
Mohammad Al Nayef
Alexander Carlsen
Gaute Wierød Rønning

A visual approach to improving the
communication of task interdependencies in
complex software development projects

Bachelor’s project in Computer Engineering

Supervisor: Donn Morrison

May 2021

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Department of computer science

1

2

Preface

The choice of the thesis was based on the opportunity to learn and use some of the newest

technology in the industry while adapting and refining our own learned knowledge from three

years of studying at IDI. The assignment was interesting and somewhat open, letting us

choose the technologies, methods and research questions to tackle.

Our process was working together, either in person if we could or using communication tools

and version control tools. Throughout the project, the team members helped each other to be

the best engineer possible, filled different roles to cover any weaknesses and tackled a variety

of different hurdles and challenges. By following closely up on our system development

methodology and having a good communication channel with both our supervisor and the

product owner we managed to manufacture a project management tool.

This thesis was carried out in connection with NTNU at the faculty IE under the institution of

IDI. The time frame of this thesis was from the beginning of the spring semester to the end of

May 2021.

We would like to thank our product owner Favn Software AS for their supportive role during

development and to thank NTNU and the provided supervisor in the form of Donn Morrison.

The team greatly owes thanks to Equinor AS and Tryg Forsikring for participating in the

testing phase of the development and for expressing excellent feedback. Lastly, we would

like to thank IDI and the other teachers at IDI for providing a good environment for learning

and guidance through the broad field of software engineering.

Team signatures:

Alexander Carlsen

Mohammad Al Nayef

Gaute Wierød Rønning

Date: 20.05.2021, place: Trondheim

3

Guest
Stamp

Thesis description

The purpose of the project is to investigate and develop a possible solution for improving the

communication of task interdependencies in software projects by the software consultancy

firm Favn Software AS. The new solution needs to be secure, as well as intuitive and easy to

use in order to save resources and time spent on coordination and communication. There are

two main goals for the collaborative tool that is to be made; increasing productivity through

improving communication and reducing the amount of superfluous and irrelevant information

users have to work with.

In the Vision document, we describe the project stakeholders, the product and issue

summaries, the user environment, and both the functional and non-functional properties of

the product. The focus of this bachelor thesis moved away from microservices and towards

task interdependencies during the project, which is also described in the project’s vision.

4

Abstract

Task interdependencies is a core success factor of software development projects and proves

to be one of the key challenges in terms of communication. Aligning developers’ perceived

technical constraints with the actual interdependencies of complex projects can lead to

increased productivity. In the literature, collaborative tools have been proven to improve

communication in development teams across two dimensions: time spent obtaining

information and the relevance and understandability of the information itself. This paper

builds upon this research and investigates how the use of collaborative tools centred around

the visualization of task interdependencies affects communication in complex projects and

compares it with the effect of general collaboration tools.

In order to research this, a specialized collaborative tool was developed as a full-stack web

application. This technical solution was then utilized in the experiment together with an

existing commercial general solution.

Our empirical evaluation shows that the use of specialized collaboration tools in the planning

phase of a project improved communication across both dimensions. Time spent

communicating was halved and the reported degree of understandability was significantly

higher for the experiment participants that used the technical solution developed in this

project, compared to the ones who used the general collaborative tool.

5

Table of content
Preface 3

Thesis description 4

Abstract 5

Table of content 6

1. Introduction and relevance 7
1.1 Acronyms and abbreviations 8

2 Theory 8
2.1 Project management theory 9

2.1.1 Task interdependencies 9
2.1.2 Modularization 9
2.1.3 Socio-technical congruence 11
2.1.4 Coordination strategies 12
2.1.5 Agile Development 12

2.2 Technical theories 14
2.2.1 NoSQL Databases and Relational databases 14
2.2.2 OAuth2 16
2.2.3 Breadth-first search algorithm in tree data structure 18
2.2.4 Microservices 19

3. Choice of technologies and methods 20
3.1 Methodology of the technical solution 20

3.1.1 Choice of technologies 20
3.1.1 a Database System 20
3.1.1 b Authorization 21
3.1.1 c Development Methodology 21

3.1.2 Key user interaction design decisions 22
3.2 Research Method 24

4. Results 26
4.1 Scientific results 26
4.2 Product and system design 30
4.3 Engineering results 32
4.4 Administrative results 33

4.4.1 Scrum Artefacts 33
4.4.2 Project Progress 34
4.4.3 Roles and division of labour 35

5. Discussion 36
5.1 Scientific discussion 36

5.1.1 Limitations 39
5.2 Engineering discussion 40

5.2.1 Limitations 42
5.3 Administrative discussion 42

6

5.4 Ethical discussion 44
5.5 Member reflections 45

6. Conclusion and further work 45
6.1 Future work 46

7. References 47

8. Attachments 50

7

1. Introduction and relevance
The background of this project is Favn Software’s demand for improving communication

within development projects. Favn is a software consultancy firm established in 2020 and that

mainly works remotely. This requires much more frequent use of collaboration tools, which is

where they encountered a major challenge. Project leaders in Favn found it challenging to

convey technical constraints through the tools. Additionally, due to the frequent use of such

tools, they also encountered problems with superfluous information. A lot of the information

was irrelevant for the user at the given point in time, as the tasks were not ready to be worked

on due to technical constraints.

Communication affects a number of critical success factors in software development projects,

such as the exchange of necessary information needed for effective collaboration and

autonomous decision making. Improving communication leads to higher productivity, which

contributes to increasing the profitability of Favn’s consultancy business. Additionally,

expanding this knowledge field can have long term effects such as lowering the average cost

of software development in society by enabling a slightly more efficient utilization and

distribution of resources.

The goal of this project is to investigate which features in collaboration tools contribute to

improved communication of task interdependencies and develop a technical solution that

mitigates the aforementioned problems, in order to increase overall productivity in software

development projects. Cataldo and colleagues (2008) and Anders & Zmud (2015) researched

task interdependencies and modularization, however, this research did not revolve around the

use of collaborative tools with the focus on task interdependencies, as this is where the

research of this project diverges from theirs. With this goal in mind, the team is going to

answer these questions by developing a technical solution and thereafter performing an

experiment with the solution and a control group consisting of a combination of computer

engineering students and developers in Favn. Based on the aforementioned needs and

challenges encountered by Favn, the following research question for this project is formed:

“How can collaborative tools centred around visualization of task

interdependence contribute to improved communication in complex

software development projects?”

To properly address the research question this report firstly defines relevant theory, secondly

describe the technologies used to find a fitting solution for the demands of Favn, thirdly

8

defining the produced results, fourth discussing the results and its limitations, and lastly

concluding further work and the findings of the experiment.

1.1 Acronyms and abbreviations

● RDBMS - Relational Database Management System
● OAuth - Open-standard Authorization protocol or framework (Richer & Sanso, 2017,

p. 236)
● Specialized collaboration tools - collaborative tools that are centred around or contain

features for specifically communicating task interdependence (Cataldo et al, 2008).
● Unspecialized collaboration tools - general collaboration tools that do not contain

features for specifically communicating task interdependence Catalfo et al, 2008).
● API - Application Programming Interface.
● SQL - Structured Query Language (Mason, 2015)
● NoSQL - Query Languages that are not Structured like SQL. (Mason, 2015)
● CAP - Consistent, Availability, Partition tolerance, an early theorem to define data

consistency in NoSQL databases. (Mason, 2015)
● BASE - Basically Available, Soft state and Eventually consistency, an evolved version

of the CAP theorem. (Mason, 2015)
● JSON - JavaScript Object Notation, a lightweight data format. (Mason, 2015)

9

2. Theory

The following chapter describes theories and concepts relevant to the nature of the

communication of interdependent tasks in software development. It delves firstly into

software project management in general and then further into the use of modularization and

dependencies as a framework for development management. It also provides an overview of

the theories behind the technologies used in our technical solution.

2.1 Project management theory

2.1.1 Task interdependencies

Task interdependencies is the measure of the effect of modifications on one module on the

scope of modifications needed on other modules to accommodate the change, as well as the

extent to which a task requires other project- or organizational resources to communicate and

share information (Andres & Zmud, 2015). According to Andres and Zmud (2015), task

interdependence is one of the three core variables that affect the success of software

development projects, the others being coordination strategies, which this paper will delve

into later, and goal conflicts, which are not relevant for our research.

In projects with a low degree of task interdependence, each project member's contribution is

additive. Complex projects with higher degrees of task interdependence require team

members to integrate their work with others, and thus heightens the need for coordination.

Straus and McGarth (1994) observed that these projects are characterized by frequent

information exchanges to clarify task assignments, project progress, and goals. This also

leads to diminished productivity as a result of more time spent reconciling differences in

goals and perceived task requirements. Such software projects typically have reciprocal

workflows, where individual team members’ progress can be halted when they are dependent

on output from other team members to complete their own tasks (Andres & Zmud, 2015).

In order to mitigate the aforementioned problems with software projects characterized by a

high degree of task interdependencies, two solutions are proposed: improve communication

and reduce task interdependence (Van de Ven et al, 1976; Andres & Zmud, 2015).

Communication with regard to software projects can be improved through the use of

coordination strategies and collaborative tools across two dimensions: the relevance of

information and time spent obtaining and sharing the relevant information. Task

10

interdependence can be reduced by the implementation of modularization together with the

use of the analytical framework “socio-technical congruence” (Cataldo et al, 2008).

2.1.2 Modularization

Modularization is the decoupling of interconnected compartments in a complex system into

modules that have more internal than external connections (Kharrazi, 2019, p.414-418). The

utilization of modularization in task structures demands an overall modular system design. In

regards to development projects, this means reducing complex systems into smaller

components that can only be assigned to one team. This makes complexity in large projects

more manageable as well as compartmentalizes risk (Baldwin & Clark, 2000). In addition, a

modular task structure enables development teams to work independently and in parallel,

which reduces the need for communication between work teams (Parna, 1972).

A common problem with the practical utilization of modularization is that intergroup

communication and information sharing sometimes is reduced too much. This leads to

problems being discovered later and proving more resource-intensive to solve (Grinter et al,

1999). Its implementation also leads to information hiding, which in some cases can be

detrimental to the project’s success, both in collocated and distributed development teams. In

order to make modularization work, it is paramount that less communication and information

sharing are replaced with sufficient coordination (Cataldo et al, 2008).

Another problem with the common use of modularization in most development projects is

that it takes only a fraction of technical dependencies into account, typically limited to

syntactic relationships. These relationships are predicted by observing which modules a given

module shares data points with or sends or receives call functions to and from. Syntactic

relationships in software can be used to make accurate predictions about limitations imposed

by a module on directly interconnected modules (Cataldo et al, 2008). Such relationships

prove however an inaccurate basis for predicting task interdependencies resulting of- or

changing based on systemic change, which can be categorized into the evolution of product

requirements, integration of interfaces made by geographically distributed teams, and

dynamic dependencies that are results of continuous design decisions (Cataldo et al, 2007;

Kraut & Streeter, 1995; Simon 1962). Syntactic relationships also fail to predict constraints

resulting from social factors such as individuals varying competencies and behaviours, as

well as organizational structures (Burton & Obel, 1998).

11

According to Gall and colleagues (1998), logical dependencies provide more accurate

predictions of constraints in task structures. They propose that task interdependencies can be

uncovered by tracking which files require modifications if a given source-code file is

changed. “... when a modification request requires changes to more than one file, it can be

assumed that decisions about the change to one file in a modification request depend in some

way on the decisions made about changes to the other files involved in implementing the

modification request” (Cataldo et al, 2008).

Task interdependencies based on logical dependencies, such as semantic dependencies where

the change in behaviour of one module modifies the behaviour of other modules, prove

challenging to communicate and require more coordination than constraints predicted based

on syntactic relationships. Cataldo and colleagues (2008) argue that collaborative tools and

management techniques play key roles in meeting modular system design’s demands for

coordination efforts, by reducing the gap between perceived and actual task

interdependencies.

2.1.3 Socio-technical congruence

The congruence framework is an analytical extension of traditional coordination concepts

that are used to explore the discrepancies between the project’s actual task interdependencies

and the perceived ones (Cataldo et al, 2008). The framework is based on the categorization of

software development into two fundamental dimensions: the technical- and the social

elements. The technical element consists of the product, the processes, the tasks, and the

technologies utilized in the development. The social element consists of the organization and

its organizational structure, as well as the individuals and their attitudes and behaviours

(Cataldo et al, 2008).

Detecting a project’s gaps between perceived and actual dependencies, and then adequately

adjusting the project’s coordination pattern can have major effects on productivity in a project

(Simon, 1962). Empirical evidence from Cataldo and colleagues (2008) show that when

coordination patterns in projects are congruent with the coordination needs the resolution

time of modification requests is reduced by 32%. It is evident that the socio-technical

congruence framework proves useful in detecting how dissatisfactory coordination can

impact software development projects (Cataldo et al, 2008).

The greatest limitation of the socio-technical congruence framework is its dependency on

archival data, meaning it is not possible to utilize this framework in the early stages of

12

development projects (Cataldo et al, 2008). The use of standardized design and modelling

languages in the earlier project phases can mitigate this flaw, especially graphical

representation of the overarching system design (Clements et al, 2002). The combination of

these strategies offsets the common problems related to modularization and additionally

contributes to aligning developers’ coordination patterns with the project’s respective

coordination needs (Cataldo et al, 2008).

2.1.4 Coordination strategies

Coordination refers to connecting individuals or different organizational parts together to

accomplish a set of shared goals (Van de Ven et al, 1976). A key feature of a successful

coordination strategy is that it facilitates the exchange of necessary information needed for

effective collaboration and autonomous decision making. Its control mechanisms must also

ensure that communication is executed in an efficient manner.

Coordination strategies are characterized by three dimensions: “formality (vertical versus

horizontal communication), cooperativeness (extent of shared decision-making), and

centralization (locus of decisional autonomy)” (Andres & Zmud, 2015). Based on these

dimensions, coordination strategies can be divided into two main types: organic strategies

that are informal, cooperative, and decentralized, and mechanistic strategies that are formal,

controlling, and centralized.

As found in chapter 2.1.1, the common problems associated with projects with a high degree

of task interdependencies can be partly solved by improved communication. In regard to

coordination strategies, informal horizontal communication channels promote a more

frequent exchange of information (Van de Ven et al, 1976). Additionally, transferring

decision-making authority to organizational units directly responsible for and working closely

with development problems has been shown to increase task execution efficiency as well as

reducing decision-making time (Andres & Zmud, 2015). This points towards organic

coordination strategies being a possible solution for improving communication.

One of the challenges with organic coordination is according to Andres and Zmud (2015) that

its use under conditions of low task interdependence can result in a more costly development

process due to the decision-making structure being overloaded with “superfluous information

and unnecessary interactions”. The authors observe that mechanistic coordination proves to

be more efficient in such projects.

13

2.1.5 Agile Development

Agile development is defined as a set of software development methods that are iterative and

evolutionary (Williams, 2005). Some development methods that are based on the principles

of the Agile manifesto are SCRUM, eXtreme Programming (XP), and lean programming

(Dingsøyr, 2008). Derived from the principles of the Agile Manifesto, all methods of this

subset of software development methods seek to address the core principles of the manifesto.

For further defining the goals of the methods mentioned above, we need to define the core

principles of the manifesto. Firstly, the manifesto describes collaborative development, where

the individuals and interactions are prioritized over the process. Secondly, there is a shift

towards minimizing unnecessary work, primarily constructing working software in

preference of insignificant documentation. Thirdly, there is a reprioritization for including the

other stakeholders early and throughout the project's life cycle. Lastly, the acceptance of

unpredictability in any software development project sets the precedent for prioritizing

adaptability rather than strict predetermined plans. (Digsøyr, 2008).

The third step of the Agile manifesto ensures good developer to product owner

communication and gives the project’s end results a higher success rate (Cataldo et al, 2008).

Another upside to this third step is that the iterative process forces refinement of the

requirements and needs of the product owner by demoing and testing the product at the end

of every iteration.

“The customer adaptively specifies his or her requirements for the next release based on

observation of the evolving product, rather than speculation at the start of the project. There is

quantitative evidence that frequent deadlines reduce the variance of a software process and,

thus, may increase its predictability and efficiency” (Williams, 2005, p. 210).

Green and colleagues (2010, Page 322) stated in regard to projects not utilizing an Agile

development methodology that: “According to research done by the Standish Group Inc. in

2009; “44% of all projects were challenged (late and over budget), and/or with less than the

required features and functions and 24% failed which are cancelled prior to completion or

delivered and never used” This indicates that there is a connection between the use of Agile

development methods and the success of software projects.

Agile development methods consist of four distinct phases. Phase I is defined as the planning

phase, including stating product requirements, user stories, wireframes design, and system

architecture. Phase II is centred around analysis and prioritization of the product backlogs and

14

other Agile artefacts based on the chosen Agile Development Methodology. Phase III is an

iterative and continual process of development and design. Lastly, Phase IV describes the

release point, where the product is repeatedly tested, as well as being comprehensively

documented. Green and colleagues (2010) made in their empirical research a number of

observations in regard to Agile development methods. In Phase I and II, rich communication

is needed to establish the best possible groundwork for the project. Proper communication of

the project’s requirements has been shown to increase its rate of success (Andres & Zmud,

2015; Green et al, 2010; Cataldo, 2007). Continuous product demonstrations and reviews at

the end of each iterative development cycle are a key part of securing high-quality

information flow within a project (Green et al, 2010). The quality of development projects are

directly linked to the use of different collaborating and management tools, where a

combination of synchronous and asynchronous methods results in the optimal utilization of

Agile development methods (Cataldo et al, 2008; Green et al, 2010)

2.2 Technical theories

2.2.1 NoSQL Databases and Relational databases

NoSQL is defined as all alternatives to the conventional Traditional Relational Database

Management System (RDBMS). RDBMS is based on the ACID (Atomicity, Consistency,

Isolation, Durability) theorem and uses this theorem to secure data consistency and high data

integrity by using a strict table structure, where the data is normalized. These types of

systems have existed and have been the industry standard for decades. However, relational

databases face serious challenges when met with the current market’s growing demand for

solutions capable of handling the huge amounts of data, often called Big Data, associated

with large scale data collection, handling and analytics. In order to designate data as Big

Data, it must be in accordance with one or more of the three core criteria: large volumes of

data (more than a single standard computer can handle), high velocity (high frequency of data

read/writes), and high degree complexity (unstructured data like text documents, video etc.).

NoSQL databases are both able to support data with the characteristics of Big Data and

provide faster data access and scalability than RDBMS databases (Mason, 2015).

As a result of a multitude of factors, there is currently a major transition in the technology

industry from RDBMS to NoSQL databases. The primary reason is that systems based on the

ACID theorem are complex and strict, and are not necessary for a wide range of applications.

15

A major reason for this transition is the growth of data volumes, velocity, and complexity.

Velocity, cost, scalability, and ease of development suffer when the feature set has a high

degree of complexity and has high volume or velocity. The throughput of a NoSQL database

is significantly higher compared to a RDBMS, enabling the adaptation and handling of data

in a more efficient manner. Thirdly, relational databases are based on the core philosophy of

“One size fits all”. Lastly, the vast majority of RDBMS has expensive and labour-intensive

object-relational mapping to create the system, whereas NoSQL databases have no need for

this kind of mapping (Strauch, 2011).

A benefit of NoSQL databases is that they are more cost-effective than traditional relational

databases. For instance, in a comparison between a RDBMS and a NoSQL database solution

by Mason (2015), he observes that traditional relational databases cost on average $30.000+

per terabyte, whereas an average NoSQL database has a cost of $1000 per terabyte. The cost

savings and performance gains of NoSQL databases are a result of a non-strict approach to

data consistency, the use of inexpensive commodity servers, and the adoption of the CAP

(Consistency, Availability and Partition tolerance) theorem, which later evolved into the

BASE theorem. The BASE (Basically Available, Soft state, Eventual consistency) theorem

states that a NoSQL system will over time converge on consistent data, while all data

operations are streamlined. (Mason, 2015)

Utilizing NoSQL databases in software development projects has some fundamental

challenges. Since the BASE theorem applies to NoSQL systems, a lack of data integrity can

occur. This type of data integrity problem can be defined as data with a non-strict structure.

To prevent this from being a problem within server-database systems, programmers have to

take measures to write complex query code that alters the data to better fit the ACID theorem

which resolves this integrity problem (Mason, 2015).

The database structure must be defined and written in advance, which can be a burden if the

existing data is not pre-structured. NoSQL-based systems on the other hand have dynamic

schemas that facilitate changes without completely rewriting and rebuilding the system

structure. When the system encounters new types of data, the database is automatically

updated, saving time in the constructing phase of the database system. Scaling in NoSQL

differs from RDBMS systems which are scaled vertically. Therefore, relational database

systems require more processing power (RAM) or additional CPUs to run existing servers. In

contrast, NoSQL can be scaled both vertically and horizontally, enabling different parts of the

16

database to be scaled independently, meaning the workload is balanced over multiple CPUs,

making the NoSQL system more efficient overall. (Mason, 2015).

Document-oriented databases are a type of NoSQL where the data is stored in documents. In

a document-oriented database, the data is denormalized, split into collections of different

document structures, with no strict structure to each document type. This creates a

hierarchical system of collections and documents (Mason, 2015).

Example of a NoSQL document shown below:

Figure 1 An example of a NoSQL document, defined as type BOOK (Mason, 2015, p.
262).

2.2.2 OAuth2

The OAuth 2.0 specification defines a delegation protocol for conveying authorization

decisions across a network of web-enabled applications and APIs. It is important to note that

OAuth2 is not an authentication protocol. This is usually misunderstood among developers

because OAuth 2.0 is commonly used inside of authentication protocols, and the process

often embeds several authentication events inside of the process. (Richer & Sanso, 2017, p.

236)

To clarify why OAuth 2.0 is not an authentication protocol, we will define what

authentication is. Authentication is what tells an application who the current user is and

whether they are currently using the application. This is often used in security architecture to

prove that the user is who they claim to be. However, OAuth 2.0 is not a technology for

validating user claims. OAuth will ask for a token, and if authorized, will get that token

17

which in turn will be used to access some API. OAuth does not provide any data of who

authorized the application or whether there was a user there at all. (Richer & Sanso, 2017, p.

237)

Figure: 2: Components of an OAuth-based authentication and identity protocol (Richer &
Sanso, 2017, p. 241)

As shown in figure 2, the identity provider is contacting the client application directly after

getting a request from the end-user to do so. The user can decide which credentials the

application can get access to, and none of the user’s protected credentials is communicated to

the client application through the OAuth 2.0 protocol. This is the first benefit of using OAuth

2.0. Furthermore, the user and the client authenticates to one party, and neither needs to

impersonate the other (Richer & Sanso, 2017, p. 242).

There are a lot of responsibilities that have to be thought of by developers when utilizing the

OAuth 2.0 protocol. Some of the pitfalls of using OAuth 2.0 according to Richer and Sanso

(2017, p. 242-246) are:

● Using access tokens as proof of authentication: some developers rely on the idea that

when the system gets an access token, the user is authenticated, which is not true. The

token itself does not ensure anything about the authentication event, because the token

could have been issued from a long-running session or be automatically authorized for

18

some non-personal scope. To overcome this pitfall some protocols such as OpenID

provide a secondary token alongside the access token that communicates the

authentication information directly to the client.

● Access to a protected API as proof of authentication: Having a valid access token is

not enough to prove that a user is authenticated. This is because some client

applications use refresh tokens which may create access tokens without the user being

present. The access token itself will persist long after the user is no longer present.

This problem can be countered by only checking for user information when the token

is fresh.

● Injection of access tokens: This will mainly happen when the client uses the implicit

flow, in which the token is passed directly to the client as a parameter in the URL

hash. Attackers can pass a token to the client system as if it was requested by that

client. This can be mitigated by using the authorization code flow instead of the

implicit flow. Therefore this means that the client will only accept tokens from the

authorized server’s token endpoint.

● Lack of audience restriction: This problem occurs when servers do not provide any

mechanism of audience restriction for the returned information. The client can get a

token that is not meant to be sent to that client, and if the client uses that access token

(which may be valid), that client will get useful information that is not meant to

him/her.

● Different protocols for every potential identity provider: This challenges the

applications which use OAuth 2.0 because these applications need to have several

endpoints for every identity provider. Examples of the difference between providers

are having the user ID in different attributes in the token for example one provider

will return the user-id attribute and another will return sub-attribute. This problem

can be mitigated by providers using a standard authentication protocol built on top of

the OAuth standard.

2.2.3 Breadth-first search algorithm in tree data structure

A tree is a data structure that helps visualize the connections between linked nodes, which

can represent any data or objects. When the tree contains a huge amount of these nodes

connected with each other, an efficient search algorithm is needed to save time and capacity

(Akanmu, 2010).

19

Breadth-first search or BFS is an algorithm used to graph data or to search through trees. The

algorithm starts at the root node and explores all the neighbouring nodes, at the same time it

marks the explored nodes and places them in a queue. Then for each of those nearest nodes, it

explores their unexplored neighbours, and so on, until it finds the goal.

The algorithm uses the First-In-First-Out model which means the first node added to the

queue will be deleted first (Akanmu, 2010).

2.2.4 Microservices

Microservices are defined as software utilizing containers, a way of virtualizing and

separating applications or parts of systems in the cloud. Microservices evolved from

Service-Oriented Architecture, which means software that emphasizes being self-manageable

and lightweight (Pahl, 2016).

A singular microservice is an independent, cohesive, and isolated process, communicating

with other similar processes via messages. An application built, deployed, and distributed

with each of its modules being a microservice is called a microservice architecture. The

antonym for an application not using a microservice-based architectural pattern is defined as

a monolithic architecture, where no modules within the application are independently

executable and all modules share the same hardware resources (Giallorenzo, 2017).

Monolithic applications struggle to meet the increased demand in the market for systems of

high velocity, that are easily maintainable, and have adaptive hardware scaling. Monoliths

cause a technology lock-in, as the framework, dependencies, and libraries are hard to adapt

and change. This is because the monolith and the modules within are strictly dependent on

the parameters set by previous developers. Deployment of these apps is also sub-optimal,

because of the non-adaptive deployment environment that causes conflicting requirements of

constituent model resources. This non-adaptiveness is comparable to the RDBMS mentioned

in chapter 2.2.1 NoSQL Databases in regard to the design philosophy that can be summarized

as “one size fits all”. To deploy a monolithic application, the developer must choose a

non-adaptive deployment environment that best fits the system requirements. This is

dissimilar to Microservices, where the environment is freely configurable and can be adapted

to optimally deploy the application. (Giallorenzo, 2017).

Microservices are an option to cope with the complications described above. To combat the

problems with technology lock-in and technical dependencies, deployment through

20

microservices lets the developer gradually push new versions of the system to the production

version of the application. The new system versions can co-exist with the old one, and can be

gradually modified to communicate properly with older versions if needed (Giallorenzo,

2017).

The ability to gradually deploy changes means continuous integration works well with

microservices, as it eases software maintenance. The only constraint on technical

dependencies is the functionality behind communication between services. The different

modules in microservice applications can be altered at any time, without directly influencing

other modules. In other words, the different parts of the system can be modified without

requiring rebooting or redeploying the whole application. The use of microservices

drastically increases the scalability of systems, as the developer can deploy as many instances

of services with their own set load via a workload manager, which in turn implies no

duplication of the components pre-existing in the application. Lastly, since microservices are

independent and isolated modules a developer can test and investigate the functionality on

different modules without affecting others, limiting the scope of a bug occurring.

(Giallorenzo, 2017).

21

3. Choice of technologies and methods

3.1 Methodology of the technical solution

3.1.1 Choice of technologies

3.1.1 a Database System

A NoSQL database was chosen for the project, despite the fact that the use of Relational

Database Management Systems is common among application developers. This is because

RDBMS has limited scalability and flexibility, as has been explained in chapter 2.2.1.

MongoDB was selected as the NoSQL database system. MongoDB uses clusters for hosting

the service, which results in low operational costs on their platform. As shown in figure 1,

MongoDB uses documents filled with JSON-like information. Some features of Mongo

include the use of bson filters to accurately filter data in the server API, indexing on fields,

load balancing “sharding” to balance the workload of the system in an efficient manner, and

ad-hoc queries that can return specific fields of documents within a given collection.

Designing the domain model knowing the database system would adapt to any new data

changes, made the design process lean and effective. Queries made from our database to the

database server were of high velocity, benefitting the entire system with quick data fetching.

As mentioned by Mason (2015), the cost of operating a RDBMS per terabyte is on average

$30,000, compared to the $1000 per terabyte cost of the NoSQL systems. Since this system is

user-based with no current limit to the maximum number of users and Favn has plans to

potentially sell this collaborative tool as a service in the future, keeping the operating costs

low increases the potential revenue. Mason (2015) also states that scaling of a NoSQL system

can be done both horizontally and vertically, providing the product owner with an adaptive

system that can be scaled based on the users’ and operators' needs.

One noticeable weakness of NoSQL database systems results from its characteristic complex

data resolvers and lack of data integrity within the server structure. Writing the data resolvers

is a labour-intensive process, requiring more use of development resources when creating the

server API. If not addressed properly the lack of data integrity can cause inconsistencies in

data returns to the client or even data corruptions and overwrites.

22

3.1.1 b Authorization

In the first version of our project vision, we decided to create an authorization system based

on email and password and create a user dashboard, but after the second meeting with the

stakeholders at (18.02.2021), we agreed to create a login system based on OAuth 2.0. This

decision was taken because the stakeholders wanted to focus on the actual functionality of the

system and start testing these functionalities as soon as possible. Furthermore, OAuth

provides the system with a secure authorization technology as mentioned in 2.2.2 OAuth, and

the system does not need to save any passwords. The only personal data saved in the database

are the user’s first, last name, email, and Google ID.

3.1.1 c Development Methodology

Based on the statements of Green and colleagues (2010), Agile Software Development

methodology is a key part of securing rich information within the project, improving the

overall quality of development, and increasing the project's success rate. Therefore, in

addition to the team’s former experience, the Agile development method SCRUM was

chosen for the project.

SCRUM is an iterative Agile development methodology that divides the project's timeline

into work periods called sprints. The SCRUM team meets with the product owner and

discusses product functionality. This information evolves into the product backlog, an

overview of all the requirements for the planned system and their importance. Each sprint the

team selects items from the backlog, then adds estimated hours to completion on each item,

together with a burndown chart for the items combined. At the end of every sprint, there is a

demo with the product owner, a sprint review, and planning for the next sprint.

SCRUM has different predefined roles, where the core team is made up of the developers and

a SCRUM master. The SCRUM master is responsible for the flow of information between the

team and product owner, in addition to distributing labour between the members of the main

team. Within the team, the developers are the ones carrying out the work. The product owner,

in this case Favn, is the entity defining the project goals and vision, communicating their

needs and demands to the SCRUM team, as well as giving feedback at the end of each sprint

on the sprint reviews.

SCRUM has the added benefit of creating rich process documentation in the form of

artefacts. The product backlog and sprint backlogs are examples of these artefacts. A product

backlog is a list of items, features, or other system structure changes, containing the main

23

labour items for the team to work on. Each sprint will have its own distinct backlog called a

sprint backlog, where items are obtained from the product backlog and create a basis for the

planned work for each sprint.

3.1.2 Key user interaction design decisions
Our technical solution is based upon three key user-interaction design decisions:

modularization, visualization of task interdependencies through interactive flowcharts, and

information filtering. All three key decisions were based upon Favn Software’s primary

requirement: increasing productivity in software development projects by improving

communication.

The main framework used in the interactive structure of our technical solution is based upon

is Modularization. It is characterized by a reductionist approach to complex projects

structuring data and is thus a quite good fit for implementation into digital collaboration

tools. Modularization of software development projects reduces risk and complexity, as well

as increases productivity by lowering demand for communication (Cataldo et al, 2008).

Additionally, the compartmentalization of tasks helps reduce the project's overall degree of

task interdependencies (Andres & Zmud, 2015). As described in chapter 2.1.1 Task

interdependencies, lower degrees of task interdependence is linked to lower coordination and

communication needs(Straus & McGarth, 1994; Andres & Zmud, 2015).

As explained in chapter 2.1.2 and 2.1.3, there are certain challenges connected to the use of

modularization that can be solved by the use of the socio-technical congruence framework

proposed by Cataldo and colleagues (2008). Based on this insight, the implementation of

modularization in the technical solution is designed to enable continuous modifications of the

task interdependencies as new technical constraints are discovered during development.

The visualization of task interdependencies is a key feature of the technical solution.

Coordination is a critical success factor in software projects, and a substantial portion of a

project’s demand for coordination is driven by its inherent technical dependencies (Andres &

Zmud, 2015). According to Cataldo and colleagues (2008), when perceived task

interdependencies are aligned with the actual technical constraints of the projects, resolution

time for modification requests are drastically reduced. They also point to the use of

coordination tools as critical to properly communicating task interdependencies. Based on

this, we decided to illustrate dependencies by structuring tasks into a flowchart. This solution

24

communicates interdependencies in an intuitive way while it clearly separates the description

of a task's constraints from the information of the task itself.

The last key element of our technical solution is the filtering of tasks based on their relevance

for the user and the simplification of key information. Andres and Zmud (2015) point to the

possibility of superfluous information decreasing a project’s productivity. They state that it

can overload the decision-making process and disrupt already ongoing and effective tasks,

leading to wasted time and effort. Based on these insights, several filtering views were

designed, where for instance information regarding certain projects and phases are gathered

in one view while a user's assigned tasks that are currently ready to be worked on across the

whole workspace are collected in another. Simple, yet informative metrics projecting

overviews of the progress and status of projects and phases were also calculated based on

available data and visualized with graphs.

3.2 Research Method
We conducted an experiment with the goal of investigating whether visualization of task

interdependencies in collaboration tools contribute to improved communication in order to

answer the research question;

“Can collaborative tools centred around visualization of task interdependence contribute to

improved communication in complex software development projects that utilize

modularization?”,

Based on Andres and Zmud’s (2015) insights on how communication in projects with a high

degree of task interdependence can be improved, the experiment will investigate whether the

use of collaboration tools contribute to:

A: Developers spending less time obtaining relevant information in regard to task

interdependencies.

B: Information of higher relevance and accuracy being shared.

The experiment is based on an artificial software development project with the goal of

developing a simple e-commerce website consisting of a set number of modularized

predefined tasks. A total number of eighteen people participated in the experiment, half with

experience as software developers working in Favn and half being computer engineering

students.

The participants were divided into groups of three and assigned one of two roles. Each group

consisted of one “project leader” that was randomly selected. The rest of the group were

25

assigned to be “project members”. The “project leader” role was centred around sharing

information, whilst the “project member” roles were focused on obtaining and interpreting

information. The only communication channels the participants were to use was one

randomly selected collaboration tool out of a selection of two. One offering visualization of

dependencies, the other containing no functionality directed towards communicating

dependencies.

Whilst it might seem preferable to compare the performance of the same groups using both

collaborative tools, this would result in the participants being tasked with obtaining

information about the same project twice. This familiarity would skew the results in favour of

the tool that was used the second time. It was contemplated that by randomly selecting which

tools were used first, we could minimize the uncertainty caused by familiarity. However, it

was concluded that the uncertainty posed by familiarity will be constant regardless of sample

size, whilst the uncertainty from comparing samples consisting of different individuals can be

reduced in the future by repeating this experiment and increasing the number of participants.

The decision of limiting the study to the comparison of collaboration tools centred around

visualization of task interdependencies, we will call these specialized collaboration tools, and

general collaboration tools lacking this focus, unspecialized collaboration tools, was based on

the fact that several studies have proved the use of both specialized and unspecialized

collaboration tools in software development projects result in improved productivity, lower

defect rates, and richer communication (Cataldo et al, 2008; Andres & Zmud, 2015; Clements

et al, 2002; Giallorenzo, 2017). This provides a strong indication that collaborative tools

centred around visualization of task interdependence contribute to improved communication

when compared to the use of no collaboration tools. However, these studies do not investigate

the effect of the use of specialized tools compared to unspecialized tools.

Collaboration tool A was the technical solution we developed as part of this bachelor project.

It is a specialized tool that visualizes task interdependencies through the use of flowcharts,

where each node within the chart is a task and its edges represent dependencies between itself

and other tasks. The collaboration tool allows for a limited degree of ambiguity since what

the edges signify can be interpreted in different ways. A dependency can be interpreted as the

first task demanding completion before work can start on the second task, or merely that

some design decisions in the second task should be based upon design decisions in the first

task.

26

Collaboration tool B used in the experiment was Todoist, an unspecialized collaboration tool.

The tool consists only of two elements: tasks and sections, a method for grouping and

categorizing several tasks together. Since there are no predefined methods for communicating

task interdependencies with collaboration tool B, the project leader has a high degree of

autonomy in deciding how interdependencies will be communicated through the tool.

The participants designated as “project leaders” received nine tasks constituting a workflow

with implied technical constraints based on their description. They were then told to interpret

the tasks’ interdependencies and plan a workflow based on their perceived technical

constraints. Thereafter, they were tasked with communicating these perceived task

interdependencies solely through one of the predetermined collaboration tools.

The participants designated as “project members” were tasked with interpreting the

interdependencies the “project leaders” had attempted to communicate. They were explained

the basics of the predetermined collaboration tool their group of three were using and then

presented the task interdependencies as the “project leader” had communicated them. They

were then told to obtain three pieces of information. Firstly, to assess which tasks were ready

to be done right now. Secondly, to determine which tasks were dependent on a given task.

Lastly, to decide which tasks could be done in parallel with a given task, in other words,

which tasks the given task had no interdependencies with.

The participants were measured depending on their respective roles. The participants

designated as “project leaders” will post factum self-assess the clarity of the task

interdependencies they have communicated through their selected collaboration tool on a

scale from 1 (low degree of intelligibility in the shared information) to 10 (high degree of

intelligibility in the shared information).

The participants designated as “project members” will be measured in two ways: during the

experiment and after the fact. When the participants are tasked with obtaining pieces of

information, the time between when they are delegated observation and information finding

tasks and when they provide confident answers are recorded. Additionally, they are asked to

self-assess the degree of their confidence in their interpretation of the communicated task

interdependencies on a scale from 1 (low degree of confidence) to 10 (high degree of

confidence).

27

4. Results

4.1 Scientific results

In order to evaluate the connection between the use of specialized collaboration tools and the

time developers spent obtaining information, the time elapsed between the participants

designated as “project members” were told to obtain certain pieces of information and they

reached a confident conclusion was measured. They were told to obtain the following pieces

of information that the participant in their group designated as “project lead” had attempted to

communicate through the use of the randomly selected collaboration tool:

T1: Which tasks that are ready to be done right now, in other words; which tasks that

are not completed are not dependent on any unfinished tasks-

T2: In regard to one specific task, which tasks that are dependent on the selected task.

T3: In regard to one specific task, which tasks can be done in parallel with it, meaning

which tasks are not dependent on the given task and that the given task is not

dependent on.

The following table shows an overview of the data that was collected from measuring time

(in seconds) for the sample of N=6 assigned to using collaboration tool A. The visualizations

of the task interdependencies in the experiments were relatively similar and utilized the edges

in the flow-chart in more or less the same manner.

Table 1: Time (seconds) project members spent obtaining information in collaboration tool A.

Time/Task T1 T2 T3

project member 1 3,06 8,73 9,35

project member 2 3,58 3,63 9,5

project member 3 6,33 30,31 12,78

project member 4 11,23 11,23 17,45

project member 5 16,73 14,18 8,76

project member 6 9,43 10,55 21,13

Mean 8,393333333 13,105 13,16166667

28

The data points collected and shown above are the same that were collected from the sample

of N=6 assigned with interpreting task interdependencies communicated through

collaboration tool B, shown in the table below.

Table 2: Time (seconds) project members spent obtaining information in collaboration tool B.

Time/Task T1 T2 T3

project member 7 41 21,55 17,25

project member 8 36,1 38,33 26,8

project member 9 33,69 10,1 40,73

project member 10 76,89 20,35 8,71

project member 11 62,2 36,46 26

project member 12 25,68 50,1 44,5

Mean 45,92666667 29,48166667 27,33166667

In order to assess whether the time spent obtaining information differs depending on which

collaboration tool is used, the data points above from each collaboration tool were grouped

together by tasks assigned to the experiment’s participants. An Equal Variance T-test was

then performed to determine whether the difference between the means of time for each tool

was statistically significant. T-tests are hypothesis testing tools designed to investigate if

assumptions are applicable to populations (Hayes, 2020). An Equal Variance T-test was

selected since the samples that are to be compared are of the same size. The use of the test

was based on the assumption that the distribution of time spent interpreting information can

be approximated as a two-tailed normal distribution. For all three information-fetching

assignments given to the participants, we defined our null hypothesis as: “There will be no

significant difference in time spent obtaining information and P-value calculated with the use

of the Equal Variance T-Test are also displayed.

Table 3: T1 - time (seconds) project members spent obtaining information.

T1: Time (seconds)
project members spent
obtaining information

Degrees of
freedom Mean

T-value
(Absolute)

Collaboration tool A 5 8,393333333 2,570543

Collaboration tool B 5 45,92666667 2,570543

P-value from T-test: 0,001053072467

29

Table 4: T2 - time (seconds) project members spent obtaining information.

T2: Time (seconds)
project members spent
obtaining information

Degrees of
freedom Mean

T-value
(Absolute)

Collaboration tool A 5 13,105 2,570543

Collaboration tool B 5 29,48166667 2,570543

P-value from T-test: 0,04250922489

Table 5: T3 - time (seconds) project members spent obtaining information.

T3: Time (seconds)
project members spent
obtaining information

Degrees of
freedom Mean

T-value
(Absolute)

Collaboration tool A 5 13,16166667 2,570543

Collaboration tool B 5 27,33166667 2,570543

P-value from T-test: 0,03792374447

After the participants were finished with their respective tasks, they were asked to self-assess

the degree of understandability of their given presentation of task interdependencies. For both

participants designated to be “project leaders” and “project members”, the same rating system

was used, a range from 1 to 10, albeit the specific framing of the questions differed based on

roles. When comparing the degree of understandability between the two collaboration tools

and deciding whether they significantly differ, Equal Variance T-Tests were utilized for the

same reasons it was used for comparing the time data. The following null hypotheses H4 and

H5 for the rating comparisons were defined: “There will be no significant difference in the

ratings of the two collaboration tools degree of understandability”.

Table 6 below displays a comparative view of the ratings from the “project members”. It

shows the mean-values, the degrees of freedom, the T-value and the P-value resulting from

the Equal Variance T-Test.

Table 6: Reported degree of understandability (Project member).

Reported degree of
understandability
(Project member)

Degrees of
freedom Mean

T-value
(Absolute)

30

Collaboration tool A 5 8,666666667 2,570543

Collaboration tool B 5 4,5 2,570543

P-value from T-test: 0,00008133583839

The table below shows an overview of the self-assessed ratings from the “project leaders”. It

contains the same data points and statistics measures as in table 6 above.

Table 7: Self-reported degree of understandability (Project Lead).

Self-reported degree
of understandability
(Project Lead)

Degrees of
freedom Mean

T-value
(Absolute)

Collaboration tool A 2 8,333333333 4,302653

Collaboration tool B 2 4,333333333 4,302653

P-value from T-test: 0,02239420592

4.2 Product and system design

Our technical solution, named Taskflow, is a full-stack application designed to be used as a

coordination tool by tech companies to help them better manage their projects. The

application is based on the three key user-interaction design decisions introduced in chapter

3.1.2: modularization, visualization of task interdependencies through interactive flowcharts,

and information filtering.

Taskflow has a hierarchical functional structure. On the top of the hierarchy, there is the

workspace element, which is a collection of projects and tasks that can be accessed by one or

several users. When a user signs up for the first time, a default workplace will be created.

This workplace is editable and the user can add members to the workplace by using their

emails. It is also possible for the user to create multiple new workplaces. Tasks can either be

categorized and structured into projects and phases within projects or be accessed

workspace-wide. This allows for the structuring and compartmentalizing of complex projects

into several phases or several tasks. Projects contain by default one phase, but can be

structured into multiple phases that contain their own tasks. In addition to allowing tasks to

be categorized, modularity is also enabled by the subtasks functionality that allows complex

tasks to be reduced into smaller and more easily manageable parts. Taskflow modulizes

complex projects by splitting these projects into several phases or several tasks.

31

The application has several user roles as described in the project vision document. Every role

has different access and rights. The following table describes these rights:

Table 8: Authorization matrix for the technical solution, showing the functionality that can be

accessed by the different user roles.

Authorization
matrix

workplace
owner

workplace
admin

workplace
member

project
lead

project
member

task
owner

task
assignee

Create
workplace

✓ ✓ ✓ ✓ ✓ ✓ ✓

Edit workplace ✓ ✓

Add/remove a
member to
workplace

✓ ✓

Add/remove
admin to
workplace

✓

Create project ✓ ✓ ✓

Edit project ✓ ✓ ✓

Archive project ✓ ✓ ✓

Add/remove
members to a
project

✓ ✓ ✓

Create phase ✓ ✓ ✓

Edit phase ✓ ✓ ✓

Edit roadmap
(task
dependencies)

✓ ✓ ✓

Create task ✓ ✓ ✓

Edit task ✓ ✓

Add subtasks ✓

Edit subtask ✓ ✓

Archive task or
subtask

✓ ✓

Taskflow visualizes task interdependencies through an interactive flowchart, hereby

referenced to as the roadmap. The roadmap contains all tasks added to a phase. These tasks

can be completely independent or structured into a flow based on their dependence on other

32

tasks. The independent tasks can be worked on anytime during the specified phase, while

tasks dependent on other tasks can be worked on once all of the tasks it is dependent on has

been completed. The tasks are sorted horizontally based on their dependencies, where the

first task from the left side is to be done first. Task interdependencies are visualized by

showing tasks as cards with connection lines between them. Furthermore, the tasks in a

roadmap have different colours which describe the status of these tasks and help users to

focus on what they are really doing or going to do. These colours are listed as following:

● Orange: the task is ready to be worked on.

● Red: the task is overdue, meaning that the deadline has passed. It is still possible to

work on the task.

● Green: the task is done, and the tasks dependent on it are now ready to be done unless

they are also dependent on other incomplete tasks.

● Grey: the task is not ready to be worked on due to technical constraints and it is not

overdue.

These colours are used to filter the information as described in 3.1.2 Key user interaction

design decisions. Besides using colours in the roadmap, the information is also filtered in My

tasks and Created tasks pages. The tasks in these two pages are filtered based on several

criteria such as deadline date and status. These two pages are split into sections where the

overdue tasks are shown in the first section, and after that, the uncompleted tasks which have

the earliest deadline are shown within several sections depending on whether the deadline is

today, tomorrow or within the next 7 days. This applies also to subtasks.

The application makes it easy to follow up with the status of a project or a phase. Each

project has a progress bar with colours depending on whether the progress is on track or it is

taking longer than it should do.

4.3 Engineering results
In this chapter, the results of the development process will be compared to the project goals

defined in the planning phase of the project. A detailed explanation of these goals can be

found in the attached file (project vision v 2.0). The main engineering goal of the project was

to create a full-stack web application that serves as a collaborative tool that communicates

33

and visualizes task interdependencies. Besides that, the minor goals for the application were

that it had to be secure, easy to use, and intuitive.

The main goal was successfully reached. The application was successfully created with

almost all of the planned technologies and all of the functional criteria mentioned in the

project vision document was fulfilled. The team originally planned to structure the system

architecture as Microservices, but after discussing the priorities of the project with Favn

halfway through the project, it was agreed that we would focus more on the roadmap and less

on scalability in this specific capacity, and Microservices was thus not implemented. The

product is also well documented both in the context of the system documentation and for

further development. See the attachments, System Documentation, for a more detailed

description of the system.

In order to ensure the technical solution’s ease of use and a high degree of intuitiveness, user

testing both during and after the development phase of the project was performed. During the

development process, we received continuous feedback from Favn Software and modified the

technical solution based on this. There was also a larger user test round at the end of the

project in collaboration with a development team from Tryg Forsikring and one project leader

from Equinor. This provided valuable feedback for the current state of the solution and

suggestions for further work. They stated that the technical solution was both intuitive and

easier to use than the collaborative tools they currently utilized for smaller projects. To

achieve the needs required for efficient remote user testing, the application has been deployed

to the cloud services Heroku and Google Cloud’s App Engine.

The final prototype had a server-side test coverage of 95.1 %, 10% more than the original

goal stated in the project vision. Besides, integrated testing has been created in continuous

integration of the code, so the code will not be published before these tests pass. See the

attachments, System Documentation, for a more detailed description of CI/CD.

One of the goals mentioned in the project vision was to create a secure application. To ensure

that the system was secure, cookies that would only be shared with the hosted server and no

third-party cookies were used. Alongside this use of cookies, the system used OAuth 2.0 to

authorize users, and the hosted client used an SSL certificate to secure the communication

between client and server.

34

4.4 Administrative results

4.4.1 Scrum Artefacts

The software development methodology SCRUM was strictly used during the entire project.

This provided some valuable documentation in the form of SCRUM artefacts, previously

mentioned in chapter 3.1.1 c.

The product backlog shows all the functionality planned for implementation, based on the

user stories defined in the requirements document. In addition, a kanban board was created

based on the product backlog, giving an overview of the work status of each item. Each sprint

also has its own sprint backlog that defines the current functionality in focus, their labour

estimates in hours, priority, and assignee.

For each sprint, there also exists a written sprint retrospective. A moment of reflection for the

team on the last completed iterative cycle. These retrospectives contain what has been

accomplished in the sprint, planned items that were not accomplished, team dynamics that

improved workflow, and the dynamics that haltered workflow. The team dynamics were

mostly positive in each sprint, and there were few uncompleted items.

For each of the meetings held with the product owners a written notice and minutes were

created, with cases labelled in ascending order. These minutes include quotes in form of

questions and answers from the team to the product owners, in addition to feedback for each

sprint, also known as sprint reviews. Notices were not created for the remote meetings for

user testing purposes, however detailed user story reports were written and contain live

feedback from the test subjects.

4.4.2 Project Progress

The Gantt diagram addressed when different stages of development, documentation, and

other work categories would take place in a time-related context, in addition to document the

estimated overall time used on each unique stage in the project. In general, the overall plan

visualized by the Gantt diagram was realistic on what the team could achieve in development,

and functioning as a project timeline. The Gantt diagram describes the progress of different

phases of the project and their timeline. These phases are outlined in more detail in the

burndown charts.

35

The burndown chart defines the planned goals for each iterative development cycle and

describes the progress day by day, and also shows the optimal and planned hours worked per

day, compared to the hours actually worked. Based on the average of each of the burndown

charts, the overall progress was steady. The graphs of hours worked compared to the optimal

workflow were generally matching each other. The estimates in the burndowns were made

from the team's initial calculations, however, these were subject to change during

development within the sprint.

In sprint 1 progress was a bit ahead of the optimal workflow, with 120 hours completed.

Sprint 2 documents implementation of the first functionalities described in the product

backlogs with 187 hours completed, however, the implementation of a mailing system was

not accomplished and the implementation of refresh tokens moved to a later sprint in order to

enable earlier ad hoc testing of the entire system. Sprint 1 resulted in labour items that were

mostly non-functional, for example creating a backend and frontend structure. The longest

sprint was the third, with 232 work hours planned and 220 completed. In this sprint, the main

functionalities implementation was planned and continued over in sprint 4. Sprint 4 had 218

hours planned and 210 hours completed, finishing up the prototype before internal testing

with Favn and others. There is a deviation in sprint 4, as the exam period occurs in this period

of the project timeline, therefore sprint 4 is planned over a wider range of dates. Sprint 5 was

a combination of user testing, adaptations to feedback from the testing, and preparation for

remote testing with Equinor and Tryg, with 192 hours planned and 186 completed. See the

attachments, chapter x, for burndown charts and their individual results in more detail.

4.4.3 Roles and division of labour

The Agile Software Development methodology of SCRUM utilizes different roles for the

different roles for development. There is the product owner with their requirements and

needs, the SCRUM master making sure the SCRUM methodology is followed and the

artefacts produced, and finally the team members. This project's development team consisted

of three members, Alexander took the role of SCRUM master, acting as the middleman

between Favn and the SCRUM team, while the other project participants acted as SCRUM

members. Favn played the role of the product owner.

The division of the labour sheet shows an almost symmetric distribution of total work hours,

where all members have worked around 500 total hours.

36

Figure 3. Total hours worked distributed between the team members of the project.

All members have worked a mostly even amount of hours in every defined category of

labour, with some differences from member to member. For example, one member of the

team focused on the experiments and the analysis of the scientific results, while the two

others focused more on properly testing the system with unit testing. See the attachments,

chapter x, for division of labour charts.

37

5. Discussion
5.1 Scientific discussion
The purpose of this study was to examine how collaboration tools centred around

visualization of task interdependencies can improve communication across two dimensions:

the relevancy of the information and the time spent obtaining new information. All five of the

hypothesized measurements of communication proved there to be a significant difference

between specialized collaboration tools and general ones, as can be seen in table eight below:

Table 9: Summary of research findings.

Self-reported degree of
understandability (Project Lead)

Mean difference (%)
in the score for tool A

compared to tool B P-value

H1: There will be no significant difference
in time spent obtaining information
regardless of which collaboration tool that
was used - T1 (seconds)

−81,72% 0,00105307246
7

H2: There will be no significant difference
in time spent obtaining information
regardless of which collaboration tool that
was used - T2 (seconds)

−55,21% 0,04250922489

H3: There will be no significant difference
in time spent obtaining information
regardless of which collaboration tool that
was used - T3 (seconds)

−51,84% 0,03792374447

H4: There will be no significant difference
in the ratings of the two collaboration tools
degrees of understandability - Project
member (1-10 rating)

92,59% 0,00008133583
839

H5: There will be no significant difference
in the ratings of the two collaboration tools
degrees of understandability - Project
leader (1-10 rating)

92,30% 0,02239420592

In regard to time spent obtaining information (H1, H2, H3), our research shows a reduction

for the participants assigned to using specialized collaboration tools, compared to the ones

who used unspecialized collaboration tools. On average, time spent interpreting task

interdependencies and their practical implications was minimized by at least half and up to

around 80% when collaboration tool A was utilized.

38

The p-values for the hypotheses were: PH1 = 0,001053072467, PH2 = 0,04250922489, and PH3

= 0,03792374447. All of these fall within the critical region, below the significance level of

0.05, meaning that our null hypotheses can be rejected and the reductions in time can be

determined to be statistically significant. This indicates that the use of collaboration tools

centred around visualization of task interdependencies improves communication in software

development projects across the first dimension, time spent obtaining information, as defined

by Cataldo and colleagues (2008).

This conclusion can be drawn based on the findings of Andres and Zmud (2015) that points

to the use of general collaborative tools contributing to better communication compared to

projects where no collaborative tools were used, which contributes to improved overall

productivity. Assuming a transitive relation, if specialized collaboration tools provide better

communication than unspecialized ones, and the use of unspecialized ones result in improved

communication compared to no collaboration tools, then the use of specialized collaboration

tools in projects will result in better communication than when no tools are used.

These findings are consistent with previous research by Cataldo and colleagues (2008)

indicating that the partition of complex systems into modularized tasks combined with the

use of collaborative tools can contribute to improved communication in projects and thus

increased productivity. This is also supported by Andres and Zmud (2015), who stated that

“software development is an information-intensive activity benefiting greatly from

organizational structures and processes that facilitate team members’ access to needed design,

administrative, and problem-solving information.” They also state that communication

channels that facilitate open, clear, and frequent discourse help interdependent team members

to develop more fitting task integration strategies.

Our data shows that the participants designated as “project members” rated the degree of

understandability (H4) of collaboration tool A higher than that of tool B. On average, “project

members” rated the communication facilitated by the specialized tool as having a degree of

around 92% more understandability than the unspecialized tool. The difference in ratings had

a p-value of PH4 = 0,00008133583839, indicating a very high degree of confidence.

The data from the “project leaders” ratings of the degree of understandability of the task

interdependencies they communicated (H5) indicates a similar relationship between

specialized and unspecialized tools as the one reported by the “project members”. Also here

collaboration tool A was given an average rating of around 92% higher than collaboration

39

tool B. With a p-value of PH5 = 0,0223942059, the null hypothesis of there being no

significant difference between the tools can be rejected.

The comparative ratings of the collaborative tools indicate a clear preference for developers

both sharing and obtaining information regarding task interdependencies for collaborative

tools that facilitate this communication through the use of interactive flowcharts. Such

visualizations appear to be more intuitive and less ambiguous than the use of custom

sectioning and grouping mechanisms combined with written descriptions of technical

constraints.

We theorize the degree of intuitiveness is affected by two factors: how ambiguous the

user-interface structure for communicating task interdependencies is and the extent of visual

contrast between the task interdependencies and the task itself. During our experiment, it was

observed that the “project leaders” allocated to collaboration tool B each structured the

information in unique ways within the tools parameters. Moreover, the “project members”

interpretations varied across an even broader spectrum. Collaboration tool A on the other

hand was used and interpreted in mostly a similar manner. Participants were observed to

understand interdependencies quicker across both collaboration tools when the indicators

communicating this were visually distinct from the rest of the information.

5.1.1 Limitations

Despite the significant findings in this study, it has a number of limitations that must be taken

into consideration. First, as a result of the limited scope and time frame of this bachelor

project, only the short term use of specialized collaboration tools has been investigated for

small sample sizes. Furthermore, the use of collaboration tools was limited to solely the

planning phase of a project. Thus, the findings are not necessarily applicable to how

collaborative tools affect communication when the development process has started and when

technical constraints change or are created while projects are underway.

The measure of perceived understandability by the participants is also a limitation of the

experiment. They were asked to rate the collaboration tool on a scale from one to ten, without

being given any reference points or specific criteria for each grade. Instead, they were told a

rating of one indicates that no relevant information can be gathered by using the tool, and ten

means all of the information conveyed through the tool is understandable for the recipients.

This creates some inherent uncertainty in the measurements, as the ratings between one and

ten are ambiguous and open for interpretation by the participants. The statistical analysis of

40

the data indicated however that the results have a high degree of confidence. Even when the

uncertainty is taken into account, we are left with a significant difference in the ratings of the

two collaboration tools.

The design of the experiment inherently possesses a clear limitation. Since the participants

were assigned to use only one of the collaboration tools, some of the differences between the

two sample groups can be explained simply by the variety of individuals constituting the

sample groups. As mentioned in chapter 3.2 Research methodology, this was decided in order

to avoid that the participants interpreted the same project twice and their second performance

being affected by their familiarity with their earlier answers. This trade-off is mainly a result

of the experiment being a short term investigation, and long term studies with larger sample

sizes could have compared the same individuals’ use of different collaboration tools without

being dependent on comparing the exact same projects across tools to ensure comparability.

Another limitation of the study is that it only provides insights into specialized collaboration

tools that use flowcharts to communicate task interdependencies. It does not clarify the

relation between specialized tools based on other visualization methods and unspecialized

tools. Additionally, it does not provide comparisons between collaboration tool A or other

tools with functionality for communicating interdependencies.

5.2 Engineering discussion
In this chapter, we will evaluate our choice of technologies and discuss the consequences and

problems that occurred as a result of these decisions. The direct and indirect impact these

choices and the selected technologies had on the final product prototype and the development

cycles will be discussed. The technical results will additionally be compared to the planned

product.

The bachelor issuer had no demand for specific technologies being used for the backend

system. However, they required a fast, scalable, and cost-effective solution. Finding a fitting

solution to cover these application performance requirements were critical to ensuring an

improved final product. In addition, the team prioritized using new and modern technology

both for the application’s adaptability and further work, and to improve their scope of

knowledge within the field of full-stack development. Therefore, the choice of Golang

combined with a NoSQL database was made, which covers most of the demands set by Favn

41

and the team. Additionally, Gqlgen was selected for the API, since graphql is more network

efficient than Express REST APIs.

The use of Gqlgen and Golang affected development since the time taken on constructing the

data resolvers took longer than the team anticipated, however structuring the backend

skeleton and setting up database methods took less time than planned. In terms of the planned

results, the resulting backend meets the performance requirements set by Favn, while also

fulfilling the team's personal requirements in regard to widening their field of knowledge.

Industry-level security was an important factor to Favn. The resulting product, therefore,

utilizes OAuth 2.0 for authentication and allows users to be created with existing Google

users. Based on the results from user testing, both companies included in the testing process

stated that this improved the useability of the application. The only issue found during user

testing was that some of the employees did not have a Google account, and had to take the

extra steps to create an account just to test the product. A challenge with using Oauth2 for

authentication from the beginning of the project was that this constrained the testing of

frontend- and UI features in the earliest phase of development, especially since the

implementation took longer than planned.

Favn Software’s only requirement for the frontend was that it should be made in ReactJS, in

order to easily enable further development if the project was deemed fit. Additionally,

Apollo Client was utilized for communicating with the backend through graphql. This

resulted in the client being needed to be strict with what data could be received and sent. This

resulted in the implementation of the data resolvers being a more labour intensive process

than planned. The general complexity in regard to interconnected data visualization and

updates, as well as authorization within the frontend, was greatly underestimated, and this

resulted in a lot more time spent on these elements than originally estimated.

The ReactFlow Renderer library was used to make the interactive flowcharts visualizing task

interdependencies used as roadmaps in the technical solution. The library provided the team

with lots of built-in functionality, like a controller bar for the map, fully customizable nodes

and minimap, and an easy to implement the system. Using this framework saved a lot of time

and proved to be easier than we anticipated. The time cut by using ReactFlow Renderer

mitigated the extra time that was spent on the aforementioned challenges that occurred in

other parts of the frontend.

42

The design of the frontend and its requirements for strict data types when sending and

receiving data, in turn, meant that unit testing for the server was an extra valuable process, as

the team could test the planned database functionalities and their return objects before testing

them on the apollo client. This led to improved data integrity and reliability of the server.

With a test coverage of around 95%, the resulting backend to frontend communication was

predictable and stable for the most part throughout development.

To summarize, in terms of the predetermined technical requirements of Favn the project was

overall successful. Our choice of backend technologies fulfilled the requirements, and no

unanticipated problems of notable scale occurred despite the team’s unfamiliarity with the

technologies. Albeit challenging, Oauth2 authentication was also successfully implemented.

The predicted problems with the frontend were mitigated and time saved by the use of

frameworks, however, unanticipated problems and general system complexity resulted in the

frontend being approximatly as resource-intensive as planned.

5.2.1 Limitations

Due to the limited technical demands defined by the project vision document, the team faced

no limitations with what was planned and required by Favn and those technologies that were

implemented to cover these technical needs. However, there were some limitations with the

technologies chosen by the team, in particular, some of the backend and frontend libraries

had some missing functionality.

The biggest limitation with the backend comes with the problems of the GqlGen library used,

a framework for creating a resolver structure based on the current information in the NoSQL

schema. This framework works well in terms of generating said resolvers, however, it comes

with almost no support for the implementation of other server functionalities, like writing

HTTP requests, setting cookies, and other middleware implementations. Therefore, the team

had to spend extra time writing their own middleware, as this was the easiest solution to this

problem, and the middleware is not optimal for future implementation, as its support for

further backend functionality is limited.

For the frontend, the ReactFlow Renderer library used to construct the graphical roadmap had

major limitations in terms of adding additional functionality to the existing framework

package. This meant that during development it was particularly difficult to implement

keybindings, logic checks, and extra functionality revolving around the graphical roadmap.

43

Furthermore, future development with this library is limited and may result in a conversion to

a different graphical node library.

5.3 Administrative discussion
Each sprint being followed by a meeting and demonstration of the results of the sprint

ensured good communication between the team and the thesis issuer Favn. This contributed

to the overall success of the project. The background for arranging these frequent meetings

was based on a study by Green and colleagues (2010), which state that a key part of securing

high-quality information flow within a project is through continuous product demonstrations

and reviews at the end of each iterative development cycle.

The division of labour was mainly executed to involve every team member in each labour

category, which gave the members an opportunity to both work in fields they excel at and

gain more knowledge. In general, a trend emerged where a member would have fewer labour

hours in categories that they did not prefer. This was a result of the team prioritizing the

overall project goals connected to the product over the team’s personal goals of gathering

knowledge whenever these priorities collided.

The Gantt chart made time allocation more efficient with less time spent on deciding what

each work period should be and gave the team frequent deadlines. The decision to use Gantt

diagrams to visualize the overall project was based on research by Willams (2005) which

stated that; “there is quantitative evidence that frequent deadlines reduce the variance of a

software process and, thus, may increase its predictability and efficiency”. In the early stages

of the project, the actual progress followed the progression planned and outlined in the Gantt

diagram. Later in the project, the transition from development to documentation, and the

parallel user testing with more development in the last sprint was not accomplished as

originally planned. Some of this deviation comes from decisions made by the team to

improve the quality of the product prototype by prioritizing user testing over documentation.

Other deviations are the consequences of unplanned events occurring. Sprint 4 for example

ended up lasting longer than planned because the team failed to properly anticipate how the

exam period of March would affect the team members availability.

The burndown charts created from the SCRUM methodology were used to efficiently allocate

items of labour to the team members and improved the overall workflow by keeping track of

progression within each sprint, making reallocation of work resources to items overdue

44

easier. These artefacts help planning and to secure a more smooth implementation of the

functionality goals set by Favn. There is some functionality planned not implemented which

is apparent in the Burndowns, however, in total for all the sprints, there are very few working

hours planned that have not been accomplished.

One crucial part of the administrative results was the sprint review and retrospectives. The

reviews made the product owners adapt their needs and goals as the product evolved, giving

the team a better chance of delivering prototypes that fulfilled their demands at the end of this

project.

Most artefacts created during the lifespan of the project helped to document the entire process

from planning to end of development, describing both planned workflow and completed

workflow, providing comprehensive documentation of administrative results.

5.4 Ethical discussion
There are very few ethical issues related to the experiment, as it was performed on consenting

adults with full knowledge of its implications. Therefore, the team members have focused on

reflecting on the computer-ethical issues around the technical solution created for this project.

Computer ethics falls into both of the categories of applied- and professional ethics (Søraker,

2013).

The main ethical issue connected to professional ethics in the research work and the

application created is privacy. Privacy is a known issue in computer ethics because every

computer system has to save data about the user using it (Søraker, 2013). However saving or

sharing data with others without permission from the user is neither ethically correct nor in

line with GDPR, the privacy laws of the European Union. Taskflow uses Google as a

provider for OAuth 2.0, which lets the user choose what kind of data to share with Taskflow.

The application saves only email, first name, second name, and Google ID, and this

information is saved when on user creation. In addition, Taskflow does not track how the user

interacts with the application, except when they create projects, phases and tasks. This is in

accordance with one of the moral pillars of professional ethics for developers, that you should

collect no more data than what is necessary. It can however be argued that forcing users to

have a Google user in order to create a Taskflow-user can be problematic, as Google is

known for not limiting their data collection efforts.

45

The second element of professional ethics for developers that is relevant for this project is the

respect of copyright. Throughout our research and the development process, the team

members have been strict with referencing studies that have been used and using frameworks

in accordance with their licenses.

Since there are several members who have contributed to the research and the development

process, the team members have reflected on the division of responsibilities as an ethical

issue connected to applied ethics. As mentioned in chapter 5.3 administrative discussion, the

division of labour was mainly executed to involve every team member in each labour

category, this is done to involve everyone in the different phases and elements of the project.

This allowed the team members to share their experiences with the other team members, and

better learn how to use new technologies.

5.5 Member reflections
The group’s work dynamic has been good. The internal communication of the team was

mostly excellent despite working remotely a majority of the time. This has been made

possible by the usage of synchronous and asynchronous channels, as well as comprehensive

and continuous documentation during development. Every member has worked within every

category of work, including attending the obligatory lectures and the workshop in the relevant

subject. There has been little absence of leave and all members have worked around 500

hours and attended meetings where their presence was necessary. The allocation of tasks

between the members has been efficient. Working remotely was viewed as mostly positive, as

we got more freedom to work when we were available during the day.

46

6. Conclusion and further work

This study contributes to the software management literature by providing initial insights into

the connection between the use of collaborative tools centred around visualizations of task

interdependencies and productivity in software development projects. Our empirical

evaluation of the data gathered in our experiment answers our research question and

concludes that the use of specialized collaboration tools improves communication across both

of the dimensions defined by Cataldo and colleagues (2008). Significant improvements

within the time spent obtaining information as well as the understandability of the discourse

contribute positively to the overall productivity of software development projects.

Although the experiment only included a flowchart-based collaboration tool, our findings

combined with the current literature in the field indicate a broad positive relationship

applicable to some degree to all specialized tools. Despite the limitations of our findings, it is

indicative that the design of the collaborative tool used plays a key role in software

development projects.

6.1 Future work

While this study answers the research question within its limitations, there are several

elements about the relationship between collaborative tools and communication in projects

that could use further research. These elements can be categorized as improving the accuracy

of the findings of this study and exploring the relationship between these findings and other

collaborative tools and methods.

In order to improve the accuracy of our findings, a long term observational study should be

held. This would mitigate several of the limitations our short term study faced, such as

measuring how the use of the collaborative tool affected communication when used outside

of a project’s planning phase. Additionally, by observing developers over longer time periods

across different collaboration tools and projects, one could compare how the same individuals

perform and thus minimize the uncertainty connected with comparing completely different

sample groups. The observation of collaboration tools in actual use would also allow for

more accurate measurements than time recording and simple rating, such as long term effect

on the success-factors of the observed projects. A long-term observational study with larger

47

sample sizes would provide more accurate data, yet would also be a lot more

resource-intensive.

The logical next step based on the findings in this study that is not as resource-intensive as

the aforementioned long term observational studies is expanding the experiment to include

several other collaboration tools. The perhaps largest limitation of our findings is that we

cannot draw conclusions for other collaborative tools other than our technical solution.

Whilst the results of this study indicate that specialized tools improve communication more

than unspecialized ones and the complete lack of collaboration tools, they do not say

anything conclusive about different combinations of task interdependence visualizations and

of which that are the most effective.

In regard to further development of the technical solution, this will be Favn’s responsibility

after the end of this project. Some of the main features planned for further development

include; a kanban board to view the current sprint tasks and their status, a component that

shows the overview of the resources in a project and how they are allocated, a system for

inviting new members by mail, and a shift in general design focus from text to graphical drag

and drop cards. The technical future work suggested here is the result of the user testing with

Favn Software, Tryg Forsikring, and Equinor.

48

7. References

1. Kharrazi, A. (2019). Encyclopedia of Ecology (Second Edition): Volume 4: Resilience.
ScienceDirect: https://doi.org/10.1016/B978-0-12-409548-9.10751-1

2. Cataldo, M., Herbsleb, J.D., Carley, K.M. (2008). Socio-technical congruence: a
framework for assessing the impact of technical and work dependencies on software
development productivity. ESEM: Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and measurement,
October 2008, 2-11. https://doi.org/10.1145/1414004.1414008

3. Andres, H.P., Zmud, R.W. (2015). A Contingency Approach to Software Project
Coordination. Journal of Management Information Systems: Volume 18, 2002 - Issue
3, 41-71. https://doi.org/10.1080/07421222.2002.11045695

4. Straus, S. G., & McGrath, J. E. (1994). Does the medium matter? The interaction of
task type and technology on group performance and member reactions. Journal of
Applied Psychology, 79(1), 87-97. http://dx.doi.org/10.1037/0021-9010.79.1.87

5. Van de Ven, A.H., Delbecq, A.L., and Koenig, R. (1976). Determinants of
coordination modes within organizations. American Sociological Review, 41, 2
(1976), 322–338. https://doi.org/10.2307/2094477

6. Cataldo, M. et al. (2007). On Coordination Mechanism in Global Software
Development. In Proceedings of the International Conference on Global Software
Engineering (ICGSE’07), Munich, Germany.

7. Baldwin, C.Y., Clark, K.B. (2000). Design Rules: The Power of Modularity. MIT
Press.

8. Parnas, D.L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of ACM, 15, 12, 1053-1058.
https://link.springer.com/chapter/10.1007/978-3-642-48354-7_20

9. Burton, R.M. and Obel, B. (1998). Strategic Organizational Diagnosis and Design.
Kluwer Academic Publishers.

10. Kraut, R.E. and Streeter, L.A. (1995). Coordination in Software Development.
Communications of ACM, 38, 3, 69-81.

11. Simon, H.A. (1962). The Architecture of Complexity. In Proceedings of the American
Philosophical Society, 106, 6, 467- 482.

12. Grinter, R.E., Herbsleb, J.D. and Perry, D.E. (1999). The Geography of Coordination
Dealing with Distance in R&D Work. In Proceedings of the Conference on
Supporting Group Work (GROUP’99), Phoenix, Arizona.

13. Gall, H. Hajek, K. and Jazayeri, M. (1998). Detection of Logical Coupling Based on
Product Release History. In Proceedings of the International Conference on Software
Maintenance (ICSM ‘98), Bethesda, Maryland.

14. Clements, P., Garlan, D., Little, R., Nord, R., and Staffor, J. (2002). Documenting
Software Architectures: Views and Beyond. 25th International Conference on
Software Engineering, 2003. Proceedings, 2003, 740-741.
https://doi.org/10.1109/ICSE.2003.1201264

49

https://doi.org/10.1016/B978-0-12-409548-9.10751-1
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.1080/07421222.2002.11045695
http://dx.doi.org/10.1037/0021-9010.79.1.87
https://doi.org/10.2307/2094477
https://link.springer.com/chapter/10.1007/978-3-642-48354-7_20
https://doi.org/10.1109/ICSE.2003.1201264

15. Mason. R.T. (2015). NoSQL databases and data modeling techniques for a
document-oriented NoSQL database. Proceedings of Informing Science & IT
Education Conference (InSite) 2015, 259-268. Retrieved from:
http://proceedings.informingscience.org/InSITE2015/InSITE15p259-268Mason1569.
pdf. Regis University, Denver, Colorado

16. Richer, J. & Sanso, A. (2017). OAuth 2 in Action. Manning Publications, Shelter
Island, New York. 236-241, Retrieved from:
http://manning-content.s3.amazonaws.com/download/a/6008973-e9d9-469a-8ac5-1cb0e6b91
c99/SampleCh13.pdf

17. Williams. L, (2005). A Survey of Agile Development Methodologies, 209-225. North
Carolina State University. Retrieved from:
http://www.fet.uwe.ac.uk/~p-chatterjee/2011/readings/AgileMethods.pdf

18. Dingsøyr T. , Nerur S., Balijepally V.G. , Moe N.B. (2008). A decade of agile
methodologies: Towards explaining agile software development. Trondheim, Norway,
Norwegian University of Science and Technology. Retrieved from:
https://doi.org/10.1016/j.jss.2012.02.033

19. R. Green, T. Mazzuchi, S.Sarkani. (2010). Communication and Quality in Distributed
Agile Development: An Empirical Case Study. Retrieved from:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.193.3125&rep=rep1&type
=pdf

20. Strauch. C. (2011). NoSQL Databases. Stuttgart Media University. Retrieved from:
http://csce.uark.edu/~xintaowu/BDAM/nosqldbs.pdf

21. Pahl. C, Jamshidi. P. (2016). Microservices: A Systematic Mapping Study.
Department of Computing, Imperial College London, London, U.K. Retrieved from:
https://www.scitepress.org/Papers/2016/57855/57855.pdf

22. Dragoni. N, Lanese. I, Larsen. S.T, Mazzara. M, Mustafin. R, Safina. L. (2017).
Microservices: How to make your application scale. Technical University of
Denmark. Retrieved from: https://arxiv.org/pdf/1702.07149.pdf

23. Giallorenzo. S, Dragoni, Lafuente. A.L, Mazzara. M, Montesi. F, Mustafin. R, Safina.
L. (2017). Microservices: yesterday, today, and tomorrow. Technical University of
Denmark. Retrieved from: https://arxiv.org/pdf/1606.04036.pdf

24. Akanmu T. A., Olabiyisi S. O., Omidiora E. O., Oyeleye C. A., Mabayoje M.A. and
Babatunde A. O. (2010). Comparative Study of Complexities of BreadthFirst Search
and Depth-First Search Algorithms using Software Complexity Measures.
Proceedings of the World Congress on Engineering. retrieved from:
https://www.researchgate.net/profile/Stephen-Olabiyisi/publication/257562301_Comp
arative_Study_of_Complexities_of_Breadth_-_First_Search_and_Depth-First_Search
_Algorithms_using_Software_Complexity_Measures/links/0deec51e43365ae0110000
00/Comparative-Study-of-Complexities-of-Breadth-First-Search-and-Depth-First-Sea
rch-Algorithms-using-Software-Complexity-Measures.pdf

25. Johnny Hartz Søraker (2012-2013). Innføring i computer-etikk. AITeL, HiST. retrived
from:
http://www.iie.ntnu.no/fag/_innfIng/johnny/Soraker_Innforing_i_Computer-etikk_HI
ST_2013.pdf

50

http://proceedings.informingscience.org/InSITE2015/InSITE15p259-268Mason1569.pdf
http://proceedings.informingscience.org/InSITE2015/InSITE15p259-268Mason1569.pdf
http://manning-content.s3.amazonaws.com/download/a/6008973-e9d9-469a-8ac5-1cb0e6b91c99/SampleCh13.pdf
http://manning-content.s3.amazonaws.com/download/a/6008973-e9d9-469a-8ac5-1cb0e6b91c99/SampleCh13.pdf
http://www.fet.uwe.ac.uk/~p-chatterjee/2011/readings/AgileMethods.pdf
https://doi.org/10.1016/j.jss.2012.02.033
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.193.3125&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.193.3125&rep=rep1&type=pdf
http://csce.uark.edu/~xintaowu/BDAM/nosqldbs.pdf
https://www.scitepress.org/Papers/2016/57855/57855.pdf
https://arxiv.org/pdf/1702.07149.pdf
https://arxiv.org/pdf/1606.04036.pdf
https://www.researchgate.net/profile/Stephen-Olabiyisi/publication/257562301_Comparative_Study_of_Complexities_of_Breadth_-_First_Search_and_Depth-First_Search_Algorithms_using_Software_Complexity_Measures/links/0deec51e43365ae011000000/Comparative-Study-of-Complexities-of-Breadth-First-Search-and-Depth-First-Search-Algorithms-using-Software-Complexity-Measures.pdf
https://www.researchgate.net/profile/Stephen-Olabiyisi/publication/257562301_Comparative_Study_of_Complexities_of_Breadth_-_First_Search_and_Depth-First_Search_Algorithms_using_Software_Complexity_Measures/links/0deec51e43365ae011000000/Comparative-Study-of-Complexities-of-Breadth-First-Search-and-Depth-First-Search-Algorithms-using-Software-Complexity-Measures.pdf
https://www.researchgate.net/profile/Stephen-Olabiyisi/publication/257562301_Comparative_Study_of_Complexities_of_Breadth_-_First_Search_and_Depth-First_Search_Algorithms_using_Software_Complexity_Measures/links/0deec51e43365ae011000000/Comparative-Study-of-Complexities-of-Breadth-First-Search-and-Depth-First-Search-Algorithms-using-Software-Complexity-Measures.pdf
https://www.researchgate.net/profile/Stephen-Olabiyisi/publication/257562301_Comparative_Study_of_Complexities_of_Breadth_-_First_Search_and_Depth-First_Search_Algorithms_using_Software_Complexity_Measures/links/0deec51e43365ae011000000/Comparative-Study-of-Complexities-of-Breadth-First-Search-and-Depth-First-Search-Algorithms-using-Software-Complexity-Measures.pdf
https://www.researchgate.net/profile/Stephen-Olabiyisi/publication/257562301_Comparative_Study_of_Complexities_of_Breadth_-_First_Search_and_Depth-First_Search_Algorithms_using_Software_Complexity_Measures/links/0deec51e43365ae011000000/Comparative-Study-of-Complexities-of-Breadth-First-Search-and-Depth-First-Search-Algorithms-using-Software-Complexity-Measures.pdf
http://www.iie.ntnu.no/fag/_innfIng/johnny/Soraker_Innforing_i_Computer-etikk_HIST_2013.pdf
http://www.iie.ntnu.no/fag/_innfIng/johnny/Soraker_Innforing_i_Computer-etikk_HIST_2013.pdf

26. Hayes, A. (2020, March) T-Tests. Investopedia:
https://www.investopedia.com/terms/t/t-test.asp

51

https://www.investopedia.com/terms/t/t-test.asp

8. Attachments

Table of contents

8.1 Vision Document q 53

8.2 System Documentation 68

8.3 Process Documentation 80

8.4 Equinor Testing Report 122

8.5 Tryg Forsikring Testing Report 124

8.6 Tryg Forsikring Testing Report 2 127

8.7 Requirements Documentation 128

52

8.1 Vision Document

Version 2.0

Audit History

Date Version Description Author(s)

13.01.2021 1.0 First Draft, the stakeholders’ first

vision of the project

Alexander, Gaute,

Mohammad

18.02.2021 2.0 Second draft, the priority of

functional properties is changed,

some functions are deleted and other

functions are added

Alexander, Gaute,

Mohammad

53

8.1.1 Introduction

The purpose of this document is to determine the TaskFlow project vision. We will address

and define the main issue. Characterize the different users and stakeholders. Specify the user

environment and user needs. Exemplify the products role, dependencies and describe the

functional and non-functional properties of the system.

This project will be carried out by computer engineering students as a bachelor thesis at the

beginning of spring semester 2021. The students are linked to NTNU at the IE faculty in the

IDI institute.

Our product can be described as a project management tool for tech and devops companies to

smaller agile operations, with a focus on task interdependencies, moving away from a focus

on microservices.

8.1.2 Product and issue summary
8.1.2.1 Issue summary

Main issue(s) 1. Managing a bigger project and its logistics

2. Updating and maintaining a complex system

concerns DevOps / Tech companies of all sizes

which results in these

problems

1. Communication problems, ineffective planning,

resources wasted / hard to allocate tasks properly.

2. Data corruption during updates, difficulty

deploying a system to foreign hardware, issues

54

scaling a traditional system without wasting

server resources.

a successful solution could

be

1. Easier to balance workload over the devs,

better project overview.

2. Easier to deploy, update, maintain and scale

compared to most systems made in 201x.

8.1.2.2 Product summary

For Any tech company with projects (DevOps)

who requires a task manager for any type of project

Name of product will be TaskFlow

be an easy and intuitive resource saver and logistic

planning tool

unlike ClickUp and Jira

our product advantages interactive timeline charts/roadmap with

dependencies, project statistics such as burndown

charts, smartDaily todo board with automatically

prioritize tasks

55

8.1.3 Stakeholders & users
8.1.3.1 Stakeholders

Name Detailed description Role during development

Favn Thesis issuer and guide,

will review the functional

properties of the system

and the system as a whole

Product Customer

NTNU Thesis guide and thesis

evaluator, supports the

team with guidance if

needed

Supportive role

56

8.1.3.2 User Profiles

Work/

educational

background

Detailed description Expected

degree of

technology

knowledge

Role in

software

IT/Tech DevOps or other tech company that uses some

type of project/task management software/tool to

solve logistics surrounding an operation. Needs

to be able to organize a large number of detailed

tasks in a structured way (such as a Kanban

board) and view which tasks can be worked on

right now.

High Project

lead,

project

member

Designer Participates in projects, either by completing a

design during specific phases or continuously

iterating on the design through the whole project

lifespan. Focuses on longer processes rather than

smaller tasks. Needs structured information on

due dates and general requirements.

low Project

member

Economics,

sales and

management

Administration who uses data gathered from any

type of management software to calculate costs

set due dates, resource planning e.g. Needs to

easily be able to follow up designated tasks and

projects.

low Organizati

on

administra

tor, Project

monitor

8.1.3.3 User roles in TaskFlow

57

Role Role description System utilization

Organization

administrator

Has total overview over project

scope, running costs, development

progress and users involved with

the specified system and other

users in the same organization.

Administrates organization members,

roles and details. Determines

organization goals.

Project lead Has an overview of team

members, what tasks are being

worked on and their dependencies,

together with e tasks’ progress.

Plans and creates the project. Manages

the project members, roles and

functional tasks within the project.

Follows up on the individual tasks done

by members.

Project

Monitor

Participates in planning projects,

Scrum rituals and enforces

resource and time limitations.

Tracks progress in current projects and

functions as a Scrum master

Project

member

Has an overview of the current

tasks for today and for the given

sprint

Utilizes the task software by finding

and doing the relevant tasks assigned to

the given project member.

8.1.3.4 The user environment

Here we will define the user environment, using Favn as the prime example. In this case,

TaskFlow might be used as a simple to-do software or a more detailed scrum planner. The

software might be usable with other systems, like Clockify, and Git. Favn might also use the

58

project management tool to define and work towards bigger or more abstract goals, with an

overview of all current running projects.

8.1.3.5 Summary of users' needs

This summary will give a general description of the user’s needs, a more detailed description

of all user cases can be found in the product backlog.

Case Priority Involves Today's

solution

Proposed solution

Management and

Project leaders need

to be able to assign

tasks and follow up

on these

High Management,

Project leaders,

Developers,

Designers,

Sales-people

A combination

of Kanban

boards in

Github and

Notion, as well

as notes based

on oral

communication

and meetings

Create software

that combines

structured task

boards and smaller

project-independent

tasks

Employees need to

have an overview

of their tasks

High Users A combination

of Kanban

boards in

Github and

Notion, as well

as notes based

on oral

communication

and meetings

Create a dynamic

overview of the

tasks that can

currently be done,

that sorts tasks

based on due dates

of tasks and

estimated hours

required to

complete them.

59

Employees need to

be able to easily

differentiate

between completed

tasks and tasks that

needs work, and see

when assigned tasks

dependent on others

are available to be

worked on

High Users Some

functionality in

ClickUp allows

for some task

dependencies,

but are not so

easily

manageable on

a larger scale.

A software that

allows the users to

edit their own tasks

A user needs to get

updated when

something is

changed in the

project they are

involved in or with

a task they are

assigned to

Medium Users, Project

Lead

None Send an email to all

the involved users

when something is

changed

users need to be

able to create their

own workplace and

add people to the

workplace. Beside

being able to mark

employees as an

admin to manage

the workplace.

High Users,

workplace

owner

It is possible in

different

technologies to

create a

workplace and

add people it

An easy and

understandable

interface so all the

users who have an

account on

TaskFlow will be

able to create their

own workplace

60

A member of a

workplace needs to

be able to create

projects in the

workplace and

assign a project

lead to that project

High Users, project

lead

It is possible to

create a project

in Gitlab, but

everyone will

have the same

rights to edit

the project and

add tasks to it

A page where it is

possible to add a

project for all the

workplace

members, and it

should be possible

to edit the project,

assign a project

lead, and follow

with the progress of

the whole project

A project lead or a

a workplace admin/

owner needs to be

able to create one or

several phases in a

project, update

these phases and

create a graphical

view of the tasks

and their

dependencies in a

phase

High User, project

lead,

workplace

owner/admin

In Gitlab, it is

possible to

create epics

and a roadmap

of the issues in

the epic, but is

not possible to

add and

dependencies

on these issues

The phase interface

will be a part of the

project page, and

has its own

progress bar.

Moreover it will be

able for the user

with the right

access to edit these

phases and create a

roadmap for the

whole phase and

add dependencies

to these roadmaps.

61

8.1.3.5 Alternatives to our product

There are several alternatives to our product such as:

● Jira

Jira is a software development tool used by agile teams to plan, track and release

software. Jira Software supports Scrum, Kanban, a hybrid model or another unique

workflow.

● Clickup

ClickUp is a cloud-based collaboration and project management tool suitable for

businesses of all sizes and industries. Features include communication and

collaboration tools, task assignments and statuses, alerts and a task toolbar.

● Gitlab

GitLab is an open DevOps platform, delivered as a single application.

8.1.4 Product overview

8.1.4.1 The product's role in the user environment

TaskFlow is a system where users can create a workplace and invite other users to the

workplace. The product is going to be used as a tool to plan a project, a phase or some

individual tasks. However, The system is going to be the platform where the user is going to

save, create and save the tasks, and assign these tasks to other users. Moreover the user might

be able to mark these tasks as done or doing and track the progress of a project or a phase.

The project leaders will be always able to edit projects so they can reach the idea of an agile

process.

8.1.4.2 Assumptions and dependencies
The target group for this system is the largest dependency. If the target group is changed

during the project we would need to redefine the users and the user roles in their entirety.

This system software does have some prerequisites, e.g. the type of projects the software is to

manage. Tech and development projects will match well with this software, like short and

small scaled systems to bigger scrum projects in large scale.

62

A field in which this software is not ideal to be used is the construction industry, where there

are some guidelines that are not taken into account. This software is also not suitable for

maintenance projects or continuous tasks that do not have a clarified start or end point, with

no deployment.

8.1.5 Functional properties of the product

Function Description Priority Est. Hours

General security in

storing data

Safe to create a user

with sensitive

information

High 20

Site navigation The user should be

able to easily

navigate between

the pages in the

webapp

High 10

create a user and log

in using Google

OAuth 2.0

A function that

make it possible for

user of the system to

get access to their

saved information

High 40

Edit user Update the personal

information when

needed, this includes

changing the user’s

password also

low 0 “future work”

Log out A function that Medium 15

63

deletes locally

stored authorization

tokens and redirects

the user to the

landing paged

Decide to stay

logged in

User receives a

access token with

longer durability

than the default

tokens

Low 0 “future work”

Create / edit a

workplace

Users of the system

will be able to create

and organize their

workplaces

High 30

Create / edit project A user will be able

to create a project

workspace where

they can manage

members and tasks

High 20

Edit project

information

A project lead will

be able to edit the

information

surrounding the

project, e.g. name,

publicity, scope and

so forth.

High 10

Create/edit phases A project lead can

create different

phases for the

project, e.g.

High 50

64

planning phase,

documentation

phase, sales/release

phase and so on

Create/edit tasks A project member

can create a task in a

given project. This

task can have

subtasks and have

dependencies to

other tasks

High 50

Monitor full project

status overview

A project lead or a

project monitor can

see the progress on

the project, the tasks

completion rate,

burndown charts,

completion

percentages, sprint

progress and ...

High 30

Create / edit a

graphical roadmap

of tasks with

dependencies

Most of the tasks in

the projects are

hidden until they are

relevant and ready to

be worked on, and

the team has an

overview of the

entire work process

of the project

High 40

Users can Create / The main task me be High 30

65

edit subtasks thought of as an epic

when it has several

subtasks

66

8.1.6 Non-functional properties and other

requirements

● Web-application in React

● Backend created in Golang

○ Monolith

○ GraphQL

○ Should be relatively fast

● The project should be made with data-gathering in mind

○ NoSQL-database

● Docker-images for:

○ Docker-compose

○ Database

○ Server

○ WebApp

● Mono-repo in Github

● Google-authenticator

● WCAG coverage

● 85+% test coverage on server

8.1.7 References
- https://www.trustradius.com/products/jira-software/reviews

- https://www.softwareadvice.com/project-management/clickup-profile/

- https://about.gitlab.com/what-is-gitlab/

67

https://www.trustradius.com/products/jira-software/reviews
https://www.softwareadvice.com/project-management/clickup-profile/

8.2 System Documentation
Version 1.0

68

8.2.1 Abstract

This document’s purpose is to illustrate and model how the system created in this project

operates on different levels of abstraction. We look at how the system's biggest parts

communicate and interact. Further we go deeper into details about the project structure, usage

of the system, source code documentation, system securities, continuous integration and other

models describing different parts of the whole project. The document is connected to the

Taskflow thesis main report.

8.2.2 System Architecture

The figure describes the system architecture of Taskflow application. The two main

components are client and server. The client is where the system has user interfaces and an

apollo client which will send and receive http requests to and from the server. when a page

requires some data, a graphql schema will be created and sent as an http-request to the server.

However, when the server receives a request from the client it will find out which type of

request it is, then the request will be sent to the authentication package to find out whether the

request is sent from a logged in user or not logged in user. After that the request will be sent

to the graph package so the resolvers will be invoked. When a resolver gets a graphql schema

69

it will handle the request contained in the schema, and the resolver most likely will request or

send data to the database, after that the resolver will return a response to the client using the

server.

There is a special use case when the system needs to log in a user. The login request starts

from the login page, this page will send a request to OAuth provider to log in a user, if the

user is successfully logged in the provider will send back an authentication token, this token

will be sent to the server as an http request to the login endpoint. Login resolver will send a

validation request to the OAuth provider to make sure that the token is valid, after getting the

response from the provider the request will be handled as a normal request described in the

previous section.

8.2.3 Project Structure

├── Tasksflow-Bachelor /

│ ├── client /

│ │├── node_modules /

│ │├── public /

│ │├── src /

│ ││ ├── components /

│ ││ ├── graphql /

│ ││ ├── pages /

│ ││ ├── index.js

│ │├── Dockerfile

│ │├── README.md

│ ├── service1 /

│ │├── auth /

│ │├── db /

│ │├── graph /

│ │├── helpers /

│ │├── templates /

│ │├── tests /

│ │├── Dockerfile

70

│ │├── server.go

│ ├── Github /

│ │├── workflows /

│ ││├── go-c.yml

│ │└──

│ └──

└──

This figure shows how Taskflow project is organized. The main two folders inside the project

are client and service1.

The client folder contains all folders and files needed to create UI-components. inside the

client a node_module folder can be found, this folder is where all the installed external

libraries are saved, public folder is where the public data can be saved for example public

pictures, and src folder is where the programmed code is, inside src folder there is a

components folder, this folder contains all the UI components needed to create Reactjs

components. The graphql folder contains all queries and mutations which are sent to the

server inside html-requests, under graphql there is a file called index.js, this file is used to run

the client.

The service1 folder contains the server of the application. All the contained folders are

necessary packages to create server endpoints.

Finally, the Github folder is where the .yml file is used to create actions in Github.

Class Structure

Based on the nature of the server structure a class diagram is not necessary, as there are no

connections or interactions between the different “classes” (structs) on a class based level.

8.2.4 Enhanced entity-relationship (Database model)

71

This database model shows the relationship between entities in Taskflow database. Taskflow

uses Mongodb as the main database where all data is stored.

The entity-relationship diagram shows clearly that the user entity is the core of the database.

This corresponds to the product's use cases where the user is controlling the most of the

functions. The rest of the dependencies are built up hierarchically, where the organization

which is also called workplace in frontend is on the top of the hierarchy, and projects are next

on, under projects there is the entity of phases and the entity of tasks at the same level

depending on whether the created task is contained on a phase or not. finally the subtasks

entity comes under tasks.

8.2.5 Server API resources
The server uses graphql endpoints. The documentation of these endpoints are attached as

html pages. See the attached folder “graphql Docs”

To run these html pages, the folder can be unzipped and inside the folder called schema, there

is a file called index.html, running this file in any web browser will give an overview of the

documentation of the endpoints. For example the schema of a project will be shown as

following:

72

8.2.6 Security

For a secure login system the project utilizes Oauth2. Oauth2 is an authorization protocol that

is used as an industry-standard for authorization flows for any user based application. On

login our system prompts a Google login form, asking the user to choose an existing Google

account. When the user chooses an account we send a request to Google. If the request is

authorized by Google, our service that hosts the login functionality gets a grant, this grant is

sent back to the client. Then the client sends this grant back to Google to return an access

token if the grant is valid. This access token from Google is what we use to validate the user

trying to access the system. On receiving a valid token, we create our own tokens and sign

them with our server’s signature. These two tokens are what separates a logged in user with a

non-logged in user. We use JWT (JSON Web Tokens) to create these tokens which are refresh

and access tokens.

● Access token: This token is valid for 60 minutes from its creation time. The token is

used to store information about the user logged in such as user ID and whether the

user is an admin/owner of the workplace. the expiry time is stored as UNIX

TimeStamp example:

- eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhZG1pbiI6MSwib3duZXIiOjEsInRva2VuRXhwaX

JhdGlvbiI6MTYyMDQwNTQzNiwidXNlcklEIjoiNjAyM2YwNGFlNGM2MTQ0ZDEyNTI5ZTQ3In0.

0SgMYYa3m-IyLu2yxRnSNDAZEXt7ROEyB8dWzQeo7ss

- {

- "admin": 1,

73

https://jwt.io/

- "owner": 1,

- "tokenExpiration": 1620405436,

- "userID": "6023f04ae4c6144d12529e47"

- }

● Refresh token: It is valid for 72 hours from creation time. The token is used to refresh

the access token as long as he/she uses the system. Like access tokens we store

tokenExpiration and user ID in the token encrypted by using JWT.

To make the system even more secure we have written middleware functionality that checks

both tokens and validates the user on login. If we have a valid user, they will get information

from the database, resolved from the graphql server. However, if the user is not a valid user,

either one of the tokens has a false signature, or some hacker tries to use XSS or an injection

to access server data, they will be denied authorization by all secure methods resolving data

from the server.

In the client tokens the middleware sets some claims based on data stored in the database. In

these claims are user workplace roles, split into “Owner” and “Admin”. Only these roles can

edit certain information, for example the workplace members, name and description. If a user

tries to edit these parameters, either by having a logged in user or via injection, it will be

denied by the resolver if the right to edit is not set in the claims. Also, an injection or XSS

attack to set the claims by making a false token will be denied access by the middleware. We

also avoid Cross-site injection by using cookies and disabling the sameSite attribute and use

our domain as domain attribute.

8.2.7 Installation and executables

List of the most important external libraries:

● react-flow-renderer: A library for building node-based graphs (we used it to create a

graphical roadmap)

● jwt-decode: A library that helps decoding JWTs tokens which are Base64Url encoded.

● graphql: The JavaScript reference implementation for GraphQL.

● react: a JavaScript library for creating user interfaces.

● react-sprint: spring-physics based animation library.

74

https://www.npmjs.com/package/react-flow-renderer
https://www.npmjs.com/package/jwt-decode
https://www.npmjs.com/package/graphql
https://www.npmjs.com/package/react
https://www.npmjs.com/package/react-spring

● @apollo/client: Apollo Client is a fully-featured caching GraphQL client.

● gqlgen: Go library for building GraphQL servers.

● jwt-go: A Golang implementation of JWT, used to create and encode tokens

The project is a web application and will be hosted for development and a production build.

You can find it here <https://task-flow-1.herokuapp.com/>

However, if you want to install the system, you have to contact Favn to get access to the

repository, then you have to pull the code from

“https://github.com/favnsoftware/taskflow-bachelor”.

● Server:

- download golang from: https://golang.org/dl/

- create a .env file in the following route “taskflow-bachelor/service1”, then fill

the .env file with the following:

FRONTEND_HOST= <Your frontend host>

DOMAIN = <your domain to let the server know which domain to set

cookies. for example, .localhost>

- on your terminal run the following command: cd service1

- then run: go get

- and finally run: go run server.go

● Client:

- download nodejs from: https://nodejs.org/en/download/

- add .env file in the following route “taskflow-bachelor/client”, and fill it with

the following variables:

REACT_APP_BACKENDHOST= <your backend host for exmaple,

http://localhost:8080/query>

- on your terminal run: cd client

- then run: npm install

- and finally run: npm start

75

https://www.npmjs.com/package/@apollo/client
https://github.com/99designs/gqlgen
https://github.com/dgrijalva/jwt-go
https://github.com/favnsoftware/taskflow-bachelor
http://localhost:8080/query

8.2.8 Source code documentation

Documentation of the source code can be found as an attachment folder called GoDoc. The

documentation is html pages which describe how the code in the server side (service1) was

developed, and this documentation can be used for further development.

To run these html pages, the folder can be unzipped and inside that folder there is a file called

index.html, running this file in any web browser will give an overview of the documentation

of the code. An example on how Godoc looks like:

This documentation is created by the godoc library. However, the server is a gqlgen server

which creates resolvers automatically based on a file called schema.graphqls, these resolvers

76

https://blog.golang.org/godoc
https://github.com/99designs/gqlgen

are created but not exported, so it is not possible to create GoDoc for these resolvers.

8.2.9 Continuous Integration and testing

Github Actions are used to continuously run tests and deploy code. The application is splitted

into two systems, client and server, both systems are completely separated from each other.

Therefore the hosted application can be found as two projects on Heroku. To ensure that these

systems work as expected when a new code is pushed to Github main branch, we run CI/CD

in Github Actions. The main goal is to create Docker images of each system, run tests on

these images and when these tests are passed, the code can be pushed to the main branch and

the docker image can be deployed on the cloud service Heroku.

The first step is to run tests. To do so a Golang environment is set up in an Ubuntu container,

after setting up the environment the tests can be run, and if these tests are passed, the code

can be pushed to the main branch. However, to deploy the system on Heroku two different

docker images are created, and these two images are deployed using a github library called

heroku-deploy.

77

https://github.com/AkhileshNS/heroku-deploy

When it comes to testing the code is tested by using the unit testing package for Golang. This

means only the server code is unit tested and the client is in general manually tested while

developing. However the unit tests for the server are continuously created to cover all

database methods. These tests are created at the same time when the developers started

planning database structure and updated throughout the project. Running the command <go

test -cover fmt> in taskflow-bachelor/service1 gives the percentage tested code. When

delivering the product 95.1% of the code on the server side is covered by tests.

The deployed versions of the code are also tested on a platform called GTmetrix. The website

deployed on Heroku gets 91% reate on code structure and 70% on performance. The

performance results showed that the website needs some improvements, mainly serving static

assets with an efficient cache policy.

While the website hosted on App Engine gets 100% rate on code structure and 97% on

performance.

78

https://golang.org/pkg/testing/
https://gtmetrix.com/
https://task-flow-1.herokuapp.com/
https://task-flow-1.herokuapp.com/

79

8.3 Process Documentation
Taskflow
version 1.0

80

8.3.1 Labor Agreement

81

8.3.2 Gantt Chart

82

8.3.3 Scrum Burndown Charts

8.3.3.1 Sprint 1

Total time estimated for the sprint: 120 Hours
Actual Burndown 120 96,5 69 44,5 21 0

Ideal Burndown 120 96 72 48 24 0

Estimate Remaining hours on task as of day n

Sprint Task Responsible 0 1 2 3 4 5

Make react
project
w/CleanUp All (Main Alex) 4 1 0 0 0 0

Set up
MongoDB Alexander, Gaute 8 5 0 0 0 0

Make testing
Go server Gaute, Mohammad 36 33 26 10 0 0

Connect the
stack All 10 10 0 0 0 0

Scrum Rituals All 3 2,5 2 1,5 1 0

Set up Git/CI Gaute, Mohammad 5 4 4 4 0 0

Frontend
basics Alexander 12 9 5 2 0 0

Any
Documentatio
n All 22 16 16 13 6 0

Make
backend
types/Testing
types Gaute, Mohammad 20 16 16 14 14 0

83

8.3.3.2 Sprint 2

Actual Burndown 192 177,5 147 122 103 84 60,5 34 5

Ideal Burndown 192 168 144 120 96 72 48 24 0

Time est. total: 192 Estimate Remaining hours on task as of day n

Sprint Task Responsible 0 1 2 3 4 5 6 7 8

Create a user Moha/Alex 10 7 4 3 1 1 1 0 0

Login with
OAuth 2.0 Moha/Alex 25 23 18 10 7 5 4 0 0

Log out Moha/Alex 10 10 10 10 10 10 7 5 0

Other token
functionality Moha/Alex 15 13 13 13 7 3 3 2 2

userAccess in
resolvers and
frontend All 15 15 15 15 15 15 8 1 0

Any
documentation All 5 5 5 5 5 2 0 0 0

Scrum rituals All 2 2 1,5 1 0,5 0 0 0 0

Create & edit
organization Gaute 18 13 11 8 7 5 3 0 0

Organization
overview Gaute 15 15 9 7 6 4 2 2 0

Invite / Manage
members in org Gaute 10 10 7 3 2 2 2 2 2

Make necessary
endpoints Gaute 10 9 7 4 2 1 1 1 1

84

Resolvers
backend (With
testing) All 20 19 10 7 5 3 1 1 0

Create project All 7 7 7 7 7 7 6 4 0

Project
overview All 10 10 10 10 10 9 8 6 0

Connect
Users/Projects/
Orgs All 10 10 10 10 10 10 8 5 0

Demo Styling /
Testing (Orgs) All 10 9,5 9,5 9 8,5 7 6,5 5 0

8.3.3.3 Sprint 3

Actual Burndown: 232 224 193,5 175,5 157,5 132 106,5 88 70 48 12

Ideal Burndown: 232 208,8 185,6 162,4 139,2 116 92,8 69,6 46,4 23,2 0

Time est. total: 232
Estima

te Remaining hours on task as of day n

Sprint Task Responsible 0 1 2 3 4 5 6 7 8 9 10

Create graphical
roadmap Moha / Gaute 80 80 70 66 60 52 40 32 22 16 3

Edit the roadmap Moha / Gaute 45 45 40 36 34 30 28 26 18 12 3

85

Add project
members / lead /
monitor Alexander 10 10 10 9 8 4 0 0 0 0 0

Assign tasks and
subtasks Gaute 10 9 8 8 7,5 7,5 7,5 5 5 3 0

Create a project
with at least one
phase Alexander 10 10 5 5 3 0 0 0 0 0 0

Add a phase to a
project Alexander 10 10 10 9 9 5 2 2 2 0 0

Create a task Gaute 12 10,5 10,5 7 4 2,5 2 2 2 1 0

View assigned tasks Gaute 13 11 8 7 7 6,5 6 5,5 5,5 4 0

Input progress or
mark as done (task)

Gaute /
Alexander 10 9 5 4 4 4 4 3,5 3,5 3 0

Edit my own tasks Gaute 5 4,5 4,5 2 1 0,5 0,5 0,5 0,5 0 0

Allocate tasks to a
phase Alexander 5 4,5 4 4 4 4 4 4 4 3 0

Change related task
phase Alexander 5 4,5 4,5 4,5 4,5 4,5 4 4 4 4 4

Create tasks in a
project / project tag Alexander 4 3,5 3 3 3 3 2 2 2 2 2

Archive a task Gaute 4 3,5 3 3 0,5 0,5 0,5 0,5 0,5 0 0

Edit phase-name Alexander 4 4 3 3 3 3 1 0 0 0 0

Create subtask Gaute 5 5 5 5 5 5 5 1 1 0 0

8.3.3.4 Sprint 4

86

Actual
Burndown: 218 207 186,5 165,5 148 136 120 84 67 58 28 8

Ideal
Burndown: 218 198 178 159 139 119 99 79 59 40 20 0

Time est. total: 218 Estimate
Remaining hours on task as of
day n

Sprint Task Responsible 0 1 2 3 4 5 6 7 8 9 10 11

Project: Error
handling & logic
rules feedback when
creating and editing Alexander 13 12 12 10 4 3 1 1 1 1 0 0

Phase: Error
handling & logic
rules feedback when
creating and editing Alexander 9 9 9 9 8 5 2 1 1 1 0 0

Task: Error handling
& logic rules
feedback when
creating and editing

Gaute /
Alexander 9 9 9 9 9 9 8 4 4 4 3 1

Subtask: Error
handling & logic
rules feedback when
creating and editing

Gaute /
Alexander 9 9 9 9 9 9 9 4 4 4 3 1

Fix styling of nodes
in roadmap

Mohammad /
Gaute 8 2 1 1 1 0 0 0 0 0 0 0

Convert roadmap to
flowchart (series ->
parallel -> series)

Mohammad /
Gaute 16 14 9,5 6 2 0 0 0 0 0 0 0

Finalize logic in
roadmap and add
algorithm to check
for loops

Mohammad /
Gaute 16 14 6 2,5 0 0 0 0 0 0 0 0

Dropdown for
multiple states in
tasks All 6 6 6 6 6 6 6 6 6 6 6 6

Optimize tasklist UI
(change to
component, instant
update when state
changed, remove
buttons the user
cannot click) Alexander 15 15 15 15 14 14 13 2 2 2 0 0

Optimize create-task
and edit-task UI All 10 10 10 3 3 3 3 3 3 1 1 0

87

(search-dropdown
instead of current
menu)

Finalize archive task,
phase & project logic
(all subelements are
also archived &
parent's progress is
modified)

Alexander &
Gaute 32 32 32 32 32 32 32 32 25 22 10 0

Add subtasks to
archived Gaute 10 10 3 2 2 2 0 0 0 0 0 0

Refactor roles
resolvers for
organization and
project roles Gaute / Moha 20 20 20 20 20 20 18 15 10 8 2 0

Add
user-authorization as
claims in Token (Not
project) Gaute / Moha 10 10 10 10 10 10 10 5 0 0 0 0

Set up refetch-token
& automatic
refetching of new
access- and
refresh-token Mohammad 15 15 15 11 9 5 0 0 0 0 0 0

Optimize
user-authorization
helpers Moha / Gaute 15 15 15 15 15 15 15 10 10 8 3 0

Add new & optimize
current refetches in
Project-view Alexander 5 5 5 5 4 3 3 1 1 1 0 0

8.3.3.5 Sprint 5

88

Actual Burndown: 192 178 135,5 119,5 109 81,5 57,5 38 6

Ideal Burndown: 192 168 144 120 96 72 48 24 0

Time est. total: 192 Estimate
Remaining hours on task as of

day n

Sprint Task Responsible 0 1 2 3 4 5 6 7 8

Deploy/host Website Moha 27 23 12 7 3 0 0 0 0

User Testing within Favn /
Others All 20 20 19 17 16,5 12 12 8 0

Catch up with
documentation All 30 25 22 19 16 13 13 11 3

Implement functionality
based on feedback All 28 25 14 13 12 7 5 3 1

Implement design changes
based on feedback All 20 18 14 12 11 7 5 3 1

Make form for user testing All 10 10 10 10 10 8 0 0 0

Document user testing All 5 5 4,5 4,5 4,5 4,5 3,5 2 0

Make datasets from user
testing data All 5 5 5 5 5 5 4 2 0

Bug Fixes before first
deployment All 37 37 25 22 21 18 10 4 0

Microservices (?) All 5 5 5 5 5 5 5 5 1

Continuous deployment Moha 5 5 5 5 5 2 0 0 0

89

8.3.4 Scrum retrospective & review

8.3.4.1 Sprint 1
Review

● What have we done:
○ Frontend basics are set up
○ Apollo client is set up
○ Back-end basics are set up
○ Database is set up
○ Stack is connected
○ Continuous integration with mock database is set up
○ Created basic tests for server
○ Planning documentation such as domain model and sequence diagrams
○ standard frontend components are created, such as landing page and test page

● What was planned but not implemented
○ U06 (navigation between several organization) is not completed

Retrospective

● What worked
○ Good communication among the team members and with supervisors
○ Good collaboration in Git
○ Prioritized well what was to be done, and we got done the most of the planned work
○ Good division of labor, everyone always knew what they were going to do
○ Good planning
○ Good at attendance
○ Learning to use new technologies worked well

● What could have been better
○ Use something else than the Meet.idi.ntnu solution to meet with supervisors
○ Slightly limited sprint, could last longer and thus spend less time on scrum artifacts

8.3.4.2 Sprint 2

Review

● What have we done:
○ Created the functionality of workplace
○ Login functionality using OAuth 2.0
○ Functionality of creating a project
○ Tested the created functionalities
○ Created user system based on OAuth 2.0

● What was planned but not implemented
○ invite users to an organization using email
○ Refresh token for the user logged in

90

■ Not prioritized function when the goal is reaching MVP
○ Integrate user functionality with project

■ Assign roles

Retrospective

● What worked

○ Good feedback within the team on functions created
○ Good Attendance
○ Good collaboration on Git branches
○ Maintained the motivation to work despite the workshop at NTNU

● What could have been better

○ Some use issues in Git. We have to make sure that the pushed code is really pushed
before making changes on other branches.

■ measures: when branch-merging: thoroughly test that the functionality still
works and that the content is correct

○ Somewhat better communication throughout the sprint, especially considering design
and prototypes

■ measures: Create and review clear wireframes before development begins
○ Better accessibility between team members.

■ measures: every two hours join discord meeting and take a quick round of
progression

8.3.4.3 Sprint 3

Review

● What have we done:
○ Roadmap

■ Visualizes the tasks in one phase
■ Set up dependencies
■ Edit tasks and task states
■ create new tasks

○ Project & Phases
■ project overview
■ Phase overview
■ Phase task list
■ Changing states in underlying tasks and subtasks changes the statistics for

phase & project
■ Preview of Roadmap
■ Edit project & edit phase, add phases, add states in a phase

○ Tasks & tasklist
■ A list of tasks user has created
■ A list of tasks user has been assigned
■ Overview of archived tasks

91

■ Subtasks
■ States of a task
■ Archiving of tasks and subtasks

● What was planned but not implemented
○ Fix add dependencies logic in roadmap
○ Change related tasks in phase (Frontend)
○ Create a task in a project (can be done in a phase, team decided that it is not needed in

a project)

Retrospective

● What worked

○ Very good collaboration up to sprint review
○ Good demo testing, well planned and no errors
○ Very well done demo with a Favn
○ Communication was good this sprint
○ Breakfast together
○ Good cooperation in the office

● What could have been better

○ Small changes in the same file across different branches led to a lot of unnecessary
merging through Git

○ Time from merge-request to merge-completion could have been shorter
○ Smaller tasks in burndown chart
○ The sprint could have been shorter, caused a burnout towards the end

8.3.4.4 Sprint 4

Review

● What have we done:
○ Roadmap

■ Styling of the nodes
■ logic of tasks dependencies

○ Project & Phases
■ Error handling and logic rules feedback both in project, phases, subtasks and

tasks
■ logic of archive phases and projects
■ optimize refetch for automatic reload

○ Tasks & task lists
■ Optimize task lists UI
■ optimize create task and edit task UI
■ logic of archive tasks and subtasks

○ workplace
■ Refactor roles in backend

92

○ Users
■ add user authorization claims in token
■ set up refresh token
■ optimize user authorization

● What was planned but not implemented
○ Dropdown for multiple states of phase and tasks

Retrospective

● What worked

○ Very good collaboration up to sprint review
○ Collaboration on Git merges
○ Meetings several times per work day
○ planning

● What could have been better

○ More documented code so others can use the same code for development
○ Kanban board is not updated frequently

8.3.4.5 Sprint 5

Review

● What have we done:
○ deploy and host the website
○ user testing
○ catch up documentation
○ implement functionality and design based on feedback
○ Document user testing and results
○ Bug fixes
○ continuous deployment

● What was planned but not implemented
○ Microservices

■ It was planned to implement this tasks if we get time

Retrospective

● What worked

○ effective implementation of user testing
○ Meetings during the day
○ Demo of the results
○ Use of Kanban board
○ sprint retrospective

● What could have been better

93

○ Documentation one place could be more clear

8.3.5 Notices of meetings

8.3.5.1 Notice 1

Notice of meeting: Bachelor thesis 79 Micro Services

Date and time/room: Thursday 14.01.2021 kl 13:00 – 14.00, room: meet.idi.ntnu.no
The following persons are summoned:
 Sveinung Øverland
 Anders Hallem Iversen
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen
 Donn Morrison

Agenda:
Case 01/2021 Introduction
Case 02/2021 Comments on the notice of meeting
Case 03/2021 Any general Questions
Case 04/2021 Comments on the vision document
Case 05/2021 Comments on the product backlog
Case 06/2021 Any possible questions

The meeting is scheduled to end at approx. 14:00. Contact the undersigned if you do not have
the opportunity to come.

Mvh
Gaute Trondheim 13.01.2021

94

8.3.5.1 Notice 2
Notice of meeting: Bachelor thesis 79 Micro Services

Date and time/room: Thursday 28.01.2021 kl 13:00 – 14.00,
Place: meet.idi.ntnu.no
The following persons are summoned:
 Sveinung Øverland
 Anders Hallem Iversen
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen
 Donn Morrison

Agenda:
07/2021 Introduction
08/2021 Sprint 1 review / feedback
09/2021 Planning sprint 2 feedback
10/2021 Other questions from the team
11/2021 Any other questions

The meeting is scheduled to end at approx. 14:00. Contact the undersigned if you do not have
the opportunity to come.

Mvh
Gaute Trondheim 20.01.2021

8.3.5.1 Notice 3
Notice of meeting: Bachelor thesis 79 Micro Services

95

Date and time/room: Thursday 18.02.2021 kl 13:00 – 14.00, room: Google meet
The following persons are summoned:
 Sveinung Øverland
 Anders Hallem Iversen
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen
 Donn Morrison

Agenda:
12/2021 Introduction
13/2021 Sprint 2 review + feedback
14/2021 Planning sprint 3
15/2021 Other questions from the team
16/2021 Any other questions

The meeting is scheduled to end at approx. 14:00. Contact the undersigned if you do not have
the opportunity to come.

Mvh
Gaute Trondheim 18.02.2021

8.3.5.1 Notice 4
Notice of meeting: Bachelor thesis 79 Micro Services

Date and time/room: Thursday 11.03.2021 kl 13:00 – 14.00, room: Google meet
The following persons are summoned:
 Sveinung Øverland
 Anders Hallem Iversen
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen
 Donn Morrison

Agenda:
17/2021 Introduction
18/2021 Sprint 3 demo and feedback
19/2021 Discussion about sprint 4
20/2021 Other questions from the team
21/2021 Any other questions

The meeting is scheduled to end at approximately 14:00. Contact the undersigned if you do
not have the opportunity to come.

96

Mvh
Gaute Trondheim 10.03.2021

8.3.5.1 Notice 5
Notice of meeting: Bachelor thesis 79 Micro Services

Date and time/room: Thursday 13.04.2021 kl 13:00 – 14.00, room: Google meet
The following persons are summoned:
 Sveinung Øverland
 Anders Hallem Iversen
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen
 Donn Morrison

Agenda:
22/2021 Introduction
23/2021 Sprint 4 demo and feedback
24/2021 Discussion about user testing
25/2021 Other questions from the team
26/2021 Any other questions

The meeting is scheduled to end at approximately 14:00. Contact the undersigned if you do
not have the opportunity to come.

Mvh
Gaute Trondheim 07.03.2021

8.3.6 Meeting minutes

8.3.6.1 Minute 1
Minutes of meeting bachelor thesis (Taskflow) 79
Date and time:14.01.21 kl 13:00-14:00

Place: meet.idi.ntnu.no

Present at meeting:
Sveinung Øverland (Favn)

 Anders Hallem Iversen (Favn)

97

 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen
 Donn Morrison (Supervisor)

Absent: None

Chair: Alexander

Case 1/2021.

Introduction of team members, supervisor and product owner.

Case 2/2021.

Meeting notice looks good, we will keep the same format for future meetings.

Case 3/2021.

Answers to some general questions the team members had about documentation
templates or scrum artefacts. A burn-up chart that shows progress over all sprints is not
required by the product owner. The vision document is to be submitted for review by the
supervisor when the first draft is done. User needs must describe overall problems that
must be solved by the system and not functional features or detailed situations like user
stories.

Case 4/2021.s

The product owner comments on the vision document, what has been done so far looks
good.

Case 5/2021.

The product owner comments on the product backlog, overall, it looks good. They will
read through the backlog more closely later and give some kind of feedback either via
mail or slack.

Case 6/2021.

No further questions asked.

98

14.01.2021, Gaute

8.3.6.1 Minute 2
Minutes of meeting bachelor thesis (Taskflow) 79
Date and time:28.01.21 kl 13:00-14:00

Place: meet.idi.ntnu.no

Present at meeting:
Sveinung Øverland (Favn)

 Anders Hallem Iversen (Favn)
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen
 Donn Morrison (Supervisor)

Absent: None

Chair: Alexander

Case 7/2021.
Introduction

Case 8/2021.
Sprint 1 review

● Comment (Favn): domain model looks good and contain the most important
parts

Case 9/2021.
Planning sprint 2 / feedback
priority list (Favn)

● Log in function
● Gantt-diagram
● Create an organization function
● Invite member (If we have time)

Case 10/2021.
Questions from the team:

● Should we create users using Google login and email/password?
- (Anders): It is enough with Google login for now.

● Do you have any tips for the use of oAuth
- (Donn) recommended us to read well through oAuth2 because there

are several ways to make mistakes.
Case 11/2021.

Any other questions:
● (Anders) wants us to send the domain model and the Gantt chart when we

finish them

99

Tips:
(Sveinung) Tips about microservices:

1. do not create too many services
2. testing locally can be difficult if we have too many services

No further questions asked.

28.01.2021, Mohammad

8.3.6.1 Minute 3
Minutes of meeting bachelor thesis (Taskflow) 79
Date and time: 18.02.21 kl 13:00-14:00

Place: Google Meet

Present at meeting:
Sveinung Øverland (Favn)

 Anders Hallem Iversen (Favn)
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen

Absent: Donn Morrison (Could not come, because he needs to focus on a research paper)

Chair: Alexander

Case 12/2021.
Introduction

Case 13/2021.
Sprint 2 review / feedback

● Comment (Favn): Google login is implemented well but it needs more testing.
● members in an organization should not have access settings page, admin and owner of

an organization do not need to be members.

Case 14/2021.
Planning sprint 3 / feedback
The goal for this sprint is to get tasks and projects connected together, and show them
in a graphical roadmap.

Case 15/2021.
Questions from the team:

● Is it important to get the user functionality implemented perfectly now, for
example implementing refresh token?

- (Favn): It is not necessary now, the main focus should be the roadmap.
Case 16/2021.

100

Any other questions:
● (Anders) Is it possible to host the website soon?

- (Team members) We prefer to wait until next sprint, so we have more
functionable website

No further questions asked.

18.02.2021, Mohammad

8.3.6.1 Minute 4
Minutes of meeting bachelor thesis (Taskflow) 79
Date and time: 11.03.21 kl 13:00-14:00

Place: Google Meet

Present at meeting:
Sveinung Øverland (Favn)

 Anders Hallem Iversen (Favn)
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen

Absent: Donn Morrison (Could not come, he had a conference, and he suggested to have
meeting without him if we don’t need input from him)

Chair: Alexander

Case 17/2021.
Introduction

Case 18/2021.
Sprint 3 review / feedback

● Comments (Favn):
- The roadmap should have more flexible logic, so the users can add

some parallel tasks.
- All tasks do not need to have deadline date

Case 19/2021.
Planning sprint 4 / feedback
The goal for sprint 4 is to fix the UX/UI for the website and make roadmap more
functionable, and fix refresh tokens.

Case 20/2021.

101

Questions from the team:
● Is it preferable to start testing before UX/UI is finished?

- (Favn): we can wait until the design and user feedback are implemented
Case 21/2021.

Any other questions:
● (Sveinung) Is it possible to add repeating tasks (tasks which happen in a

period)?
- (Team members): We do not have this function today, but we can add it

in sprint 4
● (Anders) Can the team members add a roadmap for phases in a project?

- (Team members): We think the idea is a good idea, but we are not sure
if we have time for this. We can check this when we plan sprint 4

No further questions asked.

12.03.2021, Mohammad

8.3.6.1 Minute 5

Minutes of meeting bachelor thesis (Taskflow) 79
Date and time: 13.04.21 kl 13:00-14:00

Place: Google Meet

Present at meeting:
Sveinung Øverland (Favn)

 Anders Hallem Iversen (Favn)
 Gaute Wierød Rønning
 Mohammad Al Nayef
 Alexander Carlsen

Donn Morrison

Chair: Alexander

Case 22/2021.
Introduction

Case 23/2021.
Sprint 4 review / feedback

● Comments (Donn):
- Generally happy with design and functionality.

102

- Some bugs need to be fixed, some 422 errors in demo. Most likely
refetches failing.

- Happy with the security measures in place, both in server and in client.

Case 24/2021.
Planning User testing

● Next work period will be a mix between implementing feedback from user testing,
running user testing and updating the documentation

● Briefly starting to document the big parts and attachments of the main report.
● The work period will be designated as spring 5, however it will not be a feature based

sprint.

Case 25/2021.
Questions from the team:

● (Team members): “How is our current main issue related to the context of the
thesis?”
- (Donn): “I think that the main issue describes the thesis well.”

Case 26/2021.
Any other questions:

● (Donn): “How is the team planning to do user testing?”
- (Team members): We plan to firstly test internally in Favn AS. After

this we will try to implement some changes based on this data. Then
we plan to test with some bigger contacts who seemed interested to test
our product. All the test data will be compiled to usable data and
reflected over in the main report.

No further questions asked.

13.04.2021, Gaute

8.3.7 Time sheets w/ daily status

8.3.7.1 Alexander:

Week Date Hours Category Tasks

2

2021-01-13 7,5 Planning
Started making product backlog, spring backlog templates
and vision the document

2021-01-14 8 Planning
Start-up meeting w/Donn & Favn, worked further on
product backlog and vision document

103

2021-01-15 9
Backend, DB,
Frontend

Git-repo, backend skeleton, frontend skeleton, connecting
backend to DB, basic frontend components

2021-01-16

2021-01-17

2021-01-18

2021-01-19

3

2021-01-20 8
Frontend,
Backend

Connecting frontend to server through Apollo, server
configuration, testing queries from frontend to db

2021-01-21 7,5
Front End,
Planning

Enabling mutations from frontend to server, domain
models, displaying test data in frontend

2021-01-22 8,5
Frontend,
Backend

2021-01-23

2021-01-24

2021-01-25

2021-01-26 2 NTNU Lecture Lecture in science theory with Kristin, 2 hours on Zoom

4

2021-01-27 6 NTNU Lecture
Lecture in science theory with Kristin, 4 hours on Zoom.
Sidebar in frontend

2021-01-28 4 Backend
Update backend to work with new gql types, fixed test-task
update resolvers

2021-01-29 5

Planning,
Meeting,
Backend,
Documentation

Sprint 2 planning, Meeting with Favn & NTNU, Made Gant
diagram/roadmap & started on Oauth-2

2021-01-30 8
Backend,
Frontend

Implementing O-auth2 in frontend of service 1, attempting
to create service 2 as an authentication service

2021-01-31 8 Backend
Service 2, user authentication & interservice
communication

2021-02-01

2021-02-02

5

2021-02-03 7,5 Backend
O-auth2 authentication & login, validation of google
access-tokens server side

2021-02-04 8 Backend O-auth2: Login, refresh tokens and token renewal

2021-02-05

2021-02-06

2021-02-07 2 Frontend General UI components

104

2021-02-08

2021-02-09 2 Backend Project endpoints

6

2021-02-10 6
Backend,
frontend Project endpoints, project list UI

2021-02-11 7

Frontend,
backend,
testing Project view, endpoints, testing of project endpoints

2021-02-12 6,5
Frontend,
documentation

Project view, general UI components, documentation &
design

2021-02-13 2 NTNU Lecture "Vårt BA-project", main issue and vision/scope presented

2021-02-14

2021-02-15 8
NTNU
BA-Workshop

Workshop kickoff, meeting with students from BIO-ING,
writing work-agreement

2021-02-16 8
NTNU
BA-Workshop

Product owners presentation, working with our product
idea and main issue

7

2021-02-17 8

NTNU
BA-Workshop /
Frontend /
Docs / Backend

Our product idea presentation, watching other groups
ideas.

2021-02-18 7 Frontend

2021-02-19 5 Backend Endpoints for phases & projects

2021-02-20 8
Backend,
Testing Worked on endpoints & tests for projects, phases

2021-02-21

2021-02-22

2021-02-23

8

2021-02-24 7
Backend,
Frontend Project

2021-02-25 7
Backend,
Frontend Edit project

2021-02-26 5
Frontend,
Documentation UI for project

2021-02-27

2021-02-28 4
Backend,
Frontend UI & Endpoints for phases & edit projects

2021-03-01 2
Frontend,
Backend Edit phase

105

2021-03-02 2,5
Backend,
Frontend Allocate project members, lead & monitor

9

2021-03-03 7
Backend,
Frontend

Allocate project members, lead & monitor. Made
dropdown-menus for choosing project lead, addUser UI for
projects, remove user & uselist

2021-03-04 3 Frontend

2021-03-05

2021-03-06 8 Frontend
Improved phase-edit, project overview, project creation
and general components in frontend

2021-03-07 8
Frontend,
Backend UI-optimization

2021-03-08

2021-03-09 3 Frontend

10

2021-03-10 8
Frontend,
Backend

Implemented TaskList in PhaseOverview, as well as
CreateTask functionality and smaller UI related quality of
life improvements

2021-03-11 9
Frontend,
Backend

Post-merge bug-fixing on TaskLIst in phaseOverview and
editSubtasks, improved on how progress & weight is
updated in parent task, phase & project

2021-03-12

2021-03-13

2021-03-14

2021-03-15 2 Frontend
Refactored frontend design, tested alternative darkmode
designs

2021-03-16 5 Frontend Made all colors in frontend based on css-variables

11

2021-03-17 7 Frontend Implemented darkmode design, changed text & button UI

2021-03-18

2021-03-19

2021-03-20

2021-03-21

2021-03-22

2021-03-23

12

2021-03-24

2021-03-25

2021-03-26

106

2021-03-27

2021-03-28 7

Frontend,
Backend,
Documentation

Added input & logic-rules for project-creation in frontend
& backend, UI indicators, and a list of all planned
input-rules

2021-03-29 7
Frontend,
Backend

Added input-rules and UI-indicators for these for
EditProject, EditPhase, and AddPhase. Performed minor
UI-fixes in the afore-mentioned components

2021-03-30 8,5 Frontend
Created a general error-message component, implemented
it in all forms with input-rules

13

2021-03-31 9 Frontend

Redesigned CreateTask, made it inline & less
space-consuming. Created several custom dropdowns for
CreateTask & CreateSubtask component

2021-04-01 8 Frontend
Refactored tasklist, made task & subtask into components.
Redesigned subtasks

2021-04-02

2021-04-03 7,5
Frontend,
Backend

Added keyboard-shortcuts to CreateTask & CreateSubtask.
Refactored how task-states are updated & eliminated bugs
with negative progress.

2021-04-04

2021-04-05 8
Frontend,
Backend

Refactored Tasklist & its endpoints, added filtering of
tasks. Implemented tasklist in PhaseOverview. Made
input-rules in CreateTask/CreateSubtask

2021-04-06 2
Front End,
Planning

Minor UI fixes, planned future minor UI- & functionality
improvements

14

2021-04-07 8,5
Frontend,
Backend

Refactored EditTask, Archive subtask/task/phase/project
removes weight & progress from parents. Updated
assignedTasks UI.

2021-04-08 2 Frontend Fixed refetches in Project/PhaseOverview

2021-04-09 6,5 Frontend
Added EditSubtask, fixed bugs in EditTask/EditSubtask
regarding assignments, duration & refetches

2021-04-10

2021-04-11

2021-04-12 8 Frontend

Refactored Workspace-Settings, implemented new design,
made a new member list that merged admin- and member
lists. Added dropdown to modify member-authorization

2021-04-13 7,5
Frontend,
Meeting

Meeting with Favn. Redesigned TaskList, added
date-display & filtering based on if tasks are completed &
hide/show for subtasks. Restructured
CreateTask/CreateSubtask/EditTask-components

15 2021-04-14 8,5 Frontend
Made duration of tasks editable, fixed dropdown & search
for assigning user to task. Fixed update of parent tasks

107

weight & progress when subtask is edited. Restructured
PhaseOverview

2021-04-15 10
Backend,
Frontend

Fixed progress & weight being updated when Tasks &
Subtasks are archived/edited. Bug-fixing regarding adding
users to workspaces & refetching in project/phases. Added
limitations for date-input in Tasks/Subtasks & Phase

2021-04-16

2021-04-17

2021-04-18 3 Frontend
Bug-fixing & restructuring of refetches upon task/subtask
creation, editing & archiving

2021-04-19

2021-04-20

16

2021-04-21 8 Frontend

Redesigned Create- & Edit-Task components in roadmap.
Restructured EditRoadmap-page. Improved date-limits on
tasks. Attempted to make a kanban-board, but it was
scrapped since the team deemed it too time-consuming.

2021-04-22 8 Frontend
General polish of UI components. Fixed z-index issues on
dropdowns, improved UI & search in assignee selector

2021-04-23 8 Frontend
Renamed links & navbar-elements, renamed buttons,
restructured tasklist & phaseOverview

2021-04-24

2021-04-25

2021-04-26 8 Frontend Polishing & Quality of life improvements

2021-04-27 7,5
Backend,
Frontend

Worked on filtering of tasks in tasklist, as well as
implementing multiple assignees to a task

17

2021-04-28 7
Frontend,
Documentation

Polished UI of roadmap-page, added explanations of the
roadmap-guide & redesigned it. Worked on
sequence-diagrams

2021-04-29

2021-04-30

2021-05-01 11
Frontend,
Backend

Worked on filtering of assigned-tasks & created-tasks.
Added date-limitations to missing inputs. Creating a
subtask for the first time now resets its parent's progress &
weight. Removed unused endpoints.

2021-05-02 3 Backend Migrated project hosting to Google Cloud's App Engine.

2021-05-03 13
Backend,
Frontend

Improved & fixed filtering for my-tasks & created-tasks,
tried to display subtasks based on their deadline-date, not
their parents. Failed because of Apollo cache not merging
data correctly, and the reverted to- and improved upon the
old tasklist

108

2021-05-04 6

Testing,
Documentation
, Frontend

Fixed bug with AddMember to workspace, performed
usertest with Equinor & Tryg forsikring and updated the
domain-model

18

2021-05-05 2 Documentation Updated domain-models

2021-05-06 2 Documentation Worked on personal time-list

2021-05-07 4 Documentation Wrote on the bachelor report (Overview)

2021-05-08 5 Documentation Wrote on the bachelor report (Theory)

2021-05-09 6 Documentation Planned experiment

2021-05-10 5 Testing Performed experiments and data gathering

2021-05-11 6 Testing Performed experiments and data gathering

19

2021-05-12 6
Testing,
Documentation

Performed experiments and data gathering, as well as
statistical analysis of the results

2021-05-13 6 Documentation Wrote on the bachelor report (Methodology)

2021-05-14 6 Documentation Wrote on the bachelor report (Methodology)

2021-05-15 6 Documentation Wrote on the bachelor report (Results)

2021-05-16 5 Documentation Wrote on the bachelor report (Results)

2021-05-17 6 Documentation Wrote on the bachelor report (Discussion)

2021-05-18 6 Documentation Wrote on the bachelor report (Discussion & Conclusion)

20

2021-05-19 6 Documentation
Wrote on the bachelor report (Conclusion, Further work,
Introduction, Design decisions)

2021-05-20 6 Documentation Proof-reading of the bachelor report

Total hours 527,5

8.3.7.2 Mohammad:

Week Date Hours Category Task

2

2021-01-13 8 planning Product backlog, Project Vision

2021-01-14 8 planning
Meeting with Favn and Donn, Product backlog, user stories and
System requirements

2021-01-15 8
Documentation/
Backend Contact, Server setup

2021-01-16

2021-01-17

2021-01-18

109

2021-01-19

3

2021-01-20 8 Fullstack
Debugging some methods in resolver, Connect front end with
back end using Apollo

2021-01-21 6,5 Testing
Backend testing, some docker testing and small fixes in backend
structure

2021-01-22 8
Testing,
planning

Sat up the CI pipeline and created some tests, go through
requirements documentation

2021-01-23 6 Testing Created tests to backend

2021-01-24

2021-01-25

2021-01-26 3 NTNU Lecture
Lecture in science theory with Kristin, 2 hours on Zoom, saw
the 1 hour long video needed for the next lecture

4

2021-01-27 4 NTNU Lecture Lecture in science theory with Kristin, 4 hours on Zoom

2021-01-28 6
Testing,
planning

Planed the sprint 2 and it's documentation, some debugging for
the entire stack

2021-01-29 7 User, planning Meeting with Favn and Donn, create user oAuth, sprint backlog

2021-01-30 7,5
Backend,
frontend

created google oauth front end for login and send data to the
server, organization in server and som debugging

2021-01-31 4 Backend Micro services communication

2021-02-01

2021-02-02

5

2021-02-03 7,5 Backend User authentication and JWT token

2021-02-04 8 Backend Server middleware, and setting cookies

2021-02-05 7,5 Backend Login function

2021-02-06

2021-02-07

2021-02-08

2021-02-09 1 documentation Presentation of the main issue

6

2021-02-10 9
Backend /
frontend

Fix token expiration, and parse token. test user in context and
fix access to organization resolvers, meeting about main issue

2021-02-11 5,5 Frontend
Fix some user friendly functions in frontend, beside merging
user branch in main and some cookie functionality

2021-02-12 7 Frontend
Fixed a bug in login render, added log out, added org context to
cookie and read about Gomail package

2021-02-13 2 NTNU Lecture "Vårt BA-project", main issue and vision/scope presented

2021-02-14

2021-02-15 8
NTNU
BA-Workshop

Workshop kickoff, meeting with students from BIO-ING,
writing work-agreement

2021-02-16 8
NTNU
BA-Workshop

Product owners presentation, working with our product idea and
main issue

110

7

2021-02-17 6
NTNU
BA-Workshop

Our product idea presentation, watching other groups ideas.
Testing before demo.

2021-02-18 7
Planning/meeti
ng

Planning sprint 3, meeting with Favn and some some styling for
demo

2021-02-19

2021-02-20 8 Fullstack
worked with React flow library to create the roadmap in front
end based on data from backend

2021-02-21

2021-02-22

2021-02-23

8

2021-02-24 8 Fullstack
Added possibility to edit dependencies in tasks, show sorted

tasks in roadmap

2021-02-25 8 Frontend Show task details, and sort tasks in roadmap

2021-02-26 8
Frontend/testin

g
Connecting Roadmap and tasks together, add edit task in

roadmap and test it

2021-02-27

2021-02-28

2021-03-01

2021-03-02

9

2021-03-03 7 Frontend
Roadmap, update the roadmap when tasks updated, fixed some
bugs

2021-03-04 8 fullstack rules for adding edges in roadmap, added show tasks in phase

2021-03-05 6 fullstack remove edges + next tasks and fix tasks dependencies

2021-03-06 8 frontend
added roadmap to phase page, dynamic variables in roadmap,
show phases styling and testing

2021-03-07

2021-03-08

2021-03-09

10

2021-03-10 8 Frontend
navigation to roadmap from phase page, added add task to
roadmap and fixed a bug with remove task dependencies

2021-03-11 8

Planning,
testing,
frontend

Do some demo tests, meeting with Favn, working on roadmap
dependencies logic

2021-03-12 8
Planning,
frontend

Planning sprint 4, documentation, tasks check (before sett done)
in roadmap, research on algorithm for adding dependencies

2021-03-13

2021-03-14

2021-03-15

2021-03-16

11 2021-03-17

111

2021-03-18

2021-03-19 6
Frontend /
backend

Convert roadmap to flowchart (serie -> parallel -> serie), add
endpoint to backend to fetch tasks in phase

2021-03-20

2021-03-21

2021-03-22

2021-03-23

12

2021-03-24 8 Frontend
Fixed adding dependencies in roadmap (Added BFS algorithm)

fixed som styling in roadmap

2021-03-25 8 frontend

Fixed mark phase as done, added some error handling to
roadmap, finalize logic in roadmap, started reading about refresh
token

2021-03-26 6
backend/fronten

d
UI/UX in frontend, and some feedback for the user from

backend when something is wrong

2021-03-27 8
backend/fronten

d UI/UX in front end

2021-03-28

2021-03-29

2021-03-30

13

2021-03-31 7 Fullstack

Tested the flow of user authentication and changed the token
functionality to fit the refresh token function, fixed some styling
in roadmap

2021-04-01 8 Fullstack
added refresh token endpoint in backend, fixed the refresh token

functionality

2021-04-02 5 Backend
added claims to token in backend, and fixed the context in

backend so it contains orgId

2021-04-03 8 Frontend
Fixed claims in token to be used in frontend, fixed refreshing
tokens too many times

2021-04-04 4 Fullstack setting claims in frontend and using these claims

2021-04-05 7 fullstack
fixed user roles in frontend, added logic methods in roadmap,

fixed some styling and a backend bug in create task,

2021-04-06

14

2021-04-07 8 fullstack
User roles both frontend and backend, demo testing and bug
fixing

2021-04-08 6 frontend
Helped with logical errors and popups in frontend, read about
hosting and deployment

2021-04-09 7 fullstack
bug fixing, and testing. tried to deploy the server but it does not
work for now

2021-04-10

2021-04-11

2021-04-12

112

2021-04-13

15

2021-04-14 8 Fullstack
bug fixing after testing with colleagues, created docker image
for the server, added shortcuts guide to the roadmap

2021-04-15 8 Fullstack Bug fixes, user test, deployment(Not finished)

2021-04-16 7 Fullstack
Hosting, changes in code (set cookies moved to server, requests

to refresh token, get claims, and token changes)

2021-04-17 6 Fullstack
create .env files for frontend and backend and create testing
environment

2021-04-18

2021-04-19

2021-04-20

16

2021-04-21 7
Testing/Backen

d Continuous deployment, finishing up hosting

2021-04-22 7 Testing/Fix CI/CD testing, fix bugs, and user testing

2021-04-23 7 Testing/Fix
Fixed a bug in logout, make changes on .yml files after a request

from Favn,

2021-04-24

2021-04-25

2021-04-26

2021-04-27

17

2021-04-28 7 Fullstack
added setCurrentPhase (backend + UI + local storage), fixed

archive phase, bug fixes

2021-04-29 --

2021-04-30 8 Documentation Go doc, systemdokumentasjon

2021-05-01 7 Testing
Bug fixes (landing page / show name /UI for login and landing

page), user testing

2021-05-02

2021-05-03

2021-05-04 4 Testing Bug fixes (task dependencies "add and remove"), testing

18

2021-05-05 8
Testing/Docum

entation
User testing, write testing documentation, demo testing, small

bug fixes.

2021-05-06 7 Documentation
System documentation, Go doc (Created html files/pages for

offline docs)

2021-05-07 8 Documentation
System documentation (security, server, source documentation

and installation)

2021-05-08

2021-05-09 6 Documentation Main report (planning, OAuth, reading about API)

2021-05-10

2021-05-11 5
Documentation/

report Main report(Search algorithm, APIs)

113

19

2021-05-12 8
Documentation/

rapport User testing with Tryg, writing in Main report

2021-05-13 6
Documentation/

report
Main report (choices of technologies), updated Gantt-diagram

small fixes on the deployed server

2021-05-14 6
Docmentation/

report
Main report (engineering results) reading what is written and

review of work

2021-05-15 6 Documentation EER diagram, testing results, review what the others wrote

2021-05-16 8 Documentation
main report discussion, system documentation class diagram,

translate documents written in Norwegian

2021-05-17 6 Documentation system documentation project structure, system architecture

2021-05-18 4 Documentation
Report, user testing report, CI/CD system documentation,

documentation of code

20

2021-05-19 8 Documentation
Main report product and system design, reading through the

report

2021-05-20 6 Documentation
set up files together, read through all documentation, reflection

notes. presentation

Total hours 509,5

8.3.7.3 Gaute:

Week Date
Hour

s Category Task

2

2021-01-13 9 Planning Vision doc, Product Backlog

2021-01-14 9 Planning/Doc
Planning of sprint 1, Vision document, Meeting documents,
meeting with Favn and supervisor

2021-01-15 9 Doc/Backend
Planning of contracts and other documents. Made general
methods in Go server with graphql, connected to db

2021-01-16

2021-01-17

2021-01-18

114

2021-01-19

3

2021-01-20 8 Backend
Making update method in resolver, connecting the backend with
the frontend, reading about testing env for gqlgen

2021-01-21 8
Backend/Testin
g

Cleaning up and modifying the methods in db.go and resolver,
starting with unit tests and creating of mock db

2021-01-22 8
Doc/Backend/T
esting

Making/reviewing domain model, finish making mock db with
some testing, started looking at CI workflow

2021-01-23 7
Backend/Revie
w

Adding user type to backend, making methods for user, made
schema based on domain model, sprint review

2021-01-24

2021-01-25

2021-01-26 2 NTNU Lecture Lecture in science theory with Kristin, 2 hours on Zoom

4

2021-01-27 4 NTNU Lecture Lecture in science theory with Kristin, 4 hours on Zoom

2021-01-28 8
Frontend/Backe
nd Stack debugging and demoing the product so far

2021-01-29 7,5
Planning/Backe
nd

Meeting with favn, starting on 2nd sprint, making organization
branch and starting with endpoints and tests

2021-01-30 8
Backend/Fronte
nd/Testing

Finishing some endpoints, connecting some to frontend,
continue with testing locally

2021-01-31 7 Backend
Debugging service communication, continue adding more
specified endpoints for orgs and tests for these

2021-02-01

2021-02-02

5

2021-02-03 8
Backend/Fronte
nd

Finishing endpoints needed for now with tests and resolvers,
adding queries to frontend and testing on client

2021-02-04 8
Backend/Fronte
nd Working more with organizations, whole stack

2021-02-05 8 Frontend Reworking some organization UI, more frontend testing

2021-02-06

2021-02-07

2021-02-08

2021-02-09

6

2021-02-10 8
Frontend/Backe
nd

Started on Projects backend, helped on the access token, other
token functionality, merged user into orgs, problem presentation

2021-02-11 8
Frontend/Backe
nd

Worked with demo styling, login redirect, backend debugging,
user-org testing, had to fix errors made in git

2021-02-12 8
Frontend/Backe
nd

Finished demo styling, fixed some bugs that appeared in
user-org testing, nullUrl fix, fixed tests and resolvers based on
new models from merge

2021-02-13 2 NTNU Lecture "Vårt BA-project", main issue and vision/scope presented

2021-02-14

115

2021-02-15 8
NTNU
BA-Workshop

Workshop kickoff, meeting with students from BIO-ING,
writing work-agreement

2021-02-16 8
NTNU
BA-Workshop

Product owners presentation, working with our product idea
and main issue

7

2021-02-17 5

NTNU
BA-Workshop /
Frontend testing

Our product idea presentation, watching other groups ideas.
Demo testing on the system before sprint 2 meeting.

2021-02-18 4,5
Demo
(Front/backend)

Demo testing on the system, fixing some general bugs, added
some minor details in frontend components and some backend
resolvers

2021-02-19 7 Planning/Doc
Meeting with favn, sprint 2 review and retrospective, demo
testing, some logic bug fixing in resolvers, sprint 3 planning

2021-02-20 8 Backend

Made tests and resolvers for all task endpoints, tested some
endpoints in playground, connected assigned and author tasks
to frontend pages

2021-02-21 7

Frontend /
Backend /
Testing Fixed tasks cards, worked on tasks resolvers and tests

2021-02-22

2021-02-23

8

2021-02-24 7
Frontend /
Backend

Made create task and update tasks, fixed some checks in tasks
resolvers

2021-02-25 8
Frontend /
Backend

Worked on archive tasks, edit tasks, assigning tasks, started on
subtasks, merged roadmap with new task functionality

2021-02-26 7,5
Frontend testing
/ Backend

Demo testing and bug fixing the task functionality, updated and
made new task tests, helped on roadmap logic and frontend
structure

2021-02-27

2021-02-28

2021-03-01

2021-03-02

9

2021-03-03 7 Frontend
Worked on the roadmap, creating custom nodes. Subtasks
needed to be reworked, started on this today

2021-03-04 7 Fullstack
Worked on subtasks, made tests and create / update / get
resolvers, got subtasks into roadmap

2021-03-05

2021-03-06 7 Fullstack

Helped other team members with bugs and logical errors in
backend, worked on subtasks, started working on nested queries
and reworking queries

2021-03-07

2021-03-08

116

2021-03-09 6,5 Frontend

Worked on UI on myTasks and myAssignments. Nested queries
now work, saving the number of queries from client to server
and back

10

2021-03-10 7
Frontend/Backe
nd

Started with demo testing, finished up the task lists, merging on
git

2021-03-11 6,5 Testing + Demo
Ran demo tests, worked on some bugs, then had a meeting with
Favn

2021-03-12 7
Docs/Planning/
Frontend

Planning Sprint 4, making the scrum artifacts, started working
on logic in roadmap

2021-03-13

2021-03-14

2021-03-15

2021-03-16

11

2021-03-17

2021-03-18

2021-03-19 7 Frontend
Worked on archiving tasks, adding needed components to the
list, worked on a pop-up in roadmap, spring based

2021-03-20

2021-03-21

2021-03-22

2021-03-23

12

2021-03-24 7
Frontend/MMI/
Backend

Worked on roadmap styling and logic, reworked some pages
and changed some forms, added some spring. Single subtasks
can be found archived now.

2021-03-25 7 Frontend/MMI
Worked on feedback in roadmap, fixed styling bug in roadmap,
createTask UI and editTask UI, added some more springs

2021-03-26 7 Frontend Worked on optimizing the editTask UI and other UI/UX

2021-03-27 7 Frontend
Worked on UI/UX on frontend, testing new implemented logic
in roadmap and tasks

2021-03-28

2021-03-29

2021-03-30

13

2021-03-31

2021-04-01

2021-04-02

2021-04-03 8
Frontend/Backe
nd Worked on claims, refactoring org resolvers and more UI/UX

2021-04-04

2021-04-05 8
Frontend/Backe
nd

Worked on task ready, soonReady and firstTask logic in
backend and frontend, more on UX/UI, merge with projects
branch, fix styling to match the dark mode

117

2021-04-06 6
Frontend/Backe
nd

Made resolvers for archive project and phases, made db
methods to resolvers, worked on UX/UI in roadmap, fixed tests

14

2021-04-07 8
Frontend/Backe
nd

Worked on minimap for roadmap, and started on keybinding for
roadmap

2021-04-08 7 Frontend
Keybind in roadmap now has right logic, added popup in
roadmap

2021-04-09 6 Frontend Lots of small fixes in roadmap and on popup

2021-04-10

2021-04-11

2021-04-12 3 User testing

Testing main features inlc. roadmap, tasklist, project and
organizations. Got some useful information in a user test, found
some bugs that needs to be fixed

2021-04-13 5 Meeting/Testing
Meeting with Favn and supervisor. Working with bug fixes and
design flaws.

15

2021-04-14 7 Frontend
Lots of frontend fixes. Keyboard Shortcuts and other logic fixes
in roadmap. Tried some hosting services.

2021-04-15 8
Frontend/Backe
nd

Fixing bugs before first deployment, helping bug fixing
deployment, small UX/UX fixes, user testing with a Favn intern

2021-04-16 7
Frontend/Backe
nd

Implemented some functionality based on feedback from user
testing. Added some keybindings, fixed the endNode quick
connection, started working with .env files for the server
deployment. More small UI/UX changes

2021-04-17

2021-04-18

2021-04-19 2 Documentation Started working with the end report, sys doc and progress doc

2021-04-20 3 Documentation
Clean up in notion, all acceptance criteria are done for the main
features

16

2021-04-21 7
Frontend/Docu
mentation

Added template progress docs, made custom reusable react
spring animations, added this to all needed places, fixed a key
bindings bug. (Found a bug in reAssigntask, wrong refetch)

2021-04-22 8
Frontend/Backe
nd/User Testing

Fixed some animation bugs, fixed some other state related bugs,
helped debug tests to fix them, merge and deploy a testing
version of the product, user testing

2021-04-23 7

Frontend/Backe
nd/Documentati
on

Looked at user testing results, started looking at designs and
functionality changes that we could realistically implement
after Favn testing. Drafting an excel file for user testing results
and data. Fixed error feedback in adding members to workplace

2021-04-24

2021-04-25

2021-04-26 2 Planning

Meeting with people from Trygg and scheduling a user testing
session (may 5th, 14:00). They have agreed to do a short starter
demo user test and a longer test involving 2-3 people where
they are going to be working project based. Meeting to discuss
results will take place may 12th..

118

2021-04-27 6
Planning/Fronte
nd/Backend

Some small frontend fixes, adding sorting functions where they
are needed, fixes in the backend. Planning user testing with
Equinor, meeting with them 5. may kl 11:00.

17

2021-04-28 7

Documentation/
Frontend/Backe
nd

Writing on the main report and requirements docs. Worked on
fixing assigning tasks and getting the right tasks in the users
assignments, both tasks and subtasks

2021-04-29

2021-04-30 5 Documentation

Writing on the system documentation, starting on some models
that should be added to the system docs. Small bug fixes after
merge in tasks

2021-05-01 8 Backend
Worked on filters in resolvers and db methods for more
advanced filtering of the tasks connected to a user

2021-05-02

2021-05-03

2021-05-04 8,5
Backend /
Frontend

Bug fixes, getting ready to test with Equinor and Tryg. Fixed
resolvers and other bugs.

18

2021-05-05 5 User testing
Testing with Equinor and Tryg AS. Recap meeting with Tryg
AS on 12.05.2021, kl: 14-15

2021-05-06

2021-05-07 3 Documentation Writing on the main report. Fetching sources for theory.

2021-05-08

2021-05-09 8 Documentation

Planning and setting the main structure in the main report. Key
words define the contents for each chapter. Writing on the
theory chapter.

2021-05-10 3 Documentation

Rewriting and approving / considering changes in theory.
Finishing up some sub chapters in the theory chapter.
Researching some more on the different relevant technical
topics

2021-05-11 7 Documentation
Main report. Fetching and reading more sources. Preparing a
meeting with Favn AS.

19

2021-05-12 6
Meeting /
Documentation

User testing recap meeting with Favn AS.Organized remaining
documentation work in Taskflow, Created division of labor
sheets, finished up the theory chapter, revision of other
chapters.

2021-05-13 6 Documentation Main report, revising and writing on chapter 3.

2021-05-14 5 Documentation Main report, revising and writing on chapter 4.3

2021-05-15 3 Documentation
Main report, revising chapter 4.2 and 4.1, starting on chapter
5.3, discussing some contents

2021-05-16 6 Documentation
Main report, rewriting and restructuring chapter 4.3, now
chapter 4.4, writing on chapter 5.3

2021-05-17 3 Documentation Main report, revising 5.3, writing on 5.3

2021-05-18 4,5 Documentation Main report, writing on 5.3

119

20

2021-05-19 10,5 Documentation
Main report, revising and writing. Process Docs, writing and
structuring. Reviewing other attachments.

2021-05-20 6 Documentation
Last revising on main report, structuring attachments in main
report, finishing up any documentation needed for attachments

Total hours 510

8.3.8 Division of labor

120

Categories Alexander Gaute Mohammad

Frontend 238,5 164,5 156

Backend 128 150,5 126

Testing 21 41 51,5

Meetings / Reviews 11,5 12,5 11

Documentation 88 96,5 116

Planning 13,5 18 22

Other (NTNU Related
work) 27 27 27

Total Hours Worked 527,5 510 509,5

121

8.4 Equinor User Testing Report
● Introduction

- Question:

- “Does the market exist for this niche product? Is there demand for

Taskflow?”

- This is a system that Favn thinks there definitely is demand for.

● Login:

- Easy to login, “Very seamless and quick”

- Launch button needs some work

● Workspace:

- Changed name and description worked well

- “Is it possible to change the rights of members here?”

- The team had to describe the rights of the roles, an explanation could

be helpful

- “Is there any autosave feature here? Could be useful if the user navigates out

of workspace settings and dont save the changes”

- We will take this into consideration for future development.

● Project:

- Create project worked well

- Update project worked well

- The definition of a phase is a little too ambiguous, could need an explanation.

- LOGIC ERROR: Update project: The user got to make a phase with a start

date before the project start date.

- It is not intuitive to find the phase just created.

- Create tasks worked well, both with and without keybindings.

● Roadmap:

- Connection of tasks worked well, intuitive system

- The color codes needs further explaining

- How to delete connections of tasks was easy to find and intuitive

122

● Switch workspace

- If a user does not have more than 1 workspace this button should be hidden

● Created tasks:

- If there is a possibility to create tasks in this page, this page should not be

called created tasks but something else.

- “What if there are multiple people working on the same task?”

- The subtasks are made to tackle this problem, however multi

assignments in tasks should be implemented in the future.

- If a task is assigned to a user that task should be locked from editing, by doing

this other users cannot edit the task while it's being worked on, ensuring the

minimal confusion. There should also be an edit log, to see all recent changes

and who made them.

- Archive task:

- Archive task worked well

- “But what of deletion?”

- At the moment there is only archiving.

- A bit more visual system could help effictivise the workflow.(Use of drag and

drop cards, less text)

● General feedback:

- The system was intuitive

- A solid foundation to an easy to use project management tool.

- There were some main functionalities that Equinor could get use of, where

they had no similar solution on our product scale.

- Drag and drop rather than text.

123

8.5 Tryg Forsikring User Testing Report
● Introduction

- The testers has used planning tools in the form of Microsoft planner

- Never done a agile project before

- “What is the economical plan for the project”?

- The team has not been overly invested in the economics of the project.

- 3 members shall test Taskflow over the period of 1 week.

● Login:

- No problems with login. However, 1 of the members did not have a google

account.

● Workspace:

- Updating the information worked well

- Adding members worked well

- “Is it possible to invite members with their mail”?

- At this moment no, but it was planned functionality.

- “Does all the users have the same rights within a workspace”?

- No, they have different rights.

● prosjekt:

- Very good UX implementation with the button colors, specifically the green

ones.

- Add states is the first they see in add phases, and it's not intuitive what this is

- add phases “good”

- “Is there a phase's roadmap?”

- No, however this functionality was discussed with Favn

- add tasks in prosjekt “good”

- change phases “good”, however a overview of all the phases is missing

- deadline date (thought to be start date) is good that its limiting the phase start

and end based on the project

- edit task “good”

- add subtask “good”

- Task start date can start before project

124

- When setting your own user as the assignee on tasks, there is no indicating

that you have been selected.

- Dropdown overlaps with “hide completed” button

- The status codes of the progress in phases and projects should be

customizable, or have some more explaining behind them.

- Phase name in review roadmap needs some css work, a long phase name

affects the components structure.

- If a user regrets archiving a phase or project, a undo button or unarchive

button is good.

● Roadmap

- Connection tasks via the mice worked well

- Connection of tasks via the keybinding worked well, however there is need for

some marking feedback when selecting the tasks

- Roadmap Guide is intuitive and clear

- “Is the roadmap based on the dates of the tasks?”

- An explanation of the color codes of the tasks in the roadmap could have been

helpful.

- An undo button for the connection and removing of connections is helpful

here

● My tasks:

- Easy to view the information and intuitive

● General Feedback:

- Missing overview of what the different resources are allocated to “This could

help the project lead of allocation resources between projects and phases, if

perhaps one phase or project finished early”

125

- Overall good UX

126

8.6 Tryg 2nd Testing Report

Feedback after several days with testing:

- Create a placeholder user, and decide the assignee afterwards when creating a task

- We found out that we need to add some phases without start and end dates, because

we often need to plan the project first and what to do, and after that decide the

deadlines and dates.

- Duration, if we add Decimal numbers, it fails

- Edit and add subtasks icons are intuitive and easy to spot

- The phase drop down need more obvious design

- Some feedback when a user added to a project or workplace is needed

Experiment:

- “Try to find roadmap in a project”:

- The user found the roadmap,

- The minus here is that we can’t see the progress of the tasks and if a task has

deadline soon

- Idea: not all subtasks need to be done before doing the next task. Example if a

task has 5 subtasks, 3 of these can be marked as “crucial” and when these are

done progression on the next task can start.

127

8.7 Requirements documentation

Version 1.0

Audit History

Date Version Description Author(s)

14.01.2021 1.0 First Draft Alexander, Gaute og

Mohammad

19.05.2021 1.1 Ready for approval Gaute og Mohammad

128

8.7.1 Introduction

This document's purpose is to address the main problem domains and the system's functionality

specifications. First are the system's functionality and in what way they should be operated by a user.

Next we describe the main problem domain and present the models tied to this domain problem, in

context to Domain Driven Design. Lastly we look at the earliest prototypes of the user interface, also

called wireframes. These models set a base for ideas to describe possible functionality and design

solutions to the domain problem. The document is connected to the taskFlow thesis main report.

8.7.2 User Stories

These are the main user stories for the product taskFlow. User stories are a way to model a system's

functionality in a non-technical and universal language, and to level the information so it's useful and

meaningful for all stakeholders.

129

130

8.7.3 Acceptance Criteria

131

132

133

134

135

136

8.7.4 Domain model
8.7.4.1 Domain Model

137

8.7.4.2 Sequence diagrams

138

139

8.7.5. Prototypes
8.7.5.1 Wireframes

The wireframes are created by using Figma.

The following is a link to all wireframes and diagrams for Taskflow application:

https://www.figma.com/file/dDURwJqN3ec32cIynMF74h/Taskmin?node-id=0%3A1

140

https://www.figma.com/

141

142

143

144

