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Preface

The following report will discuss research related to federated learning applied to decentralized data. The
purpose of this report is to explore how federated learning can increase data privacy for decentralized
data, and to examine statistical and cryptographic methods for enhancing security in federated learning
environments, while still attempting to preserve the model performance achieved in centralized learning.
Furthermore, the report will describe the methodology behind implementing federated learning for local
simulations, and present the experiments and results obtained with federated learning and the different
methods used for enhancing privacy and security.

The content presented in this report is highly theoretical, especially the description of federated learning
and the description of the different statistical and cryptographic methods for enhancing security in feder-
ated learning. The authors of this report have taken extra courses in artificial intelligence, statistical learn-
ing and pure mathematics which are not offered by the Applied Information Technology Department at
NTNU. These courses provided the authors with the knowledge required to give a thorough introduction
to concepts such as the use of group theory in homomorphic encryption with federated learning. Neverthe-
less, the only prerequisites for understanding this report are:

e Knowledge about machine learning concepts covered by the course TDAT3025, Applied Machine
Learning with Project, at NTNU.

e Knowledge about statistics and probability theory covered by the course TDAT2001, Natural sci-
ences and Statistics, at NTNU.

e Knowledge about cryptography concepts covered by the course TDAT2002, Mathematics 2, at NTNU.

Dilawar Mahmood, one of the authors of this report, currently works for a company named Infiniwell. In-
finiwell provides artificial intelligence powered diagnostics tools, technologies and processes to healthcare
providers. The solutions that Infiniwell utilizes today are largely based around centralized machine learn-
ing which is not ideal considering the privacy issues related to the approach. In order to explore a more
secure alternative to centralized learning, the authors decided to collaborate with Infiniwell in exploring
federated learning applied to privacy-sensitive medical data.

Sincere gratitude to those who made this project possible:
e Ole Christian Eidheim, Associate Professor at NTNU, as the authors’ academic adviser.

e Odd Sandbekkhaug, CEO at Infiniwell, for providing the authors with an office and technical re-
sources to complete the project.

The authors of this report:

Fecaille Kopperuck Dolagsr Mabrmd

Pernille Kopperud Dilawar Mahmood




Summary

In today’s society, technology is constantly evolving, and as a result the amount of data being collected
and stored is increasing massively. In recent years, many companies have collected large amounts of data
from various data sources such as hospitals and other health institutions. Today, many companies use ma-
chine learning in order to retain valuable information from the data they have collected due to its high-
availability and large quantity. The process of collecting, storing and using machine learning on this data,
is known as centralized learning. The challenge with this approach concerns the collection and storage of
the data. The data collection process is governed by strict rules such as GDPR, and the companies that
store data take on a great responsibility in terms of preserving the privacy of the data. When privacy-
sensitive data leaves its data source, it can potentially be intercepted by an adversary which threatens the
data privacy. Furthermore, the data collected has to be stored in a database. This requires the responsible
companies to maintain a certain level of security in the database in order to prevent any attacks towards
the privacy of the data being stored.

This report considers a more privacy-preserving approach to remedy the privacy concerns related to cen-
tralized learning. This approach is known as federated learning. Federated learning is a relatively new
approach which aims to preserve the privacy of the data-owners, which are referred to as clients in fed-
erated learning. Unlike centralized learning where the model is trained at the server, federated learning
distributes a global model to all participating clients. The distributed models are trained locally at the
clients. Once the clients have trained their individual models, the updated models are communicated back
to the central server where they are aggregated. The main privacy advantage to this approach is that the
raw data never has to leave the clients, making the data less vulnerable to potential attacks. Moreover,
no data is stored by a third party, thus alleviating the responsibility of storing privacy-sensitive data in a
database.

While federated learning appears to be the better approach for training models on privacy-sensitive de-
centralized data, the approach is not completely secure. Even though no data is being communicated or
stored, the model is still being shared between the clients and the server which causes new privacy-related
challenges. Therefore, this report explores how statistical and cryptographic methods can further enhance
security in federated learning environments. In addition, this report observes how combining such methods
with federated learning affects the model performance since model performance is of high priority when
performing machine learning. Finally, this report studies the trade-off between model-performance and
achieving a secure federated learning environment. The report also describes an implementation of feder-
ated learning applied to sensitive medical data.



Contents

List of Figures

List of Tables

1 Introduction

1.1 Background . . . . . . . e e e

1.2 The Research Questions . . . . . . . . . . .

1.3 Structure . . . . . . L e

1.4 ACTONYINS . . . . o o s e
Related Work

2.1 Distributed Deep Learning . . . . . . . . . . .. Lo e

2.1.1 Concurrent Training . . . . . . . . .. . L

2.1.1.1 Model Parallelism . . . . .. ... ..

2.1.1.2 Layer Pipelining . . . . . . . . . . . e

2.1.1.3 Data Parallelism . . . . . .. ...

2.1.1.4 Hybrid Parallelism . . . . . . .. ... . oo

2.1.2 Comsistency . . . . . . . e e e

2.1.2.1 Synchronous updates . . . . . . . . ...

2.1.2.2 Asynchronous updates . . . . . . . . . .. ...

2.1.2.3 Decentralized updates . . . . . . . ... Lo

2.2 Federated Learning . . . . . . . . . . . e e

2.2.1 Aggregation Methods . . . . . . . ... L

2.2.1.1 FedSGD . . . . . . .

2.2.1.2  Federated Averaging . . . . . . . . .. ...

2.2.1.3 Secure Aggregation . . . . . .. ...

2.2.2  Communication Efficiency in Federated Learning . . . . . . . ... ... ... ... ..

2.3 Attacks on Federated Learning . . . . . . . . . . . . L e

2.3.1 Data and model poisoning attacks . . . . ... ..o oL oo

2.3.2 Inference attacks . . . . . . . . L

2.3.2.1 Generative Adversarial Networks Attack . . . . . .. ... .. ... ... ...

2.4 Robust Federated Aggregation . . . . . . . . . . .

2.4.1 Secure Average Oracle . . . . . . . . . . e

2.4.2 Corruption Model . . . . . . . ...

2.4.3 Robust Aggregation using the Geometric Median . . . . . . . ... ... ... ... ..

2.4.3.1 Theoretical Assumptions . . . . . . . . ...

2.5 Memorization . . . . . .. e e e

2.5.1 Eidetic Memorization . . . . . . . . .. L e

2.5.2 Memorization in Federated Learning . . . . . . . .. .. ... 0oL

2.6 Differential Privacy . . . . . . . . . . e

2.6.1 Definition of Differential Privacy . . . . . . . . . .. .. ... .

2.6.1.1 Relaxed Definition of Differential Privacy . . . . . ... ... ... ... ...

2.6.1.2 Moments Accountant . . . . . .. ..o o

2.6.2 Federated Learning with Differential Privacy . . . . .. .. ... ... ... ....

2.7 Homomorphic Encryption . . . . . . . . . ..

2.7.1 Binary operators, Groups, and Rings . . . . . . . .. ... L oo,

2.7.1.1 Binary operators . . . . . . . ... oL e

2.7.1.2  GIOUPS . . . v e

2.7.1.3 Rings . . . . oL

2.7.1.4 Homomorphisms and Homomorphic Encryption . . . .. ... .. ... ...

2.7.2 A formal definition of Homomorphic Encryption . . . . ... .. .. ... ... ....

10
10
10
11
12



2.7.2.1 Paillier Cryptosystem . . . . . . . . . . . . . . 42

2.7.3 Homomorphic Encryption in Federated Learning . . . . . .. .. .. ... ... ... .. 42

3 Method 45
3.1 Process . . .o e 45
3.1.1 Research. . . . . . . . e 45

3.1.2 Data Collection . . . . . . . . . . e 45
3.1.3 Data Analysis . . . . . . . .. 45

3.2 Execution . . . . . . . e 48
3.2.1 Experiment Process . . . . . . . .. e 48
3.2.2  Experimentation Pipeline . . . . . . ... .o o 49
3.2.3 Data Preprocessing . . . . . . . . ... L 50
3.2.4  Overview of Machine Learning Models . . . . . . ... ... ... ... ... ..... 52
3.2.4.1 Softmax Regression . . . . . . . . . ... 52

3.2.4.2 Artificial Neural Network . . . . . . . .. .. ... L o 53

3.2.4.3 1D Convolutional Neural Network Model . . . . . ... ... .. ... .... 53

3.2.5 Implementation of Federated Learning . . . . . . . . . ... ... .. ... ... 55
3.2.6 Hyperparameters . . . . . . . . . ... e e e e 55
3.2.7 Training the Model . . . . . . . . . . L 56
3.2.7.1 Selecting model, optimizers, and hyperparameters . . . ... ... ... ... 56

3.2.7.2 Training loop . . . . . . . . e 56

3.2.8 Analyzing the Experiments . . . . . . . . . . . L e 56
3.2.8.1 Assessing model performance . . . . . .. ... 56

3.2.8.2 Privacy Preservation . . . . . .. .. oo 57

3.3 Choice of Technologies . . . . . . . . . . . . e 57
3.3.1 TensorFlow . . . . . . o . e 57
3.3.1.1 TensorFlow Federated . . . . . . . . . . .. ... ... . . 57

3.3.1.2 TensorBoard . . . .. . ... 57

3.3.1.3 Keras . . . . L e e 58

3.3.2 Jupyter Notebook . . . . . . . .. L 58
3.3.3 Python Paillier . . . . . . . . . L 59
3.3.4 CUDA-enabled GPU card . . . . . . . . . . . .. . e 59
3.3.5 NumPy . . .o 59
3.3.6 Pandas . . . ... 59
3.3.7 Scikit-learn . . . . ..o L 59
3.3.8 Matplotlib. . . . . ..o 59
3.3.9 Plotly . . . . . e 59

4 Results 60
4.1 OVErVIEW . . . o o e e 60
4.2 Preliminary Experiments . . . . . . . .. L oL 61
4.2.1 Centralized Learning . . . . . . . . . . .. e 61
4.2.1.1 Centralized Learning with ANN . . . ... ... ... ... ...... 61

4.2.1.2 Centralized Learning with CNN . . . . . .. ... ... .. .. ... .. 63

4.2.2 Federated Stochastic Gradient Descent . . . . . . . . . ... ... ... ... ... 66
4.2.2.1 FedSGD with ANN . . . . . ... 67

4.2.2.2 FedSGD with CNN . . . . . . ... 69

4.2.3 Federated Averaging . . . . . . . . ... 71
4.2.3.1 FedAvg with ANN . . . . . .. .. 72

4.2.3.2 FedAvg with CNN . . . . . . . .. 75

4.3 Experiments regarding Privacy Issues in Federated Learning . . . . . . . . . .. ... ... .. 82
4.3.1 Federated Averaging with Static Data Poisoning . . . . . . ... .. ... ... .... 82
4.3.2 Memorization in Federated and Centralized Learning . . . . . . . . .. ... ... ... 83
4.3.2.1 FedAvg with ANN . . . . . . . . 84



4322 FedAvg with ONN . . . ..o 85

4.3.2.3 Centralized Learning with ANN . . . . . . . ... ... ... ... 87

4.3.2.4 Centralized Learning with CNN . . . . .. . ... ... ... ... . 88

4.3.3 Model Extraction in Federated Learning . . . . . . . . ... ... ... ... ... ... 89

4.4 Privacy-Preserving Experiments in Federated Learning . . . . . . . ... .. .. ... ... .. 92
4.4.1 Robust Federated Aggregation with Static Data Poisoning . . . . . . .. ... ... .. 92

4.4.2 Differential Privacy in Federated Learning . . . . . . . ... ... .. ... .. ... 93

4.4.2.1 DP-FedAvg with ANN . . . . . . . .. . 94

4.4.2.2 DP-FedAvg with CNN . . . . . . . .. .. 96

4.4.2.3 Forced Memorization in ANN . . . . . ... ... ... L . 98

4.4.2.4 Forced Memorization in CNN . . . . . .. .. ... ... . ... ... 100

4.4.3 Model Extraction in Federated Learning with Differential Privacy . . ... ... ... 102

4.4.4 Federated Learning with Homomorphic Encryption . . . . . . ... ... .. ... ... 104

5 Discussion 107
5.1 Federated and Centralized Learning . . . . . . . . . ... ... . . 107
5.1.1 Model Performance . . . . . . . . . . .. 107

5.1.2 Memorization as a Privacy Issue . . . . . ... ... ... oo 108

5.1.3 Privacy Benefits in using Federated Learning . . . . . . . .. .. ... ... .. .... 109

5.2 Robustness in Federated Learning . . . . . . . .. ... .. Lo oo 109
5.3 Model Extraction . . . . . . . . .. e 110
5.4 Differential Privacy . . . . . . . . . . e 111
5.4.1 Model performance . . . . . . . ... 112

5.4.2 Memorization . . . . . ... L e 112

5.4.3 Model Extraction . . . . . . . . .. e 113

5.5 Federated Learning with Homomorphic Encryption . . . . . . . .. ... ... ... .. .... 113
5.6 SUMINATY . .+« v vttt e et e e e e e e e 114

6 Conclusion 116
7 Future Work 118
8 Broader Impact 119
Bibliography 120
Attachments 123



List of Figures

03O Ui Wi+

NN NINIRNDNDDNDNDN DN o s = e = s = O
O 00 IO Ui W OOWOWTO Uk WwWwNnH—O

30

31
32

33

34
35

36
37
38

39
40
41
42
43
44

A Visualization of the Model Parallelism Architecture . . . . . ... ... ... ... .....
A Visualization of the layer Pipelining Architecture . . . . . . . . . . .. ... ... .. ...
A Visualization of the Data Parallelism Architecture . . . . . . . .. ... ... ... .....
A Visualization of the DistBelief Architecture . . . . . . . . . . ... ... . ... .. .....
Parameter Server Architecture . . . . . . . . . .. L
GossipGraD . . . . . .
Iustration of the Federated Learning Workflow . . . . . . . . ... ... .. ... ... ...
Illustration of Model and Data Poisoning in Federated Learning . . . . . . . . ... ... ...
Iustration of Inference Attack . . . . . . . . . . . . .
Iustration of Generative Adversarial Networks . . . . . . . . . ... . ... ... .. .....
Geometric Median vs. Arithmetic Mean . . . . . . . . . ... . .. L L
Robust Federated Aggregation . . . . . . . . . . . . . e
Overview of Differential Privacy . . . . . . . . . . .. .
The Laplace Distribution . . . . . . . . .. .
Moments Accountant vs. The Strong Composition Theorem . . . . . . . . . . ... ... ...
Homomorphic Encryption Scenario . . . . . . . . . .. ..o
Homomorphic Encryption Timeline . . . . . . . . . . . ... ... .. .. ... ... . ....
Paillier cryptosystem benchmarked with different key sizes. . . . . . .. ... ... ... ...
Distribution of the data in the MIT-BIH Arrhythmia Database . . . . . . ... ... ... ..
Plots of 2D Histogram for each class . . . . . . . . . . . .. ... ... ...
Ilustration of the Hypothetico-Deductive Model . . . . . . . ... ... ... ... ... ...
Illustration of the Implemented Machine Learning Pipeline. . . . . . . ... ... ... ....
Data Distribution after resampling . . . . . . . . . . . .. ...
Illustration of the Softmax Regression Model . . . . . . ... ... ... ... .........
Illustration of the Artificial Neural Network . . . . . . . . . . . ... ... ... ... .....
Mustration of the 1D CNN Model . . . . . . . . . .. ...
TensorBoard . . . . . . .
Confusion matrix for the centralized learning experiment with the ANN model. . . . . . ..
Graph illustrating accuracy obtained during the centralized learning experiment with the
ANN model . . . . . e e
Graph illustrating the loss obtained during the centralized learning experiment with an

ANN model . . . . .
Confusion matrix for the centralized learning experiment with the CNN model . . . . . . ..
Graph illustrating accuracy obtained during the centralized learning experiment with an
CNN model . . . . . e e e
Graph illustrating the loss obtained during the centralized learning experiment with an

CNN model . . . . . e
Confusion matrix for the centralized learning experiment with the ANN model . . . . .. ..
Graph illustrating accuracy obtained during the centralized learning experiment with the
ANN model . . . . . . e
Graph illustrating the loss obtained during the FedSGD experiment with an ANN model . . .
Confusion matrix for the centralized learning experiment with the CNN model . . . . . . ..
Graph illustrating accuracy obtained during the centralized learning experiment with a

CNN model . . . . . . e
Graph illustrating the loss obtained during the FedSGD experiment with an CNN model . . .
Confusion matrix for the FedAvg experiment with the ANN model . . . . ... ... .. ...
Graph illustrating accuracy obtained during the FedAvg experiment with the ANN model
Graph illustrating the loss obtained during the FedAvg experiment with the ANN model
Confusion matrix for the FedAvg experiment with the CNN model trained on Non-I1ID data .
Graph illustrating accuracy obtained during the FedAvg experiment with the CNN model
trained on Non-IID data . . . . . . . . . . . . e

71
71
73
74
(0]
76



45

46

47

48
49

50
51
52
53
54
55
56
o7
58
59
60
61
62

63
64

Graph illustrating the loss obtained during the FedAvg experiment with the CNN model
trained on Non-IID data . . . . . . . . . . . . L
Confusion matrix for the FedAvg experiment with the CNN model trained on the uniform
data distribution . . . . ... L
Confusion matrix for the FedAvg experiment with the CNN model trained on class dis-
tributed data . . . . .. L e
Confusion matrix for the FedAvg experiment with static data poisoning . . . . . .. ... ..
Confusion matrix for the memorization experiment using the FedAvg algorithm with the
ANN model . . . . . .
Confusion matrix for the memorization experiment using the FedAvg algorithm with the
CNN model . . . . .. e
Confusion matrix for the memorization experiment using the FedAvg algorithm with the
ANN model . . . . . . e
Confusion matrix for the memorization experiment using centralized learning with the CNN
model . ... e
Model Extraction for the Normal Beats class . . . . . .. .. .. ... ... ... ...
Model Extraction for the Supraventricular Beats class . . . . . . .. ... ... ... .....
Confusion matrix for the RFA experiment with static data poisoning . . . . . . ... ... ..
Confusion matrix for the differential privacy experiment using the DP-FedAvg algorithm
with the ANN model . . . . . . . . . . e
Moments accountant for the differential privacy experiment using the DP-FedAvg algorithm
with the ANN model . . . . . . . . o e
Confusion matrix for the differential privacy experiment using the DP-FedAvg algorithm
with the CNN model . . . . . . . . . . e
Moments accountant for the differential privacy experiment using the DP-FedAvg algorithm
with the CNN model . . . . . . . . . . e
Confusion matrix for the differential privacy experiment with memorization using the DP-
FedAvg algorithm with the ANN model . . . .. ... ... ... ... .. .. .........
Confusion matrix for the differential privacy experiment with memorization using the DP-
FedAvg algorithm with the CNN model . . . . .. ... ... ... .. ... .. ... ...,
Model Extraction for the Normal Beats class in a DP setting . . . . ... ... .. ... ...
Model Extraction for the Supraventricular Beats class in a DP setting . . . . ... ... ...
Graph illustrating the validation loss for doing federated learning with homomorphic en-
Cryption. . . . . . oL



List of Tables

ST W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

32

33

34

35

Excerpt of the Raw Data . . . . . . . .. .. L
Overview of the training configuration used for each experiment in Section 4. . . . . ... ..
Training configuration for the centralized learning experiment with the ANN model. . . . . .

Accuracy, loss and training time for the centralized learning experiment with the ANN model.

Classification report for the centralized learning experiment with the ANN model . . . . . . .

Accuracy, loss and training time for the centralized learning experiment with the CNN model.

Classification report for the centralized learning experiment with the CNN model . . . . . . .
Training configuration for experiments with FedSGD. . . . . ... ... . ... ... .. ...
Accuracy, loss and training time for the FedSGD experiment with the ANN model. . . . . . .
Classification report for the FedSGD experiment with the ANN model . . . . . .. ... ...
Accuracy, loss and training time for the FedSGD experiment with the CNN model . . . . . .
Classification report for the FedSGD experiment with the CNN model . . . . . ... ... ..
Training configuration for the FedAvg experiment. . . . . . . . . .. ... ... ... .....
Accuracy, loss and training time for the FedAvg experiment with the ANN model . . . . . . .
Classification report for the FedAvg experiment with the ANN model . . . . . .. ... ...
Accuracy, loss and training time for the FedAvg experiment with the CNN model trained

on Non-IID data. . . . . . . . .. o . o e
Classification report for the FedAvg experiment with the CNN model trained on Non-IID

Accuracy, loss and training time for the FedAvg experiment with the CNN model trained

on the uniform data distribution. . . . . . .. ..o oo
Classification report for the FedAvg experiment with the CNN model trained the uniform
data distribution. . . . . . .. oL
Accuracy, loss and training time for the FedAvg experiment with the CNN model trained

on class distributed data . . . . . . . ...
Classification report for the FedAvg experiment with the CNN model trained on class dis-
tributed data. . . . . . Lo e
Training configuration for the federated learning experiment using the FedAvg algorithm
with static data poisoning. . . . . . . . .. Lo
Accuracy, loss and training time for the FedAvg experiment with static data poisoning.
Classification report for the FedAvg experiment with static data poisoning . . . . . . . . . ..
Training configuration for the memorization experiment using the FedAvg algorithm. . . . . .
Accuracy, loss and training time for the memorization experiment using the FedAvg algo-
rithm with the ANN model . . . . . . . . . .. ..
Classification report for the memorization experiment using the FedAvg algorithm with the
ANN model . . . . . .
Accuracy, loss and training time for the memorization experiment using the FedAvg algo-
rithm with the CNN model . . . . . . . . . . .
Classification report for the memorization experiment using the FedAvg algorithm with the
CNN model . . . . . e e e
Training configuration for the memorization experiment using centralized learning. . . . . . .
Accuracy, loss and training time for the memorization experiment using centralized learning
with the ANN model . . . . . . . . . o e
Classification report for the memorization experiment using centralized learning with the
ANN model . . . . . . . e e e
Accuracy, loss and training time for the memorization experiment using centralized learning
with the CNN model . . . . . . . . . . .
Classification report for the memorization experiment using centralized learning with the
CNN model . . . . . . e
Training configuration for the model extraction experiment using the FedAvg algorithm. . . .

64
64
66
67
67
69
70
72
72
73
(6]
76
78
79
80
80
82
82
83
84
84
85
86

86
87

87

87

88

89
90



36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54
55

56
o7
o8
59

Training configuration for the federated learning experiment using the RFA algorithm with

static data poisoning. . . . . . . ... Lo 92
Accuracy, loss and training time for the RFA experiment with static data poisoning . . . . . 92
Classification report for the RFA experiment with static data poisoning . . . . .. .. .. .. 93

Training configuration for the differential privacy experiment using the DP-FedAvg algorithm. 94
DP Parameters for the differential privacy experiment using the DP-FedAvg algorithm with

the ANN model. . . . . . . . . e 94
Accuracy, loss and training time for the differential privacy experiment using the DP-FedAvg
algorithm with the ANN model . . . . . . . .. ... . 94
Classification report for the differential privacy experiment using the DP-FedAvg algorithm

with the ANN model . . . . . . . . . e 95
DP Parameters for the differential privacy experiment using the DP-FedAvg algorithm with

the CNN model. . . . . . . . . e 96
Accuracy, loss and training time for the differential privacy experiment using the DP-FedAvg
algorithm with the CNN model . . . . . . .. . .. o o 96
Classification report for the differential privacy experiment using the DP-FedAvg algorithm

with the CNN model . . . . . . . . . 0 97
DP Parameters for the differential privacy experiment using the DP-FedAvg algorithm with

the ANN model while forcing memorization. . . . . . . .. .. ... ... ... . o 00, 98
Accuracy, loss and training time for the differential privacy experiment with memorization

using the DP-FedAvg algorithm with the ANN model . . . . ... ... ... .. .. ..... 99
Classification report for the differential privacy experiment with memorization using the
DP-FedAvg algorithm with the ANN model . . . . . . ... ... ... ... ..., 99
DP Parameters for the differential privacy experiment using the DP-FedAvg algorithm with

the CNN model while forcing memorization. . . . . . . ... . ... ... . ... 100
Accuracy, loss and training time for the differential privacy experiment with memorization

using the DP-FedAvg algorithm with the CNN model . . . . . ... ... ... ... ..... 101
Classification report for the differential privacy experiment with memorization using the
DP-FedAvg algorithm with the CNN model . . . . . . ... ... .. .. ... .. 101

Training configuration for the model extraction experiment using the DP-FedAvg algorithm. 102
Differential privacy parameters for the model extraction experiment using the DP-FedAvg

algorithm. . . . . . . oL e 103
Training configuration for homomorphic encryption with federated averaging. . . . . . . . .. 105
Accuracy, loss and training time after performing federated learning with homomorphic en-

Cryption . . . . .o 105
Size of a weight and its encrypted value in number of bytes . . . . . ... ... ... ... .. 105
The results discussed in Section 5.1 . . . . . . . . . . L e 107
The results discussed in Section 5.2 . . . . . . . . . . L e 109
The results discussed in Section 5.4 . . . . . . . . . .. 111



1 Introduction

This chapter will provide an introduction to the report. This introduction will include the background as
to why federated learning was chosen as the subject of the report and the research questions formulated.
Furthermore, the structure of the report and the acronyms used in the report will also be presented.

1.1 Background

Infiniwell is an artificial intelligence company founded in 2018. The company specializes in the interpre-
tation of biometric waveforms and medical data, and aims to help healthcare providers deliver better and
more efficient care to patients by equipping them with Al-powered diagnostic tools, technology and pro-
cesses! . The company is building a cloud-based remote patient monitoring and diagnostic platform which
uses Al to assist in clinical decision-making. To achieve this, they are collaborating with companies like
Clarity Medical, Telenor and Microsoft. Clarity Medical produces devices to measure vital signs contin-
uously. These devices are distributed amongst patients around the globe, and they record patients’ vital
signs remotely. The recorded decentralized patient data is streamed via the 5G network provided by Te-
lenor to secure servers offered by Microsoft.

Infiniwell has developed several deep learning models to analyze the patient data stored in Microsoft Azure
in real-time. These models are all trained on the centrally stored data with stochastic gradient descent,
meaning that Infiniwell applies centralized learning on the data. The diagnostics retrieved from the deep
learning models are then sent to medical personnel for further analysis. This centralized machine learn-
ing pipeline allows patients to be monitored by hospitals remotely, thus avoiding being hospitalized for a
longer period of time. This reduces the amounts of in-patients, allowing the hospitals to use their beds for
more serious and emergent, cases.

Infiniwell is not currently satisfied with their machine learning pipeline. As previously stated, Infiniwell
collects decentralized data and stores it in a database. Unfortunately, the data collection process can be
vulnerable to attacks, and can in turn jeopardize the privacy of the patients. Furthermore, the storage
of privacy-sensitive data comes with a large responsibility to protect that data. As mentioned, Infiniwell
works with sensitive patient data which makes it extremely important that they are able to provide a se-
cure machine learning pipeline that can both preserve the privacy of its clients, and simultaneously train
well-performing models.

In recent years, a new machine learning approach, called Federated Learning, has emerged. This approach
is known to train deep learning models on decentralized data in a way that preserves the privacy of the
involved data-owners. Since Infiniwell is working with decentralized data where privacy-preservation is of
high importance, federated learning seemed like an adequate approach to solve the issues concerning pri-
vacy in the centralized learning pipeline.

1.2 The Research Questions

The purpose of this report is to research how federated learning would perform in an environment simi-
lar to Infiniwell’s. In addition, the report will explore different statistical and cryptographic methods to
further enhance privacy and security in federated learning environments. The goal of the research is to de-
termine whether federated learning combined with different methods for enhancing privacy and security
can solve the privacy-issues in centralized learning, while still being able to train well-performing models.
The results of this report could potentially help Infiniwell create an even more secure machine learning
pipeline, which can further increase the privacy of their consumers. Therefore, the research is focused on
the following three subjects:

e Privacy. In regards to federated learning, we want to explore how data privacy is obtained. Data
privacy in federated learning concerns protecting the data held by the clients in the federation from
being accessed by anyone but the data-owner holding the data.

nfiniwell - https://www.norvayhealthtech.com/member/infiniwell/
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e Security. In federated learning, security entails protecting the clients, their data and the models
from potential threats and attacks. This is done by applying appropriate protection methods to se-
cure those resources.

e Model performance. In this report, we want to research how federated learning along with a va-
riety of protection methods, affect model performance. This entails looking at how the model fits to
the training data, how well the model classifies new data, and how long it takes to train the model.

With these subjects in mind, we wanted to formulate research questions that could help determine whether
federated learning combined with different methods for enhancing privacy and security, would provide a
well-performing model. Federated learning is known to be a privacy-preserving approach to machine learn-
ing tasks, and in this report we wanted observe how the approach increases privacy and which trade-offs
are made in order to achieve this. Therefore, the first research question formulated was:

How does federated learning increase privacy when applied to decentralized
data?

The research question presented above exclusively concerns federated learning. In order to further evaluate
federated learning as a privacy-preserving approach, we wanted to observe the learning algorithm in com-
bination with different statistical and cryptographic methods. This would provide insight into how suc-
cessful the different methods were in enhancing security in federated learning environments, as well as how
the methods affected model-performance. With this in mind, we formulated a second research question:

How can different methods enhance security in federated learning
environments, and how do these methods affect model performance?

1.3 Structure

This report is divided into the following ten chapters:

e Introduction - This chapter contains an introduction to the project. In the introduction, the back-
ground, the research questions, the structure of the report will be described, and the acronyms will
be presented.

e Related Work - This chapter contains explanations of related work and theory. This chapter will
provide the basis for the experiments presented in the Results chapter.

e Method - This chapter includes a description of the research process and the methodology behind
executing a series of experiments. In addition, this chapter will provide an overview of the technolo-
gies used in the project and explain why these were chosen.

e Results - This chapter will provide an overview of the experiments performed. Furthermore, the
results of the experiments will be presented alongside the training configuration used.

e Discussion - This chapter will discuss the results obtained during the project in regards to the re-
lated work. It will also discuss the meaning of the results with respect to the research questions.

e Conclusion - This chapter will attempt to answer the research questions presented in the Introduc-
tion. The conclusion will be based on the results and the discussion.

e Future Work - This chapter will present suggestions for future work in relation to the report.

e Broader Impact - This chapter will attempt to give an overview of the broader impact of this re-
port.

e Bibliography - This chapter will provide the complete bibliography for the report.

e Attachments - This chapter will include all relevant attachments related to the report.
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1.4 Acronyms
e AM - Arithmetic Mean

e ANN - Artificial Neural Network

e CNN - Convolutional Neural Network

e DNN - Deep Neural Network

e DP - Differential Privacy

e DP-FedAvg - Differentially-Private Federated Averaging
e ECG - Electrocardiogram

o FedAvg- Federated Averaging

e FedSGD - Federated Stochastic Gradient Descent
e FHE - Fully Homomorphic Encryption

o FL - Federated Learning

e GAN - Generative Adversarial Network

e GDPR - General Data Protection Regulation

o GM - Geometric Median

e HE - Homomorphic Encryption

e Non-ITID - Non Independent and Identically Distributed
e PHE - Partially Homomorphic Encryption

e RFA - Robust Federated Aggregation

e SAO - Secure Average Oracle

e SGD - Stochastic Gradient Descent

e SMC - Secure Multiparty Computation

e SWHE - Somewhat Homomorphic Encryption

e TFF - TensorFlow Federated
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2 Related Work

The following sections will present relevant theory concerning federated learning. First, the chapter will
provide an introduction to distributed deep learning which is the basis for federated learning. Further-
more, the chapter will present federated learning and related privacy-concerns. Finally, the chapter is go-
ing to present different statistical and cryptographic methods for enhancing security in federated learning
environments. The theory provided will largely be based on related research papers, but also on the prior
knowledge presented in the Preface of this report. The theory covered in this chapter, will be relevant for
answering the research questions described in Chapter 1.

2.1 Distributed Deep Learning

Deep learning has become a popular method for solving optimization problems when working with large
datasets, but little to none domain knowledge is available. The use of deep neural networks (DNNs) re-
quire a huge amount of computational power and memory. Some examples of DNNs are:

e AlexNet is a convolutional neural network (CNN) that consists of 60 million parameters. AlexNet
was used to recognize objects on the ImageNet dataset [1].

e [3D is a CNN that consists of 25 million parameters. 13D is used for action classification in videos

[2].

e Transformer-XL is a Transformer model which consists of 460 million parameters. Transformer-XL is
used for capturing longer-term dependencies on text data [3].

The deep neural networks listed above have large memory and computation requirements. Training these
models in a sequential manner is not scalable. Distributed deep learning methods use hardware in a more
efficient manner, thus increasing scalability in the training of deep neural networks.

2.1.1 Concurrent Training

Concurrent training methods split the deep neural network and the data between the compute-nodes in
a cluster. To make deep learning more scalable, and to utilize multiple CPUs and GPUs, there have been
efforts to parallelize the training of deep neural networks. This section will look at methods for obtaining
training parallelism of deep neural networks.

2.1.1.1 Model Parallelism

In the paper Large Scale Distributed Deep Networks model parallelism is discussed as the distribution of
the neurons in a DNN M among different compute-nodes in a cluster [4]. Each node is responsible for cal-
culating the activation function

a; = g(Wi' X + by) (1)

for the neurons on machine i, and passing it to the next layer in the network. In Equation 1, g is the ac-
tivation function used in the DNN. The neurons which are connected in the model M must pass their ac-
tivation’s to each other, and if such neurons are not on the same node, then the nodes must communicate
the activations a; with each other. This could lead to higher communication cost in the compute cluster,
which is a drawback with the method. Moreover, the method is synchronous which is another drawback
because all the activations must reach the last layer of the network before the optimization process can
proceed with back-propagation. Another drawback is that some nodes cannot start the computation of
the activations for their neurons before they have received the activations from the other nodes. Thus, the
bottleneck in this method is the slowest node i, since all the other nodes have to wait for the slowest node
before proceeding with the next mini-batch. The mini-batches must also be copied to each node in the
network, since each set of neurons must train on the same data, leading to an even higher communication
cost. Model Parallelism is illustrated in Figure 1.
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Figure 1: A visualization of the model parallelism architecture. The neurons in the network are dis-
tributed among 4 nodes in a local cluster. Machines 1 and 2 are dependent on the acitvations from Ma-
chines 3 and 4 [1].

2.1.1.2 Layer Pipelining

A similar technique to the one discussed in Section 2.1.1.1 is distributing the layers L of the network to
the compute nodes instead of the neurons. In the neuron distribution-technique, the problem of the nodes
having to communicate with many other nodes occurred, since one neuron can be connected to many other
neurons. Given two adjacent layers l;,[;11 € L, and if these two layers are distributed on two different
nodes, the node containing [; only have to communicate with the node /; ;. This reduces the communica-
tion cost between compute nodes discussed in Section 2.1.1.1, but the mini-batches must still be copied to

every node in the compute cluster [5]. Layer Pipelining is illustrated in Figure 2.
P11 P2 P3

Figure 2: A visualization of the layer pipelining architecture. This method greatly reduces the communica-
tion cost compared to the Model Parallelism technique. In the figure, the DNN is partitioned according to
depth, and each layer is assigned to a processor. [5]

2.1.1.3 Data Parallelism

Sections 2.1.1.1 and 2.1.1.2 discussed methods that concerned partitioning and distributing the model. In
this section, another method called data parallelism will be discussed. Data parallelism is a method that
partitions and distributes the training data instead of the model. The data is partitioned into N subsets,
and distributed among the compute nodes. In this method, the compute nodes contain the whole model.
These nodes draw a mini-batch from their local data partition, and run forward- and backward-passes
through the whole network. The weight updates Aw from each node are reduced with protocols such as
MapReduce or Message Passing Interface [5]. The majority of the operations in Stochatic Gradient De-
scent (SGD) over mini-batches are independent, which makes this technique highly scalable compared to
model parallelism and layer pipelining. The communication cost is also reduced, since the only commu-
nication that happens between the compute-nodes is when they are reducing their Aw. A drawback with
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this method is that the whole model has to fit in the memory of the compute nodes. Figure 3 illustrates
Data Parallelism.

P1 IE::ﬁl\:Ii 5 g‘v

P2 3

P

Figure 3: A visualization of the data parallelism architecture. The data is distributed among the different
nodes in the compute cluster. The independent nature of SGD over mini-batches makes this technique
highly scalable [5].

2.1.1.4 Hybrid Parallelism

Until now, the different parallelism schemes have been discussed in an isolated way. However, there exists
methods which applies several of the parallelism schemes at the same time. DistBelief is such a method
[1]. This method uses Model Parallelism, Layer Pipelining, and Data Parallelism all at once. Model Par-
allelism and Layer Pipelining are combined in such a way that the neurons belonging to a layer are con-
tained together in a compute node. This method is illustrated in Figure 4. Another method which utilizes
all three concurrency schemes is Project Adam, which uses fewer compute nodes than DistBelief [6]. Both
methods use the notion of Parameter Server, which helps synchronize the optimization across the different
compute nodes. This will be discussed in greater detail in Section 2.1.2.

Parameter Server W — W - W‘ﬂw

0000000
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Shards

Figure 4: A visualization of the DistBelief architecture. This scheme uses Model Parallelism, Layer
Pipelining, and Data Parallelism all at once, thus making it a hybrid scheme [5].

2.1.2 Consistency

Consistency concerns initializing the compute nodes with the same parameters after an iteration, i.e.,
weights, hyperparameters, and other parameters which define a DNN. This is important for converging
the compute nodes. If all the initialized weights on the compute nodes were different, the output from the
compute nodes would differ. In later training rounds this could result in an inconsistent model. Thus, the
compute nodes need a way to write their model updates to a global server. The parameter server acts as
an external orchestrator to synchronize the compute nodes across the cluster [7].

As visualized in Figure 5, the parameter server consists of different modules to make the nodes consis-
tent. The server manager maintains the assignment of parameter partitions, and metadata about the
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nodes, for example node liveness. The server node maintains a partition of the globally shared parame-
ters, and these nodes are used for replicating and migrating parameters for reliability and scalability. Each
of the worker groups, which may consist of several worker nodes, or compute nodes, have a task scheduler.
The task scheduler assigns tasks to the different worker nodes. To obtain model consistency, the worker
nodes communicate directly with the server node to retrieve parameters instead of communicating within
a worker group. Thus, the worker nodes obtain the most recent parameters from the parameter server. Af-
ter doing some rounds of optimization, the worker nodes write the updated parameter to the parameter
server, where they are aggregated. The parameter server represents the parameters as key-value vectors,
such that the worker nodes can do linear algebra operations on these parameters [7]. The write operation
can be synchronous or asynchronous.

server server group a server
manager node
resource a{g

| /
T _foooooog)
Ny

workmi group

task
scheduler [:I
a worker
node

Figure 5: A visualization of the parameter server. The parameter server uses modules such as a server
manager, server nodes and task scheduler for synchronizing nodes across the cluster. The parameters are
distributed across a set of server nodes. Each server node has the ability to push out its local parameters
and to pull in remote parameters. [7]

2.1.2.1 Synchronous updates

When updating the parameter server in a synchronous fashion, the parameter server waits for all the up-
dates from the compute nodes before aggregating them. This will lead to high consistency, but this is not
a scalable approach, since the parameter server has to wait for the slowest compute node before aggregat-
ing the updates and storing them on the server node. The parameter server aggregates the weight updates
from the servers by taking the average over all the compute nodes:

1 n
Awy = - Z Aw;. (2)
i=1

In Equation 2, Aw; are the individual weight updates from each of the n compute nodes. ¢ denotes the
current timestep. Equation 2 describes how the parameter server averages the weight updates calculated
in the current timestep ¢t. After the aggregation, the parameter server updates the weights for the next
timestep t + 1:

Awt+1 = Wt — nAwt, (3)

where 7 is the global learning rate, and w; are the weights of the global model. The compute nodes in the
local cluster are going to use w1 for the next optimization rounds, before repeating the processes de-
scribed by Equations 2 and 3.
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2.1.2.2 Asynchronous updates

When updating the parameter server in an asynchronous fashion, the parameter server does not wait for
the updates from all of the compute nodes before storing the latest parameters in the server node. Unlike
synchronous updates described in Section 2.1.2.1, this method reduces model consistency, but is scalable
since the parameter server does not have to wait on the slowest compute node. Asynchronous updates can
lead to stale parameters because of updates coming from slow nodes and the parameters on the parameter
server getting overwritten. Examples of distributive learning algorithms which use asynchronoups updates
are the HOGWILD! algorithm [8] and Downpour SGD [1]. The Stale Synchronous Parallel (SSP) model
described in the paper More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server
[9], attempts to reduce parameter staleness by introducing a staleness parameter 7. This staleness param-
eter makes the learning rate a function of the staleness in the parameters. If the most recent update was
made at time ¢t = tg, the parameter server gets a new update at ¢ = ¢, and the staleness parameter is
calculated as

T :tl —t(). (4)

The learning rate is then defined as
Mo/ T ifr#0
"= { ()

Mo otherwise.

2.1.2.3 Decentralized updates

A decentralized update method does not require a parameter server, since the worker nodes communicate
with each other. This leads to lower communication costs, since the nodes do not have to write and read
parameters from an external server. Examples of such algorithms are gossip algorithms, which communi-
cate and aggregate updates between each other in an exponential way [10]. GossipGraD, which is a gossip
algorithm, is illustrated in Figure 6.
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Figure 6: A Visualization of the GossipGraD Algorithm. There is no parameter server involved here,
which can be seen by the nodes communicating updates directly to each other [10].

There are also methods that require no communication at all between worker nodes, and one ends up with
an ensemble of models. Averaging many different models can slow down inference on new data. This prob-
lem can be solved by using knowledge distillation. Knowledge distillation requires a new DNN, a mimic
network, which trains on the labels provided by the ensemble model [11]. Another disadvantage to de-
centralized updates is that the communication cost is much higher compared to applying synchronous or
asynchronous updates. The reason for the high communication cost is that the number of times the up-
dates are shared is higher with decentralized updates, since all the nodes have to communicate with each
other.

2.2 Federated Learning

Federated learning is a relatively new machine learning approach as it became an important research ques-
tion as late as 2015 [12]. Federated learning was introduced as an extension to distributed machine learn-
ing, and offers a way to train models in the client’s domain on distributed data which is owned by indi-
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vidual clients [13]. As explained in Communication-Efficient Learning of Deep Networks from Decentral-
ized Data, the basic idea behind federated learning is that learning tasks are solved with a loose federa-
tion of clients which are managed by a central server. The clients consists of a multitude of participating
devices. In federated learning, clients are able to download the current global model from the server and
train the model on their local data. Once the clients have trained their individual models, each client’s up-
dated model is sent back to the central server where the local models are aggregated [14]. These updates
are only a means to improving the global model, and are therefore not stored once aggregated.

AW = Aggr ( AW1 + AW2 +...+ AWn1+ AWn)

AW1 AW?2 Awn_l\aw
AW AW AW

Hospitals

Figure 7: The figure illustrates four hospitals that each downloads the global model from the central
server. The hospitals train the downloaded model on their respective local data, and sends their individual
updates back to the central server. The central server aggregates these updates, resulting in an updated
global model 2.

Figure 7 further illustrates the workflow in federated learning. In this illustration each hospital is consid-
ered a different client, and are coordinated by the central server. As illustrated, the current global model’s
weights AW is sent to each of the participating clients at time ¢. The participating clients then train the
current global model on their individual local data. This results in each individual client having unique
models with updated model weights {AW;|1 < i < n}. These weights are then sent back to the central
server where each of the clients individual updated weights are aggregated into one updated global model
with weights AW;;. This process is repeated until the model has converged.

This learning approach is quite unique in the sense that it allows clients to collectively reap the benefits
of a shared model trained on large amounts of data without needing to disclose their local data. From a
privacy perspective, this is a huge stride from traditional, centralized machine learning as it decentralizes
learning by removing the need to pool data into one single location. This decentralization allows for data
minimization in the sense that both the global model and the clients only have access to the data that is
necessary, and once the updated weights are aggregated the individual weights are forgotten [14]. The
characteristics of federated learning makes the approach well-suited for supervised learning tasks where
the volume and sensitivity of the data is significant, and where the tasks will benefit greatly from training
on real-world data from distributed devices [14].

thtps ://medium.com/@vaikkunthmugunthan/a-laymans-introduction-to-privacy-preserving-federated-learning-8cale6c73ad4
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2.2.1 Aggregation Methods

As described in section 2.2, each participating client downloads the global model and trains it on their in-
dividual local data. Once training is completed, the updated model weights are sent back to the server
where they are aggregated. In order to aggregate the weights the central server receives, federated learning
utilizes an aggregation method. The aggregation algorithm’s first task is to have each client & compute the
average gradient on the client’s local data at the current state of the global model wy [14]. This task can
be described by the following equation

Yk, wiyy < wp — 0V f(w), (6)

where w? ‘.1 are the parameters of client £ and 7 is the learning rate at which the parameters are calcu-
lated. The central server then aggregates these parameters w¥ "1 by calculating a weighted average of the
updates from each client in an attempt to improve the global model. This can be described by the follow-
ing equation [14]

K
N
W1 < Z ?wfﬂ- (7)
k=1

where w11 is the updated state of the global model, nj is the number of the data points at client £ and n
is the number of clients.

There currently exists several different methods for aggregation in federated learning, and all of these
have advantages and disadvantages which will be covered in the following subsections. However, one thing
they all have in common is that they aim to address the key properties of federated optimization. [14]. In
Communication-Efficient Learning of Deep Networks from Decentralized Data [14], federated optimization
is described as optimization problems that is implicit in federated learning. The key properties of feder-
ated optimization are considered to be the following:

e Non-ITID Data:

In federated learning, models are often trained on non-IID data. Non-IID data is data which is nei-
ther independent nor identically distributed. The reason why federated learning often has non-I1ID
data is because the participating devices often consists of data specific to the use of one particular
device. The data held by one specific client will therefore not be representative for the entire federa-
tion, thus introducing an optimization issue that needs to be addressed by the federated aggregation
algorithm.

e Unbalanced Data:

Another concern in federated learning is that data often is heavily unbalanced. This issue arises as
a result of clients using their devices differently, especially in terms of how much a device is utilized.
Clients that use their device more often than others, will gather more training data. This is an issue
since the data held by each client may vary in quantity, and can result in a global model which is
biased towards a specific client’s data.

e Profoundly Distributed Data:

Data used in federated learning tasks is often massively distributed. Using a federated learning ap-
proach, one should expect that the number of clients participating in the optimization is much larger
than the average number of examples each client holds. This means that the aggregation methods

used in federated learning must pay attention to the distribution of the data to create a well-performing
and unbiased global model.
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e Communication Constraints:

In federated learning one relies on a loose federation of participating devices. This can lead to op-
timization issues such as devices in the federation being offline or experiencing communication con-
straints. It is therefore essential that the aggregation method used in federated learning is able to
handle varying participation, and is able to select clients that can participate in training.

With these key properties in mind, consider an objective function of the form

weR?

min f(w) where f(w):%z: Fi(w). (8)

fi(w) = l(z;,y:; w) is the prediction loss of one example (z;,y;) where the prediction is made based on the
model weights w € R¢. Any machine learning algorithm designed to minimize such an objective function is
suitable for training with multiple clients [14]. Now consider that the data is distributed across K clients,
and client k has Py which is the set of data points where ny = |Pg|. The problem in Equation 8 can then
be translated to a federated learning task with the following equation

K
A _ b |
flw) = Z - Fr(w) where Fi(w)= ” Z filw) (9)
k=1 1€ Py
and describes the local loss Fy, of one single client [141]. Equation 9, illustrates a solution to the key prop-

erty in federated optimization described as Profoundly Distributed Data.

As discussed in this section, the key properties of federated optimization pose significant challenges in
comparison to standard distributed learning. In the following sections, several aggregation methods will
be described, and the first method will present the simplest solution to the problem behind Equation 9.

2.2.1.1 FedSGD

Federated Stochastic Gradient Descent, or FedSGD, is the baseline algorithm in federated learning. The
mechanism of action behind the algorithm consists of performing a single step gradient descent for each
of the participating clients and updating their respective weights accordingly. Finally, the algorithm ag-
gregates the gradients calculated and updates the state of the global model. This process is described in
Section 2.2.1.

The following pseudocode describes the FedSGD algorithm.
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Algorithm 1: FedSGD [15]
wq are the weights of the initial global model. K are all the participating clients. 7 is the learning
rate.
Procedure SERVER
initialize wq;
for t = 0,1,2,...,T do
for all k in the K nodes in parallel do
gr, < ClientUpdate(k, w;);
end
K ny
Wig1 = W — 1D g “Egr;
end
return wr;

Procedure ClientUpdate(k, w)
B « split Py to set of batches;
G <+ List of gradients for each mini-batch;
for all b € B do
g < Vi(b;w);
G.append(g);
end
return Average(G);

For each client k£ in K, FedSGD calculates the gradients. This is done by FedSGD randomly selecting b
examples from the client and evaluating the b’s at the same w. This is called batching, and is utilized in
order to enhance data parallelism. Once the gradients have been calculated, the gradients are sent back to
the central server where they are aggregated into one updated global model. The way FedSGD solves the
optimization-issue that is profoundly distributed data described in Section 2.2.1, is by utilizing Equation 9
in the aggregation of the client gradients. In other words, FedSGD uses weighted averaging to aggregate
the gradients of each client which can contribute to building an unbiased global model.

The reason why FedSGD is described as the simplest method to solve the optimization-issue of massively
distributed data is because it only performs a single step gradient descent. This means that FedSGD will
compute the gradients for each client once, and then immediately send the gradients back to the server
where they are aggregated. In contrast to FedAvg, this can be inefficient as it will take longer to train a
well-performing model. In addition, an adversary can use gradient inversion to extract information about
the training data from the clients [10].

2.2.1.2 Federated Averaging

Federated averaging, also known as FedAvg, is a more advanced aggregation algorithm compared to FedSGD.
The following pseudocode describes the FedAvg algorithm.

21



Algorithm 2: FedAvg [14]
FE is the number of client epochs. B is the local mini-batch size.
Procedure SERVER
initialize wo;
for each round t = 0,1,2,...,T do
m + max(C - K, 1);
St < (random set of m clients);
for each client k € S; in parallel do
wy,, < ClientUpdate(k, wy);
end
K ng, k.
Wil < Dy WL
end
return wr;

Procedure ClientUpdate(k, w)
B + split Py, to set of batches of size B;
for each local epoch i from 1 to E do
for batch b € B do
w w - NVI(b;w);
end
end
return w;

Algorithm 2 describes the mechanism behind the FedAvg aggregation method. Firstly, the initial state

of the global model wy is initialized. Furthermore, a random set S; of m clients is chosen. Each of these
clients then performs gradient descent steps on their respective data. Finally, the updated weights of each
client is sent to the central server where the weights are aggregated with a weighted arithmetic mean.

The algorithm works similarly to the FedSGD algorithm described in Section 2.2.1.1. Both algorithms use
Equation 6 to compute the local gradient average for each client k and use Equation 7 to aggregate the
parameters. However, the difference is that FedAvg can apply multiple steps of gradient descent before
sending the clients parameters back to the central server to be aggregated. In the FedAvg algorithm, the
parameters of the model are aggregated instead of the gradients produced by the clients. This is because
the clients run several epochs of stochastic gradient descent, and the gradients are recomputed for every
update to the local model. The number of local updates per round uy is decided by the number of rounds
each clients makes over its local data F, the local mini-batch size B and the number of local examples ny
for client k. Equation 10 describes the correlation.

up = E% (10)

Equation 10 can further explain the connection between FedAvg and FedSGD, as inserting B = oo and
E =1 into the equation would result in u; — 0. This means that the number of local updates per round
at client k converges towards 0, which corresponds to FedSGD.

By examining Algorithm 2, it becomes clear that one can fine-tune a multitude of parameters to optimize
the performance of the model. This makes the algorithm more flexible than FedSGD. An advantage Fe-
dAvg provides, is that it makes it possible to adjust £ and B which in turn can decrease the communica-
tion cost. This is due to the fact that running more local SGD updates per round will lead to less com-
munication as it more rarely sends updates to the central server where the updates are aggregated. This
will cost less in terms of communication [14]. However, there are some risks in adjusting these parameters.
For example, by utilizing a large F during training, the training time will increase significantly. In addi-
tion, a substantially large F could also cause the models at each client to become specialized due to clients
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training on the same data for an extended period of time. This can result in high variance between the
clients and their respective weights, and eventually decrease the performance of the global model. It can
also cause increased memorization (see Section 2.5).

2.2.1.3 Secure Aggregation

Federated learning increases privacy since the server does not need to store privacy-sensitive data before
doing learning tasks on the data. In addition, federated learning does not require the clients to send more
data to the server, since they have a model available on their local device. However, federated learning
still requires the clients to send their updates to the central server, which allows the server see all the
updates before aggregating them. This can be a problem since the weight matrices can contain privacy-
sensitive information about the local data of a client, which can be extracted by looking at how sensitive
some weights are given some input data. Moreover, the updates of one client are visible to other partic-
ipating clients due to the fact that the updates are aggregated and sent back to the clients. Thus, the
weights of the final model can still reveal information about the sensitive data used to fit the model.

The Secure Aggregation algorithm was introduced by Bonawitz et. al [17], and this algorithm uses the Se-
cure Multiparty Computation (SMC) protocol to protect the privacy of client updates. The clients can act
as parties in the SMC protocol and calculate the aggregated weights between each other before sending
the aggregated weights to the server. Thus, the server will only see the aggregated weights, and update
the global model based on this value. The SMC protocol lets the parties

Py, P, ..., P, € P with inputs z1, z9, ..., z, calculate a function f(x1,x2,...x,) such that their inputs
stay private. Even if a subset of C C P collude, these parties can only see {z;, f(x1,..., 24 ..., 2n) : P; €
C}, and nothing more [18]. In the federated learning setting, the P;’s are the different clients participat-
ing in a round, x; are their updates, and f is the aggregation function to be computed by the clients. The
secure computation of the aggregation function f can be achieved by for example using Homomorphic En-
cryption (see Section 2.7) or Secret Sharing.

Although Secure Aggregation achieves privacy by hiding the single updates from the server, it does come
at a cost of both computational and communication complexity. The clients have to communicate with
each other using the SMC protocol, and if there are many clients participating in a federated learning
round this will be expensive with respect to communication. Moreover, it will take longer to aggregate the
weights if there are many participating clients. As mentioned above, the final model can still reveal infor-
mation about the data used to fit the model. This is a problem after using Secure Aggregation, since the
aggregated weights are still being sent back to all the clients. Differentially-Private FedAvg (see Section
2.6) mitigates this problem by clipping the updates and adding noise to the aggregated weights. Another
disadvantage with the Secure Aggregation scheme is that the algorithm is vulnerable to poisoning attacks
because the server cannot inspect and filter the individual updates.

2.2.2 Communication Efficiency in Federated Learning

The federated learning approach provides a new, more secure way to train models in the sense that the
participating devices are capable of training a model together without having to share any raw local data
with the central server. The clients are able to train a local model which is then aggregated by the central
server, improving the overall global model. In addition to the privacy benefits, this learning approach al-
lows for efficient use of network bandwidth and limits latency. The efficient use of bandwidth in federated
learning comes as a result of clients only sending the updated model weights rather than communicating
the raw data. By limiting the data that is transmitted, the communication cost will be far less and the
bandwidth will be better utilized. Moreover, latency can be limited since the models are consistently be-
ing trained and updated. In addition, federated learning allows for real-time predictions as they are made
locally on the client’s device [19].

However, federated learning presents some problems that in turn can lead to an increase in communication
cost. In large scaled networks there are a multitude of clients participating in training. The computation
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power of these and their ability to participate in training may vary. In addition, most mobile devices ex-
perience some constraints such as bandwidth, battery and computation limitations. The heterogeneity of
the participating devices and the limitation that most mobile devices encounter, constitutes a genuine con-
cern with regards to communication cost in federated learning [19]. In order to address these concerns, it
is necessary to explore how these limitations are affected by the main principles of the federated learning
algorithms. As stated in Section 2.2.1, the fundamentals of these algorithms involves having each client
compute the average gradient on the client’s local data by using the current state of the global model, and
then having the central server calculate a weighted average of these parameters in order to improve the
global model. Each client computes their gradients by performing a given amount of steps of stochastic
gradient descent. According to Fuvaluating the Communication Efficiency in Federated Learning Algorithms
[19], each step of stochastic gradient descent is fairly expensive in regards to battery usage on the partici-
pating devices. Therefore, it is important to limit the iterations of stochastic gradient descent in the algo-
rithms to prevent clients from being unable to participate in training due to limitations in battery capac-
ity. Furthermore, the amount of memory that stochastic gradient descent uses or references while running,
grows linearly with the batch size given in the federated learning algorithm [20]. This can cause issues in
the sense that participating devices, e.g. mobile devices, might have limited memory. This can force a de-
crease in batch size, which further can result in an increase in communication cost.

In Robust and Communication-Efficient Federated Learning from Non-IID Data [20], it is concluded that
the following conditions needs to be addressed in order to obtain a communication-efficient federated learn-
ing algorithm:

¢ Robust to non-IID data, small batch sizes and unbalanced data:

The federated learning algorithm is considered robust to non-IID data if the training converges with-
out any regard towards local distribution of client data.

¢ Robust to large number of clients and partial client participation:

The federated learning algorithm is considered robust to partial client participation if the effect of
reduced participation is not critical in terms of model performance.

¢ Communication compression in both directions between clients and central server:

The federated learning algorithm needs to be able to adequately compress the communication be-
tween clients and server, in both directions. The compression is considered strong if the compression
rate is greater than x32, and weak if the compression rate is smaller or equal to x32.

The FedAvg algorithm described in Section 2.2.1.2, is not able to satisfy all these conditions [20]. Using
the FedAvg algorithm in training while there is partial participation can result in the optimization process
moving away from the minimum, as well as causing the model to forget previously learned concepts. The
algorithm is not considered to be robust to non-1ID data either, as it is vastly sensitive to the degree of
IID of the client data. However, FedAvg supports communication compression either way, and is consid-
ered to be able to achieve strong compression [20)].

2.3 Attacks on Federated Learning

In recent years, federated learning has emerged as a new approach designed to address the issue of privacy
in machine learning. The issue of privacy has become increasingly important as technology has progressed
and larger quantities of data is being collected. New legal restrictions concerning privacy preservation are
constantly being formulated, e.g. GDPR, and these are making centralized machine learning less feasible

[21].

The main advantage in utilizing federated learning in contrast to centralized learning, is that it allows
clients to keep their data local and therefore more secure. However, the distributed nature of federated
learning also makes room for new privacy concerns and threats. There is a multitude of attacks that could
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pose a potential threat to the learning approach, and the attacks are often classified as either an insider
attack or an outsider attack. Insider attacks are attacks that are initiated by the central server and the
participating clients in the federated learning network. Outsider attacks, however, are attacks that are
performed by individuals outside the federated learning network. Such attacks often include individuals
eavesdropping on the communication that occurs between the central server and the clients. Both attack
types pose a significant threat to federated learning, but one could argue that insider attacks constitute
the stronger threat. This is due to insider attacks strictly enhancing the capability of adversaries, as well
as being more difficult to prevent [21]. Outsider threats can be greatly prevented by utilizing a secure, en-
crypted communication line, while insider threats can only be moderately reduced by adjusting the fed-
erated learning algorithms to take such attacks into account when aggregating. Consequently, the most
problematic privacy concerns that arise while training with federated learning is the potential threat of
insiders, also known as malicious participants. Two major insider threats in regards to federated learning
are [21]

e Data and model poisoning attacks

Attacks that aims to poison the global model in an attempt to either prevent it from learning or to
create a biased model that benefits the adversary.

e Inference attacks

Attacks that normally does not aim to poison the global model. Instead they attempt to either pro-
duce wrong outputs or collect information about the model’s properties. Such attacks target the pri-
vacy of participants.

Generally, attacks in federated learning can be difficult to detect due to the non-I1ID data distribution
which is common in federated learning. This type of distribution allows enough room for the adversary
to hide malicious data and updates without being easily detected [22].

2.3.1 Data and model poisoning attacks

As described in Section 2.3, data and model poisoning attacks attempt to corrupt the global model in
some way. These types of attacks are carried out in the training phase of federated learning, and can ei-
ther be random or targeted attacks. Adversaries performing random poisoning attacks attempts to de-
crease the model performance by reducing the accuracy of the model, while adversaries performing tar-
geted attacks aim to mislead the model to output target labels defined by the adversaries themselves.

Poisoning attacks can be carried out either by targeting the training data (data poisoning) or the model
(model poisoning). Data poisoning attacks are executed during the local data collection process, and is
often categorized as either clean-label or dirty-label. Clean-label data poisoning attacks requires the ad-
versary to introduce an input-label pair that does not seem to be mislabeled. This is because one assumes
that there is a process where data and labels are validated as a plausible pair. Dirty-label data poisoning
attacks are, on the other hand, attacks where the adversary does not have to concern themselves with this
process. The adversary can introduce numerous input-label pairs with the target labels of their choosing
in order to hopefully cause the model to eventually misclassify data [21]. Previous research regarding data
poisoning in federated learning has demonstrated that such attacks can cause a considerable reduction in
the model accuracy, regardless of the number of malicious clients participating. However, the effectiveness
of poisoning attacks increases significantly if malicious clients are highly available to participate in training
and also choose to participate in later rounds [23].

Model poisoning attacks differ slightly from data poisoning in the sense that model poisoning attacks are
executed during the local training process at the client. An adversary will attempt to manipulate the train-
ing process by either poisoning the local model updates or by inserting hidden backdoor into the updates.
These poisoned updates will be sent back to the central server where they are aggregated, and will in turn
poison the global model. This can lead to the model misclassifying certain inputs with high certainty [21].
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Figure 8: The figure illustrates where data and model poisoning occurs in the federated learning workflow.
Data poisoning is executed during data collection phase, while model poisoning is performed during model
training [24].

Figure 8 illustrates data and model poisoning in a federated learning setting. The illustration describes
where in the federated learning protocol each poisoning attack is performed. Data poisoning attacks are
executed on the local data by a malicious participant with the purpose of manipulating their data to even-
tually cause the global model to misclassify data. Model poisoning attacks are executed while training the
local model on the malicious participant’s data. The adversary aims to poison the local model updates
that are sent back to the central server.

2.3.2 Inference attacks

As described in Section 2.2, the clients partaking in the federated learning protocol will receive a global
model from the central server. Each client then locally trains this model on their individual data before
the updated model is sent back to be aggregated at the central server. In this process the clients are openly
communicating updates which consist of weights. There are certain privacy risks in communicating these
weights even though federated learning enforces the principle of data minimization. The model updates
can leak information about participants training data due to models, especially deep learning models,
memorizing outlier data. Moreover, an adversary can execute an inference attack by saving snapshots of
the parameters of the federated learning model. This allows the adversary to observe the difference be-
tween the snapshots which can be exploited in the sense that the adversary can pinpoint the aggregated
updates from all participating clients [21]. Such attacks can result in the adversary being able to recover
significant amounts of data and details surrounding it. The adversary can also retrieve the original train-
ing data.

Participant Save snapshots of joint model

and calculate the difference
. Infer information

- based on gradients
Server Adversary Aggregated
@ gra dlents

—
—_—

. Upload local updates Aggrega tad
- @ grndlents

Download global model

Participant

Figure 9: Tllustration of Inference Attack. The figure describes two clients participating in federated learn-
ing. Both clients download the global model, train the model on their local data and send their individual
updates back to the central server. An adversary saves an image of the aggregated model, and calculates
the difference between the new image and the last image saved. Based on the difference of the gradients,
the adversary can infer information 3
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Figure 9 illustrates a general overview of how an inference attack is executed. First, participating clients
receive the weights of the global model form the central server. Each client trains the global model on
their local data, and sends their gradients back to the server. An adversary then saves a snapshot of the
gradients belonging to the aggregated model. The adversary saves such snapshots each time clients’ gradi-
ents are aggregated. This allows the adversary to calculate the difference between consecutive aggregated
models, and to obtain information about the clients training data.

2.3.2.1 Generative Adversarial Networks Attack

An example of an inference attack used on deep federated learning models are generative adversarial net-
works (GAN) attacks. Generative adversarial networks comprise of two neural network modules, a gener-
ator and a discriminator. The generator’s task is to generate samples based on random noise input which
should approximate the training data. The task of the discriminator is to observe the difference between
the samples it collects from both the generator and the actual training data. These two modules are trained
concurrently, and will progress and learn in order to ensure that the generator will eventually be able to
generate realistic training samples [25]. Such networks can be used to execute an inference attack in fed-
erated learning because the distributed, real-time nature of federated learning allows an adversary to train
a GAN which can generate realistic samples of training data which should have been private [21]. Genera-
tive Adversarial Networks Attack is illustrated in Figure 10.
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Figure 10: The figure illustrates how a generative adversarial network is trained. The network comprise
of a generator G and a discriminator D. First, the generator G takes noise z as input. The generator uses
the noise z to generate training samples which is then transmitted to the discriminator D. The discrimi-
nator D compares the training samples from the generator with the real training data, and will determine
how far the training samples are from the real data. Using backpropagation, the network will train and
learn in order to ensure that the generator will eventually be able to generate realistic training samples

[26].

3ht:tps ://www.researchgate.net/figure/Inference-attacks-against-federated-learning-passive-adversary-by-Melis-et-al-35_
figh_341478640
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2.4 Robust Federated Aggregation

This section is going to look at the aggregation step in federated learning. As mentioned in Section 2.2,
the server broadcasts the model to the participating devices. The devices apply local updates to the global
model, and then the updated models are sent back to the server to be aggregated. In Section 2.2.1, one
can observe that the aggregation methods use a weighted arithmetic average to aggregate the updates.
This is described by Equation 7.

Suppose that a client 7 sends an update which is a statistical outlier. This can happen because the client
has outlier data, or if the client is sending corrupted updates to the server as a result of an adversarial
attack, as discussed in Section 2.3. This outlier update will then have a significant impact on the aggre-
gation, since statistical mean is not a robust method. An example is that if n;w} 1 > njw; +1, Where
1<i,j < K and i # j, and all the clients j’s updates have low variance, then

nk- k
Wiy < E "U.)t+1 ~ wt—‘,—l (11)

Equation 11 shows that the aggregated model w;11 will be strongly influenced by the updates of client i,
which makes the global model vulnerable to corrupted updates.

The paper Robust Aggregation for Federated Learning [27] remedies the problem described above by us-
ing geometric median instead of arithmetic average. The solution is presented in Section 2.4.3. The goal
of Krishna et al. [27] was to develop an aggregation procedure for federated learning which is both robust
against corrupted updates sent by client devices and privacy-preserving. Privacy-preservation can be ex-
pensive, since the system can require more than just sending the updates to the server [27]. This may lead
to more communication overhead, and may require a more complex implementation that differs from al-
ready existing solutions. Krishna et al. required that the aggregation should be communication-efficient
and practical, i.e., require minimal engineering overhead relative to existing systems.

2.4.1 Secure Average Oracle

Bonawitz et al. [17] were the first to implement a Secure Average Oracle, which is a failure-robust pro-
tocol for secure aggregation of high-dimensional data. This aggregation method computes the weighted
arithmetic average

Z A WE (12)
k=1

such that client k’s weight-update wy, is not revealed to any other client or to the server. In Equation 12,
m is the number of selected clients, and «ay, is the weight of the client &, i.e., how significant the client

is when aggregating the updates. Thus, the Secure Average Oracle aggregates the updates in a privacy-
preserving manner, and is typically implemented using cryptographic protocols. Krishna et al. decided to
use the Secure Average Oracle as a module in their robust aggregation method. By using a small num-
ber of calls to a Secure Average Oracle, the goals stated in the last paragraph of Section 2.4 would be ful-
filled. By definition, this would make the aggregation method privacy-preserving since the weights are not
shared to the clients or to the server. Moreover, communication-efficiency would be achieved if the num-
ber of calls to the Secure Average Oracle is small. Since Krishna et al. reused the Secure Average Oracle,
which was already introduced by Bonawitz et al. in 2017, practicality was also achieved as it requires min-
imal divergence from existing solutions [27].

This aggregation scheme requires multiple calls to a Secure Average Oracle, making the aggregation itera-
tive. Multiple calls are required because a single call to the Secure Average Oracle only returns the mean
as described in Equation 7. In Section 2.4, it was established that the mean is not robust which means
that the aggregation method has to be iterative.
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2.4.2 Corruption Model

Before aggregation, each device computes an update. If the device is corrupted, the update may be arbi-
trary. If not, the update is in line with the stochastic gradient descent on the local data. During aggre-
gation, all devices behave nominally, i.e., they give their update to the Secure Average Oracle, even if it
is corrupted [27]. In other words, corrupted and non-corrupted devices are treated equally during the it-
erative aggregation. This happens because the Secure Average Oracle does not know if a device has been
corrupted, or if it is operating with outlier data.

The term corrupted may be ambiguous, since a device can be subject to several types of corruption, and
each corruption type depends on the capability of the adversary. Krishna et al. allowed these corruption
types in their robust aggregation algorithm:

e Non-adversarial:

This corruption type may rise from bugs in the hardware or software of the client device, bugs in the
pipeline, etc. As the name suggests, there is no adversary involved here, and as long as the device
behaves as expected during aggregation, this type of corruption is allowed.

e Static data poisoning:

Static data poisoning is when the adversary can modify the training data of a client, but the modi-
fication is independent of the training of the federated model. This is allowed under the corruption
model. This is explained in greater detail in Section 2.3.1.

e Adaptive data poisoning:

Adaptive data poisoning extends static data poisoning by modifying the training data, while being
able to read the federated model. This makes the adversary able to read the model, and then modify
the training data such that it hurts the global model the most.

e Update poisoning:

Update poisoning is an extension of both static and adaptive data poisoning. The adversary is able
to write the update of the model directly, without having to change the data to get the desired up-
date. This is the most general setting that is allowed in this corruption model. This is explained in
greater detail in Section 2.3.1.

The corruption model described above does not allow an adversary to modify the aggregation method.
This is possible in the Byzantine adversarial setting [27]. Thus, for each round of the iterative aggregation,
the adversary can’t modify the calculated average. Therefore, Byzantine robustness is not compatible with
the Secure Average Oracle. Nevertheless, static and adaptive data poisoning, as well as update poisoning,
are allowed in this corruption model [27].

2.4.3 Robust Aggregation using the Geometric Median

As shown in Section 2.4, the statistical mean is not robust against outliers. Therefore, Krishna et al. had
to find a new way to aggregate the updates from the clients, since the Secure Average Oracle does not ad-
dress this problem. A substitute for the statistical mean is the statistical median. This method is robust
to outliers since all the values are sorted, and the value of the middle is returned as the median. In 1991,
Lopuhaa and Rousseeuw [28] found that the method geometric median is robust. The geometric median is
a method for finding the multivariate median of a set of points in a Euclidean space, and is defined as the
minimizer of

9(2) = axllz — wi2, (13)
k=1

where wy, € R? are the weight-updates from the different clients, and aj, > 0 defines how much each client
is weighted. Therefore, a z € R has to be found such that the sum of the l,-distances from wy, to z is
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minimized. By comparing Equation 7 to Equation 13, one can observe that the first equation computes
the average of the sum of the l>-distances squared, while the second equation has no quadratic term. As
shown in Figure 11, the mean tends to move towards the outlier, whereas the geometric median does not
do that. For this reason, geometric median is a popular method in robust machine learning, starting with
the seminal work of Nemirovski and Yudin in 1983 [29] [27].

o outlier
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Figure 11: The arithmetic mean (AM) converges towards the outlier, while the geometric median (GM)
does not [27].

The geometric median can be computed algorithmically with the Smoothed Weiszfeld algorithm from 1937

[30]
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where v is a threshold value for the max operator. In each iteration, the Secure Average Oracle receives
the weight vectors wy from each client k, and calculates an estimate of the geometric median z, where ini-
tial client weights are 8 = au. z is broadcasted to the clients, where the clients calculate §;. In other
words, the clients adjust how much they should be weighted during the calculation of the geometric me-
dian. This can be seen in Equation 14, since the initial weight a4 is divided by max{v, ||z — wg||2}. Sup-
pose two clients i and j with their respective weight updates w; and w; and initial weights a; = o;. If

Ak

z where (i = (14)

max{v, ||z — wg||2}’

12 = will2 > ||z — wyll2, (15)
the [5-distance of client i’s update from the estimated median is larger than that of client j, then

(67 Q;

T 8 R 1y e e Y R 1o
Assume that v < ||z — wjl|2. Then, 8; < B;, which means that client ¢ is less significant than client j. This
is a consequence of client i’s updates being further away from the geometric median, which could poten-
tially be outliers. This process is also described by Figure 12. Each iteration is implemented with one call
to Secure Average Oracle. Krishna et al. [27] showed that 3-5 iterations, or calls, to the Secure Average
Oracle suffice to weight the clients appropriately. Therefore, this method is communication efficient.
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Figure 12: 3 rounds of Robust Federated Aggregation, where the corrupted devices get scaled down. At
round 1, each client is weighted equally. For each round that passes, the corrupted clients are weighted
less and less. In round 3 one can observe that the corrupted clients are mostly disregarded [27].

By substituting the arithmetic mean in the Federated Averaging algorithm with the geometric median, the
Robust Federated Aggregation (RFA) algorithm is obtained. This algorithm can be observed in Algorithm
3.
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Algorithm 3: Robust Federated Aggregation (RFA) [27]
Procedure SERVER

initialize wo;
for each round t = 0,1,2,... do
m < max(C - K, 1);
Sy <= (random set of m clients);
for each client k € S; in parallel do
wy,, + ClientUpdate(k, wy);
end
w41 < GeometricMedian(wf, )
end
return wr;

Procedure ClientUpdate(k, w)
B + split Py, to set of batches of size B;
for each local epoch i from 1 to E do
for batch b € B do
w+w - nVI(b;w);
end
end
return w;

Procedure GeometricMedian(w*)
initialize oy as client weights;

initialize v as Iy threshold;

initialize N as total number of iterations;
Br = ag;

for each iteration i from 1 to N do

m k

* 1 Brw
Z 4+ 72%3 B

k=1 Pk

for each client k € S; in parallel do
(&37 .
B < ol ==y
end
end
return z;

2.4.3.1 Theoretical Assumptions

The goal of the Robust Federated Aggregation (RFA) algorithm, and all the other federated aggregation
algorithms, is to minimize

K
min | F(w) =Y axFp(w)|, with Fi(w) = L(w,z,y), (17)
k=1

weRd

where (z,y) are covariate-response pairs, and L is a loss function. In other words, the goal is to minimize
the weighted average of per-device objectives Fj. To show the theoretical convergence rate bound of the
RFA algorithm, Krishna et al. [27] assumed that

E(’U), €T, y) = EI7y~P(y - wT(b(x))Q’ (18)

where ¢(z) is a feature representation of the covariate x. This is the least squares objective, which is both
convex and quadratic. Further, each x,y are drawn from the same distribution P for all devices, and each
a = 1/K. Hence, the data has to be IID to prove the theoretical bound of the RFA algorithm, but it will
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still converge for other loss functions £, and for non-I1ID data [27]. Another assumption is that F is a u-

strongly convex, L-smooth function, which are classical assumptions in convex optimization when proving
theoretical bounds [31]. The fraction of corrupted devices has to be p < 3, which means that the major-
ity of devices has to be non-corrupted devices. This assumption corresponds to the properties of geometric
median which has a breakdown point of 0.5, thus up to half of the points may be arbitrary. Other assump-
tions by Krishna et al. were that the feature representation ¢(z) is bounded, and that the noise variance is

o2, where o is the standard deviation in the probability distribution P [27].

2.5 Memorization

Machine learning models can leak information. As mentioned in Section 2.3.2, information leakage in fed-
erated learning is often associated with the model updates sent back to the central server and pose a se-
vere threat as the information that is leaked can potentially be privacy-sensitive data. Information leak-
ages in machine learning models are frequently related to the models memorizing data from the training
dataset. Model memorization is often indicated by models overfitting. Overfitting is phenomenon that
often occurs during model training, and is observed as lower test accuracy and higher training accuracy.
However, this is not always the case. Some models such as large language models rarely indicate overfit-
ting, but can nevertheless memorize outlier data [32].

There currently exists numerous inference attacks that an adversary can utilize in order to retrieve in-
formation directly connected to the training data, e.g. membership inference, GAN attacks and training
data extraction attacks. Training data extraction attacks are relatively similar to GAN attacks in the
sense that both attack types attempt to retrieve the original training data. However, the difference is that
training data extraction attacks does not aim to only reconstruct representative training data like GAN
attacks, but aims to obtain the verbatim training data [32]. The threat of training data extraction attacks
are therefore much more significant than GANs, as such attacks can reveal actual sensitive information in
the training dataset.

2.5.1 Eidetic Memorization

As described in Section 2.5, privacy leakages in machine learning models often occur as a result of the
models having memorized data. In the context of training data extraction, eidetic memorization is defined
as a model memorizing data that only appears in a small fraction of the training data, or if the datapoint
is an outlier. [32]. In other words, models that retain unintended data are subject to eidetic memorization.
We can define k-eidetic memorization with the following equation

X:|{zeX:tCa)| <k (19)

A training example t is k-eidetic memorized for k£ > 1 by a model fy if ¢ is extractable from fy and ¢ ap-
pears at most k times in the training data X. If k is small, and ¢ is still extractable from the model fy,
then we have strong eidetic memorization [32]. In language models, a training example ¢ is extractable by
a model fp if Ip such that

t + argmax fo(t'|p). (20)
t':|t'|=N
In Equation 20, one can observe a prefix p which is the input to the model, where the model predicts the
next string to be the training example ¢ [32]. The notion of querying models for memorized training data
can also be generalized to other deep generative models, and the challenge is only to find the right input p
such that the desirable data can be extracted from the model. Methods for doing these type of extractions
and training data reconstructions on non-generative models are discussed in Section 2.3.

The paper What Do Compressed Deep Neural Networks Forget? [33], describes a strong correlation be-
tween memorization and the size of a neural network. In a deep neural network (DNN), weights are al-
located in sets according to which patterns they can recognize. This means that each set of weights can
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recognize different patterns in the data. Each set of weights may differ in size because one set can cover
more training examples than another set. The training examples recognized by smaller sets of weights, can
be considered outliers. If the DNN is not able to find a pattern, outliers can end up being memorized due
to outliers being assigned to specific weights. Therefore, the larger the DNN is, the more examples it can
assign to weights, thus increasing its ability to memorize data [33]. The memorization can be a problem
since an attacker can use forward-propagation to look at which weights are activated. A weight that is ac-
tivated rarely may indicate that it has memorized data. An attacker can therefore execute an inference
attack, which is described in Section 2.3.2, in order to obtain data representative to the original training
data [33].

Sara et al. introduced a method for distilling neural networks such that the model does not memorize out-
liers in the data. The method is called model distillation, and concerns fitting the knowledge of a large
neural network into a smaller one. This is done by having a student network learn from a larger teacher
network, and finally pruning the student network by setting a subset of weights or filters to zero [33]. The
distillation will cause the model to loose performance on outlier data. The student network will then have
less ability to memorize the outliers, since it has fewer weights to allocate for pattern recognition on the
data [33].

2.5.2 Memorization in Federated Learning

Federated learning is an approach that differs from centralized learning, and the issue of unintended mem-
orization in federated learning is no exception. The nature of federated learning makes for an approach
that is naturally more resilient against unintended memorization. Federated learning allows its clients to
keep their data local which results in federated learning instinctively grouping the data according to the
heterogeneous clients. The fact that data is grouped by clients, makes it conceivable that training exam-
ples restricted to a small group of clients may be encountered less frequently during training in federated
learning. In turn, this can decrease memorization [34].

2.6 Differential Privacy

This section is going to look at federated learning from a privacy perspective. To reiterate, the federated
learning loop consists of a server broadcasting the weights of the global model to participating clients, the
clients perform SGD-steps on the weights with their local data, and send the updates back to the server
to be aggregated. This is repeated until model convergence. In this loop, the aggregation step is the only
time information is communicated from the clients to the server. Federated learning does not aim to col-
lect privacy-sensitive data from the clients, but rather distribute the model so that it can be trained in
the vicinity of the data-owners. However, these client-updates can contain privacy-sensitive data [35]. Tt is
still substantially less information from an information theoretic point of view than if the client sent the
whole raw dataset, but an attacker can still infer information about the privacy-sensitive data by looking
at the single updates before aggregation. The inference of the client data from the weight updates depends
on what kind of model is being trained, and can range from looking at non-zero coeflicients in the weights
from the clients, to more complex methods.

Before introducing differential privacy to the federated learning process, some important properties re-
garding the client-updates will be presented [35]:
e The updates are ephemeral:

The updates from the clients are never stored by the server, and are discarded immediately after ag-
gregation. In non-federated machine learning, it is normal to hold the data from the clients in order
to train several models on the data. Storing privacy-sensitive data comes with a high responsibility
to protect that data. This is not the case in federated learning.

e The updates are focused:

The updates are minimal since the clients are only sending information that is strictly necessary to
improve the current model. Instead of sending the whole dataset, only the weight updates are sent
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to the server. This improves privacy and security by minimizing the attack surface.

e The updates are in aggregate:
When the server improves the global model, it only needs to know the aggregated updates, by for
example using a weighted average or geometric median. The server does not consider every single
update.

It would be desirable if the server only saw the aggregate of the updates, and did not have to process ev-
ery single update from the clients. Methods like Secure Multi-Party Computation and Secure Aggregation
try to achieve this, but the main challenge with these methods is that they are not robust to clients failing
to deliver updates, which is often the case in Cross-Device federated learning. Even if one assumes that
the server is only able to see the aggregated updates, the model might memorize a particular clients data,
using eidetic memorization as discussed in 2.5. Differential privacy tries to solve this problem by clipping
the updates from the clients, and adding noise to the aggregated weights.
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Figure 13: An overview of differential privacy. The output from a query with or without a client should be
almost the same. In the figure, a third party queries two databases differing by one row, and receives an
output with a difference of at most € .

2.6.1 Definition of Differential Privacy

Suppose two databases d and d’, where d’ C d, and |d| — |d’'| = 1. In other words, suppose two databases
which only differ by one element. e-differential privacy, or strict differential privacy, is achieved when query-
ing on d and d’, and the result has a difference of at most €. € can be considered a privacy budget, i.e. if €
is large the privacy is weaker than if € was small. A privacy mechanism M gives e-differential privacy if

Pr{M(d) € S] <exp(e) - Pr[M(d) € 9], (21)

where M is a randomized function, where the input is a database, and the output is the released informa-
tion. This means that M can be considered a privacy-preserving query function [36]. S C Range(M) is
the subset where two queries are defined to give almost the same result. Equation 21 can be rewritten as

Pr[M(d) € 5]
PrM(d@)es] = ¢

e > 0 = exp(e) — 1, which means that the probability of the query M being in the same subset S for
both d and d’ is going to be relatively equal when ¢ is small.

xp(e). (22)

From Equation 22, one can observe that it does not matter if a row is present or not in the database. One
will get almost the same result from the query either way. Differential privacy provides privacy in the
sense that it is not possible to determine if a row is present in the database which is queried, since d and

4Qverview of Differential Privacy - https://www.infosysblogs.com/infosysdigital/2020/07/differential_privacy_
the_priva.html
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d' are interchangeable, and the queries will give statistically indistinguishable results. This is also explained
by Figure 13, where querying on the databases differing by one element will give almost the same results.

Differential privacy is a perturbative privacy method, meaning that privacy is obtained by adding noise
to the query function f which gives the true result of a query. For e-differential privacy, the noise is com-
monly drawn from a Laplace distribution [36], and is determined by the sensitivity of the true query func-
tion f. This sensitivity of the query function f: D — R™ is defined as

Af = max||f(d) = f(d)]s, (23)

Vd,d" € D suchthat d C dand |d] — |d| = 1[36]. D is the set of all databases, and R™ is the n-
dimensional set of results from the query. Thus, the sensitivity of the query function f is defined as the
maximal difference between two databases differing by only one element. Now one can define how the
noise is added to the query function f:

A
M(d) = f(d) + Laplace (O7 f) . (24)
€
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Figure 14: PDFs of Laplace distribution with different locations p and scales b °.

Figure 14 shows how much noise is added to the query function f. Since Laplace (0, %) is added to the

query function, the location, or mean, of the noise is 0, and the standard deviation of the noise is
A
V2b =2 (f) : (25)
€

By looking at Equation 26 which describes the probability distribution function (PDF) of the Laplace dis-

tribution
1 |z — pl
% exp < 2 ) , (26)

one can observe that it is proportional to exp (f|a: - u|ALf), since b = %. If one decreases €, the curve

will become more flat, resulting in a large magnitude of noise. In addition, if the sensitivity of the query
function f is high, the curve will become even flatter, giving more noise.

5The pdf of the Laplace distribution - https://en.wikipedia.org/wiki/File:Laplace_pdf_mod.svg
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2.6.1.1 Relaxed Definition of Differential Privacy

The relaxed definition of differential privacy can be used to obtain a more flexible privacy preserving mech-
anism:

Pr[M(d) € S] < exp(e) - Pr[M(d’) € S] + 6. (27)

The § in Equation 27 is added to the e-differential privacy definition described in Section 2.6.1, and ac-
counts for the probability that the privacy guarantee of e-differential privacy is broken. This relaxed defi-
nition is also known as (¢, §)-differential privacy [36]. The sensitivity of the query function f is now calcu-
lated in the following way:

Apf = max [ f(d) - F(@)lz- (28)

Equation 23 and 28 are relatively equal, the only difference is that the noise is scaled from the /;-norm to
the lo-norm. The noise in (¢, §)-differential privacy is drawn from the Gaussian distribution. Equation 29
describes how the noise is added to the query function [30].

M(d) = f(d)+ %N <o, 2 <?)> . (29)

2.6.1.2 Moments Accountant

In Section 2.6.1, € is described as a privacy-budget. To find out how much e is being used for each epoch
of training, the notion of privacy loss is utilized. The paper Deep Learning with Differential Privacy [37]
introduced a method for tracking privacy loss. Abadi et al. [37] framed the privacy loss as a random vari-
able X, and used its moments-generating function

Mx(t) :=E[e™], teR (30)

to determine the distribution of X. This accounting method is stronger than methods like the strong com-
position theorem, as moments accountant takes the noise distribution into consideration[37]. The difference
between these two accounting methods is illustrated in Figure 15.

strong compesiton —E3—
moments accountant —i—

20t

epsilon

o

=0 o0 150 200 250 300 350 400
epach

Figure 15: Accumulated e graphed as a function of number of epochs using the strong compositional the-
orem and moments accountant. The moments accountant gives a much tighter estimation of the privacy
loss compared to the strong compositional theorem [37].
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2.6.2 Federated Learning with Differential Privacy

Differential privacy (DP) can be used in a federated learning setting in order to enhance privacy. By com-
paring federated learning to DP as explained in Section 2.6.1, one can look at the server as the query func-

tion f, and the clients as the databases d. After the server has collected the updates, or queried the up-
dates, one can add noise drawn from a distribution to the aggregated weights, where the noise is propor-
tional to the client’s update. To get a DP-guarantee, there has to be some changes to the FedAvg algo-
rithm described in Algorithm 2:

e The first step in Federated Averaging is to select a random subset of size C' from the available clients.
In the DP-setting, the clients are selected independently with a probability ¢ where the size is an
expected value E[C]. Because of the addition of noise, there has to be selected a larger number of
clients each round. This is because the noise is proportional to one clients update, and the relative
effect of the noise on the average value can be decreased by adding more clients [35].

e In the DP-setting, the clients return a clipped version of the updates to the server such that one
client’s data does not influence the final average. This is done by bounding the maximum lo-norm of
any client’s update. The clipping can either be fixed [35], or it can be done adaptively as described
in the paper Differentially Private Learning with Adaptive Clipping [38]. In this paper, the authors
apply adaptive clipping to the median update l-norm, thus eliminating the tuning of any clipping
hyperparameter.

e As described in the first paragraph in this section, the server can be viewed as the query function
f- To be more exact, the query function f is the aggregator, which in the case of federated averag-
ing is a weighed arithmetic mean. The sensitivity A f of this function must be calculated so that the
appropriate amount of noise can be added to the average. The calculation of the sensitivity and the
choice of the distribution to draw the noise from depends on the choice of using ¢-DP or (¢, d)-DP

[35]-

After integrating the changes mentioned in the list above with the Federated Averaging algorithm, one
will have obtained the Differentially-Private Federated Averaging algorithm:

Algorithm 4: Differentially-Private FedAVG [35]

Procedure SERVER
initialize wo;
for each round t = 0,1,2,... do
Select each client independently with probability g;
for each client k in parallel do
wy,, + ClientUpdate(k, wy);
end
Wiyl £ Ef:l %wfﬂ + Noise;
end
return wr;

Procedure ClientUpdate(k, w)
B < split Py to set of batches of size B;
for each local epoch i from 1 to EE do
for batch b € B do
w+w - nVI(b;w);
end
end
return Clip(w);

The reason for using FedAvg with DP instead of FedSGD, is that FedAvg is more communication-efficient

since the clients run several epochs of SGD locally before sending the updates to the server. From a pri-
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vacy standpoint, the server has to query the decentralized dataset fewer times compared to FedSGD. Thus,
using an algorithm which is more communication-efficient will also be beneficial from a privacy point of
view. The disadvantage of using DP is that is costs more in terms of computation, since the server has to
select more clients compared to ordinary FedAvg. DP also introduces more hyperparameters to tune, such
as €,  and ¢. Using DP will also force a trade-off between privacy and model performance due to the fact
that too much noise and clipping could decrease the accuracy of the final model.

2.7 Homomorphic Encryption

Homomorphic encryption (HE) is an encryption technique which allows calculations on encrypted data
without having access to the private key. The result of the calculations are also encrypted values, and only
the holder of the private key can see the results. This technique is useful when there is a third party, for
example a cloud service, doing computations on sensitive data provided by a user. If the cloud service
were to decrypt the data before performing calculations and return the result in plaintext, that would be
considered a loss of utility, especially when the user wants to hold their data private . Homomorphic en-
cryption can also be utilized in a federated learning environment. If the aggregation server does not want
the clients to know the parameters of the shared global model, the server can use use HE to encrypt the
parameters, let the clients do optimization on encrypted values, and get encrypted updates back to the
server. This cycle is illustrated in Figure 16.
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Figure 16: A client C uses HE to send encrypted data m to a server S, which returns f(m), which C can
decrypt. [39]

This section will provide a mathematical definition of HE, look at some HE schemes and some applications
of HE within the field of machine learning.

2.7.1 Binary operators, Groups, and Rings

To describe homomorphic encryption in a precise manner, some definitions in abstract algebra must be
reviewed. Therefore, the following sections are going to give an introduction to binary operators, groups
and rings. With these definitions in mind, one can define homomorphisms and homomorphic encryption.

2.7.1.1 Binary operators

As described in the book A First Course in Abstract Algebra, 7th Edition by John B. Fraleigh [10], a bi-
nary operator * is an operator used on a set G such that Va,b € G, then a *x b € G too. This means that *
can be viewed as a mapping

*:GxG— G suchthat VY(a,b) € GxG = x((a,b)) =axbeG. (31)

6Microsoft - https://www.microsoft.com/en-us/research/project/homomorphic-encryption/
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In other words, if one were to take two elements in the set G, and apply a binary operator on those ele-
ments, then the result will also be an element in the set G. An example is the set of integers Z and the
operator 4. Since the result after adding two integers is an integer, then + is a binary operator with re-
spect to the set Z [40].

2.7.1.2 Groups
A group (G, *) is a set G # () with a binary operator * where the following properties are satisfied:
1. Associativity. Va,b,c € G
(axb)xc=ax*(bxc) (32)
2. Identity Element. de € G such that Va € G
axe=a=exa. (33)
e is called the identity element in the group (G, *).
3. Inverse. Va € G,3a~! € G such that
axa '=e=a"'x%a. (34)
a~! is the inverse of a in G.
An example of a group is (Z,4). (G, ) is abelian if a xb = b= a for all a,b € G [10].
2.7.1.3 Rings
A ring (R,+,-) is a set R # () with two binary operations + and - (addition and multiplication) such that
1. (R,+) is an abelian group.

2. Multiplication is associative:

(@a-b)-c=a-(b-c), (35)
where a,b,c € R.
3. The distributive laws are defined:
a-(b+c)=a-b+a-c (36)
(a+b)-c=a-c+b-c (37)

where a,b,c € R.

An example of a ring is (Z, +, ). [10]

2.7.1.4 Homomorphisms and Homomorphic Encryption

A homomorphism is a mapping

¢:A— B (38)
such that
Vo,y € A: gz xy) = d(x) « ¢(y), (39)
where * and " are binary operations in the algebraic structures (for example groups or rings) A and B,
respectively [40]. This is where the term homomorphic in homomorphic encryption comes from. By look-

ing at the informal definition of homomorphic encryption in Section 2.7, one can observe that one wishes
to perform calculations on encrypted values, and get a result which is consistent when decrypted. Section
2.7.2 uses Equation 39 and the theory from Section 2.7.1.3 to give a formal definition of homomorphic en-
cryption.
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2.7.2 A formal definition of Homomorphic Encryption
Let (P,+,-) be the ring of plaintexts, and (C, ®,®) the ring of ciphertexts. Then the mapping

E:(P,+,-) = (C,&, Q) (40)

is a function that maps plaintexts to ciphertexts, i.e., an encryption function. The decryption function D
is the inverse of E:

E'=D:(C,®,®) = (P,+,-). (41)

Let a,b € P be two plaintexts, and let * and *’ be binary operators with respect to P and C. This encryp-
tion scheme can be defined as homomorphic if

D(E(a) ¥ E(b)) = D(E(a*b)) =axb. (42)
Equation 42 uses the homomorphism property defined by Equation 39. Since

D(E(a) #' E(3)) = axb, (43)

the binary operation *’ between the ciphertexts corresponds to the binary operation * between the plain-
texts, thus illustrating consistency.

The main challenge with homomorphic encryption is to construct the functions e and d such that Equa-
tion 42 is true. Through the history (see Figure 17), there have been developed different schemes for solv-
ing this problem [39], namely

e Partially Homomorphic Encryption (PHE)

PHE only allows either addition or multiplication between the encrypted values. Therefore, this en-
cryption scheme is limited when it comes to evaluating functions on encrypted values. PHE schemes
are used in applications like e-voting and Private Information Retrieval. Section 2.7.2.1 describes a
cryptosystem which is partiallly homomorphic.

e Somewhat Homomorphic Encryption (SWHE)

SWHE allows both addition and multiplication between the encrypted values, so %' € {+,-}. In other
words, this encryption scheme is more flexible than PHE. A problem with both PHE and SWHE is
that the size of ciphertexts increases with each operation, meaning that there is only a limited num-
ber of homomorphic operations that can be performed before it is computationally infeasible.

e Fully Homomorphic Encryption (FHE)

FHE allows an unlimited number of operations on the encrypted values for an unlimited number of
times. This means that FHE solves both the problem with limited evaluation on encrypted values,
and the problem with performing homomorphic operations for a limited number of times.

DH'76  emis2 Paillier '99 «Fully Homouorplic Enchyptiurs

El-Gamal ‘85 Gen '09

2016

Benaloh "94

# Privacy Ho momorphisme is introduced

RAD 78

Figure 17: A timeline of the different HE schemes, from PHE to FHE. [39]
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2.7.2.1 Paillier Cryptosystem

Paillier cryptosystem is a probabilistic encryption scheme based on the composite residuosity problem.
This problem states that it is difficult to find a y such that

z=y" mod n? (44)
where z,n € Z and n is composite [11].
The keys are generated by choosing two large prime numbers p and ¢ such that
ged(pg, (p = 1)(g—1)) = 1. (45)
Then let n = pg and A = lem(p — 1,¢ — 1). A random number g is chosen from Z,2 such that
ged(n, L(g* ™)) =1, (46)

where )
Lu) =2 —. (47)

Thus, the public key is (n, g) and the private key is (p, q).

The encryption function £ : P — C is given by

m,.n

c=E(m)=g¢g™" mod n? (48)
where m is the plaintext, and r is a random integer [39].

The decryption function D : C — P is given by

L(c* mod n?)

m =D = L% mod n?)

mod n. (49)

Let a,b € P be two plaintexts, and let * be a binary operation between the corresponding ciphertexts E(a)
and E(b). Then

E(a)* E(b) = (¢%" mod n?) % (¢°r mod n?) = ¢***(ry *1)" mod n? = E(a +b). (50)
As illustrated above, the Paillier Cryptosystem is homomorphic with respect to addition, since it has the
same form as Equation 39.
2.7.3 Homomorphic Encryption in Federated Learning

As mentioned in Section 2.7, homomorphic encryption can also be applied to federated learning. The fol-
lowing algorithm illustrates FedAvg (see Section 2.2.1.2) with fully homomorphic encryption (FHE), be-
cause it is desirable to calculate non-linear activation functions, such as the sigmoid function or tanh,
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which is not defined in PHE or SWHE.
Algorithm 5: FedAvg with HE
Procedure SERVER
initialize cryptosystem,;
initialize wo;
wo ek (wo);
for each round t = 0,1,2,...,T do
m < max(C - K, 1)
Sy « (random set of m clients);
for each client k € Sy in parallel do
wy,, + ClientUpdate(k, wy);
end
K ng. .k .
Wig1 < Dpy HEWES
end
wr < dK(wT);
return wr;

Procedure ClientUpdate(k, w);
B < split Py to set of batches of size B;
for each local epoch i from 1 to E do
for batch b € B do
w+w - nVI(b;w);
end
end
return w;

As Algorithm 5 illustrates, the server encrypts the weights wg before broadcasting the weights to the m
clients, and the server decrypts the weights after the T" rounds are completed. This means that w; broad-
casted to the clients are encrypted, and the clients do stochastic gradient descent on encrypted weights.
Only the server is able to decrypt the weights, and the clients are not able to see the actual weight up-
dates from the server.

A paper from 2020, BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning
[12], shows that when utilizing federated learning with homomorphic encryption the majority of time spent
is on performing calculations between encrypted values, and not the main task which is to train a model
with machine learning. This happens because homomorphic encryption operates with long integers, in
other words, F maps the plaintexts to large integers in C.

Key size | Plaintext Ciphertext Encryption | Decryption
1024 6.87MB JRTG4ME | 216.87s 68635

2048 6.8 7MB S2717ME 1152985 357.07%
3072 6.87MB T5462ME | S110.14s 003 8l

Figure 18: Paillier Cryptosystem benchmarked with different key sizes. The Figure describes how the size
of the ciphertext increases with the key size. It also shows that the ciphertext is much larger than the
plaintext. The increase in ciphertext size leads to an increase in encryption and decryption time [42].

Figure 18 shows how the ciphertext grows with the different key sizes. With a key size of 2048, the cipher-
text is almost 100 times larger than the plaintext. This means that homomorphic encryption has both
computational and communication overhead, which makes it impractical to train state-of-the-art models
in production. On the other side, homomorphic encryption offers strong privacy and no accuracy loss. The
strong privacy comes as a result of the encryption and the fact that the clients will never be able to see
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the model updates. Furthermore, since the homomorphic encryption scheme is loss-less [12], no informa-
tion is lost when encrypting and decrypting the weights.
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3 Method

Based on theory from Chapter 2, we conducted several experiments in order to answer the research ques-
tions described in Chapter 1. This chapter is going to give an overview of the methodology behind the
experiments, such that the results in Chapter 4 can be reproduced.

3.1 Process

This section will describe the process of the project prior to the implementation of federated learning and
the experiments performed accordingly. It will cover how the topic was researched, why the dataset used
in the experiments was chosen and an analysis of the dataset.

3.1.1 Research

In recent years, the machine learning approach known as federated learning emerged. Due to the current
nature of the approach, there is still limited amounts of research concerning the topic. However, papers
and frameworks in regards to federated learning are constantly being published. In addition, many large
companies such as Google have hosted recorded seminars and talks which allow other interested parties to
gain insight into the mechanisms behind federated learning.

As federated learning is relatively new, this project required extensive research in relation to the topic
prior to performing the experiments discussed in Section 4. This research consisted of utilizing the in-
formation that was currently available such as papers and seminars on federated learning, and federated
learning in regards to privacy, communication efficiency and model performance. Furthermore, the infor-
mation gathered from the research phase of the project was discussed thoroughly, often with the academic
adviser, in order to truly understand it. The research phase of the project process, was most intense at
the start of the project. However, some research was done as the project advanced due to uncovering new,
relevant topics.

3.1.2 Data Collection

Following the research, the search for a dataset that could be used in the implementation of federated
learning started. The ideal dataset would contain medical data, preferably electrocardiogram (ECG) data.
This was due to the fact that we wished to test what benefits federated learning resulted in applied to
medical data, compared to centralized learning. Furthermore, Infiniwell works with medical data, specif-
ically ECG data, which encouraged exploration concerning the effect of federated learning in regards to
such data. It was eventually decided that the MIT-BIH Arrhythmia Database 7 should be utilized in the
experiments. This dataset contains two-channel ambulatory ECG recordings with a sampling frequency
of 125Hz, gathered from 47 different people over a time period of four years. The dataset consists of five
classes, which are illustrated in Figure 19.

The motivation behind choosing this dataset was that the dataset contained a relatively large amount of
training and test data, resulting in a total of 109446 examples. In respect to the limitations in memory
and processing capacities of the computers used in the project, this was a sufficient amount of data. The
dataset also consisted of data from a decent amount of subjects, as well as being gathered over an accept-
able time period which made it even more desirable. Furthermore, this dataset was chosen because Infini-
well, our external client, previously had trained deep learning models using centralized learning with this
exact dataset. This made the dataset suitable for our project as it was beneficial to find a dataset that
could simulate how federated learning would work in environments such as those Infiniwell works with.

3.1.3 Data Analysis

To obtain sufficient information about the MIT-BIH Arrhythmia Database, data analysis was performed.
The data analysis gave insight into how large the dataset was, the distribution of data between the classes

"MIT-BIH Arrhythmia Database - http://ecg.mit.edu/george/publications/mitdb-embs-2001.pdf
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and an overview of what the average data example looked like for each class. Moreover, the data analysis
allowed observation of the raw data. This was an important part of the process as it gave insight into how
the data was structured and what needed to be altered during data preprocessing. Table 1 illustrates an
excerpt of the raw data in the MIT-BIH Arrhythmia Database. Fach row in the table describes an ECG-
wave, and the last column describes the class of the ECG recording for each row.

0 1 2 3 4 ) 184 185 186 187

0.000000 0.135593 0.409201 0.736077 0.832930 0.765133 0.0 0.0 0.0 0.0

1.000000 0.816742 0.042986 0.027149 0.131222 0.135747 0.0 0.0 0.0 0.0

1.000000 0.924670 0.706215 0.416196 0.180791 0.103578 0.0 0.0 0.0 1.0

0.650190 0.581749 0.536122 0.501901 0.490494 0.486692 0.0 0.0 0.0 4.0

0.120907 0.211587 0.375315 0.471033 0.556675 0.672544 0.0 0.0 0.0 0.0

Table 1: Excerpt of the raw data. The first 187 columns contain the voltages in the interval [0, 1] for the
ECG recordings, and the last column contains the class of the ECG recording. The classes are encoded as
0.0,1.0,2.0,3.0, and 4.0. The classes are shown in Figure 27, and the encodings correspond to the order
the ECG recordings are shown (from left to right).

While performing data analysis on the MIT-BIH Arrhythmia dataset, it was discovered that the dataset
was heavily imbalanced. 83% of the dataset consisted of the class Normal beats, while the remaining 17%
of the dataset was distributed between the remaining four classes Unknown beats, Fusion beats, Ventricu-
lar beats and Supra-ventricular beats. The distribution of the dataset is illustrated in Figure 19.
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Figure 19: Distribution of the data in the MIT-BIH Arrhythmia Database. The dataset is heavily imbal-
anced, where the Normal beats is the majority class.

In order to determine the quality of the data, we wanted to observe the relationship of intensities at ex-
act positions between the ECG waves for each class. If the 2D histogram shows significant overlap be-
tween the ECG’s of one class, it would imply that the examples of one class are consistent. In addition,
this would allow us to gain insight regarding the variance between the ECG’s in the different classes. The
2D histograms for each class are illustrated in Figure 27.
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Figure 20: Plots of 2D Histogram for each class. The colorbar shows how many points fall into the same
bin. The z-axis describes the milliseconds (ms) from when the recording started, and the y-axis describes

the recorded millivoltage (mV).

3.2 Execution

This section will describe how the experiments with federated and centralized learning were implemented
in the project. This section will also explain the methodology behind the experiments.

3.2.1 Experiment Process

During the execution phase of the project, we utilized the method described in Figure 21 in order to pro-
vide empirical support for the experiments performed. Figure 21, illustrates the hypothetico-deductive
model. This model is considered to be a description of a traditional scientific method, and aims to gain
empirical support for a hypothesis [43].
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hypothesis
consistent with
the result?

Observations

Figure 21: Illustration of the Hypothetico-deductive model. The model describes a scientific method for
exploring a research question. First, an observation is made. The observation is used to formulate a re-
search question, which provides the foundation for creating a hypothesis. Based on the hypothesis, experi-
ments are performed and results are obtained. The results are compared to the hypothesis in order to de-
termine if they were consistent.

Some experiments performed during the project, loosely utilized this method. When we discovered some-
thing we were curious about, we tried to structure our experiments using the philosophy behind this method.
We found that method was most useful in regards to experiments that concerned robust federated aggre-
gation, memorization, differential privacy and homomorphic encryption.

All results found during this process were logged thoroughly. The experiments were logged in a directory
in the project where the different parameters concerning the experiments were stored. Due to the logging,
we were later able to compare experiments in great detail, and to visualize the results using technologies
such as TensorBoard, which is described in Section 3.3.1.2. All random functions such as the dataset shuf-
fling, weight initialization of the models and the random client selection were initiated from a random
seed. These choices increased reproducibility of the experiments conducted.

3.2.2 Experimentation Pipeline

In order to run the experiments, we needed a robust pipeline to perform data preprocessing, model initial-
ization and other components necessary for the training loop. Finally, the pipeline was used to perform
model analysis and model evaluation. To implement the pipeline, the technologies listed in Section 3.3
were used.
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Figure 22: Illustration of the implemented machine learning pipeline. From the figure, one can observe
that the first step in the pipeline is to collect and analyze the data retrieved from the database. Once the
data has been collected and analyzed, the data will be processed and prepared for model training. More-
over, the model and its parameters are defined before the model starts training. The metrics calculated
during training are logged, and the trained model is stored in the model database. Finally, the stored
model and its metrics are used in model evaluation and model analysis.

Figure 22 illustrates the experimentation pipeline used in the experiments described in Section 4. The
pipeline is representative for both the centralized and the federated pipeline. This is because the feder-
ated learning pipeline implemented is not production-ready, and uses TensorFlow Federated. This means
that the clients are initialized locally which requires the pipeline to collect the data in order to distribute
it to the clients. In a production-ready federated learning pipeline, the data would not have been col-
lected. Therefore, we first collected the data from the database and analyzed it. Once this had been done,
the data was cleaned and processed in order to prepare it for the training loop. Furthermore, the model,
optimizer and hyperparameters were defined, and sent into the model training loop. The training loop
was either centralized or federated. While the model was training, the model was validated using valida-
tion data. All metrics obtained during and after training were stored, which made accessing the results

of an experiment easy. After a model had been trained, it was stored in the model database. From this
database, any trained model could be imported into a Jupyter Notebook for further evaluation and analy-
sis. All modules in the pipeline were fully automated, and we only had to adjust a few parameters in order
to define an experiment run.

3.2.3 Data Preprocessing

As stated in Section 3.1.2, the MIT-BIH Arrhythmia Database dataset was selected to be utilized in the
experimentation pipelines. Figure 19 in Section 3.1.2, illustrates that the dataset was heavily imbalanced.
Imbalance can cause a biased model, thus provoking a decrease in validation or test accuracy. In order to
correct this issue, we had to resample the data to obtain a balanced dataset. Figure 23 illustrates the data
distribution after it was resampled.
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Figure 23: The figure describes the training data distribution after resampling. The training data after
resampling consists of 20000 examples per class.

The dataset used in this project was originally organized by class which means that if the data was split
into training, test and validation sets, the data in each set would not be representative of the overall data.
In order to create a representative distribution, the data was shuffled with a buffer size of 10000 prior to
being split in order to reduce the variance, and to ensure generalized models that would be less prone

to overfitting. Next, consecutive examples in the dataset were combined into batches where each batch
consisted of 32 examples. The reason why we chose to utilize batching was because it would decrease the
computation time due to not having to compute the true gradient for the entire dataset. Using batching
allows for less computation time, while still calculating a sufficient estimate of the gradient. The train-
ing data consisted of 100000 resampled examples, where each class had 20000 examples. The test data
consisted of 21892 examples. 20% of the training data was used as the validation dataset for testing the
model while training.

Once the data had been shuffled and batched, the data that were to be applied in centralized learning

was ready to be used in its respective experimentation pipeline. However, in federated learning the data
must be located at each client and therefore requires more preprocessing. In order to simulate data at each
client, we created methods specific to federated learning where the data was distributed on multiple clients
in different ways. Three separate methods were constructed for this purpose:

1. Class Distributed:

Each client received data from one class exclusively. This distribution was created because it gave an
overview of how federated learning worked, and how it responded to having high variance amongst
clients. However, this distribution is highly unlikely in reality.

2. Non-IID Distributed:

Each client received an approximation of non-IID data. To acquire a non-identical data distribution,
we shuffled the data and assigned it randomly amongst the clients. Due to the nature of the dataset,
it was difficult to determine dependencies between the data points as we only had access to the raw
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ECG-data, and not any other metadata. This distribution was created due to non-IID being a com-
mon data distribution in federated learning.

3. Uniform Distributed:

Each client received equal amounts of data from each class. This distribution was created to observe
how federated learning responded to training on data that was equally distributed. This is also an
unlikely distribution, but more plausible than class distributed.

These methods were utilized because we wanted to observe how a model trained with federated learning
was effected by different data distributions. See Section 4.2.3.2 for the experiments with the different data
distributions. The methods also converted the data from Pandas DataFrame to TensorFlow Federated
ClientData objects, allowing the data to be directly inputted into the experimentation pipeline for feder-
ated learning.

3.2.4 Overview of Machine Learning Models

The experimentation pipeline illustrated in Figure 22, describes the need to define a model in order to pro-
ceed to model training. In this project, three different models were built in order to look at how different
models perform in federated learning compared to centralized learning. The weights of all three neural
networks were initialized with The Glorot uniform initializer. The weights are drawn from a uniform dis-

tribution within:
6 6
fan_in + fan_out fan_in + fan_out

In Equation 51, fan_in is the number of input units in the weight tensor, and fan_out is the number of out-
put units. The following subsections will describe the models built and why they were explored.

3.2.4.1 Softmax Regression

The Softmax Regression model displayed in Figure 24, was the smallest model implemented, and can be
described with the following equation:

softmax(xW + b). (52)

This model was more interpretable than the more complex neural networks described in Sections 3.2.4.2
and 3.2.4.3, making it useful for performing inference attacks on the data used to train the model. This
made the model suitable for experiments regarding model extraction and homomorphic encryption, since
we could easily display the weights of the model after optimization and obtain an interpretable represen-
tation of the training data. As shown in Figure 24, the model only consisted of one fully-connected layer.
Therefore, the model could not make a very high-dimensional representation of the data, making it easier
to get a representation of the training data.

input: | [(None, 186, 1)]
output: | [(None, 186, 1)]

input_3: InputLayer | float32

input: | (None, 186, 1)

flatten 3: Flatten | float32
output: (None, 186)

Y

input: | (None, 186)
output: (None, 5)

dense 10: Dense | float32

Figure 24: Illustration of the Softmax Regression model. The model has softmax activation in the last
layer of the network. The model has 935 parameters.
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3.2.4.2 Artificial Neural Network

The artificial neural network (ANN) used in the experiments, was implemented as a baseline model with
only fully-connected layers. We wanted to build a model which was fairly easy to implement, and that
could train quickly in order to be able to test new features without having to train a more complex model,
e.g. convolutional neural network. In addition, the ANN model consist of fewer trainable parameters which
made it possible to test theories such as reduced memorization in smaller models. Figure 25 illustrates the
structure of the ANN.

input: | [(None, 186, 1)]
output: | [(None, 186, 1)]

input_1: InputLayer | float32

input: | (None, 186, 1)

flatten_1: Flatten | float32
- output: (None, 186)

Y

input: | (None, 186)
output: | (None, 50)

dense_2: Dense | float32

input: | (None, 50)

dense_3: Dense | float32
- output: | (None, 50)

input: | (None, 50)

dense 4: Dense | float32
output: | (None, 50)

input: | (None, 50)

dense 5: Dense | float32
output: | (None, 5)

Figure 25: This neural network consists of 3 fully-connected hidden layers, and the activation function ap-
plied between each layer was the ReLU activation function. Softmax was applied to the logits of the neu-
ral network. The model has 14705 parameters.

3.2.4.3 1D Convolutional Neural Network Model

The 1D Convolutional Neural Network (CNN) displayed in Figure 26, was implemented because we wanted
to test a more complex model with federated learning, and to compare it with the ANN described in Sec-
tion 3.2.4.2. Another reason for implementing the CNN model was that Infiniwell have used a similar ar-
chitecture for their models. The 1D CNN can perform automatic feature extraction from time series data
by using convolutions, resulting in effective pattern recognition. This property made the model well-suited
for performing classification tasks on the ECG-dataset.
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input: | [(None, 186, 1)]
output: | [(None, 186, 1)]

convld_input: InputLayer | float32

input: (None, 186, 1)
output: | (None, 180, 16)

convld: ConvlD | float32

input: | (None, 180, 16)

leaky re lu: LeakyRellU | float32
output: | (None, 180, 16)

input: | (None, 180, 16)
output: | (None, 90, 16)

max_poolingld: MaxPooling1D | float32

input: | (None, 90, 16)

convld 1: ConvlD | float32
output: | (None, 86, 16)

input: | (None, 86, 16)

L lu 1: L RelU | float32
eaky re lu_ cakyRe oa output: | (None, 86, 16)

input: | (None, 86, 16)
output: | (None, 82, 16)

convld 2: ConvlD | float32

input: | (None, 82, 16)

leaky re lu 2: LeakyRelU | float32
output: | (None, 82, 16)

input: | (None, 82, 16)

convld 3: ConvlD | float32
- output: | (None, 78, 16)

input: | (None, 78, 16)
output: | (None, 78, 16)

leaky re lu 3: LeakyRelU | float32

input: | (None, 78, 16)

max_poolingld_1: MaxPoolingl1D | float32
output: | (None, 39, 16)

input: | (None, 39, 16)
output: (None, 624)

flatten: Flatten | float32

input: | (None, 624)
output: | (None, 128)

dense: Dense | float32

Y
leaky re lu 4: LeakyRelU | float32

input: | (None, 128)
output: | (None, 128)

input: | (None, 128)
output: (None, 5)

dense 1: Dense | float32

Figure 26: This neural network consists of 4 convolutional layers with 16 filters each. After each convolu-
tional layer, maxpooling was applied where the pooling size was 2. Furthermore, the LeakyReLLU activa-
tion function was used between the layers. Softmax was applied to the logits of the neural network. The
model has 84661 parameters.



3.2.5 Implementation of Federated Learning

Federated learning (FL) is a relatively new method for doing distributive machine learning, and imple-
menting FL from scratch would require a comprehensive technology stack. Therefore, we implemented fed-
erated learning using TensorFlow Federated (TFF), which is described in Section 3.3.1.1. To initialize a
FL experiment, we defined an Iterative Process object. This object is defined by the aggregation method,
the server optimizer and the client optimizer. Furthermore, we had to define the number of clients to dis-
tribute the data between, and how many clients to select per round. The clients selected for each round
were randomly sampled from the total client pool. These clients were weighted as ny/n, where ny was the
number of datapoints at client k£, and n was the size of the training dataset.

To distribute the model to the clients, the machine learning model written in TensorFlow Keras (see Sec-
tion 3.3.1.3) had to be translated to a Tensorflow Federated Keras model. Once the Iterative Process ob-
ject had been defined and the machine learning model was ready to be distributed to the clients, the model
was ready to be trained using FL. Listing 1 shows pseudocode for how federated learning was performed.

for t = 1...T {
state, metrics = trainer.next(state, train_data)

¥

Listing 1: Federated learning pseudocode. The variable trainer is the Iterative Process object, and the
.next() method distributes the model (state) to the participating clients in order to allow the clients to
train the model locally. The metrics contains accuracy and loss values after a round, and train_data is a
list of the data at the clients.

3.2.6 Hyperparameters

The hyperparameters used in the experiments were selected after testing different values. In order to tune
the hyperparameters, we used the validation dataset described in Section 3.2.3, and looked at how the
model performed using different values. If the model was underfitting or overfitting on the data, we changed
the hyperparameters accordingly. For each experiment in Section 4, we will present the training configura-
tion including the hyperparameters using the format shown in Table 2.

Training Configuration

Learning algorithm: Federated or Centralized learning

Aggregation method: Method for aggregating the client updates

Data distribution: One of the distributions described in Section 3.2.3

Epochs: Number of epochs to train the global model

Client Epochs: Number of epochs to train the local model

Total number of clients: The number of clients where the data has been distributed
Number of participating clients per round: The number of clients which are participating in FL
Server optimizer: Optimizer used to train the global model

Server learning rate: Learning rate used to train the global model

Client optimizer: Optimizer used to train the local model

Client learning rate: Learning rate used to train the local model

Loss function: Loss function used to train both the global and local model

Table 2: Overview of the training configuration used for each experiment in Section 4.
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3.2.7 Training the Model

To train one of the models described in Section 3.2.4, we implemented two modules, one for centralized
learning and the other for federated learning. These modules were used for fitting the model to the train-
ing data provided by the data preprocessing module. The main difference between the implementation of
centralized and federated learning is the core algorithm for performing gradient descent and updating the
weights. The following subsections will provide a description of the methodology used for training machine
learning models with centralized and federated learning. These procedures were followed for each of the
different experiments performed. The results of the experiments were saved in a folder named with the ex-
periment name, making the experiments reproducible.

3.2.7.1 Selecting model, optimizers, and hyperparameters

Regardless of the module used in any experiment, we had to select the machine learning model, an opti-
mizer and hyperparameters such as the learning rate and the number of epochs. For centralized learning,
these are the only parameters that needs to be defined. However, federated learning requires more parame-
ters to be defined before fitting the model as described in Section 3.2.5. The model and its defined param-
eters, are saved in the folder belonging to the current experiment. The model and the associated parame-
ters are sent to the component for fitting the models with the training data.

3.2.7.2 Training loop

This component is responsible for fitting the models with either centralized or federated learning. Before
performing any learning task, the training data and the validation data were retrieved from the data pre-
processing module. The reason for using a validation dataset was to avoid overfitting or underfitting while
training the model. Moreover, files for storing accuracy and loss metrics in the training loop were created,
and TensorBoard was initialized. While the model was being trained with either centralized or federated
learning, we were able to view the metrics in TensorBoard. This made it possible to assess the perfor-
mance of the model based on how the model performed on the validation dataset compared to the training
dataset.

After the model had been trained with one of the two learning algorithms, the model object was serial-
ized and saved in the folder belonging to the experiment. This was done so that we could reinitialize the
trained models for further analysis and evaluation. The training time was also saved in order to study how
different methods, such as FedAvg or RFA, affected the training time of the model.

3.2.8 Analyzing the Experiments

The analysis of the experiments was done manually in Jupyter Notebook. We had previously implemented
automatic storage of the machine learning models and the different metrics while running experiments.
This made it easy to import files belonging to an experiment into Jupyter Notebook. All experiments per-
formed consisted of training a model under different conditions, for example different aggregation meth-
ods or different client distributions. These experiments and conditions are explained in greater detail in
Chapter 4. Therefore, the main part of the experiment analysis module was to evaluate and analyze the
machine learning model using Jupyter Notebook.

3.2.8.1 Assessing model performance

In order to assess the performance of a model, we imported the test dataset from the data preprocessing
module and calculated the model performance. After running the model on the test data, we obtained the
test accuracy and the test loss of the model. The training and validation curves for the different metrics
were also analyzed using TensorBoard in order to determine if the model was affected by overfitting or
other problems. We also created a confusion matrix. The test accuracy obtained during model analysis,
does not describe the performance of the model on the different classes in the dataset. A confusion matrix,
on the other hand, allowed us to extract more descriptive, statistical measures regarding the model for
each class:
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e Precision: The ratio between true positives and all the positives.

Recall: The ratio between true positives and the number of examples.

e Fi-score: The harmonic mean of the precision and recall.

Support: The number of samples of the true classifications.

3.2.8.2 Privacy Preservation

The experiments concerning outlier-memorization, differential privacy and homomorphic encryption, were
analyzed in a more qualitative way. However, to assess outlier-memorization we also utilized the confu-
sion matrix and the statistical measures listed in Section 3.2.8.1 in order to observe how well the model
performed on outlier data. To analyze the results after applying differential privacy and homomorphic en-
cryption on the data, the weights of the model were extracted and displayed in Jupyter Notebook. These
weights were then studied qualitatively. We observed how much information it was possible to extract con-
cerning the training data. These experiments and results are explained in greater detail in Chapter 4.

3.3 Choice of Technologies

This section will provide an overview of technologies used to implement the experiments described in Sec-
tion 3.2. The programming language used to implement the experiments was Python 3.

3.3.1 TensorFlow

TensorFlow® is an open source machine learning platform that allows consumers to develop and train ma-
chine learning models. The platform offers a variety of software tools and libraries for implementing ma-
chine learning pipelines, from data preprocessing to model deployment. TensorFlow was utilized instead
of other machine learning platforms, because Infiniwell uses the same platform for training and deploy-
ing their models. We wished to choose a platform that would be transferable to Infiniwell. In addition, we
chose this platform due to having extensive experience in utilizing TensorFlow to build machine learning
solutions. The platform also integrates well with other Python libraries for performing data analysis and
linear algebra, such as the Pandas library and the NumPy library. Moreover, TensorFlow offers GPU sup-
port and can dynamically allocate variables between the CPU and the GPU. This would prove beneficial
as a GPU was used to train models during the experimentation process.

3.3.1.1 TensorFlow Federated

TensorFlow offers a library called TensorFlow Federated (TFF)?. This library provides high-level interfaces
for implementing federated learning algorithms and tools for working with decentralized data. TensorFlow
Federated allowed for easy implementation of the federated learning pipeline using several different aggre-
gation methods, including FedAvg and FedSGD. However, the library does not support more complex ag-
gregation methods such as Robust Federated Aggregation. Instead we implemented RFA using pure Ten-
sorFlow. In contrast to TensorFlow, TFF is a strongly-typed functional programming environment, and
offers wrappers for performing federated computations. The strongly-typed environment made it easy to
control whether the computations were being performed on the client-side or the server-side.

3.3.1.2 TensorBoard

TensorBoard!? is TensorFlow’s visualization toolkit. It provides a dashboard for visualizing and tracking
metrics such as loss and accuracy, in real-time. This allowed for tracking of the model performance while
training. TensorBoard was also utilized to track the communication metrics between the server and the
clients. The visualizations provided by TensorBoard made it easy to share the metrics with the academic
adviser and the CEO of Infiniwell.

8TensorFlow - https://www.tensorflow.org/
9TensorFlow Federated - https://www.tensorflow.org/federated
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Keras'! is TensorFlow’s high-level API for doing machine learning. Keras offers a multitude of implemen-
tations of commonly used neural network building blocks such as layers, activation functions and optimiz-
ers. We chose to use this API because it made it easy to build machine learning models and to analyze

them.

3.3.2 Jupyter Notebook

Jupyter Notebook!? is an open-source tool for combining executable code with rich text in a single docu-
ment. This tool made it possible to analyze machine learning models after training, and to visualize data
and results from various experiments. Jupyter Notebook permits consumers to export notebooks as HTML-
and PDF-files which made it easy to share analysis and results from the experiments.

10TensorBoard - https://www.tensorflow.org/tensorboard

M Keras - https://wuw.tensorflow.org/api_docs/python/tf/keras

12 Jupyter - https://jupyter.org/
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3.3.3 Python Paillier

Python Paillier'? is a library which implements the Paillier Partially Homomorphic Encryption scheme.
This library was utilized due to neither TensorFlow nor TensorFlow Federated supporting model training
with homomorphic encryption. Python Paillier is integrable with the NumPy library which made it easy
to encrypt and decrypt the model parameters in federated learning with homomorphic encryption.

3.3.4 CUDA-enabled GPU card

Infiniwell provided a GPU card, specifically an NVIDIA GeForce GTX 1070. The GPU card was CUDA-
enabled which made it easy to integrate with TensorFlow. The GPU-card was utilized in the project due
to it allowing faster model training of different models. CUDA is a platform for doing parallel computa-
tions on NVIDIA hardware.

3.3.5 NumPy

NumPy!4is a Python library which was used to perform linear algebra operations. The NumPy library
proved helpful in implementing federated learning with homomorphic encryption as we had to build a neu-
ral network from scratch in Python.

3.3.6 Pandas

The Pandas'® library was used to perform data manipulation and data preprocessing on the dataset. The
library helped convert the raw data to a DataFrame object, a representation which is equivalent to database
tables. The Pandas library is integrable with NumPy. This made it easy to execute linear algebra opera-
tions on the data.

3.3.7 Scikit-learn

Scikit-learn!® is a lightweight machine learning framework, and was used to perform analysis on machine
learning models. With this library, we were able to calculate different statistical measures of model perfor-
mance. In addition, we used this library to resample the dataset.

3.3.8 Matplotlib

Matplotlib!” is a library for creating visualizations in Python. The visualizations can be static, animated,
and interactive. This library helped visualize the data analysis performed, and to illustrate the results of
the experiments executed.

3.3.9 Plotly

Plotly'® is an interactive, open-source, and browser-based graphing library for Python. With this library,
we were able to interact with the loss and accuracy graphs of an experiment. The accuracy and loss graphs
showed in Chapter 4 were produced with Plotly.

13Python Paillier - https://github.com/dataé1/python-paillier
4NumPy - https://numpy.org/

15Pandas - https://pandas.pydata.org/

16Scikit-learn - https://scikit-learn.org/stable/

1"Matplotlib - https://matplotlib.org/

18Plotly - https://plotly.com/
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4 Results

The purpose of this chapter is to present the results obtained while executing different experiments in re-
lation to federated and centralized learning. The experiments presented in this chapter all aim to help an-
swer the research questions described in Chapter 1. Each experiment performed is based on theory from
Chapter 2 and the methodology described in Chapter 3. In addition, this chapter will provide a descrip-
tion of each experiment’s training configuration before elaborating on the quantitative and qualitative re-
sults of the experiments.

4.1 Overview

This section will provide an overview of the experiments presented in this chapter. The experiments are
divided into three primary sections:

e Preliminary Experiments:

The experiments in this section were all executed in order to establish how federated learning per-
formed compared to centralized learning. The results presented in Section 4.2 will provide informa-
tion concerning model performance in traditional, centralized learning and in federated learning us-
ing two different aggregation methods.

1. Centralized Learning. In this experiment we explored how centralized learning performed on
the MIT-BIH Arrhythmia Database. Both the ANN model and the CNN model were trained
using centralized learning. The results of this experiment can be observed in Section 4.2.1.

2. Federated Stochastic Gradient Descent (FedSGD). In this experiment we investigated
the performance of federated learning using the FedSGD algorithm applied to the MIT-BIH
Arrhythmia Database. Both the ANN model and the CNN model were trained using FedSGD.
The results of this experiment can be observed in Section 4.2.2.

3. Federated Averaging (FedAvg). This experiment explored the performance of the feder-
ated learning algorithm FedAvg applied to the MIT-BIH Arrhythmia Database. Both the ANN
model and the CNN model were trained using FedAvg. The results of this experiment can be
observed in Section 4.2.3.

e Experiments regarding Privacy Issues:

All experiments presented in Section 4.3 explore different privacy issues in machine learning. The
main focus of these experiments will be on privacy issues in federated learning, but we will also ex-
plore the problem of memorization in regards to centralized learning.

1. Federated averaging with static data poisoning. In this experiment, we observed how the
CNN model performed with federated averaging when the training data had been manipulated.
The results of this experiment can be observed in Section 4.3.1.

2. Memorization. In this experiment, we forced memorization in both centralized and federated
learning in order to see the effect memorization had on model performance. This experiment
utilized both the ANN model and the CNN model. The results of this experiment can be ob-
served in Section 4.3.2.

3. Model extraction with Federated averaging. In this experiment, we demonstrated model
extraction with the softmax regression model in the sense that we displayed the weights from
the participating clients. The results of this experiment can be observed in Section 4.3.3.

e Privacy-Preserving Experiments:

The experiments in Section 4.4 will explore different privacy-preserving techniques in relation to fed-
erated learning. The techniques used in this section will be directly linked to the privacy issues ex-
plored in Section 4.3.
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1. Robust federated aggregation with static data poisoning. In this experiment, we looked
at how the CNN model performed with robust federated aggregation when the training data
had been manipulated. The results of this experiment can be observed in Section 4.4.1.

2. Differential Privacy in Federated Learning. In this experiment, we applied differential pri-
vacy to federated learning, and observed how it affected model performance and memorization.
The results of this experiment can be viewed in Section 4.4.2.

3. Model Extraction in Federated Learning with Differential Privacy. In this experi-
ment, we demonstrated model extraction with the softmax regression model while training with
differentially-private federated averaging. The results of this experiment can be observed in Sec-
tion 4.4.3.

4. Federated Learning with Homomorphic Encryption In this experiment, we performed
federated learning with homomorphic encryption. The results of this experiment can be ob-
served in Section 4.4.4.

The experiments listed above were all executed according to the experimentation pipeline illustrated in
Section 3.2.2, and the different models utilized are described in Section 3.2.4.

4.2 Preliminary Experiments

The results presented in this section will provide information concerning model performance in traditional,
centralized learning and in federated learning using two different aggregation methods, FedSGD and Fe-
dAvg. These aggregation methods are described in Section 2.2.1.

4.2.1 Centralized Learning

The first experiment performed during the project was in regards to centralized learning. We wished to
obtain information about how a basic, centralized model would perform on the selected dataset described
in Section 3.1.2. The information gathered could be useful in comparing centralized learning with feder-
ated learning in terms of model performance. In order to provide a more holistic overview, the experiment
was divided into two parts. The first part involved training the artificial neural network using centralized
learning, while the second part involved training the convolutional neural network using centralized learn-
ing. The experiments utilized the training configuration described in Table 3.

Training Configuration

Learning algorithm: Centralized

Data distribution: Non-I11D

Epochs: 15

Learning rate: 0.01

Server Optimizer: SGD

Loss function: Categorical Cross-Entropy

Table 3: Training configuration for the centralized learning experiment with the ANN model.

4.2.1.1 Centralized Learning with ANN

During the first part of the experiment, the artificial neural network was trained using centralized learn-
ing. We chose to train a less complex model to start with. This was due to the fact that it would be useful
to observe how well a model with fewer parameters would perform using centralized learning. It would
also provide a good point of comparison when training with federated learning in other experiments. This
section will illustrate the results achieved when the ANN model was trained with centralized learning.
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Metrics

Test Accuracy: 92.8%
Training Accuracy: 98.5%
Test Loss: 0.26
Training Loss: 0.04
Training Time: 227 s

Table 4: Accuracy, loss and training time for the centralized learning experiment with the ANN model.
This table describes a well-performing model that has a relatively short training time.

Classification Report

Class Precision Recall F1-Score Support
Normal 0.99 0.93 0.96 18118
Supra Ventricular 0.61 0.78 0.69 556
Ventricular 0.78 0.94 0.86 1448
Fusion 0.28 0.90 0.43 162
Unknown 0.79 0.99 0.88 1608

Table 5: Precision, recall, F1-Score and support values for the centralized learning experiment with the
ANN model. The Fl-score shown in the table describes a model that performed well on every class. This
is due to the Fl-score being relatively high for all classes which indicates a good true positive rate and a
good true negative rate. However, one can observe that the model performed worse on the Fusion and the
Supra Ventricular class compared to the remaining classes.

True label

r0.4

0.2

Predicted label

—-0.0

Figure 28: Confusion matrix for the centralized learning experiment with the ANN model. The confusion
matrix shows a clear diagonal indicating that the model had a high true positive and true negative rate.

62



variable

Training Accuracy
Validation Accuracy

0.95

0.9

0.85

Accuracy

i

0.8

0.75

0.7

0.65

o
o

10

Epoch

Figure 29: Graph illustrating the training and validation accuracy of the centralized learning experiment
with the ANN model. From this graph one can observe that the validation accuracy and the training ac-
curacy converges. This indicates that the model did not overfit on the training data.
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Figure 30: The graph illustrates the training and validation loss of the centralized learning experiment
with the ANN model. From this graph one can observe that the validation loss and the training loss con-
verges, indicating that the model did not overfit on the training data.

4.2.1.2 Centralized Learning with CNN

During the second part of the experiment, the convolutional neural network was trained using centralized
learning. This model is more complex and comprise of more trainable parameters. We wanted the second
part of the experiment to convey how well the CNN would perform using centralized learning. This sec-
tion will provide the results achieved when the CNN model was trained with centralized learning.
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Metrics

Test Accuracy: 97.1%
Training Accuracy: 99.3%
Test Loss: 0.14
Training Loss: 0.02
Training Time: 471 s

Table 6: Accuracy, loss and training time for the centralized learning experiment with the CNN model.
This table describes a well-performing model that had a higher test accuracy and lower test loss than the
ANN model described in Table 4. However, the training time for this experiment was more than twice as
long as the ANN model.

Classification Report

Class Precision Recall F1-Score Support
Normal 0.99 0.98 0.98 18118
Supra Ventricular 0.67 0.76 0.72 556
Ventricular 0.94 0.92 0.93 1448
Fusion 0.72 0.70 0.71 162
Unknown 0.97 0.99 0.98 1608

Table 7: Precision, recall, F1-Score and support values for the centralized learning experiment with the
CNN model. The Fl-scores shown in the table describes a model that performed well on every class, and
that was higher for every class compared to the ANN model described in Table 5. This means that the
true positive rates and the true negative rates are high. Similarly to the ANN model, this table also il-
lustrates that the model performed worse on the Fusion and the Supra Ventricular class compared to the
remaining three classes.
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Figure 31: Confusion matrix for the centralized learning experiment with the CNN model. The confusion
matrix illustrates a clear diagonal indicating that the model had a high true positive and true negative
rate. Compared to the confusion matrix for the ANN model illustrated in Figure 28, there are more false
positives and false negatives for the Supra Ventricular and the Fusion class in the CNN model.
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Figure 32: Graph illustrating the training and validation accuracy of the centralized learning experiment
with the CNN model. From this graph one can observe that the validation accuracy and the training accu-
racy converges. This indicates that the model did not overfit on the training data.
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Figure 33: The graph illustrates the training and validation loss of the centralized learning experiment
with the CNN model. From this graph one can observe that the validation loss and the training loss con-
verges. This indicates that the model did not overfit on the training data.

4.2.2 Federated Stochastic Gradient Descent

The second experiment performed was in regards to federated learning. To obtain a baseline model with
federated learning, we implemented the Federated Stochastic Gradient Descent (FedSGD) aggregation
method described in Algorithm 1. FedSGD is the simplest aggregation method described in this project,
and the results from this experiment can be used as a baseline for the more complex aggregation meth-
ods. To provide sufficient information about the model performance using FedSGD, we decided to train
both the ANN model and the CNN model. Table 8 shows the training configuration used in the experi-
ment with FedSGD.

Training Configuration

Learning algorithm: Federated

Aggregation method: Federated Stochastic Gradient Descent (FedSGD)
Data distribution: Non-I1D

Epochs: 15

Number of clients: 10

Number of participating clients: 10

Server Optimizer: Adam

Learning rate: 0.01

Loss function: Categorical Cross-Entropy

Table 8: Training configuration for experiments with FedSGD.
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4.2.2.1 FedSGD with ANN

During the first part of the experiment, the artificial neural network was trained using FedSGD. This sec-
tion will present the results obtained while performing the experiment.

Test Accuracy:

Metrics

Training Accuracy:

Test Loss:
Training Loss:

Training Time:

62.1%
75.0%
0.91
0.72
428 s

Table 9: Accuracy, loss and training time for the FedSGD experiment with the ANN model. The table de-
scribes a model that performed mediocre, and that had a relatively high training time. Compared to the
accuracy and loss for centralized learning described in Figure 4, the FedSGD algorithm performed signifi-

cantly worse.

Classification Report

Class Precision
Normal 0.96
Supra Ventricular 0.07
Ventricular 0.41
Fusion 0.07
Unknown 0.67

Recall
0.50
0.72
0.72
0.86
0.88

F1-Score
0.66
0.12
0.53
0.13
0.76

Support
18118
556

1448

162

1608

Table 10: Precision, Recall, F1-Score and Support values for the FedSGD experiment with the ANN
model. The Fl-score illustrated in the table describes a model that performed decent on every class, ex-
cept the Fusion and the Supra Ventricular class. Compared to the Fl-scores for centralized learning de-
scribed in Figure 5, FedSGD obtained a lower true positive rate and a lower true negative rate.
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Figure 34: Confusion matrix for the centralized learning experiment with the ANN model. The confusion
matrix shows a fairly clear diagonal indicating a decent true positive and true negative rate. However,
there are more false positives and false negatives compared to centralized learning which is illustrated in
Figure 28.
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Figure 35: Graph illustrating the training and validation accuracy of the FedSGD experiment with the
ANN model. The graph shows that the validation accuracy and the training accuracy are converging
which indicates that the model did not overfit on the training data.
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Figure 36: The graph illustrates the training and validation loss of the FedSGD experiment with the ANN
model. The graph shows that the validation loss and the training loss are converging which indicates that
the model did not overfit on the training data

4.2.2.2 FedSGD with CNN

In this part of the experiment the CNN model was trained using FedSGD. This section will present the
results obtained.

Metrics
Test Accuracy: 50.4%
Training Accuracy: 64.5%
Test Loss: 1.09
Training Loss: 0.93
Training Time: 741 s

Table 11: Accuracy, loss and training time for the FedSGD experiment with the CNN model. The table
describes a model that performed mediocre, and that had a high training time. Compared to the accu-
racy and loss for centralized learning described in Figure 6, the FedSGD algorithm performed significantly
worse. In addition, the test accuracy and test loss for the CNN model using FedSGD appears to be lower
than for the ANN model with FedSGD, illustrated in Table 9.

69



Classification Report

Class Precision Recall F1-Score Support
Normal 0.95 0.41 0.57 18118
Supra Ventricular 0.08 0.59 0.14 556
Ventricular 0.18 0.47 0.26 1448
Fusion 0.06 0.86 0.11 162
Unknown 0.38 0.90 0.54 1608

Table 12: Precision, Recall, F1-Score and Support values for the FedSGD experiment with the CNN
model. The Fl-scores illustrated in the table describes a model that performed decently on the Normal
and the Unknown class. However, the model performed poorly on the remaining three classes. Compared
to the Fl-scores for centralized learning described in Figure 7, FedSGD obtained a lower true positive rate
and a lower true negative rate.
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Figure 37: Confusion matrix for the centralized learning experiment with the CNN model. The confusion
matrix demonstrates a diagonal indicating that the model provides more true positives and true negatives
than false positives and false negatives. However, one can observe that the model classifies wrong more
often on the Normal, the Supra Ventricular and the Ventricular class compared to the Fusion and the
Unknown class.
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Figure 38: Graph illustrating the training and validation accuracy of the FedSGD experiment with the
CNN model. From the graph one can observe that the validation accuracy fluctuates, while the training
accuracy improves steadily. However, the accuracies converges indicating that the model did not overfit on
the training data.
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Figure 39: The graph illustrates the training and validation loss of the FedSGD experiment with the CNN
model. From the graph one can observe that the training and validation loss converges despite the valida-
tion loss fluctuating.

4.2.3 Federated Averaging

The Federated Averaging (FedAvg) experiment was executed in order to test how well a more complex
federated learning algorithm would perform on the MIT-BIH Arrhythmia Database. We wanted to per-
form an experiment that utilized suitable parameters, and that could be comparable with centralized learn-
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ing in terms of model performance. In this experiment we tested the FedAvg algorithm, described in Algo-
rithm 2, on both the ANN model and the CNN model, using the same hyperparameters for each model.
We chose to test both models because we wanted create a point of comparison between federated learning
and centralized learning, and had already trained both the ANN and the CNN using centralized learning.
Both models were tested using the training configuration presented in Table 13.

Training Configuration

Learning algorithm: Federated

Aggregation method: Federated Averaging (FedAvg)
Epochs: 15

Client Epochs: 10

Total number of clients: 10

Number of participating clients per round: 10

Server optimizer: SGD

Server learning rate: 1.0

Client optimizer: SGD

Client learning rate: 0.02

Loss function: Categorical Cross-Entropy

Table 13: Training configuration for the FedAvg experiment.

4.2.3.1 FedAvg with ANN

During the first part of the experiment, we trained the artificial neural network described in Section 3.2.4.2
using the federated learning algorithm FedAvg. We chose to train this model only using the standard non-
IID data distribution described in Section 3.2.3. The results of the experiment are illustrated below.

Metrics
Test Accuracy: 93.4%
Training Accuracy: 98.6%
Test Loss: 0.21
Training Loss: 0.04
Training Time: 333 s

Table 14: Accuracy, loss and training time for the FedAvg experiment with the ANN model. The metrics
shown in this table describes a well-performing model with a fairly low training time. Compared to the
accuracy for centralized learning described in Figure 4, the FedAvg algorithm performed slightly better,
but had a higher training time.
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Classification Report

Class Precision
Normal 0.99
Supra Ventricular 0.49
Ventricular 0.86
Fusion 0.43
Unknown 0.94

Recall
0.95
0.82
0.95
0.86
0.98

F1-Score

0.97
0.61
0.90
0.57
0.96

Support
18118
556

1448

162

1608

Table 15: Classification report for the FedAvg experiment with the ANN model. The table describes the
precision, recall, F1-Score and support values for the experiment. The F1-scores illustrated in the table de-
scribes a model that performed well on every class. However, the Fl-score is slightly worse for the Fusion
class. Compared to the Fl-scores for centralized learning described in Figure 5, FedAvg obtained overall

higher F1-scores.
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Figure 40: Confusion matrix for the FedAvg experiment with the ANN model. The confusion matrix
shows a clear diagonal indicating a high true positive and true negative rate in the model. Compared to
the centralized learning experiment with the ANN model illustrated in Figure 28, the FedAvg algorithm

with the ANN model performed similarly.
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Figure 41: Graph illustrating the training and validation accuracy of the FedAvg experiment with the
ANN model. From the graph one can observe that the training accuracy and the validation accuracy con-
verges, indicating that the model did not overfit on the training data.
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Figure 42: The graph illustrates the training and validation loss of the FedAvg experiment with the ANN
model. The graph shows a training and validation loss that converges, and that is relatively low.

4.2.3.2 FedAvg with CNN

During the second part of the experiment, we trained the convolutional neural network described in Sec-
tion 3.2.4.3 using the federated learning algorithm FedAvg. In addition to training this model using the
non-I1D data distribution that was used when experimenting with the artificial neural network, we also
wanted to test the convolutional neural network in regards to the two other data distributions described in

Section 3.2.3.

Non-IID Distribution

The following results illustrate the performance of the CNN model applied to the non-IID data distribu-
tion of the dataset. The distribution is described in Section 3.2.3.

Metrics
Test Accuracy:
Training Accuracy:
Test Loss:
Training Loss:

Training Time:

96.2%
99.3%
0.20
0.02
687 s

Table 16: Accuracy, loss and training time for the FedAvg experiment with the CNN model trained on
Non-IID data. The metrics presented in this table indicate a well-performing model with a relatively high
training time. Compared to the metrics for the centralized learning experiment described in Table 6, the
CNN model trained with FedAvg performed slightly worse and had a higher training time.
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Classification Report

Class Precision Recall F1-Score Support
Normal 0.99 0.97 0.98 18118
Supra Ventricular 0.61 0.84 0.71 556
Ventricular 0.87 0.94 0.90 1448
Fusion 0.49 0.90 0.64 162
Unknown 0.97 0.99 0.98 1608

Table 17: Classification report for the FedAvg experiment with the CNN model trained on Non-IID data.
The table describes the precision, recall, F1-Score and support values for the experiment. The F1-scores il-
lustrated in this table show a model that performed extremely well on every class, except the Fusion class
where it performed slightly worse. Compared to the Fl-score for the centralized learning experiment de-
scribed in Table 7, the CNN model trained with FedAvg performed similarly on every class.
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Figure 43: Confusion matrix for the FedAvg experiment with the CNN model trained on Non-1ID data.
The confusion matrix shows a clear diagonal indicating a high rate of true positives and true negatives in
the model. The diagonal is slightly more evident for the CNN model with FedAvg compared to the CNN
model with centralized learning. The confusion matrix for the CNN model with centralized learning is il-
lustrated in Figure 31.
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Figure 44: Graph illustrating the training and validation accuracy of the FedAvg experiment with the
CNN model trained on Non-IID data. From the graph one can observe that the training and validation
accuracy converges, indicating that the model did not overfit on the training data.
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Figure 45: The graph illustrates the training and validation loss of the FedAvg experiment with the CNN
model trained on Non-IID data. The graph illustrates that the validation and training loss converges.

Uniform Distribution

The following results illustrate the performance of the CNN model applied to a uniform data distribution
of the dataset. The distribution is described in Section 3.2.3.

Metrics
Test Accuracy:
Training Accuracy:
Test Loss:
Training Loss:

Training Time:

95.2%
98.5%
0.20
0.05
598 s

Table 18: Accuracy, loss and training time for the FedAvg experiment with the CNN model trained on the
uniform data distribution. The metrics shown in this table describe a well-performing model with a rela-
tively high training time. Compared to the CNN model trained with FedAvg on the Non-IID data distri-
bution described in Table 16, the model performed a bit worse. However, the training time was lower for

the uniform data distribution.
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Classification Report

Class Precision Recall F1-Score Support
Normal 0.99 0.95 0.97 18118
Supra Ventricular 0.52 0.84 0.64 556
Ventricular 0.86 0.94 0.90 1448
Fusion 0.41 0.88 0.56 162
Unknown 0.97 0.98 0.96 1608

Table 19: Classification report for the FedAvg experiment with the CNN model trained on uniform data
distribution. The table describes the precision, recall, F1-Score and support values for the experiment.
From the table one can observe that the Fl-score is high for every class, except the Fusion class where

it is slightly lower. Compared to the CNN model trained with FedAvg and the Non-IID data distribution,
the performance of the model trained on uniform data was worse for every class.
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Figure 46: Confusion matrix for the FedAvg experiment with the CNN model trained on the uniform data
distribution. The confusion matrix illustrates a clear diagonal indicating that the model had few false pos-
itives and few false negatives.

Class Distribution

The following results illustrate the performance of the CNN model applied to the class distribution of the
dataset. This distribution is described in Section 3.2.3. The class distribution only allows for 5 clients in
total due to there only being 5 classes. This also means that there will only be 5 participating clients per

round. This is the only experiment that used a different number of clients from what is described in Table
13.
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Metrics

Test Accuracy: 9.4%
Training Accuracy: 99.9%
Test Loss: 3.95
Training Loss: 0.000314
Training Time: 564 s

Table 20: Accuracy, loss and training time for the FedAvg experiment with the CNN model trained on
class distributed data. The metrics shown in this table describe a model that performed extremely poorly.
It also has a relatively high training time. Both compared to the Non-I1ID data distribution (Table 16) and
the uniform data distribution (Table 18), this model performed much worse.

Classification Report

Class Precision Recall F1-Score Support
Normal 0.00 0.00 0.00 18118
Supra Ventricular 0.00 0.00 0.00 556
Ventricular 0.06 0.81 0.11 1448
Fusion 0.06 0.46 0.11 162
Unknown 0.66 0.50 0.57 1608

Table 21: Classification report for the FedAvg experiment with the CNN model trained on class dis-
tributed data. The table describes the precision, recall, F1-Score and support values for the experiment.
From the table one can observe that the Fl-scores are extremely low for every class, expect the Unknown
class where it is decent. This indicates that the model had low class precision and low recall.
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Figure 47: Confusion matrix for the FedAvg experiment with the CNN model trained on class distributed
data. The figure shows a line straight down the middle of the confusion matrix, illustrating that the model

classified nearly every ECG recording as Ventricular beats. This indicates a high false positive and false
negative rate.
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4.3 Experiments regarding Privacy Issues in Federated Learning

The results of the experiments presented in this section, aim to determine the threat of vulnerabilities in
federated learning. This section will look at how some of the privacy issues in federated learning also occur
in centralized learning.

4.3.1 Federated Averaging with Static Data Poisoning

The purpose of conducting this experiment was to find out how the Federated Averaging (FedAvg) algo-
rithm described in Section 2.2.1.2 performed in an adversarial setting. To create an adversarial setting, we
inserted corrupted data into one of the participating clients. This is known as static data poisoning, and is
explained in Section 2.4.2. As described in Section 3.1.3, each datapoint in an ECG recording is in the in-
terval [0, 1]. In order to insert corrupted data, we sampled 20000 random values in the interval [20,40] and
labeled them as Normal beats. Furthermore, these values were inserted into client 1 which caused client 1
to become an outlier. When this client sends its local updates to the central server, these updates will be
corrupted. The 9 remaining clients had non-poisoned local data. This experiment was conducted by train-
ing the CNN model with the FedAvg algorithm. Table 22 describes the training configuration used in this
experiment.

Training Configuration

Learning algorithm: Federated

Aggregation method: Federated Averaging (FedAvg)
Data distribution: Non-IID

Epochs: 15

Client Epochs: 10

Total number of clients: 10

Number of participating clients per round: 10

Server optimizer: SGD

Server learning rate: 1.0

Client optimizer: SGD

Client learning rate: 0.02

Loss function: Categorical Cross-Entropy

Table 22: Training configuration for the federated learning experiment using the FedAvg algorithm with
static data poisoning.

The results of the static data poisoning experiment will be presented below.

Metrics
Test Accuracy: 82.6%
Training Accuracy: 40.9%
Test Loss: 2663.8
Training Loss: NalN
Training Time: 530 s

Table 23: Accuracy, loss and training time for the FedAvg experiment with static data poisoning. The
training loss became NaN as a result of gradient explosion, causing the model to stop training. This fail-
ure happened because the model was not robust against the static data poisoning.
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Classification Report

Class Precision Recall F1-Score Support
Normal 0.83 1.00 0.90 18118
Supra Ventricular 0.00 0.00 0.00 556
Ventricular 0.00 0.00 0.00 1448
Fusion 0.06 0.01 0.01 162
Unknown 0.00 0.00 0.00 1608

Table 24: Classification report for the Fed Avg experiment with static data poisoning. The table describes
the precision, recall, F1-Score and support values for the experiment. The Normal class had the highest
Fl-score, which indicates that the model performed well on this class. This is a result of the model being
strongly influenced by the corrupted client, which only had data with label Normal beats.
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Figure 48: Confusion matrix for the FedAvg experiment with static data poisoning. As indicated in Ta-
ble 24, the model was strongly influenced by the corrupt client, making it classify almost the whole test-
dataset as Normal beats.

4.3.2 Memorization in Federated and Centralized Learning

This section will describe an experiment performed to observe the occurrence of memorization in fed-
erated and centralized learning. This experiment was inspired by the fact that information leakage is a
well-known issue in machine learning models, often due to memorization as described in Section 2.5. We
wanted to explore if the issue of memorization posed the same threat in federated learning as in central-
ized learning. In addition, we wanted to see how the size of the model used in training would affect the
degree of memorization. To obtain results about memorization in federated and centralized learning, we
decided to train both learning approaches with the artificial neural network and the 1D convolutional neu-
ral network. The experiment would only provide accurate results if we were to make sure that one type of
the data would only occur a few times in the dataset. In order to achieve this, we manipulated the dataset
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by reducing the Unknown class from 20000 examples to 100 examples. The remaining classes contained
20000 examples each.

Federated Learning
Table 25 describes the training configuration used in the memorization experiment using federated learn-

ing.

Training Configuration

Learning algorithm: Federated

Aggregation method: Federated Averaging (FedAvg)
Data distribution: Non-I11D

Epochs: 15

Client Epochs: 10

Total number of clients: 10

Number of participating clients per round: 10

Server optimizer: SGD

Server learning rate: 1.0

Client optimizer: SGD

Client learning rate: 0.02

Loss function: Categorical Cross-Entropy

Table 25: Training configuration for the memorization experiment using the FedAvg algorithm.

4.3.2.1 FedAvg with ANN

This section will present the results achieved when the ANN model was trained with the FedAvg algo-
rithm while forcing memorization.

Metrics
Test Accuracy: 92.9%
Training Accuracy: 98.3%
Test Loss: 0.29
Training Loss: 0.05
Training Time: 281 s

Table 26: Accuracy, loss and training time for the memorization experiment using the FedAvg algorithm
with the ANN model. The metrics illustrated in this table describe a well-performing model with a rela-
tively short training time.
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Classification Report

Class Precision Recall F1-Score Support
Normal 0.98 0.95 0.96 18118
Supra Ventricular 0.44 0.83 0.57 556
Ventricular 0.79 0.94 0.86 1448
Fusion 0.41 0.90 0.56 162
Unknown 0.99 0.71 0.83 1608

Table 27: Classification report for the memorization experiment using the FedAvg algorithm with the

ANN model. The table describes the precision, recall, F1-Score and support values for the experiment.
From the Fl-scores, one can observe that the model performed well on the Unknown class despite the

model only having seen training examples of the class a hundred times.
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Figure 49: Confusion matrix for the memorization experiment using the FedAvg algorithm with the ANN
model. The confusion matrix illustrates a clear diagonal, indicating a high number of true positives and
true negatives. One can also observe that the model mostly classified correctly for the Unknown class de-
spite it not having seen more than a hundred training examples of the class.

4.3.2.2 FedAvg with CNN

This section will present the results achieved while training the 1D CNN model with the FedAvg algo-
rithm.
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Metrics

Test Accuracy: 95.0%
Training Accuracy: 99.3%
Test Loss: 0.31
Training Loss: 0.02
Training Time: 602 s

Table 28: Accuracy, loss and training time for the memorization experiment using the FedAvg algorithm
with the CNN model. The metrics shown in this table describe a well-performing model with a relatively
long training time.

Classification Report

Class Precision Recall F1-Score Support
Normal 0.98 0.97 0.98 18118
Supra Ventricular 0.59 0.84 0.69 556
Ventricular 0.81 0.95 0.87 1448
Fusion 0.56 0.85 0.67 162
Unknown 1.00 0.78 0.88 1608

Table 29: Classification report for the memorization experiment using the FedAvg algorithm with the
CNN model. The table describes the precision, recall, F1-Score and support values for the experiment.
From the F1l-scores, one can observe that the model performed well on the Unknown class despite it only
having seen training examples of the class a hundred times. The model did also have high F1-scores for
the other class, indicating a high true positive rate and a high true negative rate.
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Figure 50: Confusion matrix for the memorization experiment using the FedAvg algorithm with the CNN

model. The confusion matrix shows a clear diagonal. One can observe that the model largely classified
correctly for the Unknown class despite it only having seen a hundred training examples of the class.
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Centralized Learning

Table 30 describes the training configuration used in the memorization experiment using centralized learn-
ing.

Training Configuration

Learning algorithm: Centralized

Epochs: 15

Server optimizer: SGD

Learning rate: 0.01

Loss function: Categorical Cross-Entropy

Table 30: Training configuration for the memorization experiment using centralized learning.

4.3.2.3 Centralized Learning with ANN

This section will present the results achieved while training the ANN model with centralized learning.

Metrics
Test Accuracy: 92.7%
Training Accuracy: 98.2%
Test Loss: 0.27
Training Loss: 0.05
Training Time: 190 s

Table 31: Accuracy, loss and training time for the memorization experiment using centralized learning
with the ANN model. The metrics illustrated in this table describe a well-performing model with a low
training time.

Classification Report

Class Precision Recall F1-Score Support
Normal 0.96 0.96 0.96 18118
Supra Ventricular 0.55 0.78 0.65 556
Ventricular 0.83 0.92 0.87 1448
Fusion 0.33 0.88 0.48 162
Unknown 1.00 0.59 0.74 1608

Table 32: Classification report for the memorization experiment using centralized learning with the ANN
model. The table describes the precision, recall, F1-Score and support values for the experiment. From
the Fl-scores one can observe that the model performed well on the Unknown class despite it only hav-
ing seen training examples of the class a hundred times. However, the model performed worse on the Un-
known class compared to the memorization experiment using FedAvg described in Table 27.
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Figure 51: Confusion matrix for the memorization experiment using the FedAvg algorithm with the ANN
model. The confusion matrix shows a relatively clear diagonal. One can observe that the model classified
correctly for the Unknown class far less than for the other classes, but it still performed decently on this
class despite only having seen training examples of the class a hundred times.

4.3.2.4 Centralized Learning with CNN

This section will present the results achieved while training the 1D CNN model with centralized learning.

Metrics
Test Accuracy: 94.2%
Training Accuracy: 99.2%
Test Loss: 0.30
Training Loss: 0.02
Training Time: 403 s

Table 33: Accuracy, loss and training time for the memorization experiment using centralized learning

with the CNN model. The metrics illustrated in this table describe a well-performing model that had a
decent training time.
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Classification Report

Class Precision Recall F1-Score Support
Normal 0.99 0.95 0.97 18118
Supra Ventricular 0.46 0.85 0.59 556
Ventricular 0.80 0.95 0.87 1448
Fusion 0.52 0.87 0.65 162
Unknown 0.99 0.85 0.92 1608

Table 34: Classification report for the memorization experiment using centralized learning with the CNN
model. The table describes the precision, recall, F1-Score and support values for the experiment. From
the Fl-scores one can observe that the model performed extremely well on the Unknown class, despite
only having seen training examples of this class a hundred times. The Fl-score for the Unknown class is
slightly higher for this experiment compared to the memorization experiment using FedAvg with the CNN
model described in Table 29.
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Figure 52: Confusion matrix for the memorization experiment using centralized learning with the CNN
model. The confusion matrix shows a clear diagonal. One can observe a high rate of true positives and
true negatives for the Unknown class despite it only having seen training examples of this class a hundred
times.

4.3.3 Model Extraction in Federated Learning

The purpose of this experiment was to perform model extraction in federated learning, and show a repre-
sentation of the local training data at the clients. This was done by displaying the weight updates from

the participating clients in the federated learning loop. By using the softmax regression model described

in Section 3.2.4.1, we were able to show a relatively exact estimation of the client’s training data. Further-
more, to make it simple to identify the training data of a client, we inserted 20000 examples of Normal beats
ECG recordings into client 1. The remaining clients received non-IID data. This made client 1 an outlier,

as it only had one type of data. In other words, client 1 had low variance within its local data, and high
variance from the data of the other clients. In contrast to the other experiments in Chapter 4, the purpose
of this experiment was not to train a well-performing model, but to perform model extraction. The train-
ing configuration used in this experiment can be viewed in Table 35.
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Learning algorithm:
Aggregation method:
Data distribution:
Epochs:

Client Epochs:

Total number of clients:

Training Configuration

Number of participating clients per round:

Server optimizer:
Server learning rate:
Client optimizer:
Client learning rate:

Loss function:

Federated

Federated Averaging (FedAvg)
Non-IID

)

10

SGD

1.0

SGD

0.1

Categorical Cross-Entropy

Table 35: Training configuration for the model extraction experiment using the FedAvg algorithm.

The following figures will illustrate the weights extracted during this experiment.
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Figure 53: Model Extraction for Normal Beats class from the 5 participating clients. These weights were
extracted after the last round of the federated averaging loop. The weights of client 1 stand out from the
rest of the clients. In addition, one can observe that the curve has a strong resemblance to the Normal

beats class displayed in the 2D-histogram in Figure 27.
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Figure 54: Model Extraction for Supraventricular Beats class from the 5 participating clients. These
weights were extracted after the last round of the federated averaging loop. The weights of the clients are
relatively equal, and this is a result of the model being aggregated after each training loop.
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4.4 Privacy-Preserving Experiments in Federated Learning

The results of the experiments described in this section will attempt to explore the effect of utilizing differ-
ent privacy-preserving techniques.

4.4.1 Robust Federated Aggregation with Static Data Poisoning

The purpose of conducting this experiment was to find out how the Robust Federated Aggregation (RFA)
algorithm described in Algorithm 3 performed with static data poisoning. The results from this exper-
iment can be compared to other federated learning runs where static data poisoning was present. The
setup for this experiment was the same as the experiment described in Section 4.3.1. The only difference
is the aggregation algorithm used on the updates from the clients. In the experiment described in Section
4.3.1, the federated learning algorithm FedAvg was used. This algorithm uses the arithmetic mean to ag-
gregate the client updates. In the experiment presented in this section, the robust federated aggregation
(RFA) method was utilized. RFA uses the geometric median to aggregate the client updates. This experi-
ment was conducted by training the CNN model using the RFA algorithm. The training configuration for
this experiment is presented in Table 36.

Training Configuration

Learning algorithm:
Aggregation method:
Data distribution:
Epochs:

Client Epochs:

Total number of clients:

Number of participating clients per round:

Number of calls to Secure Average Oracle:

L2-threshold:

Server optimizer:
Server learning rate:
Client optimizer:
Client learning rate:

Loss function:

Test Accuracy:

Metrics

Training Accuracy:

Test Loss:
Training Loss:

Training Time:

Federated

Robust Federated Aggregation (RFA)
Non-I1D

15

10

10

10

3

1076

SGD

1.0

SGD

0.02

Categorical Cross-Entropy

Table 36: Training configuration for the federated learning experiment using the RFA algorithm with
static data poisoning.

92.0%
97.9%
0.28
0.06
501 s

Table 37: Accuracy, loss and training time for the RFA experiment with static data poisoning. Compared
to Table 23, this model did not suffer from gradient explosion. The model was also able to obtain a test
accuracy of 92% in 501 seconds, making it both a well-performing and robust model.

92



Classification Report

Class Precision Recall F1-Score Support
Normal 0.99 0.92 0.95 18118
Supra Ventricular 0.41 0.84 0.55 556
Ventricular 0.81 0.92 0.86 1448
Fusion 0.22 0.92 0.35 162
Unknown 0.94 0.98 0.96 1608

Table 38: Classification report for the RFA experiment with static data poisoning. The table describes
the precision, recall, F1-Score and support values for the experiment. Compared to Table 24, this model
obtained higher F1-scores for all the 5 classes.

True label

0.4

0.2

Predicted label

Figure 55: Confusion matrix for the RFA experiment with static data poisoning. Compared to the confu-
sion matrix in Figure 48, this model was able to correctly classify the other classes in the test dataset, not
only the Normal class.

4.4.2 Differential Privacy in Federated Learning

This section will describe an experiment performed to observe the effect of applying (e, d)-differential pri-
vacy (see Section 2.6.1.1) while training models using federated learning. We wanted to see how differ-
ential privacy affected the performance and memorization in different models. To obtain results regard-
ing differential privacy in federated learning, we trained both the artificial neural network and the convo-
lutional neural network with the Differentially-Private Federated Averaging (DP-FedAvg) algorithm de-
scribed in Algorithm 4. This was done twice, once without forced memorization and the other with forced
memorization. We forced memorization in the models in the same way as in the memorization experiment
described in Section 4.3.2. Table 39 shows the training configuration used in this experiment.
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Training Configuration

Learning algorithm: Federated

Aggregation method: Differentially-private Federated Averaging (DP-FedAvg)
Data distribution: Non-11D

Epochs: 15

Client Epochs: 10

Total number of clients: 10

Number of participating clients per round: 10

Server optimizer: SGD

Server learning rate: 1.0

Client optimizer: SGD

Client learning rate: 0.02

Loss function: Categorical Cross-Entropy

Table 39: Training configuration for the differential privacy experiment using the DP-Fed Avg algorithm.

4.4.2.1 DP-FedAvg with ANN

This section will present the results obtained while training the ANN model with differential privacy using
the DP-FedAvg algorithm. Table 40 describes the differential privacy parameters used in the experiment.

Differential Privacy Parameters

Differential privacy mechanism: Gaussian fixed
Delta (6): 10-°
Noise multiplier: 0.45
Clipping norm: 0.80

Table 40: DP Parameters for the differential privacy experiment using the DP-FedAvg algorithm with the
ANN model.

Metrics
Test Accuracy: 69.3%
Training Accuracy: 91.7%
Test Loss: 0.79
Training Loss: 0.22
Training Time: 336 s

Table 41: Accuracy, loss and training time for the differential privacy experiment using the DP-FedAvg
algorithm with the ANN model. The metrics shown in this table describe a model that overall performed
decently. The model managed to achieve a test accuracy of approximately 69% while only using 336 sec-
onds to train. However, compared to the FedAvg experiment with the ANN model described in Table 14,
this is significantly worse.
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Classification Report

Class Precision Recall F1-Score Support
Normal 0.98 0.68 0.80 18118
Supra Ventricular 0.12 0.77 0.21 556
Ventricular 0.40 0.89 0.55 1448
Fusion 0.09 0.88 0.16 162
Unknown 1.00 0.64 0.78 1608

Table 42: Classification report for the differential privacy experiment using the DP-Fed Avg algorithm with
the ANN model. The table describes the precision, recall, F1-Score and support values for the experiment.
From the F1-scores one can observe that the model performed well on the Normal and the Unknown class,
but significantly worse for the remaining three classes. Compared to the Fl-scores of the FedAvg experi-
ment described in Table 15, this model performed worse on every class.
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Figure 56: Confusion matrix for the differential privacy experiment using the DP-FedAvg algorithm with
the ANN model. The confusion matrix shows a fairly clear diagonal indicating a decently high rate of true
positives and true negatives. However, one can observe that the model was more uncertain in regards to
the Normal and the Unknown classes. In comparison to the confusion matrix of the FedAvg experiment
illustrated in Figure 40, this model classified incorrectly more often.
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Epoch
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Figure 57: The figure illustrates the moments accountant for the differential privacy experiment using the
DP-FedAvg algorithm with the ANN model. It shows cumulative privacy loss. From this graph one can
observe that € was approximately 9 when the model was done training.

4.4.2.2 DP-FedAvg with CNN

This section will present the result of training the CNN model with the DP-FedAvg algorithm. Table 43
describes the differential privacy parameters used in this experiment.

Differential Privacy Parameters

Differential privacy mechanism:
Delta (9):
Noise multiplier:

Clipping norm:

Gaussian fixed
1075
0.45
0.80

Table 43: DP Parameters for the differential privacy experiment using the DP-FedAvg algorithm with the

CNN model.

Metrics
Test Accuracy:
Training Accuracy:
Test Loss:
Training Loss:

Training Time:

64.8%
93.7%
1.34
0.18
671 s

Table 44: Accuracy, loss and training time for the differential privacy experiment using the DP-FedAvg
algorithm with the CNN model. The metrics illustrated in this table describe a model that performed de-
cently. However, compared to the FedAvg experiment with the CNN model described in Table 16, DP-

FedAvg performed significantly worse.
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Classification Report

Class Precision Recall F1-Score Support
Normal 0.98 0.61 0.75 18118
Supra Ventricular 0.14 0.74 0.23 556
Ventricular 0.28 0.86 0.42 1448
Fusion 0.07 0.74 0.13 162
Unknown 0.88 0.85 0.86 1608

Table 45: Classification report for the differential privacy experiment using the DP-Fed Avg algorithm
with the CNN model. The table describes the precision, recall, F1-Score and support values for the ex-
periment. From the Fl-scores one can observe that the model performed best for the Unknown and the
Normal class, but the Fl-scores are overall worse than for the FedAvg experiment with the CNN model
described in Table 17.

0.8

0.7

0.6

0.5

r0.4

True label

0.3

0.2

0.1

Predicted label

—- 0.0

Figure 58: Confusion matrix for the differential privacy experiment using the DP-FedAvg algorithm with
the CNN model. The confusion matrix illustrates a relatively clear diagonal indicating that the model is
more than capable of classifying correctly on every class. However, the diagonal is more faint compared to
the FedAvg experiment with the CNN model as illustrated in Figure 43.
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Figure 59: The figure illustrates the moments accountant for the differential privacy experiment using the
DP-FedAvg algorithm with the CNN model. It shows cumulative privacy loss. From this graph one can
observe that € was approximately 9 when the model was done training.

4.4.2.3 Forced Memorization in ANN

This section will present the result of training the ANN model with differential privacy using the DP-
FedAvg algorithm while forcing memorization in the model. Table 46 describes the differential privacy

parameters used in this experiment.

Differential Privacy Parameters

Differential privacy mechanism:
Delta (9):
Noise multiplier:

Clipping norm:

Gaussian fixed
1.25-107°

0.5

0.75

Table 46: DP Parameters for the differential privacy experiment using the DP-FedAvg algorithm with the

ANN model while forcing memorization.
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Metrics

Test Accuracy: 74.8%
Training Accuracy: 90.7%
Test Loss: 0.93
Training Loss: 0.25
Training Time: 281 s

Table 47: Accuracy, loss and training time for the differential privacy experiment with memorization us-
ing the DP-FedAvg algorithm with the ANN model. The metrics illustrated in this table describe a model
that performed decently with an accuracy of approximately 75%. The training time of the model was also
quite low. Compared to the metrics of the memorization experiment described in Table 26, the test accu-
racy in the DP-FedAvg experiment with forced memorization, is a fair bit lower.

Classification Report

Class Precision Recall F1-Score Support
Normal 0.94 0.80 0.87 18118
Supra Ventricular 0.17 0.78 0.28 556
Ventricular 0.42 0.88 0.56 1448
Fusion 0.16 0.81 0.26 162
Unknown 0.00 0.00 0.00 1608

Table 48: Classification report for the differential privacy experiment with memorization using the DP-
FedAvg algorithm with the ANN model. The table describes the precision, recall, F1-Score and support
values for the experiment. From the Fl-scores one can observe that the model was not able to classify the
Unknown class when applying differential privacy. In comparison to the stats of the memorization experi-
ment described in Table 27, this is an enormous shift because both models only saw the training examples
of the Unknown class a hundred times.
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Figure 60: Confusion matrix for the differential privacy experiment with memorization using the DP-
FedAvg algorithm with the ANN model. The confusion matrix shows a clear diagonal for all classes except
the Unknown class. One can observe that each time the model received an ECG of the Unknown class, it
classified everything but the Unknown class.

4.4.2.4 Forced Memorization in CNN

This section will present the result of training the CNN model with the DP-FedAvg algorithm while forc-
ing memorization in the model. Table 49 describes the differential privacy parameters used in this experi-
ment.

Differential Privacy Parameters

Differential privacy mechanism: Gaussian fixed
Delta (0): 1.25-1075
Noise multiplier: 0.5

Clipping norm: 0.75

Table 49: DP Parameters for the differential privacy experiment using the DP-FedAvg algorithm with the
CNN model while forcing memorization.
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Metrics

Test Accuracy: 75.9%
Training Accuracy: 92.2%
Test Loss: 0.85
Training Loss: 0.22
Training Time: 555 s

Table 50: Accuracy, loss and training time for the differential privacy experiment with memorization using
the DP-FedAvg algorithm with the CNN model. The metrics shown in this table describe a model that
performed decently on the test dataset. Compared to the memorization experiment with the CNN model,
the accuracy illustrated in this table is significantly lower. This indicates that the model trained with DP-
FedAvg performed worse on the test data compared to the FedAvg algorithm.

Classification Report

Class Precision Recall F1-Score Support
Normal 0.91 0.82 0.86 18118
Supra Ventricular 0.08 0.41 0.13 556
Ventricular 0.69 0.70 0.69 1448
Fusion 0.19 0.84 0.31 162
Unknown 0.97 0.24 0.39 1608

Table 51: Classification report for the differential privacy experiment with memorization using the DP-

FedAvg algorithm with the CNN model. The table describes the precision, recall, F1-Score and support
values for the experiment. From the Fl-scores one can observe that the model performed badly for the

Supra Ventricular, the Fusion and the Unknown class. Compared to the memorization experiment with
FedAvg, this model had a notable reduction in precision and recall for the Unknown class.
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Figure 61: Confusion matrix for the differential privacy experiment with memorization using the DP-
FedAvg algorithm with the CNN model. The confusion matrix illustrates a slight diagonal. However, one
can easily observe that the model struggled with classifying the Supra Ventricular Beats and the Unknown
Beats. Compared to the memorization experiment with FedAvg illustrated in Figure 50, the diagonal of
the DP-FedAvg experiment with forced memorization is significantly less distinct.

4.4.3 Model Extraction in Federated Learning with Differential Privacy

The purpose of this experiment was to perform model extraction in federated learning with differential-
private federated averaging (DP-FedAvg), and to show a representation of the local training data at the
clients. The setup for this experiment was the same as for the experiment described in Section 4.3.3. How-
ever, the aggregation algorithm used on the updates from the clients was different. The experiment de-
scribed in Section 4.3.3 used the FedAvg algorithm, while this experiment utilized the differentially-private
federated averaging to aggregate. This experiment trained the softmax regression model. The training
configuration used in this experiment is presented in Table 52.

Training Configuration

Learning algorithm: Federated

Aggregation method: Differentially-private Federated Averaging (DP-FedAvg)
Data distribution: Non-11D

Epochs: 5

Client Epochs: 10

Total number of clients: 5

Number of participating clients per round: 5

Server optimizer: SGD

Server learning rate: 1.0

Client optimizer: SGD

Client learning rate: 0.1

Loss function: Categorical Cross-Entropy

Table 52: Training configuration for the model extraction experiment using the DP-FedAvg algorithm.
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Table 53 describes the differential privacy parameters used in this experiment.

Differential privacy mechanism:

Delta ():
Noise multiplier:

Clipping norm:

Differential Privacy Parameters

Gaussian fixed

Table 53: Differential privacy parameters for the model extraction experiment using the DP-FedAvg algo-

rithm.

Model Extraction

While training the softmax regression model, the updates were collected from the 5 participating clients.
These updates are displayed in Figures 62 and 63 in order to illustrate the difference between client 1 and

the rest of the clients.
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Figure 62: Model Extraction for Normal Beats class from the 5 participating clients. These weights were
extracted after the last round of the differential-private federated averaging loop. One can observe that
the Normal Beats at client 1 stands out from the rest of the clients. However, all of the client’s weights

consist of a lot of noise.
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Client 1, Supraventricular Beats Client 2, Supraventricular Beats Client 3, Supraventricular Beats

0.8

0.6 q

0.4 051 051

0.2
0.0 0.0
0.0

—0.44

—0.64

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175

Client 4, Supraventricular Beats Client 5, Supraventricular Beats

1.04 1.0

0.5

0.59

0.01 0.0

-0.5 _05

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175

Figure 63: Model Extraction for Supraventricular Beats class from the 5 participating clients. These
weights were extracted after the last round of the differential-private federated averaging loop. One can
observe that the weights consist of a lot of noise for all the clients, making it difficult to distinguish the
weights.

4.4.4 Federated Learning with Homomorphic Encryption

The purpose of this experiment was to demonstrate the use of homomorphic encryption (HE) in federated
learning. We implemented Algorithm 5, but replaced fully homomorphic (FHE) encryption with partially
homomorphic encryption (PHE), and used the Paillier Cryptosystem which is described in Section 2.7.2.1.
Neither TensorFlow or TensorFlow Federated supported machine learning with homomorphic encryption.
Therefore, we had to implement federated learning from scratch using only NumPy (see Section 3.3.5).
Furthermore, we used the Python Paillier library (see Section 3.3.3) to implement PHE. The aggregation
algorithm in this experiment was federated averaging, and the model to be trained was the softmax regres-
sion model presented in Section 3.2.4.1. The purpose of this experiment was not to train a well-performing
model, only to conduct federated learning with encrypted weights. As explained in Section 2.7.3, homo-
morphic encryption with federated learning is computationally expensive. Therefore, we did not train the
model with as many epochs and client epochs as the other experiments in Chapter 4. The training config-
uration used in this experiment can be observed in Table 54.
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Training Configuration

Learning algorithm: Federated

Aggregation method: Federated Averaging with HE
Data distribution: Non-11D

Epochs: 3

Client Epochs: 3

Total number of clients: 5

Number of participating clients per round: 5

Key size: 1024

Server optimizer: SGD

Server learning rate: 1.0

Client optimizer: SGD

Client learning rate: 0.1

Loss function: Categorical Cross-Entropy

Table 54: Training configuration for homomorphic encryption with federated averaging.

Metrics
Test Accuracy: 8.01%
Training Accuracy: 21.8%
Test Loss: 3.15
Training Loss: 2.77
Training Time: 796 s

Table 55: Accuracy, loss and training time after performing federated learning with homomorphic encryp-
tion. The metrics shown in this table describe a model that performed badly. The model did also have an
extremely high training time. The training time is enormous considering that the model only trained using
3 epochs.

Weight Size
Weight: 24 B
Encrypted Weight: 300 B

Table 56: Size of a weight and its encrypted value in number of bytes. The size of the encrypted weight is
12.5 larger than the original value.
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5.5 — Validation Loss
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Loss
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Figure 64: Graph illustrating the validation loss for doing federated learning with homomorphic encryp-
tion. Since the validation loss is decreasing for each epoch, this model was able to learn from the training
data using Federated Averaging with Homomorphic Encryption.
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5 Discussion

This chapter will discuss the results of the experiments presented in Chapter 4. The results will be dis-
cussed in regards to the related work introduced in Chapter 2. This chapter will also elaborate on why the
results are important in terms of privacy, security and model performance in federated learning. The dis-
cussion will provide the basis for answering the research questions described in Chapter 1.

5.1 Federated and Centralized Learning

In this report we wanted to assess how federated learning compares to centralized learning, both in terms
of privacy and performance. We also wanted to explore the occurrence of memorization in both learning
approaches. With the intention of doing this, we conducted several experiments in regards to both central-
ized and federated learning. The results of the different experiments can be found in the sections listed in
Table 57.

Overview of the Experiments

Centralized Learning: Section 4.2.1
FedSGD: Section 4.2.2
FedAvg: Section 4.2.3
Memorization: Section 4.3.2

Table 57: The results discussed in Section 5.1

5.1.1 Model Performance

Before discussing the privacy metrics of the two learning approaches, we wanted to compare the model
performance of each approach. Starting with centralized learning, we achieved a test accuracy of 92.8%
and 97.1% with the ANN model and the CNN model, respectively. The confusion matrices for these two
models, displayed in Figures 28 and 31, illustrate a clear diagonal. This indicates that both models clas-
sified many true positives and true negatives for each class. Both the test accuracy and F1l-scores for the
CNN model are higher than the test accuracy and F1l-scores achieved with the ANN model, making the
CNN model the best performing model trained during the centralized learning experiment in terms of ac-
curacy.

As for federated learning, we started with testing the simplest aggregation method presented in this re-
port, namely FedSGD. This aggregation method obtained relatively poor results. The test accuracy achieved
with the ANN model using FedSGD was 62.1% , and 50.4% with the CNN model. Such poor results were
expected because, as described in Section 2.2.1.1, FedSGD only performs one step of gradient descent on

the client data before sending the updates back to the central server to be aggregated.

To further evaluate federated learning, we also performed experiments using the federated learning algo-
rithm FedAvg. This aggregation method performed almost equally well as the models trained with cen-
tralized learning. As illustrated in Section 4.2.3, training with FedAvg resulted in test accuracies of 93.4%
and 96.2% for the ANN and CNN models, respectively. The F1-scores presented in Tables 15 and 17 re-
veal that the Fl-scores obtained with FedAvg are relatively similar to the values achieved with centralized
learning. This indicates that the two algorithms performed similarly on the five classes in the dataset. As
described in Section 2.2.1.2, FedAvg performs several rounds of optimization on the client datasets, thus
providing better models than those obtained with FedSGD.

The results concerning model performance in federated and centralized learning, illustrate that both learn-
ing approaches applied to the MIT-BIH Arrhythmia Dataset were able to provide well-performing models.
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However, it became clear that the FedSGD aggregation method was not optimal as it converged slower
due to it only performing one step of gradient descent on the clients data before aggregating. The results
obtained during these preliminary experiments supported the related work within this field described in
Section 2.2.1. Moreover, the results gathered during the preliminary experiments reveal a slight benefit to
training the CNN model with centralized learning compared to FedAvg in terms of model performance.
This can be explained with the fact that federated learning allows clients to keep their data local while
training, while centralized learning collects all the data and stores it in a database. As described in Sec-
tion 2.2, when training a model using federated learning, the global model is sent from the central server
to the individual clients. The individual clients then train this model using their own local data which
causes the model to become specialized. The aggregation performed on the client updates attempts to cre-
ate a generalized model. However, the aggregated model might not become as generalized as one would
like. This issue is unique to federated learning, as centralized learning does not train several models that
needs to be aggregated after each global epoch.

The training time for the CNN model was longer when the model was trained with federated averaging
compared to centralized learning. The training time for the CNN model trained with centralized learning
was 471 seconds, while the training time for the CNN model with FedAvg was 687 seconds. Both mod-
els trained for 15 epochs. As mentioned in Section 3.3.4, the hardware used to train the models was a
NVIDIA GeForce GTX 1070 with CUDA which made model training efficient. However, if federated av-
eraging was performed on real decentralized clients on separate devices instead of using TensorFlow Fed-
erated (TFF), the difference in training times would be much larger. This is because TFF initiates the
clients locally, thus making the communication time between the server and the clients negligible.

5.1.2 Memorization as a Privacy Issue

In Section 4.3.2, the results concerning memorization in federated and centralized learning were presented.
In these experiments, we forced memorization in the different models by significantly reducing the num-
ber of training examples within the Unknown class. We then observed how the models performed on this
class. The results demonstrated a high degree of memorization in both federated and centralized learning
using the ANN and the CNN model. In the confusion matrices for FedAvg and centralized learning us-
ing the ANN model, one can observe that the values for the Unknown class are relatively high despite this
class only having 100 training examples. These confusion matrices are shown in Figures 51 and 52. The
same phenomenon can be observed in the confusion matrices for training the CNN model with FedAvg
and centralized learning. However, when training the CNN model, both learning approaches showed an
even higher degree of memorization than with the ANN model. Since the CNN model is larger than the
ANN, which can be seen in the figures in Section 3.2.4, the CNN model had an increased ability to mem-
orize outlier data. This is coherent with the theory presented in Section 2.5.1, where it was shown that
larger models are more inclined to memorize outlier data.

As explained previously, the ANN models trained with both centralized and federated learning showed less
memorization than the CNN models. Memorization is considered to be a larger problem in big models,
and from the results it is clear that federated learning has less memorization in the CNN model compared
to centralized learning with the CNN model. This could imply that memorization is a slightly smaller is-
sue in federated learning. The reduction in memorization in federated learning could be explained by the
aggregation. When the weights are aggregated, the average of the weights is calculated, which could po-
tentially cause the weights responsible for memorizing the outlier data to loose information. Regardless,
memorization is a significant privacy issue in both centralized and federated learning as it enables adver-
saries to use forward-propagation to look at which of the weights have been activated. An attacker could
conduct an inference attack that would reveal the weights who are rarely activated and can infer memo-
rized data. This is described in Section 2.5.1.

We used the confusion matrix to determine the presence of memorization when training models with dif-
ferent learning algorithms. When we first conducted the experiments regarding memorization, we found
this method to be uncertain. This is because we did not directly study the weights of the models to check
the presence of memorization. After running some more experiments, we realized that the confusion ma-
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trix was adequate for checking memorization, since we could see how well the model performed on the
class with only 100 training examples.

5.1.3 Privacy Benefits in using Federated Learning

Even though federated learning might sacrifice some model performance, it provides a significant privacy
benefit when training machine learning models on sensitive data. This is due to the fact that when using
federated learning to train models, it is not required to collect data from the clients. Instead, federated
learning allows its clients to train a model locally and then send the weights of the updated model back
to the central server. The only time the weights are sent to the server is when the clients’ updates are ag-
gregated. This means that the information that needs to be communicated between the clients and the
server, is sent far less often and contains fewer details concerning the original training data. This is con-
sidered to be a significant privacy benefit, especially when handling sensitive data such as medical records,
as the risk of data leakage is greatly reduced. The server never stores the updates from the clients, and
the updates are discarded immediately after aggregation. In order to train a model with centralized learn-
ing, all the data has to be in the vicinity of the model. In centralized learning, it is normal for the server
to hold the data collected from the clients in order to make it possible to train several models on the data
later. Storing privacy-sensitive data comes with high responsibility to protect that data. This is not the
case in federated learning.

In comparing Algorithm 1 for FedSGD and Algorithm 2 for FedAvg, one can observe that FedSGD shares
the gradients, whilst FedAvg shares the model weights. This means that an adversary could use gradient
inversion to see the information shared through the gradients by the FedSGD algorithm [16]. Therefore,
FedAvg offers a more secure method compared to FedSGD.

5.2 Robustness in Federated Learning

To assess the robustness in federated learning, we conducted two experiments, which are listed in Table
58. We wanted to see how FedAvg performed compared to robust federated aggregation (RFA) when the
data had been poisoned. To reiterate, we sampled random values in the interval [20, 40], labeled them as
Normal beats, and inserted the values into client 1. The values of the other clients were in the interval
[0,1], making client 1 an outlier. The values for client 1 were 20 to 40 times larger than the values of the
other clients, causing the updates to become much larger. This approach is known as static data poison-
ing, and is explained in greater detail in Section 2.4.2.

Overview of the Experiments
FedAvg with Static Data Poisoning: Section 4.3.1
RFA with Static Data Poisoning;: Section 4.4.1

Table 58: The results discussed in Section 5.2

First, we tested the ANN model trained with FedAvg on the unbalanced data distribution. As described
in Section 2.4, FedAvg uses the arithmetic mean to aggregate the updates from the clients. This method is
not robust because the arithmetic mean is easily affected by outlier values. The results obtained after test-
ing FedAvg on poisoned data, support the fact that FedAvg is not a robust method. This can be seen in
the confusion matrix illustrated in Figure 48, where the model almost exclusively classified Normal beats,
which is precisely the label that was used on the poisoned data. These classifications can be explained by
the updates received from the poisoned client, because these updates were much larger than the updates
from the other clients. Since FedAvg was used to aggregate the updates, and the updates from the out-
lier client were large, the global model went from having small weights to large weights. This shift is il-
lustrated in Figure 11. Table 23 shows the metrics obtained after using FedAvg on poisoned data. In this
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table, one can observe that the training loss is NaN (not a number). This is a result of exploding gradi-
ents, which is a phenomenon that can occur in deep neural networks when they have weight values larger
than 1.0. In this experiment, the weight values became so large that the error gradient used to update the
weights of the model overflowed, causing an undefined training loss. Having an undefined training loss en-
tails that the model stops learning from the data, resulting in a broken federated averaging process. The
results in Section 4.3.1 illustrates the impact of FedAvg being a non-robust method, since we ended up
with a corrupt model suffering from gradient explosion, and classifying almost the whole dataset as Nor-
mal beats.

In order to increase robustness, we implemented the robust federated aggregation (RFA) algorithm, and
tested the CNN model on the unbalanced data described in Section 4.3.1. To reiterate, the RFA algorithm
uses the geometric median instead of the arithmetic mean to aggregate the client updates. The geomet-
ric median is a more robust method compared to the arithmetic mean, and is not as inclined to converge
towards outliers. RFA and geometric median are explained in greater detail in Section 2.4.3. After replac-
ing FedAvg with RFA to aggregate the updates from the clients, the model became robust. This can be
seen in Table 37, where the training loss is no longer NaN. Thus, the model does not suffer from gradient
explosion. The confusion matrix in Figure 55 displays a clear diagonal, showing that the model trained
with RFA performed well on every class. Even though data poisoning was present in this experiment, we
still managed to get a test accuracy of 92.0%. This is due to the fact that RFA gives low priority to out-
lier clients. In addition, the training time for RFA was 501 seconds, which was 29 seconds faster then the
training time for FedAvg. This could be a consequence of the model trained with FedAvg overflowing,
since it had to calculate error gradient with larger weights. This experiment illustrated how RFA increased
robustness in federated learning, and how this aggregation algorithm can protect the model from static
data poisoning.

From the results, one can observe that there is a significant benefit to using RFA compared to FedAvg
when doing federated learning with poisoned data. First, the model trained with RFA did not suffer from
gradient explosion, and unlike FedAvg, the federated learning process was not broken. This is an impor-
tant result, because when using RFA, an adversary cannot use static data poisoning or another type of
corruption (see Section 2.4.2) to destroy the federated learning process. In the results from the experi-
ments, RFA was robust against static data poisoning, which is coherent with the related work described
in Section 2.4.2. Furthermore, the model trained with RFA was relatively well-performing, both in terms
of being able to classify on the test dataset, and the training time. Unlike the model trained with FedAvg,
which classified the Normal class on almost the whole test dataset, the model trained with RFA was able
to make good classifications in all the 5 ECG classes, even though the data was severely manipulated with
values 20 to 40 times larger than the ordinary datapoints.

In summary, RFA increased security in the federated learning process, as it was able to make the model
more robust against data poisoning attacks. However, the aggregation method can also have unintentional
consequences if a non-malicious client possesses outlier data. In this situation, the RFA algorithm would
disregard the non-malicious client that holds the outlier data in the sense that the updates of this client
would not be weighted as much as the other clients’ updates. In turn, this can cause a decrease in model
performance for this particular client. However, in doing this, RFA preserves a well-performing model for
the majority of the clients.

5.3 Model Extraction

In order to further evaluate the privacy issues in federated learning, we conducted an experiment where
we attempted to simulate a model extraction attack on the softmax regression model. To make it simple
to identify the training data of one specific client, we manipulated the distribution of the data in such a
way that client 1 had low variance within its own local data, and high variance from the data of the other
clients. This experiment is described in greater detail in Section 4.3.3.

The results of this experiment illustrate the weight updates that were collected whilst training the softmax
regression model with FedAvg. In Figure 53, one can observe the weights of the 5 participating clients for
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the Normal class. In this figure it becomes clear that the weights belonging to client 1 differs vastly from
the weights of client 2 through 5. These results are interesting as one can easily identify the training data
owned by client 1. Figure 54 shows similar weights for all clients within the Supra Ventricular class. As
previously mentioned, client 1 was only trained using examples from the Normal class, while the other
clients had only seen a few training examples from this class. This means that when the clients had fin-
ished training their local model and sent their updates to the central server to be aggregated, the update
from client 1 would significantly differ from the updates of the four other clients. When the clients down-
load the global model again, all clients, including client 1 would possess the same model weights. How-
ever, due to client 1 only having examples from the Normal class, this client would train its local model
and become specialized again. The weights illustrated in Figure 53, were retrieved after the last round of
the federated averaging process, but before the aggregation step. By extracting the weights at this time
in the training process, one can easily observe that client 1 possess outlier data. In addition, the curve
has a strong resemblance to the Normal beats class displayed in the 2D-histogram in Figure 27. Both the
first graph in Figure 53 and the first graph in Figure 27 have relatively low values compared to the other
classes. This observation makes it probable that client 1 had many examples of the Normal beats class.

In Section 2.2, federated learning is described as having the privacy benefit of not sharing training data
between the clients and the server. Instead, it trains the model locally at each client and aggregates the
client-updates. This means that federated learning should in theory protect its clients from data leakages.
However, as explained in Section 2.6, client-updates can contain privacy-sensitive information. If an at-
tacker where to perform an inference attack such as the model extraction attack simulated in this exper-
iment, the attacker can infer information about the training data by looking at the weights before aggre-
gation. The results obtained during the model extraction attack described in this section, support the fact
that one is able to extract useful information from only the client-updates, and that this threatens the se-
curity of the clients potentially sensitive data.

When performing the model extraction experiment, we used a softmax regression model to train the model.
This was done because the experiment was designed to make it possible to display the extracted weights.
In practice, one would most likely never use a softmax regression model on this type of learning task as

the model is too simple to train a well-performing model. However, in this experiment we found the soft-
max regression model to be useful as it only consist of one layer, making it easier to interpret the weights
from the model. It is easier to interpret a softmax regression model compared to deep neural networks,
because deep neural networks create a very high dimensional representations of the training data, thus re-
ducing interpretability.

5.4 Differential Privacy

In Sections 5.1.2 and 5.3, we discussed two security issues in federated learning that both threaten the pri-
vacy of the participating clients. These privacy concerns are unfortunate, and in an attempt to increase
the privacy when training models with federated learning, we conducted experiments in relation to both
memorization and model extraction using differential privacy. Differential privacy provides privacy in the
sense that it is not possible to determine if a client is present in a specific training round. This is accom-
plished by clipping the updates received from the clients, and by adding noise to the aggregated weights.
First, we will observe how the model performance was affected by applying differential privacy in the fed-
erated learning process. Table 59 provides a section-overview of the experiments used in the discussion
regarding differential privacy.

Overview of the Experiments

Memorization: Section 4.3.2
Model Extraction: Section 4.3.3
Differential Privacy: Section 4.4.2

Table 59: The results discussed in Section 5.4
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5.4.1 Model performance

To assess how the model performance was affected by using differential privacy in federated learning, we
conducted two experiments. The results of these experiments can be observed in Section 4.4.2. We wanted
to compare the performance of the differentialy-private FedAvg (DP-FedAvg) algorithm with the standard
FedAvg algorithm. Therefore, we trained the ANN and the CNN model with DP-FedAvg. The differen-
tial privacy parameters for these experiments can be viewed in Tables 40 and 43. These privacy parame-
ters were tuned according to how the validation accuracy changed when the noise multiplier and clipping
norm were increased or decreased. Delta (&) was defined as 1/n, where n = 100000 is the number of train-
ing points. After running the DP-FedAvg algorithms, we found that the test accuracy of the ANN model
was 69.3%, and the test accuracy of the CNN model was 64.8%. These metrics can be viewed in Tables

41 and 44. Furthermore, the Fl-scores illustrated Tables 42 and 45, along with the confusion matrices dis-
played in Figures 56 and 58, indicate that the models performed best on the Unknown class. This can be
explained by the addition of noise, since the ECG recordings in this class do not follow a pattern. Fur-
thermore, when using DP-FedAvg the client-updates are clipped according to the clipping norm. This can
result in information about the data being lost, and can further explain the decrease in accuracy when
training with DP-FedAvg. The training times for the experiment using DP-FedAvg is fairly similar to the
training times when training with FedAvg. This makes sense as adding noise and clipping weights are con-
sidered cheap operations, as described in Section 2.6.

Training with DP-FedAvg requires the selection of how much noise to add to the aggregated updates, and
how much the updates from the clients should be clipped. Therefore, a trade-off has to be made between
model performance and privacy. The relationship between the amount of noise and model performance is
inversely proportional, and the same is also true for how much the weight updates are regularized. The
moments accountant displayed in Figures 57 and 59 give a cumulative privacy loss of € ~ 8.8, which is

a good value for the privacy loss. To reiterate, € is a metric for measuring how strict the privacy is. The
smaller € is, the better the privacy is. This is explained in greater detail in Section 2.6.1.

5.4.2 Memorization

In Section 5.1.2 the issue of memorization in machine learning models was discussed. This section revealed
that memorization poses a significant threat in federated learning as well as in centralized learning. This
was discovered through a series of experiments using both centralized and federated learning where the
number of training examples within the Unknown class in the dataset had been reduced. The results of
these experiments are shown in Section 4.3.2. Due to the high degree of memorization in federated learn-
ing, and the possible threat of inference attacks utilizing this memorization, we wanted to explore if dif-
ferential privacy could decrease memorization in different models using federated learning. With respect
to this, we conducted an experiment using the DP-FedAvg algorithm while forcing memorization in the
model by reducing the number of training examples in the Unknown class. This experiment was performed
on both the ANN model and the CNN model, and the training configuration and results can be observed
in Section 4.4.2.

The results of this experiment show a significant reduction of memorization in both the ANN model and
the CNN model when trained with federated averaging and differential privacy. Figure 60 illustrates the
confusion matrix for the experiment performed on the ANN model, and it shows a complete reduction

in memorization when training with DP-FedAvg as the value for the Unknown class is 0.00. Figure 52
illustrates the confusion matrix for the same experiment, but without differential privacy. The value for
the Unknown class in this confusion matrix is 0.71. This means that by using DP-FedAvg instead of Fe-
dAvg, one has reduced memorization for the Unknown class by 0.71 in the ANN model. Moreover, Figure
61 describes the confusion matrix for the forced memorization experiment using DP-FedAvg on the CNN
model. This figure shows a value of 0.24 for the Unknown class which is a reduction of 0.54 from the con-
fusion matrix describing the same experiment, but without differential privacy. The confusion matrix for
the forced memorization experiment without DP is illustrated in Figure 50.
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The results obtained during this experiment, support the related work described in Section 2.6. In Sec-
tion 2.6, it is explained that differential privacy tries to solve the problem of memorization of a particular
client’s data. This is done by clipping the updates received from the clients, and by adding noise to the
aggregated weights. Adding noise will change the values of the weights which are responsible for the mem-
orization. Clipping the updates will cause the weights to become normalized, and this will make it difficult
to extract outlier data from the model. This will lead to a decrease in memorization. However, in order

to decrease memorization, one has to sacrifice model performance in the non-outlier data as the noise and
clipping will negatively impact the pattern recognition in the model. When trying to decrease the issue

of memorization, one has to adjust the noise multiplier and the clipping norm in order to find a balance
between model performance and memorization.

5.4.3 Model Extraction

Section 5.3 discusses the experiments conducted in respect to the inference attack known as model ex-
traction. In this experiment the data distribution was manipulated in such a way that one client had low
variance within its own local data and high variance from the data of the other clients. Furthermore, the
softmax regression model was trained and the weights of the 5 participating clients were extracted before
aggregating the updates from the final round of local training. As discussed in Section 5.3, client updates
can contain privacy-sensitive information, and by executing a model extraction attack one can infer such
information which threatens the privacy of the participating clients. We wanted to explore how adding dif-
ferential privacy to this situation could affect the interpretability of the extracted weights. Therefore, we
executed the model extraction experiment with differential privacy. The results of this experiment can be
observed in Section 4.4.3.

The results of the model extraction experiment with differential privacy consist of the extracted weights
from all 5 clients, from both the Normal and the Supra Ventricular class. Figure 62 illustrates the weights
for the Normal class. These weights consist of more noise compared to the extracted weights without dif-
ferential privacy shown in Figure 53. The noise in Figure 62 makes the extracted weights less interpretable.
However, one can still observe that client 1 stands out, but it is more difficult to see the presence of Nor-
mal beats from the weights. In Figure 63 one can observe the weights for the Supra Ventricular class.
These weights also consist of more noise than the weights extracted in the experiment without differential
privacy. From these results we know that differential privacy would help make the weights that represent
the data, less interpretable. However, one has to increase the noise and clipping significantly to eliminate
the chance of inferring privacy-sensitive information concerning the training data.

5.5 Federated Learning with Homomorphic Encryption

To further enhance privacy in federated learning, we conducted an experiment where we trained a softmax
regressor using federated learning with homomorphic encryption (HE). The results of this experiment are
presented in Section 4.4.4. Homomorphic encryption is an encryption scheme where one can perform oper-
ations on encrypted values, and receive mathematically correct results after decrypting the values. Thus,
federated learning with homomorphic encryption is running the FedAvg algorithm with encrypted model
parameters, and decrypting at the end of the whole federated learning process.

When performing federated learning with HE, we decided to use the smallest model in our model ensem-
ble, the softmax regression model (see Section 3.2.4.1). Due to our discoveries concerning training time
when doing federated learning with homomorphic encryption in Section 2.7, we did not run as many global
epochs and client epochs in this experiment compared to the other experiments. In Section 2.7.3, it was
mentioned that homomorphic encryption encrypts the weights of the model as large integers, making com-
putations on encrypted values inefficient. This computational inefficiency was evident after conducting the
experiment. Table 55 shows that the training time after 3 rounds of encrypted FedAvg was 796 seconds,
even though we used a small model and only ran 3 global epochs. When we ran the FedAvg algorithm
with 15 epochs on the CNN model without homomorphic encryption, we obtained a training time of 687
seconds. Furthermore, in Table 56, the size of an encrypted weight is described. This weight has the size
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of 300 bytes, which was 12.5 times larger than the length of the unencrypted weight. Doing backpropa-
gation with encrypted values of this size explains the long training time for performing federated learning
with homomorphic encryption.

In the experiment regarding federated with learning HE, we used a softmax regression model. In Table 55,
one can observe that we did not obtain a good test accuracy using this model because it was too simple.
However, as explained in Section 4.4.4, the purpose of the experiment was not to train a well-performing
model, but to demonstrate training with federated learning combined with homomorphic encryption. Fig-
ure 64 shows a reduction in validation loss with respect to the number of epochs. This result shows that
we were able to optimize the model with federated learning combined with homomorphic encryption.

When doing federated learning with HE, the model parameters remain encrypted during the entire feder-
ated learning process. This means that from the moment the central server initializes the federated learn-
ing process, all mathematical operations will be done on encrypted values. This means that the clients will
perform gradient descent on encrypted values, and that the aggregation will be done on encrypted values.
Since all the model parameters are encrypted, it is more challenging to execute model extraction, which is
explained in Section 5.3. This is because an adversary would not be able to see the actual model param-
eters, only the encrypted values, making it more difficult to infer the training data. Because of the poor
training time of federated learning with homomorphic encryption, one could argue that homomorphic en-
cryption is unnecessary if a secure protocol, such as TLS, is being used. However, even if the connection
between the server and the clients is secure, the model would still be vulnerable. When using a secure con-
nection, a client would still be able to read the weights of the model. This would not be ideal if the model
were to leak information about the other clients to a malicious client. Homomorphic encryption remedies
this problem by making the model unreadable to the clients or other adversaries. One potential disadvan-
tage of doing federated learning with homomorphic encryption is that the server has to be trustworthy,
because the server is the only entity which is able to encrypt and decrypt the weights.

5.6 Summary

As described in Section 2.2, federated learning is a relatively new machine learning approach which emerged
as a result of an increased focus on privacy and security within machine learning. Federated learning offers
an entirely new way to approach a machine learning task in the sense that it allows clients to keep their
own data, and train a model locally which is later aggregated to a central server. In allowing clients to
keep their data private, the approach greatly reduces the privacy concerns linked to how centralized learn-
ing stores data used in training. In centralized learning, data used in training is stored on a central server
which means that the clients have to communicate their raw training data to server. In federated learning,
the raw training data is never communicated. Instead, the clients train the downloaded global model on
their local training data and only communicates the updated model weights which are deleted after aggre-
gation. In doing this, federated learning reduces the amount of information that needs to be transmitted
and stored, therefore increasing the privacy of its clients. However, the increase in privacy comes at the
expense of a reduction in model performance.

As discussed in Section 5.1.1, the results of the federated learning and centralized learning experiments
show a slight benefit to training the CNN model with centralized learning. This is can be a result of the
aggregation process in federated learning which occurs after each global epoch. In the aggregation pro-
cess the arithmetic mean is calculated from the clients updates, resulting in an updated model that could
potentially have lost some information in regards to the updates. This can result in an slight decrease in
model performance compared to centralized learning. In addition, the discussion in Section 5.1.1 reveals
that federated learning has a longer training time than centralized learning. In an actual implementation
of federated learning, the training times obtained during the experiments would have been far higher as
the clients used in this report’s experiments were initiated locally. The reason why one would experience a
higher training time using federated learning, is mainly because centralized learning only has to perform F
epochs, while federated learning has to perform T - E epochs, where T is the number of global epochs. In
light of this, one can observe that one has to be willing to sacrifice some performance in terms of efficiency
and accuracy in order to reap the privacy benefits that federated learning offers.

114



Even though federated learning offers privacy benefits due to it not communicating raw training data, fed-
erated learning is still vulnerable and has its fair share of privacy issues. One of these issues was discussed
in Section 5.1.2, and concerns the issue of memorization in both federated and centralized learning. From
the experiments executed in regards to memorization, it was discovered that the issue of memorization
was prominent in both federated learning and centralized learning. However, it was discovered that mem-
orization occurred less in smaller models such as the ANN model compared to bigger models such as the
CNN model. In addition, it was also observed that memorization was less present in the CNN model when
trained with federated averaging which could be explained by the averaging of the weights executed during
the aggregation step.

Another privacy issue in federated learning was discussed in Section 5.2, and it concerned model robust-
ness. Federated averaging was not robust against corrupted clients, since the arithmetic mean tends to
shift towards outliers. From the experiments conducted, one could observe that the federated averaging
process broke due to corrupting the data of one client. This further resulted in extremely poor model per-
formance. To remedy this problem, robust federated aggregation (RFA) was applied which uses the ge-
ometric median with calls to a secure average oracle instead of the arithmetic mean. After applying the
RFA algorithm to aggregate the client updates, a relatively well-performing model with a similar train-
ing time to federated averaging, was obtained. Even though RFA greatly increases the robustness of the
model, it can lead to poor model performance on non-malicious outliers as these clients are weighted less
in the aggregation process.

In Section 5.3, the threat of model extraction attacks in federated learning was discussed. In the experi-

ments conducted in regards to model extraction, it was found that it was possible to extract the weights

of the participating clients before aggregation. From these weights one could also infer what kind of data
a particular client had. This was a concerning result as an attacker that performs such an attack on fed-
erated learning, would be able to infer privacy-sensitive information about the participating client’s data.
This would pose a significant threat to the privacy of the clients.

In order to remedy the privacy issues of memorization and weight extraction attacks, one can utilize dif-
ferential privacy. In Section 5.4, differential privacy in federated learning was discussed. It was discovered
that differential privacy can help decrease the amount of memorization in both the CNN model and the
ANN model using the DP-FedAvg algorithm. Furthermore, it was observed that applying differential pri-
vacy to the training process would complicate inferring information from the extracted weights. Differen-
tial privacy aims to make it impossible to determine whether a specific client has participated in a training
round by adding noise and clipping the weights. In applying differential privacy, one will be able to en-
hance privacy in federated learning, but it will also compromise the training process and in turn the model
performance. From the results discussed in Section 5.4.1, one can observe that the model performance de-
creases significantly when applying differential privacy to the FedAvg algorithm.

In Section 5.5, the use of homomorphic encryption in a federated learning environment was discussed. Ho-
momorphic encryption allows operations between encrypted values, thus enabling machine learning on en-
crypted values. In the context of federated learning, we were able to perform the whole process using en-
crypted values, from model distribution to model aggregation. While applying homomorphic encryption
to federated learning has the advantage of making the model updates secure, the computational complex-
ity of doing so is high. We found that the training time of applying homomorphic encryption to federated
learning was relatively high, despite only running few epochs. This is because homomorphic encryption
operates with large integers, in addition to time spent encrypting the values. Moreover, if one were to use
a secure connection such as TLS when communicating updates between the server and the clients, the ad-
vantage to using homomorphic encryption would decrease. However, using homomorphic encryption makes
the model unreadable to all clients which is an added benefit as a client would not be able to infer any
information about other clients. A potential disadvantage to utilizing homomorphic encryption is that

the server has to be trustworthy as the server is the only entity which is able to encrypt and decrypt the
weights.
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6 Conclusion

The main focus of this report was to explore if federated learning could be a viable alternative to central-
ized learning in terms of privacy, security and model performance. In order determine this, two research
questions were formulated. The first research question presented in the report was:

How does federated learning increase privacy when applied to decentralized data?

In Chapter 5, the federated learning approach was discussed with respect to privacy. The discussion im-
plied that federated learning increases privacy when applied to decentralized data because the approach
allows data-owners to participate in training models without having to share their data with any third
parties. The information that is being communicated between the server and the clients is limited to weight
updates, meaning that no raw data is ever sent. Furthermore, when utilizing federated learning, the up-
dates from the clients are ephemeral. This means that the server does not store any of the clients weight
updates after aggregation. The limited data communication and data storage in federated learning makes
for an approach which is less vulnerable to attacks, thus increasing the privacy of the decentralized data.
This is an huge advantage compared to centralized learning where the raw data has to be imported from
the various data-owners. If the data is highly privacy-sensitive, this can be unsafe because an adversary
could intercept the raw training data. The nature of federated learning increases the privacy of the decen-
tralized data because it limits the amount of information being communicated and stored.

By itself, federated learning provides an increase in privacy due to it limiting the information that is being
communicated. However, the approach is not by itself resilient to all threats and attacks as discussed in
Chapter 5. To explore how a more secure federated learning process could be achieved, a second research
question was formulated:

How can different methods enhance security in federated learning environments, and how do these methods
affect model performance?

Chapter 5 discusses three different statistical and cryptographic methods for enhancing security in fed-
erated learning. The first method explored was the robust federated aggregation algorithm. This method
proved to enhance the security of the model in the sense that it made the model much more robust against
corrupted clients. When testing the algorithm with data poisoning, the algorithm managed to train a well-
performing model by weighting the corrupted client less than the other clients. The model performance
obtained when using robust federated aggregation without any corrupted clients is slightly worse than
with the federated averaging algorithm, but the algorithm provides a vast security benefit in the federated
learning process. Second, differential privacy was explored. Differential privacy proved to be an effective
method for reducing memorization in models and preventing adversaries from inferring useful information
from weight updates. Differential privacy is a method that adds noise and clips weights in order to dis-
guise which clients are participating in a training round of federated learning. When using differential pri-
vacy, one has the ability to adjust the clipping norm and the noise multiplier with respect to level of pri-
vacy one wishes to achieve. If the degree of privacy is large, the model performance suffers. However, with
the correct values the method can provide a huge security benefit while still training a well-performing
model. Finally, homomorphic encryption was tested. Federated learning with homomorphic encryption
allowed training with an encrypted model, from the model distribution to the aggregation process. This
method caused a severe increase in training time, but made the entire federated learning process secure
against third-party attacks. The benefit of utilizing this method decreases if one already uses a secure con-
nection, but can still prevent malicious clients from inferring information about other clients. This is be-
cause when using federated learning with homomorphic encryption the weights can only be decrypted by
the server.

Federated learning can be a viable alternative to centralized learning in terms of privacy, security and
model performance. The federated averaging algorithm applied to privacy-sensitive, decentralized data,
provides a great privacy benefit while still training a well-performing model. In addition, one can utilize
federated learning along with numerous different methods in order to further enhance security within the
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federated learning process. However, there is always a trade-off that needs to be made between security
and model performance. In conclusion, federated learning is especially well suited for environments that
requires a great deal of privacy and security. In an environment such as the one Infiniwell works with, the
algorithm appears to be suitable as they wish to provide patients with a more secure machine learning so-
lution than one can achieve with centralized learning.
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7 Future Work

Federated learning is an approach that emerged a few years ago, and the research done within the field
is still limited. This report focused on exploring how the approach increases privacy, and how one could
combine it with other methods to further enhance the security of the federated learning process. While
the research regarding privacy and security within federated learning provided in this report is relatively
thorough, there is still more that can be explored.

First, homomorphic encryption (HE) could have been tested more thoroughly. As mentioned in Section
2.7, fully homomorphic encryption (FHE) allows all operations on encrypted values. The research pre-
sented in this report, only covered partial homomorphic encryption (PHE). PHE only supports either
addition and multiplication of encrypted values. Therefore, in order to get a more complete solution one
could replace PHE with FHE, which would allow for testing of more complex models with homomorphic
encryption. As seen in the results in Section 4.4.4, federated learning with HE did not perform well. This
was because federated learning with HE had extensive training times, which meant that we were not able
to train any well-performing models using HE. Therefore, it would also be wise to do more research on,
and implement more efficient algorithms for performing homomorphic encryption in federated learning en-
vironments. An example is the BatchCrypt algorithm [42], which uses techniques such as quantization to
reduce the encryption overhead caused by HE.

As mentioned in Section 2.4.2; the robust federated aggregation (RFA) algorithm is not resilient against
byzantine attacks. This is because an adversary is able to modify the aggregation method. In April 2021,

a new aggregation method called FedCom was introduced [414]. This method has proved to be robust against
byzantine attacks. This method requires each client to submit a data commitment, and uses the Wasser-
stein distance among the data commitments to evaluate the behaviour of different local models. If the al-
gorithm discovers unusual behaviour it will prevent the ongoing model poisoning attack. By implementing
this aggregation algorithm, the federated learning process could become even more robust against poten-
tial attacks.

In Section 2.2.1.3, the secure aggregation algorithm was presented. This method is considered more secure
against inference attacks as it allows the participating clients to act as parties in the SMC protocol and
calculate the aggregated weights between each other before sending the aggregated weights to the server.
This means that the server will only see the aggregated weights, and update the global model based on
this value. It would be interesting to observe how this aggregation method would secure the federated
learning process compared to other aggregation methods such as RFA and FedAvg.

The methods explored in this report, have been researched individually. Therefore, it would be fascinating
to observe how the methods would work when combined. For example, the robust federated aggregation
algorithm could be combined with differential privacy to obtain a federated learning process which both
keeps the data of the clients private, and makes the model more robust against attacks. In examining dif-
ferent combinations of the security measurement methods explored, one could discover a federated learning
process that would provide sufficient protection against potential threats and attacks while still produc-
ing a well-performing model. In addition, one could implement downstream and upstream compression in
order to provide a more communication-efficient federated learning process.

Finally, the implementation of federated learning in this report used TensorFlow Federated (TFF) for
most of the algorithms. The implementation provided is not a production-ready pipeline because the fo-
cus of the bachelor’s thesis was to research federated learning and related methods, in a theoretical frame-
work. In addition, TFF is not currently meant to be used in a production setting. Therefore, it would

be beneficial for both the research and Infiniwell to attempt to implement a federated learning environ-
ment which could be deployed. This would allow for a study of the differences between local simulations
and real-world implementations of federated learning. Moreover, this could have provided Infiniwell with a
real-world federated learning solution that would be suitable for their work, making their current pipeline
more secure.
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8 Broader Impact

The research presented in this report aims to gain insight into how federated learning would work in an
environment that requires a high level of data privacy. In addition, the report explores privacy vulnera-
bilities in federated learning, and presents suitable methods to remedy these. However, the research con-
ducted and presented could potentially have an unintended impact. First, the experiments performed with
respect to attacks in federated learning could potentially be utilized maliciously. In this report, the aim

of performing such attacks was purely to establish what impact they would have on the federated learn-
ing process. Nevertheless, it is possible to utilize the attack methods presented in this report as a basis for
performing attacks with malicious intent. Moreover, some of the privacy-preserving methods described in
this report are extremely computational heavy, e.g. homomorphic encryption. This could potentially have
an harmful impact on the environment because the methods require large amounts of power to be com-
puted.
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