
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Tobias Meyer Andersen
Kjerand Evje
Håvard Stavnås Markhus

Experimental comparison of hill
climbing variants on CVRP

Bachelor’s project in Computer Science
Supervisor: Alexander Holt

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Tobias Meyer Andersen
Kjerand Evje
Håvard Stavnås Markhus

Experimental comparison of hill
climbing variants on CVRP

Bachelor’s project in Computer Science
Supervisor: Alexander Holt
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

This paper will describe a project about route optimization for waste collection and research regarding
how to use different local search algorithms to solve a variant of the ”capacitated vehicle routing prob-
lem.” The purpose of this document is to explain the background theory of the problem at hand, how
the product was developed, and discuss the research results from the conducted algorithmic experiment.

Two out of the three people writing this paper worked for the startup that provided the task. The
startup worked on an internal project for waste collection and wanted a route optimization tool and an
analytic tool for waste collectors. The team was interested in the route optimization part, as the prob-
lem is heavily centered around algorithms. All participants in the team are interested in optimization
techniques and developing useful algorithms. In addition to working on something of personal interest,
the team also had the opportunity to create a valuable product for their startup.

The team thanks the representatives from Favn Software AS and the supervisor from NTNU for the
support provided during the project:

• Anders Hallem Iversen, Bjørnar Østtveit and Sveinung Øverland from Favn for providing guidance
for the task, helping keep the team on the right track for the product and providing the resources
needed to develop the product.

• Alexander Holt from NTNU for guiding the team through the development of the thesis.

Tobias Meyer Andersen Kjerand Evje H̊avard Stavn̊as Markhus

1

Task

”The task is to develop a prototype for a service that will be a part of a larger pilot project in cooperation
with the waste company Remiks in Tromsø. The goal of the pilot project is to make it possible to order
waste pickup via an app, instead of driving oneself to a recycling station (The app is not a part of this
task)”. This statement from Favn declares the background of the project. Additionally, their suggestion
of what precisely should be created was the following: ”The task is to create an interface in the form of
a website, and a back-end that will handle orders, route optimization, and data analysis.”

Including developing the system tasked by Favn, the team will develop and compare the performance of
several hill climbing algorithms for route optimization.

2

Summary

Routing problems in its different forms are ubiquitous in society. From postman deliveries to computer
chip manufacturing, finding paths that minimize some criteria play a central role in many different in-
dustries. This thesis involves exploring such a concrete optimization problem, namely the vehicle routing
problem. Determining an optimal solution to this problem is NP-hard, meaning that computing an op-
timal route in complex cases requires an extreme amount of computing power. This is not practical for
applications that should quickly and reliably deliver solutions to these problems. It is therefore common
to use heuristics that approximate the solution. The challenge with this is that the performance of dif-
ferent heuristics are situational and specific to the problems.

This thesis saw the creation of a system that could handle truck fleets and orders to be picked up,
in addition to efficient routing for picking up the orders utilizing the available fleet. Within the thesis,
experiments were conducted to test how certain known algorithms would perform when adjusted to work
on a specific use case of the vehicle routing problem. Very broadly the algorithms tested all work by
quickly producing a placeholder solution and gradually improving it in small increments, when done in a
certain way it is known as hill climbing.

This document introduces the problem first, then lays the theoretical foundation of the terms used and
the problem to be studied. Subsequently, the method of both development and the scientific experiments
is described before the results are presented. The conducted experiments will answer the thesis question,
which revolves around comparing different route-optimizing algorithms that build on the principle of
hill climbing. The experiment tested the run time of different algorithms and the quality of the routes
produced.The engineering professional approach and the development process of the product utilizing the
algorithms are also documented. After the results, a chapter will discuss how to interpret the results and
what the data indicates. The thesis is concluded with some pointers to further work for both the product
developed and to route optimization will be left for the reader.

The experiments indicated that the teams implementation of Adaptive Iterated Local Search scaled
worse than normal hill climbing and simulated annealing, but reliably provided better routes. The dif-
ference in scalability is significant as the sheer size of the route grows large limiting certain applications
using this algorithm.

3

Contents

List of Figures 7

1 Introduction 8
1.1 Background . 8
1.2 Research question . 8
1.3 Document structure . 8
1.4 Nomenclature . 9

2 Theory 10
2.1 Greedy algorithms . 10
2.2 Relevant problems . 10

2.2.1 Travelling Salesman . 10
2.2.2 Capacitated Vehicle Routing Problem (CVRP) . 11

2.3 Clustering . 11
2.3.1 Nearest neighbor clustering . 11
2.3.2 Randomized proximity clustering . 12

2.4 Optimization . 12
2.4.1 Local search . 12
2.4.2 Hill climbing . 13

2.4.2.1 Intra-route 2-opt . 13
2.4.2.2 Intra-route exchange . 14
2.4.2.3 Intra-route or-opt . 14
2.4.2.4 Intra-route relocate . 15
2.4.2.5 Inter-route relocate . 15
2.4.2.6 Inter-route exchange . 16
2.4.2.7 Inter-route cross exchange . 16
2.4.2.8 Inter-route icross exchange . 17
2.4.2.9 Inter-route 2-opt . 17

2.4.3 Iterated Local Search . 17
2.4.3.1 Concentric removal . 18
2.4.3.2 Removal by proximity . 18
2.4.3.3 Sequence removal . 19
2.4.3.4 Insertion by proximity . 19
2.4.3.5 Insertion by cost . 20

2.4.4 Adaptive Iterated Local Search . 20
2.4.5 Simulated Annealing . 21
2.4.6 Feasibility . 21

3 Method 23
3.1 Process . 23
3.2 Choice of technologies . 24

3.2.1 Rust . 24
3.2.2 Firebase . 24

3.2.2.1 Firebase Firestore (NoSQL) . 25
3.2.2.2 Cloud Functions for Firebase . 25
3.2.2.3 Cloud pub/sub functions . 25

3.2.3 Google Cloud Platform . 25
3.2.4 React . 25
3.2.5 TypeScript . 26
3.2.6 Google Maps . 26
3.2.7 Docker . 26

4

3.2.8 Open Source Routing Machine (OSRM) . 26
3.3 System architecture . 27

3.3.1 Web application and Firebase entity system . 28
3.4 Testing, integration and deployment . 29
3.5 Trucks and orders implementation . 29
3.6 Graph compression and representation . 29
3.7 Visualization tool . 30
3.8 Simulation tool . 31
3.9 Hill climbing implementation . 32
3.10 Simulated Annealing implementation . 32
3.11 Adaptive Iterated Local Search implementation . 32

3.11.1 Summary of the implementation . 33
3.11.2 Initial clustering . 33
3.11.3 Perturbation . 33
3.11.4 Neighborhood search . 34

3.11.4.1 Local search heuristic . 35
3.11.5 Acceptance criterion and adaptivity . 35
3.11.6 The algorithm . 36

3.12 Run time experiments . 36
3.13 Distribution of roles . 37

4 Results 38
4.1 Scientific results . 38

4.1.1 Hill climbing results . 38
4.1.2 Simulated Annealing results . 38
4.1.3 Adaptive Iterated Local Search results . 38

4.2 Engineering professional results . 38
4.2.1 Final product overview . 38
4.2.2 Functional requirements . 39

4.2.2.1 Authentication system . 39
4.2.2.2 Interactive front-end showing the orders 39
4.2.2.3 Communication from waste company to users app 39
4.2.2.4 Generic route optimization . 39
4.2.2.5 Estimating time and fuel use, number of trips required 39
4.2.2.6 Displaying information about space and weight used in trucks 40
4.2.2.7 Possibility to change how many trucks a company has available 40
4.2.2.8 Simulation tool to optimize use . 40

4.2.3 Non-functinoal requirements . 40
4.3 Administrative results . 40

4.3.1 Work schedule plan . 40
4.3.2 The development process . 41

5 Discussion 42
5.1 Scientific results . 42

5.1.1 Experiment metrics . 42
5.1.2 Other notes on the experiment . 42
5.1.3 Hill climbing . 43
5.1.4 Simulated Annealing . 44
5.1.5 Adaptive Iterated Local Search . 45
5.1.6 Comparison . 45

5.2 Engineering professional results . 47
5.2.1 Final result . 47
5.2.2 Strengths . 47

5

5.2.3 Weaknesses . 48
5.2.4 Testing . 48
5.2.5 Ethical, social and environmental results . 49

5.3 Administrative results . 49
5.3.1 Work schedule discussion . 49
5.3.2 Development process discussion . 49

6 Conclusion and further work 51
6.1 Conclusion . 51
6.2 Further work . 51

7 Attachments 53

References 54

6

List of Figures

1 Illustration of TSP solution . 10
2 Illustration of CVRP solution based on clustering then solving multiple TSP’s 11
3 TSP 2-opt heuristic . 13
4 TSP exchange heuristic . 14
5 TSP or-opt heuristic . 14
6 TSP relocate heuristic . 15
7 VRP relocate optimization heuristic . 15
8 VRP exchange optimization heuristic . 16
9 VRP cross exchange . 16
10 VRP icross exchange . 17
11 VRP 2-opt . 17
12 Removing a given amount of vertices closest to a random vertex, including the random

vertex . 18
13 Removing a given amount of vertices that are rated as the furthest away from their routes 18
14 Removing random sequences of a given amount of vertices from a route 19
15 Inserting vertex in the route closest to the vertex, at the position with lowest cost 19
16 Inserting vertex in the minimum cost position . 20
17 illustration of the overall system technology and how the system communicates 27
18 model of the domains in the system . 28
19 Example of visualization of a set of routes . 30
20 The simulation report tool . 31
21 Results of HC graphed and compared to number of orders. 43
22 Results of SA graphed and compared to number of orders. 44
23 Results of AILS graphed and compared to number of orders. 45
24 Quickest version of each algorithm compared. 45
25 Slowest versions of each algorithm compared. 46

7

1 Introduction

1.1 Background

Favn Software is a startup company located in Trondheim, Norway. It was founded in 2020 by students
from NTNU (Norwegian University of Science and Technology). Favn is a consulting company specializ-
ing in developing software. This includes developing software for customers, including websites, mobile
applications, back-end systems, and more.

Favn had for some time been interested in developing a system for waste collectors. The company
had been in talks with Remiks (a waste company located in Tromsø), and there seemed to be interest
in such a product. This system would include a route optimizing engine for the waste collectors and a
front-end system for ordering waste pick-up.

The primary purpose of this system is to make the waste-collecting process more effective by computing
optimized routes for the waste trucks. Normal people would not have to drive themselves to a recycling
station, generating pollution and traffic in the process. Having a select few trucks collecting the items is,
therefore, an opportunity for the waste company and the customers.

The role of the team during development will be to focus on the routing optimizing part of the system.
This will include implementing different algorithms and optimizing them to produce the best possible
results.

1.2 Research question

Formally the optimization problem the team received from Favn Software AS can be described as follow-
ing: given a set of trucks with weight and space capacities, and a set of orders with a location, weight,
and space assigned, produce a set of routes for the trucks such that each order is picked up within a time
limit, minimizing the total travel time. It is also given that all the trucks start at the depot where they
should return with all the orders. This is a variant of what is known as the capacitated vehicle routing
problem, first formally studied in 1959 by Dantzig and Ramser[1].

Given the time at disposal, the approach of the team will be to implement different versions of hill
climbing algorithms that are known to work for very similar problems and compare how they perform on
this exact application. Hill climbing was chosen in particular as various sources state that iterative route
optimizers using metaheuristics have been very successful[2][3].
In addition, the goal is to find out what works well in practice on realistic data and not to optimize
theoretical worst-case scenarios. The thesis question is then:

How do different versions of hill climbing compare when adjusted to solve the
capacitated vehicle routing problem with time limits on realistic map data?

1.3 Document structure

Here is a brief overview of the structure of the document.

• Introduction - background information and thesis question.

• Theory - brief summary of relevant background theory to understand the method, results and
discussion.

• Method - explanation of how the algorithms were made and tested, development process of the
team and technologies used.

8

• Results - a chapter showing the experimental results of the algorithms, team results in terms of
development and administrative documentation generated in the project.

• Discussion - a discussion trying to put the results into context and reflecting on their meaning.

• Conclusion - answer of the thesis question using the results and their interpretation from the
discussion, also a brief note on future work to be done around the thesis question.

• References - list of sources cited in the document.

• Attachments - list of attachments that constitute the rest of the delivery for the thesis.

1.4 Nomenclature

AILS Adaptive Iterated Local Search

API Application Programming interface

GCP Google Cloud Platform

HC Hill Climb

ILS Iterated Local Search

LS Local Search

OSRM Open Street Routing Machine

SA Simulated Annealing

UI User Interface

UX User Experience

VM Virtual Machine

9

2 Theory

2.1 Greedy algorithms

An algorithm is considered greedy if it computes something by making the immediate best move, with
no regard for future planning or past computation, usually in an iterative fashion. To illustrate this,
consider trying to purchase as many items as possible from a store. An optimal greedy solution would be
to pick items one by one, always selecting the cheapest item available. This strategy will guarantee the
most items being purchased, and the greedy part is to select the cheapest one available. Although this
particular greedy algorithm is optimal, that is not the case in general. Despite that, greedy algorithms
are widely used within optimization, including route optimization. This is mostly because results can be
computed very fast when the simplification of not considering the future or past is made.

2.2 Relevant problems

2.2.1 Travelling Salesman

The travelling salesman problem or TSP is an NP-hard problem, meaning the problem cannot be exactly
solved in polynomial time.

Figure 1: Illustration of TSP solution

The problem is ”Given a list of cities and the distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the origin city?”. The complexity of solving
this NP-hard problem perfectly using brute force algorithms is O(n!). Using dynamic programming, the
problem can be solved in O(n2 · 2n) time. The problem is one of the most intensely studied problems in
optimization, as it appears in numerous real-life optimization problems. Transport logistics, manufacture
of microchips and routing of trucks for parcel pickup all benefit from TSP algorithms. In many of these
real-life cases, numerous ”cities” need to be visited, and computing the optimal solution is impractical.
Most applications therefore utilize approximate algorithms that are often based on meta-heuristics and
iterative improvement of a constructed solution.

10

2.2.2 Capacitated Vehicle Routing Problem (CVRP)

CVRP is a generalization of the traveling salesman problem. The problem statement usually is defined
as: ”Given a list of cities to visit with a weight assigned, and a list of vehicles with a given capacity,
minimize the total distance traveled while having the trucks combined visit all cities exactly once without
surpassing their capacity.”

Figure 2: Illustration of CVRP solution based on clustering then solving multiple TSP’s

CVRP can therefore explained as a traveling salesman problem with capacity constraints and multiple
salesmen. As a generalization of an NP-hard problem, this is also a NP-hard problem. The simplest
edge case is when one vehicle can visit all the cities, that special case is the regular traveling salesman.
Otherwise, one must also figure out which orders should be picked up by which vehicles and optimize
those individual trips. As with most NP-hard problems, finding an exact solution requires a large amount
of computation. This suggests that approximation is needed in order to be able to compute good routes
within a reasonable amount of time for practical applications. Different approximations will be explained
later.

2.3 Clustering

Clustering is trying to single out meaningful groups of data. For instance, one can group books by genre,
publisher, or release date. Clustering algorithms receive a dataset as input and tries to categorize them
based on some metric of similarity. Clustering algorithms are often divided into two types, supervised
and unsupervised. In the CVRP problem, the vehicles are groups, and the goal is to distribute the cities
into the group to which they belong. Since an analyst defines the groups before running the clustering
algorithm, it is categorized as supervised. The clustering methods described in this document are all
supervised.

2.3.1 Nearest neighbor clustering

Nearest neighbor clustering groups data by iteratively finding the most similar data point to the previous,
sometimes limited by some sort of group size constraint. This is a typical example of a greedy algorithm.
This can be illustrated by using it as a heuristic to quickly produce a valid solution for CVRP. With this
algorithm, the solution would be constructed node by node. Start by selecting any truck; the first order
to pick up will be the closest one. The next order will be the closest order to the previous one that is not
yet visited; the pattern repeats until the truck cannot pick up any of the other orders, at which point one
returns to the starting node. This procedure is repeated for all the trucks available until all the orders

11

are picked up. The solutions of the CVRP should minimize total distance. Hence the next order to visit
is always the closest unvisited one.

The nearest neighbor clustering method is widely used within data science and optimization algorithms,
primarily because it is intuitive, very quick in its greedy nature, and often yielding useful results, for
instance, in many TSP algorithms. In that case, ignore the capacity of the trucks, allowing a single
one to pick up all the orders. For symmetric TSP, it has been experimentally shown to usually produce
solutions 25% worse than the global minima [4]. Symmetric means that the graph used by the traveling
salesman algorithm is undirected, the distance between a pair of nodes is the same in both directions.
As this thesis uses Open Street Map data from real cities, this problem is an example of an unsymmetric
traveling salesman.

2.3.2 Randomized proximity clustering

Another clustering method is Randomized Proximity Clustering. In light of the application, the algorithm
will be explained using the terms in the thesis question where orders need to be picked up by trucks that
drive a given route instead of vehicles visiting cities. This initial cluster is based on the clustering method
described in [5]. The algorithm is defined as:

1. At the start of the algorithm, a number m is calculated, representing the number of routes that
should be driven. S is the set of orders, and sc is the capacity needed to pick up a certain order,
q̄ average truck capacity. Therefore, m is the number of routes needed to pick up all of the orders
with the following formula:

m = [
1

q̄

∑
s∈S

sc] (1)

2. Assign a random order to each of the routes.

3. Go through all the unassigned orders and assign them to the route which they are the closest to in
terms of some proximity measure. This could be implemented in many different ways; for instance,
the team has used the proximity insertion metric described in 2.4.3.4.

4. Although all the orders now should be picked up by precisely one truck; the route may not satisfy
the capacity restriction. In that case, the suggested clustering needs to go through some sort of
correction to guarantee that a valid solution is produced by the clustering algorithm. The team
implemented the feasibility function described in 2.4.6 to assure the creation of valid clusters.

2.4 Optimization

2.4.1 Local search

In many optimization problems, the goal is to find a configuration that maximizes some evaluation func-
tion. Often it can be very complicated and even unpractical to produce this solution from the bottom
up. If it is easy to generate an arbitrary solution, although it may not be optimal, local search can be a
very efficient way to improve that solution into a good one.

Local search is usually implemented as a graph search, where each node represents a possible solu-
tion to the problem. In the context of optimization problems, the goal will then be to find the node with
the greatest value given some starting node. The adjacent nodes are those solutions one would have by
making a certain change to the current one. The most common way to implement a local search is to
clearly define what types of changes one can make in a solution to obtain another valid solution. In this
way, it is possible to generate all of the neighboring nodes given the current solution, making the memory
usage O(1) with respect to the number of nodes in the graph. Local search in the context of optimization
problems can be thought of as making small adjustments to a solution repeatedly until some criteria are
satisfied.

12

2.4.2 Hill climbing

Hill climbing is a greedy local search algorithm. It is common to generate a random solution as the starting
node for the search, which can be far from optimized. As hill climbing is a local search algorithm, all
the neighboring nodes of a solution can be generated and evaluated in terms of desirability. The most
common greedy variant of hill climbing will move to the first generated neighbor with higher desirability
than the current one. This is repeated until it converges to a local (possibly global) maximum in terms
of the evaluation function. Another notable implementation of this is the steepest ascent hill climb,
where all the neighboring nodes are generated, and one visits the node with the greatest desirability.
Hill climbing is a straightforward technique that is quite fast but will not guarantee the optimal solution
in general. It is possible to run several subsequent hill climbs starting from random solutions in hopes
of converging to a better local optimum. Having no specific strategy when generating the next starting
point is known as the ”Random Restart Hill Climb.” If one instead applies a specific modification to the
result of the hill climb and start the next search from there, one has an implementation of what is known
as ”Iterated Local Search”.

Intra route heuristics

In this thesis, the team used the heuristics described below to modify valid or invalid solutions into
solutions that are better and more feasible. These are ”intra heuristics,” meaning that they modify a
specific route for a single truck. Since these transformations changes the current solution, these heuristics
will generate all neighboring nodes for a particular state. To make it clear, the graphs shown below
represent a single trip, or route, that will be driven by a truck. Note that the classic TSP terminology
of cities is used in the following figures showing each type of move used by the team to optimize single
trips. These intra heuristics are described in [2].

2.4.2.1 Intra-route 2-opt

Figure 3: TSP 2-opt heuristic

2-opt tries to minimize the distance by reversing the order of the nodes from b0 to a1

13

2.4.2.2 Intra-route exchange

Figure 4: TSP exchange heuristic

The exchange heuristic swaps the position of two cities in the route. a1 is swapped to be visited between
b0 and b2, while b1 is swapped to be visited between a0 and a2. See figure 4.

2.4.2.3 Intra-route or-opt

Figure 5: TSP or-opt heuristic

The or-opt heuristic checks for a segment of 1, 2 or three consecutive Cities can be relocated to another
place in the route order. In the case of figure 5 two cities are moved.

14

2.4.2.4 Intra-route relocate

Figure 6: TSP relocate heuristic

The relocate heuristic checks for a single city to be relocated to another place in the route.

Inter route heuristics

Inter route heuristics are move heuristics that moves cities/orders between two routes. These heuristics in
the HC implementation also modify valid or invalid solutions to solutions that are better and, if invalid,
more feasible. The ones implemented by the team in the HC algorithm described in 3.9 are shown below;
note again that the graphs shown represent the actual changes in a solution. These inter heuristics are
described in [2].

2.4.2.5 Inter-route relocate

Figure 7: VRP relocate optimization heuristic

This optimization technique checks a candidate node in one route cluster for relocation to another can-
didate position in another cluster.

15

2.4.2.6 Inter-route exchange

Figure 8: VRP exchange optimization heuristic

This technique checks one node from two different routes and exchanges the position of the nodes in the
two routes.

2.4.2.7 Inter-route cross exchange

Figure 9: VRP cross exchange

The cross exchange heuristic swaps two intervals of consecutive orders from different clusters with each
other.

16

2.4.2.8 Inter-route icross exchange

Figure 10: VRP icross exchange

The i-cross exchange heuristic swaps and reverses two intervals of consecutive orders from different clusters
with each other.

2.4.2.9 Inter-route 2-opt

Figure 11: VRP 2-opt

The inter route 2-opt heuristic swaps the destination of two edges from different routes.

2.4.3 Iterated Local Search

As stated in the previous section 2.4.2, iterated local search is the repetitive strategy of performing a
hill climb, modifying that solution in a certain way, and then starting another hill climb from the new
solution. The core difference from the random restart algorithm is to have a perturbation step that selects
the following starting location based on the found optimum. This stage of the algorithm needs to balance
between the following factors; firstly, a very ”weak” perturbation step would be equivalent to a random
restart. Secondly, the opposite will also cause problems, as having a new starting solution that is very
similar to the last optimum will usually converge back to the same state. In normal ILS, the perturbation
step is always the same. An example of a common perturbation step for a TSP ILS algorithm is the
”double-bridge move” [6]. The essential takeaway here is that ILS uses a perturbation step that is not
dependant on solution quality or density; the details of the ”double-bridge move” are unimportant. If

17

the algorithm considers the history of local optima reached when choosing how to perturb, one would
have an example of an adaptive iterated local search.

In the next few subsections, the heuristics used in the perturbation step of the AILS implementation
of the team are shown. All of the perturbation heuristics are based on the heuristics described in [5].
These graphs show routes with multiple trucks to pick up the orders. In the descriptions, the orders are
referred to as ”vertices”.

2.4.3.1 Concentric removal

Figure 12: Removing a given amount of vertices closest to a random vertex, including the random vertex

This heuristic selects a random vertex vr in the graph, removes the vertex and a given amount of vertices
closest to vr. This way the heuristic removes vertices within a coverage area, using the vertex vr as
center.

2.4.3.2 Removal by proximity

Figure 13: Removing a given amount of vertices that are rated as the furthest away from their routes

In this heuristic a given number of vertices are removed that are rated the furthest away from their routes,
based on a proximity index. The proximity index indicates a relative distance from the route, and not a
euclidean one. The proximity index for a vertex compared to a route is calculated with this equation:

prox(v, p,RSj) =
minset(min{p, |RSj | − 2},ΠRSj

(v))

min{p, |RSj | − 2}
(2)

The value ΠRSj
(v) is a set containing the distance rank of the other vertices in route RSj to vertex v. if

Rsj = {3, 6, 7}, v = 6 in a system of 10 vertices V = {1, 2, ..., 9} and vertex 3, 7 are the 3rd and 6th closest

18

vertices to vertex v = 6, then ΠRSj
(6) = {3, 6}.

minset(a, set) is defined as the sum of the a smallest elements in the set ”set”.
The proximity function (2) gives an index of relatively how close a vertex is to a route. In the proximity
removal heuristic one therefore compares all vertices to its route with the proximity function (2) and
remove the vertices with the highest proximity indexes.

2.4.3.3 Sequence removal

Figure 14: Removing random sequences of a given amount of vertices from a route

In the sequence removal heuristic a given number of vertices are removed by randomly selecting sequences
of vertices in a route and removing these from the solution.

2.4.3.4 Insertion by proximity

Figure 15: Inserting vertex in the route closest to the vertex, at the position with lowest cost

This is a heuristic in which one inserts a vertex into a route based on proximity. First, one needs to
find which route is closest to the vertex. Compare the vertex to every route in the solution using the
proximity function (2) and find the route with the smallest proximity index:

RSj = argminRsj∈Routesprox(v, p,Rsj) (3)

p is a random integer in the interval [1, [n/m]], where n is the amount of vertices, and m is the amount of
routes in the current solution. The route RSj is the one with the lowest proximity index. Next, find the
position within the route to place the vertex. This is done by calculating the insertion cost with following

19

equation for a route Rj = {vj0, v
j
1, ..., v

j
nj}:

î = arg min
i∈(0,1,...nj)

d(vji , v) + d(vji+1, v)− d(vji , v
j
i+1) (4)

The index î to insert the vertex is calculated with this equation, where v is the inserted vertex, vi is a
vertex in the route, and d is the distance between two given vertices. This results in inserting the vertex
at the index î, which is the index with the lowest insertion cost.

2.4.3.5 Insertion by cost

Figure 16: Inserting vertex in the minimum cost position

The cost insertion technique inserts the vertex v in the position with the overall lowest cost. This differs
from proximity insertion by deciding which route to insert to solely based on the cost of the insertion.
The process is described as following:
Find the route Rĵ = argminRĵ ∈ Routes c(vji , v

j
i+1, v). Insert the vertex into route Rĵ at position i.

where c(vji , v
j
i+1, v) is the lowest cost in route Rĵ .

2.4.4 Adaptive Iterated Local Search

As briefly mentioned in 2.4.3, AILS is a form of ILS where the perturbation step depends on the optima
found so far. This optimization technique often works well because solutions from the same region share
many characteristics. When taking into consideration all of the optima found in the previous iterations,
one can determine if the region of the search space is promising or not. One can then choose to perturb
more weakly in promising regions to more finely explore solutions expected to be good or take larger
steps to avoid spending time in uninteresting regions. The premise that promising regions often contain
multiple solutions of similar quality rests on empirical observation [5].

As the core part of AILS is to decide when to explore a new region, an example is provided below
in equations 5, 6 and 7. These calculations make up what is known as the acceptation criterion, which
decides whether or not to perturb to create a new starting location for the next iteration. This particular
acceptation criterion is taken from Vińıcius et al. [5]. To start, the user decides the value of k within the
range [0, 1]; the greater the value of k, the more likely one is to perturb. If s is a valid state, s has a set of
routes such that all the orders are visited, f(s) is the total travel time by all the trucks. γ describes how
many iterations one should consider when deciding whether to try a new starting state; this parameter is

20

a user-defined positive integer. f is simply the best solution found in the last min{γ, it} iterations, where

it is the number of the current iteration. f̄ is a weighted average of the quality of the last iterations
updated as shown in equation 5. Both f̄ and f both have a starting value of 0. Using equation 7 b̄ will

be a value in the range [f̄ , f]

f̄next =

{
f̄prev · (1− 1

γ) + f(s)
γ , it > γ

f̄prev·(it−1)+f(s)
it , it ≤ γ

(5)

ηnext = max{ε, k · ηprev
kr

} (6)

b̄ = f + η · (f̄ − f) (7)

All of the equations are calculated each iteration of the AILS algorithm. If the current solution found is
better than the calculated b̄ then the current solution will be the starting point of the following search;
otherwise, continue to search for solutions from the same starting state.

2.4.5 Simulated Annealing

Simulated annealing is a probabilistic version of hill climbing. Analogous to a material cooling down, the
algorithm keeps track of a temperature that steadily decreases by a constant factor. The most important
difference from the hill climbing algorithm is that there is a nonzero probability of exploring a state
of lower desirability. The exact formula for the probability is shown in equation 9, where ∆D is the
difference in solution quality of two adjacent states, and T is the temperature at that point in time. If
the considered neighboring solution is an improvement, then the search will always explore that state,
hence the probability of 1. Note that these equations are written on the form where one seeks to minimize
some loss function instead of maximizing some value function.

∆D = loss(statecurrent)− loss(statenew) (8)

P (∆D,T) =

{
1, ∆D ≤ 0

e
−∆D
T , ∆D > 0

(9)

In practice, the search will be very exploratory in the beginning and slowly start to converge to a local
optimum. This technique will often outperform hill climbing as it gets to explore a greater variety
of solutions and converges to a better one. It has even been proved that with infinitely slow cooling,
the global optimum can be guaranteed [7]. This is clearly infeasible for complex applications as the
computational power needed also goes to infinity. This means that one needs to fine-tune the cooling
factor to let the algorithm spend as much time as one can afford in practice. It should be noted that
in some problems, only very specific changes to a solution will be improvements. This can result in
simulated annealing being worse than hill climbing as it will not have time to converge to any optima at
all if it rarely has the chance even to make a single improvement.

2.4.6 Feasibility

In the CVRP, the feasibility of a solution is critical. This, however depends on if the constraints are
hard or soft. This paragraph focuses on hard constraints, meaning the solution should not violate the
constraints at all. As with many versions of the VRP, some constraints have to be met in the solution. In
the CVRP, the constraint is the capacity of the vehicle, where each city to visit has a weight that fills the
capacity of a vehicle. In the CVRP, the value of a move is measured by the difference in the total distance
of the solution and the gain of feasibility. An infeasible solution might need to visit neighboring solutions
that are more feasible to converge toward a potentially feasible solution. In ILS and AILS, the step of
perturbing the solution might result in transforming a feasible solution into an infeasible one, but this
is often appropriate. This is appropriate because one might find a feasible local optima that otherwise

21

would not have been discovered in the neighborhood search process. By defining a process for evaluating
the slack, it can be determined that the feasibility gain for a specific move between neighboring nodes
in the search process. In this case slack means spare capacity or the amount a constraint is violated in
a route. The feasibility gain can be determined by measuring slack before and after a move has been made.

In the AILS algorithm proposed by Vinicıcius et al. [5], The neighborhood search process is split into two
parts: a feasibility procedure and a local search procedure. The feasibility procedure receives a potentially
infeasible solution, then performs optimizations valuing feasibility gain to converge to a feasible solution.
If a feasible solution is not found with the current set of routes, another route is added. This increases
the capacity of the routes in the current solution. The process is then repeated with the newly added
empty route. This process repeats until a feasible solution is found. The local search procedure then
searches the neighborhood of the feasible solution, valuing moves that make the total distance shorter,
as well as requiring any move to either gain feasibility or keep feasibility the same.

22

3 Method

3.1 Process

In this project, the task was to develop a functional system for Favn. This system includes a route op-
timization algorithm and a user interface with connected functionalities. Due to the project not having
all the specific system requirements set in stone at the beginning of the project, and because the thesis
question was not yet decided, it made sense to develop iteratively to focus on adaptability. The team
consisted only of three developers and decided that the overhead and complications of following a strict
version of a comprehensive development style like Scrum would not be worth it. The team also had plans
to focus on the algorithmic part of the system, meaning the development process might not need to be
very user-centered. However, the team focused on keeping an iterative and lean development strategy.

Before the project began Favn Software AS produced a list of different properties they wished a fi-
nal product would have and what might be interesting for the team to work on. This list was extensive as
it included both details about the algorithms and specific properties of front-end components. This list
was the foundation for the vision document. For this reason, the vision document is also quite ambitious.
There was an understanding between the team and Favn that the team would have some freedom during
the project to pick out what parts they wished to work on as completing all of it seemed unlikely from the
start. Throughout the project, the team and Favn agreed that the project would focus on the algorithmic
part of the product. Therefore, some front-end goals relating to user functionality were deprioritized to
let the team delve deeper into route optimization techniques.

The team discussed creating a Gantt diagram for long-term planning. However, since the project time
frame was long and the specifics of the task were uncertain, the team and the supervisor deemed it unnec-
essary to produce such an extensive diagram that might quickly grow obsolete during the development.
The team instead created a road map for long-term planning at the start of the development. The road
map contained clear overarching goals for each two-week sprint. The document was created to have some
oversight of the overall progress compared to the time remaining for the project, without having to use a
lot of time planning, making it easy to change this during development. The goals created for the road
map are based on the design document and its user stories and should line up with these stories and
requirements when initially creating it.

During the development phase, the team had sprints that lasted two weeks. As the team consists of
only three people, it was preferable to have more than one week for each sprint. This was done to set a
realistic short-term goal for each sprint more easily and still successfully meet the goal within one sprint.
Since the time frame for the project is set to several months, it also seems feasible to have some length
to the sprints, but not so much that it is hard to determine how much can be accomplished in one sprint.
For these reasons, a two-week-long sprint is the most reasonable. At the end of each sprint, there was a
sprint review/sprint planning meeting with Favn, where the team presented the progress achieved during
the sprint and planned on what to do for the next sprint. The team received feedback on what was
implemented to ensure that the project was moving in the right direction. During the meeting, the goal
for the next sprint from the road map would also be discussed. A clear goal for the sprint would be set,
and potential changes to the road map would also be discussed in these meetings. This way, the process
stayed iterative and agile.

In addition to the sprint review and planning meeting, the team also held a couple of stand-up meetings
each week. The purpose of these meetings was to inform the team of the status of the current task each
person was working on. This means informing what the person has done since last meeting, what task
the person is doing currently, and what might block them from doing the task. These meetings also force
people to be assigned a task if they are not doing something productive. Usually, with bigger teams, these
sorts of meetings should be held every day. The team normally kept in contact, which kept the team
sufficiently up to date on what was being worked on. This made performing daily stand-up meetings

23

superfluous.

As part of the agile development process, the team used a Github task board to keep track of the
tasks during a sprint. The task board is populated by using the clear goal produced in the sprint plan-
ning. The product to produce and the vision for the project are susceptible to change under development.
Therefore, the team decided not to use much time to produce an overall product backlog but instead
decided on a clear goal and produced tasks for each sprint based on the goal set for the sprint. The
task-board set up for this project in Github consists of four columns: ”Tasks, Doing, Testing, Review.”
Meaning each task has to be tested and reviewed by the rest of the team before it is considered done.
This ensures quality assurance on completed tasks as long as the process is followed.

3.2 Choice of technologies

3.2.1 Rust

The route optimization server is written in Rust [8]. As this server is made to run extensive calculations, a
very efficient language was a prerequisite for real-time results. Rust also has a strict compiler that ensures
memory safety, increasing the confidence of the team that specific bugs are not present in the code after
compilation. Rust is also a very modern language with libraries (called crates in Rust), so one can easily
create web APIs as an interface to communicate with the server. This is where Rust differentiated itself
from C++, which is another fast programming language typically used for rapid computations. C++
has also been used to write route optimizing APIs, such as the open-source project VROOM. C++ is
an older language where working with web APIs and JSON structures would have taken us quite a bit
more time to implement, which would leave the team less time to focus on the actual problem at hand.
The web framework used to set up the endpoints and the rest API was Actix, one of the fastest web
frameworks in Rust [9].

In the vision document one of the functional properties of the system is a simulation tool, where there
is a critical need for the possibility of rapidly generating solutions. The tool should be able to simulate
route generation long-term. This means that it should be possible to generate hundreds of solutions that
show how the results would be over a long time period. The simulation tool therefore indicates it is
critical that good solutions can be generated as quickly as possible. This means the drawbacks in Rust of
needing more time to implement features is worth the payoff of getting optimal execution times. Another
functional property in the vision document is the ability to generate a route for a user and to visualize
it. For this use case, a quick route optimizer server is vital, as responsiveness is very important in user
systems. This is another reason why Rust is a logical choice for the system.

3.2.2 Firebase

For this project, the team used Firebase as the back-end platform. This was a forced decision by Favn
as a non-functional requirement of the project described in the vision document. Firebase is a platform
made by Google which offers a range of back-end functionality like cloud functions, NoSQL database,
authentication, hosting, machine learning, and more. One of the main reasons the team chose Firebase is
that it is the main platform used by the client, Favn Software. As the project is part of a larger system,
it makes sense for the team to use the same platforms as implementations used in the other parts of the
larger system. When it is time to merge the different parts of th system, it will be easier to manage than
using different platforms.

Firebase also offers all the back-end functionalities that the team needed for the project, including cloud
functions and a NoSQL database. Another reason the team chose Firebase is that it integrates very well
with the React framework described in 3.2.4.

24

3.2.2.1 Firebase Firestore (NoSQL)

Firebase Firestore is a NoSQL database integrated into the Firebase platform [10]. For this project, it
is preferable with a NoSQL database as it is very fast and scalable. This is important since the team
needed to store large amount of route data into the database. It also allows for both structured and
unstructured data, which is very useful as the data is quite dynamic. NoSQL makes it easy to change
the structure of the data while developing, which is very likely in the project. The set structure and
metadata of the routes constantly change depending on requirements figured out while developing the
system. Firestore database is also accessible directly from front-end applications for a lot of languages,
including javascript. This means that data can be fetched directly from the database, using firebase
authentication and security rules in the database.

3.2.2.2 Cloud Functions for Firebase

Firebase also allows for Cloud Functions, which is an essential feature for the project. Cloud functions
are serverless endpoints managed by google, which scale automatically based on demand. They also have
good support for testing and running these functions locally, so the development of the back-end solution
stays simple while also ensuring scalability. The drawback of this serverless solution is that the functions
have a slow start-up time, meaning that data gathered from a cloud function might take a lot longer
time than with a server-based distributed system. However, by using cloud functions for features that
are bound to be somewhat slow anyway, this drawback is negligible. For just reading and fetching data
from the database, this can be done directly in the UI. This is feasible by having good security rules in
the database. Cloud Functions can also be triggers. A trigger is a cloud function that activates when
something is added, changed, or removed in the database. As the system is planned to automatically
update routes for different time interval instances as soon as a new order is added, the trigger function
feature is very useful.

3.2.2.3 Cloud pub/sub functions

pub/subs are similar to Cloud functions, as they are computing endpoints that scale automatically.
However, pub/subs read messages with data put on a queue by other cloud services in the GCP project.
The pub/sub reads incoming messages on the queue and handle the data passed in the message to perform
computations with these. This computation flow is a good fit for the simulation tool planned in the vision
document, as huge workloads and long computation times are needed to generate all the results needed
from a simulation.

3.2.3 Google Cloud Platform

Google Cloud Platform is a platform for cloud computing services [11], including Firebase(3.2.2). Favn
has most of its applications built with GCP technologies, and the same was planned for the task. While
already using other technologies within Google Cloud, integrating new technologies under the same group
of computing services is simple. As well as using firebase and cloud pub/subs, The team utilized the
virtual machines service in Google cloud platform to host the route optimization API and OSRM API.
This was because the integration of this service was simple and could be connected to the same Google
Cloud project as the rest of the back-end system.

3.2.4 React

The product was initially planned to have a web application for garbage collection participants, so a user
interface that utilizes the system is needed. For developing this front-end, web application the technology
used is React [12]. One of the reasons for choosing this technology was that it was recommended by Favn,
as they have expertise with this technology and can help out if needed. React is also easy to learn and
has a lot of community support. Also, as the intention of the task was to focus on the optimization part
of the system and developing this, it is critical that the team can quickly create components in the web
application to test the core of the task. React makes it easy to create high-quality components quickly,

25

and it is easy to create and reuse other react components.

Another alternative that was considered during planning was vue.js. This framework works well for
smaller projects and has an easy learning curve. This seems very appropriate for the scale of UI devel-
opment that was planned for the task. However, this project has a bigger vision for the web application
than what was planned in the task. React is then the better option. React works well for larger scale
applications, which is the plan for future work on this project. Since the application needs maps to show
resulting routes for participants to use, React is also a good choice, as it has good libraries for map
solutions like Google Maps.

3.2.5 TypeScript

TypeScript was chosen as the development language in the front-end components and cloud functions
[13]. TypeScript is a superset of Javascript made by Microsoft. Our choice was between TypeScript and
JavaScript, as these are languages that are well suited for web development and integrate well with React,
Firebase, and Google Maps. The reason TypeScript was chosen over JavaScript is because of the ability
to add static types in TypeScript. This makes handling orders and complex routes more manageable,
while it also makes for better error handling. It also makes the code more maintainable for future work,
since types make the code more readable.

3.2.6 Google Maps

The user interface of the system requires a map in order to show the generated routes and order infor-
mation. The route data on the server-side uses standard WGS84/EPSG 4326 coordinate standard, the
same as Google Maps. This makes it easy to integrate the route data to a library utilizing the google
maps API. Google Maps has the most extensive API for web applications, making it easy to configure
and integrate features to the map, like order information and markers for generated routes. Since React
already has some well-implemented libraries for Google Maps, this was the simplest and best choice.
Another reason for this is that the project mostly already utilizes google technology via Google Cloud
Platform. This makes a Google Maps API key easily accessible and simple to set up.

3.2.7 Docker

The system developed in this task uses several services in the backend. The user interface interacts
with Firebase, which is serverless, and firebase ensures scalability by default. Both cloud functions and
Firestore database scale automatically based on demand. However, firebase cloud functions utilize the
route-optimizer service, a REST API, and not serverless. The route-optimizer is also built on top of the
OSRM API, which is also a server-based API. To ensure simple scalability in these services, Docker [14]
has been utilized to containerize these APIs. This allows the APIs to be more portable. The OSRM
service is dockerized by having a large container that fetches the latest Norwegian map data and sets up
the newest version of OSRM from git. The route-optimizer API is also dockerized and automated for
the same reasons as OSRM; simpler scaling. Both of the APIs are stateless, except for OSRM needing
to specify which map to build the service on. However, since the project is planned for Norwegian roads,
the state is the same in every case, rendering the service technically stateless. By dockerizing these APIs,
the process of setting up virtual machines or future clusters for these services is simplified.

3.2.8 Open Source Routing Machine (OSRM)

OSRM is an open-source routing API written in C++ [15]. It is among the quickest of its sort and allows
all the key features required for the project. Most importantly, it allows for sending a list of coordinates
and receiving the shortest path matrix back. This matrix contains the shortest path between all the
pairs of the points sent to it. In this context, the length of the shortest path is measured in seconds,
as the time it takes to drive from one place to another is the most interesting. This happens extremely
quickly and lets the team greatly reduce the complexity of the problem by compressing the map. OSRM

26

gets its map data from Open Street Map, which is another open-source project. Open Street Map is
regularly updated and allows for getting the travel time between points. All of this considered, OSRM is
a well-performing, completely free way to get necessary geographic data and help reduce the complexity
of the problem. As this solution is satisfactory, paid options like Google Maps were looked away from for
fetching shortest path data quickly. Additionally, OSRM is free to use in commercial settings, which is
another requirement of Favn Software AS.

3.3 System architecture

Figure 17: illustration of the overall system technology and how the system communicates

The overall system is planned to have a mobile application that is also connected to the back-end sys-
tem the team was planned to develop. Since other applications are being developed on top of the same
technologies with GCP, the team also needed to use these technologies.

The implementation of the team focuses mostly on the route optimization API and the system within the
GCP while developing some features on the web application. To ensure that what the team is working
on can easily be integrated with the overall system, the route optimization was developed as a separate
service any application can build on top of. The service was also built on top of an OSRM API. This
means that any application that can generate a distance table and routes between orders can easily re-
place the OSRM API.

Because of this, mocking the OSRM API and testing the route optimization API by itself becomes a
simple process. The web application communicates with the Firebase Cloud Functions, but also receives
data directly from the Firestore database, with the intention of using security rules to ensure security
when authentication is implemented. The cloud functions communicate with the route optimization API
to create route data and store these in Firestore. The cloud functions also send jobs to Google Cloud
pubsub, which in turn write data to Firestore. These jobs are mostly created for the simulation tool
described in 3.8.

27

3.3.1 Web application and Firebase entity system

Figure 18: model of the domains in the system

In this section, order and truck will described as in section 3.5. In the system, each waste administrator
or organization can have several trucks registered to their organization. They can also have several time
intervals set up. These time intervals contain information about which trucks are driving during the time
interval, what time the interval starts and what time it ends. The intervals also contain data about how
the optimizer should prioritize utilizing the trucks at disposal. This means that the optimizer can be
configured to initialize the solution by either spreading out the orders between trucks or filling trucks one
by one. The intervals also contain data about whether the time at disposal should be considered or not.
The decision to not consider the time should generate better solutions but might violate the time limit
on individual trucks. The reason for this is to give the admins some room to explore different ways of
generating routes. The configuration of intervals with trucks and time should give administrators room
to manage work times and adapt to orders while still automatically getting optimized routes for each
truck. Based on information from waste companies, each truck can pick up only one type of garbage.
This means each order and truck needs to specify the type of waste.

Each time interval can have instances of the time intervals. An instance has the same data as the
time interval parent but refers to a specific time window. These instances are the windows orders can
theoretically be placed in. Each instance can, because of this, have zero to many orders. When an order
is placed to a time interval instance, Route data is automatically updated. The route optimizer API does
not consider types, so the system separates the order and truck on each type and sends these to the route
optimizer to update each time interval instance. The route data on each interval instance contains a set
of routes, each listing the entire route as WGS84 Coordinates. The route data also lists the designated
truck for the route, metadata about weight, time, and space used, and an ordered list of all the orders to
be picked up in the route.

28

3.4 Testing, integration and deployment

The team decided to implement unit tests and use both continuous integration and continuous deploy-
ment. The unit tests were made in Rust and tested that all route optimization heuristics worked as
intended. Passing the tests would mean that only legal actions were performed on the solutions; in this
way, the team could trust the result. There is also an integration test that checks if the route API is
stable. The test sends a standard http request with a data set of trucks and orders to the main endpoint
for route generation on the server, and checks if the response is valid. The test also calculates the total
distance of the solution it receives. These tests were also connected to Github Actions, which can perform
certain actions if a success criterion is met. The continuous integration part of the workflow is then that
all the tests are run on Github on the latest commit to see if the latest version is stable or not. In
addition, the team also used a Github action that listened for commits on the Dev branch. If there was
a commit and it passed all the tests, the results were deployed on a development server that Favn has
access to. This was agreed upon with Favn to have an overview of our progress and give feedback on the
completed features. Only completed features were pulled into the dev branch to ensure that Favn could
inspect a stable version. This continuous deployment would be healthy for the cooperation between the
team and Favn.

3.5 Trucks and orders implementation

Orders have been mentioned many times so far, but this shall be clearly defined before the implementa-
tion of the algorithms are discussed. An order is associated with a geographical coordinate, a weight, and
some volume. The order represents something someone wants to be picked up by a truck; that is, a truck
needs to travel to where the order is placed and pick it up. The coordinate is a basic pair of latitude and
longitude, which is where it should be picked up. The weight and volume describe the thing to be picked
up itself, and this is taken into consideration because they are the limiting factor for the trucks to be used.

What exactly is meant by truck shall be fleshed out now. All the algorithms take in a parameter
which is the set of trucks that can be used. These trucks can be different. Each truck has the following
attributes clearly defined; a max weight, width, and length of the truck’s cargo space. In addition to this,
the trucks are assumed to have the same starting point; this is where all the orders should be returned

3.6 Graph compression and representation

The input to all the optimization algorithms is, as stated earlier, the set of orders and trucks. To run
any variant hill climbing, the state must be clearly defined. A state is a current solution; that is, all the
orders are distributed in some way among the trucks without breaking the weight or space constraints.
Before the actual optimization algorithm is run, all the orders are sent to the OSRM service to retrieve
the shortest path matrix. This matrix stores the shortest path among all pairs of orders. This matrix
represents a complete graph (all nodes are related to all other nodes). From now on, the program will
work with this graph. The graph has thus been simplified from the entire road network of the city into
an n by n matrix where n is the number of orders plus one for the starting point of the trucks. This
will make all future path computations very fast as one can find the shortest path between two orders in
O(1) time. This compression is lossless in the sense that one always wants to drive between these points
in the final route, so no critical data is lost.

When working with routes, one has to decide how to represent a path in the graph. All the paths
that the trucks will drive start and end in the same place; in graph theory terminology, this type of path
is known as a circuit. These circuits only visit each node/order once, so the team decided to store the
paths simply as a list associated with a truck. This list contains all the orders to be picked up by the
associated truck. This was chosen because it is then easy to see which orders a truck should pick up
and because a list is ordered. Due to the inherent order of a list, information can be extrapolated about
the path. Since one always drives to and from an order only once, one can assume that there is an edge

29

between consecutive orders in the list. With this assumption, a truck always starts at the first order in
its list and then visits the second, then the third, and so on. Note that there is an extra edge from the
last element of the list back to the first one to complete the circuit.

3.7 Visualization tool

As part of the system, it is necessary to have tools to visualize and communicate the route that is
generated. Without such tools, the route optimizer would not be usable for practical purposes. The
generated route is a list of latitudes and longitudes and would therefore be incomprehensible without a
visualization. Such a tool is also useful when testing out different algorithms. When visualizing a route,
it is often possible to see whether the route makes logical sense or not. If the route does not make sense,
it is likely something wrong with the implementation of the algorithm.

Figure 19: Example of visualization of a set of routes

The visualization tool is part of the front-end part of the system and is built on top of Google Maps.
It provides a series of different functionalities for the user. It displays all the different routes for the
chosen time interval by color-coded lines. Each route is coded by color, and the relevant information for
that route is displayed on the right. This includes information such as space used by each truck, weight
used, how much time is used and what type of waste that truck collects. Each order in each route is
also enumerated based on the order the truck will drive. Information about a given order is accessible by
clicking on it, displaying a popup with information about the given order, such as an address, postcode,
weight, volume, latitude, and longitude. Part of the tool is also the functionality for adding new orders
to the route. It is possible to place a marker anywhere on the map, then input the weight in the top left
corner and then send it to the route. This will trigger a cloud function that will generate a new set of
routes that includes the new order.

30

3.8 Simulation tool

Another functionality implemented in the system is the ability to run simulations on the routing algorithm.
This is a useful function for companies to simulate what impact a potential change might have. For
example, simulating the impact of acquiring a new truck will have on fuel and time use over a year. Such
a tool could guide a company on what changes might be beneficial economically and environmentally.

(a) A form where the user can specify the attributes
of the report

(b) Dashboard with a graph displaying the total
time used for the different simulations per day

Figure 20: The simulation report tool

In the UI, one is presented with a form where it is possible to specify all of the following parameters:

• Length of simulated time-span

• Time limit of a route

• Daily order frequency

• Number of trips per week

• Area the generated orders are in

• Number of extra trucks

• whether to prioritize distributing the orders evenly when clustering

When the attributes have been chosen and sent, the routing server will run the algorithm for all the days
in the given time frame. All the different attributes specified by the user are taken into consideration.
After the simulation is done, the user is presented with a dashboard displaying the results. Among other
things, it is then possible to see what effect the different choices have on the time used. In figure 20, the
standard route is marked by the blue line, and the route with the additional truck is marked with the
green line. In this case, the standard route uses less time than the route with more trucks, with some
days there being quite a big difference. Therefore for this scenario, the additional truck might not be
that beneficial.

31

3.9 Hill climbing implementation

The hill climbing algorithm implementation needs a starting solution to begin the local search. It uses a
nearest neighbor clustering method to very quickly create a route satisfying the weight and space limita-
tions. Note that the time limit constraint can be broken in this starting solution. The reason for using
a clustering algorithm and not just a completely random solution is that a better starting solution will
require fewer iterations to converge, making it faster.

The algorithm takes a parameter that dictates the max amount of iterations that will be run. An
iteration consists of generating all conceivable improvement heuristics, performing them if they reduce
the total travel time while respecting the weight and volume constraints. Generating all conceivable im-
provement heuristics means trying all pairs of indices in the same route of a truck and using those as the
starting points for all the intra-route heuristics, or all pairs of indices of different routes as the starting
points for the inter-heuristics. The algorithm also keeps track of whether an improvement has been made
in this iteration. This way, it can terminate when it has completed the maximum number of iterations or
run a whole iteration without improving. This can safely be done as one would be guaranteed not to find
an improvement in any of the subsequent iterations anyway. All the heuristics are generated in the same
order each time, and the clustering phase depends on the order that the trucks are received. Therefore
the algorithm is completely deterministic.

Note that there exists a problematic edge case without allowing the trucks to drive multiple trips within
the time limit. Imagine that there are many orders right next to the depot, but they are so heavy that
a truck can only drive one order at a time. In this case, the trucks can drive back and forth within the
time limit, but multiple trips are usually not allowed in default implementations. This will make the
algorithm unable to find a valid solution. The team came up with a trick to solve this without increasing
the complexity. By copying the trucks, each of the copies can have its own circuit. To validate whether
the set of trucks constitute a valid solution, one has to summarize the distances traveled by the different
copies of the same car to make sure it can make all the trips within the time limit; everything else will
work as normal. This trick is implemented in the hill climbing algorithm and in the simulated annealing
one, but not for AILS as it has its own mechanism for adjusting the number of trucks to use.

3.10 Simulated Annealing implementation

Equivalent to the hill climbing implementation, the starting solution of SA is based on the deterministic
nearest neighbor clustering algorithm. The simulated annealing implementation takes in two parameters,
starting temperature and cooling factor. The starting temperature will dictate just how exploratory
the algorithm is, especially in the beginning. The cooling factor reduces the temperature over time; the
algorithm terminates when the temperature has reached 1 degree. Each time the temperature is decreased,
a random heuristic move is generated, which is a suggestion for a change in the current solution. The
change to be analyzed can be any conceivable move as described in the theory section of TSP and CVRP.
The total distance of the current and candidate solution is calculated and feed to equation 9 to calculate
the chance of making a move. The equation states that all improvements should be performed. If the
temperature is high, or the move is only somewhat bad, then there is a chance to perform the move to
explore more of the search space. Additional restraints still hold; changes in the solution must respect
the weight and space limits of the truck.

3.11 Adaptive Iterated Local Search implementation

The Adaptive Iterative Local Search implementation is based on the AILS algorithm explained in [5].
The implementation of the team is written in rust on the route-optimizer service in the system of the
team. The paper describes an AILS algorithm for the CVRP explained in 2.4.4. The implementation is
different in that the problem of the system is not directly the CVRP described in 2.2.2, but a problem
where the vehicles can have different weight and space constraints. The vehicles also have a potential

32

time constraint that is the same for all cars, but each order can be picked up by any truck. For these
reasons, the team tweaked the AILS implementation to fit their application.

3.11.1 Summary of the implementation

The algorithm creates an initial solution using proximity clustering described in 2.3.2.
After getting an initial solution, which might not be feasible based on the time, space, and weight
constraints, the algorithm uses a feasibility heuristic to find the closest feasible solution. After this pre-
process, the iterations start. In each iteration, the algorithm perturbs the current reference solution.
This means that it swaps up the orders in the solution and creates a different and potentially infeasible
solution. With this perturbed solution, it runs it through the feasibility heuristic again to find a feasible
solution. After getting a feasible solution, it performs a neighborhood search to find a local optimum, a
temporary best solution. The algorithm performs acceptance criteria to see if this new solution should
be set as the reference solution for the next iteration. The algorithm also updates some parameters for
the perturbation step to make this step adapt to the results of previous iterations. If the solution is
better than any other solution found in a previous iteration, it is saved as the current best solution. The
iteration repeats until the max amount of iterations is run and returns the best solution found. The
overall algorithm is described in Algorithm 5

3.11.2 Initial clustering

The initial clustering in the implementation calculates the minimum amount of needed trucks based on
weight, initializes empty routes using the calculated amount of trucks needed, and randomly assigns each
route in one order. The rest of the orders are then inserted based on proximity. The implementation
is just like the one described in 2.3.2. It does not consider the additional constraints in the problem
at hand, as the initial solution does not need to be feasible. The initial solution needs only be quickly
generated and somewhat reasonable.

3.11.3 Perturbation

A perturbation step is needed in an iterative local search. The algorithm should explore different parts of
the global scope to find in an attempt to find the global optima and not just find the first local optima as
a solution. A perturbation step perturbs the current reference solution in an iteration of the algorithm by
removing orders from routes and inserting them differently. This potentially creates a solution far enough
away from the reference solution that the algorithm can potentially find another local optimum than the
previous iteration. The AILS implementation uses the removal and insertion heuristics described in 2.4.3
to perturb a solution. This step in the algorithm also does not require a feasible solution but actually
potentially transforms a feasible solution into an infeasible one. Because of this, the implementation of
this step is the same as with the CVRP. The implementation is described like this:

Algorithm 1 Perurbation Procedure

Data: Solution s and removal heuristic Hr

Result: Solution s′

s′ ← s
Remove random route with probability 1/γ as long as m ≥ m
Remove ωHr orders from solution s′ based on heuristic Hr

Randomly select an insertion heuristic {Ha
1 , H

a
2 } and add all removed orders with the heuristic

In the perturbation algorithm, {Ha
1 , H

a
2 } are the insertion heuristics described in 2.4.3.4 and 2.4.3.5.

Hr is an assigned removal heuristic described in 2.4.3.2, 2.4.3.1 or 2.4.3.3. ωHr is an integer related to
the removal heuristic that decides how many orders will be removed from the solution. γ is a constant
calibrated by the team based on testing results. m is the estimated least amount of routes needed to get
a feasible solution.

33

3.11.4 Neighborhood search

The neighborhood search explores the neighborhood and tries to find the local optima closest to the
solution it optimizes on. The neighborhood search also includes a feasibility heuristic that looks for
moves with high feasibility gain and requires having a feasible solution before it finishes optimizing. The
implementation of the neighborhood search is different from the one described for the CVRP, as the
feasibility heuristic has to account for several constraints. The feasibility search algorithm is described
like this:

Algorithm 2 feasibility heuristic

LM ← ∅
repeat

foreach RSi ∈ Routes do
Update LM(RSi , LM, s)

end
while |LM | > 0 do

Find the inter-route move mov between route RSi and RSj resulting in s′ in LM with highest
feasibility gain
s← s′

remove all moves from LM involving the routes RSi R
S
i

Do intra-route local search to routes RSi and RSj
Update LM(RSi , LM, s) and Update LM(RSj , LM, s)

end
if s is infeasible then

Add a new route Routes ← Routes ∪ RSm+1 with the truck Ti that has used the least amount of
time.

end

until s is feasible OR it > itmax

The algorithm for updating the list of moves LM is described like this:

Algorithm 3 Update LM

Data: Rsi , LM, s
Result: Updated LM
foreach vik ∈ RSi do

foreach vjl ∈ δ(vik)|i 6= j and RSi and RSj meet feasibility condition described in equation 10 do
foreach inter-route move heuristic Nk ∈movement heuristics do

if Nk gives a solution s′′ that respects condition 12 then

if ∃ (move between vik and vjl) ∈ LM but s” has higher feasibility gain then

replace move between vik and vjl in LM with new move
end

if @(move between vik and vjl) ∈ LM then

LM ← LM∪ (move between vik and vjl using move heuristic Nk)
end

end

end

end

end

δ(vik) is the set of orders closest (by proximity) to RSi

34

the movement heuristics are the ones described in 2.4.2.6, and 2.4.2.5, 2.4.2.9

slack(RSi) ≥ 0 XOR slack(RSj) ≥ 0 (10)

In condition 10 slack describes a number indicating the capacity of a given route.
In the implementation, this slack function returns negative if any constraints are violated: used time,
weight, or space. Any violations of these constraints are summed up using the real value of the constraint
violation. e.g: if a route uses a truck Ti with 50 max weight, and the orders in the route add up to
60 weight, and no other constraints are violated, the slack function gives a value of -10. If time is also
violated, meaning the total time of all the routes RSx the truck TSi = TSx in RSi is driving, this violation
is also added to the slack value. So if truck TSi has an estimated time use of 3000, and the limit is 2500,
the slack adds up to -510. These values are also weighted in an attempt to balance these numbers out,
valuing time, space, and weight equally.

The feasibility condition for a given move candidate can be described using the teams implementation of
feasibility gain:

Ω(s, s′) = min{0, slack(Rsi
′)}+min{0, slack(Rsj

′)} −min{0, slack(RSi)} −min{0, slack(RSj)} (11)

Ω(s, s′′) > 0 (12)

Equation 11 calculates a number indicating the feasibility gain by getting the difference in slack between
the solutions s and s′ when committing to a move between routes Ri and Rj

3.11.4.1 Local search heuristic

The neighborhood search also has a similar process to the local search process that optimizes a feasible
solution. The process is very similar to the feasibility heuristic, except some of the conditions are differ-
ent.
In the update LM algorithm for the local search heuristic, every other route is considered when consider-
ing move candidates as no route should have a slack() value under 0. Candidate moves must also result
in a shorter total distance, as well as having positive feasibility gain (condition 12). This is to explore
the neighborhood for better solutions without finding infeasible solutions.

3.11.5 Acceptance criterion and adaptivity

For the algorithm to be adaptive, there is an acceptance criterion that manages the reference solution
used in each iteration of the algorithm. There is also a system for updating the ω values for the removal
heuristics described in 2.4.3. The implementation of these systems is similar to those explained in [5] as
they as well do not account for feasibility in any way, making it the same for the thesis problem. Because
of this, the implementation of the acceptance criterion is described in 2.4.4.
The update of the removal heuristic ω values is implemented like this:

35

Algorithm 4 Update ωHrk
Data: Solutions s and sr, itHrk , dHrk , dβ and n
Result: Updated ωHrk
itHrk ← itHrk + 1

dHrk ←
dHr

k
(itHr

k
−1)+d(s,sr)

itHr
k

if itHrk = γ then

ωHrk ←
ωHr

k
dβ

dHr
k

ωHrk ← min{n,max{1, ωHrk}}
itHrk , dHrk ← 0

end

itHrk describes the number of times the removal heuristic has been used since the last time ωHrl was up-
dated. dHrk is the average distance between local optima found by the removal heuristic and the reference
solution sr since the last update of ω. dβ and γ are, in this case, constant integers with a value calibrated
by the team based on testing. n is the number of orders in the solution.

Algorithm 4 updates the omega value for one specific removal heuristic Hr
l . The goal of this algo-

rithm is to compare the current solution with the reference solution from before the iteration and give ω
a new value based on this.

3.11.6 The algorithm

The team combines all the parts described in 3.11.2, 3.11.3, 3.11.4 and 3.11.5 to create an AILS algorithm
tailored for the teams task and system. The overall algorithm is quite similar to the one described in [5],
but tweaked to fit the custom CVRP the team is tasked with.

Algorithm 5 AILS

Data: orders, truck data, time limit per truck
Result: Best solution s∗

sr ← Initial solution from initial clustering described in 3.11.2
sr, s∗ ← feasibility heuristic(sr) - as described in Algorithm 2
it← 1 repeat
Hr ← Choose a random removal heuristic Hr ∈ {Hr

1 .H
r
2 , H

r
3} - described in 2.4.3.1, 2.4.3.2 and

2.4.3.3
s← Perturbation procedure(sr, Hr) - as described in Algorithm 1
s← feasibility heuristic(s) - as described in Algorithm 2
s← Local search heuristic(s) - as described in Algorithm 2 using tweaks explained in 3.11.4.1.
Update ωHrk - as described in Algorithm 4
sr ← Apply from s based on acceptation criterion as described in 2.4.4
if s is a better solution than s∗ then
s∗ ← s

end
it← it+ 1

until it ≥ itmax;

3.12 Run time experiments

To experimentally test the solution quality and run time of the different algorithms, the team has run a
series of tests. All the tests were run on a Google Cloud virtual machine. The VM is running on a 2.00
GHz Intel Xeon CPU. The results shown are an average from running 50 tests in three different cities

36

(Oslo, Trondheim, Tromsø). Each test is to optimize a route that picks up all the orders. The set of
trucks are the same throughout all the tests, although the generated trucks themselves do not need to
be identical. All trucks need to return to the starting point within a 6-hour time limit for the routes
generated. The 50 requests sent are unique, but the same set is sent to the same city during the same
iteration for all the algorithms. This is done so that the results are comparable as each algorithm tries to
find a route based on the same orders and trucks. The orders are generated on the spot, the number of
sections and weights used in the order are random within a limit. The weights for each order are between
1 and 100, but have a ten percent chance of being ten times larger. The reason for this randomness is
based on information from waste companies, saying that about 1 in 10 waste pickups are much larger
containers of waste. The sections used for each order is a random amount between 1 and 5. The most
important thing is that the weight and space usage was generated so that both can break the constraints
of a car, meaning that the improvements must carefully balance both constraints.

The requests are sequentially sent to the route optimization server; note that the run time is calcu-
lated on the optimization server to avoid tracking the network lag. The timer used is from the ’time’
module of the standard Rust library. What is referred to as distance in the result section is the total
driving time of all the trucks; this is the ”distance” metric that the algorithm minimizes. The purpose
of the experiment is to experimentally show how the different proposed algorithms scale with regard to
the number of orders, the number of iterations, and how that affects the quality of the solution. For
this reason, there is more than one test for each algorithm; HC and AILS are tested with 1, 5, and
20 iterations to see how run time and solution quality scales with the number of iterations. The SA
algorithm is always run with a starting temperature of 100 degrees as it was tested to give good results,
and the cooling factors are 0.9999, 0.99998, and 0.999996. The AILS takes two parameters more than
HC, namely k, which is set to 0.5, and γ, which is set to 10. All of the parameters were selected as they
seemingly yielded the best results.

3.13 Distribution of roles

The role distribution for the development of the product was not very established. This means that
every team member worked on most aspects of the product, but some worked more on specific areas than
others. However, the role distribution for the process was very specific. The roles were distributed like
this:

• H̊avard Stavn̊as Markhus: For system development focused on system architecture, automation,
system structure, testing, and backend development. Responsible for setting up meetings and being
chairman in these meetings.

• Tobias Meyer Andersen: For system development focused on backend development, algorithm
research, and algorithm development. Responsible for writing meeting reports and quality assurance
for documents.

• Kjerand Evje: For system development focused on front-end development, Responsible for structur-
ing documentation and making sure documents are available to whomever the document concerns.

37

4 Results

4.1 Scientific results

4.1.1 Hill climbing results

HC 1 iteration 5 iterations 20 iterations
orders/trucks run time(ms) distance(s) run time(ms) distance(s) run time(ms) distance(s)

10/2 35.0 7604.0 40.0 7480.3 40.3 7480.3
25/3 56.0 17316.3 90.3 16946.3 91.3 16946.3
50/4 103.7 32977.0 213.3 32511.0 223.7 32503.7
99/6 218.3 62010.0 487.3 61476.3 500.0 61470.3

4.1.2 Simulated Annealing results

The starting temperature for all SA runs was 100 degrees. CF is an abreviation for cooling factor.

SA cf=0.9999 cf=0.99998 cf-0.999996
orders/trucks run time(ms) distance(s) run time(ms) distance(s) run time(ms) distance(s)

10/2 56.7 7501.0 223.3 7441.0 1056.0 7427.0
25/3 64.0 17200.0 235.3 16901.7 1092.7 16754.7
50/4 76.3 32971.7 251.7 32457.3 1260.0 31973.0
99/6 107.0 62320.3 289.3 61646.0 1199.3 60805.7

4.1.3 Adaptive Iterated Local Search results

AILS parameters: k = 0.5, γ=10

AILS 1 iteration 5 iterations 20 iterations
orders/trucks run time(ms) distance(s) run time(ms) distance(s) run time(ms) distance(s)

10/2 18.3 7422.3 27.7 7370.7 56.0 7349.3
25/3 64.0 16700.0 115.3 16524.0 283.3 16384.7
50/4 248.0 32048.0 481.0 31646.0 1381.0 31373.3
99/6 1375.7 60899.0 2648.0 60115.7 7129.0 59353.3

4.2 Engineering professional results

4.2.1 Final product overview

The overall goal of the project was to develop a route optimization engine with an administrative web
application for waste collection companies. The administration tool would have access to route generation
for waste collection orders coming from a mobile app for waste collection customers. Orders would come
in from paying users, and waste administrators would manage these orders and have routes generated for
picking these up optimally. The task initially had a vast scope, and the plan was for the team to choose
which parts to focus on. The team focused on developing the routing engine and prioritizing this but
developing some key features to the administration application. The final product has a competitively
fast routing engine with the route optimization API built with Rust and Actix web on top of the OSRM
API. The engine is also open for utilizing more sophisticated algorithms for close to optimal solutions
with the drawback of longer run times and worse scalability in regards to the number of orders. The
routing performance of the routing engine is extensively experimented with and tested, giving the team
a good indication of how the engine performs in different situations using different algorithms. The team
also built some key features in the web application and firebase that utilize the routing engine, including
truck management, a simulation tool for the route generator, and visualization of the routes.

38

The system was built in Google Cloud Platform, which merges well with the mobile application built on
top of firebase and the rest of the project the team did not focus on. The system is also horizontally
scalable as the routing engine, and OSRM API is stateless and dockerized. The OSRM API is config-
urable for different countries by initializing the API using different map files. This makes the system
configurable for other countries as well as the intended country, Norway.

4.2.2 Functional requirements

In this chapter, how and in what way different functional requirements defined in the vision document
were met will be described. The order is the same as in the vision document. Recall that the vision
document was intentionally somewhat over-ambitious so the team could have some freedom in deciding
what part of the system to develop based on personal interest.

4.2.2.1 Authentication system

As the focus of the project was mostly centered around algorithmic optimization, it was both unnecessary
and unnatural to spend time developing an authentication system that would restrict the usage of the
optimizer to only those with access. This was agreed upon by all parties.

4.2.2.2 Interactive front-end showing the orders

The team implemented functionality to view data of the orders when accessing a time interval instance,
as this was the most important feature while developing the optimization engine. The orders are stored
and used in the system but do not have relevant, interactive components, as this was deprioritized
after discussing with Favn and the team. The feature was originally planned as a feature the team
would implement in the roadmap. However, later in the development of the system, the team and Favn
decided that the team would focus on key parts of the front-end system that helps reinforce testing the
optimization engine. This resulted in the deprioritization of the feature.

4.2.2.3 Communication from waste company to users app

This was also looked away from as the user part of the system was not central to the project; this was
agreed upon by all parties. The feature is not at all related to the route-optimization, and therefore not
prioritized in the same way as other features.

4.2.2.4 Generic route optimization

The goal stated in the vision document was to create a generic route optimizer that takes into consid-
eration space, weight, and time. This criterion was met by creating a route optimizer that takes into
consideration the weight and space limits of the trucks. It is general in that it can be applied for varying
amounts of trucks. It is not limited to some specific geographical location; it also works for a varying
number of orders and any starting point for the trucks. The algorithm that was finally chosen for the
optimizer was HC.

4.2.2.5 Estimating time and fuel use, number of trips required

The route optimizer creates metadata for estimated time for each route and estimated total time used
for all routes. Estimated fuel use is not implemented, as the team and Favn agreed to focus on the time
metric provided by OSRM and optimize based on this. The route optimizer API supports giving the
same truck several trips if necessary. All implemented optimization algorithms take the possibility of one
truck driving several trips into consideration.

39

4.2.2.6 Displaying information about space and weight used in trucks

The web application implements this feature by showing the estimated time, space, and weight used for
each route in the same component that shows the generated routes on a map. The page indicates which
route on the map refers to which route information using color-coding.

4.2.2.7 Possibility to change how many trucks a company has available

This criterion was also met. Users now have front-end access to both add and remove trucks. These
trucks are given to the route optimizer when creating the route, as also specified in the vision document.

4.2.2.8 Simulation tool to optimize use

The original criterion was for the simulation tool to determine what sort of parameters or adjustments
would give the best route generation over time. However, the team did, during meetings throughout
the project, agree that it would be satisfactory to have a simulation tool that would allow the user to
test different parameters and simulate how they would affect the routes over time. This was solved with
the simulation report function, where users can analyze route trends over long periods of time. The
user can test things such as the impact of adding more trucks, area of service, prioritizing filling one
truck up before using another, how much load would be expected in the time period, and how long of
a period to simulate. The user can also control the time limit, which is analogous to the length of a
working shift but can also choose to look away from a time limit altogether. All of this combined lets the
user explore different ways to run their pick-up service in order to understand what the data suggests
would be beneficial in terms of route length and truck usage. They would also receive feedback if some
routes were not possible to be generated due to no route being found that satisfies the time/weight/space
constraints.

4.2.3 Non-functinoal requirements

Favn Software AS had two non-functional requirements of the final product, both described in the vision
document. The first one was to use Firebase as a back-end solution. This requirement was made as
the company primarily uses this and has experience with it, and thus they could, as the further work,
merge it with the front end part of the user application. This requirement was met, as made clear earlier.
The other non-functional requirement was to use either Vue or React as a front-end framework. This
constraint was created for a similar reason, as they would more easily allow Favn to develop the product
further later. As also made clear earlier, the team chose to use React to develop the front-end.

4.3 Administrative results

During the completion of this project, different development tools were utilized to ensure that the process
was kept systematic. This involved using a sprint-focused development method based on the roadmap
made at the start of the project. The project was also documented by status reports, time-sheets, and
status meeting logs throughout the project.

4.3.1 Work schedule plan

The work schedule on the project was based on 2-week long sprints. This schedule was kept by the team
throughout the project. In the roadmap, it was set up to be nine sprints in total, all of which were
completed. There was some variation in the amount of work done and time used on each sprint. As
people on the team were busy with other subjects at university and other work, the team used less time
on each sprint at the start of the project than at the end. The workload steadily increased from the start
in January until the completion in May.

40

4.3.2 The development process

As mentioned, the team focused on a lean and iterative, sprint-focused development process. All the team
members were familiar with and had experience in using Scrum beforehand, so the team quickly became
efficient in using this development process. The sprints lasted two weeks each, with some exceptions
at the end of the project. Each sprint was concluded with a sprint planning meeting where the team
met with Favn to discuss the previous sprint and plan the next sprint. During these meetings, the team
continually got feedback on the product, and as the product evolved, the demands for the product also
evolved. The team planned the first seven sprints in the road-map for developing the product and the
last two sprints for writing the paper and finishing up on documentation.

After the product was finished, the team and Favn came to an agreement it would not be necessary
to continue the sprint planning meetings, as Favn was only involved in the development of the product.
The team was also successful in using a task board for managing what tasks needed to be done, what
tasks were ongoing, and what was finished. At the start of each sprint, the team reviewed the task-board
and added the new tasks that would be necessary to achieve the goals for the coming sprint.

Covid-19 also had some impact on the development process. This resulted in that quite a lot of the
work on the project was done remotely and over voice chat instead of meeting in person and working. All
the sprint planning meetings where held over video chat as well as all the meetings with the supervisor.
Favn opened up the possibility of using their offices for the project once a week, which the team often
utilized. In the last few weeks of the project the team could meet more often and Favn had more free
space in their offices, which led to working more in person when completing the project.

41

5 Discussion

5.1 Scientific results

What the thesis is trying to explore is ”How do different versions of hill climbing compare when adjusted
to solve the capacitated vehicle routing problem with time limits on realistic map data.” To answer this
question, three different forms of hill climbing were implemented. The simplest one is the standard form
of hill climbing, another one taking the probabilistic approach of simulated annealing, and a third one
building on a more sophisticated series of hill climbs. The algorithms were tested using 150 orders from
different cities, using real coordinates and addresses from Open Street Map. It was then tested both how
the algorithms scale with regard to the number of orders and compared to the number of iterations/how
long the algorithms get to run. The grounds on which the algorithms shall be compared are explained
as the metrics used are discussed in the next paragraph.

5.1.1 Experiment metrics

Ass seen in tables of 4.1.1, 4.1.2, and 4.1.3 the metrics measured were run time and distance.

Run time is, as stated earlier, calculated on the rust server; it represents the time it takes for the
optimization algorithm itself to run. The time is measured in ms and is, as states before, an average from
50 requests for the same amount of orders in three different cities to increase the empirical foundation of
the results. The time measured is a central metric because it uncovers how well an algorithm scales in
practice. An algorithm can also have a different application based on how fast or slow it is.

Some trouble was encountered when measuring the time of the execution. Under the heavy tests, which
lasted more than one or two minutes, the algorithm seemed to perform very poorly. On closer inspection,
the Google Cloud interface showed that the CPU usage went down, even though the program was not
finished. This could be due to OS deprioritizing a long-lasting process or due to hardware limitations
that, for instance, slowed down the process to avoid generating too much heat. In any case, the team
handled this by having the program that sent the requests to sleep between them; this seemingly fixed
the program and decreased the run time drastically. This was, however, not done on all the tests, as the
less computationally heavy ones did not seem to suffer in the first place; this issue could have produced
some inconsistencies by increasing the run time.

Distance in time or the total amount of driving time to complete the route was the other recorded
metric. This data is based on OSRM data of how long it would take to drive the sequence of orders of
each car, adding 300 seconds per order to give time to pick up the items in the order. This metric decides
the quality of a solution, as the total driving time should be minimized.

5.1.2 Other notes on the experiment

This paragraph shall highlight some questions that might be raised in relation the run time experiments
conducted.

Firstly, lets address why there is no comparison to exact solutions and other benchmark solutions. These
questions are both answered by recalling that the exact problem to be solved for Favn is not the stan-
dard form of CVRP. Most importantly, the problem at hand features two different capacity constraints
(weight, and space) in addition to the time limit. This is not the case for the more common problem
which only has one capacity constraint. Due to this the experiments are not truly comparable with other
benchmark solutions that solve that problem. In addition this prevents us from using common data-sets
used for benchmark purposes as they do not feature the necessary data for this application. This limits
the thesis to only using its own implementations as a ground for comparison. For the simpler cases one
could feasibly brute force the exact solution, but as that would at best only be done for the simplest
cases. The team therefore chose to be consistent and only compare the different solutions found by their

42

own implementations to each other. Had the problem at hand been the standard the team could also
have used common benchmark data-sets with known exact solutions. This does limit the conclusion to
only answering which of these techniques are better than the others that were implemented, one can not
deduce how good these solutions are in absolute terms.

Secondly, lets address why the data-sets stop at 99 orders, and why the amount of orders per car stays
about the same through all the test cases. The limitation of 99 orders is unfortunately limited by the
configuration of the OSRM server that the team has running to answer requests. This was not fixable
within the deadlines used to guide the project. Therefore the team had to accept that the experiment
could not feature a test case using 250 orders that was originally planned. Having 250 orders would be
significant to verify how the algorithms scale on bigger problem sets. This would particularly have been
valuable to distinguish HC implementation of 5 and 20 iterations as will be commented in 5.1.3. Lastly
lets address why the number of orders per truck is more or less the same throughout the tests. The
purpose of this thesis comes from real life applications of collecting items and returning them to a single
place within a workday. The time limit used in the experiment was 6 hours. Due to this the team placed
some limitations on how many orders there were compared to the number of trucks. The team ran some
tests of their own and noticed the routes could not always be generated within this limit when one got
close to 20 orders per truck. Therefore the team stayed clear of this limit in the experiment to ensure
that valid routes always were found. Other than that the team did not aim for some exact ratio besides
always making sure there were more than one truck to make it a true vehicle problem.

5.1.3 Hill climbing

(a) Graph showing the run time of HC compared
to the number of orders

(b) Graph showing the distance of HC solutions
compared to the number of orders

Figure 21: Results of HC graphed and compared to number of orders.

Lets first consider the run time of the HC algorithm using a different number of iterations. It can be seen
that the run time is virtually the same when using 5 and 20 iterations, this is caused by the algorithm
terminating as soon as a local optima is found. This means that even though the max limit was set to 20
iterations it rarely needed to run more than 5, so computationally they are almost identical for datasets
of this size, with similar constraints on the truck. 1 Iteration clearly distinguishes itself as much more
efficient, having significantly better running time on the heavier test cases. Interestingly its total distance
in the largest test case is still less than a percent worse than the 20 iterations version although it uses
more than half the time. So altough a 250 order test set might have separated the 5 and 20 iteration
version a bit better it probably would not have a big relative impact on the distance results.

43

5.1.4 Simulated Annealing

(a) Graph showing the run time of SA compared to
the number of orders

(b) Graph showing the distance of SA solutions
compared to the number of orders

Figure 22: Results of SA graphed and compared to number of orders.

The SA algorithm looks for the same amount of possible moves to improve the solution regardless of the
amount of orders. This is because the amount of moves to consider solely depends on starting tempera-
ture and cooling factor. This is supported by the graph above showing that the run time does not seem
to depend significantly on the amount of orders. The different cooling factors still have very different
run times, and provide somewhat different results in regard to the quality of the solutions. At most the
worst solution is 3.1% worse than the best (50 orders, 4 trucks). SA is very scalable in terms of run time.
Despite this it seems reasonable that the solution quality will eventually drop off in large enough cases.
This is expected as some very large cases will require the use of so many heuristics to produce a good
solution that it its unlikely for the SA to generate them all without having a slower cooling factor. As
will be discussed later this ceiling for the SA is not yet reached in our test cases.

One thing that is worth mentioning is the anomaly in the version of SA with the highest cooling factor
The run time is not the highest for the highest amount of orders, he most reasonable explanation for this
is the run time issue on the VM described in 5.1.1.

44

5.1.5 Adaptive Iterated Local Search

(a) Graph showing the run time of AILS compared
to the number of orders

(b) Graph showing the distance of AILS solutions
compared to the number of orders

Figure 23: Results of AILS graphed and compared to number of orders.

As clearly seen in the figure the AILS scales unfavourably. From the second last text case (50 orders, 4
trucks), to the last (99 orders, 6 trucks), the run time is a bit more than quadrupled. This suggests a run
time just over Θ(n2) where n is the number of orders. For this algorithm the different iterations makes
the biggest difference at 99 orders and 6 trucks where the worst performing solution using 1 iteration
is 2.6% worse than the solution found using 20 iterations. This is an interesting result as the adaptive
part of the algorithm probably does not really get into play with just 1 iteration. With 1 iterations the
algorithm runs the clustering phase and optimizes it with a neighborhood search. After that it performs
a single perturbation phase and tries to find a better solution after making one inter route change.

5.1.6 Comparison

(a) Graph showing the run time of the quickest ver-
sions of the algorithms compared to the number of
orders

(b) Graph showing the distance of the quickest ver-
sions of the algorithms compared to the number of
orders

Figure 24: Quickest version of each algorithm compared.

Lets interpret the results shown figure 24. The most clear observation to make is that AILS scales
significantly worse than both SA and HC, and HC worse than SA. The latter is to be expected as run

45

time is near constant, independent of the number of orders. The slow run times of AILS seems to be
a high price to pay for small improvements. The HC solution is 3.7% worse than AILS at most (25
orders, 3 trucks). Initially this might seem insignificant but always driving 3.7% faster routes over long
periods of time could certainly make a noticeable difference in a business. What is still worth noticing
is not only that AILS produces the best solutions, but for the two smallest cases is actually the fastest
as well. If the cases are small enough then AILS is clearly superior. For the grander cases time must be
taken into consideration, although AILS produces the best solutions it might not be useful for all types
of applications. An examples of this would be real time applications or those where many requests have
to be processed before a final result is reached. An example of the latter would be the simulation tool
that the team developed for Favn Software AS, the great amount of requests could mean that analysis is
too slow for practical use.

(a) Graph showing the run time of the slowest ver-
sions of the algorithms compared to the number of
orders

(b) Graph showing the distance of the slowest ver-
sions of the algorithms compared to the number of
orders

Figure 25: Slowest versions of each algorithm compared.

Studying figure 25 the pattern from figure 24 still holds. That is, the same trends are clearly visible
when comparing the slowest iteration of all the algorithms as well. AILS still produces the best solutions,
is very fast in the start as well, but scales significantly worse than its alternatives. Additionally the
alternatives always stay within a couple per cent in solution quality suggesting that the additional time
usage of the large cases, that would be amplified even more with larger test cases would limit the possible
range of applications.

In these graphs HC and SA seem very similar. As HC is not close to a constant run time it will eventually
run slow on extremely big cases. At the same time the SA solutions will likely be weaker on extremely
big cases as the algorithm needs to make many good moves, while it does not get more chances to do so
because of the cooling factor. This was unfortunately not experimentally indicated in the experiment as
the order limit was to low. Hence one cannot conclude that it would be the case either.

One thing that would be very interesting to know would be the hit-rate of the SA, that is how of-
ten was the randomly generated move an improvement and how often does it produce a worse state.
The team had somewhat higher hopes for the SA, especially on the smaller test-cases, but it generally
placed right in between AILS and HC. This could be because most moves generated are not improving
the state, that seems reasonable as there are many more ways to ruin a good route than find the specific
move that makes an improvement. If the team had more time this would have been investigated a bit
more as writing a heuristic for what sort of improvement could make the hit-rate significantly better so
that either the result improves, or satisfactory solutions can be reached with a lower cooling factor.

46

It seems that if many large routes had to be calculated to analyse long lasting trends as fast as pos-
sible SA or HC would be way to go as they scale very well. Keep in mind that solving many routing
problems quickly is a non-issue for AILS as long as the individual routes themselves do not consist of
a large amount of orders. It seems only certain specific applications would require us the sacrifice the
somewhat better routes of AILS for practical reasons. In the context of Favn Software AS one could for
instance consider calculating all actual routes with AILS, however having a simulation tool that chooses
a routing algorithm that will run in a more practical amount of time, which depends on the parameters
given by the user. So if it saw many large cases incoming it could switch to HC or SA as they would only
be a little bit off, even in the long run.

5.2 Engineering professional results

5.2.1 Final result

As described in section 4, the team did not develop every feature in the planned project, but focused on
the routing engine while building a shell or MVP for the administrative web application and the needed
back-end functionality. In early development, the team used a lot of time researching ways to optimize
on different Vehicle routing problems and how to get the applicable data needed to develop such an
algorithm. The first sprints were used to plan the problem that needed solving and developing a first
iteration of the route optimization API. The team used quite a lot of time on developing a first iteration
that was not built on top of a routing machine, but instead manually tried to manage an entire road
network data set in order to optimize routes. Because of this, the team wrote a lot of code that ended
up not being used, as this was later replaced with a separate routing machine the team would build on
top of. The team could have saved a lot of time by starting out with this approach. However, the act
of actually willing to move over to a better approach is far better than continuing development on the
potentially more time consuming approach the team was initially going for. By simplifying the problem
and abstracting the map data away from the routing engine, it also follows the loosely coupled pattern
and makes it easy to replace any of the services.

When the team initially had a first version of the routing engine, the focus shifted over to developing
the platform for utilizing the engine. As there was not a lot of time for focusing on the web application,
the team ended up focusing on core features like route visualization and the simulation tool. While
developing these tools, the team developed and improved on the routing engine and adapting on it based
on information from Favn. This way of developing worked well for the development of the routing engine,
but at the cost of not being able to implement all planned features for the web application. After getting
the simulation tool down as planned with the road map and iteration over the road map during devel-
opment, the team decided to continue development on the routing engine. The team and Favn agreed
that the progress so far on the administrative tool was far enough, and iterating over the routing engine
would be preferable both to the thesis and the product.

The team planned adding alternatives to the algorithm, implementing algorithms that does not only
hill climb, but also try to explore several local optima in order to find a better global optima. This made
the final work on the product to implement Simulated annealing and AILS in the routing engine as well
as a tool for researching the implementations and their performance. These implementations gave a lot
of insight on how the normal hill climb compared to more sophisticated hill climbing heuristics with the
teams specific routing problem, as well as improving on the routing engine itself, giving better solutions
faster.

5.2.2 Strengths

As the team has focused a lot on the algorithmic foundation of the product this is one of the strengths
as well. The routes are created quickly and produce similar results to more complex routing algorithms.
The algorithm is also robust and general in the sense that the users can send in different forms of output
and can expect reasonable results. This is best shown in the report generator that takes in many different

47

parameters and simulates how that set of strategies and limitations would pan out over time.

Another good quality the systems has is that the different components are clearly separated, making
it easier to maintain, change components and scale horizontally. This is an example of a loosely cou-
pled architecture. Another key point here it that the route optimization server is stateless, making it
particularly easy to horizontally scale this central component.

5.2.3 Weaknesses

As it has not been the primary focus of the project the front-end is not as fleshed out and functional as
the team had wished for. Some of it was entirely out of the scope of the project, such as user friendly
front-end to create orders, which the team has created the back-end for. An example of something the
team would have added if the project had had more time would be more UI for managing the organization.
More interfaces to manage time intervals and their trucks etc. This would have made the product more
valuable faster as it would be easier to use and more functional, the current method of managing time
intervals is directly in Firebase. There are also some known critical bugs, including the simulation tool
sometimes not generating a result because of timeouts in the cloud function, the results of the simulations
not showing trucks used correctly, and firestore documents becoming too large when the routes contain
too many coordinates.

5.2.4 Testing

As mentioned earlier, the team implemented unit tests for the algorithm, combined it with Github Ac-
tions to practice continuous integration, and had a server be continuously updated to allow for Favn to
inspect the latest stable version. The unit tests worked just as intended; the team was able to quickly
identify if their commits had unintentionally harmed the route optimizer. This sometimes happened as
there were many changes throughout the project regarding what parameters and metadata were given
to the route optimizer. Continuous integration was turned out to be a helpful tool for the developers.
Continuous deployment was also implemented for Favn to give feedback on the system more easily and
stay updated on the latest stable versions. This was used in, for instance, sprint meetings as the team
could in real-time evaluate and discuss the results of the previous sprint.

The team is also aware that there are many other types of tests that could have been implemented;
lets go through the most relevant ones, what they do, and how they could have benefited the project.

Integration testing revolves around confirming that different system components manage to cooperate as
expected with each other. This is relevant to this project as the system depends on multiple different
servers communicating through various APIs. Automating the process of checking that these are func-
tional would quickly give the team confidence that the system works as intended. It would probably
have made the development process more robust and somewhat more effective if bugs regarding inter-
component communication were automatically detected.

End-to-end tests can be a way to make sure that the system in its entirety is behaving as expected
on a macro level. It is usually implemented as simulating a user event and checking to see if the activity
propagated through the entire as expected; this is like a broader version of an integration test. These
tests can be a bit complicated to maintain if the architecture of the system is varying, and the run time
can be a bit slower than other types as well.

Something that would have been particularly relevant to this project, in particular, would be perfor-
mance tests. Those types of tests measure the run time of different parts of the system, usually to ensure
that some upper limit that is specified in the vision document is not broken. For the teams use case, it
could have been used to track how different updates changed the run time of the algorithm to automat-
ically detect changes that probably were not implemented in an efficient way to look over. This would

48

be useful in order to have a history of how fast the calculations have been over time and figure out what
impact certain commits had on the performance. This was not formally implemented as a test. However,
as the development consisted of many requests being sent to check that the resulting solutions came
out as expected, the team got a feel of how each change impacted the run time. Having formalized this
process would definitely serve as useful documentation and aid the development process of the algorithms.

The reason these types of tests were not implemented in spite of the good reasons listed above came
down to multiple reasons. In part, it was because it was not really necessary for a project of this size,
though this argument does not hold when the project is expanded. Another reason is that some of them
were in part manually tested informally, such as when the run time was observed by the developers
frequently. A third reason was that there was a limited amount of time and the team prioritized pure
development over always taking the most cautious path to the goal by having formal tests to make sure
everything was working perfectly at every step of the way. All in all had the team had more time, these
types of tests would have been a great addition to the code base as it could have made the project more
maintainable and safer to develop.

5.2.5 Ethical, social and environmental results

In 2018, Norway created 49% more waste than average among the European OECD countries [16]. More
waste means a bigger need for environmentally friendly handling of the extra waste. The waste flow
project the team has helped with developing aims to streamline the waste collection process in bigger
cities and creating a platform for easy disposal of waste. Based on conversations with waste collection
companies, the traffic for dropping special waste in recycling facilities is very high on weekends. The
collective traffic of people wanting to drop off their waste at the same time creates potential traffic jams.
This could be streamlined with a system for ordering waste collection. The project aims to lower the
threshold for disposing of waste and potentially prevent unnecessary use of gas, which in turn helps the
environment. The area of this project the team has focused on tries to effectively generate well-optimized
routes for waste collection companies, which also aims to save gas usage when collecting orders for waste
collection.

5.3 Administrative results

5.3.1 Work schedule discussion

The team managed to keep the planned work schedule pretty well throughout the project. Each sprint
was marked by a goal, such as finishing a certain part of the system, having finished an MVP, for instance.
The team managed to more or less hit these goals throughout the development and therefore managed
to keep on track with the work schedule. If some small part of the goals for the last sprint were not fully
completed, the team would start the next sprint by finishing up these goals first. As the product evolved,
these goals also needed to change. Some changes were made to the road-map during the development,
but not any significant changes. As mentioned in the result section, the workload was done by the team
steadily increased during the project timeline. This was planned by the team from the start, as the
members had more available time towards the end of the project phase.

5.3.2 Development process discussion

As mentioned, the team utilized a lean and iterative Scrum variant. Two of the team members already
had experience working together at Favn and utilizing Scrum on projects there. In addition to this, all
three team members have worked together on a project before, also using Scrum. For this reason, the
development process was adopted easily by all the team members. As the team members had worked
together multiple times before, they knew each other’s strengths and weaknesses. This meant the team
could fit the development process to what had worked in the previous development projects. This led
the team to opt-out of some aspects of Scrum, such as using a Scrum master. It was also decided upon
between the supervisor and the team members not to use a Gantt diagram in the development, as it was

49

agreed that such a diagram in our case most likely turn out not to be very accurate. Instead, it was
agreed to use a roadmap for setting up the overreaching goals of the project.

In addition to the sprint planning meetings with Favn at the end of each sprint, the team had inter-
mediate status meetings where the members updated each other on what was being worked on, what
needed to be done, and whether someone needed help with anything. These status meetings were not held
on a regular basis but rather when the team deemed it necessary. In retrospect, this worked quite well,
but it would not hurt with more structure. The team spent quite a lot of time working over voice chat
during the project, where the team discussed and worked together on tasks. Because of this, the team
members were updated on what the other members were working on most of the time. For this reason, the
team deemed it not to be necessary to have status meetings all that often, but rather when the need arose.

50

6 Conclusion and further work

6.1 Conclusion

he thesis question was; ”How do different versions of hill climbing compare when adjusted to solve the
capacitated vehicle routing problem with time limits on realistic map data.” The team presented three
different approaches to the problem. The first, HC, tries to quickly approach a local optima and uses
this as the result. The second, SA, randomizes the hill climb somewhat and aims to use more resources
to not get stuck in the local optima, and find better alternative solutions. AILS aims to converge toward
an optimal solution. The results conducted were discussed in the previous chapter and now it is time to
conclude what the data indicates. AILS is the superior algorithm as it consistently finds the best routes.
This is true although for very large cases its run time could be unpractical for some applications. For
these very computationally heavy cases the experiments indicate that both SA and HC will find solutions
that are worse, but only within the margin of a few per cent. For some very large applications a near-
perfect solution all the time might also be a valid sacrifice in order to produce the results quickly. The
conclusion is then that for most cases the experiments indicate that AILS and sacrificing some compute
time to find a better local optima is superior, but for very large applications one might have to resort to
HC and SA, which yield one somewhat worse results, but at a much faster run time.

The vision document of the product described the vision for the entire project. The end product of
the team met some of the requirements found in the vision document, but finished most of the require-
ments the team aimed to complete. The product is currently an MVP application that has the bare
minimum features of the waste administrative tool described in the document. As well as a simulation
tool for waste administrators. The main focus of the team, the route optimization part, put out ac-
ceptable results for routing solutions in short enough execution times, even with large data sets. Since
the route optimizer can output good solutions at a fast enough rate, it can be concluded that the core
functionality of the project performs within practical limitations and is therefore a good starting point
for the project. The administrative platform that utilizes the optimizer, is however currently lacking
compared to the project vision, but is reasonable as this was not the primary focus of the project.

6.2 Further work

Before continuing on additional features, it is trivial to mention that bugs, such as specified in 5.2.3. As
for the product developed for Favn Software AS, a natural next step would be to advance the front-end
and merge the result of the other bachelor thesis, which worked on a mobile application that would be
used to, for instance, generate orders to pick up. The front-end and firebase parts of the system need
an authentication system and thorough security rules. The security rules are rules specified in Firestore,
which is needed for the application to prohibit users from accessing data they are not authenticated for.

The web application still needs an order overview for the waste administrators, a notification feature,
the possibility to create new organizations and users for these, the possibility to add time intervals and
custom configurations for them, and a way to communicate with users.

Authentication for using the route optimization API is also needed. As of now, the API is not lim-
ited in any way, and the deployed optimization API can be accessed and utilized by anyone. This should
be limited only to the cloud functions for the project when in production. The same goes for the OSRM
API. OSRM should only allow requests from the route optimizer. The routing API should be able to
deliver infeasible solutions when the request specifies it as a simulation and report these solutions as
violations instead of returning errors.

In terms of route optimization, many different paths could lead to better results that are possibly worth
exploring; a brief comment shall now be offered to a couple of these paths.

51

Improving the optimizations of HC. The current implementation of HC exhaustively goes through all
the possible heuristics. It seems natural to analyze how often the different heuristics are used and
how good the solution is with and without different heuristics. This could expose that some of them are
superfluous or negligible. This seems like a clear way to speed up the algorithm even more at a small cost.

One could create a sophisticated heuristic chooser for SA. The SA generates a random pair of nodes
and selects a random improvement heuristic to use on those points. It seems feasible to create some
heuristics that either predicts what sort of heuristic should be used or where those improvements should
be made so that the algorithm optimizes with a bit more purpose. It is likely, although not confirmed
as stated in the discussion, that the SA probably has a very low hit rate right now, and guiding where
improvements should be made could make a big difference in how fast decent solutions can be produced.
This sort of heuristics could be based on proximity metrics to find outliers that would have a higher
probability of being changed, or if one cluster is breaking the time constraint, it could be more likely to
be picked for a heuristic.

The AILS implementation is already heavily based on the paper by Vińıcius et al. [5], adding the
path relinking stage described by them yielded good results for them but was too complex to be done
within the limits of this projects. This would probably make the solutions even better, and if the so-
lutions were good enough, one could use fewer iterations to find a good solution making the run time
in practice reduce, although this should be verified thoroughly. Fully implementing their algorithm and
adjusting it for our constraints, which once again are unusual due to both space and weight limit, could
be interesting to test if their results effectively carry over as well. Significantly improved results seem
reasonable as relinking has yielded good results in other papers as well, for example, Ribeiro et al. [17].
That paper goes as far as to say that ”Path-relinking is a major enhancement to heuristic search methods
for solving combinatorial optimization problems.” Simply put, path relinking starts by finding a couple of
decent solutions. Using the defined heuristics, one of these solutions can gradually morph into another.
On this path from one good solution to another, there possibly lies a solution that combines the two
qualities that make the individual solutions good. This sort of structure seems to be common in many
optimization problems. Path relinking has been successfully applied many times, for instance, on the
p-median problem, the Steiner tree problem, the capacitated minimum spanning tree problem according
to Resende et al. [18].

Another interesting approach to the CRVP takes an entirely different approach to anything implemented
in this project, namely evolutionary algorithms. This group of algorithms keeps track of a group of
populations called the population and uses genetic operations to merge different solutions. The goal of
the algorithm is to simulate an evolutionary process where the population adapts to the environment,
which in this case is analogous to the loss function, which is solution distance. Note that these sorts of
solutions could be combined with some of the iterative solutions implemented in this project as ”pure
genetic algorithms are not competitive with the best published results” [19].

52

7 Attachments

• Attachment A - Vision document

• Attachment B - Project handbook

• Attachment C - Design document

• Attachment D - System document

• Attachment E - Hill climbing experiments document

53

References

[1] J. H. R. G. B. Dantzig, “The truck dispatching problem,” 1959. https://pubsonline.informs.

org/doi/abs/10.1287/mnsc.6.1.80.

[2] H. G. Tonci Caric, Vehicle Routing Problem, ch. 1, p. 16. In-Teh, 2008.

[3] K. S. E. A. Daniel Palhazi Cuervo, Peter Goos, “An iterated local search algorithm for the
vehicle routingproblem with backhauls,” 2014. https://www.researchgate.net/publication/

262560532_An_iterated_local_search_algorithm_for_the_vehicle_routing_problem_with_

backhauls.

[4] L. A. M. David S. Johnson, “The traveling salesman problem: A case study in local optimization,”
1995. https://www.cs.ubc.ca/~hutter/previous-earg/EmpAlgReadingGroup/TSP-JohMcg97.

pdf.

[5] M. C. V. N. Vińıcius R. Máximo, “A hybrid adaptive iterated local search with diversification control
to the capacitated vehicle routing problem,” 2020. https://arxiv.org/pdf/2012.11021.pdf.

[6] T. S. H.L. Lourenço, O.C. Martin, Handbook of Metaheuristics, ch. 11, pp. 321–353. Kluwer Aca-
demics, 2003.

[7] F. Busetti, “Simulated annealing overview,” 2001. https://www.researchgate.net/publication/
238690391_Simulated_annealing_overview.

[8] “Rust home page.” https://www.rust-lang.org/ (accessed: 06.05.2021).

[9] “Actix home page.” https://actix.rs (accessed: 06.05.2021).

[10] “Firebase home page.” https://firebase.google.com/ (accessed: 06.05.2021).

[11] “Google cloud home page.” https://cloud.google.com/ (accessed: 06.05.2021).

[12] “React home page.” https://reactjs.org/ (accessed: 06.05.2021).

[13] “Typescript home page.” https://www.typescriptlang.org/ (accessed: 06.05.2021).

[14] “Docker home page.” https://www.docker.com/ (accessed: 06.05.2021).

[15] “Osrm home page.” http://project-osrm.org/ (accessed: 06.05.2021).

[16] “Oecd norway municipal waste.” https://data.oecd.org/waste/municipal-waste.htm/ (accessed:
19.05.2021).

[17] M. G. C. R. Celso C. C. Ribeiro, “Path-relinking intensification methods for stochastic local search
algorithms,” 2010. http://mauricio.resende.info/doc/spr.pdf.

[18] C. C. R. Mauricio G.C.Resende, “Grasp iwth path-relinking: Recent advances and applications,”
2005. http://www2.ic.uff.br/~celso/artigos/sgrasppr.pdf.

[19] O. Bräysy, “Genetic algorithms for the vehicle routing problem with time windows,” 2001. https:

//neo.lcc.uma.es/radi-aeb/WebVRP/data/articles/GA4VRPTW-Sols.pdf.

54

https://pubsonline.informs.org/doi/abs/10.1287/mnsc.6.1.80
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.6.1.80
https://www.researchgate.net/publication/262560532_An_iterated_local_search_algorithm_for_the_vehicle_routing_problem_with_backhauls
https://www.researchgate.net/publication/262560532_An_iterated_local_search_algorithm_for_the_vehicle_routing_problem_with_backhauls
https://www.researchgate.net/publication/262560532_An_iterated_local_search_algorithm_for_the_vehicle_routing_problem_with_backhauls
https://www.cs.ubc.ca/~hutter/previous-earg/EmpAlgReadingGroup/TSP-JohMcg97.pdf
https://www.cs.ubc.ca/~hutter/previous-earg/EmpAlgReadingGroup/TSP-JohMcg97.pdf
https://arxiv.org/pdf/2012.11021.pdf
https://www.researchgate.net/publication/238690391_Simulated_annealing_overview
https://www.researchgate.net/publication/238690391_Simulated_annealing_overview
http://mauricio.resende.info/doc/spr.pdf
http://www2.ic.uff.br/~celso/artigos/sgrasppr.pdf
https://neo.lcc.uma.es/radi-aeb/WebVRP/data/articles/GA4VRPTW-Sols.pdf
https://neo.lcc.uma.es/radi-aeb/WebVRP/data/articles/GA4VRPTW-Sols.pdf

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Tobias Meyer Andersen
Kjerand Evje
Håvard Stavnås Markhus

Experimental comparison of hill
climbing variants on CVRP

Bachelor’s project in Computer Science
Supervisor: Alexander Holt

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	List of Figures
	Introduction
	Background
	Research question
	Document structure
	Nomenclature

	Theory
	Greedy algorithms
	Relevant problems
	Travelling Salesman
	Capacitated Vehicle Routing Problem (CVRP)

	Clustering
	Nearest neighbor clustering
	Randomized proximity clustering

	Optimization
	Local search
	Hill climbing
	Intra-route 2-opt
	Intra-route exchange
	Intra-route or-opt
	Intra-route relocate
	Inter-route relocate
	Inter-route exchange
	Inter-route cross exchange
	Inter-route icross exchange
	Inter-route 2-opt

	Iterated Local Search
	Concentric removal
	Removal by proximity
	Sequence removal
	Insertion by proximity
	Insertion by cost

	Adaptive Iterated Local Search
	Simulated Annealing
	Feasibility

	Method
	Process
	Choice of technologies
	Rust
	Firebase
	Firebase Firestore (NoSQL)
	Cloud Functions for Firebase
	Cloud pub/sub functions

	Google Cloud Platform
	React
	TypeScript
	Google Maps
	Docker
	Open Source Routing Machine (OSRM)

	System architecture
	Web application and Firebase entity system

	Testing, integration and deployment
	Trucks and orders implementation
	Graph compression and representation
	Visualization tool
	Simulation tool
	Hill climbing implementation
	Simulated Annealing implementation
	Adaptive Iterated Local Search implementation
	Summary of the implementation
	Initial clustering
	Perturbation
	Neighborhood search
	Local search heuristic

	Acceptance criterion and adaptivity
	The algorithm

	Run time experiments
	Distribution of roles

	Results
	Scientific results
	Hill climbing results
	Simulated Annealing results
	Adaptive Iterated Local Search results

	Engineering professional results
	Final product overview
	Functional requirements
	Authentication system
	Interactive front-end showing the orders
	Communication from waste company to users app
	Generic route optimization
	Estimating time and fuel use, number of trips required
	Displaying information about space and weight used in trucks
	Possibility to change how many trucks a company has available
	Simulation tool to optimize use

	Non-functinoal requirements

	Administrative results
	Work schedule plan
	The development process

	Discussion
	Scientific results
	Experiment metrics
	Other notes on the experiment
	Hill climbing
	Simulated Annealing
	Adaptive Iterated Local Search
	Comparison

	Engineering professional results
	Final result
	Strengths
	Weaknesses
	Testing
	Ethical, social and environmental results

	Administrative results
	Work schedule discussion
	Development process discussion

	Conclusion and further work
	Conclusion
	Further work

	Attachments
	References

