
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f G
en

er
al

 S
ci

en
ce

Per Holt-Seeland and Mathias Olsen

Automatic information security tests
on a public cloud

Bachelor’s project in Computer Engineering
Supervisor: Jonathan Jørgensen

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Per Holt-Seeland and Mathias Olsen

Automatic information security tests
on a public cloud

Bachelor’s project in Computer Engineering
Supervisor: Jonathan Jørgensen
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of General Science

Norges teknisk-naturvitenskapelige
universitet

TDAT3001 Bachelor

Automatic information security testing on
a public cloud

Per Holt-Seeland
Mathias Olsen

May 20, 2021

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Preface
The team was presented with an opportunity to participate in the creation of a task that the
team would solve on behalf of Telia Company AS. The resulting task was created based on
Telia’s desire for the resulting product, and on the team’s interest in working with information
security. Additionally the team found it intriguing to work on cloud technology due to its
significant relevance in modern software development. Information security and security testing
is a vast field that this project will not come close to covering in the given time frame, leaving
a large amount of potential future development. Due to this one of the project’s goals will be
to build a strong foundation for further development.

The team has enjoyed great freedom regarding choices and decisions, where the only decision
that was predetermined was AWS as the cloud service provider of choice. From the very
beginning Telia’s representatives have set aside time in their schedule to conduct weekly status
meetings, which has been great for consistent and frequent feedback on the team’s work.

Despite of this project taking place during the COVID-19 pandemic, the project has not
suffered any significant consequences. Digital meetings have to a large extent replaced the
need for physical meetings and at this stage of the pandemic people are getting comfortable
with digital communication platforms.

The team wishes to extend its gratitude to the Telia representatives Bjørn Vidar Smette-
Øvergaard, Vaidotas Bakša and Kjetil Aune for providing a challenging and relevant task that
has been very educational, as well as for taking time out of their days every week to conduct the
status meetings. Furthermore the team wishes to extend its gratitude to Jonathan Jørgensen,
our NTNU Supervisor, for his excellent feedback and swift communication.

Trondheim, May 2021
Per Holt-Seeland, Mathias Olsen

i

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Task description
The goal of this project was to create automated security tests that could run on a public
cloud. These automated tests are meant to reduce manual testing necessary and improve
overall security of the applications. At the start of the project the goal for the security tests
were to cover OWASP Top Ten.

After some development and foundation being made there were made changes to the goals of
the project after deciding not all of OWASP Top Ten is automatable as a general solution.
The changes were to cover some of the more easily automatable vulnerabilities from OWASP
Top Ten, and then focus on authentication for the scans to be able to scan a large variety of
applications.

The team were provided a cloud service from product owner, and further choices of tools and
method is explained in the report.

ii

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Abstract
This report describes the results of the Automatic information security testing on a public
cloud project. The product of this project is intended to improve overall application security
on applications developed by Telia and to reduce the amount of time spent by Telia developers
conducting security tests.

The product, config file and related scripts are hosted on AWS. In order to use the product,
teams can fetch and modify config and script files before sending them to their AWS hosted
container running an image of Kali Linux where zaproxy, python3 with a zap api package,
and the necessary scripts to automate tests are preinstalled. Scans will be conducted on the
scope specified in the config file and a report will be created in either HTML, JSON or XML.
The report summarizes any potential vulnerabilities it has come over and can provide possible
solutions to flagged vulnerabilities.

Configuring authentication in an automated manner proved to be a bigger challenge than
expected, which in turn shifted priorities toward authentication and ended up limiting the
amount of vulnerabilities the project was able to automate. Part of the reason why authen-
tication became a bigger task than anticipated was the need to make the tests as general as
possible for them to work on a wide selection of different applications.

The team started out with an idea to use SCRUM as the work methodology of choice, but
soon came to the conclusion that Kanban would be better suited to the team size and task
at hand. From Kanban the team utilized a Kanban board and roadmap to keep track of
tasks and progress. Choosing a tool to handle the board and roadmap was done based on a
combination of personal preferences on the team and the fact that Telia also uses Jira. The
team is happy with their choice, as Jira has worked flawlessly and the user experience has
been very good. Weekly meetings were held between Telia and the team, allowing for live
adjustment of priorities as time constraints became increasingly apparent.

Reasonably frequent meetings were also held between the NTNU supervisor and the team,
where the supervisor provided valuable pointers as to what the team should be focused on at
different stages of the project.

This project has been highly educational for the team, due to the project exploring several top-
ics neither team member had in-depth knowledge of at the beginning of the project. Both team
members have expanded their knowledge on cloud services, security testing and authentication
methods.

In retrospect the team is happy with the results of the project. However, the team could have
had a more consistent workflow, reducing the need for long days and continuous weeks in the
final stage of the project. Furthermore, the team should have put less effort into AWS research
the first couple of weeks, perhaps until granted access to Telia AWS accounts, in order to
prevent having to do the research twice.

iii

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Contents

1 Introduction and relevance 1
1.1 Automating security tests . 1
1.2 Report structure . 1
1.3 Terminology and abbreviations . 2

2 Theory 3
2.1 Testing . 3

2.1.1 Security testing . 3
2.1.2 Unit tests . 3
2.1.3 Continuous Integration/Continuous Deployment (CI/CD) 3

2.2 Security vulnerabilities . 4
2.2.1 OWASP Top Ten . 4
2.2.2 Cross-Site Scripting (XSS) . 4
2.2.3 SQL Injection . 5
2.2.4 Brute force attack . 5
2.2.5 Broken Access Control . 5
2.2.6 Insufficient Logging and Monitoring . 5

2.3 Web applications for security testing . 6
2.4 Authentication . 6

2.4.1 Basic Access Authentication . 6
2.4.2 Cross-Site Request Forgery tokens (CSRF Tokens) 6
2.4.3 JSON Web Tokens (JWT) . 7
2.4.4 Single Sign-On (SSO) . 8

2.5 Zed Attack Proxy (ZAP) . 8
2.5.1 Context . 8
2.5.2 Passive scan - Spider/Ajax spider . 9
2.5.3 Active scan . 9
2.5.4 Authenticating scanners . 9

2.6 Cloud Computing Service . 10
2.7 Amazon Web Services (AWS) . 10

2.7.1 Amazon Elastic Container Service (ECS) 10
2.7.2 Amazon Elastic Container Repository (ECR) 11
2.7.3 Amazon Fargate . 11
2.7.4 AWS Lambda . 11

2.8 Docker . 11

3 Choice of technologies and methods 12
3.1 Application . 12

3.1.1 Authentication . 12
3.1.2 Scanning . 12
3.1.3 Scan results . 13
3.1.4 Scanning intervals . 13

3.2 Configurations . 14
3.3 Script organizing . 14
3.4 Technologies . 14

3.4.1 Version Control . 14
3.4.2 Programming language . 15
3.4.3 Virtual Machine (VM) . 15
3.4.4 Penetration testing tools . 15
3.4.5 Maintaining the penetration testing tools 15
3.4.6 Cloud service . 16

3.5 Work methodology . 16
3.6 Responsibility distribution . 16

iv

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

4 Results 18
4.1 Scientific results . 18
4.2 Engineering results . 19

4.2.1 Vision document . 19
4.2.2 Requirement specification . 19

4.3 Administrative results . 20

5 Discussion 23
5.1 Technical Results . 23
5.2 Limitations . 23

5.2.1 AWS . 23
5.2.2 OWASP Top Ten . 23
5.2.3 ZAP . 23

5.3 Technologies . 24
5.4 Society, environment and economics . 24
5.5 Future development . 24

5.5.1 Authentication . 24
5.5.2 Brute force . 24
5.5.3 Insufficient logging and monitoring . 25
5.5.4 Logical vulnerabilities . 25
5.5.5 Frontend solution . 25

5.6 Administrative results . 25
5.6.1 Process . 25
5.6.2 Teamwork . 26

5.7 Positive elements . 26
5.7.1 Product Owner . 26
5.7.2 Supervisor . 26

5.8 Project conclusion . 26

A Documentation A-1
A.1 Visions document . A-1
A.2 Requirement specification . A-8
A.3 System documentation . A-17

v

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

1 Introduction and relevance
Information security is a large and important field that constantly evolves. Hackers, both
ethical and malicious, are constantly looking for vulnerabilities that can be attacked or ex-
ploited. While ethical hackers disclose the vulnerabilities for developers to fix them, hackers
with malicious intent may cause severe harm to a business, institution or even a private person.

Leaked personal information or sensitive company data is a significant threat in a digitalized
society and every company that offers digital services or products carry a responsibility to do
what they can to make sure their services or products are safe. A significant part of the effort
to make sure services and products are safe, at least from known vulnerabilities, is conducting
security tests. This is a time consuming task that requires focus from developers if they are to
be conducted manually.

This is where automated security testing comes in, not only could successfully automated
security tests lead to increased accuracy in security testing but also save a significant amount
of time for developers, allowing them to focus on development rather than repetitive and time
consuming security test. Focusing on these benefits, this project will try to explore how security
tests can be automated in order to reduce manual testing.

1.1 Automating security tests
This project will aim to create a general solution that will work across several applications
rather than one specific application, automating security scans that are reasonably automatable
within the project time scope. Certain security vulnerabilities are too unpredictable to have
tests automated within the timeframe of this project or as a general solution.

1.2 Report structure
Chapter 2: Theory: The theory chapter will cover necessary theory needed for this project.
These include theory about security testing, common vulnerabilities, and some theory about
tools used in this project.

Chapter 3: Choice of technology and method: This chapter covers choices for technology
and methods made along the way, and why these were chosen.

Chapter 4: Results: The results chapter covers the result over the project and how these
compare to the requirements and goals set for the project.

Chapter 5: Discussion: This chapter will discuss the project as a whole. Decisions made
along the way will be discussed whether it was a good choice, or possible alternatives that
should have been done instead. Limitation and positive elements will also be discussed, and a
conclusion for the project along with possible future work that can be done.

1

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

1.3 Terminology and abbreviations
Fuzzing - Repetitive action trying different combination of data for input to a program

XSS - Cross-Site Scripting, security vulnerability

ECR - Elastic Container Repository owned by AWS

ECS - Elastic Container Service owned by AWS

SSO - Single Sign-On, authentication method

CSRF - Cross-Site Request Forgery, security vulnerability

JWT - Json Web Token, used for authentication and authorization

CI/CD - Continuous integration/continuous development

Spider - Tool used for passive scanning and finding connected URLs

S3 - Cloud Storage owned by AWS

ZAP - Zed Attack Proxy, security penetration testing tool owned by OWASP

AWS - Cloud service Amazon Web Services

2

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

2 Theory

2.1 Testing

Testing in development is meant to help discover bugs early in the development and will also
notice if bugs appear during maintenance later. There are many benefits to discovering bugs
early in the development. The cost of fixing the bug will increase the longer it takes to discover
it, this is because the bug might affect other parts of the application, which also needs to be
changed and it will take more time to discover the cause of the bug later when the developer
does not have the code fresh in mind. Application security and product quality will also benefit
from testing, where the sooner a security vulnerability is discovered the less time there is for
attacker to take advantage of the vulnerability. Overall product quality will also improve if
consistent tests discover bugs before they reach production.

2.1.1 Security testing

Application security is becoming increasingly relevant and there are different ways to test secu-
rity. Before testing the security it is important to know which vulnerabilities are common, how
these are exploited and how to defend against them. Security vulnerabilities are categorized
into two categories; technical and logical vulnerabilities. Technical vulnerabilities is when an
attack can exploit a technical mistake, for example lack of input sanitation. These vulner-
abilities are easy to automate with penetration testing tools, reducing the need for manual
testing.

The logical vulnerabilities are logical mistakes in the application which can be exploited. A
common logical vulnerability is mistakes in access controls, allowing users with limited rights
to access files or actions not permitted to them. This is a logical vulnerability because the
application fails to validate access rights before granting access. While the logical vulnerabilities
are very different they are commonly more difficult to create automated tests for and require
more manual testing from seasoned developers experienced with the application. [13]

Automated tests are good at finding technical vulnerabilities which means setting up a good
automated testing system will not only save time for developers but will also increase accuracy
of the tests if done right. However this does not remove the need for manual security tests.
Not all vulnerabilities are possible to automate and double checking the automated security
results periodically can uncover mistakes in the automated tests if there are any.

2.1.2 Unit tests

Unit tests are testing individual components to make sure every method works on their own.
By testing all components individually the tests save time for the developers to specifying
exactly which methods is not working as it should. However these tests will not discover logical
mistakes from how components work together, as components are only tested individually. [14]

Unit tests are common to implement and is recommended to cover a larger percent of the
application. If the application relies on CI/CD unit tests becomes critical to discover mistakes
so the CI/CD can stop the code change before pushing.

2.1.3 Continuous Integration/Continuous Deployment (CI/CD)

Continuous Integration focuses on integrating development branches frequently to avoid merg-
ing larger branches and get integration issues. Developers create tests to make sure the main
branch works as it should and CI will run all the tests on each merge to main. CI will then
discover possible issues with the merge and stop the merge if the tests does not pass.

Continuous Deployment takes CI to the next step and will automatically deploy the new
changes to the customers. This is one of the most effective ways to make changes on feedback

3

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

from customers but will also make errors more critical since everything is happening automat-
ically and no developers are part of the deployment process to discover these errors. The only
thing stopping the deployment is if the tests fail, thus it is important to have sufficient test
coverage to uncover all possible errors [1].

CI/CD can also be integrated into automated security tests by stopping a merge if the changes
contain security errors. However if the application with CI does not get new changes these
security tests will not run. If a large amount of time goes without running security tests, new
updates to scanning tools and tests could have discovered new vulnerabilities, but the tests
does not run to find them.

2.2 Security vulnerabilities

2.2.1 OWASP Top Ten

OWASP (Open Web Application Security Project) is an online community which works to
spread awareness around web application security. They do this by producing and sharing
articles, research, tools and other technologies for testing and improving web security. One of
the more well known documents produced by OWASP is the OWASP Top Ten list. This list
aims to spread awareness about the most critical security risks which a lot of applications is
not secured from. [23]

This list is updated every few years to make sure the list is up to date on new security risks.
There are also some security risks which have stayed on the top ten list for a longer period of
time. Some of these are Cross-Site Scripting and SQL Injection. The vulnerabilities present
on the OWASP Top Ten have their spot because of how common the vulnerability is, and how
severe the consequences of a successful attack is.

2.2.2 Cross-Site Scripting (XSS)

XSS is an injection type attack where the attacker uses the websites input fields to send
malicious code, usually in the form of scripts. These scripts will then attack users trying to
use this website to steal their personal information or make them do an unintended action.

The earliest names given to the different types of XSS attacks were Reflected and Stored
XSS [26]. Reflected XSS are an attack usually being passed through a link or query where the
victim will receive a link to the website containing the script. When the victim now clicks on
the link the script will gain access to steal their personal information through cookies or other
stored variables.
Stored XSS attacks are more persistent attacks where the scripts instead are injected into the
server and does not require the user to click on a specific URL. The script which is saved on the
server will be a permanent feature until the developer removes it. Whenever a user accesses
that website while the script is active, the user’s information like cookies will be stolen by the
script [11].

In 2005 a new type of XSS was defined by Amit Klein [12]. This type is called DOM Based
XSS because the goal of the attack is to change the DOM environment in the victims browser.
This causes the client side code to run in unexpected ways, allowing the attacker to obtain
the information he or she wants. The main difference from the other types of attacks is that
the DOM based XSS does not change the HTTP response received from the server but rather
change how the client handles the received response.

These types of attacks can also be defined into server and client side XSS, since it is proven
that reflected and stored XSS can be used both on server and client side. The DOM Based
XSS is considered a subset of the client side XSS.

4

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

2.2.3 SQL Injection

SQL Injection is also an injection type attack, but instead of injecting scripts, the attacker is
injecting SQL queries to get information or alter the database. This type of attack has been
at the top of the top ten list for a long period of time, both because of how common the
vulnerability is, but also because of the severe consequences of a successful attack. [25]

A successful SQL injection can do a lot of harm based on the intent of the attacker. Stealing
sensitive information from the database is normal way to use the attack and can go undetected
a long time if the website has insufficient logging. This will then allow the attacker to con-
tinuously steal information from the database until detected. Through the SQL Injection the
attacker can potentially steal login information from an administrator and may be able to alter
the website through the administrator’s user. Another critical use of the SQL Injection is to
alter or delete large portions of the database, which can cripple a running website for a longer
period of time. A lot of important information stored in the database can also be lost for good
unless the database has a backup.

2.2.4 Brute force attack

Brute force attacking is a way to break username and password combinations by attempting
to log in to a preferably known user’s account using a large amount of different passwords.
The passwords tend to be fetched from a list of commonly used passwords or common words
in various combinations of lower and upper case letters and numbers.

2.2.5 Broken Access Control

Broken Access Control comes from mistakes in enforcing rights to functionalities and data. An
attacker can exploit this vulnerability by performing functions and accessing data the attacker
have no rights to use. Depending on how broken the access controls are the attacker can exploit
larger part of the application, and basically become an admin to the site. [17]

This one of the most common logical vulnerabilities and have been present on the OWASP top
ten list for a considerable amount of time. Since it is a logical vulnerability it is a lot harder
to automate security testing for it, which makes it harder to discover and remove. There are
automated security scans that can discover if access control is completely absent from the
application, but those scans can not discover whether existing access control works as intended
or not.

If an attacker manages to exploit this vulnerability it can be hard to reverse the damages since
it is hard to know exactly what the attacker has done. After the vulnerability is fixed, there
should be an evaluation of rights given to users, in case the attacker have changed the access
rights of other users.

2.2.6 Insufficient Logging and Monitoring

Logging and monitoring of attempted security breaches is important to stop similar attacks in
the future, or notice successful breaches. If the logging and monitoring is insufficient an attacker
can plan and execute his attacks over a larger period of time, as his attacks go unnoticed.
These attacks can for example be penetration testing tools running scans on websites looking
for vulnerabilities. With enough time of undetected security scans, new vulnerabilities may be
discovered and exploited. [21]

A good way to test for insufficient logging and monitoring is to set up automated security tests,
and check if these attacks are logged. Even if they are logged, an active attack like penetration
testing should be considered for triggering alerts to developers, in order to make sure actions
are carried out promptly.

5

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

2.3 Web applications for security testing
Some web applications are intentionally designed to have several security flaws. These are
made to give developers an application to test for known security errors and see if they can
find them. This is good practise before testing on their own websites, to make sure the test
will actually uncover security flaws.

Some of the examples for these applications are Damn Vulnerable Web Application (DVWA),
Juice-Shop and Bodgeit. These applications are popular in the security testing community
and contains several well known security flaws. They also provide a way to change security
level so you can test the application whether you’re experienced hacker or new to the game.
These three applications also use different authentication methods. Due to this, scanners need
support several authentication methods to be able to scan all.

2.4 Authentication
There are several ways to authenticate a user before giving access to an application. Since the
purpose of authenticating a user is to prevent users with malicious intent from gaining access
rights they should not have, the authentication should be secure from being used in malicious
ways as well. This is why there have been developed different types of authentication, each
with the purpose of defending against malicious attacks.

2.4.1 Basic Access Authentication

Basic access authentication is regarded as one of the simplest and least secure authentication
methods. When a user is getting authenticated through this method the user provides the
username and password, and these credentials are added as a HTTP header then sent as a
login request. What makes this method vulnerable to security breaches is that the message
itself is only protected by base64 encoding, which is not hard to decode. Which makes the
method vulnerable to man in the middle attacks, where the login message is caught by a
malicious user. [30]

This problem can be solved by using SSL to secure the packet, but there are other security
vulnerabilities where the encrypted password is stored temporary or permanently in the web
browser, which then could be reused by malicious users by performing for example a CSRF
attack.

2.4.2 Cross-Site Request Forgery tokens (CSRF Tokens)

CSRF attacks is when an attacker induces an authenticated user to perform an unintended
action. This action can vary based on the different rights the induced user possesses, but a
normal action is to make the user change his email address, enabling the hacker to take control
of the account. For a CSRF attack to be successful the attacker needs to perform a predictable
request. A predictable request is a request only containing information which is retrieved from
the induced user’s cookie, or information the attacker can find on his own. [19] [27]

6

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Figure 2.1: Example of a CSRF attack [10]

If the application is using CSRF tokens every request will be unpredictable because a unique
token that is not present in the cookie will be required. Since the request requires this token
to be valid the attacker can not recreate the request, making it impossible to perform a CSRF
attack.

The CSRF tokens should be generated to be highly unpredictable, in order to prevent an
attacker from being able to predict a correct token through brute forcing many different com-
binations. For transmitting the token to the user it is normal to have a hidden field in the
HTML, which is then retrieved and submitted through the POST message. [28]

2.4.3 JSON Web Tokens (JWT)

JWT is a compact security token used to authorize an user. After an user has provided
credentials and successfully logged in, a token will be returned. This token will then be used
to authorize the user in future requests. [3]

Figure 2.2: How JWT is used [9]

When information is sent with a JWT, the information can be trusted because the JWT is

7

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

signed. The signature on a token is made by encrypting the header and body of the message,
and when decrypted the signature should match the content of the message. If the message
is intercepted and changed, the signature wont match the content, and it is safe to say the
message has been changed. Even though the message can not be changed without the recipient
knowing, the content can still be read. This means it is still important to ensure the message
is not intercepted. [2]

2.4.4 Single Sign-On (SSO)

With SSO a user can log in to several applications through one authentication process. SSO
has become more popular over the last years where companies like Google provides one au-
thentication progress for all their applications, but also provides SSO through Google for other
applications.

Figure 2.3: SSO connecting to several applications [29]

SSO works through use of sessions, with different types of sessions that serve different pur-
poses. A local session is being maintained by each individual application, and will not interfere
with other applications. If SSO is enabled a larger server side session is used over multiple
applications. This session is what makes SSO possible, by checking if a user is already logged
in to another application through SSO, removing the need to log in again. Sessions are also
used for handling different identity providers like for example Google or Facebook. [4]

2.5 Zed Attack Proxy (ZAP)

Zed Attack Proxy is a security penetration tool developed and maintained by OWASP. It is a
free, open-source tool made to help help users to find security flaws. ZAP can be used through
its graphical user interface but it also has an API which can be used instead. [20]. For creating
automated security tests the API is needed, but the UI is practical for manual penetration
tests.

2.5.1 Context

A ZAP context is way to configure scans made with the ZAP tool. The context is used to define
the scope of scans by using regex to include and exclude URLs. Scans will stay inside the scope
defined by the context and not actively attack websites outside the scope. Authentication is
also defined by the context, where you will provide information regarding what authentication
method and login credentials to use. [18]

There are several ways to create a context in ZAP. For first time users it is recommended to
create the context manually in the UI to explore the different options given. All contexts can
also be imported and exported, and the API also provides a way to create new or alter existing
contexts.

8

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Contexts also contains users specific to different applications. The users are the ones to contain
the login credentials, and it is possible to have different users, with different rights in the same
context. This may be necessary, for example in order to test if a user without admin rights
can access privileged data and actions.

2.5.2 Passive scan - Spider/Ajax spider

A passive scan is a non-aggressive way to scan a website. The scan is usually done via a
spider or crawler and can be used to map a website and find linked URLs. Since these scans
are defined as non-aggressive they can be used on a website without the fear of performing
unintended attacks. This means using a spider to scout a website before performing an active
scan is a good way to prevent attacks outside the desired scope. If the passive scan finds a
website you do not want to attack, the scope needs to be adjusted before performing the active
scan. [24]

Figure 2.4: Example path of a spider

ZAP provides two different spiders to perform passive scans. The two choices are regular
spider and AJAX spider. The main difference between them is that AJAX is is able to crawl
applications written in AJAX in far more depth, and is recommended to use on more modern
applications made in Vue.js, Angular.js and React.js. [22]

2.5.3 Active scan

An active scan is an aggressive way to scan a website. This means the scan will actively
attack the website to look for security flaws. There are several different security flaws an
active scan can look for, including SQL Injection and XSS mentioned above. Since the active
scan is performing an actual attack on the website it is important to be careful where to scan.
Defining a scope of the attack and running a passive scan first are good measures to prevent
attacks on unexpected websites. [15]

2.5.4 Authenticating scanners

Authentication is an important part of running security scans, because the scanner need ac-
cess to the whole application in order to scan everything. The scanners are meant to scan

9

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

several different applications, possibly with different authentication methods. This is why
configuration of the different authentication methods being used is important. [16]

ZAP provides different out of the box methods that can be used to authenticate a scanner
as well as support for authentication scripts. This means that even if an application uses
authentication not supported out of the box, scripts can still be created to authenticate the
application.

ZAP calls this the script based authentication. Where the user defines which variables are
needed, what POST message needs to be sent, and when the POST needs to be sent. The
scripts also have other uses than authenticating the less used methods. When CSRF tokens
are being used in authentication, ZAP needs a way to find this token and add it to the POST
message. This can be done with a script.

Form-based authentication is another method provided by ZAP. This method of authentication
is similar to Basic Authentication where both methods lacks in security as the credentials are
submitted in plain text. One of the differences however is that form-based authentication
requires the user to actually fill out a form, while with basic authentication it is possible for
the browser to retrieve the information through other means.

ZAP also supports the use of JWT authentication, this can be done through different methods.
JSON-based authentication is a feature where all the credentials are sent as a JSON object.
Combining this with a script to receive and save the returned JWT and then attach the JWT
to future requests, will authorize the scanners to access content that requires authorization.
The script made to retrieve the JWT can be written as HTTP sender script or a session
management script.

2.6 Cloud Computing Service

Cloud computing [8] is technology that offers on-demand IT resources online. The use of cloud
computing services comes with many benefits. They tend to be billed by usage, which means
there is no need to pay for more resources than is actually consumed. They scale depending on
the users demands and can even be set up to scale automatically. By provisioning cloud services
the user does not need to acquire, manage or maintain hardware needed to run computing
services. Users can also opt out of maintaining servers completely by utilizing cloud computing
services that are maintained by the cloud provider itself. For companies that serve a global
network of customers, provisioning services from a cloud provider with a global network of
data centres, enabling hosting of mirrors around the globe in order to reduce latency for
geographically distant customers.

A cloud computing service will by its nature be remotely hosted, in many cases even on foreign
soil from the customer. As a consequence of this, hosting critical functionality or data on-
premises may be required in some cases for security reasons.

2.7 Amazon Web Services (AWS)

AWS [5] is a cloud computing platform made by Amazon. AWS offers a wide range of cloud
based services, allowing customers to select specifically tailored solutions suitable for their
needs. At the time of writing AWS held approximately 32% market share, making AWS the
most used cloud service provider ahead of Azure at approximately 20% and Google Cloud at
approximately 7%.

2.7.1 Amazon Elastic Container Service (ECS)

Amazon ECS is a container management service that is used to manage, run and stop contain-
ers. ECS can be used with Amazon EC2 or AWS Fargate, and can manage the entire container
lifestyle from start to stop.

10

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

2.7.2 Amazon Elastic Container Repository (ECR)

Amazon ECR is a container repository where images can be stored for use with Amazon Elastic
Kubernetes Service and Amazon ECS. Using ECR eliminates the need for operating a container
repository, and being part of the AWS ecosystem it of course integrates very well with other
AWS services. Updating an image stored in ECR is easily done by pushing the updated image
to ECR. With the containers spinning up from images in the ECR this also means containers
are always spun up using the updated image.

2.7.3 Amazon Fargate

AWS Fargate [6] is a serverless compute engine for containers. As opposed to EC2, which is
a cloud virtual machine service where all management is handled by the user, Fargate hosts
an application or service without the user having to manage the underlying infrastructure.
Fargate can automatically scale to suit the resource needs of the instance(s) of an application
or service. When using Fargate, only actual runtime of containers or services are billed. In
most cases there will be a minimum of containers running, to avoid high latency which could
lead to bad user experiences or even request timeout. However, in special cases where latency
is not an issue, Fargate can be set up to not have containers running standby, but spin up on
request and shut down when completed, potentially reducing runtime cost.

2.7.4 AWS Lambda

AWS Lambda [7] is a serverless compute service. This allows customers to run code without
provisioning or managing servers or containers, a function will simply run when it is called.
This has advantages when it comes to maintenance as well as cost. This service is well suited
for relatively simple functions that have short run times.

2.8 Docker
Docker is a platform that allows running of applications in an isolated environment referred
to as a container. By using a Dockerfile docker allows automatic building of an image, from
which a container can be spun up, where docker pulls the latest image from a repository, for
instance dockerhub and builds the image as specified by the Dockerfile. This allows specifying
that the image should update packages, import any required packages on build and copy files
from the host system to the image, resulting in a ready-to-use image that is fully updated and
has the specified packages installed.

11

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

3 Choice of technologies and methods

3.1 Application
3.1.1 Authentication

Decisions about how the scanners are authenticated is a very central part of the project. Which
methods of authentication that get supported decides which applications these automated tests
are viable for. Getting as many authentication methods included in the project would create
a good foundation for running these tests against several application, allowing future work to
focus on creating new tests.

Another factor to consider is the ZAP tool and which authentication methods are easily sup-
ported by ZAP. ZAP provided some guides on their official websites [31] on how to authenticate
specific applications through some of the methods mentioned earlier in Authentication 2.4.
Since the methods covered in the guides were well used, these were the starting point of au-
thentication coverage.

Decisions were made to cover CSRF tokens and JWT because of their popularity, the level
of security they provide, and after wishes from product owner form based authentication was
also added as a simpler method. However, all applications are using authentication methods in
their own way, so configurability of the authentication was important. The solution to this was
using a larger configuration file for all variables regarding to authentication and context, and
providing different templates for how the variables should be set against different methods.

Figure 3.1: How to specify authentication method

After the authentication method is specified like shown in 3.1 the program will define the
authentication method in context, and decide how the login data is handled. Providing the
login URL and POST data for the login is also crucial for logging in, and is also provided in
the configuration file.

Figure 3.2: How to set login URL and POST data

Since scripts also played an important role in authentication and they also vary depending on
the needs of the application they also needed to be configurable. To give this option the team
provided default scripts which would run with certain authentication methods, but remains
well documented, and is susceptible to change.

3.1.2 Scanning

The security tests are done by penetration scanning. By changing the configuration file the
user can define a starting URL for the scans, and provide URL regex like shown in figure 3.3
to define the scope where the scans will attack. The security tests will first run a passive scan

12

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

to map out the found URLs within the scope so the user can verify that the scans will not
attack something he does not want to attack. After the user has verified this, an active scan
will start running active penetration tests attempting to find vulnerabilities.

Figure 3.3: Specified URL regex from Bodgeit template

As this project is focusing on a general solution viable for testing several applications the
focus was set on technical vulnerabilities. These vulnerabilities were mainly SQL injection and
Cross-Site scripting, but these are included in a larger scan for injection type attacks. These
were chosen because of their high placement on the OWASP Top Ten list, and because they
are well known vulnerabilities to cover with automated security tests.

3.1.3 Scan results

Security alerts found by the security scans are continuously added to a report which can
be presented as HTML, JSON or XML. This report contains a summary of all the different
vulnerabilities found, where they were found and number of instances found. The alerts are
put into four different categories: high, medium, low and informational. The team decided to
use ZAP’s existing alerts because they are explained well, and provide possible solutions to
remove the vulnerability.

Another alternative to ZAP’s report could be to create a new report based on the report
given from ZAP, but remove the parts deemed unnecessary. This would make the report more
specific, but could potentially remove important alerts. Using ZAP’s report was decided to be
the safest route, and the developers could decide for themselves which alerts are important to
their application.

After the scan is complete, an alert will be triggered if any high security alerts were found
during the scan. This alert is currently only made in the running console, so it wont do much
when the tests run automatically, but can be integrated into for example Slack for better
notifications.

3.1.4 Scanning intervals

There are two options for possible testing intervals that were considered. The first option is
integrating the automated security tests with CI/CD, which will run the security tests whenever
a change is pushed to the main branch. This is a viable option as long as changes are made
to the main branch consistently. Security tests and penetration testing tools will be updated
periodically, so it is important the tests continue to run even if there is not any changes to the
application. This means that if the tests run on CI/CD, and there are not any changes for a
considerable amount of time, the tests still have to be ran after changes made to tool or tests.
This can be solved by forcing an automated security test to all applications using the tests,
whenever the test or tool are updated.

13

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Another option considered is running the tests on specific intervals regardless of changes made
to the application. This solution will remove the need for forcing new tests after updates
because the tests will run periodically anyway, however there may be gaps in time where new
changes got security vulnerabilities, but the tests does not find them right away. More resources
will also be spent on applications without changes, and without changes to the tests. Which
should provide the same result every time.

Both are good options that would work, but for this project a CI/CD solution were chosen. This
was because of further development can make CI/CD far better with integrating terraformed
infrastructure which is used by project owner. This terraformed infrastructure would provide
a way to force a security scan to run across all relevant application, and therefore remove the
disadvantages of the CI/CD solution.

3.2 Configurations

Since these tests are meant to be implemented into multiple teams with different applications,
the configuration of the tests are important. These applications may also use very different
methods of authentication so supporting options for different authentication was a significant
part of the project, and everything should be done through one configuration file. The context
for the scan is created based on this file, and will update itself if there are any changes to the
file. One of goal for the automated security scans is to make it easier for teams to test security,
without the need to know too much about it. Removing the need to make changes to scripts
to make the test work for specific application will make it easier to use and implement.

There are also variables not included in the configuration file, but can be changed if the user
decides it is necessary. A good example of this is the attack mode of the ZAP application,
which is set to protective, and can only be changed in the script. The different ZAP modes
decides how aggressive or how cautious the attack are performed, and the protective mode is
very cautious and will prevent any and all attacks on URLs outside specific context regex.

3.3 Script organizing

The script are organized around a main script which starts the application. This main script
will retrieve all variables from the configuration file, and then look for an existing context
matching the variables. All context related methods are located in a createContext script and
will be called for creating context and user if needed.

After the context and user is created with content from the configuration file the application
will run scans. All methods relating to the security scans are located in a runScan script.
These scripts take the context, user and target as parameters to perform the security scans.
Currently the script contains two passive scans using different spiders, and one active scan.
With this script setup it is easy to create security scans in existing scripts, or create new scripts
to test additional security vulnerabilities. Only changes necessary to the main script will be
to add additional config variables, and run the new methods made in other scripts.

3.4 Technologies

3.4.1 Version Control

For this project the decentralized service Git is the version control of choice. This decision
is based on Git’s wide array of useful features. Git provides a practical way of sharing code
between the developers of the project, including functionality to perform comparison where
there are conflicts and to some extent automatically resolving conflicts. Git also provides
functionality for reversal if a change or an update introduces bugs or breaks the system.
Reversal can be done by rolling back to a commit that is known to work. Another possible
way is to go through the changes made by the commit that introduced bugs line by line, as git

14

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

presents the changes of every commit in a very readable way. GitHub has been used to host
the repository of this project.

3.4.2 Programming language

The programming languages that were considered for this project were Java, Python and
Javascript. All these languages provide good libraries for security testing and implementation
of different tools which might have been used in this project, or may be included later.

Python ended up being the choice of language due to its scripting properties which easily
could be implemented with the main tool used for this project, ZAP. Python had a simplified
ZAP API which made the code easier to read, and makes the connection to the ZAP API
simpler. Python’s popularity and easy-to-learn nature may also make further development
a less complex task. Python libraries are frequently upgraded and libraries receive frequent
additions, indicating Python is likely to remain relevant within the field of cyber security.

3.4.3 Virtual Machine (VM)

When security testing is conducted it is preferable to contain the application within a virtual
machine, in order to limit potential damage if something goes wrong or the testing causes
damage to the application it is attacking.

During development of this project Kali Linux has been the virtual machine image of choice.

Kali was chosen because the VM is tailor made for penetration testing, ethical hacking and
other cyber security tasks. Due to this the VM comes with a wide selection of testing tools
pre-installed, including the ZAP tool utilized in this project. All this makes Kali the perfect
choice of VM for this project.

3.4.4 Penetration testing tools

The choice of penetration testing tool used in the project is an important decision and stood
between Burp Suite and ZAP. ZAP is the open source penetration testing tool made by OWASP
and is free to use. Burp Suite is made by PortSwigger and gives the choice between a free and
premium edition of the program. Both programs provide ways to scan applications for security
vulnerabilities and are popular in the software security community.

The decision was made to use ZAP because it is a free open source program, and the product
owner preferred open source over commercial subscriptions. ZAP works well with the choice
of language and has an easy to use ZAP API alongside the ZAP UI. The downsides of ZAP
versus Burp suite is that burp suite provides more features than ZAP, but requires a premium
subscription to unlock these features. Another advantage of an open sourced application is
that it often has faster development, and since it is dependent on volunteers and feedback the
users have more to say in the application’s development.

3.4.5 Maintaining the penetration testing tools

In order to maintain the security and reliability of the scanning software, it will need to be
kept up to date. There are several possible approaches to this with their own benefits and
disadvantages.

A reactive approach has the benefit that it does not require user input, which in turn has the
benefit that there will be little to no delay in updates as they are released. A disadvantage
to this approach is that it may cause issues. If an update is released with a bug that is
unknown at the time of release or the release breaks the scanning tool or its setup, security
may be compromised. Furthermore it may cause issues if an update is run at a time the system
experiences heavy traffic, disrupting running tests. The disruption issue can be mitigated by
running updates as a cronjob outside of working hours or at times of low traffic. The bug issue

15

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

may be mitigated by pinning the application to a version number, in which case only minor
patches within the same release will be applied, often to solve bugs or minor issues.

A detective approach may be beneficial with regards to stability. Using a detective approach a
notification is sent to an administrator or maintainer when an update is detected. The recipient
of the notification can review release notes and make a conscious decision whether the update
should be implemented or not.

3.4.6 Cloud service

For this project Amazon Web Services has been the cloud service of choice. The main reason for
this is that the product owner uses AWS, however AWS would most likely have been the service
of choice regardless. At the time of writing this report AWS holds a significant majority of the
market for cloud computing services and has a very well developed platform that offers cutting
edge technological solutions. This project utilizes AWS Elastic Container Repository to host
docker images, the containers spun up from these images are hosted by Fargate which in turn
is managed by Elastic Container Service. For this project, despite the latency implications, it
may be a solution to configure Fargate to close containers upon completion and only launch
new instances on request, in order to reduce runtime costs as some latency is not an issue.

In the AWS ecosystem Fargate was chosen over EC2 and Lambda. EC2 would have required
more maintenance and management. Lambda is better suited for functions and very simple
applications that run for a short amount of time, which is not suitable for this project due to
the need for relatively big packages that work together and run for significant amounts of time.

3.5 Work methodology

At the very start of the project it was decided to use SCRUM as the work method, mainly
because both the team members were very familiar with the method. Additionally SCRUM
is great to use in system development and makes it easy to make changes based on feedback
from frequent meetings with product owner.

A couple weeks into the project the team decided to change from SCRUM to Kanban. This
change was made because research and feedback showed Kanban would work better at a team
with only 2 members. The main difference between the two methods of working is the fluid
prioritizing in Kanban versus the sprints in SCRUM. Kanban does not use sprints and rather
have a continuous backlogs which gets updates in tasks and prioritization frequently. SCRUM
however uses sprints usually lasting 2-3 weeks, where the backlog and goal for the sprint is
decided at a sprint planning.

With Kanban as the methodology the team set goals to work consistently with weekly meeting
with the product owner. Run-able code was a priority, and the team would work to get early
demos working to show product owner the project was heading in the desired direction.

The backlog was implemented with Atlassian’s Jira which is the program the product owner
mainly uses for backlog tracking. Alongside the backlog in Jira there was also created a road-
map which gave a visual of the project goals and wished deadlines.

For communications with product owner emails were used for all documentation. Documenta-
tion mainly includes notices and minutes of meetings, alongside relevant documents as vision
document and requirement specification. There was also created a Slack channel for faster day
to day communications.

3.6 Responsibility distribution

Due to the small size of the team most of the responsibilities have been shared. There are
however a couple tasks that have been handled mainly by the same person throughout the
project.

16

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Olsen has dealt with most of the task management on our Jira roadmap and board.
Holt-Seeland has been dealing with the majority of the communication towards Telia and the
supervisor from NTNU.

With regards to development, Olsen has dealt with JWT and CSRF authentication with the
respective scripts and contexts needed to execute these authentication methods. Holt-Seeland
set up the working environment with Kali, OWASP Zed Attack Proxy daemon and the python
ZAP package. Development of the passive and active scanning was worked out as a team. Near
the end Holt-Seeland shifted focus towards creating a depolyable docker image and implemen-
tation solutions while Olsen cleaned up the code.

17

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

4 Results

4.1 Scientific results

The thesis statement that was chosen for this project can be divided into the two different
types of vulnerabilities. Security tests for the technical vulnerabilities are easier to automate
with general tests that works on several applications, while the logical vulnerabilities is harder
to automate on multiple applications, since every application works differently. Because of
this, technical vulnerabilities have been the main focus of the automated tests made in this
project, while logical vulnerabilities have been covered theoretically, and facilitated for further
development.

When trying to reduce the need for manual tests it is important that the automated tests are
reliable, while not notifying unnecessarily low security alerts. This could be regarded as spam,
and reduce the chance of developers looking at the actual high severity alerts. The ZAP tool
comes with it’s own severity levels of security alerts, which have been used in this project for
evaluating the severity. All the results of all severity levels are also included in a report which
documents where the security vulnerability was found, what triggered it, and possible solutions
for fixing the vulnerability.

Figure 4.1: Example of alerts

To prove the reliability of the tests the project ran the tests against three different well known
applications for security penetration testing, and the test have found high security alerts against
all three. DVWA which is one of the applications used in this project also gives the option
to change the difficulty of finding security vulnerability. The security scans created in this
project manages to find high security alerts on all difficulties except the highest, which is
named ’impossible’. It’s also important for the security alerts to have reliable severity level,
and security alerts with high severity is actually quite crucial to fix. The only high severity
alerts found during these security tests have been Cross-Site scripting and SQL injection which
have both been present on the OWASP Top Ten list for a long time.

How the security tests are ran against the application is also an important part of the process.
It is important for the security tests to uncover possible vulnerabilities as fast as possible,
and running tests CI/CD tests when new code is pushed will uncover new vulnerabilities right
away. While this covers all possible vulnerabilities that can be find in a test environment,
running security tests on an interval against applications in production will uncover possible
vulnerabilities that may appear from using the application.

18

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

4.2 Engineering results
4.2.1 Vision document

The features mentioned in the vision document required security tests covering OWASP Top
Ten, and for these tests to run when pushing new code. These requirements changed throughout
the project where the team in agreement with the project owner concluded that not every point
on OWASP Top Ten is possible to automate as a general solution, and the requirements changed
to more specific technical vulnerabilities like SQL injection and Cross-Site scripting.

Further features included the tests were meant to be a general solution that could work with
several teams with different applications. The feature of a general solution has been in focus
throughout the whole project, and a lot of time has been invested into allowing several authen-
tication methods to be used. This is a large part of the project, and creates a good foundation
for further testing.

Scalability is also an important part of the project when several teams are involved. Using
AWS Fargate as a cloud service will make the tests easily scalable, and should handle as many
applications as necessary by setting up new containers for each team running tests. These
containers will be removed after the tests are done, and results are saved.

As part of the non-functional features the tests are meant to be user friendly, so any developer
can integrate the tests into their application, regardless of how experienced they are with
security. To accomplish this the tests were created to rely on information provided in a single
configuration file. This configuration file is required to give the tests necessary information
about the application, and to help the developer fill out this information several templates are
created. The config templates are created for three different applications, all using different
authentication methods. Additionally all the variables in the file is also well documented with
comments to explain the need and use for the variable.

The last requirement was unit testing for the project. Unit testing is provided to the scripts
which are creating context and specifies how the scans are meant to run. Unit tests for the
actual scans requires a running application to scan on, which after a discussion with project
owner was not desired.

As this was a large project on a field in constant development, facilitating for changes was an
important part of the project. This was kept in focus by creating a good foundation for security
testing, making them a general solution. How the scripts were created was also affected by
this focus, and the goal was having the main script detached from every security scan. The
main script only focuses on retrieving the variables from the configuration file, and then gives
these variables to other scripts running the scans. Future security scans to be developed can
be created in the existing runScan.py script, or created in a completely new script. They only
need to be imported to the main script, and called from there. This script setup will also make
it possible for individual teams to create automated tests for their specific applications and
then connect them to the main script.

4.2.2 Requirement specification

This project is mostly backend and does not have many frontend features beside the generated
security report. This results in fewer user stories in the requirement specification, as there is
little user interaction. The requirement specification was also created at a later stage in the
project, since a lot of the time in the beginning was spent researching the relevant topics, and
the requirements were set after the foundation was created. There was also made some changes
at the end of the project after new decisions were made in prioritizing.

SQL Injection and Cross-Site Scripting vulnerability scans were prioritized first as these are
some of the most common technical vulnerabilities, and have a high ranking on the OWASP
Top Ten list. This requirement was met in the project, and with the scans covering these
vulnerabilities, a lot of other injection vulnerabilities were also covered. These are not specified

19

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

in the requirement specification but included, among others, the vulnerabilities buffer overflow
and CRLF injection. The full list is included in the system documentation A.3specification

JWT, CSRF tokens and a simple login as form-based login were the requirements for au-
thentication methods. All of these methods are included, and can easily be specified in the
configuration file.

After the scan is complete the results are saved in a HTML or XML report. This report
contains detailed information about the different vulnerabilities found and suggestions on how
to fix them. It is also prepared for notifications on Slack whenever a high security alert has
been found by the scan, but it is not yet integrated into Slack. For now the notification only
happens on the terminal, which is not too useful during automated scans, but it is only the
actual Slack integration that is missing for notifications to Slack.

Implementation into AWS is one of the requirements specified. Due to a delay in access to AWS
resources, this requirement has not been met. AWS access was provisioned at an early stage
by Telia. However, what appears to be a conflict between the SSO tied to the NTNU provided
e-mail accounts used by the team and Telia’s SSO, getting access proved to be difficult. On
delivery the project is at the stage where a docker image exists ready to be pushed to ECR.
Actual implementation has not been completed.

With the last change to the requirement specification some security scans were replaced by
authentication in order to build a foundation for further development. The removed security
scans were brute force against admin user, and insufficient logging and monitoring. Insufficient
logging and monitoring is present on OWASP Top Ten, and is recommended to be included in
the tests at a later stage. The logging scan were removed after a discussion with product owner
where adding more authentications was deemed more important than additional scans. Brute
force attack against admin user was added to make sure the admins change their given default
passwords, but was also removed after discovering ZAP does not have support for fuzzing in
their API. This makes automated brute force attacks more difficult.

4.3 Administrative results
All hours spent in this project is documented in hour spreadsheets in the project handbook.
Here we see that the hours spent is not as continuous as we would like. This is due to an
imbalanced prioritizing between this project and another subject at the start of the project.
The hour spreadsheets are well detailed with when and what the team spent time on.

20

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Figure 4.2: Time distribution

Here we see that most of the time was spent coding and documenting. Most of the time
spent on research was spent at the start of the project, but there are also a lot of hidden
research hours done while coding. Time has been spent on documentation throughout the
whole project with frequent notice and minutes from meetings, but the report is where most
of the documentation time has been spent. The weekly meetings does not take up too much
time, but here again there are some hidden hours spent preparing for meetings, besides the
meeting documentation.

The team was using Kanban and had a focus on working agile throughout the whole project.
Kanban worked great with good use of a backlog board, and road map made in Atlassian’s Jira.
The backlog progress is being shown in the weekly logs the team has written throughout the
project, located in the project handbook, and the road map taken from early April is shown
below 4.3.

Figure 4.3: Road map from early April

This period is chosen since it shows the project progress during the project, and not at the end.
As shown the JWT authentication is a little off the deadline, but everything was completed
in time for product deadline. Brute force login against admin is also present at the road map,
which was changed into form-based authentication when changes were made to requirement
specification.

Weekly meetings were held with product owner where project progress was discussed. There
was a goal to show frequent and early demos in these meetings to show project progress,
however as the project progressed it became clear this project did not require particularly
frequent demos, since a lot of the work done could not be shown as easily. Demos with running

21

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

scans and results were shown at an early stage, but additional changes to the foundation and
configuration of the scans did not result in a different demo.

Another goal was for the team to be sitting together while working to make communications
easier. This was done throughout most of the project, despite it being hard to get room for
working on campus. The team ended up mostly working out of the apartment of a team
member.

22

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

5 Discussion

5.1 Technical Results

At the start of the project a lot of research into new subjects and tools the team was not
familiar with was needed. This resulted in less time being available to develop the product,
which made it necessary to adjust the prioritizing and goals along the way. Since this is a
large field that constantly progresses, creating a foundation for future development has been
an important part of the project. Due to this, a broad foundation of various authentication
methods has been a priority. Even though this work does not necessarily affect the scans
themselves it enables a broader selection of applications to be scanned.

The project has proved it possible to automate security tests on several applications and
facilitated good possibilities for further development. It is possible to automate security tests
by setting up automated attacks that tries to breach common security vulnerabilities. If these
attacks succeed it proves there exists a vulnerability. These tests will reduce the need for manual
testing against several technical vulnerabilities, specifically injection type vulnerabilities, but
there are still vulnerabilities that need test coverage, or manual testing.

5.2 Limitations

5.2.1 AWS

During the initial period of the project some effort was put into researching AWS, due to
expectations that AWS access would be granted relatively fast. However, as a result of authen-
tication issues using university e-mail addresses this took significantly longer than expected,
with access to AWS being sorted very close to the project deadline. At this stage most of
the formerly conducted research can be considered wasted as much of the research had to be
repeated. In addition, the choice of AWS technologies changed during the course of the project.

5.2.2 OWASP Top Ten

OWASP Top Ten gives a good overview over different common vulnerabilities, and to cover
these vulnerabilities was the project’s first focus. However after the implementation of SQL
Injection and XSS the focus was reconsidered, on the grounds that not all of OWASP Top
Ten is easy to automate as a general solution. Several of the points on the OWASP Top Ten
are considered logical vulnerabilities, and while some of them are automatable, it is hard to
create a general solution that covers all points. This is because different applications often
works very different logically, and to automate logical vulnerability scans requires in-depth
knowledge about the specific application.

Some of the logical vulnerabilities mentioned on OWASP Top Ten are still very important,
and quite common, so the tests are created with the possibility of further development. This
makes it possible for each individual team to create their own scripts for testing their logical
vulnerabilities, and attach these scripts to the already automated scans.

5.2.3 ZAP

As an open source penetration tool ZAP has provided good ways to automate the security tests.
There are however some limitations to the tool, which have changed some of the priorities and
goals of the project. The next priority after SQL Injection, XSS and building an authentication
foundation was to create tests to brute force admin users. This is to make sure the users change
their default passwords and the accounts are secure. After some research around brute force
in ZAP it was discovered that fuzzing is not supported in the ZAP API. Using fuzzers for
testing common passwords was the idea for the brute force, and while there probably are other
options, the team and product owner decided to change the prioritization to create an even
stronger foundation for further development instead.

23

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

5.3 Technologies

While using ZAP have given us good ways to automate scans, the opposition Burp Suite would
have been able to provide the same features, and more in exchange for a premium fee. On
certain areas ZAP may have limited the progress more than Burp Suite would have, but the
fact that ZAP is open sourced while Burp Suite is not is enough to deem ZAP the correct
choice. For product owner this was an important part of the choice, since the test then wont
require a subscription to be used.

Python has also proven to be a good choice of programming language because of it’s scripting
capabilities, and existing version of python ZAP API. This helped greatly in making the code
simple and easy to read, which will make it easier to further develop.

5.4 Society, environment and economics

System security has large impact on society in regards of how much we can rely on systems
to do tasks. For the society to rely on systems it is important that the systems are secure,
and know they have no been corrupted by any attacks made. The automated security tests
made in this project will help improve overall security in the application they are testing, and
they will also save time for developers to focus on other tasks. Which then can improve overall
system quality and development progress.

While the tests cost money to run on AWS, they will still save money overall compared to
developers running these tests manually. The alternative being not running tests at all to
save money will again result in large risk of the systems being vulnerable to malicious attacks,
which in turn may affect the company’s reputation and their relations with customer. Harm
to reputation may have long term implications that may be difficult to recover from. Having
to weigh risk against cost and time is an issue under constant consideration throughout the
development process. Using automated security tests will save time while reducing risk for
security holes which saves money in the long run.

5.5 Future development

5.5.1 Authentication

Even though a lot of work have already been put into making the tests run with several different
methods of authentication, there are more methods that can be relevant to include. Single
Sign-On is one of the more modern authentication methods that is not already included in the
project, and if the focus remains on a general solution adding SSO would be a good addition.
Other options will depend on what the applications running these tests are using. Using the
script based method in ZAP it is possible to replicate most of the authentication methods,
even if they are not specifically mentioned in ZAP. To do this would require some work with
the configuration file, adjusting it to fit the need of the new authentication method. However
the CSRF token authentication method is already relying on script based authentication, so it
should be possible to replicate most of the needed variables from that template.

5.5.2 Brute force

At a point brute force was on the list of tests that should be conducted, not in a full scale
brute force manner but as a test that would check if default admin or weak admin passwords
were in place. In the end it was bumped down the priority ladder in favour of completing
several authentication methods. Part of the reason priority shifted away from brute force was
that it is not implemented in the ZAP API, thus making it too time consuming to be worth
prioritizing over authentication.

24

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

5.5.3 Insufficient logging and monitoring

Insufficient logging and monitoring is a point present on the OWASP Top Ten, and is possible
test automatically. This could be done by running the scans already created, and then look for
traces of the attacks in the logs. If there is not any traces of the attacks made, the logging is
insufficient, and needs to be improved. For future work with general security scans that works
with several applications this should be high on the list.

5.5.4 Logical vulnerabilities

Creating automated scans for logical vulnerabilities general enough for several application is
hard to do. This is because applications work very different logically, and the testing the logic
in two different applications is hard to do with the same tests.

Broken access control is a very common logical vulnerability which is possible to automate to
some extent. There are security scans that know how to look if the access control is present,
but the scan can not verify if the access control works as intended. Scanning to make sure the
access control is present within all application is a good general solution, but will not remove
the need for manual testing of the access control.

Since logical vulnerabilities varies greatly from application to application is it recommended
that a developer with good knowledge about the application creates the automated tests, and
these would probably only work with the specific application.

5.5.5 Frontend solution

This project have been focusing exclusively on the backend, and have possibilities in further
development on a frontend solution. This frontend solution can for example provide a well
organized way of showing test reports, and possibly compare reports to show progress.

The test should optimally run automatically on push of new code, or continuously on intervals,
but if there is need for manually forcing a security tests this could also be an option in a
frontend solution.

5.6 Administrative results
5.6.1 Process

The process worked well with Kanban and agile principles. A continuous Kanban board was
used and kept updated throughout the whole project, and helped greatly keeping tasks sorted
after priority. The team also had weekly meetings with product owner where task priority and
progress of the project was discussed.

Another goal of Kanban and agile process is to focus on run-able code and demos. While this
was in focus during development, it took longer time to get the first demo up than anticipated.
This was mainly because the team was not familiar with several aspects of the project, and a
lot of time was spent on research. Additionally, a lot of work was conducted on authentication
configuration, which itself does not make for a good demo, but rather how the file is constructed
and what is included in the configuration. Even though the first demo of the product took
longer time than anticipated, there were weekly discussions about the research and progress of
the project. According to feedback from product owner, these discussions all but qualified as
a demo, giving them a clear picture of our progress and heading.

Alongside the project was another subject which ended in March. The balance between these
subjects were at some points off, and at times too much time was spent on the other subject
instead of this project. This resulted in larger amount of hours having to be spent later in the
project, leading to a less consistent workflow. This inconsistency could result in unnecessary
time being spent figuring out where the team left of last time, but was well mitigated with
good use of the Kanban boards and the weekly discussions with product owner.

25

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

To optimize teamwork it was a goal to work from the same physical location as much as
possible. Even though there were several restrictions on campus due to COVID-19, the team
manages to follow this goal through almost the whole project. All meetings were held digitally
since product owner was not located in Trondheim, but the team members spent most days in
a members’ apartment. This helped greatly, especially during the research phase where topics
could be discussed for increased understanding.

5.6.2 Teamwork

The project has been largely unaffected by the ongoing COVID-19 pandemic. However, there
have been incidents where one of the team members have gone into self-applied quarantine
awaiting test results when experiencing potential symptoms. This has been of little consequence
as we have been able to communicate through digital channels.
Outside of quarantine we have been working from the apartment of a team member. Due to
this the team has not suffered a significant consequence from the restrictions to use of campus
during the project.

The team members have been working together for a considerable amount of time over several
projects and as of such have a well developed dynamic. Due to the team members having differ-
ent areas of interest our combined skills and interests makes for a natural distribution of tasks
and responsibilities. Despite of some gaps in productivity through the project communication
has been good and there have been no conflicts.

Working on this project has been a valuable learning experience for both team members as we
have been working more in-depth with several technologies and environments that the team
previously had no or limited experience with. When faced with entirely new challenges the
team has been able to work through by researching the topics both individually and as a team.

5.7 Positive elements
5.7.1 Product Owner

The product owner has provided good feedback throughout the project. Formal communica-
tion has been conducted through email exchanges while Slack has been used for less formal
communication. Product owner has been reachable through both channels and communication
has been easy. The product owner scheduled time on a weekly basis to conduct digital meet-
ings. These meetings have provided an excellent opportunity to receive frequent live feedback
on progress and work, which has proven to be very valuable.

5.7.2 Supervisor

The NTNU Supervisor of this project has also provided valuable feedback throughout the
project. The supervisor has been easy to reach both through formal and casual channels, for
questions of varying magnitude and arrangement of meetings. The meetings have been efficient
and on point.

5.8 Project conclusion
The idea of this system was to create automated security tests that could be hosted on a public
cloud in order to relieve some of the need for manual security testing. This goal was achieved
as a general solution where the test can run several different applications by only specifying
configurations to suit the application in question. This will reduce the need for manual security
testing, but there are still several other vulnerabilities that are not covered by these general
security tests, thus there will still be a need for manual testing against certain vulnerabilities
such as logical vulnerabilities.

A docker image that contains all necessary packages and scripts has been made and can be
pushed to ECR, from which it can be spun up by Fargate and managed by tasks in ECS. This

26

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

allows for excellent scalability and implementation with Telia systems. Config templates for
three different authentication methods are ready to be stored on Amazon S3 from which the
various teams can fetch copies, edit these copies and push to their respective containers.

27

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

References
[1] Atlassian (2021): What are the differences between CI, CD, and CD?

https://www.atlassian.com/continuous-delivery/principles/
continuous-integration-vs-delivery-vs-deployment.

[2] Auth0 (2021): Introduction to JSON Web Tokens
https://jwt.io/introduction.

[3] Auth0 (2021): JSON Web Tokens
https://auth0.com/docs/tokens/json-web-tokens.

[4] Auth0 (2021): Single Sign-On
https://auth0.com/docs/sso.

[5] AWS (2021): AWS
https://aws.amazon.com/what-is-aws/?nc2=h_ql_le_int.

[6] AWS (2021): AWS Fargate
https://aws.amazon.com/fargate/?nc=sn&loc=1.

[7] AWS (2021): AWS Lambda
https://aws.amazon.com/lambda/.

[8] AWS (2021): What is cloud computing
https://aws.amazon.com/what-is-cloud-computing/.

[9] Dhulam, Jit (2019): JWT(Json Web Token) In Django REST API
https://medium.com/@ajitdhulam/jwt-json-web-token-in-django-rest-api-3056df2a4dfa.

[10] Imperva (2021): Cross site request forgery (CSRF) attack
https://www.imperva.com/learn/application-security/
csrf-cross-site-request-forgery/.

[11] Imperva (2021): Cross-Site Scripting attacks
https://www.imperva.com/learn/application-security/
cross-site-scripting-xss-attacks/.

[12] Klein, Amit (2005): DOM Based Cross Site Scripting or XSS of the Third Kind
http://www.webappsec.org/projects/articles/071105.shtml.

[13] Netsparker (2021): Understanding the Differences Between Technical and Logical Web
Application Vulnerabilities
https://www.netsparker.com/blog/web-security/logical-vs-technical-web-application-vulnerabilities/.

[14] Olan, Michael (2003): Unit testing: test early, test often
https://www.researchgate.net/profile/Michael-Olan/publication/255673967_
Unit_testing_Test_early_test_often/links/5581783608aea3d7096ff00c/
Unit-testing-Test-early-test-often.pdf.

[15] OWASP (2021): Active Scan
https://www.zaproxy.org/docs/desktop/start/features/ascan/.

[16] OWASP (2021): Authentication Methods
https://www.zaproxy.org/docs/desktop/start/features/authmethods/.

[17] OWASP (2021): Broken Access Control
https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control.

[18] OWASP (2021): Contexts
https://www.zaproxy.org/docs/desktop/start/features/contexts/.

[19] OWASP (2021): Cross Site Request Forgery (CSRF)
https://owasp.org/www-community/attacks/csrf.

28

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://jwt.io/introduction
https://auth0.com/docs/tokens/json-web-tokens
https://auth0.com/docs/sso
https://aws.amazon.com/what-is-aws/?nc2=h_ql_le_int
https://aws.amazon.com/fargate/?nc=sn&loc=1
https://aws.amazon.com/lambda/
https://aws.amazon.com/what-is-cloud-computing/
https://medium.com/@ajitdhulam/jwt-json-web-token-in-django-rest-api-3056df2a4dfa
https://www.imperva.com/learn/application-security/csrf-cross-site-request-forgery/
https://www.imperva.com/learn/application-security/csrf-cross-site-request-forgery/
https://www.imperva.com/learn/application-security/cross-site-scripting-xss-attacks/
https://www.imperva.com/learn/application-security/cross-site-scripting-xss-attacks/
http://www.webappsec.org/projects/articles/071105.shtml
https://www.netsparker.com/blog/web-security/logical-vs-technical-web-application-vulnerabilities/
https://www.researchgate.net/profile/Michael-Olan/publication/255673967_Unit_testing_Test_early_test_often/links/5581783608aea3d7096ff00c/Unit-testing-Test-early-test-often.pdf
https://www.researchgate.net/profile/Michael-Olan/publication/255673967_Unit_testing_Test_early_test_often/links/5581783608aea3d7096ff00c/Unit-testing-Test-early-test-often.pdf
https://www.researchgate.net/profile/Michael-Olan/publication/255673967_Unit_testing_Test_early_test_often/links/5581783608aea3d7096ff00c/Unit-testing-Test-early-test-often.pdf
https://www.zaproxy.org/docs/desktop/start/features/ascan/
https://www.zaproxy.org/docs/desktop/start/features/authmethods/
https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control
https://www.zaproxy.org/docs/desktop/start/features/contexts/
https://owasp.org/www-community/attacks/csrf

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

[20] OWASP (2021): Getting Started
https://www.zaproxy.org/getting-started/.

[21] OWASP (2021): Insufficient Logging Monitoring
https://owasp.org/www-project-top-ten/2017/A10_2017-Insufficient_Logging%
2526Monitoring.

[22] OWASP (2021): Options AJAX Spider screen
https://www.zaproxy.org/docs/desktop/addons/ajax-spider/options/.

[23] OWASP (2021): OWASP Top Ten
https://owasp.org/www-project-top-ten/.

[24] OWASP (2021): Spider
https://www.zaproxy.org/docs/desktop/start/features/spider/.

[25] OWASP (2021): SQL Injection
https://owasp.org/www-community/attacks/SQL_Injection.

[26] OWASP (2021): Types of XSS
https://owasp.org/www-community/Types_of_Cross-Site_Scripting.

[27] Portswigger (2021): Cross-site request forgery (CSRF)
https://portswigger.net/web-security/csrf.

[28] Portswigger (2021): CSRF tokens
https://portswigger.net/web-security/csrf/tokens.

[29] S, Wick (2019): Single Sign On (SSO)
https://medium.com/@wickyorama/single-sign-on-sso-69aad061e269.

[30] Swagger (2021): Basic Authentication
https://swagger.io/docs/specification/authentication/
basic-authentication/.

[31] Zaproxy (2021): Getting authenticated
https://www.zaproxy.org/docs/api/#getting-authenticated.

29

https://www.zaproxy.org/getting-started/
https://owasp.org/www-project-top-ten/2017/A10_2017-Insufficient_Logging%2526Monitoring
https://owasp.org/www-project-top-ten/2017/A10_2017-Insufficient_Logging%2526Monitoring
https://www.zaproxy.org/docs/desktop/addons/ajax-spider/options/
https://owasp.org/www-project-top-ten/
https://www.zaproxy.org/docs/desktop/start/features/spider/
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/csrf/tokens
https://medium.com/@wickyorama/single-sign-on-sso-69aad061e269
https://swagger.io/docs/specification/authentication/basic-authentication/
https://swagger.io/docs/specification/authentication/basic-authentication/
https://www.zaproxy.org/docs/api/#getting-authenticated

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

A Documentation

A.1 Visions document

A-1

Project number: 063

Automation of information systems security on a
Public Cloud

Vision Document

Version <1.0>

Revisjonshistorie
Dato Versjon Beskrivelse Forfatter

30/01/2021 1.0 First draft Per Holt-Seeland,
Mathias Olsen

Table of contents
Introduction 4

References 4

Positioning 4
Problem statement 4
Product position statement 4

Stakeholder and User Descriptions 4
Stakeholder summary 4
User summary 4
Key Stakeholder or User Needs 5
Alternatives and competition 5

Product overview 5
Assumptions and dependencies 5

Product features 5

Non-functional features and other Requirements 5

References 6

1. Introduction
The purpose of this document is to define the scope of the project for automation of information system security.

The purpose behind the project is to create a continuous security system, which will make development and
maintenance of relevant security easier. The product will contribute towards increased system security while
relieving developers of the need to perform certain security tests manually.

1.1 References
https://owasp.org/www-project-top-ten/

2. Positioning
2.1 Problem statement

The problem of Security testing being performed manually

affects Developers

the impact of which is Developers need to take the time to manually perform security
tests. Potential low frequency of security scans as changes are
implemented

a successful solution would Allow developers to focus more on developing products while
improving security

2.2 Product position statement
For Telia Norge AS

Who Desires automated security testing

The (product name) Automation of information systems security on a Public Cloud

That will automate security testing

Unlike today’s manual solution

Our product does not rely on manual execution of security tests, freeing up
time for developers to focus on other tasks.

3. Stakeholder and User Descriptions
3.1 Stakeholder summary

Name Description Responsibilities

Telia Norge AS Owns the product Sets requirements for the product, and offers
guidance

Developers Develops the product Developer

3.2 User summary
Name Description Responsibilities

Supervisor Gives advice and council
when needed

Follow up the project and be prepared for
meetings to give advice

Telia Product owner Provide feedback in order to make sure the
project meets their expectations

Developers Developers of the new system Developing the new system after
requirements from owner

Developers from
Telia

Using the existing solution,
and will be using the new
system

None

3.3 Key Stakeholder or User Needs

Need Priority Effect Current solution Suggested solution

The users have a need to run
continuous security tests as
they develop or maintain
software

High Will free up
time for
developers to
focus on
other things,
and will
increase the
frequency of
security tests.

Manual security
tests done by the
developers

Automated security tests
which runs on every
commit.

3.4 Alternatives and competition
There are several libraries and tools for automation of security tests. Since security testing is such a wide field will
the task of automating all the security tests be too large a task for most. Automated security tests can focus on
different areas within the field, after the need of the owner. This product will be focusing on OWASP top ten.
There are many tools and libraries for penetration testing,

4. Product overview
This product is intended to automate a broad suite of security tests in a manner that will run necessary tests
depending on what is needed by the software to be tested. The product will be a general solution so the automated
tests can be used for several teams in different fields. The tests will be able to integrate into already existing code for
maintenance, and be used in developing new code.

4.1 Assumptions and dependencies
It is assumed that AWS Lambda will be used for less complex tests while AWS Fargate will be used for more
complex tests. The different tests are supposed to be independent, and users should be able to select which tests they
need to run in order to suit the specific needs of their project.

5. Product features
The system will be running tests on AWS and the code which will be located somewhere else. The system will cover
OWASP top 10 and test these possible vulnerabilities automatically on pushing new code. It should be a general
solution which could be used on several different development teams. The system should also be scalable and should
be able to handle a large amount of tests running simultaneously if needed.

A possible expansion for the system could be increasing the amount of tests to include more than OWASP top ten.
Another expansion could be to integrate AI to analyze logs and look for inconsistencies, which could possibly
uncover security issues.

6. Non-functional features and other Requirements
It should be a user friendly solution, and be able to integrate into any and all developments which have use for
security tests.

The tests should be reliable so there won't be a need to run manual tests double checking the automated tests. The
automated test should rather flag one vulnerability too many, than one too few.

It should be possible to run several instances of the same tests on different code pushes. This will make the system
scalable to handle several teams at once.

The tests should be covered by unit tests to make sure all the security tests give the correct results.

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

A.2 Requirement specification

A-8

Project number: 063

Automation of information systems security on a
Public Cloud

Software requirement specification

Version <1.1>

Revision history
Date Version Description Author

05/04/21 1.0 Creation of document Per Holt-Seeland,
Mathias Olsen

12/04/21 1.1 Added domain model Per Holt-Seeland

2/05/21 1.2 Explanation to models, and some changes
to user stories

Mathias Olsen

Table of contents
Introduction 4

User Stories 4

Domain model 6

Sequence diagram 7

References 7

1. Introduction
This document is made to specify system requirements for the project Automated security tests on a public cloud.
The requirements will include which tests are supposed to run and which security risks that should be covered. As
this project also includes integration into Amazon Web Services (AWS) this will also be included in the requirement
specification.

2. User Stories

As a tester
I wish to test SQL Injection(1) security
To evaluate how robust my application is against SQL Injection
attacks

● If I am a tester, I can perform automated security tests which test my application for SQL injection
security holes.

● I can test my application for SQL injection by filling out a. context user, b. login username, c. login
password, d. context name, e. target URL, f. API key, g. included URLs, h. excluded URLs, i.
logged in regex, j. logged out regex

● I can not test the parts of my application that requires authentication, for SQL injection if I do not
have valid login credentials

As a tester
I wish to test Cross-Site Scripting (XSS)(2) security
To evaluate how robust my application is against XSS attacks

● If I am a tester, I can perform automated security tests which test my application for XSS security
holes.

● I can test my application for XSS by filling out a. context user, b. login username, c. login
password, d. context name, e. target URL, f. API key, g. included URLs, h. excluded URLs, i.
logged in regex, j. logged out regex

● I can not test the parts of my application that requires authentication, for XSS if I do not have valid
login credentials

As a tester
I wish to utilize JWT(3) and CSRF(4) token authentication methods
So that I am able to test different applications

● If I am a tester, I need to be able to utilize different login criteria, namely JWT and CSRF tokens in
order to test parts of my application that require authentication.

● I can choose between the different authentication methods by editing the config file

As a tester
I wish to utilize a simple form of login like form-based
authentication
So that I am able to test applications which uses a simple login

● If I am a tester, I need to be able to utilize form-based authentication to scan applications with a
simple login.

● I can choose between the different authentication methods by editing the config file

As a tester
I wish to see a report of the performed tests which gives me an
overview of security holes
To easily determine if the application security needs to be improved

● If I am a tester, I need to be able to see a report from performed tests. The report needs to give a
good and structured overview over potential vulnerabilities in my application.

● I can see this report by checking the html or xml file created after a performed scan.

As an admin
I wish to have the security tests running on AWS(5)

To remove the need for maintaining the test container as well as
reducing running cost

● If I am an admin, I need to be able to configure the security tests running on AWS.
● I can do this by logging into my Telia AWS account and find the cluster the scans are running on.

3. Domain model

Main.py is the main script which is run by the user. The script will receive all necessary variables from
config.ini which contains application specific variables. After the config variables are received the main
script will call methods from createContext.py which are checking for existing context within the ZAP
API. This is to save time if this is the second security scan running from the same config file without a
reboot. If the context is not found, another script from createContext.py will be called to create this
context in the ZAP API.

After the context and user is created from methods in createContext.py the main script will start running
security scans. These scans are methods in runScan.py which are either passive scans or active scans.
Passive scans are recommended to run first to check if the scans are attacking outside scope, if it is not the
active scan can continue the scans.

The ZAP API is crucial for all the testing since it is the tool doing the actual scanning. All results from the
scans will also first be saved in the ZAP API, and retrieved from there.

4. Sequence diagram

This sequence diagram shows how the main script runs from start to end. What the different script does is stated
above, but this script also specifies how the user interacts with the script. The user only needs to start the main
script, and then only required to say yes to the active scan prompt. This prompt is not needed for automated security
scans since there is not an user to confirm the prompt, but it is recommended to perform a test with the prompt
beforehand. After the scan is complete the script will save a html report with all the results.

5. References
(1) OWASP Foundation. (2021, March). SQL Injection. Retrieved from OWASP:

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
(2) OWASP Foundation. (2021, March). Cross-Site Scripting. Retrieved from OWASP:

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
(3) Auth0. (2021, March). JWT. Retrieved from JWT:

https://jwt.io/introduction
(4) PortSwigger. (2021, March). CSRF token. Retrieved from PortSwigger:

https://portswigger.net/web-security/csrf/tokens

(5) Amazon Web Services. (2021, March). AWS Introduction. Retrieved from AWS:
https://aws.amazon.com/what-is-aws/?nc2=h_ql_le_int

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

A.3 System documentation

A-17

Automatic security tests on a public cloud

System documentation

Version 1.1

May 20, 2021

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Revision history

Date Version Description Author
10/05/21 0.1 Start of document Mathias

i

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

Contents
1 Introduction 2

2 Project structure 2
2.1 automatic_security_tests/ . 2

2.1.1 security_tests/ . 2
2.1.2 config_templates/ . 2
2.1.3 authentication_scripts/ . 2

3 Cloud service 2

4 Installation and running 2
4.1 Start of application . 3
4.2 Configuration . 3

5 Documentation of source code 4

6 Testing 4
6.1 Unit testing . 4

1

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

1 Introduction

This document provides a general overview of the system developed by this project and its
relevant technical documentation. It describes the structure of the project, how to install and
run it as well as the proposed AWS implementation.

2 Project structure

2.1 automatic_security_tests/

Root directory for the automatic security tests. Contains the README.md file which explains
how to run the tests, and a htmlReport.html report which contains the latest made security
scan report. All other directories are located in this direction.

2.1.1 security_tests/

All security test scripts are located in this directory. There are three different scripts, which
are main.py, runScan.py and createContext.py. There is also a config.ini file which are used
to give necessary variables to main.py. In this directory there is also the unit tests created for
createContext.py. These tests are written in pytest, and can be run by writing py.test when in
the directory.

2.1.2 config_templates/

This directory have all the templates for the configuration file. These templates are made
for the applications bodgeit, juice shop and dvwa. All these applications are using different
authentication methods so gives a good indication on how to replicate these methods in other
applications.

2.1.3 authentication_scripts/

In this directory there are the necessary scripts used in specific authentication methods. These
scripts are necessary for using jwt tokens and csrf tokens.

3 Cloud service

Disclaimer: this section must be seen as theoretical. Due to the late stage at which AWS
access was successfully granted, no implementation was completed. As of such, this section
will describe the general idea of the planned implementation.

A Dockerfile is included in the product repository. The Dockerfile builds an image based
on Kali Linux, installs the required packages and uploads the project code to /root/ in the
docker image. This docker image can be pushed to ECR where it will be stored for Fargate
to run it. Config file templates can be stored on S3 for teams to read and edit to suit their
application, before submitting them to their respective container prior to running a scan.
Script file templates may also be stored on S3 in case specific changes need to be made to suit
an application, even though the scripts should be general enough to work with information
provided in the config files.

4 Installation and running

Necessary dependencies for running the tests locally are running ZAP in daemon or UI, python3
and python zap API.

2

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

The python zap API can be downloaded with pip with python-owasp-zap-v2.4 0.0.18 as pa-
rameter.

ZAP can be downloaded on their official website: https://www.zaproxy.org/download/

Additionally an application to run the tests on are needed. Templates are created for DVWA,
Juice-Shop and Bodge-it. These can be downloaded and ran locally, or fetched as an image
through docker.

4.1 Start of application

When all dependencies are downloaded the tests can be ran through main.py in /security_tests.
In this directory there is also located an config.ini file which contains necessary variables to
run the tests. This file contains on default variables for bodge-it, but templates for the other
applcations can be found in /config_templates.

ZAP can start in daemon by running zap.sh located in /usr/share/zaproxy. The daemon can
be ran by running ./zap.sh –daemon. Additionally the API key needed from the ZAP tool can
be changed by running ./zap.sh –daemon -config api.key="change-me". The API key needs
to be defined in the configuration file, and can also be found through the UI by using key
combination ctrl + alt + O, under the API tab.

By running main.py while ZAP is running in daemon or a proxy the security tests will start.
First a passive scan will run, and after the passive is confirmed the user need to confirm prompt
to continue running the active scan. After the active scan is complete the results will be saved
as htmlReport.html in root directory.

4.2 Configuration

These are all configuration options present in config.ini.

User: Name of the user in context. Does not have to be the same as credentials

Username: Username or email credential necessary for login

Password: Password credential necessary for login

ContextName: The name of the context. Used for checking if the context already exists, if
changes are made to config,ini while ZAP is running the name needs to be changed, or ZAP
needs to restart.

TargetURL: Starting URL for the scans to test

APIKey: Necessary API key for using the ZAP tool. Can be found in ZAP UI.

UseAjax: Defines if the passive scan is performed by a regular spider or ajax spider. Ajax
spider is recommended for applications using React.js, Angular.js or Vue.js.

IncludeInContext: Regex for which URLs are to be included in the scan.

ExcludeFromContext: Regex for which URLs are to be excluded from the scan.

LoggedInRegex: Regex to specify when the user is logged in or out. Needed for the scans to
know when to perform login action. Response messages will be searched for match to regex.

LoggedOutRegex: Works the same way as LoggedInRegex. It is not necessary to use both
LoggedInRegex and LoggedOutRegex, but both can be used at the same time.

PostData: Post data for login POST request. Usually contains username and password, but
may also contain csrf token or other parameters.

LoginUrl: URL used for sending login request.

3

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

The next three configuration options are to define authentication methods. Set one to True and
the other two to False. UseBasicAuth: Set to True to use BasicAuth authentication method

UseCSRF: Set to True to use csrf tokens authentication method

UseJWT: Set to True to use JWT authentication method.

jwtScriptName: Name of the JWT script for adding token to requests after login. Default is
jwtScript.js and does not need to be changed unless the name of the script is changed.

jwtScriptLocation: Location of the JWT script. Default is location within docker image.
Needs to be changed if used outside docker, depending on location of the script.

csrfScriptName: Name of csrf script to fetch csrf token from login URL. Default is csrf_login.js
and does not need to be changed unless name of the script is changed.

csrfScriptLocation: Location of the csrf script. Default is location within docker image.
Needs to be changed if used outside docker, depending on location of the script.

csrfTokenField: Name of csrf token field on site. Is not used unless authentication method
is csrf.

MaxSpiderDuration: An upper limit for duration of passive scan. Is recommended to add
when using Ajax spider. Set 0 for no restrictions.

MaxSpiderDepth: An upper limit to depth of passive scan. ZAP default is 10.

5 Documentation of source code
All code is documented with comments within the script.

6 Testing

6.1 Unit testing
Unit testing is performed with pytest. Only createContext.py is covered with unit tests since
unit tests for runScan.py requires a running application that can be attacked. To run unit
tests for createContext.py run py.test when in /security_tests directory.

4

TDAT3001 Automatic information security testing on a public cloud May 20, 2021

References

5

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f G
en

er
al

 S
ci

en
ce

Per Holt-Seeland and Mathias Olsen

Automatic information security tests
on a public cloud

Bachelor’s project in Computer Engineering
Supervisor: Jonathan Jørgensen

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Introduction and relevance
	Automating security tests
	Report structure
	Terminology and abbreviations

	Theory
	Testing
	Security testing
	Unit tests
	Continuous Integration/Continuous Deployment (CI/CD)

	Security vulnerabilities
	OWASP Top Ten
	Cross-Site Scripting (XSS)
	SQL Injection
	Brute force attack
	Broken Access Control
	Insufficient Logging and Monitoring

	Web applications for security testing
	Authentication
	Basic Access Authentication
	Cross-Site Request Forgery tokens (CSRF Tokens)
	JSON Web Tokens (JWT)
	Single Sign-On (SSO)

	Zed Attack Proxy (ZAP)
	Context
	Passive scan - Spider/Ajax spider
	Active scan
	Authenticating scanners

	Cloud Computing Service
	Amazon Web Services (AWS)
	Amazon Elastic Container Service (ECS)
	Amazon Elastic Container Repository (ECR)
	Amazon Fargate
	AWS Lambda

	Docker

	Choice of technologies and methods
	Application
	Authentication
	Scanning
	Scan results
	Scanning intervals

	Configurations
	Script organizing
	Technologies
	Version Control
	Programming language
	Virtual Machine (VM)
	Penetration testing tools
	Maintaining the penetration testing tools
	Cloud service

	Work methodology
	Responsibility distribution

	Results
	Scientific results
	Engineering results
	Vision document
	Requirement specification

	Administrative results

	Discussion
	Technical Results
	Limitations
	AWS
	OWASP Top Ten
	ZAP

	Technologies
	Society, environment and economics
	Future development
	Authentication
	Brute force
	Insufficient logging and monitoring
	Logical vulnerabilities
	Frontend solution

	Administrative results
	Process
	Teamwork

	Positive elements
	Product Owner
	Supervisor

	Project conclusion

	Documentation
	Visions document
	Requirement specification
	System documentation

