjugated bilirubin might rise excessively, leading to the condition known as extreme hyper-
bilirubinemia (EHB), which is a cause for concern. This condition may lead to permanent brain
damage, or even death [2]. Bhutani et al. [3] estimated that in 2010, around 114 000 infants had
died from lack of treatment for EHB, and many others suffered from disability caused by perman-
ent brain damage. More than three quarters of these deaths occurred in sub-Saharan Africa and
South Asia; some of the poorest regions in the world.

Current standards for diagnosing jaundice, are the measuring of either total serum bilirubin
(TSB) or through transcutaneous bilirubin (TcB). Since measuring TSB requires a blood sample
to be taken, this is a quite invasive method for diagnostics. TcB provides a less invasive approach,
by using bilirubinometers which estimates the bilirubin level by scanning the skin of the infant.
There are major shortcomings to these methods, however, as they both require skilled personnel
and expensive equipment: either laboratory equipment or the aforementioned bilirubinometers.
Because of this, these methods are not widely available in poorer regions of the world, where
expensive equipment is hard to come by and there is a lack of trained personnel. This leads to
visual assessment usually being the only method available for recognizing jaundice, but as studies
have found, this is an unreliable form of diagnostics [4, 5]. Therefore, a need for affordable, non-
invasive methods for estimating bilirubin has been recognized [6], as these regions is also some of
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the most vulnerable to jaundice and EHB.

As mobile phones has become a necessity in modern society, the availability and access to
them has steadily increased, helping the field of mobile phone health (mHealth) emerging. This
field, which uses mobile phones in the service of medical and public health, has grown to become
a field of interest with great potential [7]. Drawing upon the emergence of this field, several pub-
lications have proposed novel ways of diagnosing neonatal jaundice through digital images, often
captured by smartphones [8–22]. One of the more recent efforts, Aune et al. [20], showed that
their physics based system achieved bilirubin estimates correlating closely to the measured TSB.
Several of these studies utilized machine learning to estimate bilirubin values, though most only
applied different forms of regression models. As machine learning is an expansive field with many
possibilities, this is an area that still could be explored even further. This is especially true, as
studies have shown the aforementioned methods hold great promise [12].

1.2 Goals of this research

As previously mentioned, the use of machine learning for bilirubin estimation, is a field open for ex-
ploration. Though many of these proposed systems uses machine learning approaches for bilirubin
estimation [8–16, 18, 19, 21, 22], most rely on different forms of regression models, meaning that
this is still a field with many unexplored possibilities. Machine learning has grown expansive over
the last few years, with many different methods and technologies. One of the areas currently unex-
plored for use in bilirubin estimation, is multi-input methods. These have been shown to effective
in, amongst others, flower grading [23] and image super-resolution reconstruction [24]. The goal
of this thesis is to explore the possibilities of multi image processing machine learning methods for
bilirubin estimation. To this end, the research question asked is:

R.Q: Can multi image machine learning methods compete with current single image

machine learning methods for bilirubin estimation in accuracy?
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1.3 Structure of the thesis

The Introduction provides the motivation for the thesis, as well as presenting the research ques-
tions to be answered. In the Background chapter relevant material appertaining to neonatal jaun-
dice, basic theory behind the methodology used in the thesis and related work is presented. Starting
with some background on neonatal jaundice, its treatment and diagnostics, before discussing related
work within the field of mobile phone health (mHealth). Lastly theory behind the machine learning
methods used in this thesis is also presented. These methods is then detailed in the Method chapter.
This chapter breaks down the implemented machine learning methods and how they were construc-
ted. The findings from the experimentation with the machine learning models is then presented in
the Results chapter. Here the results from the different models is presented and compared. The
Discussion chapter then analyses the results, and reflects upon the viability of the methods. How
these results relate to the research question is also discussed. Lastly, the Conclusion answers the
research question.
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Glossary

artificial intelligence Computer systems able to perform tasks which usually requires human in-
telligence. Commonly has such abilities as: visual perception, speech recognition, decision
making, and translation. 5

artificial neural network A form of computing system which is meant to simulate the way the
human brain functions, by having connected nodes which mimics neurons in the brain. It is
a founding structure upon which artificial intelligence is built. 13

bilirubinometer Device using multiple wavelengths of light to measure transcutaneous bilirubin
(TcB) through light absorption properties of bilirubin. 1, 9

KFold cross-validation A form of cross-validation where the dataset is randomly shuffled and
subdivided into k groups, where for each group the machine learning model is trained on the
remaining groups, and tested on the hold out. 19–22, 29
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Chapter 2

Background

2.1 Neonatal Jaundice

The condition of jaundice is a common occurrence in newborn babies, and usually not a cause for
concern. It affects around 60%-80% of infants [1], and is often recognizable by yellowing of the
skin and whites of the eyes, which is caused by a yellow compound called bilirubin. Bilirubin is a
product of the breakdown of red blood cells, which is usually conjugated by enzymes in the liver
and passed out of the body through faeces. In newborn babies, there is often the case that the liver
has not attained full efficiency at conjugating all the bilirubin, leading to a build up of unconjugated
bilirubin in the infants blood. This is because the placenta has the job of removing the unconjugated
bilirubin from the fetus while it is growing in the mothers womb. Therefore, it takes some time for
the enzymes to properly activate in the liver, which only starts after the umbilical cord is cut. This
is rarely an issue, as the condition usually clears out within 10-14 days, when the enzymes in the
liver gains full functionality to conjugate the bilirubin [1].

The cases where jaundice is a cause for concern, is when the levels of bilirubin in the blood
rise excessively, in which case it leads the condition of extreme hyperbilirubinemia (EHB). In this
condition, unconjugated bilirubin may accumulate in the basal ganglia of the brain, causing severe
damage because of its neurotoxicity [2]. The damage caused by excessive amounts of bilirubin in
the brain may lead to permanent brain damage, and in the worst case scenarios, even death. The
form of brain damage suffered by those who survive is known as kernicterus, and may manifest
itself as cerebral palsy, hearing loss or learning disabilities. Therefore, these extreme cases require
treatment, where the goal is to reduce the level of bilirubin in the infant’s blood. The most common
method for treatment is called phototherapy, where the infant is irradiated with blue light. The blue
light is absorbed by bilirubin, which in turn breaks down into substances that can be processed
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and excreted. These processes are called photooxidation and photoisomerization, where the former
completely breaks apart the bilirubin molecule, and the latter deforms it into a less toxic compound
[25]. Phototherapy is accomplished through two main methods: either the infant’s eyes is covered
before it is placed under halogen spotlights or fluorescent lamps, or it is wrapped in a so called
"biliblanket", which is a blanket laid with fiber-optic cables which shines blue light onto the infant’s
back and body.

As discussed, the potential harm caused by neonatal jaundice is severe, yet with proper in-
tervention it can relatively easily be treated. However, neonatal jaundice and EHB is still a major
problem worldwide. Researcher found that in 2010, more than a 100 000 deaths were caused
by EHB, whilst around 83% of survivors of kernicterus suffered from at least one impairment
[3]. Of these deaths, 6% belonged to the Eastern Europe/Central Asia region, 7% to Latin Amer-
ica/Caribbean, 35% to sub-Saharan Africa, and 39% to South Asia. On a worldwide basis, with
around 134 million live births, 85/100 000 deaths were associated with jaundice. In these regions,
the combined prevalence were 119/100 000, compared to the 1/100 000 in high-income countries
[3]. This disparity seems to stem from the lack of timely access to resources for both identifying
the severe cases, and treating them [26]. The previously discussed treatments for jaundice requires
both trained personnel, as well as expensive equipment, both of which is hard to come by in the
poorer regions of the world. Methods for jaundice diagnostics, which will be discussed further,
also requires skilled, trained personnel and expensive equipment; explaining why EHB cases are
much more adverse in these regions.
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Figure 2.1: Norwegian jaundice treatment determination chart. It shows the age and weight bounds
for the different treatments for EHB.

2.2 Jaundice Diagnostics

The current standards for measuring the level of bilirubin in the infant, and thereby diagnosing
jaundice, is either measuring total serum bilirubin (TSB) or transcutaneous bilirubin (TcB). The
most accurate way to ascertain the level of bilirubin and diagnosing the severity of the condition, is
to measure TSB. To do this, a blood sample is taken; usually by pricking the infants heel. Then the
amount of bilirubin is measured in the part of the blood called serum, which is the liquid part not
containing any clotting factors or blood cells. The concentration of bilirubin in µmol/l determines
whether the infant need treatment, and what sort of treatment. This assessment is dependant upon
the age and body weight of the baby, with certain thresholds as shown in figure 2.1.
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2.2.1 Transcutaneous Bilirubin (TcB)

As taking a blood sample to measure TSB is quite intrusive, TcB has become the more common
method for diagnosing jaundice. This method, however, is not a precise measurement for the levels
of jaundice. Using light absorption properties of bilirubin, TcB measuring devices, called biliru-
binometers, emit light at different wavelenghts, and record the reflection properties as a function
of wavelengths. The measurements can then be used to calculate a TcB value, based upon differ-
ences in optical densities for different wavelengths of light. The main drawback, is that this method
measures the bilirubin in the extravascular tissue, not the blood. There is agreement upon a linear
correlation between TcB and TSB, but there is uncertainty of the reliability of the estimations. It is
at least certain that TcB is a good way of screening for jaundice, and thereby identify which cases
needs to undertake a TSB test [27].

Several bilirubinometers are in production and use in hospitals around the world. Two of the
most state-of-the-art bilirubinometers are the BiliChek device and the Dräger JM-series, where the
newest is the JM-105 model. The main difference between the two bilirubinometers is that the
Dräger uses a dual wavelength of 460 nm and 540 nm, wheras BiliChek uses data from multiple
wavelength readings between 400 and 760 nm [28]. The multiple wavelength readings of the Bi-
liChek allows for corrections for differences in skin pigmentation and hemoglobin, it does have a
drawback however, as it needs a disposable tip for each measurement, increasing cost. BiliChek
and the predecessor of the Dräger JM-105, the Dräger JM-103, was found to perform equivalently,
with comparable performance [29], and is considered reliable screening tools for EHB.
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2.3 Related work

Mobile phone health (mHealth) is an emerging field of study, which utilizes mobile phones and
tablets to provide support to both medical and public health practices [30]. The recent years have
had rapid advances in mobile phone technology, as well as increasingly more widespread avail-
ability of mobile phones, which has helped garnering interest into this field. This is a field with
great potential, especially as these technologies have been shown to be accessible even for low-
and middle-income countries [7]. There has been great interest in utilizing this field in the effort to
diagnose jaundice, as this may offer affordable means to this end. Therefore, several researchers
and publications have proposed novel systems using digital images, often capture by smartphones,
to try to estimate bilirubin and assessing jaundice [8–22].

2.3.1 Smartphone Solutions for Jaundice Detection

Several smartphone systems for assessing and detecting jaundice have been proposed, which have
focused on using digital images captured by smartphones, to either predict bilirubin levels, or as-
sess jaundice in some other way. One of the first of these, were the BiliCam system presented in
2014 by De Greef et al. [8], which were shown to have the potential of becoming a great screening
tool comparable to TcB measuring devices. This system used an advanced algorithm for predicting
bilirubin levels, which color corrected the digital images before doing a feature extraction and re-
gression on the color corrected RGB values. To color correct the taken images, the BiliCam system
both normalized the RGB values, and used a color calibration card placed on the infant before cap-
turing the image. Using this card, they were able to correct for hue and saturation differing because
of different illumination, as well as white balance the taken images. Using both an image with
flash, and one without, they converted these color corrected images into both the YCbCr and Lab
color spaces, calculating a mean value for each color space, giving each image a total of 9 features.
Pooling these together, and adding a color gradient in the RGB space for the "with flash" image,
they were able to extract 21 features i total. Using these features, they trained a custom regression
algorithm, which consisted of eight regressions, using five different regression algorithms, where
the output were determined by an agreement in the ensemble. Using the maximum and minimum
values, the output gave the mean value where the difference were less than the empirically derived
threshold of 2mg/dl, and the second highest value (90th percentile) when above. This helping to
bias the model towards rather giving false positives than false negatives. A later study on a larger
study sample was performed by Taylor et al. [12], found the BiliCam to produce quite accurate
TSB estimates, that could be effectively used for screening newborns for jaundice.

Another similar system was presented in 2016 by Aydin et al. [11]. Like the BiliCam sys-
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tem, this also used a color calibration card, which was printed with an advanced laser printer, on
uncoated paper. First the calibration card was used in a segmentation process, where it was used to
compare colors with each of the segments of the captured images. Undesired segments were dis-
carded, and the remaining sent through a Gauss filter. After this, noise reduction and thresholding
were applied to the images, before using pixel similarity to restore some lost colors to the images,
and white balancing to counter environmental and lightning differences. This was followed by fea-
ture extraction, where they color mapped the images to YCbCr and Lab color spaces, and calculated
average values for each color channel, giving 9 features. Gradient calculation was also applied for
each of the RGB channels, leaving 3 more features, totalling 12. After this, both k-Nearest Neigh-
bor (kNN) and Support Vector Regression (SVR) algorithms were applied. As with BiliCam, a
threshold value were applied, in this case 1.91, where the mean value was selected when the dif-
ference between maximum and minimum were below the threshold, otherwise the 90th percentile
of the difference were used. Aydin et al. [11] only had a small dataset of 40 jaundiced infants, but
achieved a linear correlation of 0.81, and a success rate of 85%.

In 2020 Aune et al. [20] presented a somewhat different system. Based upon previous research
by Randberg et al. [31], they were able to create a library of simulated reflectance spectra of
newborn skin using diffusion theory. The model also factored in influence from such factors as:
skin reflectance, skin thickness, haemoglobin and melanin levels. They were also able to adapt
the model to work with images taken by smartphone cameras, which only feature RGB. As with
previously discussed systems, Aune et al. [20] used a color calibration card. Selecting colors
which reflects light similarly to newborn skin, they printed these cards with spectral printing on a
seven ink printer. After printing, each card were measured with a color spectrometer, storing the
readings for use in later calibrations. The system then worked by using the color calibration card to
calibrate smartphone images, which were then compared to a large database of color and bilirubin
pairs. This database could either run through cloud based storage, or be downloaded directly to the
device for offline use. Further Aune et al. [20], found in a test with 302 newborns, where 76 had
severe jaundice, that their system had a sensitivity of a 100% and a spcifity of 69% for severe cases
over 250 µmol/l. The correlation between image estimates and TcB were .81, and they were able
to conclude with that because of its specificity and accuracy, it could provide a screening tool for
neonatal jaundice.
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2.3.2 Existing Machine Learning Approaches

Most of the currently proposed smartphone systems for jaundice detection and diagnosis, features
machine learning methods to estimate bilirubin values. The use of regression models were the most
common approach, as these systems traced correlation between observed features in the digital
images and the measured TSB values. Most of these systems follow along the lines of: some
sort of color correction, into some feature extraction before applying a form of regression model.
There have been some work, however, to try and use the ever more popular machine learning
method of Convolutional Neural Network (CNN) to detect jaundice. Falk and Jensen [16] tried
this approach, but were hindered by having problems with both configuring their model, as well as
having a training set which were not large enough to properly train all the layers of the network.
Chakraborty et al. [22] proposed a CNN which could detect images of newborns with jaundice.
This proposed system were quite limited, however, as it only produced a binary model which could
only classify images as either jaundice or not jaundice. This meant that the model could not be
used in any way to either estimate the TSB value, or assess the severity of the jaundice in any other
way. As such, this study should be treated only as a proof of concept to usability of CNN to detect
differences in images of jaundice.

2.3.3 Support Vector Machine (SVM)

First proposed and formally described by Cortes and Vapnik [32] in 1995, Support Vector Ma-
chine (SVM)s are one of the most robust prediction methods within the field of supervised learn-
ing. Based upon statistical learning theory, SVM is a linear classifier, which tries to divide a
n-dimensional feature space into two parts, belonging to two separate classes. To accomplish this,
the SVM accepts n-dimensional data belonging to these two classes, and attempts to find a (n-1)-
dimensional hyperplane which separates the data. As several hyperplanes might accomplish this
devision, the SVM tries to find the one with the largest possible possible margin; that is to say,
the largest distance to the nearest datapoint within each class. This is accomplished through whats
called "training the machine", where an optimizer function adjusts the hyperplane to maximise its
distance to the nearest datapoints. These datapoints are called support vectors, and are the only
data stored after training, both giving SVMs their name, as well as reducing storage requirement
and computational time for testing. This hyperplane then defines the classification model, and can
gauge the position of new unlabeled data within the feature space, and thereby classify these new
datapoints.

There are three main advantages to SVMs: the first, as mentioned, is the reduced storage and
computational cost stemming from the support vectors. The second is that SVMs are able to use
something known as "the kernel trick". This trick lets SVMs use a non-linear kernel to map the
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datapoints into a higher dimensional feature space. This allows for data which previously not were
linearly separable to maybe become linearly separable, thus reducing complex problems into linear
classification. Some of the most popular kernels are as follows: RBF, Sigmoid and Polynomial.
There is no strictly "best" kernel, and each kernel might be better for different applications. There
is therefore a bit of trial and error finding the one most suitable for a certain case. The third
advantage to SVMs are a result of the hyperplane optimization. As SVMs try to maximise the
distance between the hyperplane and both classes, it is therefor able to better generalize as it is
forced to sit at an equal and maximized distance from both classes.

Support Vector Regression (SVR)

Regression is a generalization of the classification problem, where a continuous-valued multivariate
function is estimated, instead of an output from a finite set. Drucker et al. [33], proposed in
1996 such a generalization of SVMs, called Support Vector Regression (SVR). To accomplish this
generalization, an ε-insensitive region is applied around the function, defining an ε-tube. This
then redefines the problem into one where the goal is to find the tube which best approximates the
continuous-valued function. The loss function therefore ignores values within the margins of error
defined by ε , whilst penalizing those falling outside. As with the hyperplane for SVMs, the ε-tube
is defined by support vectors, which are the training datapoints falling just outside the tube.

2.3.4 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) are a popular form of artificial neural network, which is
commonly used for analysing visual imagery. These networks were made popular by Krizhevsky
et al. [34] after their success in the ImageNet Large Scale Visual Recognition Challenge (ILS-
VRC), achieving much greater accuracy than previous state-of-the-art solutions. As with all artifi-
cial neural networks, CNNs are structured with several layers which uses edge weights, biases and
activation functions to alter the input data. An input layer is where the input data is sent in, and an
output layer receives the final evaluated output, which has gone through the network of layers. The
layers between the input layer and the output layer are called hidden layers. These networks can
then be trained by altering the weights used in the layers, in response to the inputs and correspond-
ing ground truth values. This is done by using gradients calculated from the loss of the models, and
backpropagate these gradients through the network.

The most distinguishing feature, and what names the CNN, is the use of so called "Convolu-
tional layers". These layers are based upon the mathematical operation convolution. Convolution
works like this: two functions are taken in, whereupon a third function is produced, which de-
scribes how the shape of one of the input functions is modified by the other. Translating this into
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the convolutional layers used by CNNs, these layers produce a feature map constructed from the
input tensor. Alongside these convolution layers, CNNs usually rely upon pooling layers, and fully
connected layers; the former being layers which reduce dimensionality, and the latter being layers
where all neurons in one layer is connected to another.

Residual Neural Network (ResNet)

A big problem within the field of CNNs, are with the construction of ever deeper neural networks.
As these networks get even deeper to solve complex tasks and improve accuracy, the training be-
comes more difficult, and accuracy starts to saturate, and eventually degrade as well. To solve these
issues, Residual Neural Network (ResNet) were introduced by He et al. [35] in 2015. ResNet in-
troduced residual blocks, which are blocks of layers, which includes direct connections bypassing
some of the layers within the block. These connections are called "skip connections". This solves
one of the main causes of the aforementioned problems, which are that as the network gets deeper,
the gradients used to update the model layers get vanishingly small as it backpropogates through
the model. The skip connections allow the gradient to flow through and not vanish. These connec-
tions also ensures that the higher layers perform at least as good as the lower ones, as they help the
model learn the identity function.

2.3.5 Multi Image Machine Learning Models

In real life, humans make distinctions and recognition based upon visual information received over
time. Small changes in features can to a large degree determine how things appear. As a logical
consequence, this applies to computer vision as well. Video cameras has become more and more
widespread in its use, which grants us data in the form of sets of images taken over time. The use
of these image sets in machine learning tasks, has become a significant area of research in the last
few years.

A major review of the field was undertaken by Zhao et al. [36] in 2019. They found that
image set classification methods were suitable for the use of analysing image sequences from video
surveillance, or multi-angle cameras. These images could then vary drastically, with variations to
illumination, posture, viewing angle etc.; providing more detail rich features for more complex
classification tasks. Further Zhao et al. [36] found that, though challenging, the use of more recent
and advanced forms of machine learning, such as CNNs, could be used for image set classification
tasks.
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Multi-Input Convolutional Neural Network (CNN)

Though both image set classification, and CNNs are some of the hottest fields of research, there has
been few efforts to combine the two. The complexity of both fields, combined with the need for
computational power, might be the main causes for this. However, a few efforts has been done to
create multi input CNNs. One of the first of these, were described by Sun et al. [23], where a CNN
handling three images as an input were created. Used to grade flowers for handling and marketing,
it was able to classify sets of three images of a plant, taken from three different angles. As grading
of flowers is a difficult task single image CNNs proved unsuitable, as single images could not cover
the whole plant. Therefore, they created a CNN which took in three distinct images, ran these
through separate convolutional layers, with each followed by a pooling layer, before merging the
extracted features. The merged features where then sent through a more conventional CNN. They
found this multi-input CNN to outperform single image CNN by 5% on average, achieving up to a
93.9% accuracy in grading the flowers.

Sun et al. [23] showed that multi-input CNNs could have great advantages over conventional
single input CNNs. The added distinguishing features extracted from the use of multiple images,
could in their case at least, help with achieving better accuracy in classification. As other problems
may also benefit from the added distinguishing features a multi-input CNN may provide, this seems
to be a great proof of concept, with great promise for other similar problems.
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Chapter 3

Method

The main goal of this thesis is to study the viability of multi-input machine learning methods for
bilirubin estimation. To achieve this goal, the effectivity of multi-input machine learning models
need to be compared to that of existing solutions. To this end, both a regression model and a single
input CNN is used as baselines. Both are trained and tested with the same dataset as the multi-input
machine learning models. Two approches to multi-input CNN models is proposed: one with less
feature extration per image in the imageset taken as an input, and one with heavy single image
feature extraction before merging features of the imageset. Appendix A provides more detailed
graphs of the CNN architectures. Also, to be able to train the computationally heavy CNN models,
a GPU server running two NVIDIA Tesla V100 with 32 GB VRAM each are used. As the SVR are
implemented using scikit-learn, which has no GPU support, the SVR are being run on an Intel i7
6700k with 3.4Ghz quad core, and 16 GB of 2133 Mhz DDR4 memory.

Trial 1 2 3 4 5 6 7
Subjects 32 24 33 41 40 46 36

Image Sets 32 24 33 41 43 57 36
Images 192 144 198 246 258 342 216

Table 3.1: Distribution of captured images over trials.
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3.1 Dataset

The dataset used in this thesis is provided by Picterus As. It consists of 1596 images of newborn
babies, structured into 266 image sets belonging to 252 subjects. 14 subjects had 2 sets of images
taken. Each set contains 6 images, where half were taken with flash, and half without. The images
were gather at 7 distinct trials, with the distribution as given in table 3.1. As table 3.1 shows, the
extra image sets stems from trial 5 and 6. Every image is already color calibrated, represented by
normalized, linear RGB values.

Target Bilirubin Distribution

For each subject in the dataset, a standarized ground truth bilirubin measurement is recorded. Fig-
ure 3.1 shows the distribution of bilirubin values, which quite closely follows a bell curve, which
is as expected for standarized values. It also shows that the most severe outliers lies on the positive
side of 0, which is also expected, as these are the cases with EHB.

Figure 3.1: Distribution of bilirubin values.
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Skin Color Distribution

There is no data recorded as to the distribution of ethnicities: whether the dataset mainly consists
of light toned Caucasian subjects, or if it includes darker and more deeply toned ones as well.
Using the mean RGB value of each image, we can get an idea of at least how skin tones are
differently distributed across the trials, these are shown in figure 3.2. No definitive conclusions
may be drawn up from these graphs, as the mean RGB value is not an accurate measurement of
skin tone. However, these graphs suggest that certain trials skew either more towards the darker
shades as trial 3 clearly does, and some towards the lighter shades as it seems trial 6 does. These
skews might also correlate to the different bilirubin distributions across the trials as well.

(a) Single image mean RGB value (b) Image set mean RGB value

Figure 3.2: Skin color distribution, color coded by trial and plotted in RGB space.
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3.2 Baseline Models

C 1 10 100 1000 2000 5000 -
degree 2 3 4 - - - -

ε 0.005 0.01 0.05 0.1 0.2 0.3 -
γ 0.05 0.1 0.2 0.5 0.7 0.8 0.9

Kernel Linear Polynomial RBF Sigmoid - -

Table 3.2: Hyperparameters used for grid search on SVR model

3.2.1 Support Vector Regression (SVR) Model

As previously discussed, most already existing methods for estimating bilirubin use a form of
regression to predict bilirubin values based upon features extracted from digital images. One form
of regression that was used by several of these papers [9, 11, 16, 19], is Support Vector Regression
(SVR). Being a robust regression model, with fast runtimes, and providing generally solid results,
there is no wonder why it has been a popular option for this task on previous occasions. The
implementation used in this thesis is the scikit-learn implementation based on the work of Chang
and Lin [37]. Up to date with the most stat-of-the-art kernels, and with a simple framwork written
in Python, this a solid and flexible implementation. The setup follows the same pattern as Falk
and Jensen [16], with grid search, KFold cross-validation and polynomial RGB expansion of mean
RGB values. 10 times repeating KFold cross-validation with 5 folds is applied, alongside a grid
search using the hyperparameters from table 3.2. KFold cross-validation means that the dataset is
divided into k randomly shuffled groups, in this case 5 groups, where for each group, the others are
used for training, and the hold out for testing. This means that in this case 50 repeats of training and
testing is being used to validate each combination of hyperparameters. The main difference made
from that of Falk and Jensen [16], is that the degree of the polynomial expansion is not subject to
the hyperparameter search, and instead the degree of θ1,3 is chosen.

3.2.2 Single Image CNN (SICNN)

As the multi image machine learning models used in this thesis is multi-input CNNs, a second
baseline in the form of a single image CNN is used. Using PyTorch, the Wide ResNet50-2 provided
by Torchvision is implemented, and trained with the previously discussed dataset, using KFold
cross-validation with 5 folds. Optuna [38] hyperparameter search, a random, automated hyper-
parameter search framework, is used to run several trials to optimize batch size and learning rate.
Early stopping is also implemented to avoid overfitting, with manual tuning of patience. The fully
connected layer is modified to be optimized for the regression task.
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The Torchvision implementation of ResNet, is based upon the work of He et al. [35], which
won the ImageNet Large Scale Visual Recognition Challenge 2015 (ILSVRC2015). Torchvision
provides several ResNet models with the amount of layers the names suggest: ResNet-18, ResNet-
34, ResNet-50, ResNet-101, ResNet-152. These layers are sorted into Bottlenecks, which in turn
are sorted into Layer blocks. A graph illustrating this is provided in Appendix A as figure 6.2. Wide
ResNet expands upon the normal ResNet, by providing double the Bottleneck channels within each
layer block. E.g. where the last convolution in ResNet-50 has 2048-512-2048 channels, the Wide
ResNet-50-2 has 2048-1024-2048 channels.

3.3 Multi Image Machine Learning Models

Figure 3.3: Diagram showing the SMICNN. Multiple image inputs is fed through separate convo-
lution layers, before merging and completing the Wide ResNet50-2.

3.3.1 Simple Multi Image CNN (SMICNN)

The first effort to achieve a multi image machine learning model, was by taking inspiration from
Sun et al. [23]. Using the same methodology, we modify the Wide ResNet-50 model by duplicating
the first convolution layer, and feeding each of the six images in the image set through separate
convolution layers. After this single convolution per image, the output is merged, and fed through
a 1x1 convolution layer, to reduce the channels. The resulting output is then fed through the rest
of the network, using a modified fully connected layer as with the SICNN. As with the SICNN,
we use KFold cross-validation with 5 folds, Optuna [38] hyperparameter search and early stopping
with manual tuning of patience. A simple representation is seen in figure 3.3. In the Appendix A
a more detailed representation of the SMICNN is given as figure 6.3.
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Figure 3.4: Diagram showing the CMICNN. Multiple image inputs is fed through Wide ResNet50-
2 models, before merging and completing a couple fully connecting layers.

3.3.2 Complex Multi Image CNN (CMICNN)

As a second multi image machine learning model, CMICNN is presented. To try to get even more
discriminate features from the single images in the image sets, the CMICNN model runs each
image through a full Wide ResNet50-2. After this, the output features are merged, and run through
two fully connected layers. Two layers are needed because the output of the merging results in
6 ∗ 2048 = 12288 channels, which is far too much for a single fully connected layer to handle for
regression tasks. Again we train and evaluate with KFold cross-validation, use Optuna [38] for
hyperparameter search, and early stopping with manually tuned patience. Figure 3.4 shows the
CMICNN network. An even more detailed representation is listed in Appendix A as figure 6.4.
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Chapter 4

Results

The results from the experiments detailed in the Method chapter are presented here. First the
performance of the models are detailed, and secondly the steps to try to optimize the models are
detailed.

4.1 Performance Comparison

Four models are laid forward to compare their ability to predict bilirubin values: a Support Vector
Regression (SVR) model, a single image CNN (SICNN), and two multi image CNNs (SMICNN
and CMICNN). All models use KFold cross-validation with 5 folds, where each fold trains the
models on 80% of the data, retaining the hold out fold of 20% of the data for testing. Each test
generates predicted values using the training set, and compares these against the ground truth values
recorded. The final scores are calculated as a mean of the evaluation scores from each fold. Several
measurements are taken, the most prevalent of which are recorded in table 4.1.

Model Max err. MSE Corr.
SVR 3.308 0.5898 0.6513

SICNN 3.064 0.4943 0.7139
SMICNN 2.9062 0.6877 0.5746
CMICNN 2.486 0.6253 0.6236

Table 4.1: Performance comparison between the machine learning models.
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Trial Max err. MSE Corr.
1 1.441 0.2274 0.3659
2 1.746 0.5387 0.6277
3 3.643 0.9718 0.1198
4 1.425 0.1934 0.7046
5 1.502 0.3608 0.7608
6 1.643 0.2594 0.8600
7 3.6393 1.3985 0.6905

Table 4.2: Caption

(a) Full dataset (b) Per trial

Figure 4.1: Linear regression of the correlation between predicted values by the SVR model and
actual values.

Support Vector Regression (SVR) Model

After doing the grid search detailed in section 3.2.1, the optimal hyperparameters were found for
the SVR model. Using these hyperparameters, the values in table 4.1 were recorded. Doing several
runs, resulted in a bit varying values, as the different splits of the dataset affected the performance
to some degree. Still, the max error stayed around the same value of around 3.1− 3.5, the MSE
around 0.55−0.59, and the correlation around 0.65−0.71. The graphs shown in figure 4.1 shows a
plotted linear regression between the estimated values produced by the SVR model, and the ground
truth values. The leftmost graph shows the SVR trained and tested on the full dataset, whereas the
seven graphs on the right were produced by training and testing the SVR with only data from each
trial. Table 4.2 records the measurements taken for each trial.
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Convolutional Neural Network (CNN) Models

The best values achieved by the CNN models during testing, are also recorded in table 4.1. The
SICNN managed to get pretty good both MSE and correlation values, outperforming the SVR. But
neither of the multi image CNNs were able to do this, scoring worse in both MSE and correlation.
Notably however, both models scored lower max errors than both the SVR and the single image
CNN.

Figures 4.2, 4.3 and 4.4 shows the loss measured in MSE for both training and evaluation over
time for each of the models. The SICNN from figure 4.2 performs quite well, with the exception
of the two folds which spike somewhat towards the end. This, however, may only indicate a
saddlepoint for the model at around this number of epochs, as the folds without spikes stops short
of this number of epochs. The SMICNN evaluation loss is quite interesting, as there is a clearly two
folds performing much better than the rest. This is somewhat puzzling, as this was unique to the
SMICNN when running all three CNN models with the same randomstate for fold division. Other
than this, figure 4.3 seems to show that the performance of the best folds shows great promise if
the model could generalize and achieve these scores with the other folds as well. The CMICNN is
quite volatile, and as figure 4.4 shows, the loss is fluctuating heavily.
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(a) Evaluation loss

(b) Training loss

Figure 4.2: Loss charts for the SICNN, where loss is evaluated in MSE.
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(a) Evaluation loss

(b) Training loss

Figure 4.3: Loss charts for the SMICNN, where loss is evaluated in MSE.
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(a) Evaluation loss

(b) Training loss

Figure 4.4: Loss charts for the CMICNN, where loss is evaluated in MSE.
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4.2 Hyperparameter Optimization

An important step in getting results from the models, were optimization of the hyperparameters. A
full extensive grid search were conducted for the SVR model, whilst several optimization attempts
were conducted on the Convolutional Neural Network (CNN) models.

C degree ε γ Kernel
5000 4 0.3 0.9 Polynomial

Table 4.3: Optimal hyperparameters for the SVR model, found with a grid search.

Support Vector Regression (SVR) Model

A grid search was used to find the best hyperparameters for the SVR model. The hyperparameter
values included in this grid search, is detailed in table 3.2. The best found hyperparameters are
detailed in table 4.3. As the kernel found to be best suited to this task is the Polynomial kernel, the
ε and γ values are irrelevant, as the Polynomial kernel only uses the degree and C value.

Model Learning rate Batch Size
SICNN 1.330e-4 150

SMICNN 5.894e-4 25
CMICNN 5.293e-6 25

Table 4.4: Best found hyperparameters for the CNN models using Optuna [38] random hyperpara-
meter search.

Convolutional Neural Network (CNN) Models

Several hyperparameter search trials were conducted to try to optimize the CNNs. As detailed in
the Method chapter, these were conducted using Optuna [38] hyperparametersearch, which is a
random, automated hyperparameter search framework. Both the SICNN and the SMICNN were
also manually tuned to some degree, as to try to narrow down the best hyperparameters a bit further.
As the CNN models required much more computing time than the SVR, a complete optimization
of the models were not completed. This was especially the case for the CMICNN, which as the
most complex model, required the longest running times of about 2-3 hours per trial. In contrast the
SMICNN ran in a much more timely manner of around 20 mins per trial. Optimization trials were
run until the end of the project, and the recorded values in tables 4.1 and 4.4 are the best values
found during this search. As the SMICNN were the fastest running model, some attempts were
made to use a learning rate scheduler, but time made this difficult, and the use of such schedulers
were not explored to its fullest.
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Chapter 5

Discussion

In this chapter, the results presented in the previous chapter, Results, are discussed. The perform-
ance of the models, how they compare, and the hyperparameter optimization will be discussed.
Also, this chapter will reflect upon the presented solutions.

5.1 Performance Comparison

To compare the models, we use with 5 folds for all the models. We also set the randomstate for
the shuffeling of the folds, so that they should be shuffled the same for all models. There is one
problem to this, however, and that is that the multi image models separate the dataset into imagesets
before shuffeling, while the SVR and SICNN shuffles using all the images. Therefore, the folds are
not equal between the models, and may be a source for discrepancy between the models. The set
randomstate at least ensured comparability between the different runs of the CNNs, which helped
towards optimizing the models.

Support Vector Regression (SVR) Model

The SVR model was run using both the full dataset, and using only the data for each trial which the
data were collected from. Figure 4.1 b) shows the plotted linear regression between the estimated
values and the ground truth values for each trial. Few conclusions may be drawn, however, as each
of these trials had much fewer images to be trained from, and to predict upon. This only serves
as an indication that the data from the different trials skews the final result in either a positive or
negative direction. I.e the data from trial three seems to have much less correlation than the other
trials, which will will impact the performance of the SVR on the full dataset as well. Of the data
in table 4.2, only the correlation is of real importance, as the range of bilirubin values are different
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between the different trials. This affects both the max error and the MSE, which is clearly seen as
the correlation of trial seven is quite good, however the MSE is much worse than the other trials, as
the range of bilirubin values in this trial is much greater than for the others.

Convolutional Neural Network (CNN) Models

The performance of the SICNN shows that CNNs are able to distinguish more distinct features
than those extracted for the SVR, and thereby outperform such a more conventional model. But as
figure 4.2 shows, there is still room for improvement with this model, as it is overfitting a bit, as
the difference between the training and evaluation loss shows.

Neither of the multi image CNNs could achieve as good performance as either the SVR or
the SMICNN. This is however, not necessary an indication that these models are worse, as be-
fore achieving the results listed in table 4.1, the SICNN were performing quite similarily as the
SMICNN. A lucky trial hitting much better hyperparameters than those found for the SMICNN
might be the cause of this. An other factor may be the difference in which images falls within the
different folds, as figure 4.3 shows, a couple of the folds of the SMICNN outperformed the SICNN.
A different shuffeling of the imagesets may have lead to there being more consitency between the
folds, and the SMICNN might have performed much better.

The CMICNN on the other hand, is difficult to evaluate. As figure 4.4 shows, the model is
very irratic, and much more volatile than the other two models. This is an indication that the model
complexity does not allow it to generalize well, at least with the used datset. It might be that the
dataset used was much too small to be able to train this quite complex model. Also, because of its
complexity, it required the longest run times, which also made it much more difficult to optimze,
as far fewer trials were conducted with it.

The choice of creating the models as ResNets might also not have been the best choice.
Though optimized for very deep networks which can distinguish a large number of distinct fea-
tures, this task may not have required such deep networks and so much feature extraction. The
skip connections may also have been problematic, as all models show indication of very quickly
learning the training data. The quick training provided my these skip connections may have been
detrimental to allowing the models to generalize well.
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5.2 Hyperparameter Optimization

As the SVR does not require too much computational time, we chose to do an exhaustive grid
search to find optimal hyperparameters. Doing a grid search for the CNNs would not be feasible,
as the number of runs necessary would be too much to do in a timely manner. Therefore, using
the automated, random search framework Optuna [38], we were able to do trials using random
hyperparameter values, within set ranges, to try to find the most optimal parameters.

Support Vector Regression (SVR) Model

A full hyperparameter optimization was conducted on the SVR model, using grid search. This
optimization, however, was only conducted using the full dataset, and was not conducted for each
trial. Therefore the results from the trial by trial run uses the same hyperparameters as each other,
and as the run with the full dataset.

Convolutional Neural Network (CNN) Models

The optimization of the CNN models were time consuming, as each trial of hyperparameters took
a long time. The hyperparameters to be optimized for these models were the learning rate, and the
batch size. The patience for the early stopping is also a parameter that could be tuned, however
this was only tuned manually with a bit of trial and error. All models seem to stop at reasonable
times, at points where the loss isn’t really improving much more, and before it starts to degrade.
None of the CNNs were optimized fully, and there is room for improving the hyperparameter
optimization for all. Also adding learning rate schedulers to the models might help performance as
well. The SMICNN was experimented with using a couple learning rate schedulers, both reduce
on plateau scheduler and a one cycle policy scheduler, which ran over 400 epochs. They were
experimented with at different stages of the optimization, and no clear experiments were done to
compare learning rate schedulers. However, both did marginally improve performance somewhat,
indicating that adding such schedulers might help the models performances.
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5.3 Project Reflection

Going into the project, I had only the cursory knowledge of machine learning attained through the
previous semesters course TDAT3025 Applied Machine Learning. I quickly realized that exploring
multi-input machine learning methods were a vast field, which would require much study. Starting
to imagine solutions were difficult, but after coming across the papers by Sun et al. [23] Kawulok
et al. [24] and Falk and Jensen [16], I started gravitating towards solutions involving CNNs. As
I had previous knowledge and experience with CNNs, solutions with this method quickly became
the main focus of the report. The advantage of this, is that CNNs are powerful tools for image pro-
cessing, which had not really been taken advantage of in previous research into bilirubin estimation,
other than by Falk and Jensen [16] who struggled with them. Their struggle served as a motivator
to accomplish what had not been accomplished previously, though it also foreshadowed my own
problems with these solutions. Locking myself into focusing on CNNs, meant having to spend the
time on these computationally heavy models, which required much time to try to optimize and get
results from. It also meant that I only really ended up exploring a single small area of a much vaster
field of multi-input machine learning models.

The project has been a valuable learning experience which have provided me with much know-
ledge regarding machine learning. It has been a somewhat daunting challenge to work on this pro-
ject by myself, especially as I have a hard time forcing myself to work. However, this project has
been much fun, and an overall great experience, as this is technology which really interests me, and
work done may contribute to a great cause.
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Chapter 6

Conclusion

As neither of the proposed multi image CNNs were completely optimized, no definitive conclusion
with regards to the research questing given in the Goals of this research section may be drawn. If
using only the best found values from table 4.1, there would seem like the answer would be "no".
However, as both models have room for improvement, they might be able to outperform both the
SVR and SICNN. The conclusion will be as follows: multi image machine learning models, and
more specifically, the models proposed by this theses, have great potential to become competitive
models for bilirubin prediction.
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6.1 Further work

As discussed, there was not enough time to fully optimize and improve the performance of the
multi image CNNs. Therefore, a natural course for further work, is investing time and effort into
optimizing these models. As also discussed, the dataset might have been too small to fully train
the multi image CNNs. By using a larger dataset, the multi image CNNs might be able to perform
better, as they would have more data to learn from.

The multi image CNNs proposed in this thesis are only two different experiments using multi-
input CNN. Other architectures might produce better results than the ones explored in this thesis.
The structuring of when to merge, how much processing should be applied before and after the
merge, are areas which might be explored. Also, all the CNNs in this thesis is based off of Res-
Nets. Many other CNN architectures are detailed and implemented into Torchvision, which might
perform better or worse than ResNet.

This thesis ended up really only focusing on multi-input CNNs, and did not experiment with
any other forms of multi-input/image processing machine learning methods. Zhao et al. [36] details
a lot more approaches to machine learning models using image sets, which also could be explored.
This thesis is only scratching at the surface of the field of multi image machine learning methods,
showing that there might be some benefits to these kinds of models for bilirubin estimation. Further
work should therefore look into other completely different approaches than those detailed in this
thesis.
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Appendix A

Full Network Graphs of CNN Models

VI



Figure 6.1: Tensorboard graph of the full SICNN network, which is just an implementation of Wide
Resnet-50-2.

VII



Figure 6.2: Opened up Tensorboard graph of the SICNN, showcasing the block based structure,
with layers within Bottlenecks, and Bottlenecks within Layer blocks.

VIII



Figure 6.3: Tensorboard graph of the full SMICNN network, which is a modified Wide Resnet-
50. It takes 6 images as a set, does a single convolution on each, before merging the outputs and
completing the network.

IX



Figure 6.4: Tensorboard graph of the full CMICNN network, which is a modified Wide Resnet-50.
It takes 6 images as a set, sends each through a full Wide Resnet-50 network, before merging and
doing a couple fully connected layers.
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