
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Pascal Pickel

Indoor 3D Positioning System

Using Bluetooth 5.1 Direction Finding

Bachelor’s project in Computer Science
Supervisor: Tomas Holt

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Pascal Pickel

Indoor 3D Positioning System

Using Bluetooth 5.1 Direction Finding

Bachelor’s project in Computer Science
Supervisor: Tomas Holt
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

This project concludes my three years bachelor’s degree programme of Engineering in

Computer Science at Norwegian University of Science and Technology (NTNU).

Selecting a bachelor project provided by Nordic Semiconductor ASA (Nordic) was a given

as I have had the pleasure of being employed there throughout the entire three years, nat-

urally forming a close connection with both the people working there and their products.

Still, as I had been working mainly firmware related tasks, I felt the need to explore and

develop skills for other areas, namely web and general front end development. As such,

this project was a perfect fit allowing me to work with Nordic’s products while developing

a desktop Application (App) using web technology.

I would like to express my gratitude to my supervisors Ketil Erichsen and Nicolai Ber-

thelsen from Nordic and Tomas Holt from NTNU for their continuous support. I also

would like to express my thanks to Nordic as a whole for giving me this opportunity and

for offering me a suitable development and test environment, which was crucial for a

satisfactory result.

Student Date

i

Task

The task, found in full in Appendix A, asks for a demonstration of a 3D Indoor Position-

ing System (IPS) using Nordic’s existing hardware and firmware solution, consisting of

Bluetooth devices utilising a relatively new feature called Bluetooth Direction Finding.

The system I am tasked to develop is to consist of a software solution written in JavaScript

on the React framework. While not specifically mentioned in the task description, the

system will be launched through Nordic’s nRF Connect for Desktop Electron launcher

and therefore visually resemble other nRF Connect for Desktop Apps. This enables me

to utilise existing Nordic React components [1] and save time otherwise used on creating

standard components such as a navigation bar.

The original task description gives some leeway in terms of requirements and one should

therefore refer to the vision document in Appendix B and the requirements document in

Appendix C for a more detailed look at these.

ii

Abstract

This project demonstrates how to utilise Bluetooth Direction Finding, a new feature

among the Bluetooth Core specifications [2], to create a 3D IPS. While an IPS is noth-

ing new and exists in many different shapes and forms like through the use of WiFi, it

is through Bluetooth Direction Finding that Bluetooth devices really find their place in

location tracking systems. In an age where everyone is already equipped with a Bluetooth

supporting device, namely a smartphone, a shopping centre navigation system is just one

of the many systems that become possible through Bluetooth Direction Finding.

Nordic has an existing hardware solution that supports Bluetooth Direction Finding, con-

sisting of nRF52833 Development Kits (DKs) and expansion boards with an antenna array.

Through the distance between the individual antennas it is possible to calculate the dir-

ection of an incoming Bluetooth transmission. By using multiple such devices to track a

common tag, a 3D position can be deduced.

The App was developed through an iterative process, not adhering to any specific frame-

works due to the limited scope and singular project member, and is written in JavaScript

on the React framework. Most of its features are related to the receiving and manipulation

of serial data and user input handling, yet they all impact a scaled version of the system

setup displayed in a 3D view port. This allowed for a simple and concise presentation of

the features and progress during the weekly meetings, as there was always a visual effect

related to the features.

The final product, while definitely leaving room for improvements, is solid and very sat-

isfactory based on mine and most importantly the client’s expectations. Outside of the

main functionality, allowing for the display of a 3D real-time position, there are many

smaller features added throughout the project period resulting in a generally well-rounded

product.

iii

Contents

Preface i

Task ii

Abstract iii

List of Figures vi

List of Tables vii

Acronyms and Abbreviations vii

Glossary viii

1 Introduction 1

1.1 Background . 1

1.2 Research Problem . 1

1.3 Report Structure . 1

2 Theory 3

2.1 Spherical coordinates . 3

2.1.1 Spherical coordinates to 3D unit vector 3

2.2 Nearest points to skew lines . 5

2.3 Ray casting . 6

2.4 Euler angles . 6

2.5 Bluetooth . 6

2.5.1 Bluetooth Direction Finding . 7

3 Choice of Technology and Method 9

3.1 Hardware . 9

3.1.1 nRF52833 Development Kit . 9

3.1.2 Antenna Array Expansion Board 9

iv

3.2 Development process and technology 10

3.2.1 Development Process . 10

3.2.2 Typescript . 10

3.2.3 three.js . 10

3.2.4 react-three-fiber . 10

3.2.5 zustand . 10

3.3 Calculations . 11

3.3.1 Positioning formula . 11

3.3.2 Rotation of device graphics . 12

3.3.3 Calibration . 13

4 Results 14

4.1 Scientific . 14

4.1.1 Hardware . 14

4.1.2 Calculation . 14

4.1.3 Design . 14

4.2 Engineering . 19

4.3 Administrative . 23

4.3.1 Project Plan . 23

4.3.2 Time Management . 24

5 Discussion 25

5.1 Scientific . 25

5.1.1 Hardware . 25

5.1.2 Calculation . 25

5.1.3 Design . 26

5.2 Engineering . 27

v

5.3 Administrative . 28

5.4 Own effort and learning . 28

5.5 Ethics . 28

6 Conlusion and future work 30

6.1 Conclusion . 30

6.2 Further work . 30

Bibliography 31

Appendix 32

A Original Task Description 32

B Vision Document 34

C Requirement Document 42

D System Document 53

E Project Manual 61

F Code 61

List of Figures

1 Example of azimuth and polar angle . 3

2 Spherical coordinate system with labeled x, y and z vector components . . 4

3 z-x-z euler rotation example . 6

4 Bluetooth Direction Finding illustration 7

5 nRF52833 Development Kit . 9

6 Device rotation . 12

7 Basic nRF Connect for Desktop App . 15

8 Main view port . 15

vi

9 Sidepanel . 16

10 Display of connected devices . 16

11 Device items in sidepanel . 17

12 Devices displayed in the 3D view port 17

13 Tracked tag position . 18

14 Calibration viewport . 18

15 Sidepanel during calibration . 19

16 Control help screen . 20

17 Global axes reference . 20

18 Back of device graphic . 20

19 Renaming a device . 21

20 Device graphics with labels . 21

21 Coverage indicator . 22

22 Dummy device . 22

23 Graph display of statistical difference between uncalibrated and calibrated

direction vectors . 23

24 Example of uncalibrated vs calibrated 26

List of Tables

1 Report Structure . 2

2 Time distribution per activity . 24

Acronyms and Abbreviations

AoA Angle of Arrival.

AoD Angle of Departure.

App Application.

vii

BLE Bluetooth Low Energy.

CPU Central Prosessing Unit.

DK Development Kit.

IPS Indoor Positioning System.

LED Light-emitting diode.

NFC Near-field communication.

Nordic Nordic Semiconductor ASA.

NTNU Norwegian University of Science and Technology.

QOL Quality of life.

RSSI Received Signal Strength Indicator.

RTLS Real-time Location System.

SoC System on a Chip.

UI User Interface.

USB Universal Serial Bus.

Glossary

Black box A system who is only described in terms of input and output without any

knowledge of it’s internal workings.

Bluetooth Low Energy A wireless network technology intended to reduce the power

consumption of classic Bluetooth but maintaining a similar communication range.

Bluetooth Mesh A standard based on Bluetooth Low Energy (BLE) detailing the many-

to-many communications through Bluetooth radio.

Indoor Positioning System A system tracking the position of an object within an indoor

area.

viii

Locator Bluetooth device that tracks the direction of a Bluetooth transmission sent by a

tag.

Quaternion A member of the quaternion number system commonly used to describe

three-dimensional rotations.

Real-time Location System A system tracking the position of an object in real-time.

Received Signal Strength Indicator A indicator of the power present in a received radio

signal transmission.

System on a Chip An integrated circuit that usually include but are not limited to a Cent-

ral Prosessing Unit (CPU), memory, input/output ports and secondary storage.

Tag Bluetooth device whose position is tracked in a Bluetooth Direction Finding system.

Unit vector Vector whose magnitude is equal to 1. For a 3D vector:
√

x2 + y2 + z2 = 1.

Zenith An imaginary point directly ”above”. Usually used in the context of astronomy

and refers to the direction opposite to that of gravity.

ix

1 Introduction

1.1 Background

With the recent addition of the Bluetooth Direction Finding feature in the Bluetooth 5.1

Core Specification [2], a new market has opened up for Bluetooth devices. Nordic has

developed a sample App to showcase this feature by displaying the relative direction of

a tag to a locator device in real-time. They are interested to see how useful this App is

when used as a basis for customers to develop larger Bluetooth Direction Finding sys-

tems. Thus I have been tasked to act as a customer which received this sample App with

the associated hardware and develop a 3D IPS. In this way, Nordic will also be able to

figure out what could be easier, better documented or otherwise different for an improved

customer experience. The finished product demonstrates a use of the Bluetooth Direction

Finding feature and gives an estimate to the amount of work required of customers to

develop such a system with Nordic products. Additionally it could serve as a sample App

available to customers or as an internal reference for Nordic to develop other Bluetooth

Direction Finding sample Apps.

1.2 Research Problem

The research problem is formulated as follows:

How to use Bluetooth Direction Finding to create an indoor 3D positioning

system

Bluetooth Direction Finding is still a lesser explored feature and as such there are not

as many available projects publicly available, let alone step-by-step guides, and so while

this project has quite specific software and hardware requirements, it remains a generic

demonstration of how to utilise Bluetooth Direction Finding to create an IPS.

1.3 Report Structure

This report closely follows the structure outlined in NTNU TDAT3001’s Bachelor’s Thesis

main report template. The report content’s order and a short explanation are detailed in

Table 1.

1

Introduction Introduction of the project background, the re-
search problem and report structure

Theory Details the theory utilised for this project

Choice of Technology and Method Lists and describes the choices of technology and
methods used for this project

Results Presents the scientific, engineering and adminis-
trative results of this project

Discussion Discusses the results, it’s advantages and disad-
vantages in relation to the research problem, the
requirements and the choices made

Conclusion and future work Concludes with the answers to the research prob-
lem and project requirements, based on the dis-
cussion and results. Includes recommendations
for future work with this project.

Table 1: Report Structure

2

2 Theory

2.1 Spherical coordinates

Spherical coordinates describe a 3D position as specified by 3 values: the polar angle, the

azimuthal angle and the radial distance. The definition for the 3 values can change from

implementation to implementation but will be similar in use, namely

• Polar angle: Defines the angle from the zenith

• Azimuthal angle: Defines the angle from an axis parallel with the horizontal plane

• Radial distance: Distance from the origin in the direction given by the polar and

azimuthal angle

A common alternative to the polar angles exists in the form of an elevation angle. This is

the angle from the horizontal plane towards the zenith. It is equal to 90− polarangle.

In an environment where the sphere dimensions are static, or where you are only con-

cerned with direction as in our system, the radial distance becomes redundant.

Figure 1: Example of azimuth and polar angle

2.1.1 Spherical coordinates to 3D unit vector

This calculation is taken from Nordic’s Direction Finding application [3]. It differs from

my implementation only in that all mentions of y and z should be swapped. This is due to

my application using positive z as the forward direction of the locator device instead of

positive y. The calculation is presented with the forward direction being positive y.

3

To convert the azimuth and polar angle to a 3D unit vector we only need to calculate the x

and z components of the vector because we know that the locator always detects devices

in the forward/positive y direction.

We illustrate this calculation by building on the example given in Figure 1 but add addi-

tional markers for the x, y and z components of the vector, and for a line a =
√

x2 + z2.

Figure 2: Spherical coordinate system with labeled x, y and z vector components

We denote the azimuthal angle as φ and the elevation angle as θ = 90deg− polar angle.

Further, we define a =
√

x2 + z2 and find that:

tanθ =
y
a
,cosφ =

x
a
,sinφ =

z
a

Because the locator device only registers tags in the forward direction, positive y in this

example, we assume y = 1. Thus we get:

tanθ =
1
a

We solve this equation for a:

(tanθ)−1 = (
1
a
)−1

1
tanθ

= a

To solve for x, we substitute a and move tanθ :

cosφ =
x
a
=

x
1

tanθ

= x tanθ

cosφ

tanθ
= x

4

We do the same thing for z:

sinφ =
z
a
=

z
1

tanθ

= z tanθ

sinφ

tanθ
= z

Now we normalize the vector~v = [x,y,z]:

~v√
x2 + y2 + z2

The result is our unit vector.

2.2 Nearest points to skew lines

Skew lines is a term used to describe lines in three-dimensional geometry which neither

intersect nor are parallel to each other.

This formula makes use of a pair of skew lines, though they can certainly intersect, to

determine a pair of points on each line that are closest to each other [4]. We first express

the skew lines as vectors, where p denotes the origin, t a scalar value and d the direction:

Line1 : v1 = p1 + t1d1

Line2 : v2 = p2 + t2d2

The cross product n = d1× d2 forms a plane by translating Line 1 and Line 2 along it

which contains p2 and p1 respectively. n is perpendicular to n2 = d2×n and n1 = d1×n

The intersection point of Line 1 and Line 2 with this plane is the closest point to Line 2

and Line 1 respectively.

The point on Line 1, closest to Line 2 is given by:

c1 = p1 +
(p2− p1) ·n2

d1 ·n2
d1

The point on Line 2, closest to Line 1 is given by:

c1 = p1 +
(p2− p1) ·n2

d1 ·n2
d1

c1 and c2 now form the shortest line segment between Line 1 and Line 2.

By averaging these two points, we get the closest point to both lines.

5

2.3 Ray casting

Ray casting or ray tracing is a rendering technique mostly utilised for calculating lighting

by simulating the path of light rays from a source. This enables a very realistic display of

light, as it works by simulating the individual light rays from a light source and observing

the possible collisions with other geometry. It can however be quite resource demanding

unless used in a more isolated fashion. An example of this can be found in video games,

where a single or very few rays are cast to determine whether a line of sight exists between

the origin and target coordinates.

2.4 Euler angles

Euler angle is the name for 3 angles which describe an object’s rotation within a fixed

coordinate system. These angles will rotate the object around its local axes as defined by

a chosen sequence like x-y-z or y-x-z.

Figure 3: Example of a z-x-z euler rotation [5]

While euler angles suffer from a pitfall referred to as gimbal lock [6], resulting in the loss

of a degree of freedom, it does not pose a problem for this project and will therefore only

be described briefly. To illustrate how a gimbal lock could manifest, we define an x-y-z

euler rotation where x and z values are of no importance. The y value should result in

a rotation such that the z axis lines up with the current x axis, letting the z value rotate

around the same axis as did the x value and thereby losing one degree of freedom.

2.5 Bluetooth

Bluetooth is an open standard for wireless technology [7].

6

2.5.1 Bluetooth Direction Finding

Bluetooth Direction Finding is a feature introduced during 2019 in the Bluetooth 5.1

Core specification [2] which allows devices to determine the direction of a Bluetooth

transmission. Though this has been done previously through an approximation based on

Received Signal Strength Indicator (RSSI), Bluetooth Direction Finding does this with a

highly enhanced level of accuracy [8]. This significantly improves previous use cases and

introduces new ones, such as Real-time Location Systems (RTLSs) and IPSs used for asset

tracking in warehouses or logistics and indoor navigation.

It is made possible through not only software, but also requires specialised hardware in

the form of an antenna array. Due to the distance between the individual antennas an

angular phase-shift occurs allowing for the calculation of various values. Out of these

values, the polar and azimuth angle are of interest for this project.

Angle of Arrival (AoA) and Angle of Departure (AoD) are the two concepts on which

Bluetooth Direction Finding is based on. They are very similar in that they require a

device with an antenna array, a locator device, and a device who’s relative direction is to

be determined, a tag. Though, depending on whether AoA or AoD is used, the locator will

be on the receiving or transmitting side respectively.

Figure 4: AoA Bluetooth Direction Finding with two locator devices and a tag [8]

7

Their use case also differs slightly as AoD requires more complex tags from a hardware

and software perspective. Smartphones, though yet to offer Bluetooth Direction Finding

support, would be a perfect fit.

8

3 Choice of Technology and Method

3.1 Hardware

3.1.1 nRF52833 Development Kit

The nRF52833 DK [9] is a single-board development kit used for developing firmware

applications on the nRF52833 System on a Chip (SoC). It has support for BLE, Bluetooth

Mesh and Near-field communication (NFC) applications to name a few but most import-

antly for this project, it supports Bluetooth Direction Finding.

Figure 5: nRF52833 Development Kit

It has a variety of connectors and other hardware features such as Light-emitting diodes

(LEDs) and buttons. The connectors have an extension out the back of the DK used to

connect to an expansion board holding an antenna array. Additionally the Universal Serial

Bus (USB) connector is used to supply the board with power and as the communication

medium with the Indoor 3D Positioning application.

3.1.2 Antenna Array Expansion Board

This antenna array expansion board is developed by Nordic Semiconductor and is used in

combination with the nRF52833 DK to enable support for Bluetooth Direction Finding. It

holds 12 individual antennas spread evenly around the frame of the board and a connector

for a specialised cable connecting to the nRF52833 DK.

9

3.2 Development process and technology

3.2.1 Development Process

The development process employed for this bachelor project was iterative. It can be com-

pared to scrum though as there was only a singular project member and the project scope

was relatively small, a full fledged scrum solution was not appropriate. Nevertheless,

some elements from scrum, like sprints and sprint reviews, which naturally came to be

due to a weekly meeting schedule, were used for a smooth development process. These

meetings included a presentation and evaluation of the previous weeks’ work after which

tasks to be completed during the next sprint were decided upon. This way, the client was

consistently up to date with the project status and changes to features and requirements

could be tackled immediately.

3.2.2 Typescript

Typescript builds on JavaScript and lets you specify the shape/type of objects. This allows

for better documented code and the early detection of type errors, compared to JavaScript

where types have to be inferred from usage and one usually first comes across type errors

during execution.

3.2.3 three.js

Three.js is a 3D JavaScript library used to create the 3D view port and objects in the

project. This allows for a realistic representation of the system setup with 1 meter in real

life being scaled to 1 unit in the view port. Additionally, it allows for a simple way to

adjust the perspective based on user needs by rotating in 3D space.

3.2.4 react-three-fiber

React-three-fiber is a helper library for React which wraps three.js object into React com-

ponents instead of having to define the objects manually and load them into the scene.

This makes for more readable and consistent code in a React project.

3.2.5 zustand

Zustand is a state management solution written in JavaScript. While the nRF shared

accessories already implement Redux as a state management solution [1] which I can

10

easily hook into, I ultimately decided to use zustand. This decision was mostly based

on an issue regarding the React context in react-three-fiber [10]. While this issue can be

resolved with a workaround, zustand works as is and was easier for me to work with than

Redux.

3.3 Calculations

3.3.1 Positioning formula

While there were many different options to determine a position, I chose the formula

for the nearest point to skew lines, detailed in subsection 2.2. The main alternative in

consideration was ray casting. Three.js has an existing implementation of this technique

which allows for the detection and locating of Bluetooth Mesh collisions. I ultimately

decided against the use of this approach for several reasons:

• It requires references to the Bluetooth Meshes to check for collisions. This in turn

would force me to store references of relevant Bluetooth Meshes, pass them to their

respective component and transfer them to the component running the position cal-

culations. While this wouldn’t be difficult to implement, it does decrease the read-

ability of the code.

• It would require the vectors to be represented by cylinders as one dimensional lines

cannot guarantee a collision which creates unnecessary geometry.

• It is logical to assume that collisions will be detected on the Bluetooth Mesh surface.

Due to the cylinder Bluetooth Meshes having a certain radius, the the detected col-

lision coordinates become unusable without further manipulation. That is because

we are interested in the distance between the actual vectors, the cylinder center, not

any points on the surface. This does not make it impossible to determine a position,

but it does require a substantial amount of additional work. Do take note that I have

not been able to test and confirm that collision is indeed registered on the surface

rather than center.

• Given the offset between vector and surface of the cylinder, as discussed in the

above point, determining the error and calibrating the system also becomes more

difficult or at the very least requires significantly more work.

• Last but not least, this approach will be more resource intensive due to running

similar calculations as the approach above, in addition to using and rendering 3D

objects.

11

It is therefore doubtful whether this approach is worth implementing when the above for-

mula for determining the closest point to skew lines does not have any of these drawbacks.

As this formula only considers 2 vectors at a time, it needs to be run n!
2(n−2)! times, where

n is the number of locator devices, before averaging the results.

This calculation is run 60 times per second though one can afford to run it at a lesser

interval given the message frequency of the locator device averaging at around 3 times

per second. As locator devices aren’t synced and an additional linear interpolation is

applied to the direction data, updating at 60 frames per second simply ensures a smooth

and correct display of the position.

3.3.2 Rotation of device graphics

While the rotation of the device graphics seems like a fairly irrelevant feature, it was

necessary to have an intuitive way for the user to set these variables. I initially used x-y-

z Euler angles, though it quickly became apparent that this was too complex for such a

simple feature due to the shift in local axes. While a local axes indicator for each device

would be a valid solution to this problem, it does not simplify the actual rotation control

and still suffers from a potential gimbal lock (briefly explained in subsection 2.4. Rotating

around the local axes one by one was also tested, though was similarly confusing. Another

consideration was to use quaternions, though they were also too complex and required the

user to have an understanding for these.

Figure 6: Device rotation

Finally I settled on a solution that re-

sembles a spherical coordinate system but

uses y-x-z Euler angles in the background,

allowing for the added rotation around its

direction vector (Figure 6). Devices by de-

fault had an orientation towards positive z.

The y value is comparable to the azimuthal

angle, adjusting the orientation in parallel

with the horizontal plane, with a range of

0-359 degrees. X became comparable to

the elevation angle, which while similar to the polar angle defines the angle from the hori-

zontal plane instead of defining the angle from a fixed zenith direction, with ±90 degrees

of motion. Z denotes the rotation around the direction vector created by the y/azimuth

and x/elevation manipulations.

12

3.3.3 Calibration

The calibration process used for this project is quite simple and the user is guided through

these steps by a wizard:

1. Detect which locator devices detect which corners based on the coverage angle and

their respective position and orientation.

2. Instruct the user to place the tag at one of the detected corners and record locator

device data for a period of time. Repeat for all detected corners.

3. Determine the offset between received and expected data.

4. Save the offset, received data for each device.

During reading the determined offset values are then applied as follows:

1. Determine a scalar based on the distance between the received data and saved re-

ceived data.

2. Apply this scalar to the offset.

3. Apply the scaled offset to the received data from step 1.

13

4 Results

4.1 Scientific

4.1.1 Hardware

The hardware is made up of two or more locator devices and one tag, both of which are

Nordic’s nRF52833 DKs though the locator devices include an additional antenna array

expansion board each.

The hardware and firmware is used without any modifications, although the firmware

must be written to the devices before use. This can be done through the App, though only

for the locator devices.

4.1.2 Calculation

To calculate the 3D position with the direction data received from the locator devices, the

application follows this formula:

1. The received direction data is first transformed from a spherical coordinate into a

3D coordinate. This is detailed in 2.1.1. This coordinate is used as a unit vector as

no magnitudes are present.

2. These unit vectors are currently pointed in a local direction based on the locator

device’ orientation. We therefore apply the same Euler rotation as is applied to the

respective locator device. This calculation is performed by the three.js library and

results in the direction vectors having values relative to the global axes.

3. The transformed and rotated unit vectors are now passed in pairs through the for-

mula detailed in 2.2. The results are averaged for a final 3D coordinate.

4.1.3 Design

The App design is based on other nRF Connect for Desktop Apps, making use of Nordic’s

shared React components to have a consistent Nordic look.

14

Figure 7: Basic nRF Connect for Desktop App made with shared Nordic React compon-
ents (a: DeviceSelector, b: NavBar with ”About” pane and Nordic Logo, c: Sidepanel, d:
Main, bottom: Log)

Figure 8: Main view port, Help (?) top-left and perspective presets top-right

In our App we have an additional ”Position” pane which displays the 3D view port con-

taining a box, representing the room in which the system is setup, on top a grid which

serves as the ground Figure 8. We also have a ”Readings” pane whose use will be dis-

cussed towards the end of subsection 4.2.

The Sidepanel (Figure 9) is now filled with settings. We have various toggles whose use

will be illustrated later in this section. Additionally the ”Room” section allows the user

to edit the length, height and depth of the room box graphic. At the bottom we can see an

empty ”Devices” section which will also be explained later in this section. Changes to any

of these are immediately reflected within the 3D view port. All the settings displayed here

in addition to the device settings detailed later are persisted through the library electron-

store and are automatically restored upon startup.

The ”Select Device” option will extend a list of connected devices which we can add to

our application.

15

Figure 9: Sidepanel

Figure 10: Display of connected devices

Upon selecting a device, it is added to the Device section in the sidepanel (Figure 11)

and also as a graphical element within the view port (Figure 12). Each device has its

logo, name and serial number displayed and can be removed by selecting the eject option

(right). The edit fields below a device item can be changed to adjust the device position

and orientation. Additionally there is the option to ”Program Firmware” for the device

called ”test”. This feature detects devices without the expected firmware and allows the

user to program them. The red arrows seen in sticking out of the device graphic reveal the

device’s forward direction.

The main feature, tracking a 3D position, is made possibly by having two or more locator

devices connected and selecting the ”Start reading” option. This will display a red dot,

indicating the position, with a shadow and two grey horizontal lines for better visual

indication of the x, y and z coordinates.

16

(a) Default device settings (b) Edited device position and orientation

Figure 11: Device items in sidepanel

Figure 12: Devices displayed in the 3D view port

Calibration is done by selecting the ”Start calibrating” option. The user is prompted to

place the tag at a position indicated by a blinking, blue dot which will always be in one of

the bottom corners (Figure 14). Once the tag is placed and the user selects ”Tag placed”

17

Figure 13: Tracked tag position

Figure 14: Calibration viewport

(Figure 15), the procedure will be repeated for all corners in the detected area until finally

calibration values are calculated from the collected data.

The user can then choose to apply these calibration values when tracking the 3D position

via the ”Use calibration vectors” toggle in the Settings section of the sidepanel.

18

Figure 15: Sidepanel during calibration

4.2 Engineering

The vision document found in Appendix B, lists the required features of this project.

Though as there were no specific requirements outside the bare minimum for an indoor 3D

positioning system, these have already been covered by the previous chapter detailing the

scientific results. As such, I will only cover the additional requirements which were added

during the course of the project here. These can be found in the requirement document in

Appendix C.

Control of the view port camera can be done by holding and dragging the mouse around

or using the w, a, s and d keys. This functionally rotates the geometry around the ori-

gin/center. Optionally one can use the 3 buttons to the right to set the perspective. Zoom-

ing within a certain range is also possible with the z and x keys. These controls are

detailed in a window which can be accessed by selecting the help (?) option (Figure 16).

Optionally one can use the perspective buttons or their respective key (1, 2 and 3) (Fig-

ure 8).

A reference for the axes can be displayed which helps to position the devices (Figure 17).

This can be especially helpful as one rotates around the view port because x and z axes

are difficult to tell apart in the default view.

19

Figure 16: Control help screen

Figure 17: Global axes reference

(a) Back of device graphic with default rotation (b) Back of device graphic with 180° rotation

Figure 18: Back of device graphic

As devices have an ”up” and ”down” direction and can be rotated around their forward

direction, it is necessary to have a reference. This is implemented in the form of images in

20

the devicegraphics showing the rough design (Figure 18). The circuit board, logo and USB

cable connecting to it are visible. By default the USB cable points downwards (negative

y).

Figure 19: Renaming a device

A rename feature has been implemented

for better identification of similar devices

(Figure 19). This feature comes with the

DeviceSelector component from Nordic’s

shared React components, but I have ad-

ded support for the nickname display in the

Sidepanel.

Additionally one can turn on the label set-

ting which displays the device name above

the device graphics in the viewport (Fig-

ure 20). This helps with the identification

of the device graphics, especially in a lar-

ger, more device populated setup.

To give an idea of the coverage of devices,

one can choose to turn on the display of

coverage. This will replace the red arrow with a semi-transparent cone indicating the

space covered by the locator antennas (Figure 21). The cone angle can be adjusted from

the sidepanel settings as not all devices will cover the same amount of space.

Figure 20: Device graphics with labels

The locator devices transmit direction data through serial communication and uses the

following configuration:

• Baud rate: 115200

• Parity: None

21

(a) Coverage indicator (b) Smaller coverage indicator

Figure 21: Coverage indicator

• Stop bits: 1

• Data bits: 8

The protocol used for the data transmission is quite simple and follows the following

pattern:

1. A message starts with the string ”DF BEGIN” followed by a newline

2. Now various identifiers in the form of two capital letter followed by ”:”, the corres-

ponding value and finally a newline are transmitted

3. The message ends upon receiving the string ”DF END” followed by a newline

There are only two identifiers which are handled by the App, ”KE” and ”KA”. They are

the filtered elevation and azimuth values respectively.

It should be noted that there can be a variable number of carriage returns at the end of each

line. Therefore instead of comparing for string equality, the App checks for inclusion.

Figure 22: Dummy device

A temporary measure implemented dur-

ing development when only a single device

was available was turned into a proper fea-

ture. It allows for the visualization of the

direction vector of each individual locator

device by selecting the ”Show direction

vectors” option in the sidepanel.

A developer oriented feature was also im-

plemented allowing for the system to be

22

used and tested without the need of a full

system setup. This is done by adding dummy devices, they act and are displayed like

normal locator devices except for not being able to detect the tag and therefore indicating

a static tag direction.

Figure 23: Graph display of statistical difference between uncalibrated and calibrated
direction vectors

A developer focused feature implemented at the very end of the project, plots the shortest

distance between a pair of vectors (Figure 23). This is used to illustrates the difference in

accuracy between uncalibrated and calibrated direction vectors.

The vision document lists a feature which would allow for the tracking of multiple tags

at the same time. This was not implemented.

To have a closer look at the system or for interest in the exact implementation of any of

these features, one should refer to the system document in Appendix D, to get started, or

directly head over to the source code (Appendix F).

4.3 Administrative

4.3.1 Project Plan

The project can be roughly divided into 4 sprints of different lengths and can be studied

more closely in the project manual in Appendix E:

1. The focus here was to get familiar with the administrative part of the project, mainly

by becoming familiar with and preparing various documents. Most of the time

was spent on gaining a thorough understanding of the framework and the few core

libraries to be utilised for this project.

23

2. This sprint’s goal was to implement the App User Interface (UI) and functionality,

not including the reading and handling of serial data from the locator devices.

3. This sprint focused on implementing the handling and manipulation of serial data

from the locator devices and to calculate a 3D position. While this was expected to

be the most time consuming and difficult task and sprint due to lack of experience, it

was implemented quickly and allowed for a lot of time to work on the main report.

4. The last sprint just saw to finishing the system document and main report, as well as

minor improvements to the App through new features and adjustments. As there was

a good amount of time remaining though, calibration was also worked on. Although

no requirements regarding the 3D position’s accuracy were specified, there was

definitely room for improvement despite the 3D position being stable and accurate

enough for a demonstration and proof of concept.

4.3.2 Time Management

The amount of hours required for the bachelor project was expected to be at around 500.

This requirement was satisfied with the total hours measuring at around 503 hours total.

The distribution of hours can be seen from from Table 2 though for a more detailed study

of time management, refer to the project manual found in Appendix E.

Activity Hours used

Documentation 116

Programming 325

Research 43

Meetings 11

Other 8

Total 503

Table 2: Time distribution per activity

24

5 Discussion

5.1 Scientific

5.1.1 Hardware

The hardware to be used was already decided upon before the start of the project and while

this may suggest the solution to be non-generic, that isn’t the case. While certainly some

small adjustments may have to be made for proper integration, any hardware is supported

so long as it’s data adheres to the protocol used by the current firmware. Apart from the

start and end identifier, only an azimuth and elevation value needs to be transmitted as all

other values are ignored.

While being a working IPS implementation based on Bluetooth Direction Finding and

therefore being a valid solution to the research problem, this flexibility of hardware allows

one to think of the locator devices as black boxes making it a generically applicable

solution.

5.1.2 Calculation

The calculations work as intended and demonstrate that Bluetooth Direction Finding can

be used in an IPS to determine a 3D position.

That being said, there is certainly a lot of room for improvement which is to be expected

given the limited scope, manpower and previous experience of similar systems. Addition-

ally there are many errors sources such as the reliance on user input for both the position

and orientation which nearly guarantees an error in calculation by default. Other sources

of errors, both intermittent and consistent, mainly originate from hardware instabilities

and include but may not be limited to antenna polarization, radio signal reflection and

noise.

To combat the consistent error caused by inaccuracies of the user input and stationary

objects creating noise or reflecting radio signals, an attempt at a calibration system was

made. This was done by having the user place the tag at known locations and calculating

an offset which would then be used to adjust the incoming direction data. Sadly, this

does also require human interaction and will therefore not be as accurate as it could be.

To curb this, it was decided to place the tag in the room corners, which are easy to ref-

erence both by the App and the user. Sadly, this has it’s own shortcomings as the room

shape is assumed to be rectangular shape based on its representation in the App. There-

fore, a proper implementation of this calibration process would require support for a more

complex room representation. Given the goal of this project being a demonstration and

25

(a) Tracking tag position using uncalibrated dir-
ection vectors

(b) Tracking tag position using calibrated direc-
tion vectors

Figure 24: Example of uncalibrated vs calibrated

considering that work on calibration started fairly late without a guarantee to be func-

tional in time, a more complex room implementation was not worked on. Given all these

drawbacks, the calibration system did turn out to be beneficial and have a positive impact

on the accuracy of the tag position. To illustrate this, I will use an example for which the

statistical difference has been given during a feature showcase earlier (Figure 23). It is a

fairly extreme example making use of the test setup used towards the end of the project

(Figure 24). We can see a highly inaccurate direction determined by the ”Window” loc-

ator device, which I was only able to guess was due to radio signal reflection or noise.

Applying the calibration values has a clearly positive effect for all the locator devices

involved.

A spike filter was also considered, though there was not enough time left. The main goal

of this feature was to filter and/or restrict temporary errors caused by noise. This would

have been done by comparing the incoming AoA to the previous or an average of the last

few previous ones. If the new AoA would change more than one would expect from a

human movement it would either discard or scale it down significantly. This would result

in an overall increase in stability of the tag position.

5.1.3 Design

The design implementation process was very linear without any memorable problems

occurring as functionality was prioritised over the look of the App. Therefore the UI may

feel simplistic at times and not allow for a lot of customizing as for example creating more

complex room shapes. Still, it demonstrates a possible presentation of an IPS based on

Bluetooth Direction Finding.

26

5.2 Engineering

The requirements given in the vision document, Appendix B, were satisfied as soon as

the App was able to calculate and display a 3D position. Some additional features, such

as calibration and support for multiple tags, are mentioned. Calibration was implemented

and covered in subsubsection 5.1.2. The multiple tags feature was initially thought of as a

stretch goal, as it was not supported by the firmware. While it was possible to implement

this, Nordic had expressed a desire to use the their firmware with no modifications and

was therefore not implemented. Also, given the work spent on calibration, there was no

time available to work on this feature.

All other required features which were detailed in the requirement document, Appendix C,

were satisfied. Though satisfied, some of these features are somewhat lacking. On such

feature was the coverage simulation feature which turned out to not be very useful due

to a very large space covered which resulted in it being more of a ”visual nuisance”

than anything else. Initially, I made an effort to restrict the cone to within the box which

would have been a perfect solution. Sadly, none of the available libraries which calculated

intersections and other set operations on geometry were outdated and did not display the

result properly. Working on my own implementation for this was simply not worth the

time for a minor Quality of life (QOL) feature.

There are also two known bugs which were not handled. The first is a known bug among

nRF for Connect Apps which concerns the data transmission to stop almost immediately

upon start. This can be handled by refreshing the App through the use of CTRL+R. I

found that the locator devices had to be connected and turned on before starting the App,

though this is not a confirmed workaround. The second bug also affects another nRF

for Connect App, the Direction Finding App which I used as a reference, though it is

fairly minor for this project. I noticed that when focusing an edit field in the side panel

and pressing one of the four direction keys (W, A, S, D and the arrow keys) it registered

the key down event but not the key up event resulting in a continuous rotation. I was

able to circumvent this behaviour by registering when the edit fields were focused and

temporarily turning off the perspective controls. Sadly, there is one more edit field which

I am unable to interact with directly as it is imported from the Nordic’s shared React

components, the DeviceSelector. As this component is included through the navigation

bar it would require me to redo two entire components for a fix. Given that it is not a

major bug which can be fixed with a CTRL+R, to reload the app but apply the rename

nonetheless, or by pressing CTRL+(same direction key).

Even with the problems mentioned above, Nordic was very satisfied with the result and

wants to continue working with the product after the end of the project.

27

5.3 Administrative

Due to the relative freedom of the task and being the singular developer of the project

a full-fledged development process was not implemented. While this allowed for a high

degree of flexibility and steady progression, especially given the weekly meeting sched-

ule, it made it impossible to properly document the process. Additionally, there was no

documentation done regarding testing. This was due to testing being a heavily integrated

part of the development process through manual testing of a live App instance after nearly

every change.

And so although working alone gives a lot of leeway, as one is up to date with every single

detail of the project, and has worked out well, I have experienced the limitations of such

an approach and the necessity of a proper development process and documentation. As

such, I would implement a formal process in any upcoming projects.

Despite this taken into account, the progress was smooth and steady allowing for quick

and easy changes. Involving the client this much in the process was also a major factor

for a satisfactory result.

5.4 Own effort and learning

The project has been a great opportunity for learning, both in terms of learning about new

concepts and technologies but most importantly for better understanding my own work

habits.

React and typescript, while familiar was something I quite enjoyed though never truly felt

comfortable with until now. Having to get familiar with other’s code was a truly valuable

experience as I underestimated it’s difficulty initially. Last but not least, it was quite fun

to work with a 3D environment.

There is no doubt in my mind that there is a better, more visually appealing solution for

many of the features I implemented but that that is not to say that I am any less pleased

with the results. While some features were naturally more fun to work on than others, I

gave it my all and had mind set on satisfying both the client and my own conscience.

5.5 Ethics

While there are many ethical concern within this field of work, I was luckily not as af-

fected and could work with less concerns regarding this. Covid-19 restrictions were still

in place, forcing me to work mostly from home, though I was luckily already quite used

28

to this beforehand and it was therefore not a serious cause for concern. Though during the

end of the project we set up a testing environment within the Nordic offices during which

certain safety measures like social distancing had to be taken into account. This neither

posed a problem and the testing environment was set up easily.

Although no sensitive user data would be handled, when working within Nordic’s office

I gained access to the internal network. As I was already an employee at the time of the

project, a Non-Disclosure Agreement was previously signed, voiding this concern.

29

6 Conlusion and future work

6.1 Conclusion

Based on the results it is clear that Bluetooth Direction Finding has a lot of potential

for being used in an IPS. This is especially true when one considers how effective of

a demonstration was created given the limitations of time and experience. This project

utilised a simple room layout with fewer signal disturbances compared to what one would

expect of larger IPSs, allowing me to use simpler calculations than would be required of

a larger, more complex IPS.

Bluetooth Direction Finding is still a fairly young feature and there are not as many

products and solutions on the market, but seeing the results it is clear that this will not

be the case for long.

6.2 Further work

While being a solid App on its own, there is a more than enough room for improvements.

A useful and theoretically simple feature to add is allowing different communication me-

diums between the locator devices and App, allowing for more flexibility and removing

the necessity for USB cables.

Other major improvements, though requiring more work, would be allowing for a more

complex room design and a more advanced calibration implementation. The first being

more visually oriented though also increasing the complexity of the calibration process.

Minimizing the error caused by individual locator devices by for example a spike filter

may also lead to an increase in average accuracy and stability.

From here on there are many possible QOL improvements like adjusting the coverage fea-

ture as mentioned in subsection 4.2 or a more intuitive device position/orientation control,

to name a few.

If one is to use Nordic’s hardware solution, it should be mentioned that the firmware is

still actively being adjusted and updated. Though not requiring too much change if the

protocol truly changes, it could lead to some confusion. It is also possible to edit the

firmware as Nordic’s has most of their customer relevant code available on github [11].

30

Bibliography

[1] Nordic Semiconductor ASA. ‘Shared commodities for developing nrf connect for
desktop’, [Online]. Available: https : / / github . com / NordicSemiconductor / pc -
nrfconnect-shared (visited on 9th Feb. 2021).

[2] Bluetooth Special Interest Group. ‘Bluetooth core specification version 5.1 fea-
ture overview’, [Online]. Available: https : / / www . bluetooth . com / bluetooth -
resources / bluetooth - core - specification - v5 - 1 - feature - overview/ (visited on
7th Feb. 2021).

[3] Nordic Semiconductor ASA. ‘Spherical coordinates to 3d unit vector calculation’,
[Online]. Available: https://github.com/NordicSemiconductor/pc- nrfconnect-
directionfinding / blob / master / src / actions / frameActions . ts # L74 (visited on
12th Apr. 2021).

[4] Wikipedia. ‘Nearest points to skew lines’, [Online]. Available: https://en.wikipedia.
org/wiki/Skew lines#Nearest points (visited on 28th Mar. 2021).

[5] NI. ‘3d cartesian coordinate rotation (euler)’, [Online]. Available: https://zone.
ni . com/reference/en- XX/help/371361R- 01/gmath/3d cartesian coordinate
rotation euler/ (visited on 9th Apr. 2021).

[6] Redshift Labs. ‘Understanding euler angles’, [Online]. Available: http ://www.
chrobotics.com/library/understanding-euler-angles (visited on 22nd Mar. 2021).

[7] Bluetooth Special Interst Group. ‘Bluetooth specification list’, [Online]. Available:
https://www.bluetooth.com/specifications/specs/ (visited on 20th Apr. 2021).

[8] Nordic Semiconductor ASA. ‘Blueooth direction finding’, [Online]. Available: https:
//www.nordicsemi.com/Products/Low-power-short- range-wireless/Direction-
finding (visited on 7th Feb. 2021).

[9] ——, ‘Nrf52833 dk’, [Online]. Available: https://www.nordicsemi.com/Software-
and-tools/Development-Kits/nRF52833-DK (visited on 10th Feb. 2021).

[10] Poimandres. ‘React-three-fiber consuming context from a foreign provider’, [On-
line]. Available: https://github.com/pmndrs/react- three- fiber/blob/master/
markdown / api . md # consuming - context - from - a - foreign - provider (visited on
20th Feb. 2021).

[11] Nordic Semiconductor ASA. ‘Nordic semiconductor github account’, [Online].
Available: https://github.com/NordicSemiconductor (visited on 17th Apr. 2021).

31

https://github.com/NordicSemiconductor/pc-nrfconnect-shared
https://github.com/NordicSemiconductor/pc-nrfconnect-shared
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-v5-1-feature-overview/
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-v5-1-feature-overview/
https://github.com/NordicSemiconductor/pc-nrfconnect-directionfinding/blob/master/src/actions/frameActions.ts#L74
https://github.com/NordicSemiconductor/pc-nrfconnect-directionfinding/blob/master/src/actions/frameActions.ts#L74
https://en.wikipedia.org/wiki/Skew_lines#Nearest_points
https://en.wikipedia.org/wiki/Skew_lines#Nearest_points
https://zone.ni.com/reference/en-XX/help/371361R-01/gmath/3d_cartesian_coordinate_rotation_euler/
https://zone.ni.com/reference/en-XX/help/371361R-01/gmath/3d_cartesian_coordinate_rotation_euler/
https://zone.ni.com/reference/en-XX/help/371361R-01/gmath/3d_cartesian_coordinate_rotation_euler/
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
https://www.bluetooth.com/specifications/specs/
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/Direction-finding
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/Direction-finding
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/Direction-finding
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52833-DK
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52833-DK
https://github.com/pmndrs/react-three-fiber/blob/master/markdown/api.md#consuming-context-from-a-foreign-provider
https://github.com/pmndrs/react-three-fiber/blob/master/markdown/api.md#consuming-context-from-a-foreign-provider
https://github.com/NordicSemiconductor

Appendix

A Original Task Description

32

Arbeidstittel: Indoor 3D Positioning System

Hensikten med oppgaven:
Create a demonstration of how to track objects/people in 3D space using existing hardware.

Kort beskrivelse av oppgaveforslag:
Use existing azimuth and elevation output from multiple antennas and use this to calculate position in 3D space.
Figure out how to position hardware and calibrate system.

Oppgaven passer for (kryss av de(t) som
passer og skriv evt. en kommentar til
oss):

- Bacheloroppgave

Skal oppgaven utføres av bestemte
studenter? (der avtalt) Fyll i så fall inn
studentenes navn

Pascal Pickel

Kan oppgavestiller stille arbeidsplass med
nødvendig utstyr og programvare:

Ja

Oppgaven passer best for, antall
studenter:

- 2
- 3

Opplysninger om oppgavestiller

Er du fra bedrift/virksomhet eller er du
student med en egendefinert/selvlaget
oppgave?

- Bedrift/virksomhet

Navn på bedrift/organisasjon/student: Nordic Semiconductor ASA

Addresse Otto Nielsens veg 12

Postnummer 7052

Poststed Trondheim

Navn på kontaktperson/veileder: Ketil Erichsen

Telefon: 47088747

Epost: ketil.erichsen@nordicsemi.no

Navn på kontaktperson 2/veileder 2: Nicolai Berthelsen

Epost kontaktperson 2/veileder 2: Nicolai.Berthelsen@nordicsemi.no

Utfyllende kommentarer til hva oppgaven gjelder:
Direction Finding makes it possible to locate objects in 3D space. Nordic has created hardware and software to enable
customers to create complete systems. The task is for the students to act as customers and create a complete system
for direction finding.

The main task will be understanding/describing the system and writing a software application. The application will be
written in JavaScript on the React framework.

For interested students there might also be a task related to digital signal processing.

B Vision Document

34

022

Indoor 3D Positioning System
Vision

Version 1.0

Revision History
Date Version Description Author

16/jan/2021 0.1 Started chapter 1, 2,and 3 Pascal Pickel

20/jan/2021 0.1 Finished chapter 1 and 3
Starter chapter 4 and 5

Pascal Pickel

22/jan/2021 0.1 Finished first draft Pascal Pickel

25/jan/2021 1.0 Language change Pascal Pickel

Table of Contents

1. Introduction 4

1.1 Purpose 4
1.2 Definitions, acronyms and abbreviations 4
1.3 References 4

2. Positioning 4

2.1 Problem statement 4
2.2 Product position statement 5

3. Stakeholder and user description 5

3.1 Stakeholder summary 5
3.2 User summary 5
3.3 User environment 5
3.4 Key stakeholder or user needs 5

4. Product overview 6

4.1 Product perspective 6

5. Product features 6

5.1 App features 6

6. Other product requirements 7

6.1 System requirements 7

1. Introduction

1.1 Purpose

This documents outlines the vision for a indoors 3D positioning system. The purpose of the document is to:

 Identify stakeholders and users

 Identify and describe the problem

 Propose a solution

 Specify requirements and constraints for the solution

1.2 Definitions, acronyms and abbreviations

AoA – Angle of Arrival
Locator – Stationary unit that uses an antenna array to derive the AoA (and others)
Tag – Movable unit whose relative direction/position is being tracked by (a) locator(s)
nRF Connect for Desktop – A launcher for the application of this system (and others)

1.3 References

https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-desktop
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/Direction-finding

2. Positioning

2.1 Problem statement

The problem of lack of sampleproducts for an indoor 3D positioning system based on
Bluetooth Direction Finding

affects customers

causing the impact of customers having to develop their own solutions without reference
material

A successful solution would
provide

a nRFConnect for Desktop app that displays the real-time 3D
positiong of an AoA tag in an area covered by a number of AoA
locators. The app calibrates the system to allow tracking in the
customers unique environment.

2.2 Product position statement

For customers

who wish to use an indoor positioning system or to test out the capabilities
of Bluetooth Direction Finding

The indoor 3D positioning
system

is a software product

that by using AoA locators and a calibration process, displays the real-time
3D position of an AoA tag inside a room.

3. Stakeholder and user description

3.1 Stakeholder summary

Name Description Responsibilities

Nordic
Semiconductor

NTNU

Client

Supervisor and publisher

Decides the requirements and requirements of the
product

Gives feedback on the process, documentation
and scope of the project

3.2 User summary

Name Description Responsibilities Stakeholder

Business
customers

Private
customers

End user

End user

Uses the product to see capabilities
of Bluetooth Direction Finding and
as a reference design for further
development

Uses the product as a reference
design for further development

Self

Self

3.3 User environment

 3(+) AoA locators are placed so they cover a common area

 Aoa locators are connected to the computer running nRFConnect for Desktop and the positioning app

 When the AoA tag is within the area covered by the locators, its real-time 3D position will be shown in the
app

3.4 Key stakeholder or user needs

Need Priority Concerns Current solution Proposed solutions

Easy to use High The ability for users
without knowledge of
the system to set it up ,
test and use it

None A plug and play experience by
necessary firmware being pre-
installed on the units and an
intuitive app with clear

Easy to calibrate

Scalable

High

Low-
Medium

The ability for the user
to use the system
without needing exact
and manual
measurements of the
setup

The ability to use the
system as is with more
locators and tags

None

None

instructions for the use of the
system

The user is instructeed to place
the tag in positions relative to
the locators. An algorithm
calculates the position and
orientiatopm of the locators.

Algorithm and data that
supports a dynamic number of
tags (1+) and locators (3+)

4. Product overview

4.1 Product perspective

5. Product features

5.1 App features

 Start application

 Stop application

 Add locator units

 Remove locator units

 Start calibration

 Cancel calibration

 Select 2D/3D perspective

6. Other product requirements

6.1 System requirements

The system must be able to run nRF Connect for Desktop and have connectivity options for the locators.

C Requirement Document

42

22

Indoor 3D positioning system
Requirements

Versjon 1.0

Revision History
Date Version Description Author

29/01/2021 0.1 Added user stories and surface level
sequence diagram

Pascal Pickel

19/02/2021 0.1 Added wireframes Pascal Pickel

25/02/2021 0.1 Add more user stories Pascal Pickel

01/03/2021 0.1 Add and edit user stories Pascal Pickel

19/03/2021 1.0 Add supplementary specifications Pascal Pickel

Table of Contents

1. Introduction 4

2. Requirements 4

2.1 User Stories 4
2.1.1 User..4
2.1.2 Developer...5

2.2 Supplementary Specifications 5

3. Domain Model 6

3.1 Sequence diagram 6
3.1.1 User adds devices...6
3.1.2 User removed devices..6
3.1.3 User edits settings..7
3.1.4 App detects and removes disconnected devices..7
3.1.5 App detects and adds saved devices on start..8

4. Prototypes 9

4.1 Wireframes 9

1. Introduction
This document specifies the requirements to be met by the system and describes it’s interactive options.

2. Requirements

2.1 User Stories

2.1.1 User

As a user
I wish to select connected devices
So that the app sets up and uses the correct devices

 If I am a user, I can select which devices to use
 I can add connected devices by choosing “Select device” and selecting my device from a list
 I cannot select devices that are incompatible with the firmware or are already selected
 I am prompted to install the correct firmware upon selection or cancel the selection process

As a user
I wish to remove devices from use
So that unwanted device data is not being used by the app

 If I am a user, I can remove devices from the «connected device» list
 I can remove a specific connected device by choosing the «eject» option beside it’s entry in the list

As a user
I wish to calibrate the system
So that the tags correct 3D position can be obtained

 If I am a user, I can calibrate the system
 I can start the calibration process by selecting the «calibration» option
 After starting the calibration process, the app instructs me on how to complete the calibration progress

As a user
I wish to see the 3D position of the tag in a specific perspective
So that I can better see the position based on my needs

 If I am a user, I can change the perspective
 I can change the perspective by clicking and dragging the 3D view or selecting template persectives with

the appropriate UI buttons or keyboard keys
 I can see the appropriate keyboard keys to control the perspective by selecting the help («?») button

As a user
I wish to set the room dimensions
So that I can view a representation of system environment with accurate proportions

 If I am a user, I can set the room length, height and depth
 I can change the dimensions by focusing the appropriate field and entering the desired values

As a user
I wish to set the coverage angle as seen from the device
So that I have an accurate representation of the devices coverage

 If I am a user, I can set the device coverage angle
 I can change the device coverage angle by focusing the appropriate field and entering the desired value

As a user
I wish to see a simulation of the coverage of a device
So that I can view a representation of the coverage in my environment

 If I am a user, I can toggle the «show device coverage» option
 I can toggle the «show device coverage» option by selecting it
 When toggled on, I am able to see the coverage within the room based on the devices position and angle

therein

As a user
I wish to change the device name
So that I can identify devices easier and differentiate similar devices without the use of serial numbers

 If I am a user, I can edit the device name and enter a custom nickname
 I can select the device name and edit the text

As a user
I wish to see the device labels in the 3d viewport
So that I can accurately identify the devices

 If I am a user, I can toggle the «show device labels» option
 I can toggle the «show device labels» option by selecting it
 When toggled on, I am able to see the the device name or nickname hover above the appropriate device in

the 3d viewport

As a user
I wish to see the viewport axes
So that I can easily determine the orientation and edit the device position

 If I am a user, I can toggle the «show axes» option
 I can toggle the «show axes» option by selecting it
 When toggled on, I am able to see the the global 3d viewport axes as arrows

As a user
I wish to avoid having to reconfigure the system settings after restarting the app
So that I can use my previously used setup without spending time reconfiguring known information

 If I am a user, I can start the application and continue using the settings I had set during the last session
 If I do not have previously connected devices connected, they will not be imported from the last session

2.1.2 Developer

As a developer
I wish to add dummy devices
So that I can use and test the application without the need of a physical setup

 If I am a developer/user, I can add a dummy device to the application
 I can add a dummy device by selecting the “Add dummy device” option

As a developer
I wish to see the difference between raw and calibrated vectors
So that I can easily troubleshoot and test changes to the reading/calibration algorithm

 If I am a developer/user, I see the raw vectors and raw position displayed alongside the calibrated version
 I can view the raw and calibrated vectors/position by having the “Show direction vectors”, “Use calibration

vectors” and “Show raw vectors” options selected.

As a developer
I wish to see the difference between raw and calibrated vectors statistically
So that I can easily troubleshoot and test changes to the reading/calibration algorithm

 If I am a developer/user, I can see the respective error between a pair of vectors in a graph
 I can view the real-time graph by selecting the “Readings” pane

2.2 Supplementary Specifications

 3+ locator devices. These are expected to be nRF52833 DK with an antenna array from Nordic
Semiconductor ASA, whose firmware comes with the Indoor 3D Positioning application.

 A tag device which is also expected to be a nRF52833 DK from Nordic Semiconductor ASA. The firmware
for this must be requested from Nordic Semiconductor ASA.

 A USB cable and power supply for the tag device as the lithium battery shipped with the device does not
meet the energy demands of the firmware.

 nRF Connect for Desktop version 3.7.0
 The system running the Indoor 3D Positioning application needs as many usb ports as there are locator

devices.
 USB cables to connect the locator device to the system running the Indoor 3D Positioning application.

3. Domain Model

3.1 Sequence diagram

3.1.1 User adds devices

3.1.2 User removed devices

3.1.3 User edits settings

3.1.4 App detects and removes disconnected devices

3.1.5 App detects and adds saved devices on start

4. Prototypes

4.1 Wireframes

 Main screen in position pane with selected and set up devices:

The “Select Device” button expands down the entire height to show a list of valid, connected and unselected
devices.
The “About” button switches the viewport to show some info about the app. It is a default pane autotimatically
created by the shared assets for nRF Connect apps.
The “Default View”, “Side View” and “Top View” will switch the canvas perspective.

D System Document

53

22

Indoor 3D Positioning System
System Documentation

Version 1.0

Revision history
Date Version Description Author

03.04.2021 0.1 Added chapter 1-6 Pascal Pickel

14.04.2021 0.1 Edited chapter 3 and added reference to
source code in chapter 5

Pascal Pickel

15.05.2021 1.0 Finishing touches and added repository link Pascal Pickel

Table of Contents

1. Introduction 4

2. Architecture 4

3. Project structure 4

4. Installation and execution manual 6

5. Documentation of source code 6

6. Testing 7

1. Introduction

This document serves as a description of the Indoor 3D Positioning system by outlining everything the overarching
architecture, project structre, source code documentation and installation manual.

2. Architecture

The system is best described from right to left. We have a tag sending Bluetooth packets (2) consistently. These
packets are received by a number of locator devices which determine the relative direction of the packet. The
relative direction is then sent to the Electron/React app through serial communication using USB cables (1) as a
medium.

3. Project structure

./dist: Contains the bundle.js created by npm (node package manager) used by
Electron

./node_modules: Contains the files of dependencies imported by npm

./resources: Contains none-source code files such as images and the locator
firmware hex file

./src: Contains the source code files consisting of typescript and sass files

./: Various configuration files by git, code editors, npm and typescript

Within the src folder we have various groupings of React components which
will be explored below.

Addtionally we can find the main react component within index.tsx, The
DeviceSelector component, a sass styles file and a svg webpack declaration.

The util folder contains some common and isolated functions for the handling
and manipulation of the locator device data stream

The stores folder houses the zustand stores in addition to a persistent
storage and a small file for a type declaration to avoid a circle dependency issue

deviceStorage: State management code responsible for devices.
settingsStorage: State management code responsible for settings.
persistentStore: Code responsible for persisting settings and devicedata

The SidePanel folder holds all React Component Relevant to the
SidePanel. This includes various edit fields as well as settings.

There is an additional grouping for various Device related files.

The Position folder holds all files related to the view port.

There are additional groupings for the Device and Perspective control related
files.

4. Installation and execution manual
Install nRF Connect for Desktop launcher dependencies:
https://nordicsemiconductor.github.io/pc-nrfconnect-docs/getting_started#install-development-tools
https://nordicsemiconductor.github.io/pc-nrfconnect-docs/core_development#prerequisites

Clone the nRF Connect for Desktop repository by running the command «git clone
https://github.com/NordicSemiconductor/pc-nrfconnect-launcher.git»

Go to the correct directory mentioned in
https://nordicsemiconductor.github.io/pc-nrfconnect-docs/get_an_existing_app_s_sources

If publicly available: Clone the Indoor 3D positioning system repository by running the command «git clone
https://github.com/PascalPickel/pc-nrfconnect-indoorpositioning.git»
Else, unzip the code.zip into the above directory

The nRF Connect for Desktop launcher and Indoor 3D positioning application has to be compiled before it can be
run (Described in detail here:
https://nordicsemiconductor.github.io/pc-nrfconnect-docs/app_development#compiling)
Go to Indoor 3D positioning application directory and execute the command «npm run buid»
Go to the nRF Connect for Desktop launcher directory and execute the command «npm run build» followed by
«npm run app»

Now find the «Indoor positioning system» entry and press the «Open» button to the right of it.

5. Documentation of source code
The source code was written in typescript on the React framework. Typescript acts as the source code

documentation.
The source code can be found attached to the main report as a zip.file (code.zip)

6. Testing
Testing was performed through lint. It identifies coding errors and incorrect coding style.
To manually run this test, execute the command: npm run lint
This test is also run automatically, and has to pass, when pushing changes to a git repository, unless one uses the –
no-verify flag which removes this check.

E Project Manual

The project manual has a seperate submission and can be found there as a seperate pdf

(Manual.pdf)

F Code

The code is attached as a zip file (code.zip)

61

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Pascal Pickel

Indoor 3D Positioning System

Using Bluetooth 5.1 Direction Finding

Bachelor’s project in Computer Science
Supervisor: Tomas Holt

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Preface
	Task
	Abstract
	List of Figures
	List of Tables
	Acronyms and Abbreviations
	Glossary
	Introduction
	Background
	Research Problem
	Report Structure

	Theory
	Spherical coordinates
	Spherical coordinates to 3D unit vector

	Nearest points to skew lines
	Ray casting
	Euler angles
	Bluetooth
	Bluetooth Direction Finding

	Choice of Technology and Method
	Hardware
	nRF52833 Development Kit
	Antenna Array Expansion Board

	Development process and technology
	Development Process
	Typescript
	three.js
	react-three-fiber
	zustand

	Calculations
	Positioning formula
	Rotation of device graphics
	Calibration

	Results
	Scientific
	Hardware
	Calculation
	Design

	Engineering
	Administrative
	Project Plan
	Time Management

	Discussion
	Scientific
	Hardware
	Calculation
	Design

	Engineering
	Administrative
	Own effort and learning
	Ethics

	Conlusion and future work
	Conclusion
	Further work

	Bibliography
	Appendix
	Original Task Description
	Vision Document
	Requirement Document
	System Document
	Project Manual
	Code

