
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Eirik Hemstad
Torstein Holmberget

SSO Solution for mobile apps from
DIPS

Bachelor’s project in Computer Engineering
Supervisor: Ali Alsam

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Eirik Hemstad
Torstein Holmberget

SSO Solution for mobile apps from DIPS

Bachelor’s project in Computer Engineering
Supervisor: Ali Alsam
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

This project belongs to the Department of Computer Science (IDI) under the Faculty of Information

Technology and Electrical Engineering (IE) at the Norwegian University of Science and Technology

(NTNU). Research was conducted for DIPS ASA, a leading eHealth provider in Norway.

DIPS had a problem they needed researched, and since one of our team members was a part-time

employee there we got the task as our bachelor assignment. This problem revolved around finding a

way to implement Apple’s new enterprise single sign-on solution into their mobile development for

hospital applications. The task presented many challenges both due to the lack of documentation

since the solution was so new, and our lack of experience with the technologies involved. In the end

the task gave us the opportunity to use many of the skills we had acquired through our education,

including system development, testing, security and research. And it gave us the opportunity to

learn many new skills within mobile development and iOS development specifically, as well as a

greater understanding of the complexities of research.

Acknowledgements

We would like to thank DIPS ASA for giving us the opportunity to work with this assignment.

Big thanks goes out to Tore Mørkved at DIPS for providing the assignment and giving us insight

into the relevance and importance of our work. We would also like to thank several employees

at DIPS: Erling Moxnes Kristiansen for aiding us in all things regarding mobile development and

practices at DIPS, and Christer Brinchmann for helping us with server configurations and issues.

We would also like to express our warm gratitude towards our supervisor Ali Alsam for providing

great feedback and support, along with discussions regarding the scientific aspects of our report.

Lastly, a big thanks to Kjell Arild Sandvik at Knowit for letting us debrief him about his experi-

ences with the problem domain.

Trondheim, 20.05.2021

Eirik Hemstad Torstein Holmberget

i

Assignment Description

Original Assignment

DIPS ASA wants an SSO solution for our native mobile applications for clinics. Extensible Enter-

prise SSO that was part of iOS 13 makes it possible to implement this for our apps so that users

only need to log on once, even if they are using several apps from different providers.

Priority 1:

• Research how this can be implemented and configured using iOS Enterprise Extensions for

iOS apps alongside MDM.

• Research how to support 2-factor authentication with username and password, and a key

card using NFC technology.

• Create a prototype

Priority 2 (bonus):

• Research similar solutions for native apps on Android

Updated Assignment

After clarification from product owner, it was decided that 2-factor authentication with a key

card using NFC technology would be moved to priority 3 because of the scope of the assignment.

Neither priority 2 or 3 was required for the completion of the assignment. The new assignment

listing became:

Priority 1:

• Research how this can be implemented and configured using iOS Enterprise Extensions for

iOS apps alongside MDM.

• Create a prototype

Priority 2 (bonus):

• Research similar solutions for native apps on Android

Priority 3 (bonus):

ii

• Research how to support 2-factor authentication with username and password, and a key

card using NFC technology.

iii

Summary

In a time where smartphones provide new ways to digitalize work tasks and administration, a lot

of users face the need to use more and more mobile applications for their work. As enterprise

applications will require the user to be authenticated and authorized before use, users can risk

spending an unreasonable amount of time logging into every application at the start of the workday.

The introduction of Single Sign-On in both web browsers and smartphones aim to reduce the impact

authentication can have on a user’s workflow.

DIPS ASA wanted us to figure out a way for them to implement Single Sign-On into their applic-

ations using Apple’s new Extensible Enterprise Single Sign-On solution.

The goal was to research this new solution and try to build a working prototype for DIPS to use in

future implementations of this technology into their applications for the hospital sector specifically.

We also wanted to research the viability of existing SSO solutions based upon this technology.

We developed several prototypes, two of which used existing solutions made with Extensible En-

terprise SSO, and one attempt at creating a custom SSO extension. The prototypes taught us

how the technology could be utilized, and gave us a lot of experience with dealing with related

technology and its issues. Completing a functioning prototype for a custom SSO extension was

unfortunately hindered by technical issues and insufficient documentation.

Our research shows us that Extensible Enterprise Single Sign-On is designed to abstract the com-

plexity of handling authentication and authorization flows away from individual applications, into

central platform-based repositories that can serve all incoming and outgoing identity traffic. Such

SSO Extensions are available to be developed by any provider, but should not be used only as

proprietary solutions for the companies that develop them.

iv

Report structure

Chapter 1 contains the background for the assignment and our understanding of the assignment,

as well as the research questions we derived from the task.

Chapter 2 contains all the theory behind our work as well as some background on the various

technologies we would be working with.

Chapter 3 is a runthrough of all the technologies we used, our research and development method-

ologies and the tools we used to accomplish our assignment.

Chapter 4 contains the results of our research, the implementation of the extension and our process

and administrative results.

Chapter 5 will be a discussion of those results and of our progress through the project.

Chapter 6 is the final chapter where we draw the conclusions of our research and what can be done

of further work on this.

Appendices

Appendix A contains the full Assignment as given to us at the start of the project, without the

changes agreed to during the project as described in chapter 1.

Appendix B contains the Vision Document we set up at the start of the project as a guide to how

and what we were trying to achieve.

Appendix C contains the bug report to Apple regarding the problems we ran into during develop-

ment.

Appendix D is the raw minutes of our interview with Knowit.

v

Contents

1 Introduction and relevance 1

1.1 Background . 1

1.2 The Problem Domain . 2

1.3 The Assignment . 3

1.4 Research Questions . 3

1.4.1 Are there advantages to developing a proprietary SSO extension, or is it

better to use an existing maintained extension? 3

1.4.2 How can Apple Extensions be implemented and used with Xamarin? 4

1.4.3 How can Single Sign-Out be handled on non-personal mobile devices? . . . 4

2 Chapter 2: Theory 8

2.1 Authentication . 8

2.1.1 Single Sign-On . 8

2.1.2 eIDAS . 8

2.1.3 Federated Security . 9

2.1.4 Biometric Security . 9

2.1.5 Two Factor Authentication . 9

2.1.6 Token or Ticket Authentication . 9

2.2 Authorization . 10

2.2.1 OAuth 2.0 . 10

2.2.2 OpenID Connect . 10

2.2.3 ADFS - Active Directory Federation Services 10

vi

2.2.4 MDM(Mobile Device management) . 10

3 Chapter 3: Technology and Methodology 12

3.1 Technology . 12

3.1.1 Extensible Enterprise Single Sign-On . 12

3.1.2 Kerberos . 14

3.1.3 Microsoft Enterprise SSO plug-in . 15

3.1.4 Universal Links . 15

3.1.5 XCode . 16

3.1.6 Swift . 17

3.1.7 Xamarin . 17

3.1.8 Intune (Microsoft) . 17

3.2 Research Methodology . 17

3.2.1 Qualitative Research . 18

3.3 Development Method . 19

3.3.1 Sprints . 19

3.3.2 Pair Programming . 20

3.4 Tools . 20

3.4.1 DIPS’ Internal Tools . 20

3.4.2 Microsoft Teams . 20

3.4.3 Discord . 21

3.4.4 Microsoft Word . 21

3.4.5 Overleaf . 21

3.4.6 Azure DevOps . 21

3.4.7 Clockify . 21

4 Chapter 4: Results 22

4.1 Research Results . 22

vii

4.1.1 Experience Interview . 22

4.1.2 Shared Devices . 25

4.2 SSO Extension Implementation . 25

4.2.1 General Implementation . 25

4.2.2 Prototype using Azure Active Directory SSO Extension 27

4.2.3 Prototype using Apple’s Kerberos Extension 28

4.2.4 Custom SSO Extension Prototype . 30

4.3 Engineering Process Results . 35

4.3.1 Scrum . 35

4.3.2 Working environment . 36

4.3.3 Communication with supervisor . 36

4.4 Administrative Results . 36

4.4.1 Progress plan . 36

4.4.2 Summary of hours . 38

5 Chapter 5: Discussion 40

5.1 Product . 40

5.1.1 Research Process . 40

5.1.2 Custom SSO Extension . 40

5.1.3 Azure AD SSO Extension . 42

5.1.4 Kerberos Extension . 42

5.2 Scientific Results . 43

5.2.1 Apple Technology . 43

5.2.2 Research Questions . 44

5.3 Administrative Process . 46

5.3.1 Progress plan evaluation . 46

5.3.2 Development Process . 46

5.3.3 Teamwork . 47

viii

6 Chapter 6: Conclusion and further work 48

6.1 Assignment Conclusion . 48

6.1.1 Research implementation of Extensible Enterprise Single Sign-On 48

6.1.2 SSO Extension Prototypes . 48

6.1.3 Bonus Priorities . 49

6.2 Research Conclusion . 49

6.2.1 Are there advantages to developing a proprietary SSO extension, or is it

better to use an existing maintained extension? 49

6.2.2 How can Apple Extensions be implemented and used with Xamarin? 49

6.2.3 How can Single Sign-Out be handled on non-personal mobile devices? . . . 49

6.3 Further Work . 50

6.3.1 OpenID Connect Redirect Extension . 50

References 51

Appendix 53

Appendix A - Assignment Text . 53

Appendix B - Vision Document . 55

Appendix C - Apple Bug Report . 63

Appendix D - Interview . 65

ix

Introduction and relevance

1.1 Background

Usage of smartphones in everyday life is increasing quickly. These handy devices are becoming more

and more integrated in modern society, both as a means of entertainment and a necessary tool for

performing everyday tasks. Every day, we use a plethora of unique applications for communicating,

buying bus tickets and handling bank transactions. This usage of mobile applications have also

extended into many work environments, becoming an important part of the working day for many

different professions. Most of these apps will require access to some data over the internet, which

often can be user-specific and sensitive. Therefore, users will have to authenticate with their

personal credentials before they can use the application, proving who they are to the service

provider.

But authenticating through every new app you open can be cumbersome, and managing many

different user accounts can quickly lead to unsafe or repeatedly used passwords. To try and

solve this, many service providers let you authenticate through pre-existing accounts, like Google,

Apple ID or Facebook. Android devices and iPhones can even store authenticated user sessions

in the operating system, using Google accounts or Apple ID’s respectively. When you open a new

application on your iPhone, there’s a chance that the application lets you log in using your Apple

ID. If you choose to do so, you won’t need to enter your credentials, as your account is already

authenticated through the operating system. The application will simply get the user session from

the operating system, and use it when it needs to access guarded resources. This method of storing

authenticated user sessions where applications can access them is known as Single Sign-On (SSO).

An increase in use of smartphones in hospitals and clinics by medical personnel to perform various

work tasks has lead to a situation where they often need to use several different applications from

different providers. Logging in on each of these apps every day can be obstructive to their workflow.

One login at the start of the work shift to access all their required tools would be preferable, and

would improve the quality of the user-experience and contribute to a more efficient work process.

1

1.2 The Problem Domain

DIPS ASA is one of Norway’s leading providers of electronic patient journals. Their main product

is currently DIPS Arena, a desktop application designed to be used by health personnel in hospitals.

DIPS Arena provide functionality for keeping track of treatment plans, hospital-admitted patients,

appointments and other related features. DIPS has also recently launched a pilot project involving

two smartphone applications that can be used on hospital premises. These two applications are

DIPS Visit and DIPS Tasks. DIPS Visit lets personnel quickly access a patient’s journal while

making rounds at the hospital, with support for adding further notes and documentation. DIPS

Tasks acts as a checklist where personnel can see work-related tasks which needs to be completed,

with support for viewing documents and transferring tasks to other personnel. Both of these apps

are designed to be used in a hectic environment, so usability and efficiency is of high importance.

It is expected that users will frequently jump between these two apps, among other third-party

apps that might be included in their workflow. Authentication prompts popping up while switching

between two apps can be disruptive to the user’s workflow and cause a lot of annoyance. But proper

authentication for each app is still very important. In order to provide the desired functionality

to the user, the apps need to access and present sensitive data from patient journals. The security

requirements for storage and access of such data are strict and regulated by law, meaning that

the authentication process cannot be compromised or simplified for ease of use. This provides a

challenge, as users must be authenticated and authorized properly while still providing a seamless

and productive experience when jumping between applications.

When DIPS ASA started developing for the mobile platform, they wanted to know whether they

should focus on creating one large app, or rather focus on multiple smaller apps that provide

specific sets of functionality. In 2019, university students from NTNU wrote a bachelor thesis for

DIPS ASA, involving researching the practicality and efficiency of dividing DIPS mobile services

into smaller apps, and how this would compare to one, monolithic app CITE BACHELOR. The

thesis led to the students developing a Single Sign-On solution that could be used to streamline the

authentication between the apps developed by DIPS. The finished product was an authentication

library that could be integrated into every app they develop. This solution was programmed

specifically to interact with DIPS identity servers. This solution was functional for a while, but

newer versions of iOS rendered the Single Sign-On aspect of the library obsolete. The library used

the local storage of the native Safari browser to share session data between apps. This method is

no longer functional due to a change in iOS 13.

2

1.3 The Assignment

The assignment that created the basis of this research report was provided to us by DIPS ASA.

The assignment was to research the possibilities of implementing Apple’s new Extensible Enterprise

Single Sign-On (EESSO) framework into their products as a way of handling user authentication

cross-application on iOS. EESSO is a system integrated in iOS, that lets developers create App

extensions that allow for SSO capabilities in any application that implement them. We expand

more upon EESSO in chapter 3.

DIPS provided multiple reasons for integrating EESSO into their mobile platform:

• EESSO allows for Single Sign-On capabilities between any application provider that imple-

ments the same SSO extension

• DIPS’ current SSO solution is deprecated for newer versions of iOS

• EESSO is the proper standard for SSO on iOS

In addition to this research, we were to develop a prototype that demonstrated how an SSO

extension could be implemented towards DIPS’ identity providers.

The original assignment text can be found in Appendix A - Assignment Text

1.4 Research Questions

Initial discussion around the assignment inspired various related questions that we wanted to take

a closer look at.

1.4.1 Are there advantages to developing a proprietary SSO extension,

or is it better to use an existing maintained extension?

When aiming to implement Single Sign-On to applications in a specific system, the provider has to

make a choice on how to create their SSO extension to work with apps from other providers in the

same usage area. This means that they either have to use an existing extension from a third-party

provider that is set as the standard for their user area, or they can create their own proprietary

extension that leaves open the possibility of other services connecting into their system to get a

true universal Single Sign-On for the end-user. But which of these solutions are the best ones both

for security and usability?

There are already two available SSO extensions that have been developed with EESSO. If multiple,

independent application vendors use the same SSO extension for their applications, they could

3

achieve cross-vender Single Sign-On. These are meant for specific identity providers, and are

closed-source. This means that there is no way for a company to extend the functionality of such

an extension, without developing an entirely new extension. If a vendor does not use one of the

officially supported identity providers, they may have to develop their own extension. Are the

pre-existing extensions flexible enough to be used by an application vendor (granted that the right

identity provider is used), or should they rather develop their own extension targeting their identity

provider of choice?

1.4.2 How can Apple Extensions be implemented and used with

Xamarin?

Applications for any of Apple’s mainstream platforms are programmed in Swift. This means that

Apple has intended their extensions to be implemented through this technology. DIPS uses the

cross-platform framework Xamarin, to efficiently build mobile apps for both Android and iOS.

Many developers that develop in Xamarin find themselves in the situation where they need to

implement these solutions into a cross-platform system. This means that we had we had to find

out how Apple Extensions can be utilized through Xamarin.

1.4.3 How can Single Sign-Out be handled on non-personal mobile

devices?

When employees share work devices, it is important that the previous user is logged out before

a new user gains access to the device. When using digital tools, it is important that each user is

logged in as themselves, as this maintains integrity across the system. This can be hard to enforce,

as it’s not guaranteed that a user will check that they’re properly logged in every time. If one

user’s authenticated session slides over to the next user, it can cause the wrong user to gain or

lose access to sensitive data. Since a Single Sign-On system holds shared authenticated sessions,

signing a user out on one app will result in a sign-out across the entire device for that user. This is

known as Single Sign-Out. Is there any way to log out users automatically on shared work devices?

4

Glossary

app extension A form of application add-on that can extend the functionality of an application

and make it available while the user is in another app. 3, 6, 32

AppAuth A program library for Swift that lets developers easy set up authentication through

OAuth 2.0 or OpenId Connect. 40

AppSSODaemon A system daemon responsible for handling EESSO operations. 33, 41

bundle identifier The unique identifier of an application on the Apple platform. Often in the

form of com.company.appname. 14, 28, 29, 32

daemon A background process running on a computer system. 33

identity provider A system entity that creates, maintains, and manages identity information for

principals and also provides authentication services to relying applications within a federation

or distributed network. 23

Intune A cloud-based service that focuses on mobile device management (MDM) and mobile

application management (MAM). 17, 25, 26, 28, 30, 32, 33, 42

MDM Payload A set of configuration data that is assigned to devices enrolled in Mobile Device

Management.. 13, 41, 42

Microsoft Authenticator An application that provides functionality for keeping track of ac-

counts on passwords. 42

Mobile Device Management A deployment of managed devices and/or applications, often used

to enforce corporate policies and configurations. 12, 13, 20, 25, 32

OAuth 2.0 . 17, 30, 42

OpenID Connect An identity layer that sits on top of OAuth 2.0. It is one of the most used

protocols in modern authentication. 12, 17, 23, 30, 34, 42, 43, 47

PingFederate A global authentication authority server that allows employees, customers and

partners to securely access all the applications they need from any device. 23

5

protocol In Swift, a protocol is assignable to a class to force it to implement a set of methods to

fulfill the functionality expected by some external functionality. 26

realm A subset of a domain that is managed by one or more Kerberos Domain Controllers. 14

REST Representational state transfer (REST) is a software architectural style which uses a subset

of HTTP. It is commonly used to create interactive applications that use Web services.. 10

SSO extension An app extension that utilises EESSO to provide SSO functionality to an applic-

ation. vi, 3, 12–14, 20, 23–27, 30–35, 40–42, 44–50

swcutil A network utility for validating Associated Domains on Apple platforms.. 16, 42

Swift Programming language for creating native applications for the Apple platform. 25, 26, 29,

33, 34, 40, 49

target A sub-project contained within an XCode project, often following a specific template. 32

team identifier The unique identifier of a development team registered as licensed Apple applic-

ation developers. 14

Universal Links A system on all Apple platforms that lets developers link together applications

and websites under their domains. 41, 42, 48

view controller A class that handles logic and input operations for a view or UI element. 26,

29, 45

Xamarin A cross-platform mobile framework developed by Microsoft. vii, 4, 17, 25–27, 29, 40,

42–45, 49

6

Acronyms

AASA Apple App Site Association. 16, 41, 42

CDN Content Delivery Network. 41, 42

EESSO Extensible Enterprise Single Sign-On. 3, 5, 6, 12, 13, 15, 22, 23, 25, 26, 34, 35, 40, 41,

43, 44, 47–50

IPA iOS App Store Package. 33

MSAL Microsoft Authentication Library. 27, 42

SSL Secure Sockets Layer. 14, 41

SSO Single Sign-On. 1, 3, 6, 24, 25, 30, 41, 44–46

7

Chapter 2: Theory

This chapter introduces the reader to concepts relevant to our research questions in Chapter 1, as

well as the theoretical structures which our research builds upon.

2.1 Authentication

The users have to authenticate themselves with secure credentials only known to the owner of

the device, or in the case of shared devices, only the permitted users of the device. This means

verifying to the system that they are who they claim to be, either with a biometric system for

single-user devices, or a two-factor system for shared devices, this prevents unauthorized access to

the system and a means of identifying the user.

2.1.1 Single Sign-On

Single sign-on is an authentication scheme that allows users to log in with a single account to

several related but independent systems through an external system that stores credentials upon

initial authentication. These credentials can be served to other systems and re-used as long as

they are valid.

2.1.2 eIDAS

eIDAS (electronic Identification Authentication and trust Services) is a European regulation. It

is designed to ensure a functioning electronic market, along with a proper level of security for

electronic identification and trust services. The regulations require all providers of trust services

to provide technical and organizational actions for handling potential security risks. In relevance

to this report, eIDAS has certain requirements for the login process when accessing resources from

government organizations. For example, eIDAS require that an authorized login key must at least

contain two factors of authentication. [1]

8

2.1.3 Federated Security

In information technology a federated identity is a link between a person electronic identity and

attributes, stored across multiple distinct identity management systems.

Federated identity in relation to Single Sign-On is where a users authentication ticket or token is

trusted across multiple IT systems or organizations.

Federated identity management describes the technologies, standards and use-cases which serve to

enable to portability of identity information across otherwise autonomous security domains, with

the goal of enabling users of one domain to securely access data or systems from another domain

seamlessly without the need for redundant user administration.[2]

2.1.4 Biometric Security

Biometric security are systems that rely on unique biometric identifiers like facial recognition,

fingerprints, retina scans, etc. to authenticate a person. The usage of biometrics is very application

dependant. Certain biometrics are better then others depending on required levels of convenience

and security, as well as the constraints of the hardware it is running on.

2.1.5 Two Factor Authentication

Two factor authentication (2FA) requires a user to perform two steps of authentication before they

are logged in. This is in theory more secure than one single step, as it challenges the user with

providing more information before they are authenticated. Two factor requires the user to provide

two out of three types of credentials before they can be logged in. The three credential types are:

• Something you know, like a PIN or combination of username and password.

• Something you have, like a personal device or card.

• Something you are, like biometric fingerprints or facial recognition.

These unique factors makes it harder for attackers to compromise an identity, as they would at

least have to gain access to a physical object belonging to the user to be able to authenticate. [3]

2.1.6 Token or Ticket Authentication

Authentication of the token or ticket being passed from the Federation server has to be done

through a external certified authentication provider like for instance BuyPass to make sure that

the token or ticket provided is correct and authentic.

9

2.2 Authorization

Authorization is the process of granting a user or automated process a level of access or privilege

in a computing system. This means controlling who can access what, and to what degree they are

able to read or manipulate the accessed data. Access control in computer systems rely on access

policies. The access control process can be divided into the following phases: policy definition phase

where access is authorized, and policy enforcement phase where access requests are approved or

disapproved.

2.2.1 OAuth 2.0

OAuth 2.0 is the industry-standard protocol for authorization. OAuth provides clients a secure

delegated access to server resources on behalf of a resource owner [4].

2.2.2 OpenID Connect

OpenID Connect is a simple identity layer on top of the OAuth 2.0 protocol. It allows Clients to

verify the identity of the End-User based on the authentication performed by an Authorization

Server, as well as to obtain basic profile information about the End-User in an inter-operable and

REST-like manner [5].

2.2.3 ADFS - Active Directory Federation Services

ADFS is a Microsoft developed system to provide SSO capabilities to Windows Servers and is part

of Active Directory Services. It uses a claims-based access-control authorization model to maintain

application security and to implement federated identity [6].

2.2.4 MDM(Mobile Device management)

MDM is typically a deployment of a combination of on-device applications and configurations,

corporate policies and certificates, and backend infrastructure. Some of the core functions of

MDM include

• Ensuring that diverse user equipment is configured to a consistent standard

• Ensuring that sensitive equipment complies with required policies, thus improving security

and damage control

• Updating equipment, applications, functions, or policies in a scalable manner

10

• Ensuring that users use applications in a consistent and supportable manner

• Monitoring and tracking equipment

• Being able to efficiently diagnose, troubleshoot and manage equipment remotely

Typical solutions include a server component which sends out the management commands to

the mobile devices, and a client component which runs on the managed device and receives and

implements the management commands.

Over-the-air programming is considered the main component of operator and enterprise-grade

MDM. This includes the ability to remotely configure a single mobile device, all the devices affected

by the server, or only certain devices decided by IT.

11

Chapter 3: Technology and Methodology

3.1 Technology

This section will be a summary of the technology we used for the prototype solution to the project,

as well as the subjects of the research of EESSO.

3.1.1 Extensible Enterprise Single Sign-On

Apple’s Extensible Enterprise Single Sign-On is a built-in feature introduced in iOS 13, iPadOS

13 and MacOS Catalina. This feature lets app or web developers use the operating system as a

means of persisting authenticated user sessions between both native apps and websites through

Safari. This functionality is meant to be implemented through app extensions, where the developers

themselves have to program the desired authentication flow [7].

3.1.1.1 SSO Extensions

EESSO is utilized through specific SSO extensions. An SSO extension is a form of program

library for Apple platform that implements a set of abstract methods that are called by the

authentication framework used by the Swift platform. This means that the extension developers

have to program exactly how the authentication procedure should work. For example, developers

can choose to implement client code for an OpenID Connect setup in the extension. When the

host app makes a request for authentication through one of the built-in frameworks, EESSO will

call the SSO extension, which again will process the request further to the implemented endpoints.

The extension must be deployed through Mobile Device Management. As the extension functions

as a single application per device, authorization data can be stored and accessed by all permitted

applications. Apple provides two types of SSO extensions [7].

12

3.1.1.2 Redirect Extension

A Redirect Extension is a type of SSO extension. It is based on redirecting requests from normal

applications. The application can either use an authentication framework to start a web request, or

trigger a special authentication operation. The extension will intercept the request or operation.

The extension receives the request with the URL, HTTP headers and body, and the extension

developer is responsible for using this data to complete the authentication process with the identity

provider. When the authentication process is complete, the extension can append the resulting

authorization headers to the original request, which will proceed to the identity provider again. The

identity provider will not need to challenge the request again, as it’s already authorized through

the extension [8]. The extension can choose to store already acquired authorization headers inside

its own state, thus enabling Single Sign-On between separate applications [7].

Figure 3.1: The flow of a Redirect Extension

3.1.1.3 Credential Extension

A Credential Extension is the second type of SSO extension. It is based on a web server returning a

HTTP challenge when an application attempts to contact the web server. The challenge is directed

to the extension, which will complete the authentication request with the authentication server.

When the request is completed, the authorization headers will be sent to the web server, which

again will use this data to send a response to the application (figure 3.2) [7].

3.1.1.4 Prerequisites

As EESSO is a feature of the operating system, only applications running on iOS 13, iPadOS 13 or

MacOS Catalina can utilize this behaviour. In addition, applications have to be deployed through

an Mobile Device Management solution, as EESSO has to be enabled and configured through a

specific MDM Payload. This payload is configured to be deployed to devices that are enrolled in

the Mobile Device Management environment, and has to include the following data[9]:

13

Figure 3.2: The flow of a Credential Extension

• The type of extension (Redirect or Credential)

• The bundle identifier of the SSO extension (including the team identifier of the SSO extension

developer)

• The realm of the Kerberos environment where the user resides (Credential only)

• A list of domains that are approved for the extension (Credential only)

• A list of URL prefixes that should be intercepted by the extension (Redirect only)

When deploying a Redirect Extension, the extension also requires that the application lists the

target identity server through Associated Domains. This is a list of domain names that are asso-

ciated with the app. This can be configured in the app directly, or deployed through MDM App

Configuration. The identity server also has to serve an Apple App Site Association file, which

contains a list of all the applications that are authorized to use the server for authorization. The

server must have a valid SSL certificate [7].

3.1.2 Kerberos

Kerberos is the default system used by Apple’s SSO solution. It is an authentication protocol that

allows nodes to communicate over a non-secure network to prove their identity to one another in

a secure matter using tickets.

Kerberos builds on symmetric key cryptography and requires a trusted third party for authentica-

tion and is the default protocol used by Azure AD and Active Directory. It works across platforms,

14

uses encryption, and has protections against replay attacks [10].

3.1.3 Microsoft Enterprise SSO plug-in

Microsoft Enterprise SSO plug-in is Microsofts solution for enabling SSO to Azure AD accounts on

all applications that support Apple’s Enterprise Single Sign-on on iOS, macOS and iPadOS devices.

It is usable by all MDM solutions and extends SSO to applications that use OAuth 2, OpenID

Connect and SAML. There are some requirements for it to operate successfully, the device needs to

support and have installed an app that has the MSESSO plug-in such as Microsoft Authenticator

on iOS or iPadOS devices and Intune Company Portal on macOS, The device needs to be enrolled

in an MDM system, and the configuration must be pushed to the device through the MDM system.

3.1.4 Universal Links

Universal Links is a feature of the Apple Ecosystem that lets developers and system architects

link together apps and websites. This means that apps and websites can be associated to trust

each other and communicate certain data. Servers can be declared as to provide certain services

to other applications, and applications can be told to use these services [11].

3.1.4.1 Associated Domains

Associated Domains lets a developer register an associated service with an app. For example, a

developer can specify that the domain name auth.example.com is to be recognized as the applica-

tion’s authorization server. Associated Domains must be listed in the application’s entitlement file,

with a special prefix for each domain name that specifies what type of service the domain serves.

EESSO requires that the authorization server is prefixed with the authsrv service type, which is

short for Authentication Services [11].

3.1.4.2 Apple App Site Association File

The Apple App Site Association File is a .json file that should be located on every server that

interacts with Apple applications. It is required for all servers that are listed as one or more

application’s associated domain. When a network framework in the application tries to contact

a server, the application’s device retrieves this file, and ensures that it is listed and approved for

access. This file must be available at the URL /.well-known/apple-app-site-association, relative to

the server’s root URL [11].

15

Figure 3.3: An example of the Apple App Site Association file viewed in a web browser

3.1.4.3 swcutil

swcutil is a utility available on most devices running Apple operating systems. This is a utility

that runs validations on Universal Links. It can be used to retrieve and validate the Apple App

Site Association (AASA) file from an Associated Domain. Although swcutil is a tool made by

Apple, there is no official documentation describing it, outside the instructions provided by the

command line utility [8].

Figure 3.4: Instructions on how to use swcutil

3.1.5 XCode

XCode is Apple’s IDE for macOS and the default software for creation apps for macOS, iOS etc. It

is primarily used to program in the Swift language, which is Apple’s own developed programming

16

language. Since XCode is created specifically for the Swift Language and macOS it is an easy and

safe way to implement the various features of the language.

3.1.6 Swift

Swift is a compiled programming language developed by Apple and the open-source community

developed as a replacement to Object-C. On Apple platforms it uses the Objective-C runtime lib-

rary which allows C, Objective-C, C++ and Swift code to run within one program. Swift supports

the core concepts associated with Objective-C like dynamic dispatch and extensible programming

but in a ”safer” way that makes it easier to catch software bugs. It also contains features to

addresss common programming errors like null pointer dereferencing. It also supports the concept

of protocol extensibility, a system that can be applied to types, structs and classes which creates

a change to protocol-oriented programming over object-oriented programming.

3.1.6.1 AppAuth

AppAuth is a Software Development Kit for Android, iOS, MacOS and tvOS for communicating

with OAuth 2.0 and OpenID Connect providers.

3.1.7 Xamarin

Xamarin is an open source framework developed by Microsoft to build cross-platform applications

for iOS, Android and Windows with .NET from a single shared C# codebase.

3.1.8 Intune (Microsoft)

Microsoft Intune is a cloud-based service that focuses on MDM (Mobile Device Management) and

MAM (Mobile Application Management). Intune integrates with Azure Active Directory, and lets

the administrator manage all mobile devices that have joined the domain under Azure AD.

3.2 Research Methodology

At the start of the project, we were not particularly familiar with the hospital domain in which

the solution would be used. This knowledge would be vital in defining which problems had to

be taken into account when developing our prototype. There were a multiple subsections of the

domain that had to be considered. These were as followed:

• How does the hospital handle their mobile device logistics?

17

• Would mobile devices switch users often?

• If above is true, how is switching of user sessions handled?

The answers to these questions will naturally vary between different hospitals. Still, we wanted to

base most of our understanding on a particular environment that could serve as an example.

3.2.1 Qualitative Research

In qualitative research, the goal is to analyze detailed, non-numerical data to understand a concept,

experience or opinion. Such data is gathered through reading and understanding scientific articles

or conducting a detailed interview with a party that has relevant opinions, knowledge or experience

about the data you wish to gather.

Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or au-

dio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights

into a problem or generate new ideas for research. Qualitative research is the opposite of quant-

itative research, which involves collecting and analyzing numerical data for statistical analysis.

Qualitative research is commonly used in the humanities and social sciences, in subjects such as

anthropology, sociology, education, health sciences, history, etc.[12]

3.2.1.1 Goal Determination

The first step in a qualitative interview is to define the goal of the interview. What knowledge do

we wish to gain from the interview, and what overarching questions do we need to be answered?

3.2.1.2 Target interview object

The next step is to determine which person should be interviewed. The individual’s role, experience

and knowledge should be considered when choosing the right candidates.

3.2.1.3 Plan and design questionnaire

How should the interview questions be structured and defined? Should the questions follow a

strict and specific structure, or should the questions be open and allow the individual to speak

more freely? The questions should be formed in such a way that they cover the entirety of what

the interviewer seeks to find out. They should also be clear and easy to understand by the subject.

18

3.2.1.4 Perform the interview

Perform the interview as planned with the prepared questionnaire and the relevant parties. Make

sure to take notes or record the interview. The subject must be informed of what is recorded.

3.2.1.5 Process the data

Go through your notes or the recording, and organize what questions were answered, and what

was left unanswered.

3.3 Development Method

Our team chose at the start of the project to use a thinned out version of Scrum, with sprints,

sprint-reviews and daily scrum meetings. We chose this because scrum works well in a development

process with a lot of changes underway in the project. We decided not to go with any of the scrum

roles due to the small size of the team, and rather have a flat hierarchy.

3.3.1 Sprints

In scrum, sprints are iterations with a specific time period decided in advance, usually between 1

and 4 weeks. Sprints start with sprint planning that establishes the goal for the particular sprint

and what backlog items are to be included, then ends with a sprint review.

3.3.1.1 Sprint planning

First day of a sprint the team had a sprint planning event where they discuss the sprint goal and

selects the product backlog items that are to be completed in this sprint, and what priority each

task has.

3.3.1.2 Sprint review

When the sprint is done the sprint review is a walk-through of the results this sprint where the

team demonstrates current progress to the customer and decide if the results are accepted or not

in regards to where to go next in the process.

19

3.3.2 Pair Programming

Since we were only two people working at separate locations it was an ideal environment for us

to use pair-programming, where one person actively codes while the other watches and makes

comments and suggestions along the way to get both points of view into the same code. Only

Eirik was able to actually program and test the prototypes, as he was the one with access to DIPS’

internal systems and the Mobile Device Management environment. Since we for the most part

worked at separate locations, pair programming was a necessity when development and testing of

the SSO extension started.

3.4 Tools

To achieve a good workflow when working digitally due to the global pandemic we used various

tools to optimize workflow by improving communication, sharing of documents, maintaining a

workboard and keep track of time spent on different tasks.

3.4.1 DIPS’ Internal Tools

Because of strict guidelines regarding access to intellectual property, we had limited access to

DIPS’ internal system. Since Eirik already had a work account through a part-time employment

at DIPS, he was responsible for any task that required access to the internal system.

3.4.1.1 Slack

Slack was used to communicate with the stakeholders at DIPS, as the Trondheim offices were

largely empty during the span of the project.

3.4.2 Microsoft Teams

Microsoft Teams is a free to use communication platform offering workspace chat, file storage,

calendar and video conferencing. We chose Microsoft Teams as our primary tool for document

sharing and as a meeting platform for video chats with our guidance councilor and the client due

to its familiarity and popularity, also securing that any necessary outside interviews would go

smoothly.

20

3.4.3 Discord

As a secondary communication tool we chose Discord. We wanted this as a tool for informal day

to day communication internally.

3.4.4 Microsoft Word

For smaller independent documents we chose to use Microsoft Word for its integration with Mi-

crosoft Teams and the team’s familiarity with the software.

3.4.5 Overleaf

For bigger documents and the main report we chose to use Overleaf, an online LaTex editor with

live collaboration abilities. It is also a tool the team has used previously and are familiar with.

3.4.6 Azure DevOps

Azure DevOps is the tool we used for version control during the development and as a work-board

to keep track of tasks and objectives during the sprints and the overall project progress. We chose

this tool since it’s a tool we are familiar with and its a tool that’s free to use for students at NTNU.

3.4.7 Clockify

For keeping track of how much time each team member spent on different tasks we used a web

site called Clockify, a free time-tracking tool with the possibility to categorize time usage and see

statistics of how much time is spent on each item.

21

Chapter 4: Results

Our employer DIPS ASA wanted us to research and test Apple’s new Extensible Enterprise Single

Sign-on as a Single Sign-On solution for their mobile suite on iOS. They had already decided on

using this solution into their system due to their old way of dealing with this being deprecated, but

had not yet had the opportunity to figure out how it works and how to implement this properly.

This meant we had to research how it works and create a working prototype that demonstrates its

capabilities and usage.

4.1 Research Results

4.1.1 Experience Interview

As stated in 3.2, we wanted to gain some insight into the relevance of our research in the hospital

setting. Our employer was unfortunately quite busy with a product delivery, reducing the resources

they had to give us this insight. Initially, we had not planned to perform any surveys or formal

interviews, as we figured that DIPS would be the sole providers of knowledge in the relevant

field. Due to the fact that DIPS had limited experience with iOS and the EESSO technology, they

reached out to an external System Architecture consultant who had gone through a similar process

of building a prototype using EESSO in a hospital setting. The consultant was kind enough to

grant us a meeting where we could debrief him about his experiences with the project. This was

early in the process, and we figured that this would be very helpful, as we could get a rundown of

how suitable EESSO was for the hospital environment.

As this was an external consultant who wanted to aid us out of goodwill, we wanted to make sure

that we got what we needed from the meeting, instead of having to hassle them with follow-up

questions at a later time. This made us look into qualitative interviews, which is a form of interview

that focuses on gaining insight into the subject’s experience and knowledge. This seemed fitting for

the meeting, so we wanted to plan the interview following the guidelines for qualitative interview.

The minute of the interview can be found in Appendix D - Interview.

22

These were the goals that we wanted to achieve through the interview:

• Understand the subject’s project as a whole

• Understand how an SSO extension is implemented and what the activity flow is like

• Find out how they plan to handle user session switching on work devices

• Discuss the best authentication method for the environment

• If they had any knowledge about extension implementation through Xamarin.Forms.

The following sections describe the main points that we learned from the interview.

4.1.1.1 Overview

The subject of our interview had played a big part in an inquiry into the use of digital tools in a

hectic hospital environment. Their observations led them to discover that health personnel spent

a surprisingly large amount of time authenticating their devices to access these tools. This was of

a big annoyance to the employees. This led the consultants to develop a prototype using EESSO.

They started by testing out the Kerberos Extension, which was very simple to implement with a

few lines of code. Though, the hospital environment in question were using an identity server with

PingFederate, which meant that they had to develop an SSO extension that targeted PingFederate

as the identity provider. DIPS uses a custom configuration of OpenID Connect, so the exact

implementation of the SSO extension was not relevant to our assignment.

4.1.1.2 Authentication Method

The prototype they developed utilized a two-factor authentication using a physical smart card

and a PIN code. Employees can tap their cards against the phone, and are then prompted for a

PIN code. Requiring a PIN code was chosen over username and password, as they have a lot of

drawbacks, both by its impracticality and how insecure personal passwords can be.[13]

4.1.1.3 Single Sign-Out

When discussing the possibilities of Single Sign-Out on shared work devices, the subject told from

experience that this was complicated.

The only solution to automatically log out a user, is to revoke their access tokens at a set time.

Though, applications can prefer varying expiration times for their user’s credentials. Revoking

an access token will result in the entire device losing access, resulting in the user needing to

authenticate again. This is not necessarily a big issue, but it is not an elegant solution. In

23

addition, knowing exactly when a user’s session should expire can be complicated. Lining it up

with a user’s work shift is a possible solution, but there can be discrepancies of exactly when an

employee goes off-duty. If a device changes owner before the access token is revoked, the new user

may use the previous user’s session without knowing.

There can also be applications involved in the SSO environment that should never be completely

logged out, especially in a hospital setting. Consider an application that alerts health personnel

whenever a patient calls for assistance from their room. This assistance could be vital to the

patient. If a user’s session expires, they won’t know that they need to re-authenticate before

bringing up the application on their phone. If a patient happens to call for assistance before they

re-authenticate, the alert may never be pushed to the employee’s phone due to them not being

authenticated.

It is recommended that automatic Single Sign-Out is completely emitted as a solution to user

switching. The subject speculated an alternative solution. When a user authenticates for the first

time, you get an access token that is valid for e.g 24 hours. But when an application becomes idle,

either by being closed or pushed to the background, the employee has to validate through a single

credential, like a PIN code or an access card. If the employee fails to validate, they won’t be able

to access the application. Though, this will have to be implemented directly in the application.

This is because an SSO extension won’t be able to know when an application has entered a state

where it has to be validated again.

The subject also speculated a solution using facial recognition technology. Adopting this as a way of

authenticating the user would allow the user to stay authenticated as long as the user keeps looking

at the device screen. For example, if the user looks away for 10 seconds, they could be logged out

automatically. As soon as they look back at the screen, their face will be recognised again, and

they get authenticated. This solution would be considered very secure, as it authenticates users

on the fly and uses an authentication method that’s hard to break. This is not a solution that

has been tested out in any environment, but would also require implementation directly in the

application.

4.1.1.4 Authenticating using iPhone as a device

Newer versions of iPhone are approved FIDO2 devices. This can in theory provide support for

using the device itself as a form of identity. Further, two-factor authentication can be achieved

simply from an employee tapping their card against the device.

24

4.1.1.5 Using Xamarin to trigger SSO extension

Like DIPS, the subject also mainly used Xamarin for mobile development, and had therefore

performed a test triggering their SSO extension from a Xamarin application. This seemed to work

fine. Xamarin makes sure to have a working implementation of all the native built-in libraries

that are available through Swift. Using the built-in authentication services from Xamarin will

trigger the same background operations that the same services would do in Swift. The subject said

that their Xamarin developer would advise against using Xamarin to develop the actual extension.

This is because the SSO extension would almost exclusively consist of native code, as there are

native abstract classes that needs to be implemented. Using Xamarin for this would cause a lot

of overhead, both in performance and development. They advised to just use Swift for the SSO

extension itself.

4.1.2 Shared Devices

Looking into Shared Devices we can see that there is within Microsoft’s SSO extension for Apple

devices an option for supporting MDM and SSO through the Microsoft Authenticator app in

devices that are in ”Shared Device Mode”, specifically created for frontline workers that rely on

sharing single devices for accessing sensitive information. This entails the user logging in to the

actual device with a unique identifier, and by that enabling them to use that account to access all

the necessary applications. This also gives the safety of knowing that when the user logs out of the

device, cookies are cleared so everything gets logged out properly and you ensure that no traces of

user state are left behind. Properly setting up this sort of Shared Device allows for much greater

control in terms of security, especially when dealing with sensitive data [14].

4.2 SSO Extension Implementation

As there are already two SSO extensions free on the market, we wanted to compare these extensions

to DIPS developing their own extension that they could use for their mobile platform.

4.2.1 General Implementation

4.2.1.1 MDM Enrollment

One of the main requirements for using EESSO is that the host device has to be enrolled in an

Mobile Device Management solution. This is because the SSO extension and its configuration has

to be deployed through Mobile Device Management. DIPS uses Microsoft Intune as an Mobile

Device Management provider, so this was the solution we had to use. Intune has built-in support

25

for EESSO, so configuring a profile containing the required configuration was easy.

When a profile is configured, we had to make sure that our iPhones got enrolled in the right device

group in Intune. On the device, we had to install Microsoft’s Company Portal application, which

functions as a client towards Intune. After logging in with a company account, we could see the

device in Intune and assign it to the device group. Once Intune indicated that enrollment was

successful, we were able to see the applied profile on our iPhones, under:

Settings >General >Profiles & Device Management >Management Profile >More Details >Single

Sign On Extension.

4.2.1.2 Triggering an extension

An SSO extension can be triggered in two ways; either through native Swift networking libraries,

or using the class ASAuthorizationSingleSignOnProvider from the Authentication Services library.

Note that all of these libraries are available in both Swift and Xamarin.

When using a native library, Redirect extensions will automatically intercept the outgoing request

on any configured URL’s, while Credential extensions will handle all HTTP challenges returned

from the configured hosts. When the extension has finished handling the request, it will append

the resulting authorization headers to the request and resume the original procedure. The calling

application will then receive a fully handled response, as the authentication already has been

processed. If no extension is available on the device, the native library method will process as it

usually would.

When using the ASAuthorizationSingleSignOnProvider class, you only have to specify the URL

for the targeted identity provider / server. You can add additional authorization query options to

the request. You then have to create an instance of the ASAuthorizationController class, which

will handle the presentation of the authentication request. The request can then be triggered by

setting the requestedOperation (for example ”Login”) and calling the performRequests() method

on the controller (see figure 4.5 for code example). The calling application can then handle the re-

sponse by implementing the protocol ASAuthorizationControllerDelegate and its callback methods

authorizationController(...). An object implementing the protocol has to be set as the delegate on

the ASAuthorizationController. The controller will also need a view controller implementing the

ASAuthorizationControllerPresentationContextProviding protocol. The drawback for this method

is that the application will be dependant on an SSO extension for authentication.

26

Figure 4.1: The delegate methods that can be implemented to handle operation results

4.2.2 Prototype using Azure Active Directory SSO Extension

4.2.2.1 Client Application

We made a simple prototype application that targeted the Azure AD SSO extension by Microsoft

for authentication. This prototype was implemented in Xamarin, and used MSAL for communicat-

ing with the identity provider. This library is heavily integrated with Azure AD, so authentication

could be implemented through few lines of code (figure 4.2) [15]. When triggering the login, we get

presented with a login screen. If we have logged in earlier, we can see that Microsoft Authenticator

provides an overview of users that are already logging in. Selecting a user lets us log in without

having to re-authenticate (figure 4.3). Unfortunately, we were not able to test this further due to

running out of time.

Figure 4.2: The code blocks we mainly used to trigger the authentication through MSAL

27

Figure 4.3: The Azure AD extension shows all users that are logged in through Microsoft Authen-

ticator

4.2.2.2 MDM Configuration

In Microsoft Intune, we added a new configuration profile, of the type Device Feature. Intune

provided a template called Single Sign-On App Extension. Here, we could set the extension type

to Microsoft Azure AD and add the bundle identifiers for the applications that should use the

extension [15].

4.2.3 Prototype using Apple’s Kerberos Extension

Configuring an application to use the Kerberos Extension was very simple. Just a few lines of

code and a valid MDM Payload containing the extension configuration was enough to successfully

trigger the extension from a host application.

28

Figure 4.4: The different views of the Kerberos prototype, depicting how the extension authentic-

ates the user with only one initial prompt

4.2.3.1 Client Application

When testing the capabilities of Apple’s Kerberos Extension, we created a simple prototype in

Xamarin and Swift. This was an iterative prototype. Once we got the extension triggered in Swift,

we switched over to Xamarin to see how easily the code could be migrated. We ended up with a

simple prototype that would trigger login on application start. This would trigger the extension,

prompting the user to log in with their domain username and password. We used DIPS’ internal

domain for testing. If the user already was authenticated, the extension would not prompt for

login. A label in the middle of the application indicates whether the extension has registered the

user as authenticated or not.

We deployed two identical applications with different bundle identifiers, to ensure that they would

work separately. Logging into the first application authenticates the user, and the extension re-

gisters the user as being logged in. When restarting the application, or opening the other applica-

tion, the extension would be requested to login again. But since the user already is authenticated

through the extension, the login prompt did not trigger, and both applications show that the user

is logged in.

We got some pointers on how to trigger the extension from the WWDC 2019 talk [7]. This

code could easily be translated into C#. Note that the sender object must be a view control-

ler that implements the IASAuthorizationControllerPresentationContextProviding interface. The

DidComplete(...) delegate method would not be called if this object was null.

29

Figure 4.5: An example of how we triggered the extension and handled the response

4.2.3.2 MDM Configuration

As with the Azure AD SSO extension, Intune had official support for Kerberos Extensions. Intune

provided the extension type Kerberos which let us easily configure the profile (figure 4.6).

4.2.4 Custom SSO Extension Prototype

DIPS are currently using OpenID Connect to authenticate through their mobile platform, using

their proprietary SSO solution. Therefore, we wanted to research how DIPS could implement their

own SSO extension, as there is no available extension for OpenID Connect at this time.

4.2.4.1 Extension type

We chose to develop a Redirect Extension, as Apple has stated that Redirect is suited for modern

authentication flows like OpenID Connect or OAuth 2.0 [7].

30

Figure 4.6: The MDM payload for the Kerberos Extension

4.2.4.2 Associated Domains

Redirect Extensions requires a certain configuration for Universal Links to function. Since our

SSO extension has to communicate with an authorization server, the operating system wants to

ensure that the extension is actually allowed to communicate with the server. For this to work, we

had to declare the authorization server as an associated domain to the app. We did this by adding

an Associated Domains entitlement to the application, and add the Fully Qualified Domain Name

of the server to the list with the ”authsrv” service type (figure 4.7). We had to enable alternate

mode for the operating system to be able to directly access the server. More about this setting in

[SECTION]

Figure 4.7: The entitlement file with the ”authsrv” associated domain

31

4.2.4.3 Apple App Site Association

Another requirement for Associated Domains is that every associated domain has an apple-app-

site-association file. This is a JSON file that needs to list every application that is approved

to communicate with the server, and the associated service type. This file must be located at

https://<server-name>/.well-known/apple-app-site-assocation.

4.2.4.4 MDM Configuration

When configuring a custom SSO extension, we have to specify a type of either Redirect or Cre-

dential. We selected Redirect, and added the bundle identifier for the extension, along with the

URL’s which the extension should intercept (figure 4.8).

Figure 4.8: The profile configuration we set up in Intune

4.2.4.5 Creating an SSO extension

App extensions in Swift must be created by adding a target to an existing application. This

application may only serve as a container for the extension, but may also be extended with other

functionality such as password reset. When creating a target, the developer has to select a template.

SSO extensions are created using the Authentication Services template. This gives us a template

that provides some empty methods that needs to be implemented. These methods will be called

whenever the extension is triggered, and must return by calling pre-defined methods for a successful

or failed authorization (figure 4.9).

32

Figure 4.9: The template for creating a new SSO extension

4.2.4.6 Deploying and loading a custom SSO extension

When we wanted to deploy our SSO extension, we had to upload the extension’s host application

to Microsoft Intune. We chose to upload a ’line-of-business’ application, which let us upload the

IPA file directly. No further configuration for the application was needed.

When the application is started on the test device, we can see from the device logs that a back-

ground process called AppSSODaemon gets triggered. The daemon logs whether the extension

was loaded successfully or not. We used the daemon logs to deduce how the extension is loaded,

as there is no proper documentation of this process. This deduction is visualised in figure 4.10.

4.2.4.7 Prototype Stages

4.2.4.7.1 Early prototyping

Before we actually started work on the prototypes for the final solution, we wanted to get some

experience in actually programming in Swift. Therefore, we did a bit of individual programming

where we tried to implement a simple iOS application that could be deployed in a simulator or

on an actual device. This way, we gained some experience with the Swift programming language,

33

Figure 4.10: Sequence diagram of how we picture the process of an extension being loaded. ’auth-

srv’ is the Associated Domain with ’authsrv’ type.

and how we could use XCode to actually develop a simple application. Apple has a very unique

ecosystem, so this was a necessary step in understanding how we would go about starting the

actual prototypes. [FIGURE]

4.2.4.7.2 First Prototype

We decided that our first actual prototype should allow us to see how we could interact with DIPS’

identity server. As this step was crucial in actual getting a working authorization flow, we figured

that this would be a natural first step. The prototype ended up being a simple iOS application

that allowed the user to log in to DIPS’ identity server, running on OpenID Connect. We used

the Swift library AppAuth for simplicity’s sake, as it’s always wise to use existing libraries when

available. When the user had logged in, restricted data would be fetched from the resource server

and logged to the console, proving that the authorization process has succeeded. Using AppAuth

proved to be a good solution for implementing OpenID Connect. The library streamlines a lot

of the steps that are involved in authorizing through OIDC, and made it easy to work with the

resulting authorization keys.

4.2.4.7.3 Second Prototype

For our second prototype, we wanted to explore exactly how an App Extension works, and how

EESSO can be utilized to trigger an SSO extension. This proved to be one of the most challenging

steps in prototyping, as we had to properly configure an EESSO MDM profile, set up Associated

34

Domains and implement a very limited set of example code. When things did not work as expected,

debugging what went wrong was very challenging, as EESSO is dependent on work from background

processes in the operating system. Apple provided a set of debugging tools specifically for EESSO,

but the output that we logged was poorly documented and not particularly helpful. More details

on these issues is provided in chapter 5.

4.2.4.7.4 Third Prototype

For the third prototype, we wanted to implement AppAuth into an actual extension, to get closer

to a final result. Since there was a lot of waiting involved in getting help from Apple technical

support, we wanted to use this time to make some progress on the actual functionality of the

extension. We started by migrating our AppAuth implementation from Prototype 1 into a new

extension, so that the extension actually could handle authorization requests. This shift of focus

helped us to easier understand the connection that had to be made to trigger an SSO extension.

We found a solution to the problems introduced in Prototype 2, and were finally able to approve

the authorization server as an associated domain.

4.2.4.8 Final Result

Unfortunately, we were barely able to develop functional prototype for a custom Redirect Exten-

sion. This was due to a large number of issues that was never resolved, despite continuous dialogue

with Apple technical support. We touch more upon these issues in chapter 5.

4.3 Engineering Process Results

4.3.1 Scrum

The project started out with a scrum process adapted for smaller teams but it soon became

apparent that due to the nature of the work and our unfamiliarity with the language and process

that we needed to go over to more of an iterative method where we worked our way step by

step through learning the language, learning to implement extensions with it and work our way

through prototypes for an authentication system. This mode of work was not very suited for a

Scrum process since we had to finish each prototype, see how it worked, then start the process all

over again.

35

4.3.2 Working environment

Due to the ongoing pandemic we had a lot of challenges when it came to our work process, since

we had to adapt to all our collaboration digitally which lead to some challenges compared to how

we were used to working together on projects. We had little physical encounters with employees

at DIPS, which made it more difficult to be integrated into the systems and infrastructure of the

company. This also created an unfortunate gap in how the team members could relate to the

company.

The mobile development team at DIPS was unfortunately very busy with a product delivery. This

made it harder to maintain a continuous dialogue between the team members and the product

owner.

4.3.3 Communication with supervisor

Communication with our supervisor was scheduled as a weekly meeting on Teams to update him

on our progress and get feedback on the progress of the report and any questions we might have

at the time.

4.4 Administrative Results

4.4.1 Progress plan

At the beginning of the project we set up a simple Gantt-diagram of how we expected our progress

to roughly pan out.

36

Figure 4.11: Progress plan at the beginning of the project

As you can see in this figure, we expected to run sprints were we spent the first two sprints re-

searching and planning, then the remaining sprints developing and documenting our work as we

went along, but this approach only lasted for a few weeks until we realized that we needed much

more knowledge and create several prototypes to test out in order to get where we wanted.

So the end results was more along the lines of this figure:

37

Figure 4.12: Progress plan at the end of the project

As is visible here the approach changed into a more iterative process without sprints, with a lot

more research and a continued development cycle where we created a new prototype and tested it

regularly. This also lead to less documentation along the way since we were spending so much of

our time elsewhere. Due to this need for extra research there was what we felt was a lot of delays

and unnecessary lost time waiting for responses from Apple when we ran into bugs and difficulties

with our implementation of the extension. We also struggled to progress since we chose a difficult

path when we elected to start by trying to create our own extension from the start instead of

working our way up by testing the already existing solutions first to learn from how they worked.

4.4.2 Summary of hours

Throughout the project we logged hours spent on different categories, expecting to reach in the

area of 500 hours spent each. With the most time spent on the report, and research and develop-

ment as the next two major factors.

38

Figure 4.13: Total hours by category

As you can see from this chart we ended up with a little over 800 hours total, not quite as much

as we wanted, but we felt we put what time we had available into the project.

39

Chapter 5: Discussion

5.1 Product

5.1.1 Research Process

The knowledge we gathered and the prototypes we produced were a result of continuous research

and experimenting. From the very start of the project, we experimented extensively with Xamarin,

Swift and EESSO implementations specifically.

Since none of us had any experience with mobile development in neither Xamarin or Swift, we

wanted to get familiar with the workflow, architecture and relevant programming languages. En

employee at DIPS gave us an informal introductory course to mobile development in Xamarin

to get acquainted with how DIPS develop their applications, and also how we could get started

making some simple prototypes. This was valuable in getting insight in how DIPS ultimately

should implement SSO extensions into their mobile suite.

After we started looking into the technical details of EESSO, we had trouble finding any docu-

mentation on implementing it in an application made with Xamarin. We realized that it would

be wise to attempt an implementation in Swift before we potentially added the extra complexity

of trying to get it to work in Xamarin. Therefore, we spent some time learning to create simple

applications in Swift, so that we could understand the language and how we could produce simple

applications for iOS.

5.1.2 Custom SSO Extension

When we felt comfortable using Swift, we wanted to get working on the prototype for the custom

SSO extension. We started by producing a simple prototype application for communicating with

the DIPS identity server. This process made us familiar with how DIPS uses OpenID Connect to

authenticate and authorize their application users, and how this can be implemented using iOS

libraries like AppAuth.

40

At this point, we started prototyping a custom Redirect Extension using EESSO (as described in

section 4.2.4). This proved to be the most time consuming and troublesome part of the process,

as Universal Links had a lot of strict requirements. We spent a lot more time on these issues than

we had anticipated in our original time schedule. See also section 5.3.2. We filed a bug report to

Apple, which can be seen under Appendix C - Apple Bug Report.

5.1.2.1 Redirecting calls for Apple App Site Association file

We initially set up the AASA file to be available at a virtual directory on the server, meaning

that this URL would redirect to the actual location of the file instead. This configuration was the

easiest solution and was expected to work fine. We eventually discovered that this could cause

complications when trying to download the file, as not all requests would work properly with

redirection. Therefore, we made sure to place the file at the proper location instead of relying on

a redirect.

5.1.2.2 Associated Domain not getting approved

The authorization server that we used for testing was meant for a test environment, and was not

signed with a proper SSL certificate for production use. Universal Links has strict requirements

for such certificates, and does not allow self-signed certificates. Therefore, we had trouble getting

the system to approve the server as an associated domain. We also discovered that newer versions

of iOS used an online Content Delivery Network (CDN) for keeping track of all Apple App Site

Association files [16]. This requirement meant that our server had to be available online for it to

be discovered by the system. We could bypass this by appending ?mode=developer+managed to

the Associated Domain. This setting also allowed the application to bypass the Secure Sockets

Layer (SSL) requirement, as long as the application was signed with a Development Provisioning

Profile. Still, we discovered that the system did not accept the server properly. When discussing

this with Apple Support, we eventually found out that the Universal Links approval process would

not accept .local domains. We fixed this by getting a proper domain name and SSL certificate for

the server.

5.1.2.3 Not AppSSO URL

As described in section 3.1.1.2, Redirect extensions are triggered either by intercepting outgoing

requests towards specific URL’s, or through special SSO-specific operations. When attempting to

use either of these methods to trigger our custom Redirect extension, we got the error message Not

AppSSO URL. This indicates that the AppSSODaemon does not recognize the request URL to be

a URL meant to be handled by SSO extensions. We had made sure to include the right URL’s

in the MDM Payload. When reporting this issue to Apple Support, they had no information on

41

what could cause this error. They urged us to file a bug report describing the issue. This issue has

unfortunately not been resolved at the time of writing this report.

5.1.2.4 Unable to retrieve Apple App Site Association file

While debugging issues with the Not AppSSO URL error, we discovered swcutil, which could be

used to manually validate Associated Domains on MacOS. We tried using the command swcutil dl

-d mobdev2.dips.no to manually download the file from the identity server. This did not succeed,

and we got the error message SWCErrorDomain error 7. When reporting this error to Apple

Support, they replied that the error indicated that the AASA download was interrupted by the

CDN used by Universal Links. As stated in section 5.1.2.2, we had configured our application to

bypass the CDN by using alternate mode. The reason for this is unclear, and we had to include

this in a bug report. This issue has not been resolved at the time of writing this report.

5.1.3 Azure AD SSO Extension

In section 4.2.2, we described how we set up Microsoft’s SSO extension for Azure Active Directory.

In this case, the documentation provided by Microsoft was sufficient to smoothly implement a

prototype that triggers the extension using MSAL, a library which provides authentication with

Azure AD regardless of the presence of the associated extension. The extension is bundled together

with Microsoft Authenticator on iOS. Microsoft Authenticator acts as a password manager that

also holds information of which users are currently logged in. When MSAL is triggered, the

extension will plug into Microsoft Authenticator and presents the user with either a login form, or

the option to select an already authenticated user. Selecting an authenticated user won’t require

the user to provide any more credentials.

In our prototype, the authentication with the extension is working, but more time would be needed

to get the authorization to work. The solution using Microsoft Authentication Library (MSAL)

should be looked at further, as it supports both OpenID Connect and OAuth 2.0, (as long as the

user belongs to Azure AD). The simplicity and flexibility of its implementation may make it a

viable form of authentication for DIPS.

5.1.4 Kerberos Extension

As shown in section 4.2.3, implementing a Kerberos Extension in Xamarin was efficient, required

few code lines, and Intune provided a simple way of configuring the required MDM Payload. Get-

ting the extension to log the user in and out was straightforward, and the workflow shows that

ASAuthorizationSingleSignOnProvider is the best method for triggering any SSO extension and

handling the response. Here we would like to specify that we didn’t test the authorization capab-

42

ilities of the Kerberos Extension properly as the test server we were using would only authorize

tickets granted with OpenID Connect, and Kerberos does not support OpenID Connect at this

time.

5.2 Scientific Results

5.2.1 Apple Technology

Apple Inc., the proprietor of the technology stack, has a rather unique set of practices, and under-

standing the product environment from the perspective of both users and developers proved to be

a challenge.

We quickly realized that there was a lot of research necessary for understanding the platform in

which the solution should be implemented. Although DIPS has been developing on the mobile

platform for some time, they have mainly focused on cross-platform development with Xamarin.

Therefore, there has not been much focus on the Apple platform specifically, and DIPS does not

have much internal expertise or experience with Apple technology.

Apple technology is largely built around high-level programming, where the operating system

provides a large collection of functionality that the application has to plug into. The API’s are

rather limited in favor of platform-specific automation of generic tasks and processes. Further, the

platform introduces a lot of concepts and standards that aren’t particularly applicable to other

leading platforms.

In addition to this, Apple are notorious for not providing sufficient documentation and code ex-

amples [17]. The only official documentation for Extensible Enterprise Single Sign-On was a

recording of a tech talk from WWDC 2020 [7]. This talk goes in-depth into what EESSO has to

offer, but provides few code examples and leaves out key points about its implementation. The

lack of documentation proved to be a large issue in developing a proper prototype for a custom

extension. Investigating error messages and other faults was challenging, as we often were unable

to find any information on the errors. There was no official documentation found for troubleshoot-

ing EESSO, and all of the relevant forum posts we found were left unanswered. We managed to

come into contact with official Apple Technical support, but unfortunately found their answers

to be vague and lacking technical insight of the issues we were experiencing. The communication

with Apple took place via e-mail with representatives from a different time zone. When we sent

questions early in the day we would receive replies in the evening at the earliest, which made

the communication slow and tedious, especially when there were miscommunication that needed

clarification. Dialogue with technical support ended with them urging us to open a bug report, as

they were unfamiliar with the issues we were having. Opening a bug report, we were promised,

43

would let the developers of EESSO take a look at the issues directly.

5.2.2 Research Questions

5.2.2.1 How can Apple Extensions be implemented and used with Xamarin

App Extensions that are developed using Authentication Services, will intercept any network re-

quests that are triggered through the standard networking libraries available in Swift. They can

also be triggered using specific operations.

A mobile application project in Xamarin is structured in such a way that platform-specific code

(usually I/O operations or specific UI components) for iOS and Android are completely separate

and unaware of eachothers existence. The iOS and Android libraries are only dependent on the

platform agnostic core library, while the core library is unaware of the platform libraries (see figure

5.1). If a Xamarin application is to support EESSO, then each platform library needs to implement

its own authentication process, as EESSO can only be triggered through native iOS functions or

classes. This can lead to complex solutions when developing applications, as every application

needs to define two different implementations of authentication.

Figure 5.1: Depiction of the dependency flow between the modules of a Xamarin project

DIPS already has a program library that can be integrated to provide sign-in support. As stated

in Chapter 1, the SSO capabilities of this library are not functional on iOS 13 or above. The

library can still be used in iOS, although SSO will not work, and the user will have to sign in

on every application separately. Therefore, the existing library can be used as a fallback solution

for authentication when an SSO extension is not available. The native iOS class ASAuthoriza-

tionSingleSignOnProvider provides us with the boolean property canPerformAuthorization. This

method can be called to check whether an extension is loaded on the operating system, and whether

44

the specified identity provider is available for authorization. The latter property can be used to

determine whether the iOS-specific SSO extension can be called, or whether the application should

use the default sign-in library, at the expense of losing SSO. Such a choice may also be implemented

directly in the sign-in library. This method decreases the amount of refactoring needed to use an

SSO extension in a Xamarin project.

As noted in 4.2.1.2, triggering an extension using ASAuthorizationSingleSignOnProvider, requires

the authorization controller to have a presentation context, which implements the protocol ASAu-

thorizationControllerPresentationContextProvider, i.e the authentication view controller in any

application needs an iOS-specific implementation that implements this protocol.

5.2.2.2 How can Single Sign-Out be handled on non-personal mobile devices?

As part of the interview with the external consultant we talked about how handling Single Sign-

Out could be done, and considered many approaches, but didn’t come to any concrete solution due

to the different needs of each department since different departments might have different duration

shifts. This might then be handled either in user configurations or in the device configuration

where it considers on login the current time and sets a session expiration time according to which

shift is logging in. A potential issue with this solution is that some apps shouldn’t be logged out

automatically due to the nature of their tasks, so a full single sign-out solution might be impractical

in some situations. Other solutions to consider might be partial single sign-out where a subset of

apps share a sign-out while the most important apps have their own sign-out either manually or on

a timer. Although this could lead to these apps not being properly exited by the users at the end

of their shift. The most practical solution would probably be to tie the entire log-out process to

the device, so when the user logs out of the device it disables the current tokens on all applications

automatically, this way it would be cleaned out and ready for the next user of the device to log

in without any interference or overlap from the previous user. This option is not currently viable

due to the devices only having a shared login and the users only having separate log-ins for the

applications. Single Sign-Out can possibly be implemented later along with an NFC solution for

logging in to the device and the applications, where the employees use their identification badges

as authentication to the device.

5.2.2.3 Are there advantages to developing a proprietary SSO extension, or is it

better to use an existing maintained extension?

There are several advantages to each solution, depending on field of use and compatibility needs.

If you are developing for your own apps, a proprietary extension would be better as it gives you

greater control over all the data and how everything connects together, which allows you to include

more specialised features. If you are developing for use in a field with several application providers

45

you might want to use an existing SSO extension to aim for cross-provider SSO. This can improve

ease of use for the end-user by making it possible to use the same solution as other providers. In

this case, users only need a single authentication to access all the applications they use regardless

of provider. Although you would still be depending on other providers to implement the same

solution, we have seen that existing SSO extensions are designed to be easy to integrate into

existing systems, given that the relevant identity providers are in place.

When looking at the SSO extensions that have been developed so far, it seems that Apple has

intended this technology to mainly be utilized by identity providers. Ideally, each identity provider

has their own SSO extension that all their clients can use for cross-vendor SSO, instead of a large

amount of companies using their own proprietary extensions internally. In reality, there are few

solutions on the market, and waiting for an identity provider to release their own extension can

take an unknown amount of time. We have not been able to find any indications that there are

more SSO extension in development for public consumption.

5.3 Administrative Process

5.3.1 Progress plan evaluation

The progress plan ended up with several discrepancies, some of these very early in the project due

to several reasons.

• We had to spend more time than anticipated on research in the beginning.

• We had to get the equipment needed to work on iOS and MacOS while being contained to a

work from home situation.

• We spent more time than planned trying to get the custom SSO extension to work and

contacting Apple tech support due to a lack of documentation.

These items were the most important points of delay for us on the project. Other issues took more

time then planned but they were minor problems

5.3.2 Development Process

The development process turned out differently than what we would have wanted, since we ran into

challenges working with things we had never used before and trying to implement an extension that

had no previously documented usage and little to no actual documentation from Apple. We had

to do a lot of research right from the beginning and figure out by ourselves how everything worked.

46

This process caused us to start over several times while trying to figure out how to approach the

problem, and how best to create a solution that would fit the criteria of our assignment.

Our initial goal was mainly to create a functioning prototype of a custom SSO extension. As

stated earlier, this was based on the fact that DIPS relied on the OpenID Connect protocol for

authorization, which no existing extension supported. We quickly encountered technical issues that

were relatively small and seemed easy to overcome. But as the communication with Apple was

slow and only yielded little progress, the problem started eating up a lot of time. Unfortunately,

we were so caught up in solving these issues and getting the custom extension to trigger that we

almost forgot about the existing extensions using EESSO. These solutions weren’t directly suitable

for DIPS’ environment, so we were quick to write them off.

5.3.3 Teamwork

The team knew each other well before the project started, and had worked together several times

previously, so we didn’t need to focus on team building at the start of the project. At the start of

the project we created a work contract to agree on details regarding goals and expectations.

47

Chapter 6: Conclusion and further work

6.1 Assignment Conclusion

6.1.1 Research implementation of Extensible Enterprise Single Sign-On

We have researched EESSO extensively. We have documented how EESSO operates, how a de-

veloper can utilize it for authentication in their own applications, and how a developer can create

their own SSO extension.

In addition to this, we have looked at the two SSO extensions that have already been developed,

and what type of environment they require.

6.1.2 SSO Extension Prototypes

We iteratively created and improved three different prototypes. Two of these were applications

that could use pre-existing SSO extensions, while the third was an attempt at a custom SSO

extension using OpenID Connect.

The prototype using the Kerberos extension proved to be easy to implement, and required very

little configuration and code to work properly in designated environments.

The custom SSO extension for OpenID Connect was unfortunately unsuccessful, despite spending

most of the total development time getting it to work. Getting a Redirect Extension to trigger

was the first step, which we never got past due to problems with Universal Links. We were mostly

hindered by the lack of documentation on Apple systems like EESSO and Universal Links, and the

fact that these issues were too technical for Apple Technical Support. We also decided to make the

custom extension the first prototype we made, which resulted in us getting caught up in getting

it to work. We either should have started with prototyping the existing extensions, or moved on

sooner.

48

6.1.3 Bonus Priorities

We were unfortunately unable to complete any of the bonus priorities. These tasks were:

• Research similar solutions [to EESSO] for native apps on Android

• Research how to support 2-factor authentication with username and password, and a keycard

using NFC technology.

6.2 Research Conclusion

6.2.1 Are there advantages to developing a proprietary SSO extension,

or is it better to use an existing maintained extension?

From our work we find that there is no clear answer to this question, but rather it is entirely

dependant on what the usage is, and how much reliance there is on compatibility with apps from

other providers, as well as what kind of authorization services and Active Directory system the

provider uses.

6.2.2 How can Apple Extensions be implemented and used with

Xamarin?

We have seen that SSO extensions can be implemented in Xamarin, as all relevant methods and

classes from Swift are available through the AuthenticationServices package in Xamarin. The code

is easily translatable, and both triggering extensions and handling their responses works fine. DIPS

will have to create different methods for authentication for Android and iOS, and iOS should still

be able to authenticate if an extension for some reason won’t trigger.

6.2.3 How can Single Sign-Out be handled on non-personal mobile

devices?

The most practical solution so far is to have a timer for the tokens expiration to make sure that

devices are automatically logged out after a set time, in case the user forgets to log out themselves

when they are done. Later implementations with NFC can more reasonably implement a solution

where all the apps are logged out when the user logs out of the device at the end of the shift.

Further work in this field should look closer into Shared Device policies on iOS and Android to

find a solution not requiring a shared account on the device with the same pin for everyone due to

security concerns.

49

6.3 Further Work

6.3.1 OpenID Connect Redirect Extension

Our attempt at creating a custom Redirect SSO extension for OpenID Connect was not successful,

as the issues we were facing were unknown to Apple Technical Support, and would require more

time for us to submit a bug report and get any response. The best solution for DIPS is to create

their own SSO extension for OpenID Connect, and potentially distribute it to other application

vendors that may use their identity providers.

The Not AppSSO URL and SWCErrorDomain error 7 errors (see sections ?? and ??) are not yet

resolved, but have been collectively reported in a bug report to Apple. Hopefully, this bug report

will be picked up by the developers of EESSO, eventually resulting in a solution.

Once developers at DIPS has managed to trigger a Redirect extension, development of a functioning

prototype can be resumed. Further investigation into how OpenID Connect is best implemented

through an extension will need to be done, as there are no proper code examples or documentation

showcasing what an SSO extension needs to implement to function properly.

50

References

[1] EU. Discover eIDAS. url: https://digital- strategy.ec.europa.eu/en/policies/discover- eidas

(visited on 27th Apr. 2021).

[2] Microsoft. Definition of Federated Security. 2017. url: https : / / docs .microsoft . com/ en -

us/dotnet/framework/wcf/feature-details/federation.

[3] J. CIPRIANI S. ROSENBLATT. Two-factor authentication: What you need to know (FAQ).

2015. url: https://www.cnet.com/news/two-factor-authentication-what-you-need-to-know-

faq/ (visited on 5th Mar. 2021).

[4] IETF. The OAuth 2.0 Authorization Framework. 2012. url: https://tools . ietf .org/html/

rfc6749 (visited on 5th Mar. 2021).

[5] OpenID. Welcome to OpenID Connect. url: https://openid.net/connect/ (visited on 27th Apr.

2021).

[6] Microsoft. Active Directory Federation Services. url: https://docs.microsoft .com/en- us/

windows-server/identity/active-directory-federation-services (visited on 27th Apr. 2021).

[7] Apple. Introducing Extensible Enterprise SSO. 2019. url: https : //developer . apple . com/

videos/play/tech-talks/301/.

[8] MacSysAdmin. Single Sign-On Extensions. 2019. url: http://docs.macsysadmin.se/2019/

video/Day2Session2.mp4 (visited on 11th May 2021).

[9] Apple. Extensible Single Sign-On MDM payload settings for Apple devices. 2020. url: https:

//support.apple.com/guide/mdm/extensible-single-sign-on-payload-settings-mdmfd9cdf845/

web (visited on 5th May 2021).

[10] Apple. Intro to Kerberos Single sign-on with Apple devices. 2020. url: https://support.apple.

com/guide/deployment-reference-macos/intro-to-kerberos-single-sign-on-apdf5b35aad2/web

(visited on 5th Mar. 2021).

[11] Apple. Support Universal links. 2018. url: https ://developer . apple . com/ library/archive/

documentation/General/Conceptual/AppSearch/UniversalLinks.html (visited on 7th May 2021).

[12] P. BHANDARI. An introduction to qualitative research. 2020. url: https://www.scribbr.com/

methodology/qualitative-research/ (visited on 3rd May 2021).

51

https://digital-strategy.ec.europa.eu/en/policies/discover-eidas
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/federation
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/federation
https://www.cnet.com/news/two-factor-authentication-what-you-need-to-know-faq/
https://www.cnet.com/news/two-factor-authentication-what-you-need-to-know-faq/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://openid.net/connect/
https://docs.microsoft.com/en-us/windows-server/identity/active-directory-federation-services
https://docs.microsoft.com/en-us/windows-server/identity/active-directory-federation-services
https://developer.apple.com/videos/play/tech-talks/301/
https://developer.apple.com/videos/play/tech-talks/301/
http://docs.macsysadmin.se/2019/video/Day2Session2.mp4
http://docs.macsysadmin.se/2019/video/Day2Session2.mp4
https://support.apple.com/guide/mdm/extensible-single-sign-on-payload-settings-mdmfd9cdf845/web
https://support.apple.com/guide/mdm/extensible-single-sign-on-payload-settings-mdmfd9cdf845/web
https://support.apple.com/guide/mdm/extensible-single-sign-on-payload-settings-mdmfd9cdf845/web
https://support.apple.com/guide/deployment-reference-macos/intro-to-kerberos-single-sign-on-apdf5b35aad2/web
https://support.apple.com/guide/deployment-reference-macos/intro-to-kerberos-single-sign-on-apdf5b35aad2/web
https://developer.apple.com/library/archive/documentation/General/Conceptual/AppSearch/UniversalLinks.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/AppSearch/UniversalLinks.html
https://www.scribbr.com/methodology/qualitative-research/
https://www.scribbr.com/methodology/qualitative-research/

[13] R. RAFAELI. Passwords Are Scarily Insecure. Here Are a Few Safer Alternatives. url:

https://www.entrepreneur.com/article/309054 (visited on 4th May 2021).

[14] Microsoft. Shared Device mode for iOS Devices. 2020. url: https://docs.microsoft.com/en-

us/azure/active-directory/develop/msal-ios-shared-devices (visited on 18th May 2021).

[15] Microsoft. Microsoft Enterprise SSO plug-in for Apple devices. 2020. url: https ://docs .

microsoft.com/en-us/azure/active-directory/develop/apple-sso-plugin (visited on 12th May

2021).

[16] Apple. Associated Domains Entitlement. url: https://developer.apple.com/documentation/

bundleresources/entitlements/com apple developer associated-domains (visited on 27th Apr.

2021).

[17] K. KRYCHO. Apple, Your Documentation Is ...Missing. 2019. url: https://v4.chriskrycho.

com/2019/apple-your-developer-documentation-is-garbage.html (visited on 4th May 2021).

52

https://www.entrepreneur.com/article/309054
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-ios-shared-devices
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-ios-shared-devices
https://docs.microsoft.com/en-us/azure/active-directory/develop/apple-sso-plugin
https://docs.microsoft.com/en-us/azure/active-directory/develop/apple-sso-plugin
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_associated-domains
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_associated-domains
https://v4.chriskrycho.com/2019/apple-your-developer-documentation-is-garbage.html
https://v4.chriskrycho.com/2019/apple-your-developer-documentation-is-garbage.html

Appendix

Appendix A - Assignment Text

53

Arbeidstittel: SSO til mobile apper fra DIPS

Hensikten med oppgaven:
DIPS ønsker en SSO løsning til våre native mobile apper for klinikere. Extensible Enterprise SSO som kom i iOS13 gjør
det mulig å implementere dette for våre apper, slik at brukere trenger bare å logge på 1 gang selv om de hopper
mellom apper fra flere leverandører.

Kort beskrivelse av oppgaveforslag:
Vi ønsker en SSO løsning for våre native kliniker apper i DIPS.
Prioritet 1:
- Undersøke hvordan dette implementeres og konfigureres ved hjelp av iOS SSO Enterprise Extensions for apper på
iOS sammen med MDM.
- Undersøke hvordan vi kan støtte 2-faktor autentisering med brukernavn+passord OG nøkkelkort vha NFC.
- Lag en prototype

Prioritet 2 (bonus):
- Undersøke lignende løsning for native apper på Android

Oppgaven passer for (kryss av de(t) som
passer og skriv evt. en kommentar til
oss):

- Bacheloroppgave

Skal oppgaven utføres av bestemte
studenter? (der avtalt) Fyll i så fall inn
studentenes navn

Eirik Hemstad og Torstein Holmberget Sundfær

Kan oppgavestiller stille arbeidsplass med
nødvendig utstyr og programvare:

ja

Oppgaven passer best for, antall
studenter:

- 1
- 2

Opplysninger om oppgavestiller

Er du fra bedrift/virksomhet eller er du
student med en egendefinert/selvlaget
oppgave?

- Bedrift/virksomhet

Navn på bedrift/organisasjon/student: DIPS AS

Addresse Beddingen 10

Postnummer 7014

Poststed Trondheim

Navn på kontaktperson/veileder: DIPS ASA

Telefon: 45477035

Epost: rri@dips.no

Utfyllende kommentarer til hva oppgaven gjelder:
Oppgaven har blitt diskutert direkte med student. Derfor kommer den litt senere enn vanlig frist for innsendte
oppgaver fra bedrift.

Appendix B - Vision Document

55

119

119-TDAT3001
Implementation of Apple Extensible Enterprise SSO

Vision Document

Version 1.0
Eirik Hemstad & Torstein Holmberget

Revisions
Date Version Description Authored by

23/02/2021 0.1 Created document Torstein Holmberget

25/02/2021 1.0 Preliminary version Eirik Hemstad, Torstein

Holmberget

Table of Contents

1. Introduction 4

1.1 Abbreviations 4
1.2 Glossary 4
1.3 References 4

2. Summary of problem and product 4

2.1 Problem Summary 4
2.2 Product Summary 4

3. Overview of stakeholders and users 5

3.1 Summary Stakeholders 5
3.2 User Summary 5
3.3 User Environment 5
3.4 Summary of user’s needs 6
3.5 Alternatives to our product 6

4. Product Summary 7

4.1 The product’s role in the user environment 7
4.2 Conditions and dependencies 7

5. Product features 7

1. Introduction

The increasing use of smartphone applications by personnel at hospitals demands a carefully crafted blend

of usability and good security. The solution to this is Single Sign-On, which lets a user stay authenticated to

access a suite of applications, through one single login. This way, developers can enforce a strict and

thorough authentication procedure without sacrificing much of usability.

This document is written with the intention of presenting a new solution for Single-Sign-On, to be used by

DIPS ASA’s mobile applications on iOS. The solution is to be implemented through Apple’s Extensible

Enterprise SSO, which is a new feature introduced in iOS version 13 [1]. The solution will be implemented

through an iOS extension, which can be used with any native iOS app. The main purpose of the solution is

to replace DIPS’ existing, now deprecated by Apple, solution for SSO.

1.1 Abbreviations

ADFS – Active Directory Federation Services

EESSO – Apple’s Extensible Enterprise SSO

SSO – Single Sign-On

1.2 Glossary

Xamarin – Cross-Platform mobile development platform by Microsoft

iOS Extension – A library that extends abstract functionality defined in native applications

1.3 References

2. Summary of problem and product

2.1 Problem Summary

Problem with That the current system does not function properly since

Apple has removed support for the previous solution in iOS

version 13

impacts DIPS and their customers.

As a result of this An SSO solution cannot be implemented without

complications.

A successful solution will Give DIPS mobile applications better compatibility with other

applications.

2.2 Product Summary

For DIPS

which Need a system that can accommodate Single Sign-On in DIPS

native mobile applications for simplicity and better security.

Product named Is a functional prototype in the form of an iOS extension

that Can guide developers at DIPS on how to use EESSO as an SSO

solution, and in best case provide a library that can be integrated

in their applications

Which unlike DIPS’ in-house SSO solution

Our product has A stronger technological foothold, along with compatibility with

other applications targeting the same extension

3. Overview of stakeholders and users

3.1 Summary Stakeholders

Name Description Role during development

Tore Mørkved Product owner, mobile team

in DIPS ASA

Giver of assignment and formal contact

person at DIPS

DIPS ASA The company in need of the

solution.

Source of domain-specific information that’s

vital to the implementation of the solution

Eirik & Torstein Actors of the assignment Develops and researches what’s necessary to

complete the solution

NTNU The university Guides the students through the process, and

gives a final evaluation of the solution

3.2 User Summary

Name Description Role during development Represented by

DIPS Developers and

maintainers of the

applications meant

to use the solution

Technical insight and documentation

of the existing mobile applications

and SSO solution, along with

providing feedback of the usability of

the prototype

Tore Mørkved

Nurses &

Doctors

The users of the

applications that

targets the SSO

extension

3.3 User Environment

The system consists of several mobile applications from DIPS that are in use at hospitals and clinics.

Today’s user environment is iOS and Android devices in use by health personnel to access patient journals

and test results as well as making notes on patients quickly without having to access a computer terminal.

This solution is for iOS, as there is currently a working solution for Android today. Our SSO-solution

should be able to provide an opportunity to log on to all the systems the user needs with a single login and

keep these logged in for a given timeframe according to client policy.

For units that are in the sole possession of one user this can be solved by biometric login options on the

device so that only the owner of the device can access the device and the patient records on it.

Units that are shared between users need another solution, like connecting it to the user logging on to the

device at the start of their shift and logging out before handoff to ensure data safety.

Each hospital setting has its own internal network, with its own set of authentication / authorization servers

and policies enforced by these. The solution must use this existing infrastructure to communicate with the

authentication services on the premises, and properly communicate authorization data to the application.

3.4 Summary of user’s needs

Needs Priority Affects Today’s solution Proposed solution

Implementation of

Apple Enterprise

SSO Extension

High DIPS None Make a prototype

demonstrating the

implementation of

Extensible Enterprise SSO

Keep authenticated

session between

applications

High DIPS No longer works on

iOS

Prototype multiple apps

that implement the same

SSO Extension

Login page bundled

with library

High DIPS Unknown Login page is integrated

into library

User is logged out

at the end of their

shift

High DIPS Unknown Find a way to ensure that

users are logged out of

their session when no

longer using their device

Integration with

Active Directory

Federation Services

Medium Nurses &

Doctors

Yes EESSO supports

integration with ADFS

Ease of use and

portability in using

the extension on

existing apps

Medium DIPS Using a library that’s

developed in-house

New library that

implements EESSO

2-factor

authentication

using smart cards

Low Nurses &

Doctors

No such solution User must authenticate

with username/password,

along with their key card

Compatibility with

Xamarin

Low DIPS Developed in C# and

compatible with

Xamarin

Link to Swift library that

implements the extension

3.5 Alternatives to our product

As of today, there are no official or better alternatives for implementing an SSO solution on iOS. EESSO is

an official feature developed and maintained by Apple, and is therefore the most solid solution. The only

alternative is DIPS’ existing in-house solution, which is no longer functional after iOS version 13.

4. Product Summary

4.1 The product’s role in the user environment

This figure shows how the SSO solution is meant to be integrated into the existing environment, that of the user,

application and developer.

4.2 Conditions and dependencies

The most important dependency for this solution to work is Apples continued support of the EESSO

implementation in future iOS updates. The users’ network configuration must also be compatible with the

authentication methods included in EESSO.

Conditions for the product is that the solution being implemented meets the rigorous safety demands of

dealing with confidential patient records and test data, any major changes to either the backbone of the

product or the safety demands of the clients will alter the products viability.

5. Product features

• Implements EESSO

• Authentication with username and password

• Keep user authenticated on all integrated apps

• 2-factor authorization with key card

• Works with Active Directory Federation Services

Appendix C - Apple Bug Report

63

Appendix D - Interview

65

Spørsmål til erfaringsintervju
TDAT3001-119

Parter
Intervjueholdere v/ studenter, NTNU
Eirik Hemstad

Torstein Holmberget

Intervjuobjekt v/ Sykehuspartner
Kjell Arild Sandvik, systemarkitekt

Alle parter samtykket til opptak av intervju

Spørsmålsliste
• Kan du fortelle kort om prosjektet som har blitt utført?

o Prototype prosjekt kjørt både med Kerberos versjon og med egendesignet versjon mot

PingFederate

• Hva slags løsning for MDM har inngått i utviklingen av prototypen?

o MDM inngår gjerne under Enterprise Mobility Management (EMM) eller Unified

Endpoint Management (UEM). MDM inngår ofte som komponent i disse løsningene

o Det er forutsett at apper som er en del av SSO-miljøet rulles ut med en MDM-løsning og

at de har en spesifikk payload

o De mest utbredte løsningene er VMWarew (Workspace One), IBM (MaaS360), Microsoft

(Intune) og Citrix (Unified Endpoint Manager)

• Hvordan bruker dere PingFederate i deres løsning?

o Egen versjon med PingFederate, må lage egen hostapp, starter app eller nettside, dette

kommuniserer til host appen at du trenger autentisering, som henter denne fra

pingfederate som sender dette via BuyPass

o BuyPass brukes for at man må ha en godkjent provider for dette, ikke noe man kan gjøre

selv. Dette kontrollerer om token kan sendes ut og gir den til hostappen. Neste app får

da bare direkte fra hostappen i en snarvei

o

• Hva slags MDM-konfigurasjon blir spesielt brukt i produksjon?

o Ikke interessant

• Hvilken type SSO extension utvikler dere mot PingFederate?

o Redirect Extension

• Hvilken teknologi implementeres deres SSO-løsning på?

o Native iOS applikasjoner programmert med Swift

• Hva er fordeler og ulemper med egenutviklet løsning fremfor Kerberos?

o Kerberos kan brukes rett ut av boksen hvis man bruker det

o Kerberos veldig enkelt å få til å fungere, par linjer kode for å implementere så bare

fungerer det.

o I dette tilfellet behøvdes støtte mot PingFederate, som det ikke finnes noen utbredt

løsning for. Derfor er behovet for å lage en egen løsning.

• Hvilke autentiseringsmetoder blir benyttet i deres prototype?

o Tar utgangspunkt i eIDAS, regelverk for innloggingssystemer innført i norsk lov.

o Bruker OpenID COnnect, som er bedre enn OAuth2 pga. flere felter og muligheter, Har

AD autentisering i back-end, slik at den kan hente en AD-autentisering via PingFederate.

o Større problem med Single-Sign-Out, må finne en løsning der en app kan logge ut uten å

automatisk få ny token neste gang den åpnes uten å må logge ut alle apper ved å drepe

token.

Får problemer med apper som absolutt ikke skal logges ut i løpet av et skift, som for

eksempel apper som varsler om pasienttilstand

evt. Løses med egen innlogging på disse appene slik at de ikke blir påvirket av de andre

appene.

o

• Har dere noen konkret plan for implementering av 2FA-autentisering med adgangskort?

o 2FA med NFC kort og pin-kode. FIDO 2

o IOS 14.2+ for å få med implementeringen av FIDO2, med protokoll ctap2

o NFC ved adgangskortet blir lest av operativsystemet som videresender informasjonen til

applikasjonen, dette blir gjort ved at appen sender en forespørsel til operativsystemet

om å hente data fra NFC kortet, som deretter kan låses opp med PIN koden

Må undersøke hvordan nøyaktig appen gjør denne forespørselen, om dette er en nativ

metode i xcode eller noe annet.

o Utfordringer med delte devicer, må ha eget system for dette med egen systemkonto

o Personlige devicer er noe annet, siden Apple sine devicer er godkjent som FIDO2 device

av FIDO alliance, noe som gjør at man kan lagre sikkerhetsnøkler på iphonen, så de som

bruker personlig device slipper kort som faktor 2, slik at faktor 1 blir telefonen, og faktor

2 er biometrisk innlogging.

o Kombinert kort med smartkortfunksjon for å bruke smartkort id’n til å verifisere

brukeren ved inaktiv app.

o Yubikey som har flere sikkerhetsløsninger som kan brukes for å hindre

• Andre bemerkelser

o Hvilket identitetssystem bruker DIPS i sitt system? Viktig for utviklingen

o DIPS sitt system må støtte federert sikkerhet i backend for å sikre tokens mot felles

system. Så lenge man bruker den standariserte xcode innloggingsmetoden så trenger

ikke appen gjøre noe selv, det blir automatisk tatt hånd om i bakgrunnen.

o Vanskeligere å implementere med Xamarin, må implementere native kode, og skrive

den native koden inn i Xamarin, dette fører til mye overhead. Må ha et mellomledd

mellom appen og en native extension, bruker da bare Xamarin som en proxy mellom.

Godt valg med en større app der innloggingen er en liten del, men når innloggingen er

hovedsaken så blir det lettere å lage og vedlikeholde i ren native kode.

AFDS som er Microsoft sitt alternativ kan brukes som alternativ til PingFederate ved å

bruke Azure AD som autentiseringsmekanisme siden den er et federert system.

o

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Eirik Hemstad
Torstein Holmberget

SSO Solution for mobile apps from
DIPS

Bachelor’s project in Computer Engineering
Supervisor: Ali Alsam

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Introduction and relevance
	Background
	The Problem Domain
	The Assignment
	Research Questions
	Are there advantages to developing a proprietary ssoextension, or is it better to use an existing maintained extension?
	How can Apple Extensions be implemented and used with Xamarin?
	How can Single Sign-Out be handled on non-personal mobile devices?

	Chapter 2: Theory
	Authentication
	Single Sign-On
	eIDAS
	Federated Security
	Biometric Security
	Two Factor Authentication
	Token or Ticket Authentication

	Authorization
	OAuth 2.0
	OpenID Connect
	ADFS - Active Directory Federation Services
	MDM(Mobile Device management)

	Chapter 3: Technology and Methodology
	Technology
	Extensible Enterprise Single Sign-On
	Kerberos
	Microsoft Enterprise SSO plug-in
	Universal Links
	XCode
	Swift
	xamarin
	Intune (Microsoft)

	Research Methodology
	Qualitative Research

	Development Method
	Sprints
	Pair Programming

	Tools
	DIPS' Internal Tools
	Microsoft Teams
	Discord
	Microsoft Word
	Overleaf
	Azure DevOps
	Clockify

	Chapter 4: Results
	Research Results
	Experience Interview
	Shared Devices

	SSO Extension Implementation
	General Implementation
	Prototype using Azure Active Directory SSO Extension
	Prototype using Apple's Kerberos Extension
	Custom SSO Extension Prototype

	Engineering Process Results
	Scrum
	Working environment
	Communication with supervisor

	Administrative Results
	Progress plan
	Summary of hours

	Chapter 5: Discussion
	Product
	Research Process
	Custom SSO Extension
	Azure AD SSO Extension
	Kerberos Extension

	Scientific Results
	Apple Technology
	Research Questions

	Administrative Process
	Progress plan evaluation
	Development Process
	Teamwork

	Chapter 6: Conclusion and further work
	Assignment Conclusion
	Research implementation of Extensible Enterprise Single Sign-On
	SSO Extension Prototypes
	Bonus Priorities

	Research Conclusion
	Are there advantages to developing a proprietary SSO extension, or is it better to use an existing maintained extension?
	How can Apple Extensions be implemented and used with Xamarin?
	How can Single Sign-Out be handled on non-personal mobile devices?

	Further Work
	OpenID Connect Redirect Extension

	References
	Appendix
	Appendix A - Assignment Text
	Appendix B - Vision Document
	Appendix C - Apple Bug Report
	Appendix D - Interview

