
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Adolfsen, Jarbeaux, M
oe, Younger

D
igital Evidence M

anagem
ent

Joakim Moe Adolfsen, William Jarbeaux, Thomas
Bakken Moe, Eric Younger

Digital Evidence Management

How can secure handling and storage of user-
defined heterogeneous data be accomplished in
a multi-tenant solution?

Bachelor’s project in Computer Engineering
Supervisor: Nils Tesdal

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Joakim Moe Adolfsen, William Jarbeaux, Thomas
Bakken Moe, Eric Younger

Digital Evidence Management

How can secure handling and storage of user-defined
heterogeneous data be accomplished in a multi-
tenant solution?

Bachelor’s project in Computer Engineering
Supervisor: Nils Tesdal
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

1

Preface

This project has its roots in a 2020 summer project that Thomas and Eric did for Signicat. During
a conversation with Tor Even Dahl in the fall off 2020; the possibility of continuing the summer
project as a bachelor project came up. Tor Even suggested a project: to take the product ”Digital
Evidence Management” from a proofofconcept to a product ready to be deployed in a demo
environment. To be part of a project from inception to production code seemed like a unique
opportunity. This was one of the main draws for the group when choosing this project.

During the project, we’ve been working in close proximity with Signicat. When the pandemic has
allowed for it: threemembers of the teammembers worked at Signicat’s offices in Trondheimwhile
one worked remote from Oslo. The project followed a SCRUM structure with the management
of ceremonies such as standups, retrospectives, and reviews left to the team. The project started
with exploration of key technologies, then moved over to development of the main product, and
later on to deployment and ”DevOps”work.

We extend our thanks and sincere appreciation to Tor Even Dahl, our Product Manager from Signi
cat. He has played a monumental role in getting the Digital Evidence Management (DEM) project
started and adapting it into a bachelor project. As the Product Manager, he has helped steer the
project in the right direction and guided us when tackling design questions. Tor is a real firebrand
and a driving force behind the project. DEM, and thus our bachelor project, would not exist without
him.

Other people instrumental to the project are Ansgar Tasler, Dag Sneggen and Steinar Knutsen from
Signicat. Ansgar Tasler has been a great advisor in terms of Devops when we were deploying our
system to AWS. He has greatly helped us to understand more on how the deployment process
works, and was a key person in making the deployment easier.

Dag Sneggen has been a great resource to us in regards to both understanding the OAuth/OIDC
protocol and in terms of giving us the knowledge we needed in order to secure the Digital Evidence
Management system.

Steinar Knutsen has been a supporting figure for our team through advice and guidance under the
development process.

We would also like to thank Nils Tesdal, our supervisor from NTNU. He has helped to guide us
throughout the project.

Finally we would like to say thanks to our classmates, who have been a source of great help, advice
and motivation during the course of this project and the three years of studies preceding it.

2

Assignment

The assignment given to us was to develop a new system for managing sensitive data such as
consent forms and transaction records. The main portion of this system was to be an API that
timestamp, stores and verifies incoming records. We were also tasked with creating a demo ap
plication to showcase the usages of the API and serve as an example for potential customers. The
assignment specified the use of several technologies such as OIDC and trusted timestamping. An
other requirement was that the system would have to use multitenancy, but could support being
used in a singletenant solution

Signicat laid out many functional and nonfunctional requirements for DEM. These requirements
can be viewed in full in attachment 8.3 or attachment 8.4. An overview of which requirements we
hit or not can be found in chapter 4.

The original goal of the assignment was to complete and deploy a productionready system by the
end of the project. During development and after some deliberation between the developer team
and the product owner/manager, it was determined that this would not be achievable within this
the timeframe of the project. Instead the scope was changed to create a hosted demo version of the
system which could then be presented to potential customers. This allowed us to focus more on
the system itself, and less on all the requirements of a productionready application.

3

Abstract

The amount of digital information that is being tracked and stored by companies is increasing every
year. Many companies collect this information, but do not have any dedicated systems to manage
it appropriately. In recent times several regulations have been introduced that force companies to
keep better control of the data in their possession.

This report details the work of creating an application for managing sensitive data such as consent
forms, transaction records, etc. The work resulted in a easy to use API and an example of its use
case in the form a web application.

The main challenges of the assignment were secure handling of data, and being able to process data
that is largely defined by the user (heterogeneous data). We have also had to consider different ways
of storing the data and weigh what is ideal up against what is realistic for a real product.

The project has been developed in collaboration with Signicat AS, and has adhered to many of
their standards and technical requirements. The main work methodology used was Scrum with
involvement from Signicat throughout the development.

CONTENTS 4

Contents

1 Introduction 10

1.1 Terms . 11

1.2 Acronyms . 11

2 Theory 13

2.1 Design patterns . 13

2.1.1 Separation of concerns . 13

2.1.2 Data Access Object (DAO) . 13

2.1.3 ModelViewController (MVC) . 13

2.1.4 Facade . 13

2.2 HTTPS . 14

2.3 OAuth 2.0 . 14

2.3.1 OIDC . 14

2.3.2 Client Credentials Flow . 15

2.3.3 Authorization Code Flow with PKCE 16

2.4 PSD2 . 18

2.5 Scrum . 18

2.5.1 Sprint planning and Daily Scrum . 19

2.5.2 Sprint Review and Retrospective . 19

2.5.3 Product Backlog . 19

2.5.4 Sprint Backlog . 19

2.5.5 Increment . 19

2.6 Single & Multitenancy . 20

CONTENTS 5

2.7 REST . 20

2.8 Relational and nonrelational databases . 21

2.9 ACID . 21

2.10 TSA / TSP . 22

3 Technology and methods 23

3.1 RQ Requirement 1: Authenticate the user . 23

3.1.1 Signicat Express . 23

3.1.2 OAuth 2.0 / OIDC . 23

3.2 RQ Requirement 2: Contain the heterogeneous data 23

3.2.1 MongoDB . 24

3.3 RQ Requirement 3: Manage ownership of data in the database 25

3.4 RQ Requirement 4: Keep the data secure in transit and at rest 25

3.5 RQ Requirement 5: Verify that the data has not been modified 25

3.6 API . 26

3.6.1 Spring Security . 26

3.6.2 Java . 26

3.6.3 Maven . 26

3.6.4 JUnit . 27

3.7 Demo Application . 27

3.7.1 TypeScript . 27

3.7.2 React . 28

3.7.3 Formatting Tools . 28

3.7.4 Figma . 28

3.8 Common technologies and tools . 29

CONTENTS 6

3.8.1 GitLab . 29

3.8.2 Docker . 29

3.8.3 Testing . 30

3.9 Work Method . 30

3.9.1 . 30

3.9.2 Work Management Tools . 30

3.9.3 Responsibilities within the team . 30

4 Results 31

4.1 Scientific Results . 31

4.1.1 Requirements for Research Question . 31

4.1.2 Benchmarking . 32

4.2 Engineering results . 34

4.2.1 API . 34

4.2.2 Demo Application . 39

4.3 Deployment . 42

4.4 Encryption in transit . 42

4.5 GDPR Compliance . 42

4.6 Merge to master . 42

4.7 Snyk . 43

4.8 Missing requirements . 43

4.9 Administrative Results . 44

4.9.1 . 44

4.9.2 Work distribution . 45

5 Discussion 46

CONTENTS 7

5.1 Scientific Discussion . 46

5.1.1 Requirements for Research Question . 46

5.1.2 Benchmarking . 46

5.2 Engineering Discussion . 47

5.2.1 Development Tools . 47

5.2.2 Query . 47

5.2.3 Deployment . 48

5.2.4 Encryption in transit . 49

5.2.5 Encryption at rest . 49

5.2.6 OIDC Flow . 50

5.2.7 Other requirements not met . 51

5.3 Administrative Discussion . 53

5.3.1 . 53

5.3.2 Teamwork . 53

5.4 Societal Perspective . 55

5.5 Professional Ethics . 55

6 Conclusion 57

6.1 Further work . 58

7 References 59

7.1 Personal Communication . 62

8 Attachments 63

8.1 System Documentation . 64

8.2 Benchmarking Results . 122

CONTENTS 8

8.3 Requirement Documentation . 131

8.4 Vision Documentation . 144

8.5 Process Document . 159

LIST OF FIGURES 9

List of Figures

1 Example of how extracted claims from an ID token can look like [28]. 15

2 Client credentials flow [8] . 15

3 Example of an access token response using the clientcredentials flow 16

4 Visual example of the PKCE flow [6]. 17

5 The difference between singletenant and multitenant solution [40] 20

6 Timestamp request [23]. 22

7 Timestamp response [23]. 22

8 Record, the data structure that gets stored in the database. 24

9 Time distribution per team member . 45

1 INTRODUCTION 10

1 Introduction

The origin of this assignment lies in Signicat’s desire to develop a new system for managing sensi
tive data such as consent forms, transaction records, or any number of individually defined records.
The idea came about when Signicat communicated with its banking partners about their need for
a system to meet the requirements of the EU Directive Payment Services Directive 2 (PSD2), in
particular the requirement of dynamic linking. Though this was the initial spark of the concept,
Signicat wanted to develop something that can be used in a wide variety of use cases.

Tor Even Dahl from Signicat had this to say about Signicat’s motivation for the project:

”The initial motivation formaking EvidenceManagement was the need from regulated
businesses where they need to safely store audit events and [have a] fast search and
retrieve on such [events]. It was mainly about fulfilling requirements from regulations
and country finance authorities defining strict rules and external audits. Initial focus
was on audits on payment transactions. Customers also recognised other needs for a
common event audit for GDPR and other user activities.”
 Tor Even Dahl, Slack message, 19.05.2021

Based on the assignment presented to us by Signicat, we formulated the following research ques
tion:

”How can secure handling and storage of userdefined heterogeneous data be accomplished in a
multitenant solution?”

We have identified the following requirements to satisfy this research question:

1. Authenticate the user.

2. Contain the heterogeneous data.

3. Manage ownership of data in the database.

4. Keep the data secure in transit and at rest.

5. Verify that the data has not been modified.

ACRONYMS 11

1.1 Terms

heterogeneous data

Data with a high variability of data types and formats. [44]. 3, 23, 24, 33, 37

1.2 Acronyms

ACID Atomicity, Consistency, Isolation, Durability. 5, 21, 25

API Application Programming Interface. 2, 3, 5, 23–26, 29, 34–38, 40, 42, 43, 45, 47, 50–53, 58

AWS Amazon Web Services. 1, 25, 29, 40, 42, 48, 49

CD Continuous Deployment. 29, 48, 49

CI Continuous Integration. 29, 35, 39, 42, 47–49

CSS Cascading Style Sheet. 39

DAO Data Access Object. 4, 13, 37

DEM Digital Evidence Management. 1, 2, 18, 23, 25, 26, 36, 47, 50, 51, 53, 55, 57

eIDAS Electronic Identification, Authentication, and Trust Services. 22

EU European Union. 18, 22

GDPR General Data Protection Regulation. 10, 42

GUI Graphical User Interface. 29, 40

HATEOAS Hypermedia as the Engine of Application State. 52

HTML Hypertext Markup Language. 39

HTTP Hypertext Transfer Protocol. 14, 32, 33, 36, 37

HTTPS Hypertext Transfer Protocol Secure. 4, 14, 25, 42, 49

JSON JavaScript Object Notation. 24, 34, 35

M2M Machinetomachine. 15

MVC ModelViewController. 4, 13, 36

NoSQL nonrelational. 32

ACRONYMS 12

NTNU Norwegian University of Science and Technology. 1, 53

OAS OpenAPI Specification. 38

OIDC OpenID Connect. 1, 2, 4, 5, 14, 23, 25, 37, 47

PKCE Proof Key for Code Exchange. 4, 9, 16–18

POC Proof Of Concept. 26

POJO Plain Old Java Object. 52

PSD2 Payment Services Directive 2. 4, 10, 18

QTSA Qualified TimeStamping Authority. 22, 25, 26

QTSP Qualified Trust Service Provider. 22

RDBMS Relational Database Management System. 21

REST Representational State Transfer. 5, 20, 30, 34, 36

RFC Request for Comments. 14, 16, 18, 22

RQ Research Question. 5, 23, 25

SoC Separation of Concerns. 13, 20

SPA Single Page Application. 16, 50

SQL Structured Query Language. 21, 25, 32

TLS Transport Layer Security. 14, 25

TSA TimeStamping Authority. 22, 25, 35, 47

TSP Time Stamp Protocol. 22

TTL Time to Live. 35, 36

URI Uniform Resource Identifier. 20

UUID Universally Unique Identifier. 25

XSS Cross Site Scripting. 50

2 THEORY 13

2 Theory

This section provides information on key terms and concepts relevant to this document / project.

2.1 Design patterns

Design patterns are general solutions that are reusable and serves to solve commonly occurring
problems when developing computer software [41].

2.1.1 Separation of concerns

Separation of Concerns (SoC) is a fundamental design pattern/principle. It states that an application
should be separated into distinct section with their own concerns [38].

2.1.2 Data Access Object (DAO)

Data Access Object (DAO) is a software design pattern which isolates the application layer from
the persistence layer. The DAO provides an abstract interface to any form of database, providing
data operation to application layer without disclosing details about the database itself[10].

2.1.3 ModelViewController (MVC)

ModelViewController (MVC) is a design pattern that builds on the Separation of Concerns pat
tern. The MVC pattern divides an application into three parts: Model, View and Controller.

The model component is typically some representation of realworld concepts, and often holds data
of some kind. The view component handles all the functions that directly interact with the user.
The controller component is the leading component that received user data and decided what to do
with it[31].

2.1.4 Facade

The facade design pattern is a object or a class that provide a layer of abstraction to hide complex
underlying code [20].

2 THEORY 14

2.2 HTTPS

Hypertext Transfer Protocol Secure (HTTPS), also called HTTP over TLS, is the standard for in
transit security between a web browser and a website. HTTPS prevents websites from broadcasting
their information in a way easily accessible way.

To keep communications secure it is encrypted by a protocol called Transport Layer Security (TLS)
formerly known as SSL [47]. TLS works by having the client use the server’s certificate to initiate
a handshake and set up session tokens for encrypted communications [25].

2.3 OAuth 2.0

Request for Comments (RFC) 6749 explains: ”The OAuth 2.0 authorization framework enables a
thirdparty application to obtain limited access to an HTTP service, either on behalf of a resource
owner by orchestrating an approval interaction between the resource owner and the HTTP service,
or by allowing the thirdparty application to obtain access on its own behalf [30].”

The OAuth 2.0 framework uses tokens that functions as credentials. The different tokens are ex
plained as:

• Access token are credentials used to access protected resources. The access token pro
vides an abstraction layer, replacing different authorization constructs (e.g, username and
password) with a single token understood by the resource server. Token represent specific
scopes and duration of access, granted by the resource owner, and enforced by the resource
server and the authorization server [30].

• Refresh token are credentials issued to the client by the authorization server and are used
to obtain a new access token when the current token becomes invalid or expires [30].

2.3.1 OIDC

OpenID Connect (OIDC) is an authentication protocol that functions as an identity layer that works
on top of the OAuth 2.0 Protocol. The OIDC protocol also uses ID tokens that contain claims about
the authentication of an enduser by the authorization server. These claims can be extracted so that
it possible to identify and verify the end user [33].

2 THEORY 15

Figure 1: Example of how extracted claims from an ID token can look like [28].

2.3.2 Client Credentials Flow

The client credential flow is typically used for Machinetomachine (M2M) applications, and is
different from other authentication flows by authenticating an app rather than a user. This is useful
for tools and services like daemons, commandline interfaces, and services running on a backend
server [8].

The client credentials consists of a client id and a client secret, and is known as an authorization
grant type in the OAuth 2.0 framework [30].

The client credentials protocol flow is shown in Figure 2.

Figure 2: Client credentials flow [8]

2 THEORY 16

1. An application sends in their authorization grant (client credentials) to the authorization
server.

2. The authorization server verifies the authorization grant.

3. If the authorization grant is valid the authorization server returns an access token.

4. The user provides the access token when making requests to the resource server.

5. The resource server verifies the access token and returns the requested resource if the access
token is valid.

On step 3, if the authorization grant is valid, then authorization server will return an access token
as shown in Figure 3.

Figure 3: Example of an access token response using the clientcredentials flow

As long as the access token has not expired, the machine can provide the access token along with
an request to get the requested resources. When the access token expires, the machine would have
to repeat step 15 again.

The protocol flow explained in further detail can be read in RFC 6749 OAuth 2.0 Framework,
section 1.2 [30].

2.3.3 Authorization Code Flow with PKCE

The Proof Key for Code Exchange (PKCE) flow tries to mitigate the security concerns that public
clients like native applications and Single Page Application (SPA)’s pose, as they can not securely
store a client secret. The PKCE authorization flow is intended for exactly this use case, and is
generally considered best practice [6]. Figure 4 shows a detailed breakdown of the flow.

2 THEORY 17

Figure 4: Visual example of the PKCE flow [6].

1. User clicks on login link on a web application.

2. The web application generates a code verifier and a code challenge.

3. The web application redirects the user along with the code challenge to a /authorize endpoint
on authorization server.

4. The authorization server redirects user to login page with authorization prompt.

5. User authenticates and consents the request by clicking on a grant access button.

6. The authorization server stores the code challenge and redirects the user back to the original
web application along with an authorization code.

7. Theweb application sends the received authorization code and the code verifier to a /oauth/token
endpoint on authorization server.

8. The authorization server verifies the code challenge and the code verifier.

2 THEORY 18

9. If request was valid, the authorization server responds with a access token and a ID token,
and optionally a refresh token.

10. The web application sends the access token along with any request for resources to the re
source server.

11. If the access token is valid, the requested resource is returned.

A more detailed explanation of the PKCE protocol can be found in the RFC 7636 document [32].

2.4 PSD2

Payment Services Directive 2 (PSD2) is an EUDirective that aims to provide a legal foundation for
electronic payments within the EU. This directive sets strict security requirements, enforces trans
parency, and grants the users certain rights and obligations [36]. Article 21 is especially relevant
to the DEM project:

”Member States shall require payment institutions to keep all appropriate records for the purpose
of this Title for at least 5 years, without prejudice to Directive (EU) 2015/849 or other relevant
Union law” [4].

Article 5 in the directive state that transactions should be dynamically linked to an amount and a
payee specified by the payer when the transaction is initiated. Which is a requirement that can be
accomplished with a system like DEM [5].

2.5 Scrum

Scrum is an agile development framework often employed in software development.

The original creators of the concept: Ken Schwaber and Jeff Sutherland, defines it as: ”Scrum
is a lightweight framework that helps people, teams, and organizations generate value through
adaptive solutions for complex problems”[43].

The scrummethodology consists of 5 events: the sprint, sprint planning, daily scrum, sprint review,
and sprint retrospective. During development, three artifacts are produced: the product backlog,
sprint backlog, and a product increment [43].

2.5.0.1 Roles

The fundamental roles in a scrum process are the developers, a product owner and a scrum master.
The developers are the people in charge of working towards a usable increment at the end of a

2 THEORY 19

sprint. The product owner is accountable for the product backlog and delegating responsibilities.
The scrum master is responsible for correct application of the scrum methodology and facilitating
efficient work from the development team.

2.5.1 Sprint planning and Daily Scrum

A sprint is initiated by the sprint planning event. This is where the goals of the sprint are determined
and that maps against the final product goal. Once the sprint has started daily scrum are conducted
each day. These are at max 15min sessions where the team inspects progress towards the sprint
goal [43].

2.5.2 Sprint Review and Retrospective

Sprint Review is the first ceremony after the sprint finishes. The goal is to learn from the past
sprint, inspect the outcome and determine future improvements. The Retrospective is a learning
step to learn what works and should be carried over to the next sprint [43].

2.5.3 Product Backlog

The product backlog is a set of issues/tasks that the scrum team needs to do in the development of
a product. There is a regular session attached to the product backlog called ”Backlog grooming”
where the product owner and the team discusses the backlog items and reviews them. This makes
it easier after each sprint, to choose updated backlog items to put in the next sprint [43].

From the Product backlog, the team and product owner chooses which issues to focus on on the
next sprint based on priority and wishes from the product owner. It is mainly the product owners
responsibility to set the content, availability, and priorities for the product backlog [37].

2.5.4 Sprint Backlog

The sprint backlog consists of a sprint goal and the set of items from the product backlog selected
for this sprint. This is used primarily by the developers to visualize what must be done to achieve
the sprint goal [43].

2.5.5 Increment

Increments are stepping stones towards the product goal. An increment must have a Definition of
done, a formal description of it’s current state [43].

2 THEORY 20

2.6 Single & Multitenancy

Singletenancy and multitenancy describes how many users are served by the same instance of
software and its supporting infrastructure. In singletenant architecture a single user is served their
own instance, while multitenant architecture serves multiple users on the same instance. While
the data from multiple users is contained in the same place, it is still isolated and kept invisible
from each other [7].

The benefits of a singletenant architecture are those of security, dependability and customization.
The main drawbacks is that of cost and maintenance. Multitenant architecture have the benefit of
lower costs, scalability and easier configuration for the developer. [7].

Figure 5: The difference between singletenant and multitenant solution [40]

2.7 REST

Representational State Transfer (REST) is a software architectural style introduced by Roy Field
ing in 2000. His dissertation defines six constraints which will make a web service ”RESTful”:
”The design rationale behind the Web architecture can be described by an architectural style con
sisting of the set of constraints applied to elements within the architecture” [17].

Uniform Interface. A fundamental constraint is that any interactionwith a RESTful system should
be uniform, as defined by four properties:

• ResourceBased
• Manipulation of Resources Through Representations
• Selfdescriptive messages
• Hypermedia as the Engine of Application State (HATEOAS)

Clientserver architecture. The client and the server should not be dependent on each other. This
is to match with the principle of Separation of Concerns. This allows the components to evolve
independently as the client communicates with the server only through resource URI’s.

Stateless. All clientserver interactions must be stateless. The server should not store anything

2 THEORY 21

about the requests made, so that all requests will have to contain all information necessary to
understand the request.

Cacheable. Data served in a response is marked as cacheable or noncacheable. Clientside
caching reduces latency and load on the server. The server can specify how long and in what
way the client is allowed to cache the response.

Layered System. Layered system architecture can be deployed where the client does not know if
it is connected to the end server or an intermediary.

Code on demand. The only optional constraint included. This constraint allows the server to send
executable code for the client to execute.

2.8 Relational and nonrelational databases

A major difference in databases are whether they are relational or nonrelational. A relational
database or Relational Database Management System (RDBMS) stores data in tables and rows
and often use Structured Query Language (SQL) to write and query the database [45]. Relational
databases have been around since the 1970s and are still popular today.

Nonrelational databases, often called NoSQL databases, instead store their data in a nontabular
form. They tend to be more flexible then SQLbased structures[46]. There are in general four
types of NoSQL databases: document stores, column oriented stores, keyvalue stores and graph
stores.

The two types of databases both have pros and cons attached to them and are suitable for differ
ent types of projects. Relational databases often excel at data integrity and security while non
relational databases provide greater scalability and flexibility and are not as constrained by struc
ture limitations. [34]

2.9 ACID

ACID refers to a set of properties that guarantee data integrity when dealing with database trans
actions. These properties are explained as follows [1]:

Atomicity. An entire sequence of actions must be either completed or aborted. The transaction
cannot be partially successful.
Consistency. A transaction takes the resources from one consistent state to another.
Isolation. A transaction’s effect is not visible to other transactions until the transaction is commit
ted.
Durability. Changes made by the committed transaction are permanent and must survive system

2 THEORY 22

failure.

2.10 TSA / TSP

RFC 3161 describes a timestamping service as a service that supports assertions of proof that a
datum existed before a particular time [23].

This is done through the use of the Time Stamp Protocol (TSP) also detailed in RFC 3161. The
timestamp request is done by sending a framed byte array of the data to be timestamped, where
each bit in the frame corresponds to options or parameters in the timestamping service.

A timestamp request will have the format shown in Figure 6. The timestamping service would
then return a response with the format shown in Figure 7.

Figure 6: Timestamp request [23].

Figure 7: Timestamp response [23].

TSP is implemented by a TimeStamping Authority (TSA), which serves a trusted third party in the
operation. Though there are several providers of such services, the EU created the Electronic Iden
tification, Authentication, and Trust Services (eIDAS) regulation which provides a legal frame
work for such services in the European Single Market. The EU keeps a list of trusted providers
which can be certified as a Qualified Trust Service Provider (QTSP) [24].

A TSA provided by a QTSP are know as a Qualified TimeStamping Authority (QTSA). Times
tamps provided by a QTSA provides full data integrity to the extent where it can not be disputed
in a court of law. Where as timestamps provided by a TSA can not offer the same assurances [24].

3 TECHNOLOGY AND METHODS 23

3 Technology and methods

In this section we will discuss our choices of technologies and methods, and how some of these
relate to the Research Question (RQ) requirements we identified in chapter 1.

3.1 RQ Requirement 1: Authenticate the user

Before the user can access the Digital Evidence Management (DEM) system, the user needs to be
authenticated. For user authentication we use Signicat Express and Signicat’s own solution. As
DEM is going to be a product offered by Signicat, it was only natural to incorporate DEM into
Signicat Express instead of setting up a separate authentication and user management system.

3.1.1 Signicat Express

Signicat Express is a system for accessing many of Signicat’s products and services. Express
handles and stores the information that is required for a customer to access the products that fall
under the Signicat Express umbrella. This includes client IDs, client secrets, as well as access
scopes. The access scopes decide what products a customer of Signicat Express will have access
to, as well as what kind of access the customer has to the products (for example: read/write) [39].

3.1.2 OAuth 2.0 / OIDC

Signicat supplies us with a intermediate authorization server from Signicat Express to handle the
validation and verification of authorization grants and handles the distribution of access tokens.

On DEM’s API, we only need to validate and verify access tokens, and decode the tokens using
the OIDC layer. With the implementation of the OIDC layer, we can secure the resources on the
API as well as integrate user isolation based on client credentials.

3.2 RQ Requirement 2: Contain the heterogeneous data

In the API we represent the heterogeneous data as Java record objects. The formatting of the
Record object is the same as the data that is stored in the database (see Figure 8).

3 TECHNOLOGY AND METHODS 24

Figure 8: Record, the data structure that gets stored in the database.

Only the fields ”customerMeta” and ”coreData” are provided by the enduser. We represent these
fields with the data type Map<String, Object>. This allows us to represent and contain any data
that is delivered to the API as a JSON body. This data type also maps really easily to our chosen
database type, MongoDB. MongoDB is a NoSQL database and thus especially good at handling
heterogeneous data [34].

Amore detailed explanation on how the Record class works can be found in attachment 8.1. System
Documentation.

3.2.1 MongoDB

MongoDB is a nonrelational, documentoriented database. MongoDB uses a sourceavailable
license, which means that while the source code for the database is available, the Enterprise version
is not considered open source.

”MongoDB is a general purpose, documentbased, distributed database built for modern applica
tion developers and for the cloud era.”[26]

In the beginning of the project, we conducted several benchmarking tests. One of these tests was
to compare the speed of several types of requests to different database types. We tested MySQL,
PostgresSQL, and MongoDB. We also planned to test Firestore, but this fell through. The bench
marking results are attached (8.2). One of the major points we gathered from the benchmarking
is that SQL databases do not perform well when trying to query unindexed heterogeneous data.
Heterogeneous data is by it’s nature hard to index. The poor performance of the SQL databases
when querying, combined with NoSQL databases’ inherent aptitude have with heterogeneous data
helped us to decide on MongoDB as our database solution[34].

This choice was based on our benchmarking results and discussions with our product manager and
technical lead. A combination of performance, document structure, and isolation capabilities led us
to use MongoDB. Another important factor was the fact that MongoDB, as of version 4.0, supports

3 TECHNOLOGY AND METHODS 25

ACID transactions, combining the speed of a document model with guaranteed data integrity. [2]

3.3 RQ Requirement 3: Manage ownership of data in the database

We handle multitenancy by dividing the data in our database into separate collections (equivalent
to a table in an SQL database) for each user. Each collection is named after the client’s ID, provided
by Signicat Express. When a user wants to access their data, we use OIDC to parse out the client
ID from their provided access token. This allows us to connect the user to the correct collection.
OIDC was one of the nonfunctional requirements laid out by our client at the beginning of the
project.

3.4 RQ Requirement 4: Keep the data secure in transit and at rest

The type of data that DEM is designed to process is highly sensitive. This means that it is critical to
keep this data secure during transmission (to and from the API) and at rest (stored in the database).
For transmission, we use HTTPS with a TLS certificate provided by our hosting solution, Amazon
Web Services (AWS). To keep the data encrypted at rest we will rely on MongoDB to handle this
for us, as this is a feature in MongoDB Enterprise [14].

HTTPSwas an obvious choice as it is the trusted industry standard and does not require much effort
on our part as it is provided by our hosting service. The same goes for MongoDB Enterprise; we
can develop quickly with MongoDB Community and upgrade to Enterprise later when we go into
production.

3.5 RQ Requirement 5: Verify that the data has not been modified

To verify that the user’s data has not been tampered with, we are using Signicat’s QTSA service.

When we are storing a record, the core data gets timestamped by the QTSA before being saved
to the database. When we retrieve a record by UUID, we hash the core data using the same hash
method as the QTSA. We then compare the hashes to see if they match. If the hashes match: then
the core data has not been tampered with.

By using a QTSA instead of a normal TSA, we gain the trust that the ’Q’ represents. We can be
absolutely sure that a record was created when the says it was and that it has not been tampered
with. We can even use this as evidence in court [24].

To use Signicat’s QTSAwas another requirement laid out by our client. In practise, we used a TSA
meant for work and preproduction (owned by signicat) during this project. This is because it is
costly and considered fraud to timestamp ”false” documents. When DEM goes to production, we

3 TECHNOLOGY AND METHODS 26

will switch over to using Signicat’s QTSA.

3.6 API

In this section we will discuss the technologies that are specific to the API, but that do not directly
apply to one of the research question requirements.

3.6.1 Spring Security

”Spring Security is a powerful and highly customizable authentication and accesscontrol frame
work. It is the defacto standard for securing Springbased applications[42]”.

3.6.2 Java

The DEM project started out as a POC project in the summer of 2020. The POC was written
in the programming language Kotlin. In the weeks before the beginning of the bachelor project,
there was an active discussion if the API in bachelor project also was to be written Kotlin. In the
end, Signicat decided that the API should be written in Java, but in the newest version available.
Using the newest version of Java gives some of the benefits that writing in Kotlin would give.
The primary benefit is that we can use records, Java’s new immutable data object type (similar to
Kotlin’s data classes). The API was written in Java 15 with preview enabled.

”Java is an established language in Signicat, while Kotlin does not have the same
strategic support. Kotlin was evaluated, and as a direct competitor to Java, insufficient
support was given to make a move to Kotlin as a first class language in the company.
The number of key features from Kotlin making their way into Java also factored into
this decision.”
 Steinar Knutsen, Slack message, 08.03.21

Java 16 was released on the 16th ofMarch, in the middle of our project. Had Java 16 been available
at the beginning of the project, it would have been used. The DEM API will be upgraded to Java
16, but it was felt that the upgrade would waste precious time during the project.

3.6.3 Maven

Maven is a software management and build automation tool focused on how a project is built and
manages it’s dependencies[19]. Its primary function is to simplify the build process and create a

3 TECHNOLOGY AND METHODS 27

uniform build system. When choosing a build automation tool there are several options too choose
from, the most popular being Maven and Gradle. We chose Maven as it was a good fit for this
project as the application itself will not be overly complex. Another consideration was the fact that
the client primarily use Maven in their projects and using this technology would make the handoff
process more smooth.

If the project were to grow considerably one could consider migrating over to Gradle which is
a newer tool better suited for more complex applications. Gradle was designed to address the
drawbacks of Maven, such as shorter build times and being more flexible[3].

3.6.4 JUnit

JUnit is a testing tool framework built for Java and the JVM. In our project, we use JUnit 5 in ad
dition to RESTEasy for solving our testing needs. JUnit 5 is used for unit tests, while RESTEASY
handles integration testing.

3.7 Demo Application

In this section we will discuss the technologies that are specific to the Demo Application, but that
do not directly apply to one of the research question requirements.

3.7.1 TypeScript

TypeScript is a strict typing superset of JavaScript. The primary purpose is to enforce strict typing
at compile level to make it challenging to assign nonpredefined variabletypes. Microsoft de
veloped TypeScript and released it in 2012. When we considered our demo frontend application
technologies, we realized that we needed to optimize the eventual production code. The next logi
cal step was using TypeScript as our base language because it allowed our compiled JavaScript to
be safer and result in a more stable application. TypeScript, in conjunction with React, makes our
components only take in the types of variables that are already predefined in the type declaration,
placed at the top of our component file. When we expand the componentfiles to include more
subcomponents, the same types could be used and made sure that there was a clear pattern to the
component design. TypeScript will follow the variable path and ensure that none of our variables
have changed their type throughout. The check occurs on the compilation of the application di
rectly in our IDE, making it easy to detect any possible issues. The TypeScript compilator will not
allow compilation if there are unspecified types in our code.

3 TECHNOLOGY AND METHODS 28

3.7.2 React

”React is a JavaScript library for building user interfaces [16]”. React uses a Virtual Document
ObjectModel (DOM), whichmeans that instead of rerendering the entire DOMon every change to
the DOM, it will only rerender the affected components that are changed on state or prop changes.
This is valuable in terms of efficiency and server pressure. Since React is componentbased, we
can make components reusable, instead of writing them again or having duplicate lines of code
several places. React is developed by Facebook, and has a large community, and since they released
Reacthooks, state handling is a breeze. Considering all the aforementioned reasons and that every
team member had prior experience with it, we decided that React was a good fit for our project
specification and would suit our needs.

3.7.3 Formatting Tools

Eslint is a tool for identifying and reporting patterns found in ECMAScript/Javascript code, with
the goal of making code more consistent and avoiding bugs [15].

Eslint comes by default with both linting and to some degree, style formatting. For our project
we disabled the style formatting in Eslint and only used Eslint for linting errors. We used Prettier
instead to handle the responsibility of style format enforcing, as Prettier is a stronger tool to use
for that purpose.

Prettier is an opinionated code formatter, meaning that we can define our own ruleset for how
we want the coding style for the project to be, and the editor will automatically format the code to
follow those rules on save. This is used to increase readability throughout the project and have code
style consistency. Another feature with Prettier, is that it provides autoformatting and feedback
while developing [35].

3.7.4 Figma

Figma is a visualizing tool that can be used for designing both highend and lowend prototypes
efficiently. The advantage of using Figma as a prototyping tool is exporting the prototype com
ponents to CSS. In conjunction with the fast interface, this feature enabled us to create accurate
prototypes quickly. These features together made the design process precise and effective, and
made Figma a natural choice as a wireframe tool [18].

3 TECHNOLOGY AND METHODS 29

3.8 Common technologies and tools

In this section we will discuss the technologies that are common for both the API and the Demo
Application, but that do not directly apply to one of the research question requirements.

3.8.1 GitLab

GitLab is an online Git repository with DevOps features likeWebhooks, CI, CD, container registry
and Kubernetes Cluster management. We use GitLab as a central remote repository for version
control, and use GitLab CI to run a build, test, deployment and publish stages.

3.8.2 Docker

Docker is platform for shipping and running applications through the use of OSlevel virtualization.
This is done by creatingDocker images which are then instantiated in the form ofDocker containers
[12].

The usage of Docker was one of the requirements given to us by the client. During development
we use Docker in conjunction with the tool dockercompose to create instances of the various
databases, such as for benchmarking, local environment and testing. We also use this for running
the Prometheus server.

We also use Docker to make images of the API and the Demo Application and thereby ”dockerize”
the projects. These images are then used during the deployment to AWS. By creating Docker
images of the projects, we introduced the feature of scalability. If the API for instance is under
high pressure, tools like Nomad or Kubernetes can run another instance of the image and thereby
alleviate the pressure by distributing the workload.

3.8.2.1 DockerCompose

”Dockercompose is a tool for defining and running multicontainer Docker applications [13]”.

This tool was especially useful when we were benchmarking multiple databases, and using GUI
tools like ”phpMyAdmin” and ”pgAdmin”. We defined the databases along with any preliminary
configuration in a dockercompose.yml file, and could then easily run all Docker containers with
the single command ”dockercompose up”. The advantage of running databases in containers
instead of as an service on each computer, is that every computer would have the same clean setup
on each run.

3 TECHNOLOGY AND METHODS 30

3.8.3 Testing

For integration tests we elected to use the framework REST Assured. This allowed to test several
layers of our application with a simple and intuitive framework. For unit tests we used the mocking
frameworkMockito which allowed us to isolate the tests to just the class in question. For the Demo
Application we focused on component testing with the use of the React Testing Library and Jest.

3.9 Work Method

3.9.1

We decided to use Scrum as our main development framework during the project. As we were
a team of four we knew that we had the opportunity to achieve a decent implementation of this
framework.

The 2020 version of the Scrum Guide states that a scrum team typically consists of 10 or fewer
people [43]. Our team would be on the smaller side, which means communication inside the team
would be crucial to stay productive. This was something we were ready for as the team members
were well acquainted beforehand.

Another aspect which led us towards this process was our client. Signicat themselves use scrum
and assured us that they would like to be involved and help us with the process.

3.9.2 Work Management Tools

The tools used to manage our work process was decided on by the client. We would use Conflu
ence[9] to manage our documents and Jira[27] to keep track of our backlog, burndownchart and
sprints. For version control we would Signicat’s internal GitLab.

3.9.3 Responsibilities within the team

Email correspondence: Thomas
Responsible for communication between the team and outside elements.

Meeting documentation: Eric
Responsible for the creation of meeting summons and writing meeting minutes.

Process documentation: Joakim
Responsible for creating and organizing timesheets, status reports and other charts.

4 RESULTS 31

4 Results

This section will present the results of the project as a whole. It has been split to focus on the
scientific findings, the current system in relation to the given requirements, and information about
how the process was executed.

4.1 Scientific Results

4.1.1 Requirements for Research Question

To answer the research question we came up with the requirements presented in section 1. This
section explains how we came up with these requirements.

4.1.1.1 Security

To keep data that we are handling secure, we have to keep several things in mind.

The first requirement states the user needs to be authenticated. This is often the first step in any
security process and is how we identify the user. This is required so that we can check if they have
the necessary authorization for what they are trying to do.

Secure handling requires that the data is not exposed at any point of the storage process. The fourth
requirement states that the data must be kept secure when in transit and also once it is at rest in the
database.

No matter how many safety measures are added to keep data secure, it is vital that we do not trust
them blindly. The fifth requirement is that it must be possible to verify that any data stored has not
been tampered with at any point.

4.1.1.2 Heterogeneous Data

The second requirement states that the heterogeneous data must be contained in some way. This
is because we are dealing with diverse data, inputted by the user, where the form and shape of the
data is largely unknown. In order to successfully handle this data across the different layers of the
system architecture, each layer must find some way to encapsulate the data. This way we keep the
userdefined data untouched, while dealing with container objects in the logic.

4 RESULTS 32

4.1.1.3 Multitenancy

To achieve multitenancy in way that is secure, it is imperative that we have authenticated the user,
as stated in the first requirement. The third requirement is that we must still keep track of the
owner of any data in the database. This is because there must be no possible way for a tenant in
the database to be able to access others tenants data.

4.1.2 Benchmarking

At the beginning of development we wished to conduct some benchmarking on different HTTP
frameworks for Java and various database solutions. We also wanted to explore how the different
frameworks and databases integrated with each other. Another goal was to test which combina
tions were up to the task in regards to efficiency while having dynamic queries and good average
response times. This was welcomed by the client despite the initial requirement that MySQL was
to be used.

For frameworks we only looked at ones that have a large community and are widely documented.
We decided to compare the established Spring Boot with the new challenger Quarkus, which is
gaining in popularity.

For databaseswe knew that wewanted to explore both relational (SQL) and nonrelational (NoSQL)
databases to discover what would be best suited for the type of data we would be handling. The
databases we looked into were:

• Non relational databases

– MongoDB

– Firestore (Firebase’s database solution)

• Relational databases

– MySQL

– Postgres

4.1.2.1 Execution

We were able to connect Postgres, MySQL, MongoDB to Spring boot, and was able to setup
MySQL through a Hibernate/persistence layer for Quarkus. The Firebase emulator proved chal
lenging to work with within our environment due to our combined technology stack with Docker
and Java. With time constraints, we decided to abandon testing of Firebase.

4 RESULTS 33

The benchmarking itself was conducted by setting up some basic endpoints using the HTTP meth
ods GET, POST and DELETE. The GET methods included both getting a stored record by a in
dexed ID and getting a stored record by searching for a nonindexed value in it’s heterogeneous
data. We then conducted load testing on the different combinations of frameworks and databases.

4.1.2.2 Results

The full results from the benchmarking can be viewed in attachment 8.2.

4 RESULTS 34

4.2 Engineering results

At the end of development we have fully developed a REST API in Java and a frontend Demo
Application in TypeScript. Both the API and the Demo Application are built using several of the
design patterns mentioned in section 2.1

At the beginning of the project, Signicat (our client) provided several functional and nonfunctional
requirements. These are detailed in the attached vision document (8.4). In this chapter we will
go through these requirements and explain how we implemented them. Some requirements have
changed during development as per the client’s instructions.

4.2.1 API

The API has been developed as requested in Java 15 with preview enabled, which was the latest
stable version at the start of development. The development has been done by following both the
REST standard and Signicat’s REST API guidelines.

”The team have done a nice job of creating a simple and clean API, that complies with
Signicat REST guidelines”
 Rune Synnevåg, Slack Message, 20.05.2021

4.2.1.1 Endpoints

The API contains all the requested endpoints related to the handling of Records. The initial re
quirements also mention specific Admin endpoints such as: ”Create customer”, but these were
deprioritized during development by the client.

Create Records. The user is able to create a record and store it in their own collection in the
database. This is accomplished by the customer supplying the data and metadata of the object they
want to store in a JavaScript Object Notation (JSON) format. During creation the record is given
an unique ID and generated system metadata is attached. The data of the customer will also be
timestamped so that it can later be verified that the data has not been modified in any way.

Search Records. Users are able to search through their stored records by setting up queries con
taining search criteria. This can be used for simple search functionality or to filter through all their
records. The search functionality supports both ”and” and ”or” logic meaning that several critera
can be bound together and form complex queries. The search were specifically designed to only
query the system and customer metadata, but currently the core data can also be queried.

Get Records. Users are able to retrieve all information relating to a record by utilizing the record’s
unique id. When a record is retrieved in this way a check is also conducted to verify that the core

4 RESULTS 35

data of the record has not been modified. The result of this check is then displayed in the system
metadata of the returned record.

Mark Records for deletion. Records stored in the database will automatically be given a Time
to Live (TTL) of 3 years, after which the entry will be removed from the database. By using this
endpoint the user can adjust the TTL to 30 days from when the endpoint is called.

4.2.1.2 Packaging

The requirement to build the API with Spring Boot and to release Docker images was achieved.
Using GitLab’s CI we automated generation and releasing of Docker images to GitLab’s container
registry.

Docker images are built when the master branch in the repository is updated, provided that all the
other stages of the CI pipeline are passed. The template to build the Docker image is detailed inside
a Dockerfile in the repository. The images are built during several steps in the CI pipeline.

The ”build” stage builds an executable jar file of the API, then the ”test” stage runs to see if there
has been any breaking changes. If both the ”build” stage and the ”test” stage pass; the ”deploy”
stage will deploy the image by copying the jar from the ”build” stage and push it to GitLab’s
container registry.

See attachment 8.1 for more details regarding packaing and CI.

4.2.1.3 Metadata

One of the requirements of the API was to include metadata defined by the user in addition to that
generated by the system. The user is able to add in custom metadata to any records created, by
simply attaching a JSON as the body of the request.

The initial requirement for the system metadata was to store:

• Time and date from TimeStamping Authority (TSA)

• Delete grace period

• Mark for delete

• Valid until

• Validity of records related to timestamp

• Reference

4 RESULTS 36

Throughout the development process these requirements changed as we discovered MongoDB’s
TTL function served multiple purposes. The discovery of this functionality and resulting conver
sations between the development team and product manager lead to altering of the these require
ments.

As TTL served multiple purposes, we removed the need for these criteria fields to be stored in
system metadata:

• Delete grace period

• Mark for delete

• Valid until

4.2.1.4 Multimodule project

The API is split into several modules using Maven. We divided the project structure of the API
into the following modules:

• core

• web

• mongoDB

This requirement was added during the development process when the client wanted the database
integration of the application to be modular. They also wanted the project to have loose coupling
and high cohesion. With the modules ”core” and ”web”, the API has the Model and Controller
structure of a MVC, where as the Demo Application would function as the View in the context of
the MVC design pattern noted in section 2.1.

Core
The ”core” module have classes that serve as models. For instance, we have created the classes
”RecordRequest” and ”RecordResponse” which represent the data coming in to and being re
turned from the API respectively.

The ”RecordRequest” class would map the request body of a Hypertext Transfer Protocol (HTTP)
request into a familiar format that the Digital Evidence Management (DEM) system could work
with. While the ”RecordResponse” class was made so that we could map the data generated by
the system in addition to data retrieved from the database into a single response object to requests.

Web
The ”web”module’s function is to handle all logic in regards to the RESTAPI. The ”web”module

4 RESULTS 37

has controller classes like ”RecordController” and ”AuthController” to handle HTTP requests for
the API’s endpoints, as well as service classes like ”RecordService” and ”TimeStampService” to
handle database operations and timestamping.

MongoDB
the ”mongoDB” module consists only of two classes: ”RecordDAOImpl” and ”SearchBuilder”.
”RecordDaoImpl” implements the methods specified in the Data Access Object (DAO) class in
the Web module with it’s own implementation that works with MongoDB databases. The DAO
methods are uniformly written so that it is not dependent on a single database storage solution,
and can easily use other database solutions by writing a implementation for the desired storage
solution. The ”SearchBuilder” class is a MongoDB specific helper class that helps with queries.

More on DAO can be found under section 2.1. The aforementioned modules are explained in
greater detail in the System Documentation attachment.

4.2.1.5 Database Solution

The original requirement for the API was to use MySQL as the storage solution. However, after
conducting the benchmarking (see section 4.1.2) it was agreed upon to change the database solution
to use MongoDB as that proved to be more efficient and would facilitate the use of heterogeneous
data.

4.2.1.6 OIDC

Spring Security is used to set up authentication with scope permission for most endpoints on the
API. We also use Spring Security to filter the requests based on different authorization levels. The
application or user requesting a resource from the API, will have to supply a valid access token
along with any request for a resource.

All endpoints except ”/auth”, ”/dem/actuatur/up” and ”/dem/actuator/health” is protected with
OAuth 2.0 and OIDC. The ”/auth” endpoint is not protected as this is the proxy endpoint towards
Signicat’s authorization server to get a valid bearer token if provided client credentials are valid.
The other endpoints mentioned that are not protected by OIDC are endpoints used for ascertaining
if the API is up and running, and is most commonly used by Prometheus and other metrics scrapers.

4.2.1.7 Tenant Isolation

Isolation between the different users in the database is achieved by supplying each user a separate
collection. When a user interacts with an endpoint they must send in a valid token in order to be
given access, from this token the server is able to identify the user and thereby the collection to do

4 RESULTS 38

database operations towards. Now the server targets the specific collection belonging to the user.
It is also safe to remove tenants from live systems as this would not affect other tenants.

4.2.1.8 Encryption at rest

The database currently set up with the API is using MongoDB’s Community Edition, which does
not have encryption at rest. Bymaking the switch toMongoDB’s Enterprise edition, the data would
be encrypted.

4.2.1.9 Test Coverage

The requirement for testing coverage was to have 90% coverage. We currently have achieved
testing coverage of 85%. This is accomplished by both unit tests and integration tests.

4.2.1.10 Development Tools

The API follows the client’s coding standard which is enforced by using the Checkstyle develop
ment tool.

4.2.1.11 Documentation

The API has documentation supplying information about how each endpoint functions and exam
ples of usages. The API has both Swagger and ReDoc documentation which are generated on build
through the use of an OpenAPI Specification (OAS) file that is produced by the plugin SpringDoc.

4.2.1.12 Metrics and Logging

The API uses the Spring Actuator framework to expose endpoints with default metrics which can
be scraped with tools like Prometheus. We have set the API to use Log4j to print logs instead of
”System.out.println()”, but have not connected Log4j to any centralized logging solution at this
time as it was not set as a priority by the product manager.

4 RESULTS 39

4.2.2 Demo Application

4.2.2.1 Programming language

The requirement to use JavaScript/Hypertext Markup Language (HTML)/Cascading Style Sheet
(CSS) is partly altered. The project is using HTML and CSS, but replaced JavaScript with Type
Script instead.

This was done to gain the advantages and features of a compiled language and had no seemingly
negative consequences. TypeScript is just a superset of JavaScript which compiles down to browser
friendly JavaScript. By using TypeScript instead, we gained several advantages as described in
section 3.7.1.

As stated in the Requirement Document (see 8.3), we were also to choose a HTML framework and
a CSS framework.

We choose to use React as the HTML framework, since every member on the team had prior
experience with it, and to reduce time otherwise spent on learning another framework.

Since Signicat had their own style guides, but no framework. We saw that if we were to use a CSS
framework like Bootstrap, Materialize or Material Design, we would need to override most of the
styling from those frameworks to fit with Signicat’s style profile. Because of this we wrote the
CSS classes from scratch instead.

4.2.2.2 Packaging

Wewere able to fulfill the requirement to release containers. OnGitLab CI’s final stages on updates
to master, the GitLab CI runner will produce a production build of the Demo Application and build
a Docker image which is pushed to GitLab’s container registry.

4.2.2.3 Unit test code coverage

For the Demo Application we were successful in reaching the required minimum of 85% coverage.
Our application had a coverage of 95.87% for statements, 85.59% for branches and 89,6% for
functions. With an average coverage of 90,35%.

See attachment 8.1 for generated coverage report.

4 RESULTS 40

4.2.2.4 Linting

The Demo Application is set up to use Eslint for all linting purposes, and uses Prettier for style
formatting. Eslint is set up with a strict ruleset, where errors will not compile. It will also output
to console if there are any warnings. More details about Eslint and Prettier can be found in the
System Documentation attachment(see 8.1), and in section 3.7.3.

4.2.2.5 Search functionality

The requirement for the Demo Application, was for it to be able to showcase the powerful search
functionality that the API had. We were successful in implementing most of the functionality that
the ”/query” endpoint that the API had to offer. But did not implement the ”OR” conditions into
the Demo Application as we felt it was not intuitive enough for the user of the GUI.

We also implemented the search to work together with pageable requests, so that the Demo appli
cation could have ”lazy loading” functionality.

See attachment 8.1 for a greater explanation of the features and functions of the search endpoint.

4.2.2.6 Test Data Generation

During the development of the Demoapplication, a new requirement was introduced to have the
user be able to generate randomised test data, so that the user could test the system with more data.
This goal was achieved, but could also be a part of further development to have the user specify
more settings in regards to the generating of data.

4.2.2.7 Authentication

The requirement for needingAuthentication for theDemoApplication came very late in the project.
The team together with the product manager saw the need to have some sort of authentication since
the Demoapplication would be deployed to Amazon Web Services (AWS).

The Demosystem partly achieved this goal. This is due to the OAuth 2.0 clientcredentials au
thentication flow (see 2.3.2) used in the API was not intended to be used in this manner. Through
discussions with Tech Lead and Product Manager, we came to a conclusion that since the system
in AWS only was a test environment, it would be acceptable to have some security flaws. The au
thentication requirement for the Demoappliction was more of an effort of limiting access, rather
than securing it entirely.

Furthermore, since the API was the main product, it did not seem right to have the API make

4 RESULTS 41

compromises when the Demoapplication was only intended for a test environment, and not a
production environment. More about the details regarding authentication and security can be found
in the system documentation.

4.2.2.8 WCAG

The requirement in the vision document was full support for WCAG 2.1. This requirement was
mostly fulfilled by creating a small React component Library that fulfilled WCAG 2.1, which we
then reused through the entire demo application. Fulfilling these requirements also meant that we
had to do some adjustments to Signicat’s already established style profile. By using the JSX A11y
plugin for ESlint, we made the code meet many of the requirements immediately on compile. As
compile in React was set up to be on save, we got immediate feedback on the code. This includes
all the htmlattributes that WCAG 2.1 requires.

The demo application mostly fulfilled it’s goal of full WCAG 2.1 compliance. The most important
items like offering support for screen readers and more was implemented through correct use of
htmlattributes and tab navigation.

4 RESULTS 42

4.3 Deployment

The initial requirement was for the deployment to target Kubernetes, but during the development
Signicat’s infrastructure team decided that this version of the system should be deployed with
Nomad.

When the master branches are updated, GitLab Continuous Integration (CI) runs a pipeline that in
its final stage deploys a Docker image of the build to the GitLab Container Registry. The API and
Demo Application both contain .hcl files which are used to get both system running and interacting
in Nomad. These .hcl files are used by Nomad to create containers from the images stored in the
container registry’s.

For the actual deployment these files are run in a different repository belonging to Signicat where
Terraform is used to deploy the application in Amazon Web Services (AWS).

The current deployment is only available inside Signicat’s internal network.

4.4 Encryption in transit

Encryption in transit is partly achieved, the API and Demoapplication we deployed to run on
Amazon Web Services (AWS) uses HTTPS, but due to a certificate name error, the certificate is
rendered invalid. The certificate is set up and supplied by Signicat, so we have notified Signicat
to correct this. So when the certificate is valid, both services will have encryption in transit.

4.5 GDPR Compliance

The system as of now does not store or log any personal information as the actual user accounts
are managed by Signicat. As the project did not reach production during development no other
consideration regarding the General Data Protection Regulation (GDPR) has been considered.

4.6 Merge to master

The initial requirement to have merge requests merged by employees was quickly changed as the
pace needed for creating a foundation for the API and the Demo Application required more haste.
We changed this requirement to have another member of the team approve merge requests.

4 RESULTS 43

4.7 Snyk

Both the API and Demoapplication is integrated with Snyk.io. However, they both have some
vulnerabilities reported by Snyk. At the time of writing this report, there is no patch available yet
to remedy these vulnerabilities.

4.8 Missing requirements

• The feature of records being able to have relations to each other has not been implemented
in our solution.

• The integration with Sonarcloud has not been implemented.

• The integration with Signicat Billing was removed by the client.

• Versioning has not been conducted to the degree specified.

• Centralized logging has not been conducted to the degree specified.

4 RESULTS 44

4.9 Administrative Results

4.9.1

As stated in section 3.9.1, we chose to use Scrum as our development framework.

The biggest deviation from the standard methodology was the lack of a dedicated scrum master.
The closes thing we had to this role was Tor Even Dahl, who was our primary contact with Signicat.
Hewouldweigh in onwhat should be prioritized next, arrangemeetings and join our sprint reviews.
However much of the actual scrum process was largely up to us to maintain, with members from
Signicat having access to all our planning.

We started the project by setting up a backlog, after which we received feedback and approval
from Signicat. During the development time we conducted in total five sprints with each one
lasting between two to three weeks.

We would begin each sprint by planning out which features and qualities we wanted to accomplish
in the time period. After setting up all the issues for the sprint we conducted a ”planning poker”
session, where each member wrote down how long they thought it would take to accomplish each
issue. After everyone revealed their estimates we all agreed on a number of hours to assign to the
given issue.

After each sprint we would conduct a sprint review with members of Signicat staff and present
our results. We would then have a discussion on possible changes and future priorities. After
the review we would go together as a team and reflect on the sprint. We based these discussion
around the retrospective technique of the 4L’s (Liked, learned, lacked, longed for)[22], having
each member write down some aspects for each category. We eventually added ”Disliked” as a
fifth column.After everyone had written their thoughts, we would read through each category and
discuss what general themes we were observing. At the end of each retrospective we would write
down a list of what we should improve upon for next time.

4 RESULTS 45

4.9.2 Work distribution

(a) Joakim (b) William

(c) Thomas (d) Eric

Figure 9: Time distribution per team member

We found that the team originally split into two teams, with one focusing on the API, while the
other focused on the Demo Application. As time progressed it made sense for all members to work
more together on the application as a whole.

More information about the process and each members timesheet can be found in attachment 8.5,
Process Document.

5 DISCUSSION 46

5 Discussion

In this section we will reflect on the results achieved and provide explanations on what went well
and what went less well. This section is split in the same categories as those presented in Section
4.

5.1 Scientific Discussion

5.1.1 Requirements for Research Question

We defined the requirements for the research question primarily based on the various conversations
and technologies we encountered during the course of the project. We believe that the requirements
are accurate to the challenges of the task, however, we could have done more research to strengthen
our case or find weaknesses in our logic.

5.1.2 Benchmarking

At the beginning of development we wished to conduct some benchmarking on different Java
framework and database solutions. We also wanted to explore how the different frameworks and
databases integrated which each other. Another goal was to test which were up to the task in regards
to efficiency while having dynamic queries and good average response times. This was welcomed
by the client despite the initial requirement that MySQL was to be used.

Our initial goal was to connect all four databases to both Spring Boot and Quarkus. We quickly
saw that we had underestimated the amount of time it would take to implement all the databases
with both frameworks, and after some discussion with our supervisor, the product owner, and the
tech lead, we decided that conclusive benchmarking was too big a task for the time we had allotted.
We then decided to make our report and final decision at the end of sprint, even if we were not
entirely satisfied with the data we were able to ascertain in this time.

The main area of concern was how poorly Quarkus performed in most of our tests compared to
Spring Boot. The discrepancy between the two led us to suspect that our implementations may
not have been sufficiently comparable. Nonetheless, this benchmarking phase helped us identify
which combination of framework and database felt more natural for the way we envisioned the
system, which is why we ultimately recommended using Spring Boot and MongoDB.

5 DISCUSSION 47

5.2 Engineering Discussion

The original hope was to complete the product in its entirety, but we do not believe this was really
achievable with the time allotted for this assignment. In our opinion, changing the scope to more
of a test environment made sense. It also means that potential customers can experiment with our
system and help shape the final product by providing feedback.

Even though we did not meet all requirements specified in the vision document, we are satisfied
with meeting the core requirements of DEM: TSA, OIDC and Multitenant isolation. These core
requirements serves as the foundation of DEM, and will function as building block for any further
development. These concepts was hard to both comprehend and integrate with the API.

In this section we will discuss in more depth different aspects of the system.

5.2.1 Development Tools

We are satisfied with the development environment we have set up for the API and the Demo
application. By using the strict Checkstyle and Eslint plugins, we were able to reduce the number
of bugs produced and increase the readability of the code. We also used Dockercompose to set up
MongoDB and Prometheus with the same configuration for all members of the team, which saved
us a lot of time since we didn’t have to configure it on each member’s machine. GitLab CI was
helpful to avoid including buggy code in the master branch.

The different tools and technologies we employed during development did turn out be very bene
ficial over time. For the API, we had plugins to run both integration tests and unit tests when ex
ecuting build commands, which led to errors early in development. Using Maven as the project’s
package manager also made it easy to manage dependencies within the different repositories. For
the Demo Application, we integrated Prettier in addition to Eslint to handle style formatting and
linting, which increased readability and unified the code.

5.2.2 Query

We are happy that we were able to construct a powerful query endpoint on the API, which let the
user have a fine grain query by sending in lists with ”AND” and ”OR” conditions that should be
met. Within the aforementioned lists they could match criteria with operators such as:

• Equals (eq)

• Greater than (gt)

• Greater than or equals (gte)

5 DISCUSSION 48

• Less than (lt)

• Less than or equals (lte)

• In (in)

• Not in (nin)

• Regex (regex)

5.2.3 Deployment

We were able to meet the requirements in terms of releasing docker containers and deploying to
Amazon Web Services (AWS). The process of releasing docker containers through GitLab and
deploying to AWS was time consuming, as we did not have much knowledge and experience prior
to this.

We were able to meet the requirements of creating docker containers and deploying these in AWS.
The process of releasing Docker containers via GitLab CI and deploying to AWS was time con
suming as we did not have much prior knowledge and experience.

Deploying to AWS was unfortunately more complicated than first imagined. Signicat has not
whitelisted GitLab CI to deploy to AWS, which was our original intention. In order to allow this,
Signicat first had to do an evaluation to determine if they wanted to allow it at all.

The suggested solution was to use the alternative CI solution in Jenkins, which was allowed to
deploy to AWS.

We did not elect to rewrite our pipeline in Jenkins because we had already invested a lot of time
in our GitLab integration. Also, we were much more familiar and comfortable with GitLab than
with Jenkins. It was our general impression that GitLab would be approved and whitelisted, but we
could not rely on this to be prioritized in time for our needs. We instead elected to use a workaround
so that we could still use the solutions we had already created.

This workaround involved integrating our Nomad job files with another of Signicat’s repositories,
which already setup to deploy to AWS. The problemwith this solution, was that we had tomanually
trigger a CI pipeline for another repository to have AWS pull the newest containers. So in effect,
we were only able to achieve Continuous Integration and not complete Continuous Deployment in
our solution.

There were several routes we could go for deploying our systems to AWS, and we believe our
current solution is not ideal or perfect. There were several ways to tackle the CD problem, but due
to some pressure on having a running instance for customers of Signicat deployed to AWS within
the end of the project, we believe we made the best of the situation.

5 DISCUSSION 49

Our ideal solution was the one that we wrote at first, to have GitLab handle both CI and CD.
With our initial solution there would be no coupling/dependency to another project, and our own
repositories would automatically handle both deployment and have AWS restart and pull the latest
images. All could be setup and maintained from a single stage with GitLab CI.

GitLab
We had to finder Docker base images that would fit each stage of the pipeline. To test if a docker
image had the correct tools and software needed we had to run it through GitLab and wait for the
job to pass. Some stages required several tools, for instance the stage ”buildpages” as noted in
the System Documentation(see 8.1), required having Maven 3.8, Java 15 with preview and a small
Linux distribution like Buster to run shell commands. Although we were able to make stages that
would fulfill our CI / CD needs and meets the requirement, we note that the stages are poorly
optimized. We could have done more research into finding docker images with a smaller footprint
which in turn would decrease the time needed for each stage to complete.

Versioning
Our GitLab containers are tagged with the tag ”latest”, and should have been more specific in order
to easier rollback solutions if there should arise problems with a new deployment.

5.2.4 Encryption in transit

The requirement of encryption in transit is something we did not have to put any effort in acquiring
for our deployed instances on AWS. The environment on AWS was already set up to use HTTPS.
It should be noted that there is a problem with the certificate name already set up for the AWS
services, which in effect makes this requirement only partially fulfilled. We have notified Signicat
to correct this certificate error, and are confident that encryption in transit will be acquired when
the error is fixed.

5.2.5 Encryption at rest

We found out that to have the database encrypted, we only had tomake the switch fromMongoDB’s
Community edition to MongoDB’s Enterprise edition. This was put on hold from Signicat, as the
billing would start from the second we made the switch to the Entreprise edition.

Seeing as there were no need for an encrypted database in the developing stages, it made sense to
us to not push any further on the issue. We consider this requirement as essential when the product
reaches a production state, but for the demo environment, we felt that it was not necessary yet.

5 DISCUSSION 50

5.2.6 OIDC Flow

In the start of the project, there were no initial thoughts that the Demo Application would need au
thentication. However, as the project details become more clear as we developed the DEM system,
we saw a need for securing the Demoapplication as well. At that point, the clientcredential flow
(see 2.3.2) was well integrated with the API, and we later realised that this flow would not work
well for both Single Page Application (SPA) and machine to machine communication like the API
needed.

We set up our API to use OAuth 2.0 client credentials protocol flow as this was the best fit for
machine to machine interaction[30]. This worked great for the API as a standalone product. The
problems with clientcredential flow are that no refresh tokens are granted and the protocol is not
intended to be used in a user eventdriven manner, but rather for machinetomachine interaction.

To safely secure any frontend solution like our Demo Application with persistent login with this
protocol would be troublesome, if not next to impossible. [30] This is because the clientcredentials
consists of a client id and a client secret known as authorization grant, and by providing the autho
rization grant to an authorization server would return a access token.

We initially stored the credentials in memory only for the Demo Application, but later came to the
decision to store the credentials in ”localStorage” to favor a good user experience, in order to not
have the user log in on page refreshes. By the storing either the authorization grant or the access
token in ”localStorage”, the application becomes vulnerable to Cross Site Scripting (XSS) attacks
as the application would supply an attack vector. We explained this security flaw in greater detail
in the System Documentation (see 8.1).

Our research showed that the OAuth 2.0 PKCE flow (see 2.3.3) was the best fit for SPA’s, where the
protocol would provide us with refresh tokens to use within the Demo Application [32]. However,
it was always the thought that the API was the main product that would reach production, while
the Demo Application would only be used as a demo environment. Because of that fact, we did
not want the API make any compromises on behalf of the Demo Application. Through discussions
with Signicat, we came to the conclusion that it would be acceptable for the demoenvironment
to have some security flaws for the time being. For further work we would look into more of a
ActiveDirectory solution for safely securing the Demo Application.

It is not ideal to have a insecure system even though it is only intended for a demo environment.
This is something that we would wish to correct if we had more time, and is definitely something
that we would put in the further development column to correct.

5 DISCUSSION 51

5.2.7 Other requirements not met

Some requirements was not implemented at all as it was not set as a priority by the product manager,
and there was simply just not enough time. We do not see the requirements that we were not able
to meet as crucial to the MVP, but rather that they are essential for DEM to reach a production
state. We also found that the missing requirements was something that could be added later on and
would not require any refactoring of the project structure or setup.

The requirements we were not able to meet:

• Sonarcloud integration for both API and Demoapplication

• Integrate with Signicat billing solution

• Centralized logging for the API

• Versioning.

5.2.7.1 Snyk vulnerabilities

We have integrated Snyk into both the API and the Demoapplication, but there are some vulner
abilities that has been reported by Snyk that we were not able to fix. Some of the dependencies
library used that were vulnerable i.e Spring Boot, React scripts were so integrated into the system
that there were no simple operation of just replacing the dependency with another. We opted for
the option to put the vulnerabilities in a Snyk ignore file for thirty days, and have Snyk let us know
about the vulnerabilities after the snyk ignore expiration date. This option is something we deem
as a valid solution, as the developers of the libraries and frameworks will often need time to write
patches to fix those vulnerabilities. Snyk will notify us if there are any patches available on the
expiration date of Snyk ignore issues.

5.2.7.2 Reference between records

We did not have time to implement the functionality of having reference between records, as this is
a design discussion as well as a technical implementation. We saw that implementing a reference
between record was not as simple as just setting a reference between one record to another. The
design discussion is a matter of if we should have full transitive relation between records, just a
one way binding, or a two way binding between records. This topic of relationship required further
research. We want to note that this is a requirement that can be added later on without requiring
any, or little refactoring, as we had it in mind when we designed the database model and set up the
API.

5 DISCUSSION 52

5.2.7.3 Using POJOs and Records

Something we wanted to use in this project was the Java feature of Records, not to be confused by
our ”Record” entity. Records are a new type introduced in Java 14 as a preview, with the intention
to avoid much of the boilerplate code that is required in normal POJOs[21]. This suited our data
very well and we were able to use it efficiently through most of the project. When we wanted
to implement HATEOAS to our API we found that this was not easily integrated without using
POJOs. Spring has a built in solution for HATEOAS, but this does not have support for Records
at this moment. To solve this we had to redesign the system to translate between Java records and
POJOs when relevant. Ideally we would have liked to be consistent with the types throughout.

5 DISCUSSION 53

5.3 Administrative Discussion

5.3.1

At the end of the day we feel that the use of Scrum worked well for this project. This is especially
because we had a client which wanted to stay involved in the process throughout and who had
experience in working this way. By splitting the development into several sprints we were able to
break down the assignment to smaller parts and tackle them one at a time.

We did feel very selfsufficient as a team, especially so because of the lack of a fully dedicated
Scrum master. This absence is definitely a major one for our methodology to follow the Scrum
framework recommendations.

We did find that the time spent to execute the spring ceremonies often exceeded what we initially
planned. This was something that improved over time, but we could still have been more efficient
in how we went about the planning and retrospectives of the sprints.

5.3.2 Teamwork

As with all large systems there are the three main challenges [29]:

1. Complexity

2. Lack of insight and overview

3. Communication challenges

Throughout developing DEMwe faced all of these challenges as the size of the system grew. Since
we developed both a API with multiple modules and a demo application, our system became large
and complex (1), and it was hard for everyone to have insight and overview of the system(2). We
had a Mini workshop in the middle of our Bachelor project as an effort to get more overview and
insight into the parts of the system that people had not worked on.

We had some difficulties regarding to communication(3) while developing our system and writing
our bachelor thesis. This was mostly due to our team were located in different places. Three of the
team members were located in Trondheim, while the last team member were located in Oslo. The
difficulties of working from different places was that we lost track of what others was working on,
and how the progression was for certain tasks. The threshold was higher for questions and smaller
conversations when we were not in the same place working together.

Furthermore, because Covid19 infection rates was on the rise in the midst of our Bachelor project,
we were prohibited from gathering at both NTNU and at Signicat’s offices for a month. During

5 DISCUSSION 54

this time, we tried relying as best as we could on tools and technology like Discord for voice and
video conversations, daily stand ups to gather a status on what people were working on and if they
had any problems.

We noted these communications issues on our Sprint retrospectives, and worked on being more
available on voice chats, asking each other about issue status, and also worked on writing more
detailed issues with subgoals so that it would be easier to know what to do, and to follow the
progress of issues more easier. We also became more strict with using Jira early on as we saw
the need for such a tool for asynchronous communication. Moreover, to alleviate the communica
tion problem, we also made use of sessions with pair programming from time to time. This was
particularly helpful when it came to issues that were difficult to comprehend or implement.

5 DISCUSSION 55

5.4 Societal Perspective

The DEM system is made so that it is possible to have both singletenant and multitenants. Single
tenancy is theoretically more secure because you do not have multiple users within the same
database, and can therefore guarantee user isolation. In a multitenant solution the users are all
inhabiting the same database. Users are isolated from each other in a multitenancy solution, but
there is always the risk of containment breaches in the isolation.

Ideally we would always use singletenancy, but the cost of running multiple instances of database
makes this economically unsustainable. In a realistic situation one has have to weigh the degree
of security up against the cost of running the system.

With the emergence of GDPR and all of its requirements and rules, a need for storing sensitive data
in a secure manner emerges. DEM tries to cover that need by supplying a service which can store
the data securely, verify that data has not be breached, and has not been tampered with. DEM aims
to be a general evidence management solution that would fit a wide variety of industries which
have the functional role as data controllers. Both customers of Signicat, and Signicat themselves
has expressed the need for such a solution, and will start to use it when it is production ready.

5.5 Professional Ethics

As the Digital Evidence Management (DEM) system’s main purpose is to store sensitive informa
tion, there are several requirements that need to be met as a data processor before the system can
be used in production.

We asked the product manger Tor Even Dahl for DEM to explain the role of data processor and
the responsibility that comes with it:

”The most important keyword for a data processor is trust. Customers need trust that
the data processor processes the the customers data in regards to laws and regulations
and does so in a secure manner. The data processor would need to have good processes
internally and security in the way it handles the data without intrusion, deleting data
in accordance with defined rules and etc.”
 Tor Even Dahl, Slack message, 18.05.2021

From a small extract of the data controller agreement[11], we can find many points that need to be
considered when developing Digital Evidence Management:

• The data processor acts according to instructions

• Confidentiality

5 DISCUSSION 56

• Security of processing

• Use of subprocessors

• Transfer of data to third countries or international organisations.

• Notification of personal data breach

• Erasure and return of data

• Audit and inspection

The data processor contract is very detailed, but for edge cases which the contract does not cover,
the team of developers, as well as Signicat as a company, should always focus on having good
professional ethics, following laws, and when in doubt make use of organisations like Datatilsynet,
NITO, IEEE and ACM.

As we mentioned in previous chapter, the demo environment has some security flaws regarding
to storing credentials in ”localStorage” on the Demoapplication. If the Demoapplication should
ever be used in a production environment, it is crucial that these security flaws be corrected. It is
part of the responsibility that comes with the role ”Data Processor” and is also not seen as good
practice within the profession to knowingly deploy a security flawed system to production.

In addition to security, it is also important that the application is made to be accessible. We made
an effort to fulfill the WCAG 2.1 requirement with necessary alt texts, tab indexes, key listeners,
labels, correct color ratio etc, so that the system should be accessible to all users with or without
disabilities.

As we can see from extract, the core requirements: ”Multitenant user isolation”, ”Encryption in
transit”, ”Encryption at rest”, ”Verification of data tampering” is quite relevant when it comes to
fulfilling the role as a data processor.

6 CONCLUSION 57

6 Conclusion

Securely handling heterogeneous data in a multitenant solution is possible if one considers all the
requirements that such a solution demands. We identified 5 requirements to satisfy our research
question:

1. Authenticate the user.

2. Contain the heterogeneous data.

3. Manage ownership of data in the database.

4. Keep the data secure in transit and at rest.

5. Verify that the data has not been modified.

If any of these requirements are notmet, one could not claim to have developed a sufficient solution.
In this report, we have explored these requirements and how we have chosen to address them in
DEM.

We believe that our solution fulfills our research question. This is based on the requirements we
laid out from the research question, the requirements Signicat gave us with our assignment, and
the feedback we have gotten from both the employees of Signicat and potential customers. DEM
is not ready for production yet, but it is at a stage where most of it’s requirements are met and it is
deployed to a test environment.

It is at a point now where it is desirable to involve end users and gather feedback for possible
improvements and new features. DEM has already been shown to some potential customers and
has been enthusiastically received. The next stage for this product will be allowing these customers
access to the Demo Application so they can freely test its capabilities.

6 CONCLUSION 58

6.1 Further work

For any further development of the application we recommend that the following points are added
or considered:

 Involve enduser

 User testing

 Add feature to provide relations between different records.

 Change the database to use MongoDB Enterprise edition so that the database will be encrypted.

 Redesign the Demo Application login to correctly use an authorization code flow.

 Add proper refresh tokens to the Demo Application.

 Connect the system to Signicat’s billing systems.

 Connect the system to Signicat’s centralized logging system.

 Set up detailed metrics.

 Integrate SonarCloud for automatic code reviews.

 Improve test coverage on the API (currently the API is at 85% coverage, the requirement is 90%).

 Upgrade the API to Java 16.

 Better handling of date objects (the current method of parsing date objects work, but are not
ideal).

7 REFERENCES 59

7 References

[1] ACID properties of transactions. URL: https://www.ibm.com/docs/en/cics-ts/5.
4?topic=processing-acid-properties-transactions (visited on 05/19/2021).

[2] ACIDTransactions inMongoDB. URL: https://www.mongodb.com/basics/transactions
(visited on 05/19/2021).

[3] Alexandra Altvater. Gradle vs. Maven: Performance, Compatibility, Builds, More. URL:
https://stackify.com/gradle-vs-maven/. retrieved 08.03.21.

[4] Article 21. URL: https://www.eba.europa.eu/regulation-and-policy/single-
rulebook/interactive-single-rulebook/5504 (visited on 05/19/2021).

[5] Article 5. URL: https://eur- lex.europa.eu/legal- content/EN/TXT/?uri=
uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC (visited on
05/19/2021).

[6] Authorization Code Flow with Proof Key for Code Exchange(PCKE). URL: https://
auth0.com/docs/flows/authorization- code- flow- with- proof- key- for-
code-exchange-pkce (visited on 05/18/2021).

[7] Chris Brook. SaaS: Single Tenant vs MultiTenant What’s the Difference? URL: https:
//digitalguardian.com/blog/saas-single-tenant-vs-multi-tenant-whats-
difference (visited on 05/20/2021).

[8] Client credential flow. URL: https://auth0.com/docs/flows/client-credentials-
flow (visited on 05/18/2021).

[9] Confluence. URL: https://www.atlassian.com/software/confluence (visited on
05/17/2021).

[10] Data Access Object. URL: https://en.wikipedia.org/wiki/Data_access_object
(visited on 05/19/2021).

[11] Datatilsynet.Databehandleravtalen på engelsk. URL: https://www.datatilsynet.no/
rettigheter- og- plikter/virksomhetenes- plikter/databehandleravtale/
hvordan-lage-en-databehandleravtale/hva-ma-en-databehandleravtale-
inneholde/ (visited on 05/18/2021).

[12] Docker overview. URL: https://docs.docker.com/get-started/overview/ (vis
ited on 05/20/2021).

[13] Docker.com. Docker compose. URL: https://docs.docker.com/compose/. retrieved
08.03.21.

[14] Encryption at Rest. URL: https://docs.mongodb.com/manual/core/security-
encryption-at-rest/ (visited on 05/20/2021).

[15] Eslint.org. About Eslint. URL: https://eslint.org/docs/about/. retrieved 08.03.21.

https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-properties-transactions
https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-properties-transactions
https://www.mongodb.com/basics/transactions
https://stackify.com/gradle-vs-maven/
https://www.eba.europa.eu/regulation-and-policy/single-rulebook/interactive-single-rulebook/5504
https://www.eba.europa.eu/regulation-and-policy/single-rulebook/interactive-single-rulebook/5504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC
https://auth0.com/docs/flows/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://auth0.com/docs/flows/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://auth0.com/docs/flows/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://digitalguardian.com/blog/saas-single-tenant-vs-multi-tenant-whats-difference
https://digitalguardian.com/blog/saas-single-tenant-vs-multi-tenant-whats-difference
https://digitalguardian.com/blog/saas-single-tenant-vs-multi-tenant-whats-difference
https://auth0.com/docs/flows/client-credentials-flow
https://auth0.com/docs/flows/client-credentials-flow
https://www.atlassian.com/software/confluence
https://en.wikipedia.org/wiki/Data_access_object
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/databehandleravtale/hvordan-lage-en-databehandleravtale/hva-ma-en-databehandleravtale-inneholde/
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/databehandleravtale/hvordan-lage-en-databehandleravtale/hva-ma-en-databehandleravtale-inneholde/
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/databehandleravtale/hvordan-lage-en-databehandleravtale/hva-ma-en-databehandleravtale-inneholde/
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/databehandleravtale/hvordan-lage-en-databehandleravtale/hva-ma-en-databehandleravtale-inneholde/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://eslint.org/docs/about/

7 REFERENCES 60

[16] Facebook. React.js. URL: https://reactjs.org/. retrieved 08.03.21.

[17] Roy Fielding. Representational State Transfer. URL: https : / / www . ics . uci . edu /
~fielding/pubs/dissertation/rest_arch_style.htm. retrieved 07.04.21.

[18] Figma. Figma. URL: https://www.figma.com/. retrieved 08.03.21.

[19] Apache Software Foundation. What is Maven? URL: https://maven.apache.org/
what-is-maven.html. retrieved 08.03.21.

[20] Günther Franke. http://w3sdesign.com/?gr=s05ugr=struct. (Visited on 05/19/2021).

[21] Brian Goetz. JEP 359: Records (Preview). URL: https://openjdk.java.net/jeps/
384.

[22] Mary Gorman and Ellen Gottesdiener. The 4L’s: A Retrospective Technique. URL: https:
//www.ebgconsulting.com/blog/the-4ls-a-retrospective-technique/ (vis
ited on 05/17/2021).

[23] Network working group. Internet X.509 Public Key Infrastructure TimeStamp Protocol
(TSP). URL: https://tools.ietf.org/html/rfc3161. retrieved 06.04.21.

[24] Anna Hannover. Introducing Qualified Time Stamp Authority service from Signicat. URL:
https://www.signicat.com/resources/introducing-qualified-time-stamp-
authority-service (visited on 05/19/2021).

[25] Howdoes TLSwork?URL: https://www.cloudflare.com/learning/ssl/transport-
layer-security-tls/ (visited on 05/18/2021).

[26] MongoDB Inc. The database for modern applications. URL: https://www.mongodb.
com/. retrieved 08.03.21.

[27] Jira Software. URL: https : / / www . atlassian . com / software / jira (visited on
05/17/2021).

[28] Takahiko Kawasaki. Understanding ID token. URL: https://darutk.medium.com/
understanding-id-token-5f83f50fa02e (visited on 05/19/2021).

[29] Grethe Sandstrak Kirsti Berntsen Geir Ove Rosvold and Marthe Liss Holum. FS 01 Intro
Systemtenking. https://ntnu.blackboard.com/webapps/blackboard/execute/
content/file?cmd=view&content_id=_1205521_1&course_id=_22717_1. Lecture
slide from TDAT3002. Retrieved 18.05.21.

[30] Microsoft. The OAuth 2.0 Authorization Framework, RFC. URL: https://tools.ietf.
org/html/rfc6749. retrieved 06.04.21.

[31] MVC: Model, View, Controller. URL: https://www.codecademy.com/articles/mvc
(visited on 05/19/2021).

[32] OAuth PCKE flow. URL: https://datatracker.ietf.org/doc/html/rfc7636
(visited on 05/17/2021).

[33] OpenID. OpenID Connect. URL: https://openid.net/connect/. retrieved 06.04.21.

https://reactjs.org/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.figma.com/
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://openjdk.java.net/jeps/384
https://openjdk.java.net/jeps/384
https://www.ebgconsulting.com/blog/the-4ls-a-retrospective-technique/
https://www.ebgconsulting.com/blog/the-4ls-a-retrospective-technique/
https://tools.ietf.org/html/rfc3161
https://www.signicat.com/resources/introducing-qualified-time-stamp-authority-service
https://www.signicat.com/resources/introducing-qualified-time-stamp-authority-service
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.atlassian.com/software/jira
https://darutk.medium.com/understanding-id-token-5f83f50fa02e
https://darutk.medium.com/understanding-id-token-5f83f50fa02e
https://ntnu.blackboard.com/webapps/blackboard/execute/content/file?cmd=view&content_id=_1205521_1&course_id=_22717_1
https://ntnu.blackboard.com/webapps/blackboard/execute/content/file?cmd=view&content_id=_1205521_1&course_id=_22717_1
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://www.codecademy.com/articles/mvc
https://datatracker.ietf.org/doc/html/rfc7636
https://openid.net/connect/

7 REFERENCES 61

[34] Tamara Pattinson.Relational vs. nonrelational databases. URL: https://www.pluralsight.
com/blog/software-development/relational-vs-non-relational-databases
(visited on 05/19/2021).

[35] Prettier.io. Prettier. URL: https://prettier.io/. retrieved 08.03.21.

[36] Revised rules for payment services in the EU. URL: https://eur-lex.europa.eu/
legal-content/EN/LSU/?uri=CELEX:32015L2366 (visited on 05/19/2021).

[37] Scrum.org. Scrum Product Backlog. URL: https : / / www . visual - paradigm . com /
scrum/what-is-product-backlog-in-scrum/. retrieved 08.03.21.

[38] Separation of concerns. URL: https://en.wikipedia.org/wiki/Separation_of_
concerns (visited on 05/19/2021).

[39] Signicat Express APIs. URL: https://www.signicat.com/express-apis (visited on
05/16/2021).

[40] SingleTenant LMS vs MultiTenant LMS: A Question of Security. URL: https://www.
peoplefluent.com/blog/learning/single- tenant- lms- vs- multi- tenant-
lms-security/ (visited on 05/19/2021).

[41] Software design patterns. URL: https : / / en . wikipedia . org / wiki / Software _
design_pattern (visited on 05/19/2021).

[42] Spring.io. Spring Security. URL: https://spring.io/projects/spring-security.
retrieved 06.04.21.

[43] Ken Schwaber Jeff Sutherland. The 2020 Scrum Guide. URL: https://scrumguides.
org/scrum-guide.html. retrieved 17.05.21.

[44] Lidong Wang. “Heterogeneous Data and Big Data Analytics.” In: Automatic Control and
Information Sciences 3.1 (2017), p. 1. ISSN: 23751630. DOI: 10.12691/acis-3-1-3.
URL: http://pubs.sciepub.com/acis/3/1/3.

[45] What a Relational Database Is. URL: https://www.oracle.com/database/what-is-
a-relational-database/ (visited on 05/19/2021).

[46] What is a NonRelational Database?URL: https://www.mongodb.com/non-relational-
database (visited on 05/19/2021).

[47] What is HTTPS? URL: https://www.cloudflare.com/learning/ssl/what-is-
https/ (visited on 05/18/2021).

https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://prettier.io/
https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX:32015L2366
https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX:32015L2366
https://www.visual-paradigm.com/scrum/what-is-product-backlog-in-scrum/
https://www.visual-paradigm.com/scrum/what-is-product-backlog-in-scrum/
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns
https://www.signicat.com/express-apis
https://www.peoplefluent.com/blog/learning/single-tenant-lms-vs-multi-tenant-lms-security/
https://www.peoplefluent.com/blog/learning/single-tenant-lms-vs-multi-tenant-lms-security/
https://www.peoplefluent.com/blog/learning/single-tenant-lms-vs-multi-tenant-lms-security/
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://spring.io/projects/spring-security
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://doi.org/10.12691/acis-3-1-3
http://pubs.sciepub.com/acis/3/1/3
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.mongodb.com/non-relational-database
https://www.mongodb.com/non-relational-database
https://www.cloudflare.com/learning/ssl/what-is-https/
https://www.cloudflare.com/learning/ssl/what-is-https/

7 REFERENCES 62

7.1 Personal Communication

• Tor Even Dahl, Product Manager, Team Signature at Signicat.

• Steinar Knutsen, Tech Lead, Team Signature at Signicat.

• Rune Synnevåg, VP Lead Architect, Signicat

8 ATTACHMENTS 63

8 Attachments

System documentation: Digital Evidence Management

Joakim Moe Adolfsen William Jarbeaux Thomas Bakken Moe
Eric Younger

Spring 2021

TDAT 3001 Group 109
version 1.0

8 ATTACHMENTS System Documentation 64

8.1 System Documentation

Audit history

Date Version Description Author
13.01.2021 0.1 Initial structure setup Thomas Bakken Moe

12.05.2021 1.0
Filled out details. Added project
structure, diagrams and installation

Joakim Moe Adolfsen, Thomas
Bakken Moe, Eric Younger

2

8 ATTACHMENTS System Documentation 65

Contents

1 Introduction 9

2 Architecture 10

3 Project structure 11

3.1 Backend . 11

3.1.1 Root structure . 11

3.1.2 Core . 13

3.1.3 MongoDB . 20

3.1.4 Web . 21

3.2 Frontend . 24

3.2.1 Root structure . 24

3.2.2 Src . 26

4 Diagrams 32

4.1 API . 32

4.2 Demo Application . 35

5 Database model 36

6 Server services 37

6.1 Adding a record . 37

6.2 Retrieving a record . 37

6.3 Marking a record for deletion . 38

6.4 Retrieving specific records . 38

6.5 Others . 39

3

8 ATTACHMENTS System Documentation 66

7 Security 40

8 Installation and running 44

8.1 API . 44

8.1.1 Synopsis . 44

8.1.2 Prerequisites . 44

8.1.3 Error handling for database . 44

8.1.4 Build project . 45

8.1.5 Run project . 45

8.1.6 APIDocumentation . 45

8.1.7 Metrics . 46

8.1.8 Profiles . 46

8.1.9 Switching databases . 47

8.1.10 Static code analysis tool: Checkstyle 47

8.1.11 Dockerfile . 47

8.2 Demoapplication . 48

8.2.1 Synopsis . 48

8.2.2 Prerequisites . 48

8.2.3 Run application . 48

8.2.4 Run tests . 49

8.2.5 Build production app . 49

8.2.6 Environments . 49

8.2.7 GitHooks . 50

8.2.8 Linter and style formatting . 50

8.2.9 Dockerfile . 51

4

8 ATTACHMENTS System Documentation 67

9 Continuous integration and testing 52

9.1 Backend . 52

9.2 Frontend . 54

9.3 Testing . 56

9.3.1 API Unit and Integration Tests . 56

9.3.2 Demo Application Component Tests 56

9.3.3 Snyk . 57

5

8 ATTACHMENTS System Documentation 68

List of Figures

1 High level figure of the architecture. 10

2 The root structure for the DEM API. 11

3 The contents of the core module . 13

4 The contents of the record folder . 13

5 Record, the data structure that gets stored in the DB. 14

6 Record request, this is the data the customer provides when requesting to post a
new record to DEM. 15

7 Record response, the object type that gets returned when a customer requests a
specific record by ID. 15

8 Coreless record response, the object type that gets returned when a customer uses
the query endpoint. 16

9 Coreless record response, the object type that gets returned when a customer uses
the query endpoint. 17

10 The contents of the query folder. 17

11 Query request body, an object representing the request body the customer provides
when doing a request to the query endpoint. 18

12 Query condition, an object representing a condition that will be used as part of a
query to the database. 19

13 The contents of the exceptions folder. 19

14 Example of one of our custom exceptions. This particular one is cast when a user
requests a page that is out of bounds. 20

15 The contents of the swagger folder . 20

16 The contents of the MongoDB module. 21

17 The contents of the web module. 21

18 The contents of the controller folder. 22

19 The contents of the security folder . 22

6

8 ATTACHMENTS System Documentation 69

20 The contents of the service folder . 23

21 The contents of the exceptionHandling folder 23

22 The contents of the web module test folder . 23

23 Root structure of Demoapplication . 24

24 Folder structure within Src folder . 26

25 State handling for main component in App.tsx 26

26 Routing and contexts in App.tsx . 27

27 Private routes only allows users that have logged in to view content. 28

28 Folder structure within components folder . 28

29 Folder structure within contexts folder . 29

30 Folder structure within pages folder . 29

31 Folder structure within resources folder . 30

32 Folder structure within service folder . 30

33 Folder structure within tests folder . 30

34 A heavily simplified class diagram of the main flow through the API. Meant pri
marily to demonstrate the thought process behind the structure rather than being
strictly accurate. 32

35 IntelliJgenerated class diagram of the whole API project structure without files
used for testing. 33

36 IntelliJgenerated class diagram of the whole API project structure including files
used for testing. 34

37 Activity Diagram for user navigation in the Demo Application 35

38 Diagram showing our database structure . 36

39 An example of a Record object. 37

40 In this example we use the query function to find all records belonging to someone
who has changed their name. The ”systemMeta” field has been omitted in this
example. 39

7

8 ATTACHMENTS System Documentation 70

41 Scripts can easily access localStorage’s items and do far worse damage than illus
trated in this figure. 42

42 Continuous Integration stages . 52

43 The Dockerfile used for the deployment stage. 53

44 The deploy stage we initially wrote for Continous Deployment 53

45 Continuous Integration stages for Demoapplication 54

46 The Dockerfile used for the deployment stage. 55

47 JaCoCo test coverage of the API. 56

48 Coverage report generated when running npm test 57

8

8 ATTACHMENTS System Documentation 71

1 Introduction

This document is written for the bachelor project in the computer engineering programme (ITHINGDA)
at the Norwegian University of Science and Technology. Our bachelor thesis concerns the devel
opment of a system called ”Digital Evidence Management” on behalf of our client Signicat. This
document serves as an attachment to our main thesis.

What follows is a description of the structure and function of Digital Evidence Management (also
refereed to as just ”DEM”). The description is meant to be comprehensive enough so that a devel
oper, new to the project, can understand the inner workings of the system and be able to develop
it further. We will cover both the DEM API and Demo Application in this documentation.

9

8 ATTACHMENTS System Documentation 72

Figure 1: High level figure of the architecture.

2 Architecture

The main architecture of Digital Evidence Management is implemented in a threetier client/server
architecture. A customer of Signicat, for example a bank, makes a request to the Signicat Digital
Evidence Management (SDEM) API solution. The API processes the request and interacts with
the database on behalf of the customer. The customer can connect to the API directly or via the
Demo Application, which serves as an UI abstraction.

Our system currently uses the Spring framework for the API and MongoDB as a storage solution.
The system has been designed to be modular so that these components can be easily replaced if
desired.

10

8 ATTACHMENTS System Documentation 73

3 Project structure

This chapter will describe the structure of our project. DEM consists of two parts: the API (back
end) and the Demo Application (frontend). The project follows a MVC (Model View Controller)
design pattern where the Model and Controller is covered by the API and View is covered by the
Demo Application.

3.1 Backend

3.1.1 Root structure

Figure 2: The root structure for the DEM API.
The root structure of the API is divided into three main Maven modules: Core, MongoDB, and
Web. The fourth module, Coverage, is used for generating code coverage reports and is not essen
tial to the running of the API.

An explanation of the nonmodule files and folders within root:

• dist: A folder for storing OpenAPI specifications that are generated at runtime.

• prometheus: A folder containing a .yml file for creating the Prometheus Docker image and
a .yml file for creating alerts used by Prometheus.

11

8 ATTACHMENTS System Documentation 74

• .gitignore: A rule file for the API repository, where we can specifically tell Git which files
to not track.

• .gitlabci.yml: A template file for Gitlab’s CI enviroment. Defines stages for the Continous
Integration and Continous Deployment jobs that run when pushing and merging branches in
the remote repository on Gitlab.

• .snyk: A local policy file to use with Snyk for the API project. Snyk is a tool which checks
for vulnerable dependencies. If snyk reports any issues, and no patch is available at the time,
the vulnerability can be added to the ignore section in this file.

• checkstyle.xml: File setting the Checkstyle rules for the project. Checkstyle is a tool for
enforcing rules for code standards. This helps with keeping our code clean and readable. A
rule can for example be: a method can not be longer than 140 lines.

• dem.hcl: A HCL job file for specifying how jobs and tasks should be run in Nomad on
AWS.

• dockercompose.yml: File describing to dockercompose how to run our local DB, our local
test DB and Prometheus in separate Docker Containers. Also describes what parameters,
such as DB usernames and passwords, to feed to the containers.

• Dockerfile: Used for describing how a Docker container with the DEM API should be set
up.

• mvnw & mvnw.cmd: Files allowing Maven to run even if Maven is not installed on the
system running the API.

• pom.xml: File that contains information about the project, configuration details, and depen
dencies used by Maven to build the project.

• README.md: A text file that follows project with synopsis and instructions on how to run
the project and deploying to preproduction.

12

8 ATTACHMENTS System Documentation 75

3.1.2 Core

Figure 3: The contents of the core module

The Core module covers the Model part of the MVC design pattern. All data classes such as
records, immutable POJOs, and Enums are found in this module. We have divided these files into
4 categories: record, query, exceptions, and swagger.

3.1.2.1 Record folder

Figure 4: The contents of the record folder
The ’record’ folder contains our different data transfer objects (except for two in the query folder)
and other assisting classes. Record, RecordRequest, RecordResponse, andCorelessRecordResponse
are all data transfer objects.

Clarification: the record classes (not to be confused with the java ’record’ data type) are our rep
resentation of the data that is stored in the database. The different record classes reflect how the
data is shaped on it’s way to and from the database.

13

8 ATTACHMENTS System Documentation 76

RecordDAO is an interface describing the different functions that are required in the DAO imple
mentation.
RecordTypeEnum is an enum containing the allowed record types.
SystemMetaFactory is a class used for generating the system metadata for a record. The system
metadata is the data that Signicat attaches to each stored record.

Record

Figure 5: Record, the data structure that gets stored in the DB.

The record class is the object type that gets stored in the database. It consists of 5 parameters:

• UUID: The uuid is the identifying parameter following the UUID standard.

• Type: The type parameter is an enum from RecordTypeEnum. It can be used for quick
sorting of records.

• systemMeta: The systemMeta parameter is the data that Signicat attaches to each stored
record.

• customerMeta: This is the searchable heterogeneous metadata provided by the user.

• coreData: This is the heterogeneous data provided by the user that gets timestamped by the
Signicat QTSA.

RecordRequest

14

8 ATTACHMENTS System Documentation 77

Figure 6: Record request, this is the data the customer provides when requesting to post a new
record to DEM.

The record request class is the object that the body of the ”post new record” request gets deserialized
to. It contains 3 parameters:

• Type: The type parameter is a string that later will be checked against RecordTypeEnum.

• customerMeta: This is the searchable heterogeneous metadata provided by the user.

• coreData: This is the heterogeneous data provided by the user that gets timestamped by the
Signicat QTSA.

RecordResponse

Figure 7: Record response, the object type that gets returned when a customer requests a specific
record by ID.

The record response class is a POJO that gets returned when a customer requests a record from

15

8 ATTACHMENTS System Documentation 78

DEM by ID. Before a record response is returned, it will have it’s coreData validated and HATOAS
links will be added. The class consists of 5 parameters:

• UUID: The uuid is the identifying parameter following the UUID standard. This parameter
was used to fetch the record from the database.

• Type: The type parameter is an enum from RecordTypeEnum. It can be used for quick
sorting of records.

• systemMeta: The systemMeta parameter is the data that was attached to the record by Sig
nicat before the record was stored.

• customerMeta: This is the searchable heterogeneous metadata provided by the user.

• coreData: This is the heterogeneous data that was provided by the user when the record was
first posted. The coreData gets verified using the QTSA timestamp.

CorelessRecordResponse

Figure 8: Coreless record response, the object type that gets returned when a customer uses the
query endpoint.

The coreless record response class is a POJO that gets returned as part of a return page when a
customer uses the query endpoint in the API. It’s important to note that this class does not contain
a coreData parameter. This also means that the object is not validated before being returned. If the
customer wants a record’s core data: they need to request that record by it’s ID. The class consists
of 5 parameters:

• UUID: The uuid is the identifying parameter following the UUID standard. This parameter
was used to fetch the record from the database.

• Type: The type parameter is an enum from RecordTypeEnum. It can be used for quick
sorting of records.

16

8 ATTACHMENTS System Documentation 79

• systemMeta: The systemMeta parameter is the data that was attached to the record by Sig
nicat before the record was stored.

• customerMeta: This is the searchable heterogeneous metadata provided by the user.

RecordTypeEnum
The recordTypeEnum is an enum that can be used for general categorization of the records that are
stored in the DB. The enum describes what type of record a record is. This can for example be:
transaction, signature, log_in, or other. The record types are not intended to limit the type of data
that can be stored via DEM, but rather to help the enduser in categorizing their records.

SystemMetaFactory

Figure 9: Coreless record response, the object type that gets returned when a customer uses the
query endpoint.

The SystemMetaFactory class is used to generate Signicat’s metadata. This data is attached to each
record before being stored in the database. The system metadata is also where the timestamp and
the time to live is stored.

3.1.2.2 Query folder

Figure 10: The contents of the query folder.
The ’query’ folder contains data transfer objects and an enum that are specific to the query end
point and execution path. QueryRequestBody and QueryCondition are the DTOs.

QueryRequestBody

17

8 ATTACHMENTS System Documentation 80

Figure 11: Query request body, an object representing the request body the customer provides
when doing a request to the query endpoint.

The query request body consists of two lists of QueryCondition objects. These two lists are used
to form the search query that is used during the query endpoint execution path.

• And list: The query conditions in this list will be joined together as part of a query with the
logical ’AND’ operator. This means that a record in the DB needs to pass every condition
in this list in order to be returned.

• Or list: The conditions in the ’or’ list will be joined together with the logical ’OR’ operator.
This means that a record in the DB needs to pass at least one of the conditions in this list in
order to be returned

There is a possibility to add a third list, ’not’, but that is not implemented at the time of writing.

Query condition

18

8 ATTACHMENTS System Documentation 81

Figure 12: Query condition, an object representing a condition that will be used as part of a query
to the database.

The Query condition class represent a condition used as a part of a query. You can view these
conditions as filters, a record is only returned when querying if the record matches the condition
(depending on what list the condition is part of). The QueryCondition object consists of 3 param
eters:

• field: The ’field’ parameter denotes which field in the database the condition should be
applied to.

• operator: The ’operator’ parameter marks which query operator should be used to match
the value of the database field with the condition value.

• value: The ’value’ parameter is the value that the contents of the chosen database field will
be matched against.

3.1.2.3 Exceptions folder

Figure 13: The contents of the exceptions folder.

The exceptions folder contains all of our custom exceptions as well as ErrorDetails which is a
class used to template the response body when one of our custom exceptions is cast. Our custom
exceptions are for handling erroneous user actions specific to our API.

19

8 ATTACHMENTS System Documentation 82

Figure 14: Example of one of our custom exceptions. This particular one is cast when a user
requests a page that is out of bounds.

3.1.2.4 Swagger folder

Figure 15: The contents of the swagger folder

The files in the swagger folder are used as example objects that are not automatically generated
by Spring Doc. Spring Doc is the library we use to help us generate a OpenAPI definition for our
API during runtime.

In addition to the model responses there is also a class named ”SwaggerConstants”. Within this
class there are constants used for API documentation. The constants in this class ensure that the
API documentation will have uniform responses, response statuses, error messages, etc.

3.1.3 MongoDB

The MongoDB module cover all the files that are unique to our chosen database implementation.
In our case: MongoDB. These are the files that would need to be replaced entirely when switching
database solution.

20

8 ATTACHMENTS System Documentation 83

Figure 16: The contents of the MongoDB module.

3.1.3.1 RecordDAOImpl

This class deals with the direct communication to our Mongo database. It has one method corre
sponding to each endpoint in the API as well as other helper methods.

3.1.3.2 SearchBuilder

The SearchBuilder class is the class responsible for handling the request body from the query
endpoint. It takes the conditions from the body and uses them to build a valid query for the specific
database type that is in use. In this case; MongoDB.

3.1.4 Web

Figure 17: The contents of the web module.

The web module contains most of the logic of the application. The controller and service layers
are the major elements here. This is also where the main class: ”DigitalEvidenceManagementApi
Application”, is located.

21

8 ATTACHMENTS System Documentation 84

3.1.4.1 Controller

Figure 18: The contents of the controller folder.

AuthController
AuthController is a controller with the single endpoint: ”Auth”. This endpoint is just a proxy
endpoint that makes requests against Signicat’s own OAuth services. The thought behind this
proxy endpoint is to give the customer a single point of entry, so that they would not need to look
up documentation on another page and have to deal with separate URLs and services. The Proxy
endpoint also gives us more control in regard to CORS configuration.

The auth endpoint can be found at route: ”/dem/auth”.

RecordController
RecordController is the most significant controller for the API and handles all endpoints that have
the route ”/dem/records”. RecordController handles routing, requests and responses for all record
related methods. The logic used for the endpoints can be found in the RecordService class which
have methods for storing, retrieving, updating and querying the database.

3.1.4.2 Security

Figure 19: The contents of the security folder

SecurityConfiguration
SecurityConfiguration is a class for configuring Spring Security to decode JWT’s and to handle
authorization and authentication for the API.

3.1.4.3 Service

RecordService
This class containsmost of the business logic of the application. RecordService is a store front class
based on the ”Facade design pattern” and provides abstracted methods to communicate with the
database. This is where ”UUID” and ”systemMeta” is added and the ”coreData” gets timestamped
for new records. This is also where we handle the translation between the different Record types.

22

8 ATTACHMENTS System Documentation 85

Figure 20: The contents of the service folder

TimestampService
TimestampService handles the logic around timestamping data and verifying that timestamped data
is still valid. This service is used by RecordService to keep ”coreData” secure.

ExceptionHandling

Figure 21: The contents of the exceptionHandling folder

The ExceptionHandling class intercepts our custom exceptions if they are cast during runtime.
It returns the appropriate HTTP response code according to the exception, along with a message
explaining what went wrong.

3.1.4.4 Tests

Figure 22: The contents of the web module test folder
This is where the unit and integration tests for the services and controllers are located.

23

8 ATTACHMENTS System Documentation 86

3.2 Frontend

3.2.1 Root structure

Figure 23: Root structure of Demoapplication

The root structure has the standard folders: node_modules, public and a src, which is default for
any React project. In addition to the standard react boilerplate folders, our root structure also has
the folder ”.husky” and the folder ”coverage”. ”.husky” is a hidden folder containing Git hooks,
and the folder ”coverage” contains auto generated coverage report from running unit tests.

In addition to the folders we have a bit of config files for various needs concerning CI/CD and
development.

Explanation of the files within root:

• Dockerfile: Template and instruction on how to make a image of a build version of the
demoapplication.

24

8 ATTACHMENTS System Documentation 87

• Dockerignore: There are several dependencies needed for building a docker image of the
Demo Application, and instead of writing each file that needed to be copied into the docker
container, we found it easier to just use a dockerignore file to make docker ignore some
folders and files when copying the needed resources.

• .env and .env.production: Environment files for local development and for deployment to
preproduction servers.

• .eslintrc.json: A local configuration file for Eslint that follows the project. Instead of using
global settings that can vary from project to project, we specified in this file which linting
rules to follow for the Demo Application.

• .gitignore: A rule file for the repository, where we can specifically tell Git which files not
to track.

• .gitlabci.yml: A template file for Gitlab’s CI enviroment. Defines stages for the Continuous
Integration and Continuous deployment jobs to run when pushing to branch, and/or merging
branches on remote repository on Gitlab.

• .prettierignore: Rule file for prettier on which folders to ignore when formatting and re
porting style errors.

• .prettierrc.json: A local rule file for prettier on how to format code based on style prefer
ence. Having this local configuration file within the project makes sure that all VS Code
extensions will use the local rule set instead of global rules.

• .snyk: A local policy file to use with Snyk for the demoapplication project. Snyk is a tool
which checks for vulnerable dependencies and paths. If Snyk reports any issues, and no
patch is available at the time of reported vulnerability, the vulnerability can be added to the
ignore section in this file.

• frontend.hcl: A HCL job file for specifying how jobs and tasks should be run in Nomad on
AWS.

• nginx.conf: Configuration for reverse proxy Nginx running inside Docker containers on
how to serve the production build of the website.

• package.json: A file noting all the dependencies the demoapplication has, also has meta
data about project, versioning details and scripts.

• README.md: A text file that follows project with synopsis and instructions on how to run
the project and deploying to preproduction.

• tsconfig.json: Compiler options and specification of root files in order to compile Typescript
into browser friendly JavaScript.

25

8 ATTACHMENTS System Documentation 88

3.2.2 Src

Figure 24: Folder structure within Src folder

The entrypoint of our React application is index.tsx which renders the main component App from
App.tsx into the div element with a class name: ”root” within the DOM. App is the root parent
of all components, and is responsible for routing between pages with React Router, and also has
state management in relation to the Context API provided from React Context. App.tsx is also
responsible for attaching modals to the DOM to be rendered, and can be called from any sub
components. App.css has some global style preferences that concerns the entire project, ie. icons
from Material Icons etc.

Since App.tsx is the main parent component that handles context and the routing we would like to
highlight how the main structure of the code is.

Figure 25: State handling for main component in App.tsx
As seen in the figure above we can see that App has several states for controlling modals and

setting user and login information in memory.

26

8 ATTACHMENTS System Documentation 89

Figure 26: Routing and contexts in App.tsx
Top encapsulating parents here are <CredentialContext.Provider> and <ModalContext.Provider>
which provides all children access to global states. Also, here one can see that some routes are
placed as children to the <PrivateRoutes> component, thus separating routes into public and

routes. Private routes would need to be logged in to view the content at a specific private route.

27

8 ATTACHMENTS System Documentation 90

Figure 27: Private routes only allows users that have logged in to view content.
The PrivateRoute component is a child of the CredentialContext and can access the global state
using the useContext hook, and uses conditional rendering to display the content based on

whether the user is logged in or not. If the user is not logged in, they will be redirected to the
login page.

3.2.2.1 Components

Figure 28: Folder structure within components folder

Within the Components folder, we have placed all of the smaller components that are used on the
various pages and modal pages in the project. Most of the components within this folder can be re
used as they are written very general with optional props, while some components are too specific

28

8 ATTACHMENTS System Documentation 91

and may need some modifications to be general enough in terms of reusability.

3.2.2.2 Contexts

Figure 29: Folder structure within contexts folder

The folder Contexts holds all created contexts along with type definitions. These contexts can
be called on by either a Provider component or a Consumer component within the project, and
will allow for the project to have global state. We have two contexts: CredentialContext and
ModalContext. CredentialContext is responsible for storing the global user info and login state,
while ModalContext is holding the state and logic of displaying contentmodals, alertmodals and
inputmodals.

Since the context API is similar to Redux state management, it should be easy to move over to
Redux if the size and complexity of the project increases.

3.2.2.3 Pages

Figure 30: Folder structure within pages folder

All pages that are used by React router to switch between pages are found in the pages folder. We
can also find a subfolder within this folder named ”ModalPages” where we can find all pages that
are rendered inside modals. These pages uses components that are declared within the components
folder. Each page has their own folder with at least two files in them. For example, login has the
files: Login.tsx and login.modules.css. Login.tsx is responsible for the logic and templating, while
login.modules.css is responsible for the styling of the pages.

29

8 ATTACHMENTS System Documentation 92

3.2.2.4 Resources

Figure 31: Folder structure within resources folder

The resources folder only has a logo inside it, but this is where we would place all assets like
mediacontent, images, fonts and so on. For icons, we are using a content delivery network (CDN)
to fetch the icons needed. We could also have stored the icons within the resource folder, but
there were no explicit need for it at the time of implementation, and the loading time for the icons
used was negligible as we only needed a few icons for this project. If the project should increase
in complexity and with a need for more icons, we would consider just storing the icons needed
instead to reduce loading time.

3.2.2.5 Service

Figure 32: Folder structure within service folder

Within the service folder we find the class RecordService in the RecordService.tsx file. This
class is a wrapper class with static methods needed for making requests against the Digital Ev
idence Management API. This service serves as a connecting layer between demoapplication and
API. RecordService has methods for automatically adding needed headers and parameters, and can
query, get record by id, post a record, get used fields in supplied meta data and fetch access tokens,
and so on. This class uses the library ”Axios” to make HTTP requests. We have also configured
Axios interceptor within this file to check the validity of an access token before each request is
made, and make a new request to get a new token if the one used is expired before performing the
initial request.

3.2.2.6 Tests

Figure 33: Folder structure within tests folder

30

8 ATTACHMENTS System Documentation 93

The tests folder contains all Jest unit tests for the demoapplication. The folder structure in tests
mirrors how we structured Src. This is done to try to make a clear testing structure that maps to the
source files and how we develop components and pages there. We also have the folder mockdata
in the tests folder, this is where we placed all data that we mocked to return from the API.

31

8 ATTACHMENTS System Documentation 94

4 Diagrams

4.1 API

Figure 34: A heavily simplified class diagram of the main flow through the API. Meant primarily
to demonstrate the thought process behind the structure rather than being strictly accurate.

32

8 ATTACHMENTS System Documentation 95

Figure 35: IntelliJgenerated class diagram of the whole API project structure without files used
for testing.

33

8 ATTACHMENTS System Documentation 96

Figure 36: IntelliJgenerated class diagram of the whole API project structure including files used
for testing.

34

8 ATTACHMENTS System Documentation 97

4.2 Demo Application

Figure 37: Activity Diagram for user navigation in the Demo Application

35

8 ATTACHMENTS System Documentation 98

5 Database model

Figure 38: Diagram showing our database structure

36

8 ATTACHMENTS System Documentation 99

6 Server services

The system really only focuses on managing one resource, the Record entity. As such the API’s
main functionality revolve around handling this entity.

The full API Documentation can be found at:
https://signicat.gitlab.io/signature/digital-evidence-management/

6.1 Adding a record

Figure 39: An example of a Record object.

/dem/records

By using the POST method on this endpoint it is
possible to add a record a to the system. The re
quired fields for this operation is: ”type”, ”cus
tomerMeta” and ”coreData”, where ”type” is a
String value that must match our predefined types
and ”customerMeta” and ”coreData” is open to con
tain any data specified by the user. A unique iden
tifier and the ”systemMeta” field will be generated
by the system for the record added. As the record is
stored the ”coreData” is also timestamped so that it
can be verified in the future.

6.2 Retrieving a record

/dem/records/{id}

It is possible to retrieve any record from the database
by using the GET method on this endpoint and
adding the id of the record to the URL. In the
case of the record shown in Figure 39 this would be: ”/dem/records/d10ca55ab64b48b8a5aa
6b1a87bf53ea”

Included in this endpoint is a check to see if the ”coreData” has been altered since the initial post
of the record. The ”timestampValid” value locate in the ”systemMeta” will then be set to reflect
the integrity of the data.

37

8 ATTACHMENTS System Documentation 100

6.3 Marking a record for deletion

/dem/records/{id}

Any record entered into the database will be given a Time to live (TTL) of 3 years, after which
the database will delete a record. Users are able to influence this by marking records for deletion.
This will move the TTL date to 30 days from the current date.

6.4 Retrieving specific records

/dem/records/query

The server also supports a search ability where the user can specify which records to retrieve by
creating a detailed query. By using the POST method on this endpoint the user will be able to send
in different criteria to get the desired list of records. This can be used to retrieve all records, filter
the list of records or search for specific records.

This is done by constructing criteria consisting of a value of some kind and specifying what field
is targeted and what operation should be executed. The full list of operators are as follows:

Query Operation Description
eq Checks if the field’s value matches the input value exactly.
ne Checks if the field’s value does not match the input value.

gt
Checks if the field’s value is greater than the input value. Works best with
numeric values.

gte
Checks if the field’s value is greater than or equal to the input value. Works
best with numeric values.

lt
Checks if the field’s value is less than the input value. Works best with numeric
values.

lte
Checks if the field’s value is less than or equal to the input value. Works best
with numeric values.

regex
Checks if the field’s value contains the input value using regex. Works best
with String values.

in Checks if the field’s value matches any of the values in the inputted array.

nin
Checks if the field’s value does not match any of the values in the inputted
array.

These criterias can be put into an ”and” list to signify that all criteria in the list must be fulfilled.
Criteria can also be placed in an ”or” list to signify that only one criteria must be fulfilled.

38

8 ATTACHMENTS System Documentation 101

(a) Example of a query request (b) Example of a query response

Figure 40: In this example we use the query function to find all records belonging to someone who
has changed their name. The ”systemMeta” field has been omitted in this example.

6.5 Others

/dem/v3/apidocs
 Returns an OpenAPI specification file

dem/swaggerui.html
 Opens a UI containing the OpenApi documentation.

dem/actuator/health
 Returns application health information

dem/actuator/prometheus
 Exposes metrics in a format that can be scraped by a Prometheus server.

dem/auth
 Proxy endpoint that let customers make request to obtain access tokens from Signicat’s OAuth
services through DEM’s API.

39

8 ATTACHMENTS System Documentation 102

7 Security

With respect to the top 10 OWASP standard security awareness document, we have identified that
we have some security vulnerabilities, but we have also taken steps to address certain vulnerabili
ties [1].

A1:2017 Injection
Since we are using MongoDB, a NoSQL database solution, the database is not vulnerable to any
SQL injections. We are also not executing direct queries into MongoDB.

A2:2017 Broken Authentication
The API

�
’s session cookie policy for generating session tokens is set to be stateless. There is no

distributed session cookie sent back to user, so it not possible to hijack a session cookie as there
is none to capture. The credentials like client ID and client Secret is generated by Signicat’s own
OAuth service. We can not ascertain how secure that system is, but given that Signicat is a trusted
business: we have reason to be confident in the system’s security.

A3:2017 Sensitive Data Exposure
Both the API and the DemoApplication that are deployed on AWS are set up to use encrypted com
munication through HTTP with TLS certificates (HTTPS). Full intransit security is not achieved
at this point, as there is a error with the certificate name. We have contacted Signicat to fix this, as
they are the ones holding the certificate. The current solution is not encrypted at rest, but there have
been made preparations for switching from MongoDB Community Edition (no encryption at rest)
to MongoDB Enterprise edition which allows for encryption at rest. Switching to the Enterprise
edition costs money, so until Signicat has approved this and ordered an instance of the Enterprise
to run in AWS: the database is unencrypted. Theoretically it should be as simple as pointing to
another MongoDB database and provide relevant credentials for that database.

A4:2017 XML Injection
Our API does not consume XML data, all endpoints only accepts data in the form of ”application/j
son”. This vulnerability is not applicable to our system.

A5:2017 Broken Access Control
Digital Evidence Management uses OAuth 2.0 with a clientcredentials protocol flow, where we
have different scope permissions for every endpoint. We have set up the scopes: ”Admin”, ”Read”,
”Write”, where Oauth clients with read permission are only allowed to make GET requests. POST
request require the ”Write” scope. Accessing other administration endpoints like metrics endpoint
requires users to have the ”Admin” scope.

The Demoapplication has no direct linked uri to requests, so tampering with url will not give
unintended access. An example attack vector of this sort would be ”/?user=1”, where one could
just set ”user=2” and gain access to another user’s information. We do not have insecure direct

40

8 ATTACHMENTS System Documentation 103

object references throughURL, because we do no have object reference as a condition for rendering
our content.

Furthermore, the database has the different users data separated into collections (SQL table equiv
alent). Each collection is linked to a client ID. This client ID is parsed from the users provided
access token using OIDC. No user is able to gain access to other users data without know the other
user’s client ID and client secret, or access token.

The Demo Application has also set up Private routes and public routes, so it will only display
information pertaining to a user if the current user has logged in with valid credentials.

CORS origin policy for API is set to only allow from https://demawsfrontend.signicat.net

A6:2017 Security Misconfiguration
We have taken steps to secure that exceptions thrown in Digital Evidence Management’s API does
not contain stack trackes, and instead gives custom error messages in response.

Standard passwords has been changed. We should note that passwords for the databases are stored
in application.properties at this time, and is even accessible in ourGitlab repository. The passwords
and database details in application.properties are placeholders however, and will be overwritten
when feeding in new application.properties that are given during deployment.

A7:2017 CrossSite Scripting XSS
For the Demo Application, there are some serious note worthy security faults within the sys
tem. The Demo Application stores both a basic string, which is a Base64 encoding of ”clien
tID:clientSecret”, and a access token in localStorage. Base64 encoded strings are not encrypted
and can easily be decoded again and thus an attacker would then know all of a client’s secret cre
dentials and have full access to the system. The access token can also be used to gain temporarily
access to the system until the token expires. By storing sensitive data in localStorage, the system
is vulnerable to XSS attacks. Although it should be noted that since we are using React.js for de
veloping the demoapplication, and not setting innerhtml or allowing user defined href’s, it is hard
to inject scripts because of the way React sanitize and escape all input, and only displays input as
text, but it is theoretically possible.

41

8 ATTACHMENTS System Documentation 104

Figure 41: Scripts can easily access localStorage’s items and do far worse damage than illustrated
in this figure.

The reasoning behind why we are storing such sensitive content in localstorage is due to the nature
of choosing a OAuth 2.0 protocol flow that works best for the API. Since the API was the main
product that we developed and is supposed to go into production, we chose to prioritize setting up
an authentication flow that was best suited for the API. We could off course set up another login
solution, but due to time limitations, we did not have time to set up a login solution that can handle
user event driven protocol flow as well as a the clientcredentials protocol flow that the API uses.

Since the demoapplication together with the API is only intended to be set up in a sandbox en
vironment that we call ”preprod” where new customers can get accustomed to our system, there
were really no risks in regards to leaking the client credentials as the sandbox environment is not
intended for storing sensitive information. Storing the client credentials in localstorage was nec
essary to have persistent login that survives pagerefreshes.

Before storing the credentials in localstorage, all information was only stored inmemory. Conver
sations with Signicat lead us to favor a better user experience with persistent login rather then a
safe solution with only storing the credentials in memory. More on this can be found in the main
report.

A8:2017 Insecure Deserialization
It is not ascertained if Digital EvidenceManagement suffers from this vulnerability. More research
into the issue and our current solution is required to reach a conclusion on this. We are not using
any serialization and deserialization ourselves, but we know that Spring Boot uses a library called

42

8 ATTACHMENTS System Documentation 105

”Jackson” to serialize and deserialize and convert other datastructures into Java data structures, so
it is entirely possible that there might be some vulnerabilities there.

A9:2017Using Components with Known Vulnerabilities
Both the Demoapplication and the API uses snyk to check the projects against known vulnerabil
ities. Snyk is also integrated into Gitlab’s CI testing pipeline and is also run on local builds. By
using snyk we are alerted of any vulnerable libraries, components and frameworks, and are pro
vided remedies if there are any available. If there are no remedies to vulnerabilities available, we
are able to ignore the vulnerability for a time limit, and when the time limit passes we are alerted
again and can check if there are any patches released for the vulnerability.

In the Demo Application, we have written all of the components ourselves, and are not using any
libraries for components or any frameworks for styling. This is not to say that we are using other
dependencies, we are using some other dependecies i.e ”Axios”, ”Base64”, ”UUID” and so forth,
but we have tried to keep it at a bare minimum of external dependencies, and have also tried using
only official and well known repositories from NPM with a good user base and reputation.

We have also made steps to make sure that any development dependencies is in a correct grouping
so that we are not adding any unnecessary dependencies to the build of the website. Eslint for
example is only required for linting while developing, but is not needed when building a production
ready website.

A10:2017 Insufficent Logging Monitoring
We have set up metrics to be gathered and served using Spring Actuator and Micrometer. The
metrics endpoints are protected and would need a persmission scope of ”DEM:Admin” to access.
With metrics implemented, it is possible to monitor if there any attacks to the API, and set up
alerts and actions on how to respond to any possible attacks. We have not integrated the API with
a centralized logging solution, so there is no record stored of potential attacks.

43

8 ATTACHMENTS System Documentation 106

8 Installation and running

8.1 API

8.1.1 Synopsis

The Digital Evidence Management API is used for storing digital evidence securely based on user
defined heterogenous metadata and coredata. In addition to the user defined data, Signicat stores
it’s own systemmetadata along with the user provided data in order to secure and organize each
record stored in the database.

Main technology used is Java 15 with preview enabled and MongoDB as a storage solution. It is
written with interchangeability in mind so that database solution can be changed to other databases.
This can be done by creating a new class that implements the methods specified in the RecordDao
interface, and changing the implementation used in the RecordController.

This application uses services like QTSA for evidence integrity and OAuth 2.0 with a OIDC layer
for authorization and authentication.

8.1.2 Prerequisites

First, extract the provided zip file.
Open up the ”digitalevidencemanagement” folder in an IDE or editor.

Note: ”Root folder” as referenced in the steps below is: ”digitalevidencemanagement”.

Before building or running the application, make sure to run the database and prometheus.
This can be done by running the command dockercompose up in a terminal from root folder.

Since DEM is using preview features of Java 15, it needs to run with preview enabled. This can
be done by setting the project language level in the project structure(IntelliJ) or by running the
application with the flags:
”enablepreview”

8.1.3 Error handling for database

Docker compose will run cached containers if there are any existing containers already. Often a
clean container will fix problems.

Running clean containers:

44

8 ATTACHMENTS System Documentation 107

1. Run command ”dockercompose down” from root folder. (Removes all network and cached
containers.)

2. Then run ”dockercompose up” again.

8.1.4 Build project

Run a clean build of project with the command:
mvn clean install

8.1.4.1 Build project without running snyk or tests

Run the command:
”mvn clean install DskipTests Dsnyk.skip”

8.1.5 Run project

Run the following command from root folder:
First run: ”mvn compile”

Then application can be runned with the command from root folder:
”java enablepreview jar ./web/target/web1.0.0SNAPSHOT.jar”

We used IntelliJ to start the project, so there were not much effort put into running the application
from the command line. To run the project in IntelliJ click the ”green run” button, or ”Shift+F10”.

Note: When running project locally, spring profile defaults to ”dev”.
See Profiles section for more information.

8.1.6 APIDocumentation

8.1.6.1 SWAGGER/OPENAPI docs

During runtime of the API, both OpenAPI spec file (oas), as well as static swagger html page is
genererated and served automatically by the use of the ”SpringDoc” plugin.

• Swagger page can be found here: http://localhost:9002/dem/swagger-ui.html

• OAS spec file is served here: http://localhost:9002/dem/v3/api-docs

45

8 ATTACHMENTS System Documentation 108

8.1.6.2 Redoc

Last stage of CI on master branch will also publish updated API documentation in a Redoc format
and publish to Gitlab pages.

Redoc API documentation can be found here:
https://signicat.gitlab.io/signature/digital-evidence-management/

8.1.7 Metrics

Prometheus server starts on dockercompose and runs on http://localhost:9090.

DEM’s API is serving metrics to be scraped by Prometheus on endpoints such as:

• /dem/actuator/prometheus

• /dem/actuator/metrics

• /dem/actuator/health

• /dem/actuator/up

Config and alerts are set in prometheus from the folder ”prometheus.”

Prometheus dashboard can be accessed from:
http://localhost:9090/

8.1.8 Profiles

There are currently set up these profiles for the project:

• dev (for running locally)

• preprod (Settings used in AWS preprod environment)

• prod (Not deployed to production at this time)

If no profile is selected, spring application will use application.properties by default, which points
to the dev profile.

To change between profiles, run with argument flag:
”–spring.profiles.active=<profile>”

46

8 ATTACHMENTS System Documentation 109

8.1.9 Switching databases

The project currently consists of three modules which are dependent of each other in the following
order:

• Core: Contains models and core elements needed in further modules.

• MongoDB: Contains the database access object implementation and MongoDB specific
code.

• web: Contains the controllers, services and configuration of the API.

The database can be changed by replacing the ’MongoDB’ module. The web module will need to
have a Maven Dependency to the new module.

All required database functions are defined in the interface ‘RecordDAO’ in the ’core’ module
and must be implemented in the new database module. The new module should implement this
interface to create a new DAO. The service classes in the ’web’ module will also need to import
the new Dao object in the same way it currently imports ‘RecordDAOImpl’ from the ’MongoDB’
module.

You would also need to add relevant properties to correct application.properties profiles in ’web’
module, i.e datasource and etc. Note: You have to remove MongoDB properties, as the applicaton
will crash after trying to connect to MongoDB 3 times and fail.

8.1.10 Static code analysis tool: Checkstyle

Checkstyle is a static code analyser tool that can be found within the project. Checkstyle is used
for analyzing the code for style errors, programming errors and bugs.

In root of project structure there is a config file named ”checkstyle.xml” which is configured for
use with the checkstyle dependecy within the project. The rules defines styling guide and is used
to help avoid common programming errors and reduce the number of bugs within the project.

8.1.11 Dockerfile

Within the project there is a Dockerfile templating how a container should be built of this project.
This Dockerfile is used on Gitlab’s CI stage: Deploy, which is only triggered on the master branch.
The Dockerfile consists of a single stage, packaging and compiling down the API into a Jar file,
which is then copied over to docker container and is set to run the jar file on docker container
execution and expose API’s port number.

47

8 ATTACHMENTS System Documentation 110

8.2 Demoapplication

8.2.1 Synopsis

A frontend Demo Application for DEMAPI written in Typescript using React.js. The Demo Ap
plication’s function is to showcase the usage and capabilities of DEM’s API, and serve as a on
boarding solution for getting customers acquainted with the Digital EvidenceManagement system.

The DEM API can be found at:
https://gitlab.com/signicat/signature/digital-evidence-management

8.2.2 Prerequisites

First, extract the provided zip file.
Open up the”digitalevidencemanagement”folder in an IDE or editor.

Note:”Root folder”as referenced in the steps below is:”demoapplication”.

Dependencies need to be installed before running the application locally.

Install all dependencies as stated in package.json file with the command:
npm install

Note: Youwill also need to run both theAPI andMongoDB as stated inAPI installation instructions
to have full functionality on the Demo Application.

8.2.3 Run application

Start up the frontend application in devopment mode with command:
npm start

Frontend application can then be found on:
http://localhost:3000

Note: The page will reload if you make edits to source files, and you will also see any lint errors
in the console if there are any.

48

8 ATTACHMENTS System Documentation 111

8.2.4 Run tests

To run all tests:
npm test

To test a single class:
npm test <THE_COMPONENT_YOU_WANT_TO_TEST>
For example: npm test Table

Tests are written inside their own file and have a naming structure i.e ”Table.test.tsx”. In this
example we have stored all tests relating to a component called Table in that file.

8.2.4.1 Test coverage report

Running npm test will generate a coverage report.

Coverage report can be found in the folder coverage in root folder.

Open up /coverage/lcov-report/index.html in a browser to see coverage report.

8.2.5 Build production app

To build a production ready static hmtl page, run command:
npm run build

This command builds the app for production and places it in the ‘build‘ folder. When running
the build command, build will use variables defined in the ‘.env.production‘ file and will point to
https://dem-aws-api.signicat.net for requests against the API.

8.2.6 Environments

Different environment profiles is needed becausewe have several environments that the application
needs to run in. There are currently two .env files in the project.

• .env (for development locally)

• .env.production (for deployment to AWS environment)

.env is the default one, and is used for development. It will automatically be used when running:
npm start

49

8 ATTACHMENTS System Documentation 112

.env.production is chosen automatically when running
npm run build

8.2.7 GitHooks

Git hooks are used to run scripts before running git commands like push, commit and so forth. We
are using a dependency called ”Husky” for having git hooks initialized for all developers in the
project.

All hooks are installed and ”.husky” folder is set as default hook folder automatically when running
npm install.

8.2.7.1 Precommit

Currently, Demoapplication only utilizes the precommit hook using Husky. This hook will run
unit tests before every commit.

Hooks can be found in the folder /.husky from the root folder.

Skipping the precommit hook can be done through adding argument to git commit: ‘noverify‘
Example: ”git commit a m ’commit message’ noverify”

8.2.8 Linter and style formatting

8.2.8.1 Eslint

Demoapplication project uses Eslint for linting and has a project specific ruleset defined in a
‘.eslint.json‘ file. The linter starts up during runtime and will display linting errors in the console.
Style formatting is disabled for Eslint as the project uses Prettier instead for this, and uses Eslint
only as a linter.

Recommendation:
Debugging and development goes a lot faster if you are using VS Code extension for Eslint.

8.2.8.2 Prettier

Style formatting is disabled for eslint, and is done through Prettier instead. Ruleset for formatting
is set in the ‘.prettierrc.json‘ file.

50

8 ATTACHMENTS System Documentation 113

Recommendation:
Install Prettier VS Code extension to format on save in accordance to ‘.prettierrc.json‘.

8.2.9 Dockerfile

For the demoapplication to be dockerized, we have set up a Dockerfile that works in accordance
with scripts defined in package.json file.

Dockerfile uses the following multistage building pattern:

1. First stage installs dependencies and then runs the build script.

2. Second stage copies build folder into docker container and serves it using Nginx.

51

8 ATTACHMENTS System Documentation 114

9 Continuous integration and testing

9.1 Backend

In the Digital Evidence Management API, there is set up a gitlabci.yml file which defines what
stages to run, and what should be done as part of Continuous Integration on Gitlab CI.

Continuous integration is set up to use four stages:

• Build

• Test

• Deploycontainers (only on master)

• Publish (only on master)

Figure 42: Continuous Integration stages

Build
Build stage has two parallel jobs: ”build” and ”buildpages”. In this stage ”build” job CI compiles
the maven project and saves the artifacts and cache, while buildpages builds APIdocumentation
and stores the artifacts for later use.

Test
The API contain both unit tests and integration tests. The unit tests are run in Maven by using the
Maven Surefire plugin, while the integration tests are run with the Maven Failsafe plugin. Because
integration tests are much slower to execute we have excluded these tests from the normal build
lifecycle. The two types of tests are differentiated by the naming of the class: ”**UnitTest.java”
for unit tests and ”**IT.java” for integration tests.

Test stages also has two parallel jobs: ”test” and ”testsnyk”. The job ”test” runs all integration
tests and unit tests, while the job ”testsnyk” checks the project for vulnerabilities.

52

8 ATTACHMENTS System Documentation 115

Deploycontainers
Deploy stage only has the one job: ”deploycontainers”. In that job the Gitlab CI runner builds a
docker image based on the Dockerfile in the project using the artifacts stored in the ”build” stage,
and then pushes the image with the tag ”latest” to the project’s container registry. This stage is
only run when there is a merge to master.

Figure 43: The Dockerfile used for the deployment stage.

We also wanted to have this stage automatically restart Nomad jobs which is running on AWS,
so that they would pull the latest image that we pushed to the container registry, but sadly there
were complications with Gitlab CI being blacklisted by the AWS services that Signicat uses. We
looked into webhooks, and simple curl commands to trigger Jenkins jobs that were whitelisted
by the AWS services so that we would have Continuous Deployment as well, but sadly there was
not enough time to finish this stage. So for now to really deploy to AWS, we would have to wait
until the Deploy stage is complete, and then manually trigger a build for Jenkins.

Figure 44: The deploy stage we initially wrote for Continous Deployment
In this stage nomad would look for a gitlab secret variable and then feed that in when running the
”Nomad job run” command. This was never used as there was some red tape in getting Gitlab CI

whitelisted from AWS services.

Publish
Publish stage has only the one job: ”pages”. If all other stages passes and a new container image
is pushed to the container registry in the previous stage, then the publish stage publishes new API

53

8 ATTACHMENTS System Documentation 116

documentation to Gitlab Pages. This stage is only run when there is a merge to master.

9.2 Frontend

In Digital Evidence Management Demoapplication repository, there is a gitlabci.yml file that
specifies how Gitlab CI should handle the stages of building, running tests, checking project with
snyk for vulnerabilities, and deploying a dockerized image to the repository’s container registry on
Gitlab.

Stages defined in the CI file for the Demo Application is:

• Build

• Test

• Deploy (only on master)

Figure 45: Continuous Integration stages for Demoapplication

Build
Build stage installs all dependencies needed for running tests and stores the folder ”node_modules”
with the dependencies in cache.

Test
Test stage retrieves ”node_modules” from cache and then runs the two jobs: ”runtests” and ”snyk
dependency” in parallel.

The job ”runtests” runs all unit tests and checks that every ui element is rendered and displayed
to user correctly bases on user interaction. The job ”snykdependency” checks the project for any
vulnerabilities with snyk.

Deploy
In the deploy stage the Gitlab CI runner builds a new docker image based on the Dockerfile in the

54

8 ATTACHMENTS System Documentation 117

project, and then pushes it to the repository’s container registry. Within the Dockerfile there are
instructions for how to build a production ready deployment and how the docker container should
be started. This stage is only run on a merge to master.

Figure 46: The Dockerfile used for the deployment stage.

55

8 ATTACHMENTS System Documentation 118

9.3 Testing

On every push and merge to Gitlab repository we would have two parallel jobs running for tests.
One of the jobs is to run the tests written to test integration and unit tests. The other job is for
checking the project dependencies for vulnerabilities. For any stage after to be able to deploy
containers and publish pages, tests will need to pass. We also had the policy on not merging
pipelines that had failures, as that would be an error that would ripple throughout the project.

9.3.1 API Unit and Integration Tests

The API contain both unit tests and integration tests. We have taken care to keep unit tests as
focused on the given test class, to achieve this we used the Mockito testing framework to mock
any outside logic.

Integration tests are used to ensure that each component of the application is working in unity to
receive the desired result. For the integration tests no mocking was done so that we could test the
entire system from controller to database. To do this we used the Library RestAssured to handle
our interaction with the endpoints and check against expected results. These tests are run against
a separate database used only for this purpose.

We use JaCoCo to generate reports on the coverage of the tests. The module ”coverage” in the
project exists entirely for this purpose, as it is the only way for JaCoCo to aggregate results from
multiple Maven modules.

Figure 47: JaCoCo test coverage of the API.

9.3.2 Demo Application Component Tests

Jest is a part of the reacttestinglibrary, and we use it for automated testing of components. The
flow of the tests are very similar to how an user would like to interact with the website. For
example, if a user click on a table entry we would expect a modal opens up with the entry’s details.
We wrote the tests in this manner to check for and assert that there are no breaking changes to the
normal user interaction flow when interacting with the website.

The testing is very similar to other frontend testing libraries like Enzyme and Cypress, but with
Jest, tests are run without displaying the UI.

56

8 ATTACHMENTS System Documentation 119

A coverage report is automatically generated when running tests, and can be foundwithin the folder
”coverage” in the project’s repository.

Figure 48: Coverage report generated when running npm test

9.3.3 Snyk

Snyk is a automated tool that checks Snyk’s database for any reported vulnerability within the
project, and reports back with which version of a dependency the vulnerability lies in, and versions
that patches the vulnerability. If Snyk finds any vulnerabilities then the test will return a test failure
to the pipeline.

57

8 ATTACHMENTS System Documentation 120

References

[1] OWASP.org. OWASP top ten standard awareness document. URL: https://owasp.org/
www-project-top-ten/. retrieved 12.05.21.

58

8 ATTACHMENTS System Documentation 121

Benchmark results

The benchmarking environment
Which endpoints do we want?

System specs.

Load situations:

What information we want to record:
API TESTS

Springboot. 5min. 100 users constantly.

Quarkus. 5min. 100 users constantly.

Springboot. 5min. 200 users constantly.

Quarkus. 5min. 200 users constantly.

DATABASE TESTS
MySQL. Springboot. 5 min. 100 concurrent users.

MySQL. Quarkus. 5 min. 100 concurrent users.

Postgres. Springboot. 5 min. 100 concurrent users.

Postgres. Quarkus. 5 min. 100 concurrent users.

MongoDB. Springboot. 5 min. 100 concurrent users.

QUERY Comparison. Springboot. 1 Concurrent user.

Postgres without Query. Quarkus. 5 min. 100 concurrent users.

Postgres with Query. Quarkus. 5 min (canceled after ~18 min). 100 concurrent users.

MySQL without Query. Quarkus. 5 min. 100 concurrent users.

The benchmarking environment

Which endpoints do we want?

Method description endpoint

GET Get single record based on UUID /records/{uuid}

POST Create new record based on body /records

POST Search for record with query body /records/query

DELETE Mark for deletion based on UUID /records/{uuid}

System specs.

Component Specs

Processor Intel(R) Core(TM) i7-865U CPU @ 1.80GHz

Memory 16GB

Type Notebook

Load situations:

Load situation Number of users Step count Rampup time

Low load 100 1 5m

What information we want to record:

Requests handled per minute

Average request time

Dropped requests

8 ATTACHMENTS Benchmarking Results 122

8.2 Benchmarking Results

Query response time

Method response time

Boot time

Number of records:

1 000 000

Springboot. 100 Requests per second.

Request Time Throughput Error % Min Max Average

GET 3m 100.5/sec 0.00% 0 13 1

POST 3m 100.2/sec 0.00% 3 18 1

QUERY 3m 100.5/sec 0.00% 0 664 6

DELETE 3m 100.4/sec 0.00% 0 45 2

API TESTS

Springboot. 5min. 100 users constantly.

SPRING

BOOT

Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 1083735 7 7 13 16 26 0 496 0.0 3604.1/sec

Post Request 1083708 6 5 11 14 24 0 371 0.0 3610.2/sec

Query Request 1083679 5 5 11 14 24 0 370 0.0 3611.9/sec

Delete Request 1083659 5 5 10 13 23 0 369 0.0 3612.6/sec

TOTAL 4334781 6 6 11 14 25 0 496 0.0 14415.9/sec

Quarkus. 5min. 100 users constantly.

QUARKUS Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 560817 50 39 105 131 187 0 540 0.0 1868.1/sec

Post Request 560721 1 1 3 4 9 0 69 0.0 1868.1/sec

Query Request 560719 1 1 3 4 10 0 74 0.0 1868.1/sec

Delete Request 560718 0 0 1 2 7 0 46 0.0 1868.2/sec

TOTAL 2242975 13 1 48 77 139 0 540 0.0 7471.5/sec

Springboot. 5min. 200 users constantly.

SPRING

BOOT

Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 1145186 21 12 23 31 72 0 1322 0.0 3808.2/sec

Post Request 1145135 10 9 19 26 44 0 425 0.0 3808.4/sec

Query Request 1145075 10 8 18 25 44 0 427 0.0 3808.2/sec

Delete Request 1145020 9 8 18 23 42 0 424 0.0 3808.1/sec

TOTAL 4580416 12 9 20 26 47 0 1322 0.0 15231.8/sec

Quarkus. 5min. 200 users constantly.

8 ATTACHMENTS Benchmarking Results 123

QUARKUS Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 1186905 27 11 25 40 360 0 80030 0.0 1850.8/sec

Post Request 1186860 15 8 19 29 294 0 80031 0.0 1850.8/sec

Query Request 1186798 14 7 19 28 292 0 80031 0.0 1850.8/sec

Delete Request 1186746 13 7 18 26 290 0 80031 0.0 1850.8/sec

TOTAL 4747309 17 8 21 31 302 0 80031 0.0 7402.8/sec

DATABASE TESTS

MySQL. Springboot. 5 min. 100 concurrent users.

MYSQL Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 393830 13 10 26 37 67 0 823 0.0 1312.7/sec

Post Request 393803 51 45 78 98 151 4 613 0.0 1315.9/sec

Delete Request 393754 10 6 22 31 56 0 506 0.0 1316.5/sec

TOTAL 1181387 25 14 55 69 118 0 823 0.0 3937.5/sec

MySQL. Quarkus. 5 min. 100 concurrent users.

MySQL Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 69754 168 199 273 310 452 2 881 0.0 191.3495749402
667

Post Request 69673 206 235 307 343 492 6 1093 0.01 191.1955588119
877

Delete Request 69606 109 55 270 298 421 1 924 0.00 191.0137951663
4057

TOTAL 209033 161 193 289 320 463 1 1093 0.01 573.4173846968
363

8 ATTACHMENTS Benchmarking Results 124

Postgres. Springboot. 5 min. 100 concurrent users.

Postgres Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 2029139 10 8 23 35 56 0 633 0.0 33.2/sec

Post Request 2028866 36 34 65 85 136 1 822 0.0 33.2/sec

Delete Request 2028794 11 9 22 32 56 0 613 0.0 33.2/sec

TOTAL 6086799 19 12 46 58 104 0 822 0.0 99.5/sec

Postgres. Quarkus. 5 min. 100 concurrent users.

8 ATTACHMENTS Benchmarking Results 125

MongoDB Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 360659 87 76 165 206 305 2 1047 0.1 1090.3/sec

Post Request 360458 43 28 94 120 190 4 1230 0.0 1090.3/sec

Delete Request 360421 37 23 85 109 174 1 728 0.0 1092.8/sec

TOTAL 1081538 56 39 123 157 251 1 1230 0.0 3269.5/sec

MongoDB. Springboot. 5 min. 100 concurrent users.

MongoDB Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 1208366 19 19 30 35 49 1 307 0.0 4027.3/sec

Post Request 1208274 14 15 24 28 41 0 398 0.0 4027.9/sec

Delete Request 1208222 14 14 25 30 49 0 293 0.0 4029.2/sec

TOTAL 3624862 16 16 27 32 47 0 398 0.0 12080.9/sec

8 ATTACHMENTS Benchmarking Results 126

QUERY Comparison. Springboot. 1 Concurrent user.

QUERY REQUESTS Samples Average Median 90% Line 95% Line 99% Line Min Maximum Throughput

MySQL - Spring

Round 1 516 1192 1193 1275 1318 1481 615 1675 1.6/sec

Round 2 504 1192 1190 1262 1313 1428 1070 1791 1.7/sec

Average 510 1192 1191,5 1268,5 1315,5 1454,5 842,5 1733 1.65/sec

MySQL - Quarkus

Round 1 414 1605 1609 1737 1759 1862 91 1876 1.1/sec

Round 2 382 1573 1540 1702 1765 2163 1222 2429 1.3/sec

Average 398 1589 1574,5 1719,5 1762 2012,5 656,5 2152,5 1.2/sec

Postgres - Spring

Round 1 466 1301 1292 1422 1436 1484 44 1583 1.5/sec

Round 2 446 1347 1341 1494 1506 1611 1137 1653 1.5/sec

Average 456 1324 1316,5 1458 1471 1547,5 590,5 1618 1.5/sec

Postgres - Quarkus

Round 1 958 1350 1338 1468 1505 1656 657 2041 0.6/sec

Round 2 215 1397 1383 1506 1523 1601 1172 1705 0.7/sec

Round 3 625 1442 1410 1592 1711 2144 1172 2205 0.8/sec

Average 599 1396 1377 1522 1580 1800 1000 1984 0.7/sec

MongoDB - Spring

Round 1 756 793 788 850 862 927 694 1311 2.5/sec

Round 2 754 795 793 842 873 1008 689 1292 2.5/sec

Average 755 794 790,5 846 867,5 967,5 691,5 1301,5 2.5/sec

MongoDB - Quarkus

Round 1 391 768 743 833 889 1103 664 2986 1.3/sec

Round 2 392 765 735 854 931 1083 665 1286 1.3/sec

Average 391,5 766,5 739 843,5 910 1093 664,5 2136 1.3/sec

Postgres without Query. Quarkus. 5 min. 100 concurrent users.

8 ATTACHMENTS Benchmarking Results 127

Postgres Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 270415 56 47 115 145 221 1 833 0.0 900.8/sec

Post Request 270377 31 17 75 95 145 3 575 0.0 902.5/sec

Delete Request 270339 22 9 63 82 128 1 346 0.0 903.2/sec

TOTAL 811131 36 21 88 113 179 1 833 0.0 2702.1/sec

Postgres with Query. Quarkus. 5 min (canceled after ~18 min). 100 concurrent users.

Postgres Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 216 11812 169 14874 23525 354804 9 526696 21.29 16.2/min

Post Request 192 50615 8015 21616 453012 721090 5 786665 54.17 14.4/min

Query Request 100 204268 14640 622375 720817 1061771 6456 1061771 100 5.6/min

Delete Request 52 274557 20898 774893 1062844 1063350 212 1063350 88.46 2.9/min

TOTAL 560 83881 6869 360402 621422 798309 5 1063350 52.86 31.3/min

8 ATTACHMENTS Benchmarking Results 128

MySQL without Query. Quarkus. 5 min. 100 concurrent users.

Postgres Samples Average Median 90% Line 95% Line 99% Line Min Maximum Error % Throughput

GET Request 259646 80 85 140 173 240 1 1988 0.0 863.1/sec

Post Request 259584 102 112 165 194 253 6 611 0.0 864.5/sec

Delete Request 259480 47 15 114 137 202 1 573 0.0 864.7/sec

TOTAL 778710 76 82 146 174 237 1 1988 0.0 2588.7/sec

8 ATTACHMENTS Benchmarking Results 129

8 ATTACHMENTS Benchmarking Results 130

Requirement Documentation:
Digital Evidence Management

Joakim Moe Adolfsen William Jarbeaux Thomas Bakken Moe Eric Younger

Spring 2021

TDAT 3001 Group 109
version 1.0

8 ATTACHMENTS Requirement Documentation 131

8.3 Requirement Documentation

Audit history

Date Version Description Author

13.01.2021 0.1 First draft
Joakim Moe Adolfsen, William Jarbeaux,

Thomas Bakken Moe, Eric Younger
11.05.2021 1.0 Added requirements and wireframes Joakim Moe Adolfsen

2

8 ATTACHMENTS Requirement Documentation 132

Contents

1 Introduction 4

2 Requirements 5

2.1 Functional Requirements . 6

2.2 Nonfunctional Requirements API . 7

2.2.1 Infrastructure and dependencies . 7

2.2.2 Application . 8

2.2.3 CI/CD . 9

2.2.4 Security . 9

2.3 Nonfunctional Requirements Demo Application . 10

2.3.1 Infrastructure and dependencies . 10

2.3.2 Application . 10

2.3.3 CI/CD . 10

2.3.4 Security . 11

3 User stories 12

4 Prototypes 13

4.1 Wireframes . 13

3

8 ATTACHMENTS Requirement Documentation 133

1 Introduction

This document is written for the bachelor project in the computer engineering programme (ITHINGDA) at the
Norwegian University of Science and Technology. Our bachelor thesis concerns the development of a system
called ”Digital Evidence Management” on behalf of our client Signicat. This document serves as an attachment
to our main thesis.

The main function of this document is to layout the requirements of the assignment. In our case this will be the
intended behaviour of the system we are developing.

4

8 ATTACHMENTS Requirement Documentation 134

2 Requirements

This section will document the requirements given to us by Signicat at the beginning of the project. These
requirements consist of a set of functional requirements for the project and then nonfunctional requirements for
the API and the Demo Application.

It is worth noting here that these requirements were given before the scope of the assignment was changed from
a fully developed system to more of a test environment.

5

8 ATTACHMENTS Requirement Documentation 135

2.1 Functional Requirements

Requirement Description Commment

Storage time Up to 20 years

Number of records 500 millions In one system

REST API Create record, Search records, Get record,
Validate record, Delete record (mark for
delete)

All records will have unique ID
(GUID)

Flexible metadata Customer can define own metadata These should be searchable and
not case sensitive at least for at
tribute bame

Admin API Create customer, Delete all customer data,
Retrieve all customer data, Number of
records per customer

System metadata Time and date from TSA, Delete grace pe
riod, Mark for delete (time/date or empty),
Valid until, Validity of record related to
timestamp (time/date), Reference

Physical delete Type cron job deleting Only for Signicat

REST Search function Powerful query to be constructed by cus
tomer. Only search in metadata including
system metadata. Must be fast (indexed
metadata)

No validation

Demo application Including source code Github?

Preservation Preservation cron job A record will be valid
for about 3 years according to timestamp

Could be same as delete cron job.
Only Signicat. Could we avoid
this and make records “valid”
only for 3 first years?

Reference between records When creating a record it should be possible
to refer another record as GUID.

Should one record refer multiple
records or just one?

6

8 ATTACHMENTS Requirement Documentation 136

2.2 Nonfunctional Requirements API

2.2.1 Infrastructure and dependencies

NonFunctional requirements Description Comment

Storage MUST use MySQL API needs search, we need con
sistency (ACID)

Deployment platform MUST target Kubernetes Deployment files are the team’s
responsibility not the k8s clus
ter IaC itself

Billing MUST support Signicat Billing evaluate microbilling

7

8 ATTACHMENTS Requirement Documentation 137

2.2.2 Application

NonFunctional requirements Description Comment
Programming language MUST be Java (latest stable with preview en

abled, which will close some of the gap be
tween Kotlin and older Java)

PoC implemented in Kotlin.
Adding Kotlin to Signicat Green
Stack’s set of languages was dis
cussed in a technology alignment
meeting. (Languages are per
stack, not per team or project.)

Packaging MUST release containers Build as a Spring boot or Quarkus
application.

Versioning MUST support versioning for continuous de
ployment

Defined in Versioning for Contin
uous deployment Deployment at
Signicat

HTTP API MUST be REST

Signicat rest API guidelines MUST implement the Signicat rest API
guidelines

https://signicat.gitlab.io/
architecturegroup/restapi
guidelines/introduction

Unit test code coverage MUST be above 90 percent

Linting MUST respect linting TODO, Options: point to a
checkstyle.xml point to a sonar
cloud config Which to rely upon?

Sonarcloud MUST publish to Sonarcloud at least on each
Sonarcloud merge to master

Integrate with Sonarcloud

Snyk MUST have no vulnerabilities Integrate with snyk.io

API Documentation MUST offer a swagger/openapi definition Make sure that docu
mentation is good as
https://beta.developer.signicat
.com/ uses swagger

Metrics MUST expose metrics See existing Java apps for rele
vant standard metrics

Logs MUST log to stdout MUST integrate with
centralized logging MUST support deleting
all logs for a given customer

8

8 ATTACHMENTS Requirement Documentation 138

2.2.3 CI/CD

NonFunctional requirements Description Comment

Build and deployment MUST be built and deployed with gitlabci

Merge to master MUST be merged to master by employees Take advantage of gitlab’s sup
port for only allowing Main
tainers to merge Developer’s PR
Consider a long lived developer
branch that the students use as
“their” master.

2.2.4 Security

NonFunctional requirement Description Comment
GDPR compliance MUST be compliant with GDPR Among other things, do not log

things that contain PII.
OIDC MUST secure endpoints with OIDC TODO, do we require OIDC on

all endpoints
Tenant isolation MUST design system to guarantee good ten

ant isolation MUST be safe to remove ten
ants from live systems

Several isolation model exist at
deployment level: 1 set of ser
vice 1 database. That’s what sig
nicat green traditionally does. in
this case software is responsible
of isolation 1 set of service n
database. Giving one database
per customer would be great in
terms of isolation (when cus
tomer leaves we drop the whole
db) M set of services N database.

Encryption in transit MUST use TLS in exposed APIs

Encryption at rest MUST make use of encryption at storage
backend

Multi tenancy design can lead to
discussions relative to one set of
encryption keys per database Key
management is hard Explore sup
port in managed services

9

8 ATTACHMENTS Requirement Documentation 139

2.3 Nonfunctional Requirements Demo Application

2.3.1 Infrastructure and dependencies

NonFunctional requirements Description Comment
Deployment platform MUST target Kubernetes Deployment files are the team’s

responsibility not the k8s clus
ter IaC itself

2.3.2 Application

NonFunctional requirements Description Comment
Programming language MUST be Javascript/CSS/HTML Decide specific JS framework.

Packaging MUST release containers

Versioning MUST support versioning for continuous
Defined in Versioning for Continuous de
ployment

Defined in Versioning for Contin
uous deployment Deployment at
Signicat

Unit test code coverage MUST be above 85

Linting MUST respect linting ESLint

Sonarcloud MUST publish to Sonarcloud at least on each
merge to master

TODO, does it makes sense?

Snyk MUST have no vulnerabilities TODO, does it makes sense?

2.3.3 CI/CD

NonFunctional requirements Description Comment
Build and deployment MUST be built and deployed with gitlabci

Merge to master MUST be merged to master by employees Take advantage of gitlab’s sup
port for only allowing Main
tainers to merge Developer’s PR
Consider a long lived developer
branch that the students use as
“their” master.

10

8 ATTACHMENTS Requirement Documentation 140

2.3.4 Security

NonFunctional requirements Description Comment
GDPR compliance MUST be compliant with GDPR

WCAG 2.1 MUST support WCAG 2.1 TODO, which standard to sup
port?

11

8 ATTACHMENTS Requirement Documentation 141

3 User stories

As a I want to... so that...

User view my stored records in an organized way I know how many records I have and what they
contain.

User search through my stored records with various
conditions

I can efficiently find records that I am looking for.

User search through my stored records with various
conditions

I can efficiently find records that I am looking for.

User be able to find relations between records It is easier to find relevant data.

User have my data secure(encrypted) other people can’t misuse my stored data.

User have my data isolated my data is secure and not viewed by others.

User have detailed and clear API documentation I can easily start using the API.

Stakeholder record billable events it is easy to send accurate invoices.

Maintainer add authentication the system is only accessible by our customers.

Maintainer add centralized logging I am able to trace errors, and store logs for future
needs.

Developer add timestamping I am sure that my data has not been tampered.

Maintainer add metric data collection I can assess how the system is doing while in pro
duction.

Developer have unit tests refactoring, or modifications to code will be auto
matically tested to see if the code changes results
in breaking parts of the system.

12

8 ATTACHMENTS Requirement Documentation 142

4 Prototypes

4.1 Wireframes

After receiving the initial requirement documents we created some wireframes to plan the design of the Demo
Application .

All wireframe screens.

Wireframes of the main table. The first two are variations considered during development, while the third is
closest to the final result after the redesign of the search module.

To view the full wireframe see:
https://www.figma.com/file/wn648S7W2xZ9w2PbtNBgHB/Digitial-Evidence-Managment-wireframe-v1.
0?node-id=0%3A1

13

8 ATTACHMENTS Requirement Documentation 143

Vision document:
Digital Evidence Management

Joakim Moe Adolfsen William Jarbeaux Thomas Bakken Moe Eric Younger

Spring 2021

TDAT 3001 Group 109
version 1.0

8 ATTACHMENTS Vision Documentation 144

8.4 Vision Documentation

Audit history

Date Version Description Author
12.01.2021 0.1 First draft JoakimMoe Adolfsen, William Jarbeaux, Thomas

Bakken Moe, Eric Younger
13.01.2021 0.2 Complete first draft JoakimMoe Adolfsen, William Jarbeaux, Thomas

Bakken Moe, Eric Younger
25.01.2021 0.3 Revisements from supervisor JoakimMoe Adolfsen, William Jarbeaux, Thomas

Bakken Moe, Eric Younger
20.05.2021 1.0 Final version JoakimMoe Adolfsen, William Jarbeaux, Thomas

Bakken Moe, Eric Younger

2

8 ATTACHMENTS Vision Documentation 145

Contents

1 Introduction 5

2 Problem statement 6

2.1 Problem . 6

2.2 Product . 6

3 Stakeholders and users 7

3.1 Stakeholders . 7

3.2 Users . 7

3.3 User environment . 7

3.4 Summary of user needs . 8

3.4.1 In project . 8

3.5 Alternatives to our product . 8

4 Overview 9

4.1 Role in the user environment . 9

4.2 Assumptions and dependencies . 9

5 Functional requirements 10

6 Nonfunctional requirements 11

6.1 Backend . 11

6.1.1 Infrastructure and dependencies . 11

6.1.2 Application . 12

6.1.3 CI/CD . 13

6.1.4 Security . 13

6.2 Frontend . 14

3

8 ATTACHMENTS Vision Documentation 146

6.2.1 Infrastructure and dependencies . 14

6.2.2 Application . 14

6.2.3 CI/CD . 14

6.2.4 Security . 15

4

8 ATTACHMENTS Vision Documentation 147

1 Introduction

The purpose of this document is to create an outline for the project. This is to help developers and stakeholders
form a common understanding of the project and its scope.

The task given is to create a digital evidence management system. The core of this system is an API, but for the
sake of demonstration it will also contain a frontend. This API is needed to store evidence of consent, transac
tions, and more for high security applications. The API should be a flexible system which allows for different
types of evidence management, all depending on the companies requirements. Typical customers for this digital
evidence API are financial companies, insurance companies, and other companies that handle sensitive infor
mation and consent. The demand for such an API was created by customers that wanted a way to store evidence
of consent in a secure way. The evidence should also have the ability to be stored long term, and have the ability
to be retrieved at a later date when the evidence is needed.

5

8 ATTACHMENTS Vision Documentation 148

2 Problem statement

2.1 Problem

Problem: There exists no efficient solutions to store, navigate, search, and manage
digital evidence.

Involves: Digital companies that require evidence management of anything from
user GDPR consent messages to bank transactions.

Result: Companies will have to develop inhouse solutions.

Successful solution: Offers a finished product that will be cheaper than for the company to
develop their own, that will be maintained, and is compliant with all the
required rules and regulations.

2.2 Product

Made for: Digital companies.

That requires: Digital Evidence Management.

The product: Is a data handler system.

Goal for product: To be cheaper and simpler way for the clients to manage their digital data.

As opposed to: Inhouse solutions

Our product: Will be a customizable standard solution that will be supported and main
tained.

6

8 ATTACHMENTS Vision Documentation 149

3 Stakeholders and users

3.1 Stakeholders

Name Description Role during development
Signicat The client that defined the task. Product

owner that wants to develop the application
to sell it as a product. Represented by Tor
Even Dahl.

Client, Product Owner, Main
tainer.

NTNU The Norwegian University for Science and
Technology. The uni. where group 109 are
currently enrolled. Represented by Nils Tes
dal.

Supervisory role, will be grad
ing the project based on pro
cess, product and documenta
tion/report.

Bachelor group 109 The four students that will be developing the
product and writing the bachelor thesis.

Developers of the product, and
writers of the documentation

3.2 Users

Name Role during development Represented by
Students/Developers Responsible for planning and devel

opment of the application.
Bachelor group 109

Product Owner Manage workflow and task prioriti
zation.

Elisabeth Ulsund (Signicat)

Tech Lead Final say on technology decisions. Steinar Knutsen (Signicat)

Name Role during development Represented by
Students/Developers Responsible for planning and devel

opment of the application.
Bachelor group 109

Product Owner Manage workflow and task prioriti
zation.

Elisabeth Ulsund (Signicat)

Tech Lead Final say on technology decisions. Steinar Knutsen (Signicat)

3.3 User environment

Our system is going to a mostly standalone API which authenticated customers are free to make calls to. The
system will however have to be integrated with Signicat’s billing system. The system will also use an exter
nal hosted database service. The exact choice of which service to use is a point that will be decided during
development.

7

8 ATTACHMENTS Vision Documentation 150

3.4 Summary of user needs

3.4.1 In project

Need Priority Today’s solution Recommended solution
Save digital evidence as
records

High Various inhouse systems. Create a system to safely store data to
be managed by the user.

Search through records High Various inhouse systems. A efficient way to search through and
find relevant records.

Verify records High Various inhouse systems. A system that can verify integrity of
records.

3.5 Alternatives to our product

We have found no commercial alternative to our product.
According to Tor Even Dahl, several customers of Signicat are looking for a product like ours, but are coming up
short. Currently, if a customer wants a product that fulfills the same requirements as ours, they have to develop
a solution inhouse. This can prove costly both in terms of money and time for the customer, as software
development might not be their forte.

8

8 ATTACHMENTS Vision Documentation 151

4 Overview

4.1 Role in the user environment

There are today no other commercial solutions to digital evidence management available. The demand for such
systems is rising and many companies are forced to develop their own implementations.

The system is primarily meant to be independent and to be easily implemented by various different clients.

Figure 1: SDEM (Signicat Digital Evidence Management).

4.2 Assumptions and dependencies

• Signicat wants to continue the development with the properties and technologies currently presented.

• A competitor emerging during development might affect the system requirements.

9

8 ATTACHMENTS Vision Documentation 152

5 Functional requirements

Functional requirements Description Commment

Storage time Up to 20 years

Number of records 500 millions In one system

REST API Create record, Search records, Get record,
Validate record, Delete record (mark for
delete)

All records will have unique ID
(GUID)

Flexible metadata Customer can define own metadata These should be searchable and
not case sensitive at least for at
tribute bame

Admin API Create customer, Delete all customer data,
Retrieve all customer data, Number of
records per customer

System metadata Time and date from TSA, Delete grace pe
riod, Mark for delete (time/date or empty),
Valid until, Validity of record related to
timestamp (time/date), Reference

Physical delete Type cron job deleting Only for Signicat

REST Search function Powerful query to be constructed by cus
tomer. Only search in metadata including
system metadata. Must be fast (indexed
metadata)

No validation

Demo application Including source code Github?

Preservation Preservation cron job A record will be valid
for about 3 years according to timestamp

Could be same as delete cron job.
Only Signicat. Could we avoid
this and make records “valid”
only for 3 first years?

Reference between records When creating a record it should be possible
to refer another record as GUID.

Should one record refer multiple
records or just one?

10

8 ATTACHMENTS Vision Documentation 153

6 Nonfunctional requirements

6.1 Backend

6.1.1 Infrastructure and dependencies

NonFunctional requirements Description Comment

Storage MUST use MySQL API needs search, we need con
sistency (ACID)

Deployment platform MUST target Kubernetes Deployment files are the team’s
responsibility not the k8s clus
ter IaC itself

Billing MUST support Signicat Billing evaluate microbilling

11

8 ATTACHMENTS Vision Documentation 154

6.1.2 Application

NonFunctional requirements Description Comment
Programming language MUST be Java (latest stable with preview en

abled, which will close some of the gap be
tween Kotlin and older Java)

PoC implemented in Kotlin.
Adding Kotlin to Signicat Green
Stack’s set of languages was dis
cussed in a technology alignment
meeting. (Languages are per
stack, not per team or project.)

Packaging MUST release containers Build as a Spring boot or Quarkus
application.

Versioning MUST support versioning for continuous de
ployment

Defined in Versioning for Contin
uous deployment Deployment at
Signicat

HTTP API MUST be REST

Signicat rest API guidelines MUST implement the Signicat rest API
guidelines

https://signicat.gitlab.io/
architecturegroup/restapi
guidelines/introduction

Unit test code coverage MUST be above 90 percent

Linting MUST respect linting TODO, Options: point to a
checkstyle.xml point to a sonar
cloud config Which to rely upon?

Sonarcloud MUST publish to Sonarcloud at least on each
Sonarcloud merge to master

Integrate with Sonarcloud

Snyk MUST have no vulnerabilities Integrate with snyk.io

API Documentation MUST offer a swagger/openapi definition Make sure that docu
mentation is good as
https://beta.developer.signicat
.com/ uses swagger

Metrics MUST expose metrics See existing Java apps for rele
vant standard metrics

Logs MUST log to stdout MUST integrate with
centralized logging MUST support deleting
all logs for a given customer

12

8 ATTACHMENTS Vision Documentation 155

6.1.3 CI/CD

NonFunctional requirements Description Comment

Build and deployment MUST be built and deployed with gitlabci

Merge to master MUST be merged to master by employees Take advantage of gitlab’s sup
port for only allowing Main
tainers to merge Developer’s PR
Consider a long lived developer
branch that the students use as
“their” master.

6.1.4 Security

NonFunctional requirement Description Comment
GDPR compliance MUST be compliant with GDPR Among other things, do not log

things that contain PII.
OIDC MUST secure endpoints with OIDC TODO, do we require OIDC on

all endpoints
Tenant isolation MUST design system to guarantee good ten

ant isolation MUST be safe to remove ten
ants from live systems

Several isolation model exist at
deployment level: 1 set of ser
vice 1 database. That’s what sig
nicat green traditionally does. in
this case software is responsible
of isolation 1 set of service n
database. Giving one database
per customer would be great in
terms of isolation (when cus
tomer leaves we drop the whole
db) M set of services N database.

Encryption in transit MUST use TLS in exposed APIs

Encryption at rest MUST make use of encryption at storage
backend

Multi tenancy design can lead to
discussions relative to one set of
encryption keys per database Key
management is hard Explore sup
port in managed services

13

8 ATTACHMENTS Vision Documentation 156

6.2 Frontend

6.2.1 Infrastructure and dependencies

NonFunctional requirements Description Comment
Deployment platform MUST target Kubernetes Deployment files are the team’s

responsibility not the k8s clus
ter IaC itself

6.2.2 Application

NonFunctional requirements Description Comment
Programming language MUST be Javascript/CSS/HTML Decide specific JS framework.

Packaging MUST release containers

Versioning MUST support versioning for continuous
Defined in Versioning for Continuous de
ployment

Defined in Versioning for Contin
uous deployment Deployment at
Signicat

Unit test code coverage MUST be above 85%

Linting MUST respect linting ESLint

Sonarcloud MUST publish to Sonarcloud at least on each
merge to master

TODO, does it makes sense?

Snyk MUST have no vulnerabilities TODO, does it makes sense?

6.2.3 CI/CD

NonFunctional requirements Description Comment
Build and deployment MUST be built and deployed with gitlabci

Merge to master MUST be merged to master by employees Take advantage of gitlab’s sup
port for only allowing Main
tainers to merge Developer’s PR
Consider a long lived developer
branch that the students use as
“their” master.

14

8 ATTACHMENTS Vision Documentation 157

6.2.4 Security

NonFunctional requirements Description Comment
GDPR compliance MUST be compliant with GDPR

WCAG 2.1 MUST support WCAG 2.1 TODO, which standard to sup
port?

15

8 ATTACHMENTS Vision Documentation 158

8 ATTACHMENTS Process Document 159

8.5 Process Document

Note: Attachment delivered separately.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Adolfsen, Jarbeaux, M
oe, Younger

D
igital Evidence M

anagem
ent

Joakim Moe Adolfsen, William Jarbeaux, Thomas
Bakken Moe, Eric Younger

Digital Evidence Management

How can secure handling and storage of user-
defined heterogeneous data be accomplished in
a multi-tenant solution?

Bachelor’s project in Computer Engineering
Supervisor: Nils Tesdal

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Introduction
	Terms
	Acronyms

	Theory
	Design patterns
	Separation of concerns
	dao
	mvc
	Facade

	https
	OAuth 2.0
	oidc
	Client Credentials Flow
	Authorization Code Flow with pkce

	psd2
	Scrum
	Sprint planning and Daily Scrum
	Sprint Review and Retrospective
	Product Backlog
	Sprint Backlog
	Increment

	Single & Multi-tenancy
	rest
	Relational and non-relational databases
	acid
	TSA / TSP

	Technology and methods
	rq Requirement 1: Authenticate the user
	Signicat Express
	OAuth 2.0 / oidc

	rq Requirement 2: Contain the heterogeneous data
	MongoDB

	rq Requirement 3: Manage ownership of data in the database
	rq Requirement 4: Keep the data secure in transit and at rest
	rq Requirement 5: Verify that the data has not been modified
	api
	Spring Security
	Java
	Maven
	JUnit

	Demo Application
	TypeScript
	React
	Formatting Tools
	Figma

	Common technologies and tools
	GitLab
	Docker
	Testing

	Work Method
	scrum
	Work Management Tools
	Responsibilities within the team

	Results
	Scientific Results
	Requirements for Research Question
	Benchmarking

	Engineering results
	API
	Demo Application

	Deployment
	Encryption in transit
	GDPR Compliance
	Merge to master
	Snyk
	Missing requirements
	Administrative Results
	scrum
	Work distribution

	Discussion
	Scientific Discussion
	Requirements for Research Question
	Benchmarking

	Engineering Discussion
	Development Tools
	Query
	Deployment
	Encryption in transit
	Encryption at rest
	OIDC Flow
	Other requirements not met

	Administrative Discussion
	scrum
	Teamwork

	Societal Perspective
	Professional Ethics

	Conclusion
	Further work

	References
	Personal Communication

	Attachments
	System Documentation
	Benchmarking Results
	Requirement Documentation
	Vision Documentation
	Process Document

