
System documentation

Dumpster Finder

Tore Bergebakken Jon Åby Bergquist Helene Yuee Jonson

Spring 2021

Task 17

version 1.2

System documentation

Audit history

Date Version Description Author

12.01.2021 0.1 Creation of document Helene Y. Jonson

02.05.2021 0.2 WIP draft Tore Bergebakken

10.05.2021 1.0 First complete draft Tore Bergebakken, Jon Åby Bergquist

18.05.2021 1.1 Final version Tore Bergebakken, Jon Åby Bergquist

20.05.2021 1.2 Final version, now

with class diagrams

Tore Bergebakken

2

System documentation

Contents

1 Introduction 5

2 Architecture 6

3 Project structure 7

3.1 } backend . 7

3.1.1 } api . 7

3.1.2 } db . 8

3.1.3 } nginx . 8

3.1.4 } pics . 8

3.2 } frontend . 9

4 Class diagram 11

5 Database model 14

6 Server services 15

6.1 API server . 15

6.2 Photo server . 18

7 Security 19

7.1 Encrypted data transfer . 19

7.2 Handling of user IDs . 19

7.3 Tokens . 20

7.4 SQL injection . 20

7.5 Input validation . 20

7.6 Rate limiting . 20

7.7 Path traversal . 21

7.8 Sensitive data exposure . 21

7.9 Server security . 21

8 Installation and running 22

8.1 Running the backend as a developer . 22

8.1.1 Prerequisites . 22

8.1.2 Database . 22

3

System documentation

8.1.3 API server . 23

8.1.4 Photo server . 23

8.2 Backend deployment . 23

8.2.1 SSH hardening . 25

8.2.2 SSL certificates . 26

8.3 Running the app . 27

8.4 Publishing the app . 27

9 Documentation of source code 28

9.1 Source code documentation . 28

9.2 API documentation . 28

10Continuous integration and testing 29

10.1CI pipeline . 29

10.2Tests . 29

4

System documentation

1 Introduction

This document was written by three students at the Norwegian University of Science and

Technology as part of our bachelor thesis in computer engineering. Our assignment was to

create an application where dumpster divers can share information about different dumpsters

with other dumpster divers. The purpose of this document is to explain how the system was

structured and other aspects of its design. It will explain the project’s architecture, how its

files are structured, detail the database schema, explain the different endpoints in the API, go

through the different means of security enhancements, provide instructions for installing and

running the project, explain where the source code documentation can be found and how to

generate it, and go through the continuous integration pipeline.

5

System documentation

2 Architecture

As Figure 1 shows, our system consists of a mobile app and a server split into several con-

tainerized services: an API server, a file server and a database, connected to the outside world

through a reverse proxy.

Figure 1: Architecture diagram

6

System documentation

3 Project structure

The root folder contains a README and some useful things.

3.1 } backend

Here, all components of our backend are configured.

o docker-compose.yml: Defines the set of containers that the backend consists of, and

any links between them

o renew_certs.sh: Script for renewing SSL certificates for the sake of HTTPS support

o dumpster.service: systemd unit file

o Makefile: Contains scripts that set up the database and more

o tables.sh: Related to the Makefile

3.1.1 } api

} @types: Some extra TypeScript definitions

} config: Files that extract environment variables and set up some object (like our Se-

quelize instance and our logger), and a file that exports a function for test setup

} daos: Data Access Objects that serve as wrappers around Sequelize cards, with some

transactional logic and error reporting

} __tests__: Unit tests for these DAOs

} middleware: Express middleware functions that handle things like tokens, errors and

rate limiting

} models: Sequelize models that correspond to tables in the database

} node_modules: The folder where all our third-party dependencies end up

} routes: API routes, exported as Express routers that are connected to their respective

paths in server.ts

} types: TypeScript interfaces for objects that the API server sends and receives

} utils: Utilities for hashing and generating user IDs and handling tokens

} validators: Joi validators that check that data the API receives fits with a certain

schema

o index.ts: An entry point that imports and starts the Express server

o server.ts: Connects all routes to their paths, as described in section 6

o package.json: The usual file where our dependencies and commands are listed

7

System documentation

o .env: Contains secret environment variables necessary for letting the API know things

like which port it should listen on

o Dockerfile: Defines how the API server’s container should be set up

3.1.2 } db

Database scripts.

o init.sql: Defines the structure of the database and a necessary function

o constants.sql: Adds categories and types of stores and dumpsters

o data.sql: Inserts test data that is not meant to be used in production

o Dockerfile: Defines how the database container should be set up

o Makefile: For quick setup and refresh of the database while developing

o setup.sh: Related to the Makefile

3.1.3 } nginx

Configuration files for the NGINX proxy, which is responsible for routing requests to the API

or photo server depending on the path, and enabling HTTPS.

} web: Web content

o nginx.conf: The configuration file

o Dockerfile: Defines the NGINX container, and replaces example.com in the config file

with the actual domain name

3.1.4 } pics

Picture server, the place where pictures uploaded through the app are sent, and where clients

will receive images from. Roughly the same as api, but without any Sequelize models. No

need to elaborate.

} @types

} config

} controllers: Inappropriately named; contains a file with some functions used when a

photo is uploaded

} middleware

} node_modules

} routes

8

System documentation

} types

} validators

o index.ts

o server.ts

o package.json

o .env

o Dockerfile

3.2 } frontend

The files that make up the React Native client for our backend.

} @types: Extra TypeScript definitions

} assets

} fonts: Extra non-system fonts

} images: Map marker icons and placeholder images

} components: React components (or widgets) that are not entire screens themselves

} basicComponents: Simple components

} cards: Components with a card at the top level – for displaying information about

a single entity

} compoundComponents: More complex components

} dumpsterInfo: Components that display information about a dumpster

} map: Components related to maps

} modals: Components that are used as modals (pop-ups)

} selects: Various kinds of dropdown selection components

} settings: Components used on the settings screen

} textComponents: Components that display some static text

} constants: Various constant values

} coverage: Produced by Jest on test runs

} docs: Documentation generated by typedoc

} hooks: Custom hooks – functions called in React components that set up some function-

ality

} models: Interfaces and classes that describe our data models

9

System documentation

} navigation: Files that set up the navigation structure used by React Navigation – mostly

from the template we used

} redux: Handles global application state

} slices: Redux slices that take care of specific parts of the application state

o store.ts: Combines the state of each slice into a whole

o tokenInterceptors.ts: Axios interceptors that handle tokens in requests – placed

here because they use Redux state

} node_modules: The folder where all our third-party dependencies end up

} screens: Entire screens in the application

} addDumpster: Screens that are part of the process of adding a dumpster

} dumpsterInfo: Screens that display and/or edit info about a dumpster

} main: Top-level screens — the four you get to through the icons in the tab bar

} photo: Screens that display, take or upload photos

} services: Each service handles calls to a specific part of the API

} translations: JSON files with translations for all text displayed in the application

} utils: Miscellaneous utilities used in some parts of the application – date formatting,

distance calculation, dumpster filtering and error reporting

o app.config.js: Expo configuration

o App.tsx: Contains the top-level component of the app. Deals with (re)setting state when

the app loads, and several other important tasks.

o i18n.tsx: Sets up i18next, which handles translations

o package.json: The usual file where our dependencies and commands are listed

o types.tsx: Types used by React Navigation

o .env: Environment variables like the URL to the API and photo server

10

System documentation

4 Class diagram

Our code base contains very few classes. We have service classes, some classes for data

models and classes for models in our ORM. In this section, we provide diagrams to visualize

some of them.

The data models in the frontend are shown in Figure 2. Very few of them have any methods

at all, and their reason for being classes in the first place was to translate strings with dates

to actual date objects. Each of them have a constructor that takes data from the API as raw

JavaScript objects converted directly from JSON, which does not support the Date type.

Figure 2: Frontend data classes

The frontend’s service classes, which send requests to the API, are shown in Figure 3. Since

the only thing they have in common is that their constructor takes an instance of an object that

performs HTTP requests, it did not seem necessary to have them inherit an abstract class.

11

System documentation

Figure 3: Service classes

Sequelize, our ORM of choice, requires classes that act as definitions of tables in the database.

Since most of the Sequelize models just reflect the database model (Figure 5), we only show

a few of the model classes in Figure 4. Each model inherits Sequelize’s Model class and

implements an interface with attributes. The latter is necessary for correct type hints with

TypeScript.

12

System documentation

Figure 4: Sequelize models

13

System documentation

5 Database model

Figure 5 shows our database model. We visualize complex junction tables for many-to-many

relations with a line going down to the relation it describes, but make exceptions in cases

where it makes more sense to treat the table as its own, separate entity — and in those cases,

the entities have custom primary keys.

Figure 5: ER diagram showing our product’s database schema

14

System documentation

6 Server services

This section contains a brief summary of the resources provided by our REST servers. We

recommend reading the OpenAPI documentation found at /api/spec and /pic/spec on (de-

velopment) instances of our backend.

6.1 API server

The API server handles storing, modification and retrieval of regular information, excluding

actual image data. Its endpoint layout is shown in figures 6 to 8. All paths are prefixed with

/api.

Figure 6: API endpoints, part 1

15

System documentation

Figure 7: API endpoints, part 2

16

System documentation

Figure 8: API endpoints, part 3

/categories/ All known categories, GET only

/content-types/ Standard types of contents, GET only

/dumpster-types/ Types of dumpsters, GET only

/store-types/ Store types, GET only

/dumpsters/ Information about specific dumpsters

/dumpsters/xx/comments/ Thoughts about a dumpster

/dumpsters/xx/contents/ Things found in a dumpster

/dumpsters/xx/photos/ Photos of a dumpster or its contents

/dumpsters/xx/photos/cover/ Cover photo to display if there’s only room for one im-

age

/dumpsters/xx/reports/ Reports of a dumpster – it might not exist

17

System documentation

/dumpsters/xx/revisions/ Revision history for a dumpster

/dumpsters/xx/visits/ Accepts POST requests to register visits to a dumpster

/users/ POST to get your own user ID

/users/validation/xx/ POST to authenticate and receive a token

6.2 Photo server

The API is shown in Figure 9. It stores and distributes actual image files. Relatively uncom-

plicated, with only two endpoints.

Figure 9: Photo API

/pic/ POST to add a photo

/pic/xx.[jpg|png] GET to download a photo

18

System documentation

7 Security

7.1 Encrypted data transfer

The app communicates with our server over HTTPS, which ensures that no data except the

host name or IP is transmitted in plaintext form — it ensures some degree of confidentiality.

Our reverse proxy uses Certbot to get signed SSL certificates from Let’s Encrypt [1]. We

used Mozilla’s suggested set of ciphers for moderately broad compatibility [2] and got a good

rating in a SSL-Labs scan, see Figure 10.

Figure 10: SSL-Labs’ rating of our server

7.2 Handling of user IDs

Because we didn’t want to store any user information, we needed a way to identify users that

wasn’t email/username and password. The problem with using an email or username is that

it can be used to identify the user, because people reuse usernames, or use usernames that

might contain information that could potentially identify the user. We also wanted a system

where you could potentially change device and still keep your old account. Something like

a UUID would be difficult for the user to remember and tedious to write down. A simple

numeric auto-increment ID on its own would be useful for identifying a user, but offers very

little in terms of security, since it’s fairly easy to guess. We ended up using a system similar

to the seed phrases that cryptocurrency wallets use, which generates (in our case) 6 words

from a list of 7776 words. Crypto wallets normally use 12 words, but the need for security

isn’t as important in our app, since all you really can do with your userID is delete images and

comments that were made by your user. There is also the possibility of being able to track

the user’s past locations, since some information like comments, pictures and visits could

potentially get accessed — however, even if the user was compromised it would be quite

difficult to know who the user belongs to, since everything is generated pseudo-randomly. So

we felt that 6 words struck a nice balance between being relatively easy to remember/write

down, and still providing security.

19

System documentation

We originally made it so that the first 4 words would be hashed naively to find the correct

entry in the database and the whole 6 words was hashed with a random salt. This solution

was more than enough in terms how many users could exist (77764 = 3.65615844006 · 1013),

but left the security lacking since the naive hashes are vulnerable to rainbow tables, and if

the hash was solved, you would only need 77762 = 60466176 attempts to guarantee access to

the user. So we removed this 4-word feature, and replaced it with a numeric ID with auto-

increment to identify the row in the table as well as the 6 words as input to validate the user.

There is currently no way to transfer the userID from an old phone to a new one, but it is one

of the future features that are planned.

7.3 Tokens

A simple JWT (JSON Web Token) system was implemented to save time on authenticating

users for every endpoint call that required validation. It is just a simple system that checks

the database if the 6 word + userID combination is valid and creates a token based on the

userID + the time it expires using a secret. The server then receives this token for all post

requests, update requests or other requests where userID is relevant. The token is validated

using middleware. There is a 30 minute active period as well as a one hour grace period

where a new token is generated automatically and sent back to the user. Naturally it checks

if the secret is correct when decoding the token.

The token does not really add much in terms of security, it just saves time that would have

been used when authenticating the 6 words + userID. Tokens do not compromise the security

much either, there is a risk of it being caught and used, and theoretically there is a risk of it

being reused with the grace period constantly, however HTTPS does scramble the token so

this is unlikely. There is no real risk of the secret being guessed, as it is a 128 character long

random string, so people generating their own token is not really feasible.

7.4 SQL injection

Our API server uses Sequelize to access the database, a library which handles escaping of

raw values in SQL queries well [3]. We ran some quick tests with sqlmap, a tool for testing

how vulnerable a server is to SQL injections. No vulnerabilities were discovered.

7.5 Input validation

We made sure to validate all input the API receives through its endpoints, and validate the

user’s input in the app before it is sent to the API. Instead of writing our own functions for it,

and potentially running into bugs, we used Joi, which simplified the process a lot.

7.6 Rate limiting

Another important concern in security is availability. To prevent our server from being over-

loaded by requests, we added rate limiting functionality, so that users (or bots) can only send

20

System documentation

a limited number of requests from a given IP within a given timeframe.

7.7 Path traversal

This could have been an issue in the file server — however, each request to the GET endpoint

has to have a filename that matches [a-zA-Z0-9]+[.](jpg|png). There is simply no way for

an attacker to traverse the server’s folder structure when this restriction is in place. The only

feasible way would be if that part of the Express library did not work properly.

7.8 Sensitive data exposure

The only piece of potentially sensitive information in this application, would be the anonymous

identifier that could theoretically be used to identify a person, though only together with

the data connected to it and a significant amount of external location data. This identifier

connects users and data like ratings, comments and dumpster visits. However, the API should

not reveal other people’s identifier in any case.

7.9 Server security

We configured our firewall to prevent access to any ports other than those for SSH and the

NGINX server itself. Password login was disabled, requiring your SSH keys to match those on

the server in order to access it.

21

System documentation

8 Installation and running

8.1 Running the backend as a developer

8.1.1 Prerequisites

For all parts of the system except the database, you need a (recent) version of npm installed.

It is required for installing packages for Node.js and running the scripts that start the server

and the like.

For running the database, you need to install MariaDB, e.g. by running apt install mariadb-server

on a Debian-based Linux distro.

8.1.2 Database

The following instructions assume you are standing in the backend/db folder.

To build the image and start it:

make maria

Alternatively, to start a local MariaDB server on WSL:

make wsl

To run the setup script against the database, which creates the necessary tables and proce-

dures:

make tables

To fill the tables with test data:

make data

NB: You might need to wait for a few seconds before executing this command. Additionally,

make sure to have a .env file in the backend folder.

To clean up the containers:

make clean

Note for Windows users, or others who run into trouble: If these instructions do not work, try

cloning the repo with LF line endings instead of Windows’ default CRLF – or just look at the

Makefile and setup script (setup.sh) and adapt the commands to your needs.

22

System documentation

8.1.3 API server

The following instructions assume you are standing in the backend/api folder.

Create a .env file containing something like the following:

API_HOST=127.0.0.1
API_PORT=3000
DB_HOST=127.0.0.1
and so on

. . . as specified in the .env.template file.

Note that you must use 127.0.0.1 and not localhost as the database host if you run it in a

Docker container.

Depending on where you run the app, you may need to change the PHOTO_URL variable to

match the IP the app makes contact with.

Run npm install to install dependencies, then run npm start to start the API server. Make

sure that your database is running, otherwise the API server will crash after 10 unsuccessful

connection attempts.

8.1.4 Photo server

The following instructions assume you are standing in the backend/pics folder.

Create a .env file containing something like the following:

PIC_PORT=3000
PIC_HOST=localhost

API_URL=http://localhost:3000/api/

and so on

. . . as specified in the .env.template file.

Run npm install to install dependencies, then run npm start to start the picture server.

8.2 Backend deployment

Acquire a server with a recent Linux distro. Install rsync, Docker and Docker Compose, e.g.:

apt install rsync docker.io docker-compose

You should set up SSH keys and disable password-based authentication, see section 8.2.1.

Create a user (e.g. dumpster) without administrative privileges, but in the docker group:

23

.env.template
.env.template

System documentation

useradd --create-home dumpster

groupadd docker

usermod -aG docker dumpster

Let $SERVER_IP be your server’s IP in the following snippets.

Transfer the contents of your repository to an appropriate folder in the dumpster user’s home

directory: (this assumes you stand in the root directory of the repo)

rsync --archive

--exclude='.git'

--exclude='node_modules'

--exclude='.env'

backend/ "dumpster@$SERVER_IP:dumpster"

Copy your API’s .env template file and make a dynamic link to it:

scp backend/api/.env.template "dumpster@$SERVER_IP:dumpster/api"

ssh dumpster@$SERVER_IP ln -s dumpster/api/.env dumpster/.env

Then tweak it to fit the following pattern:

HTTPS=true

PROJECT_PATH=/home/dumpster/dumpster

API server:

API_PORT=3000
API_HOST="<your server's domain or IP>"

NODE_ENV=production

TOKEN_SECRET="<some random, long string>"

Photo server:

PHOTO_URL="https://<your server's domain or IP>/pic/"

Database:

DB_NAME=dumpster

DB_USER=root

DB_PASSWORD="<your database password>"

DB_HOST=db

DB_PORT=3306
DB_DIALECT=mariadb

Certbot:

EMAIL="<email of whoever wants to sign this>"

DOMAIN_NAME="<your server's domain or IP>"

Copy over the photo server’s .env template

scp backend/pics/.env.template "dumpster@$SERVER_IP:dumpster/pics"

24

System documentation

and tweak it a little as well – it should look like this:

PIC_PORT=3000
PIC_HOST=pics

PIC_URL="https://<your server's domain or IP>/pic/"

API_URL=http://api:3000/api/

PIC_FOLDER=/var/uploads/

PIC_MAX_SIZE=10000000

Ideally, you’d set up HTTPS for some extra security here, see section 8.2.2 for instructions.

Copy over the systemd unit, reload the daemon and start the service:

scp backend/dumpster.service \

"dumpster@$SERVER_IP:.config/systemd/user/"

ssh dumpster@$SERVER_IP systemctl daemon-reload

ssh dumpster@$SERVER_IP systemctl --user start dumpster

Wait a few seconds, then create the database tables:

ssh dumpster@$SERVER_IP "cd dumpster && make tables"

After this, the .gitlab-ci.yml file should make GitLab CI perform updates automatically

after changes to develop. The server should be up and running, accessible from port 443.

8.2.1 SSH hardening

Using SSH keys and disabling password authentication are important security measures you

may want to take. Specifically, generate an SSH key for your computer, add the public key to

.ssh/authorized_keys, make sure you can log in without a password, and finally disable the

PasswordAuthentication option in the SSH config (and perhaps disable PermitRootLogin as

well).

You can also install fail2ban and run it with a basic configuration like this:

(in /etc/fail2ban/jail.local)

[DEFAULT]
; a rather strict penalty

bantime = 1d

[sshd]
enabled = true

; since we use ufw, make fail2ban use it too

banaction = ufw

; (this could be a bad idea)

ignoreip = <your server's IP>

25

System documentation

8.2.2 SSL certificates

The HTTPS setup detailed in this section was influenced by a Digital Ocean tutorial.

In order to secure the connection between the app and your instance of the server, you should

acquire an SSL certificate and enable HTTPS. Our setup uses certbot to get certificates

signed by Let’s Encrypt, for no cost at all. You do need a server that is available to the outside

world, otherwise the servers of Let’s Encrypt won’t be able to access your server.

Create a Diffie-Hellman key in the backend folder:

mkdir dhparam

openssl dhparam -out dhparam/dhparam-2048.pem 2048

Comment out the second server block in the NGINX config, and uncomment the parts of

the first server block that are indicated by other comments. Since you do not yet have a

certificate, everything must happen through HTTP. Let’s Encrypt needs to be able to query

for your challenge file.

http {

(...)

server {

(...)

(uncomment when first acquiring SSL cert)

root /var/www/html;

index index.html index.htm index.nginx-debian.html;

location ~ /.well-known/acme-challenge {

allow all;

root /var/www/html;

}

(uncomment when first acquiring SSL cert)

location / {

allow all;

}

(...)

}

(comment out when first acquiring SSL cert)

server {

(...)

}

}

26

https://www.digitalocean.com/community/tutorials/how-to-secure-a-containerized-node-js-application-with-nginx-let-s-encrypt-and-docker-compose

System documentation

Start the service and check the logs with docker-compose logs certbot. If no issues crop

up, proceed.

Now that you do have a certificate, revert your changes to nginx.conf and restart the service.

It should be possible to access your server through a normal web browser. Confirm that your

connection is encrypted.

To renew your certificate automatically, add an entry in your crontab (with crontab -e):

0 6 * * * PROJECT_PATH=/home/user/dumpster-finder /home/user/dumpster-finder/renew_certs.sh >> /home/user/cron.log 2>&1

(the PROJECT_PATH is required to let the script navigate into the correct folder)

8.3 Running the app

To run the app with connection to an instance of our backend, you need to specify the address

to the server. Make sure the server is running.

Create a .env file with variables like those set in .env.template – it might look like this:

API_URL=http://xxx.yy.zz:3000/api/

PIC_URL=http://xxx.yy.zz:3001/pic/

Or like this, if you have a domain name and are running a proper instance with HTTPS:

API_URL=https://your.domain/api/

PIC_URL=https://your.domain/pic/

Then start the app in development mode:

npm start

Now you should be able to connect an emulator or a device to the Expo server.

8.4 Publishing the app

Create an Expo account and run expo build:android or expo build:ios to build and publish

the app. On subsequent deployments, you should just need to do expo publish to update the

JS bundle, since the native code should stay more or less the same.

27

System documentation

9 Documentation of source code

9.1 Source code documentation

We used Typedoc to generate documentation for our TypeScript files, based on types and

TSDoc comments. During development, you would for the most part use your IDE’s way of

viewing documentation. Documentation can be generated for each part of the project by

entering its corresponding folder (backend/api, backend/pics, and frontend) and running

npm run docs (assuming you’ve run npm install first). This command should generate a

folder called docs, in which you’ll find the generated documentation. Open docs/index.html

in a web browser to view it.

The most recent documentation is also available at GitLab Pages:

• API server docs

• Photo server docs

• Frontend docs

For the actual repository with all our code, see

• NTNU’s GitLab (with CI)

• GitHub (without CI, publicly available)

9.2 API documentation

We used Swagger to document our API, which entailed writing comments with OpenAPI spec-

ifications for each endpoint. The API documentation is generated each time you run the API

or photo server, and is available at http://<your domain or IP + port>/api/spec and

http://<your domain or IP + port>/pic/spec, respectively.

28

http://heleneyj.pages.stud.idi.ntnu.no/dumpster-diving/api-doc/
http://heleneyj.pages.stud.idi.ntnu.no/dumpster-diving/pic-doc/
http://heleneyj.pages.stud.idi.ntnu.no/dumpster-diving/app-doc/
https://gitlab.stud.iie.ntnu.no/heleneyj/dumpster-diving
https://github.com/dumpster-finder/dumpster-finder

System documentation

10 Continuous integration and testing

10.1 CI pipeline

We use GitLab CI and run our CI jobs inside the official Node.js and MariaDB docker contain-

ers.

Figure 11 shows a successful run of our pipeline. The amount of jobs differs depending on

the branch a commit was pushed to. On pushes to master or develop, documentation is

generated and the current version of the system is deployed to our test server and published

through Expo. On other branches, those stages are dropped. In all cases, the dependency,

test and audit stages run. Dependencies are only cached for the API server, since the app has

dependencies that are too large to fit in the cache, and the photo server is not tested. The

test stage runs unit tests and GitLab’s check for exposed secrets (passwords, API keys, etc.).

The audit stage uses Auditjs to scan our project’s dependencies for known vulnerabilities.

Figure 11: Screenshot of a successful pipeline run

10.2 Tests

To check for possible regressions or malfunctioning additions, we run some tests on each

push. We run unit tests of the DAOs in the API server, and some functionality in the app.

However, we do not run any tests of the app’s UI components. Unfortunately, we did not have

time to debug our problems with testing React components in the frontend. This is an issue

we’ve faced before, but it seemed to be even more challenging with React Native and our

choice of component library.

In total, we had around 95% coverage of the files we did test.

To run the unit tests yourself, stand in either frontend/ or backend/api/ and run npm test,

after having installed dependencies and set up your environment as specified in 8.3 and 8.1.

The easiest way to test the API’s functionality is to open the Swagger documentation in your

web browser and go through each endpoint. We decided to avoid writing tests for the API

itself, since most of the functionality stems from the DAOs and Swagger makes manual testing

easy.

29

System documentation

References

[1] Electronic Frontier Foundation. Certbot. URL: https://certbot.eff.org/. (retrieved

10.05.2021).

[2] Mozilla. Mozilla SSL Configuration Generator. URL: https://ssl-config.mozilla.

org/#server=nginx&version=1.17.7&config=intermediate&openssl=1.1.1d&

guideline=5.6. (retrieved 10.05.2021).

[3] Sequelize community. Sequelize’s function for escaping values in SQL queries. URL:

https://github.com/sequelize/sequelize/blob/main/lib/sql-string.js. (re-

trieved 08.05.2021).

30

https://certbot.eff.org/
https://ssl-config.mozilla.org/#server=nginx&version=1.17.7&config=intermediate&openssl=1.1.1d&guideline=5.6
https://ssl-config.mozilla.org/#server=nginx&version=1.17.7&config=intermediate&openssl=1.1.1d&guideline=5.6
https://ssl-config.mozilla.org/#server=nginx&version=1.17.7&config=intermediate&openssl=1.1.1d&guideline=5.6
https://github.com/sequelize/sequelize/blob/main/lib/sql-string.js

	Introduction
	Architecture
	Project structure
	125 backend
	125 api
	125 db
	125 nginx
	125 pics

	125 frontend

	Class diagram
	Database model
	Server services
	API server
	Photo server

	Security
	Encrypted data transfer
	Handling of user IDs
	Tokens
	SQL injection
	Input validation
	Rate limiting
	Path traversal
	Sensitive data exposure
	Server security

	Installation and running
	Running the backend as a developer
	Prerequisites
	Database
	API server
	Photo server

	Backend deployment
	SSH hardening
	SSL certificates

	Running the app
	Publishing the app

	Documentation of source code
	Source code documentation
	API documentation

	Continuous integration and testing
	CI pipeline
	Tests

