
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jakob Lønnerød Madsen,
Sebastian Anthony Ikin

Agile Security Audit of Picterus

Bachelor’s project in Computer Science
Supervisor: Donn Morrison

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Jakob Lønnerød Madsen,
Sebastian Anthony Ikin

Agile Security Audit of Picterus

Bachelor’s project in Computer Science
Supervisor: Donn Morrison
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

This paper concludes the study track of the 3 year long Bachelor of Engineering in Computer
Science program at NTNU (program code ITHINGDA). The research was conducted between
January and May 2021, notably during the COVID-19 pandemic, placing some restrictions on
certain parts of the project. Throughout the project most research was conducted on the technical
infrastructure belonging to Picterus, hosted on Google Cloud.

The inspiration for conducting a penetration-test as Sebastian and Jakob’s bachelors come from
an interest in learning more after completing CTF challenges in the subject Security in Software
and Networks (TDAT3020). There was also a general curiosity about how penetration tests were
carried out safely, ethically, and professionally. This project was a great opportunity for us to test
our acquired knowledge in a real-world environment, and possibly contribute to a safer experience
for Picterus’s users.

We, the students, would like to extend our gratitude to our supervisor Donn Morrison, for guid-
ance and advice along the way. We would also like to thank the team at Picterus, especially Roald
Cuesta and Sigbjørn Kjensmo, for extending their trust in us to carry out tests on their infrastruc-
ture and taking the time to answer any questions and provide us with parts of the code-base for
us to carry out tests on.

Student Date

Student Date

i

Abstract

For this project, we have attempted to perform a more agile version of the PTES while conducting
a penetration test on the health-tech company Picterus. The central difference from the established
standard has been dividing the various PTES phases into more general work units named Recon
and Exploit to better fit the remote setting of COVID-19.

Using an agile methodology and following the PTES gave us a high test coverage in the OWASP
Web Application Security Testing Checklist. In total we found 17 issues among the 126 tests we
performed on Picterus’s platforms, of these only one was given a high risk rating. Seven tests were
given a moderate risk rating and nine were low risk.

Together with documentation for all vulnerabilities we found, Picterus was given a technical report
and an executive summary. These documents include steps to reproduce our findings, recommend-
ations on how to correct them and how to proceed in the future. These documents also include
appropriate risk ratings to better mitigate the uncertain aspects of security.

We found that our approach worked well in a remote setting while still remaining agile. The
potential benefits of our approach should be tested in a more traditional working environment and
can be improved by being more iterative. Although these improvements are possible, we found
that our process captured the best of both worlds to a large degree, allowing us to remain relatively
flexible while still using a higher-level standard. From a Lean perspective our approach allowed us
to avoid work queues by compartmentalization and further eliminating waste by structuring our
deliveries in a client-oriented manner.

ii

Contents

List of Figures vi

List of Tables vi

1 Introduction 1

1.1 Acoronyms and Abberations . 1

1.2 Problem Statement . 2

1.3 Assignment . 2

1.4 Thesis Structure . 2

2 Theory 3

2.1 Picterus . 3

2.2 Agile and Lean Development . 3

2.3 Ethical Hacking . 3

2.3.1 Types of Hacking . 3

2.3.2 CVDs, CVEs and Vulnerability Databases 4

2.3.3 Black Box Testing . 4

2.4 Web Authentication Security Features . 4

2.5 The Cloud . 5

2.5.1 Security Challenges . 5

2.5.2 Containerization . 5

2.5.3 IAM Polices . 5

2.5.4 VPCs and Cloud Firewalls . 6

2.5.5 Cloud Storage . 6

2.6 OSINT . 7

2.6.1 Digital footprint and privacy . 7

2.6.2 The Dark Web . 7

2.7 Common Attacks Used . 7

2.7.1 Brute-Forcing . 7

2.7.2 XSS injection . 8

2.7.3 SQL injection . 9

2.7.4 HTTP Smuggling . 9

2.8 Android Application Structure and Security . 9

2.8.1 Native Code and the DVM . 9

2.8.2 Reverse Engineering of Mobile Applications 10

iii

2.8.3 Instrumentation . 10

3 Method and Technologies 11

3.1 Technologies . 11

3.2 Project Workflow . 12

3.2.1 Basic overview . 12

3.2.2 Pre-engagement Interactions . 13

3.2.3 Intelligence Gathering . 13

3.2.4 Threat modeling . 13

3.2.5 Vulnerability Analysis . 14

3.2.6 Exploitation . 14

3.2.7 Post Exploitation . 14

3.2.8 Reporting . 14

3.3 Administrative Workflow . 15

3.3.1 Artifacts and Deviation From Established Standard 15

3.3.2 General Work-units . 15

3.3.3 Lines of Communication . 16

3.4 Scientific Workflow . 16

4 Results 18

4.1 OWASP Testing . 18

4.1.1 Coverage and Tests Passed . 19

4.2 Custom Exploits . 20

4.2.1 Password Dump Scanning . 20

4.2.2 Application Traffic Capture Through Instrumentation 20

4.3 Unsuccessful Exploits . 21

4.3.1 Combined Grafana Brute-Force . 21

4.3.2 Kubernetes Path-Traversal . 21

4.3.3 Google Cloud Enumeration . 21

4.4 Delivarables and Goals . 22

4.4.1 Status of Technical Report Goals . 22

4.4.2 Technical Report, Executive Summary and Evidence 23

4.5 Workflow and Administration . 23

4.5.1 Project Artifacts . 23

4.5.2 Agility of Process . 24

4.5.3 Issue-Tracking and Time Management . 24

iv

5 Discussion 26

5.1 Project Limitations . 26

5.2 Exploits and OWASP Testing . 26

5.2.1 Test Observations . 26

5.2.2 Importance of Good OSINT . 27

5.2.3 Security as a Process . 27

5.3 Deliveries and Goals . 28

5.3.1 Client Oriented . 28

5.3.2 Risk Calculations . 28

5.4 Workflow and Administration . 29

5.4.1 Reconnaissance and Exploit . 29

5.4.2 Working as a Remote Team . 29

5.4.3 Adapting to Changes and Delays . 30

5.4.4 PTES and Best Practice . 30

5.5 Possible Improvements . 30

6 Conclusion 32

6.1 Security at Picterus . 32

6.2 Workflow and Deliveries . 32

6.3 Further work . 32

Bibliography 33

Appendix 35

A Statement of Work . 35

B Scripts . 43

B.1 Password search . 44

B.2 Subdomain checker . 45

B.3 Feedback XSS . 47

B.4 Frida Script For String URL in x86 binary during Runtime 47

B.5 Google Cloud Project Enumiration . 48

B.6 Username:Password-Permutation List Generator Script 51

B.7 Custom Brute Forcing Script . 53

C Gant Diagrams . 56

D Status Reports and Time Sheets . 62

E Meeting Notices and Minutes . 84

v

List of Figures

1 Brute Forcing . 8

2 XSS Injection . 8

3 SQL Injection . 9

4 HTTP smuggling . 9

5 Basic Instrumentation Example . 10

6 Test Coverage per Scope . 19

7 API Enumeration Example . 22

8 Hours Worked per Week . 24

9 Hours Worked over Time . 25

10 Hourly Gant Chart . 57

11 Daily Gant Chart . 58

List of Tables

1 Found OWASP Vulnerabilities . 18

vi

1 Introduction

1.1 Acoronyms and Abberations

• API - Application Programmer Interface

• BUSLOGIC - Business Logic

• CERT - Computer Emergency Response Team

• CVD - Coordinated Vulnerability Disclosure

• CVE - Common Vulnerabilities and Exposures

• DDOS - Distributed Denial of Service

• GCP - Google Cloud Platform

• HUMINT - Human Intelligence

• HTTP - Hypertext Transfer Protocol

• HTTPS - HTTP over SSL

• HTML - Hypertext Markup Language

• IAM - Identity Access Management

• IP - Internet Protocol

• IPsec - Internet Protocol Security

• ICMP - Internet Control Message Protocol

• ML - Machine Learning

• MSTG - Mobile Security Testing Guide

• NSA - National Security Agency

• OSINT - Open Source Intelligence

• OWASP - Open Web Application Security Project

• PII - Personally Identifiable Information

• PTES - Penetration Testing Execution Standard

• POC - Proof of Concept

• RDP - Remote Desktop Protocol

• SoW - Statement of Work

• SSH - Secure Shell

• SSL - Secure Sockets Layer

• SQL - Structured Query Language

• TCP - Transmission Control Protocol

• TSL - Transport Layer Security

• TOR - The Onion Router

• UDP - User Datagram Protocol

• VM - Virtual Machine

• VPN - Virtual Private Network

• VPC - Virtual Private Cloud

• VLAN - Virtual Local Area Network

• XSS - Cross Site Scripting

1

1.2 Problem Statement

How well does an Agile methodology work when performing a penetration test using the Penetra-
tion Testing Execution Standard?

1.3 Assignment

The assignment is based on the problem statement, and our task is to test and explore the systems
belonging to Picterus using the tools and methods agreed upon in the Statement of Work. In
the Statement of Work we are given permission to test and utilize otherwise illegal methods of
accessing Picterus’s infrastructure, commonly known as hacking. The assignment’s specific goals
are stated in the Technical Report, but our primary concern is to validate that personal information
is stored securely on Picterus’s infrastructure. We also attempt to apply some agile principles to
the PTES to better improve our workflow and account for uncertainties with remote work during
the COVID-19 pandemic.

The assignment is approximated to take 1000 hours and cover 20 study credits. These hours are
distributed across various tasks such as research, documentation, intelligence gathering, and test-
ing. The primary products are a Technical Report covering our findings and suggested mitigations
and an accompanying Executive Summary.

1.4 Thesis Structure

This thesis is split into six sections; Section 1 containing an introduction and brief explanation
of various acronyms and aberrations. Section 2 contains some background theory necessary to
understand parts of the thesis. Section 3 explains our methodology and what tools we used to
produce our results. Section 4 contains our results as well as some of the techniques used to produce
them. Results are discussed in Section 5 and the thesis is concluded in Section 6.

2

2 Theory

2.1 Picterus

Picterus is a health-tech company based in Trondheim Norway, that specializes in image-based
bilirubin estimation in newborns. This estimation is leveraged to diagnose Jaundice, and is an
inexpensive and convenient alternative to current diagnosis-technologies (Vartdal 2014). Their
technology is based on using ML-techniques to color-correct images of newborns using a calibration
card. These color-corrected images are then fed to a separate ML-model for the Jaundice diagnosis
itself (Falk and Jensen 2018). The initial images are taken with a smartphone and submitted
to Picterus’s infrastructure using their mobile application. A system like this requires extensive
technical infrastructure, and in Picterus’s case this is hosted on Google Cloud.

2.2 Agile and Lean Development

Agile and Lean methodologies are commonly used when developing software in order to do so in an
efficient and adaptive manner. Generally there is a lot of overlap between the two methodologies,
but their uses are somewhat different. Agile focuses primary on being adaptive to change through
principles like functionality, interaction and customer collaboration as opposed to rigid and pre-
planned processes before-hand, e.g. the waterfall methodology. Basics from “ Agile Manifesto”
(Beedle et al. n.d.) and “ Agile Project Management” (Highsmith 2010). Agile also takes into
account how individuals work and incentivizes individual autonomy as well as self-organization in
teamwork. Generally Agile has proven to be near-ideal for most software development projects and
it’s adoption has only increased since the Agile Manifesto was published (Dingsøyr et al. 2012).

One of the primary principles Lean and Agile have in common, are continuously improving and
effectivizing the process (be it emergent or pre-planned). By itself Lean methodologies work better
for projects where the same methods are used most of the time, and centers around removing
bloat and improving efficacy as much as possible. Much like Agile, Lean is built around a few
central principles to strive towards during the repeating process. Lean principles are hard to word
as specific do’s and don’ts and therefore has no central manifesto (from “ Why there is no Lean
Manifesto” (Baeli and Ballé n.d.)). It’s central principles are to eliminate waste and avoiding
stacking work through continuous improvement of a given process as described in “ Lean Pathways
Lean Manifesto” (Lean Pathways Inc. n.d.).

In terms of the current state of agile security teams, in the article ‘‘How is Security Testing Done
in Agile Teams? A Cross-Case Analysis of Fours Software Teams’’ (Cruzes et al. 2017) it was
found that in Agile-teams with little security experience there was a demand for guidelines like
OWASP and methodologies for sharing security knowledge. There is also a need to integrate
security practices into development-processes.

2.3 Ethical Hacking

2.3.1 Types of Hacking

Hacking is often perceived as an inherently negative or destructive action, but although there are
various actors hacking with malicious intent, there are also teams who use hacking to improve
security, detect vulnerabilities, and expose bad practices.

Hacking is generally classified as three different types: black hat, grey hat, and white hat. The
main difference between these types of hacking is the legality and relation to the target. Black hat
hacking is usually done for personal profit or malice while using illegal methods. Grey hat hacking
is an independent hacker who follows ethical guidelines and reports exploits to the target and may
also offer to fix the problem for a fee. A grey hat hacker works within a grey area of legality, and
some companies have bug bounties that give these hackers permission to use certain techniques for

3

testing. White hat hackers are often industry professionals who are hired by a client to test their
systems.

Many white hat hackers are responsible for conducting penetration tests, which are pre-organized
and well documented forms of hacking provided as a service. What types of attacks that are
carried out are dependent on the business and agreed scope. Normally a penetration test follows
an established standard and a set amount of tests, combined with a risk analysis. These are also
referred to as security audits. Basics from “ Penetration Testing” (Imperva n.d.) and “ Penetration
Testing Execution Standard” (PTES n.d.).

2.3.2 CVDs, CVEs and Vulnerability Databases

There are a number of convenient tools and references a security-professional can utilize to more
efficiently reproduce and exploit known vulnerabilities. Excluding the excellent Kali-distribution
which comes builtin with many open-sourced security-tools, many of which are also available
on GitHub, we have vulnerability databases that aggregate findings made during a Coordinated
Vulnerability Disclosure. Many of these disclosures also come with the payload necessary to carry
out the same exploit. As an example we have “ The Exploit Database” (Offensive Security n.d.).

A Coordinated Vulnerability Disclosure is different from a penetration test in the sense that it is
generally used when a vulnerability is unexpectedly discovered in an existing piece of software,
and not necessarily by the vendor of said software. In these cases a CVD is utilized to coordinate
sharing of relevant information between involved stakeholders, including the public, in an orderly
fashion. There are guides to carrying out the disclosure, ensuring compliance and proper incentives
for the vendors to mitigate the vulnerabilities. Individuals and/or organisations (like CERT, who
wrote a handy guide on the matter; ‘‘The CERT® Guide to Coordinated Vulnerability Disclosure’’
(Householder et al. 2017)) can take part in these CVDs. Once a vulnerability is disclosed, it is
often assigned a CVE-id to be identified by. These CVE-ids are the basis for the vulnerability
databases we motioned above.

2.3.3 Black Box Testing

Most relevant to this thesis is the concept of black-box testing, where the testers can see the input
and output of the system, with minimal knowledge of the inner workings. This testing is opposed
to white-box testing, a form of testing often associated with the development of a system itself.
By utilizing black-box testing an external actor can interpret any unusual result from input as a
potential exploit. This sort of testing often happens on publicly available interfaces like APIs and
websites. This sort of action-reaction methodology is only one of many, some of which are covered
in the paper ‘‘Different Approaches to Black Box Testing Technique for Finding Errors’’ (Khan
2011).

2.4 Web Authentication Security Features

With many methods for breaking into someones account over the web, many web-services today
(especially the larger ones) provide a few redundancies in place to complicate the process of illegally
accessing someones account. The most relevant ones for this project are rate limiting and soft
lockouts.

An effective countermeasure to brute-forcing is to rate-limit unusual traffic to an X amount of
requests within a given time-frame. When an attacker wants to attack an endpoint with security
features like this, their throughput will be greatly limited and hit a roof where said limitation is.
Generally this will cause the time required to brute-force to increase well outside of reason.

There are also other alternatives to prevent brute-forcing over the web. Some web-services log the
amount of attempts to access a given user, and when this becomes unreasonably large, indicating
a brute-force attack, the service will temporarily lock the account. Much like rate-limiting this

4

greatly increases the time required to complete the attack, as well as produce error-messages,
further confusing a potential attacker.

2.5 The Cloud

2.5.1 Security Challenges

Over the past decade we have seen big strides in cloud computing, where more and more enterprise
organisations are moving to cloud providers as an alternative to building and maintaining their
own technical infrastructure. Cloud computing has offered many organizations and individuals
reliability, convenience and scalability, further improving innovation by making otherwise very
advanced technical infrastructure available to smaller organizations. This technology comes with
many new security challenges. According to ‘‘Security Issues in Cloud Computing’’ (Shaikh and
Meshram 2021) many of today’s security issues boil down to a few central questions:

• How do you manage secure access?

• How do you educate developers to mitigate misconfigurations?

• How do you scale globally across millions of users, while still remaining secure?

Many things can go wrong when cloud infrastructure is used in an improper manner. Security is a
complex process, and to further illustrate the breadth of these issues, we provide another example.
In ‘‘Assessing information security risks in the cloud: A case study of Australian local government
authorities’’ (Ali et al. 2020) it was found that self-reporting security engineers in the Australian
government did not believe ideal cloud security practices where being followed. Generally the cloud
provider is not held responsible for events caused by misuse of their systems and it is therefore
critical to be well versed in the documentation provided before migrating to these technologies.

2.5.2 Containerization

Central to the cloud computing ecosystem are containerisation technologies. Containerization from
a cloud-standpoint are VM-technologies at scale, like Kubernetes (basics from “ Kubernetes Basics”
(Google n.d.[e])) used by our client. Generally a cloud provider has a server-centre with individual
pieces of hardware with massive compute-capabilities. For most customers having access to this
amount of compute is redundant, and therefore most cloud providers make use of scalable contain-
erization technologies to separate the resources of one customer from the other. Technologies like
these also work to provide an interface similar to what a physical machine might have. According
to ‘‘The state-of-the-art in container technologoies: Application orchestration and security’’ (Cas-
alicchio and Iannucci 2020) there would be no modern cloud without containerization-technologies,
and as such many security concerns relating to distributed containerization also apply to the cloud.

2.5.3 IAM Polices

Many cloud providers utilize a Identity Access Management system (IAM for short) as a security
feature. In its most basic form, IAM works by defining a role and assigning access rights to resources
relevant for that role. The newest IAMs are different (but compatible) from older ones where only
three basic roles were defined, as described in “ Access Control For Projects using IAM ” (Google
n.d.[a]):

• Editor: Read/write access to all non-admin resources.

• Owner: Read/Write access to anything.

• Viewer: Read access to all non-admin resources.

5

This system would often grant a user access to many unnecessary resources and was generally a
big security concern. The newer IAM system mitigates this by allowing for more fine-grained role
definitions and only allowing resources on a need-to-know basis. Defining roles as fine-grained as
possible also works as a redundancy, as the damage is only limited to the relevant resource should
the role be misused in any way. This is intended to be more in line with the security principle
of least privilege (introduced in ‘‘Protection and the control of information sharing in multics’’
(Saltzer 1974)), when compared with the basic roles from earlier. Access for a role to a given
resource is defined with the following syntax: service.resource.verb, according to “ Understanding
Custom Roles” (Google n.d.[g]).

2.5.4 VPCs and Cloud Firewalls

VPCs are a cloud native technology closely related to VPNs, and stands for Virtual Private Cloud.
The VPC provides a “private network” that can scale globally and has all the benefits of a tra-
ditional Secure VPN, i.e IPsec encryption on the network-level while still providing an interface
that abstracts and simplifies network configuration. VPCs do this by automatically setting up it’s
required topology, similar to a traditional VLAN. On Google Cloud VPC-access is controlled using
IAM-policies.

A central feature of VPCs is the ability to have a protected backend within, where ingress traffic
gets routed through a load balancer using protocol forwarding. Load balancing has the benefit of
acting as a defensive line, and at the same time scale easier and improve performance. In the case
of Google Cloud, an important thing to note is that these load-balancers inherit protections and
firewall-rules similar to the same ones used in the cloud providers production infrastructure (either
available through builtin DDoS-protections or a product like Google Cloud Armor), meaning that
any infrastructure on Google Cloud can leverage the same security as one of the biggest tech-
companies in the world. From “ Load Balancing Overview” (Google n.d.[f]).

By default all VM-instances behind a VPC are off-limits for external IPs and can only be ac-
cessed trough load-balances connected to backends on the VPC and IAM-authorised users. IAM-
authorised users connect to the VPC by using some variant of a vendor-specific SSH-shell or
through an API. These SSH-shells are assigned an external IP for allowing ingress connections and
come with a couple of default rules. These rules are defined using address range, ingress/egress
traffic, protocol and port-ranges. By default a cloud-shell/VM-instance allows for all IP-ranges
to connect over SSH/ICMP/RDP, and all internal traffic to communicate over TCP/UDP. From
“ using Firewalls” (Google n.d.[h]).

2.5.5 Cloud Storage

Cloud Storage differentiates itself from other storage mediums in the sense that they can both be
mounted on various virtual machines in the cloud or interacted with through the various forms of
APIs a cloud provider has available. This means that a cloud bucket (the term for what we would
otherwise call a directory) can either be used as a Persistent Volume as well as being accessed
through the browser, provided you have the correct IAM permissions. A Persistent Volume can
be used on a newly spun-up VM to access directories and files you do not want removed after a
shut-down and is more in line with what you would expect from a physical device. When accessed
through the browser, the directory structure is represented as XML, and files can be downloaded
provided the absolute path in the URL. Taken from “ Kubernetes Basics” (Google n.d.[e]) and
“ Cloud Storage Docs” (Google n.d.[c]).

6

2.6 OSINT

2.6.1 Digital footprint and privacy

According to “ Number of Worldwide Social Network Users” (Statista n.d.), as of 2020 around
3.4 Billion people are on some sort of social media, willfully or inadvertently sharing personal
information with external actors. Even in cases where you have might have chosen the strictest
privacy settings, the same data can be deduced by examining your close circle and cross referencing
other sources. Marketing businesses and intelligence agencies often use software to map out the
social graph of an individual or organisation exploiting this distributed data (e.g., using software
like https://socnetv.org/).

Unbeknownst to most users of online services, their “secure” credentials (username, passwords,
PII) may have been exposed at some point in time. More often than not this exposed information
is made available to the general public in some shape or form by the hacker responsible. This
also means that information leaked to the general public, is considered public information and
therefore legal to examine. This is one of the many primary reasons you are encouraged to change
your passwords often and use two-factor authentication. Combining leaked passwords with known
usernames can considerably decrease the difficulty of gaining access to someone’s account.

2.6.2 The Dark Web

When gathering information there are several places that catch our attention, most notably the
dark web. The dark web is a portion on the internet that is not usually available, unlike regular
Internet over HTTP or HTTPS it uses a protocol called Onion routing. This protocol utilizes
a series of nodes that encrypts your data in several layers, much like an onion. This encryption
ensures that your IP and the content of the requests are hidden. The onion net is filled with illegal
forums and marketplaces, such as the infamous Silk Road. From “ Silk Road 1: Theory Practice”
(Branwen n.d.). To access the dark web we can use the TOR (The Onion Router) browser that
handles both HTTP and Onion protocols.

2.7 Common Attacks Used

In this section we will illustrate some of the primary attacks we have utilized during this penetration
test, to provide a better understanding of the techniques and some of their weaknesses. This is
not an exhaustive list, but some background necessary to better illustrate some of our findings.

2.7.1 Brute-Forcing

Brute-forcing is a technique that involves trying every available option in order to uncover useful
information like emails, usernames or passwords. This can involve several approaches, the most
simple being to try all permutations of the alphabet and numbers. This approach does not have a
high success rate given that most passwords have a high level of entropy and as such, the random
character method is going to take a very long time. As a famous example of this, the Wikileaks
password “ACollectionOfDiplomaticHistorySince 1966 ToThe PresentDay#”, found in “ This ma-
chine kills secrets” (Greenberg n.d.), is estimated to take 8.791068 years to guess. Generally the
most practical approach is to use a dictionary containing common words together with passwords
frequently seen in data breaches, such as “password1”.

7

https://socnetv.org/

Figure 1: Brute Forcing

To further understand some of the fundamental drawbacks of brute forcing, we will look at how the
number of permutations has an adverse effect on the eligibility of brute forcing as a strategy towards
exploiting certain systems. Say you would like to brute force into your friends ssh-server and you
know his password consists of two non-repeating English words. Using the English dictionary
we have 171146 different words. By using the following function, we can find the number of
permutations that match this pattern.

P (n, r) =
n!

(n− r)!

Where:

• P : is the Mathematical Permutation Function.

• r: number of selections.

• n: number of options.

This formula gives us P (171146, 2) = 2.93∗1010 options to try out, that combined with an average
TCP-connection latency and builtin delay (about 2-3 seconds at best) will take about 1860 years
to brute force. Using this example as an illustration, we see that brute forcing is tool dependent,
and can easily be countered by rate-limitations. As such, brute forcing is often most efficient when
combined with dictionaries and a few reasonable assumptions, against an endpoint that responds
a couple of orders of magnitude lower than a second.

2.7.2 XSS injection

An XSS injection involves sending a script as input instead of normal text or numbers, and is a
common web-based attack. The most common way of accidentally introducing this vulnerability on
a website is setting the innerHTML attribute instead of innerText to the user input. The difference
between these two attributes is that innerText is not parsed as HTML code, and therefor not
ran by the browser’s compiler. This vulnerability is easy to introduce as the two behave the same
otherwise. Combined with an advanced script, an XSS injection can be used to send sensitive
information from a victim to a hacker, such as session cookies, JWT tokens and/or screenshots.

Figure 2: XSS Injection

8

2.7.3 SQL injection

SQL injections use the same principle as XSS injection, where the user input is not validated and/or
sanitized. This lack of validation can lead to malicious user input being ran as code instead of the in-
tended functionality. Take for example this simple SQL query; “SELECT * FROM Users WHERE UserId=?”
(where “?” is the input from a user). If a user requests UserId “250 OR 1=1” the query will look
like this
“SELECT * FROM Users WHERE UserId=250 OR 1=1”, doing something entirely different. This
query will return all users. This happens when input is directly inserted in to the query. A com-
mon method to counteract this is to use prepared statements, these sanitize the input beforehand
and encloses the string with quotation marks.

Figure 3: SQL Injection

2.7.4 HTTP Smuggling

HTTP request smuggling is an exploit that takes advantage of inconsistent implementations of the
headers Content-length and Transfer-encoding. By manipulating these headers it is possible
to trick a server to treat one request as two. If this is done after an authentication, it can result
in users accessing otherwise protected data.

Figure 4: HTTP smuggling

2.8 Android Application Structure and Security

2.8.1 Native Code and the DVM

Generally Android Applications are written using Java or Kotlin and then compiled down to Dalvik
executables (.dex files), these are relatively easy to decompile back to Smali-code, which is human
readable. DEX-files are run on the Dalvik Virtual Machine which, similarly to the Java Virtual
Machine, sandboxes the executable from the rest of the system. Applications can also contain
native code, these binaries can communicate with both the OS and the rest of the application

9

through the Java Native Interface, a library used to import the native modules into the Dalvik
source. Theory from “ Android Fundamentals” (Google n.d.[b]).

2.8.2 Reverse Engineering of Mobile Applications

Reverse Engineering is not an exact science and the lengths you must go to be able to reconstruct
the source of a given binary are dependent on the measures taken to prevent you from being
able to do so. Many apps use forms of obfuscation and have builtin protections against reverse
engineering. E.g. tag-arguments within the app-manifest telling the app to confirm the built keys
against the ones uploaded to Google Play in order to verify that the app is still trustworthy. Simple
measures like these combined with various forms of obfuscation, like encrypting all the human-
readable strings or removing debugging symbols, means that all a reverse engineer have to work
with are function-inputs and machine code.

As a reverse engineer, more often than not, you only want access to certain parts of the source. If the
source has not been obfuscated, using a combined technique like searching for module definitions or
URLs and looking for references to these strings, usually sheds some light on the underlying logic
of the application. By identifying these parts of the application, and patching them, the reverse
engineer can bend the application to their will. This is only one of many techniques described in
“ Mobile Security Testing Guide” (Mueller et al. n.d.).

An important thing to note is that applications can never be fully safe from reverse engineering,
as the reverse engineer has full access to the built application, but they can be considerable slowed
by taking some relatively simple measures, like the ones described above.

2.8.3 Instrumentation

Instrumentation is a term often used for tools and techniques utilized to capture and monitor a
piece of software’s performance. In our setting it refers to tools that can be used during reverse
engineering to change or extract useful pieces of source-code.

Instrumentation used in this setting is best understood through an example: instrumentation
tools can be used to hook certain functions within a given binary. Say you suspect a memory leak
within your application, you can use a monitoring tool that works by “hooking” certain parts of
your memory. This builtin functionality have some useful use-cases for a reverse engineer, where
they can potentially override certain parts of the memory with custom instructions to circumvent
security features or produce unwanted behaviours.

Most instrumentation tools work by having a server-style binary on a target device/binary commu-
nicating with some form of client. This is the case with one of the most popular instrumentation
tool-kits for app-development, called Frida. Frida works either by having the server running on the
device in question, or can be baked into the target application, providing reverse engineers with
several avenues of attack. Instrumentation basics are taken from “ Mobile Security Testing Guide”
(Mueller et al. n.d.) and “ Frida JavaScript API ” (Frida n.d.).

Figure 5: Basic Instrumentation Example

10

3 Method and Technologies

3.1 Technologies

Kali Kali is a Debian based Linux distribution which is designed for digital forensics
and penetration testing. Kali comes with several tools relevant to our testing.
The operating system is developed by Offensive Security.

BurpSuite Tool used for capturing application-level requests by using a HTTP/HTTPS
proxy on a user defined target.

Wireshark Wireshark works by attaching itself to the network card in a computer and
captures all transmission that are sent and received. Used for all levels of
network packet capturing. Mainly used in this project for capturing TLS/TCP
traffic.

Ghidra Decompiler primarily used for reverse engineering, initially developed by the
NSA.

Ripgrep Ripgrep is an alternative to the UNIX Grep command which allows recurs-
ive regex searches. When we had acquired 30 billion emails and passwords
we needed a quick search method for finding relevant emails with their pass-
words.The benefits of using Ripgrep comes when we have such a large collection
of files, using Ripgreps speed we can quickly do a recursive search for all in-
formation we need.

TOR To send attacks anonymously we can use the TOR network as a proxy or
VPN, by doing this we can circumvent being IP-blocked by the system we are
targeting. The TOR network works by sending packets through several nodes
and encrypting the data between each node. Our public IP is therefore not
our own, but the IP of the last node. This means we can effortlessly change IP
addresses.

ZAP Zap is an automated vulnerability scanner that generates a report based on
the information gathered from the website or application. All information is
checked against public CVEs and validated. Zap also links to relevant POCs,
such that getting an understanding of how we can utilize an exploit becomes
easier.

Frida a dynamic instrumentation toolkit that allows us to inject scripts, hook func-
tions, monitor cryptography APIs, and trace private application code. We used
this to both intercept packages sent from the Picterus mobile application and
to uncover secrets.

Python Python is a high level programming language which we have used to quickly
create scripts for exploiting services. Python does this well considering the
large security community creating libraries for the language.

JavaScript JavaScript is a high level programming language mainly used in internet
browsers. All browsers can compile and run the language such that any XSS
scripting works independently of environment.

11

Smuggler A HTTP request smuggling and desync testing tool.

Uber APK Packer A tool that helps signing, validate and zip-align android application packages.

Rhino-Labs
GCBucketBrute

A script to enumerate Google Storage buckets, determine what access you have
to them, and determine if they can be privilege escalated. Can be used with
custom word-lists and to validate different types of IAM-permissions either
authenticated through Google or not.

Sherlock A tool used for checking usernames against various social media platforms. This
gave us an overview of Picterus employees social media presence, information
used to scour password dumps.

APKLeaks A tool for scanning APKs for secrets and URIs. Scans are limited to code
defined in DEX and XML-files.

Nikto Nikto is a web server scanner which performs multiple tests against web serv-
ers. It checks for potentially dangerous files, outdated versions of servers, and
version specific problems.

Dirbuster Dirbuster uses both brute forcing and dictionary look ups to enumerate end-
points, pages, and files.

Liffy Liffy is a Local File Inclusion exploitation script written in Python.

Padbuster Padbuster is an automated script for performing padding oracle attacks. The
script allows us to decrypt arbitrary ciphertext, encrypting plain text, and ana-
lysing automated responses to determine if a request is vulnerable to padding
oracle attacks.

WhatWeb Is used to identify what kind of framework a website uses. The tool can identify
content management systems, blogging platforms, static packages, JavaScript
libraries, and web servers.

Amass Amass is an in-depth attack surface mapping and asset discovery tool. It
does this by utilizing a range of methods, such as brute forcing, reverse DNS
sweeping, and SiteDossier.

Nmap Tool used for port-scanning. Nmap stands for Network Mapper and is a Unix
tool that probes a server to discover what ports are open, which operating
system is used and what version the server is running. Can be used to determine
what services a server is running, since many ports are reserved to a specific
service (e.g. port 443 is used for HTTPS requests).

3.2 Project Workflow

3.2.1 Basic overview

Generally we have followed the high-level organisation of the “ Penetration Testing Execution
Standard” (PTES n.d.), which is divided into 7 central parts:

1. Pre-engagement Interactions

2. Intelligence Gathering

3. Threat Modeling

4. Vulnerability Analysis

12

5. Exploitation

6. Post Exploitation

7. Reporting

3.2.2 Pre-engagement Interactions

This part of the process involves agreeing to the scope (what parts of the system should and
should not be tested) of the audit. For this project we decided to restrict the scope of the testing
to what can be exploited remotely due to current difficulties regarding the COVID-19 pandemic
and technicality being most relevant given our background. This means that physical attacks and
different forms of social engineering are excluded from the testing, despite being heavily emphasised
in “ Penetration Testing Execution Standard” (PTES n.d.). Further limiting our scope (in terms
of what attacks we can utilize), is the fact that the client’s infrastructure is on a cloud provider,
meaning we have to follow their acceptable use guidelines as well.

As it is important to have a written agreement for legality and convenience the agreed terms are
part of a Statement of Work, signed by all parties involved. Here we have a clear definition of
scope, general guidelines on notification and disclosure, as well as the deliveries for the client. In
our case we have agreed to deliver an extensive technical report and an executive summary, making
it our product.

The Statement of Work and scope was agreed upon by the client and students during several
meetings, and is a critical part of the pre-engagement process. Communication channels were
agreed upon prior to the meeting (you can read about the specifics in section 3.3.3).

3.2.3 Intelligence Gathering

This phase falls under the umbrella-ticket recon (see 3.3.2 for more info) and is generally restricted
to two levels, as described in the PTES. Level 1 is the bare minimum requirement for intelligence
gathering, while level 2 is considered best practice. As such, we generally follow level 2. This
involves using a combined approach of automated tools and manual searching. Normally, this
involves mapping business/client relationships as well, but again, we account for our scope and
restrict our level 2 information gathering to the technical aspects of the clients business. As level
2 is considered a combined approach, we also do some HUMINT to get a general overview of the
technical infrastructure and capabilities.

The most relevant technique for our technically oriented investigation is foot-printing. Foot-
printing involves interacting with the target as an external actor with the objective of collecting
as much information as possible. We do this both passively and actively, where a passive footprint
e.g., involves making a nslookup as opposed to an active footprint (e.g., port-scanning).

3.2.4 Threat modeling

We utilize the OSINT collected during the intelligence gathering to identify actors who may have
an interest into adversely affecting the client. Generally we divide the threat modeling into the
following sections:

• Collection of relevant documentation.

• Identify company assets.

• Identify and describe threats and their communities.

• Map threats to assets.

13

Based on the actor and their mapping we use utilize the OWASP risk-calculator to classify severity.
The OWASP risk-calculator measures risk exposure by looking at likelihood and impact, accounting
for 8 different parameters in each category. Again, we have only restricted our analysis of threat-
actors to ones attacking over the internet.

3.2.5 Vulnerability Analysis

When wanting to exploit a given area of the system, we use the information we gathered through the
intelligence gathering phase, and propose potential flaws that some of the findings might indicate.
An important note is that we do not try to exploit anything yet. During this phase the area of the
system where we are trying to discover flaws is under a microscope and as such we might expand
upon what intelligence we have already have.

The primary investigative basis for server-side vulnerabilities has been the active foot-printing,
combined with the state of different ports and examined requests/responses from the web-server.
Application-level traffic has mostly been analysed manually.

Before deciding whether a possible exploit exists we examine server-version and look at some of
the other results from the passive investigation (metadata, endpoints, etc) to search for known
vulnerabilities. It is also worth noting that we attempt to validate automated findings across
multiple tools, to ensure we are not getting false positives.

3.2.6 Exploitation

For our actual exploitation we use a variety of attacks, most of which are found in “ OWASP Top
Ten” (OWASP n.d.). Where and what types of customised avenues and tailored exploits we have
used are covered in section 4 as they are situationally dependent and not a specific method decided
on beforehand. When attacking, we keep our objectives in mind as stated in appendix 6.3 while
also accounting for high-risk high-value targets found during threat-modelling. These criteria are
our basis for prioritizing what exploits should be tested first. While testing we also take note of
any countermeasures and how to evade these if possible.

3.2.7 Post Exploitation

To ensure client protection we will always ask before attempting to escalate privileges and gain
access to specific data. Generally this would also include getting approval before attempting a
DoS-attack, but that falls outside of our scope. Should any changes to any configuration files and
services be modified, they will be documented. All evidence collected will be deleted on accepted
report from the client as stated in Appendix 6.3.

When carrying out an exploit we give a risk-calculator based assessment of the severity accounting
for the value of the compromised machine, and potentially cascading effects. These cascading
effects are evaluated by investigating the associated infrastructure of a compromised machine. We
also take note of further potential exploits, and notify the client before continuing.

Generally we restrict data exfiltration to a bare minimum for evidence gathering and avoid ex-
tracting sensitive data, should there be cases were we could take much more, it will be noted. After
exploiting, we clean up after ourselves, both as a curtsy to the client and as a good practice to
avoid fingerprinting. Before cleaning up we take note of the potential persistence of the exploit we
carried out.

3.2.8 Reporting

The final products of this project will be the Technical Report and it’s Executive Summary, where
the test-results are included. As well as being given a final report at the end of the project, the

14

client will also receive consecutive updates on any critical vulnerabilities we might find, so they
can be dealt with it ASAP. We therefore take note of these prior, as there is no guarantee they
might be reproducible after notifying.

3.3 Administrative Workflow

3.3.1 Artifacts and Deviation From Established Standard

Although there are administrative guidelines and recommendations in the PTES, we have chosen
to diverge in a more agile-lean direction. The biggest difference is how we allocate and document
hours spent on the project. The reason for this is because the standard assumes we are being
compensated for a non-static number of hours as consultants, and making recommendations based
on this assumption. This is not the case for this project, as we have a set number of hours and are
doing this mainly for research purposes around our problem statement.

As our main administrative artifacts we have two Gantt diagrams (one tracking time based on
days, and another based on hours), where each horizontal pillar represent a given ticket. These
are available in Appendix C. These tickets cover a general work-load and are added/removed as
needed. For each ticket we give an estimate of start-date, end-date and how many hours it should
take. We then write what day and how many hours spent on a given ticket to a separate document.
Days/Hours overdue are then added to the Gantt diagrams automatically by leveraging some of
the functionality found in spreadsheet software.

As our final set of administrative artifacts, we have weekly status-reports (Appendix D) describing
our hours worked in a given week and the overall status of the project. Like the Gantt diagram, this
is also automated as much as possible to avoid some of the overhead associated with administrative
work.

3.3.2 General Work-units

To better fit the nature of our pen-testing into the Gantt diagrams we have created several umbrella-
tickets to cover some of the practical work that needs doing. These tickets are named <scope
name> Recon and <scope name> Exploitation. These types of tickets cover the following parts
of section 3.2:

• Recon: Covers Intelligence Gathering and Vulnerability Analysis sections.

• Exploitation: Covers Exploitation, Post Exploitation Sections and Evidence-gathering parts
of Reporting.

In terms of our high-level organisation, we have organized what type of work we do into the
following phases, each lasting several weeks:

• Planning: Pre-engagement sections of PTES, planning and process automation where pos-
sible.

• Recon: Covers the recon-tickets.

• System Overview and Theory: Using the knowledge we got in the previous phase we map
the system and write out system-specific theory (for this thesis and for our own learning).

• Exploit: The longest phase in the process and covers all exploit tickets.

• Finalize Deliveries and Client Hand-Off: Finish our products and present/hand off to the
client.

15

We have organized ourselves in this manner in order to more efficiently produce results and write
out relevant parts of the technical report as soon as we have the information we need, as well as
try to better apply the principles described in section 3.4.

3.3.3 Lines of Communication

Due to the continuation of the COVID-19 pandemic, several lines of communication have been
established across several mediums. Formal documents such as contracts and meeting-notices are
sent over traditional e-mail, while less formal communication happen over instant messaging apps.
The main criteria for choosing these IM applications have been security and convenience. Based
on that criteria, we chose these applications:

• Slack: used for informal communication with the client as this is their enterprise solution.

• Signal: End-to-end encrypted instant messaging with student supervisor.

For meetings we used both Zoom and Google Meet. Relevant meeting-notices and minutes were
written and distributed as needed, where the meeting notice would say on what platform the
meeting was held. Meeting-related documentation are available as part of Appendix E.

3.4 Scientific Workflow

For this thesis and problem-statement we view our exploit-methodology, sanitized test-results and
project artifacts as our scientific results, since they provide the most concise answer to the problem
statement.

In terms of the agile direction, the majority of the 12 principles of agile development do not apply
to us since we are not developing software per se. We therefore focus on some of the higher-level
principles stated in the Agile Manifesto (Beedle et al. n.d.) and central to the Lean methodology.
We attempt to apply the following principles:

Applied Agile Principles:

• Adaptive to change: The system is unknown to us and we are inexperienced with penetration
testing.

• Shorter planning and commitment cycles: this is mainly for the recon and exploit tickets due
to thesis and report writing having a set time-limit.

• Focus on collaboration and interaction: Communicate with Picterus about anything crit-
ical we might find and ask if something is unclear, also collaborate within the team when
reasonable.

• Result oriented: Focus primarily on ticking OWASP-boxes and any vulnerability we can
exploit will show itself as part of that process. If none are found, at least we’ll have a high
level of coverage for the given section.

• Individual autonomy: Penetration testing is not an exact science, and it is ultimately up to
the person working on a given scope to be creative and make calls regarding what tests are
appropriate. This also works well in our remote setting due to COVID-19.

• Avoiding unnecessary documentation: For a project like this documentation is hard to avoid.
We do, however, automate where possible (time-sheets and weekly reports) by having clearly
defined work-units and documentation-requirements as well as structuring the Technical Re-
port in such a manner that it can, theoretically, be written as part of the exploitation-phase
itself.

Applied Lean Principles (some overlap with agile):

16

• Eliminate waste: single time-sheet, single Gantt sheet and single result-sheet for OWASP-
tests, all other artifacts are automatically generated with these as their basis (Weekly Re-
ports, Gantt-Diagrams, etc.). The deliveries are to the point and structured in a client-
oriented manner.

• Limit work queues: Clearly defined work-units, compartmentalized into phases with pre-set
weeks as a redundancy against prolonged stacking (i.e any work queue is isolated to it’s
appropriate phase).

17

4 Results

4.1 OWASP Testing

For this audit we carried out a total of 126 tests and found the following 17 vulnerabilities across
the entire system. Several tests have been repeated across the different parts of the scope, and
others have been limited to their relevance and based on our ability to carry them out within the
agreed terms in the SoW. Below you see a table describing the vulnerability and their associated
risk, scope, and observation.

Table 1: Vulnerabilities found during OWASP-testing

No. Vulnerability Scope Impact Likelihood Risk Observations
1 Components with

known vulnerabilit-
ies

Gitlab Moderate Low Low Discovered vulnerable frame-
work using Zap.

2 Username enumer-
ation

Gitlab Low Moderate Low Can easily enumerate user-
names on Gitlab by cross-
referencing with team-site on
web-page .

3 Fingerprint Web
Application

Gitlab High Moderate High Old Gitlab release can easily
be exploited using CVEs.

4 Testing Root De-
tection

APP v2 Low High Moderate App can be used normally
with rooted device, of min-
imal consequence due to well
implemented sand-boxing.
App also runs on custom
android OS.

5 Testing Anti-
Debugging Detection

APP v2 Low Moderate Low No detection or countermeas-
ures, can be very useful when
combined with logging.

6 Testing Reverse
Engineering Tools
Detection

APP v2 Low Moderate Low No detection or countermeas-
ures, can produce all kinds of
unexpected effects when com-
bined with no. 8 and 5.

7 Testing Emulator
Detection

APP v2 Low Moderate Low Makes rooting and various
reverse-engineering tech-
niques considerably easier,
enables large-scale device
analysis.

8 Make Sure That
App is Properly
signed

APP v2 Low Moderate Low meta-inf files not properly
signed.

9 Fingerprint Web
Application

Website High Low Moderate Plugin: Orbit Fox has Au-
thenticated Privilege escala-
tion that is fixed in version
2.10.3.

18

10 Fingerprint Web
Application

Website High Low Moderate The identified library JQuery
version 1.12.4 is vulnerable.

11 Analysis of Error
Codes

API Low Low Low API endpoint POST child re-
turns internal server error if
“ethnicity father” or “ethni-
city mother” length is above
45 characters.

12 Testing Runtime
Integrity Checks

APP v2 Low Low Low Custom machine code can be
injected into the app at run-
time.

13 Test Ability to Forge
Requests

API Low High Moderate Endpoints give info on fail-
ure, auth tokens are easily re-
used.

14 Test Integrity Check API Low Moderate Moderate Several types of unexepcted
input produce 500-error
codes.

15 Test for Process
Timing

API Low Low Low Attacker can easily hijack
capture-sequence.

16 Test Upload of
Unexpected File
Types

API Low Moderate Moderate txt-files can be uploaded
provided that each is differ-
ent.

17 Test Upload of Ma-
licious File Types

API Moderate Moderate Moderate Can upload various binar-
ies/scripts.

4.1.1 Coverage and Tests Passed

Our methodology and independent generally work led to high test coverage. The overall success
rate was very high, with only 17 of 126 tests failing. Among the failed tests only one pose a high
risk and 7 were given a moderate risk, the rest are low. Coverage is visualized in the below plot.

Website Gitlab API Cloud Grafana App
0

20

40

60
54

34

5
7

3
5

1
3

6

0 0

6

Scope

T
es

ts

Sucess Failed

Figure 6: Test Coverage per Scope

19

4.2 Custom Exploits

4.2.1 Password Dump Scanning

Password security on a personal level tends to be lackluster, and to exploit this we gathered emails
and passwords from previously hacked sites. In total we got 1.2 billion unique email and password
combinations. This data came from the Collection 1-5 AntiPublic, Myr Zabugor dump. We
searched this dump with a custom script that looked for Picterus employee’s names and email
addresses, and as our supervisor also had access to their platforms, we also search for him. In
total we found three matches, two belonging to a member of Picterus and one to our supervisor.
Our supervisor’s password was not cracked and is still hashed, but the employee’s password was
in plain text. Neither of the plain text passwords worked on any of Picterus’s platforms.

4.2.2 Application Traffic Capture Through Instrumentation

While attempting to capture traffic from the app in order to better understand how the API works,
we ran into some trouble regarding extra security in Flutter. The App was developed with Dart,
the language of the Flutter framework, which runs within its own virtual-machine and as such
takes care of its own SSL-pinning, as described in “ Dart Platform Overview” (Google n.d.[d]).
What this means practically is that when a user has self-signed certificates (like the PortSwigger
cert, that Burpsuite uses) the Flutter VM will reject them, even when the Android System will
not.

As such, we had to find a way to circumvent this security feature. Initially, we followed the
guide “ Intercepting Traffic From Android Flutter Applications” (Beckers n.d.), which involved
overwriting the return statement of the BoringSSL-function (BoringSSL is the library Dart uses
for SSL-features, the “ BoringSSL Docs” (BoringSSL n.d.) were useful here) responsible for the
SSL-pinning. This guide was, however, not ideal due to differences in the Android version and
build versions of the APKs we had available. Although we found the function in question using
Ghidra, but were unable to overwrite the return value using Frida, as there were probably security
features elsewhere in the system stopping the initial SSL-handshake from taking place, crashing
the app on attempted hooking.

Following this failed attempt, we tried to simply trick Android into thinking the PortSwigger certi-
ficate was a system certificate. We were able to do so on Android 7, with it having less Read/Write
system-protections than newer versions. We achieved this using this guide: “ Configuring Burp
Suite with Android Nougat” (Ropnop n.d.). Once the system certificate were in place, we were
able to capture traffic with Burpsuite.

We had, however, not proven the proper efficacy of using instrumentation. As such we developed
an alternate traffic-capture method, involving a HTTP-based Man in the Middle Attack. In one
of the native binaries we found the string responsible for pointing to the server. We copy the
hex-byte pattern of this URL and have Frida search for it during run-time, then we overwrite
the URL with one pointing to an HTTP-server running on our own machine. We can write
this server by mapping endpoints found in the binaries or reading Picterus’s API-documentation,
which is publicly available. We can then print the packet on the server, capturing the traffic, and
forwarding it to Picterus, and sending the response back into the app. With this alternative we
can potentially avoid certificate-worries along the way.

Although this exploit involved a lot of back and forth, it enabled us to cover most of the OWASP
mobile security tests, by focusing on a layered problem. Normally a mobile security test would be
done similarly to how we solved the rest of the OWASP-tests, as demonstrated in the article ‘‘A
Software Security Assessment using OWASP’s Application Security Verification Standard: Results
and Experiences from Assesing the DHIS2 Open-Source Platform’’ (Eismont 2020).

20

4.3 Unsuccessful Exploits

4.3.1 Combined Grafana Brute-Force

For version-control Picterus uses a publicly exposed Gitlab instance, meaning anyone can see public
projects and registered users (provided they have the username). None of the projects were exposed,
but the users on Gitlab are by default according to the “ Gitlab Documentation” (Gitlab n.d.).
By cross-referencing against other sources such as LinkedIn and the team section on picterus.com
we were able to enumerate all known developer usernames on the Gitlab instance using Dirbuster
and manual searches. We then combine these usernames with several password-lists from “ Seclists
GitHub Project” (Miessler n.d.) and attempt to brute force our way into Gitlab.

Gitlab has implemented both soft-lockouts and rate-limiting (as described in Section 2.4), leading
to several developers at Picterus being temporarily locked out of their account during our brute-
force. We had only tried a few of our available passwords-username permutations, so we decided
to use the same approach on Grafana based on the assumption that the same usernames and
passwords are used across the two platforms.

Generally Grafana was less secure than Gitlab, only having a easy to circumvent rate-limit, at
about 300 requests per minute. Here we tried around 4 million permutations using the same
credentials we would have on Gitlab. None of these fit the bill, but could eventually, provided we
had more time and lists.

4.3.2 Kubernetes Path-Traversal

In the API that Picterus uses they give the user the opportunity to upload images. When these
images are uploaded they return the path to the image (presumably within a GC Storage Bucket),
defined by <username>/<hash based on file-content>. We confirmed what the hash was based
on, by producing a positive and a negative. The positive being the same file with a different name
producing the same hash, and the negative being two different files with the same name producing
different hashes. This setup could imply that a path traversal might be possible, by changing your
username to match a path.

Based on the “ Kubernetes Basics” (Google n.d.[e]) we assumed that Picterus’s Cloud Storage
Bucket was mounted as a Persistent Volume within the Pod’s base directory and changed our
username to the following: ~/../../usr/bin/sudo/3. The reason for the chosen path is ~ since we
do not know the base-level of the path in question, so we jump right to the home directory. /../../
to end up in the base directory, and usr/bin/sudo/3 to produce an error (sudo is a system file, not
a directory) while still maintaining a 22-character requirement for the username. Keep in mind
that this assumes a Linux-based image.

This did not produce an error and also lead to a successful process of the images uploaded, implying
that all the images were uploaded, but not where we wanted. We also tried assuming that the
pod was using the root user, in which case the path would be ~/../usr/bin/sudo/333. This exploit
was completely dependent on Picterus’s implementation of file-writing server-side, and it is very
possible that they interact with the Cloud Storage API and not a directly mounted file-system. It
is also worth noting that we would have to find a way to circumvent the file-name hash in order
to achieve some form of remote code execution.

4.3.3 Google Cloud Enumeration

In order to test the IAM-permissions of a Google Cloud Resource, we need to find it’s name first.
Initially we tried using the Rhino Labs GCPBucket Brute Force tool and found a bucket named
artifacts-picterus, which was properly configured. This did not, however, tell us anything regarding
the IAM-permissions of the full Google Cloud project.

By interacting with the Google Cloud API and monitoring network traffic from the GCP home

21

picterus.com

panel, we discovered the endpoint https://console.cloud.google.com/m/project/my project that
produced some useful responses dependent on the user’s relation to the IAM-definition resource-
manager.projects.get for the given project. The responses were:

• Project does not exist: 404, confirms a project is non-existent.

• Not signed in: 401, you must be logged in to be authenticated.

• Signed in, but does not have access rights to project: 403 forbidden, access needs to be
explicitly defined for the given user.

• Signed in with permissions resourcemanager.projects.get: 200 OK

Figure 7: API Enumeration Example

We attempted to resolve the project name by using a custom script (Appendix B.5) interacting with
this endpoint, enumerating using a similar word-list to the one we used for the bucket-enumeration,
as well as appending 5-digit numbers to the key-word “picterus”, a common naming-convention
for Google Cloud Projects. We were unable to resolve a name we were sure belonged to Picterus.
There were a couple of jaundice-based names, but all had the correct IAM-configurations (validated
with the Rhino Labs tool).

4.4 Delivarables and Goals

4.4.1 Status of Technical Report Goals

The goals are divided into two groups, Primary and Secondary Goals and are stated in the Technical
Report.

Our primary goals were to:

• Ensure low risk of sensitive information exposure of child data.

• Ensure low risk of sensitive information exposure by child images.

• Ensure secure authentication on API.

• Ensure secure access to developer services.

• Attempt to steal sensitive information from the client.

• Map exposure towards OWASP-attacks.

Through thorough OWASP investigation, most of the primary goals have been covered. Several
vectors have been utilized to attempt to steal sensitive information, and through these failed
attempts, we can say with a reasonable degree of confidence, that sensitive information exposure
is of low risk. Due to no usable examples, we were unable to determine that API-authentication
is fully secure. The Technical Report states where the API otherwise needs improvements. The

22

https://console.cloud.google.com/m/project/my_project

developer services are one of the most exposed parts of the scope, and should also be mitigated as
described in the Technical Report.

Our secondary goals were to:

• Ensure secure cloud Configuration.

• Ensure security of mobile application.

• Map potential risks (and appropriate mitigation) towards clients business.

Excluding vectors that involves breaking the GCP terms of service and having internal access, the
cloud is properly configured and mostly inaccessible to external actors. The mobile application has
quite a few low-risk low-impact vulnerabilities, most of which can be fixed by implementing some
anti-reversing measures. Possible mitigations are included for every failed OWASP-test as well as
the appropriate risk-evaluation in the Technical Report. All of the secondary goals have therefore
been covered.

4.4.2 Technical Report, Executive Summary and Evidence

The Technical Report includes sections on the system and scope, as well as a total risk-overview.
The rest of the report is grouped by scope for the sake of readability. For each found vulnerability
in a given scope we have observations, mitigation and recommendations. We also give a detailed
breakdown of where the vulnerability is, illustrated with relevant evidence as well as how we
discovered them. Each vulnerability also has impact/likelihood-based risk ratings. Finally we
have a table which covers all the tests we did to give proper insight on coverage.

The Executive Summary covers all of the above in a more compressed manner and presents mit-
igation in more general terms, as well as providing big-picture insight on the state of Picterus’s
security. Our coverage is presented as a pie-chart (grouped by risk of failed test), and all of the
vulnerabilities are listed in a single convenient table.

Evidence was delivered as a supplement to the Technical Report, many of which are also in the
report to illustrate the various vulnerabilities. These are grouped by scope and the OWASP-test
id and delivered as a Zipped file separately. Several scopes have explanatory markdown-files as
well.

4.5 Workflow and Administration

4.5.1 Project Artifacts

All of the below results are observations from our project artifacts. These artifacts are:

• Daily Gantt diagram

• Hourly Gantt diagram

• 18 weekly reports counting hours worked on what tickets, project state and mitigations to
current problems.

• Weekly report summary, a more compressed version of all the other weekly reports.

As well as this, we produced meeting notices and minutes from each meeting, which on average
were held every three weeks.

23

4.5.2 Agility of Process

By sticking to our high-level organization and being adaptive to changing circumstances during
exploitation, we have applied several of the principles covered in Section 3.4. These changes are
reflected in the weekly reports and our organization in the Gantt diagrams. We have also incentiv-
ised individual autonomy by assigning each recon and exploit ticket to a single member of the
team, while still maintaining continuous contact and support through uncertainty. In each weekly
report we consider our results and problems for said week, and suggest solutions accordingly. At
the end of each phase or at an interesting finding, Picterus has been contacted over the appropriate
channel, saving the more formal communication (like the SoW-meeting and project presentation)
for a more traditional meeting in order to stay lean.

Initially we started with a sheet for intelligence gathering and suggested exploits, but scrapped
this early. We also made a couple of simple changes to how we presented our technical report,
by grouping each test failed under the relevant scope and covering vulnerability, observations and
mitigations back-to-back. This approach is opposed to the traditional way of writing a technical
report, where the report is usually grouped by vulnerabilities, observations and mitigations separ-
ately.

4.5.3 Issue-Tracking and Time Management

The general trend with hours worked per week is few prior to getting a client, then remains within
25-30 hour range up until the exam period (week 11), where it drops significantly. After the exams,
they rise back to a productive level a stay there for the remainder of the project.

Figure 8: Hours Worked per week

This trend is also reflected in the cumulative hours, with the biggest drop in growth being around
the exam-period. You can also see a slight parabolic rise early in the project, but generally the
growth is linear.

24

Figure 9: Hours worked over time

It is worth mentioning that although there is plenty of variation in the number of hours worked per
week between the different students, the accumulation of hours is mostly equal across the board.

In Figure 10 in the Appendix you see the hourly Gantt diagram where each ticket is displayed by
it’s estimated start hour, computed by the prior tickets where green represents percentage done
and red represents hours overdue. Generally we have stayed well within our time-estimates as well
as maintain an approximately linear burn-down throughout the project.

Much of the same applies to daily Gantt chart (Figure 11 in the Appendix), with the exception of
the first third of the project-tickets, that have an overwhelming tendency to be overdue. There are
multiple reasons for this, both reflected in the weekly reports as well as explained in Section 5.4.3.
In order to counter this, we introduced weekly grooming sessions where hours and days allocated
were adjusted accordingly. This was a significant improvement, which is reflected in the diagram
after week 9 (Around day 53).

25

5 Discussion

5.1 Project Limitations

As with all other activities, this project was also affected by the ongoing COVID-19 pandemic. For
us this meant that all interactions with Picterus were digital. Doing a penetration test digitally
excluded all physical attacks, such as social engineering and attacking their intranet.

This penetration test is done with the intent to check how well someone with our skill set and
experiences can exploit their infrastructure. This means that someone with a higher understanding
of the different scopes may be more successful in finding vulnerabilities. Our lack of experience
also meant we used a longer time to research and install new tools as Kali-tools did not always
cover our needs.

Picterus’s scope was very broad, which did put a limit on how thorough we could be with each
test. Combine this with our lack of experience, some of the tests were done very inefficiently. This
was particularly present during the app-testing, where we had to learn the Android-stack as well
as the several features and quirks of each release in order to do the MSTG-tests properly. For the
proprietary cloud-technologies we are also limited to tests that don’t require internal access, as well
as our total understanding being somewhat shallow. This shallowness is caused by these systems
being proprietary and us having to comply to terms of service, greatly limiting our attack-surface
and causing us to prioritize other parts of the system. This is further illustrated by the various
cloud-tests being limited mostly to IAM-testing.

5.2 Exploits and OWASP Testing

5.2.1 Test Observations

When running automated scans using ZAP, several false positives were found. In the generated
report it stated that picterus.com was vulnerable to path traversal attacks. This type of attack
exploits misconfigured servers to access otherwise protected files. When assessing automated tests
it is paramount to confirm these using manual testing. The path traversal attack was treated as
a priority as it is a critical vulnerability, even though prior testing did not detect it. This, among
other promising exploits, led to us spend more time on several tickets than the initial amount of
allocated hours.

Gitlab has relatively high coverage due to it being on a different IP than the web-server, meaning we
spent quite some time verifying proper server-configurations here as well. Generally we restricted
logically oriented tests on Gitlab as it is it’s own product and not really within Picterus’s control.
Generally the biggest weakness here is not staying up to date with security patches.

We invested quite some time into properly brute-forcing our way into Gitlab to no avail due to
built-in security features here. As an alternative we focused the majority of our brute-forcing
efforts on Grafana under the assumption that we could use credentials here across the board.
With Grafana having very limited functionality to external users, these were the only tests we
conducted there.

Cloud-testing were mostly limited to information gathering and IAM-testing, mostly due to very
limited access for external actors, as well as needing to stay within Google’s terms of service. It
could be interesting to attempt a brute-force on this level, but doing so would be in gross violation
of our scope. It is also worth mentioning that most of the interesting parts of the back-end
infrastructure were locked behind a VPC as well as the Kubernetes control-pane being protected
by IP whitelisting. These security-features greatly limited our ability to interact with the internal
parts of the system. This could have been a different story if we had physical access to Picterus’s
network.

With most of our fingerprinting being done on the Picterus website, and it having the same IP
as the API, we decided to limit the API-tests to Error Handling an Business Logic. Although

26

picterus.com

the load-balancer dictates what sort of service we are being routed too, it is difficult for us to
actively/passively fingerprint these individual services due to our external interactions being limited
to the load-balancer. We were still able to make some useful observations by interacting with the
API, uncovering several vulnerabilities that need to be mitigated.

For the App it was natural to restrict our testing to MSTG-tests, and this has generally provided
good coverage as well as illustrated some potential weaknesses. These tests are generally oriented
around reverse engineering and code-quality. Although plenty of these tests fail, it’s worth men-
tioning that several do so because of intentionally disabled security features, and can be mitigated
with relative ease. Combined with the impact of vulnerabilities in the app, this is inconsequential
to the overall security of Picterus’s systems.

5.2.2 Importance of Good OSINT

When we are conducting Black Box Testing, we are entirely dependent on the quality and avail-
ability of our OSINT. We therefore found that allocating a set amount of hours to investigate
parts of a given scope, were critical in order to discover enough details and information in order
for any potential exploits to be effective. Familiarising ourselves with the technology that Picterus
uses is also “mission-critical”, as we cannot understand weaknesses in a given technology without
understanding the technology itself. Most of Picterus’s infrastructure use open-sourced tools, and
as such, the code and it’s accompanying documentation is publicly available to us.

Most of our findings are a result of active intelligence gathering, most notably by referring to the
Gitlab documentation and enumerating the user fields on Gitlab against names cross referenced
from other sources. Among these sources are Picterus’s home page, under the team section, but
we were also able to find several others by cross-referencing against other sites like GitHub and
LinkedIn. We are also able to make some reasonable assumptions regarding their choice in backend
technology by reading various research papers associated with the business (what ML-framework is
being used, etc). Using methods like Google dorking, we were also able to find their old domain, as
well as discover what API-framework they were most likely using by looking at the slight variations
in default error-messages.

Using sites like GitHub and LinkedIn might raise some ethical concerns in the sense that in or-
der to exploit any useful information we might find for the various Picterus employees, we are
in a sense targeting individuals directly. As an example, if one of the employees have written
experience in technology x, y and z for a given period, we can assume that these are parts of the
backend-technologies used by Picterus, which greatly decreases the difficulty of fingerprinting their
applications. There is also the concern of using ex-employees credentials for credential stuffing
(most of these are listed as blocked on Gitlab, but might still have access other parts of the sys-
tem). Ex-employees can easily be found by searching for Picterus on LinkedIn. We have generally
avoided doing this here, due to ethical concerns and an overall need to decrease the number of
permutations when brute-forcing. This is however a concern that ideally, we would have clarified
prior to starting the penetration test.

5.2.3 Security as a Process

Good total security is hard to get right. It requires detailed domain-specific knowledge that
continuously needs to be held up to date in an ever-changing technology-landscape. The non-
constant nature of software security is a double-edged sword, in the sense that it requires both the
attackers and security to constantly adapt. As such we say that security is a process; what might
be considered secure today, might not be secure tomorrow.

Keeping this process perspective in mind, our approach to testing has generally involved a “innocent
until proven guilty” philosophy. In short, this means we have to prove a vulnerability beyond a
reasonable doubt in order to list it as such. Keep in mind that this assumes that security is
the norm, and might not always be the ideal approach. For instance, in airline-software, where
the worst potential outcome of vulnerabilities are catastrophic, you would want to prove security,

27

rather than the lack of it.

These different approaches illustrate an important point. That being, what is and isn’t secure is
completely dependent on our definition of it. In reality a system can never be fully secure due to
the ever-changing nature of the system itself. This is also one of the reasons why including a solid
risk analysis is critical, as it better illustrates overall exposure while accounting for the uncertain
aspects of security. Including a list of successful and failing tests only illustrates what the testers
where able to discover, and might give a false impression of the state of total security.

Bad security and related practices can be absolutely devastating for a business caught on the
wrong side. A business can face massive financial losses as well as decreased public trust when
they fall victims to a security breach. More often than not, this also involves leaking PII. In
Europe the majority of PII is protected by the GDPR, and mismanagement of this data can also
lead to lawsuits from authorities. Needless to say, it is in a business best interest to practice
good security. There is, however, a systemic issue in lack of comprehensive security knowledge
in software engineers, as demonstrated in ‘‘Assessing information security risks in the cloud: A
case study of Australian local government authorities’’ (Ali et al. 2020). This fundamental issue
can potentially be mitigated by embedding good security practices within the software engineering
process and/or by lowering the barrier of entry by making security practices more agile, like we
attempt to do here.

5.3 Deliveries and Goals

5.3.1 Client Oriented

From the start we worked together with Picterus to set appropriate boundaries and requirements.
In a project like this it is important to establish a high level of trust and good communication.
During the pre-engagement period we created a Statement of Work detailing how we should proceed
if we uncovered any critical vulnerabilities or major bugs.

As a proactive method of not leaking any information gathered during the project, all of our HTTP
requests were strictly over SSL and all information we gathered were stored on encrypted drives.

To further build trust and keep Picterus informed of the state of the project, we would periodically
give updates on what scope we were testing, as well as let them know about any other bugs we
ran into along the way (this was specifically relevant when testing the app, which was an earlier
release). When running automated tools, especially for brute-forcing, we made sure to be available
in order to be prepared for any unintended consequences which would arise on occasion.

We also made a few changes to the regular structure of the Technical Report, to better fit Picterus
situation and increase readability from a developer point of view. The reasoning behind this is to
isolate the cause, how we tested, risks and mitigations for a given vulnerability to it’s appropriate
section, similar to how a bug-oriented SCRUM ticket would be structured (problem, steps to
reproduce, etc).

5.3.2 Risk Calculations

Much of our product is dependent on a risk-analysis based on an estimation of the likelihood and
impact of a given vulnerability. As another measure to break down the sheer breath of the system,
we also included a risk-analysis for the individual scopes. For the scopes the availability of various
business assets for an given intruder is our measure of impact and our measure of likelihood is
based on the availability and complexity of potential vulnerabilities for the scope in question. This
is a little different from the traditional OWASP-risk calculator in the sense that it is simpler by
accounting for less and broader parameters. Normally the OWASP-calculator would take in 16
parameters; 8 for impact and 8 for likelihood and assign a numeric score corresponding to the
broader risk-scores. Although generally a useful tool, in order to be used effectively, it requires
more insight and research that fall outside our domain.

28

To be able to present overall risk more holistically, especially in the Executive Summary, we
have included a new measure we call “total risk”, where we account for the risk-rating of the
vulnerabilities found in a given scope as well as the scope’s independent risk-rating. This definition
is also clearly defined in the Technical Report for the sake of clarity. A potential weakness with
our approach to risk-analysis is that we loose important details by generalizing the specialized
parameters as well as running the risk of forgetting important factors. Generally we would not
recommend doing this in a professional setting, but it is of academic interest in our case, as our
approach is more in line with Agile and Lean principles of being adaptive and eliminating waste.

5.4 Workflow and Administration

5.4.1 Reconnaissance and Exploit

In terms of effectively compartmentalizing certain parts of the PTES into tangible work-units,
recon and exploit tickets have been a useful tool. Recon tickets allowed us to get a very thorough
overview of the system, as well as what kinds of knowledge we needed to cultivate in order to
exploit effectively down the road. Preventing work-queuing was also mostly effective where we
could move time in between exploit-tickets, as some scopes had a larger attack-surface than others.
This approach allowed us to allocate enough time for investigating the mobile app properly, which
in the SoW was uncertain.

It is worth noting that doing general “Recon” as part of the intelligence-gathering phase of the
PTES isn’t nearly as effective as doing recon towards a specific OWASP-test, as it is hard to know
what details are important without having a specific goal in mind. To illustrate this further, the
most critical vulnerability we found should have been discovered during the recon phase, but was
instead discovered during the exploit phase. A possible way to counter this, while still applying the
same approach that we have, is to organize into recon system and recon scope-specific exploits. As
mentioned in Section 4 we also attempted to make a recon-sheet, where we would list our findings
during this phase. This approach did not work well as we found that simply having a sheet for the
exploits themselves required less documentation and was generally a more tidy solution.

After putting away most of the exploit tickets there was also the case where we would come up with
new ideas or have a new perspective on a already tested scope. In order to not let this get to waste,
we introduced exploit remaining. Exploit remaining worked as an umbrella-ticket to try out some
of these new perspectives and ideas. The fact that this was necessary illustrates the weakness of
linear workflows as opposed to iterative ones (which is also central in several Agile methodologies),
as the exploit remaining ticket can be viewed as a second iteration of our OWASP-testing.

5.4.2 Working as a Remote Team

We decided early on, due to uncertainties around the COVID-19 pandemic, to go fully remote right
from the start. Working as a remote team can generally be challenging, especially in a project
where good communication and collaboration is necessary. It was therefore critical that we had a
clearly defined process in mind, despite not being fully in line with Agile principles. This is one of
the main reasons we choose the PTES and OWASP as our basis.

PTES does not, however, provide us with easily separable work-units for each team-member,
generally it only accounts for the different phases of a given project and not the units themselves.
OWASP on the other hand provide us with easily separable tests, with some overlap for the
individual test-types (e.g., MSTG and BUSLOGIC OWASP-tests) where one test might provide
the answer for a previous one. From a project management point of view, the OWASP tests
are generally too small of a unit to be practical and the PTES phases are too general and inter-
dependent to be allocated effectively across a remote team.

Our solution to this are to separate into recon and exploit covered in the previous section. From
the perspective of work-allocation in a remote setting, this worked well. This approach allowed
us to work relatively independently with a reasonable time-perspective, allowing us to stay agile

29

while still following the higher-level process of PTES.

5.4.3 Adapting to Changes and Delays

During the project we also had other mandatory activities and another subject. In the first phases
of the project we took no steps to counter this factor. Unsurprisingly, this disrupted our workflow
several times and made original date-estimates go over schedule. These setbacks prompted us to
introduce weekly grooming sessions to be able to reschedule delayed tickets, adjust current tickets
and assign reasonable times to new ones.

Although inconvenient, catching on to this weakness early was major step in the right direction.
Adding this to our process is also well in line with Agile principles. Leaving some room for
administrative work on a weekly basis significantly improved our ability to review and handle
problems early. This might seem in opposition to Lean principles, where we often want to cut
down on administrative overhead (often interpreted as “waste”), but in our case the pros out-
weighted the cons, illustrating that Lean and Agile might not always be complimentary.

It is also worth mentioning that these grooming-meetings in large part also let the person respons-
ible for investigating or exploiting a given scope to give the proper time-estimates, which allowed
the entire team to be in the loop and as such play into individual autonomy and self-organisation
principles of Agile.

5.4.4 PTES and Best Practice

A constant challenge in a penetration test is to conduct yourself in an ethical manner. This is espe-
cially important in a professional/academic setting. When deviating from the established standard
while being inexperienced, there is always the risk of the tester inadvertently exposing sensitive
information or exploiting illegal/dangerous avenues with a client. Lack of technical knowledge can
also lead to breaking various Terms of Service with external actors that provide technology and/or
infrastructure to the client in question. With this in mind, establishing a high level of trust with
the client is best done through maintaining a high level of professional ethics.

In cases like ours sticking to a standard such as PTES and OWASP works as a mitigation to the
lack of experience by leveraging the professional experience of the PTES-authors. For example,
there is no guarantee the SoW would have been specific enough if the PTES did not give us clear
guidelines on what it should contain and what needs to be agreed upon prior to the test, which
would have led to uncertainty within the team and potentially out-of-scope exploitation. This also
highlights the importance of having a clearly defined scope.

Performing a penetration test always bring certain destructive risks, such as accidentally dropping
a database table. Following a standard is usually considered best practice as it allows us to
mitigate said risks and test in a responsible manner. This means that our deviations run the risk
of losing some of these benefits, but allows us more flexibility and individual independence on a
managerial level. Throughout the process we have been mindful of this, and whenever unsure
about whether an action has been ethical and justifiable (for example going through the password
dump), we have referred to our supervisor and/or the PTES. A recurring challenge has also been
the question of what is and isn’t an exploit, specifically during work on the recon-tickets. This ties
into our professional ethics as the SoW states that our client would be notified to the start of the
exploitation phase.

5.5 Possible Improvements

Our coverage and test-quality could be significantly improved if we had internal access to several
parts of the scope. This is especially relevant for the cloud parts of the system, where our attack
surface was greatly limited by out-of-scope security measures. This would also allow us to test
several other CVE’s on GitLab. With our scope being limited to network-based testing we are

30

unable to test the security of Picterus’s business network, beyond the limited access we had to
the VPC. This could be of significant interest as it can potentially expose several avenues into the
cloud.

One of the biggest improvements we could make to the agility of the process is to work iterative
instead of linearly with our compartmentalized work-units. This could potentially allow us to
adjust to new information more flexibly as well as allow us to utilize new knowledge acquired
along the way. This would be especially useful for a project where the testers lack experience, like
this one. It is worth noting that what worked well for us while working remote, won’t necessarily
translate to success in a traditional working environment. The benefit of having the division of
recon and exploit might be negligible when you work less independently. If better collaboration
is possible, our approach might come across as unnecessarily rigid and not particularly agile. The
best approach is usually dependent on the circumstance, and to remain true to Agile principles,
the team should adjust accordingly.

31

6 Conclusion

6.1 Security at Picterus

Considering the high test coverage and low rate of failure, the overall state of Picterus’s security is
good. There were no critical issues found and we did not manage to extract any sensitive inform-
ation from their platforms. Although some of the issues described can potentially be exploited
and have a high impact, we were unable to do so within the scope provided. We have found no
systemic issues, nor vulnerabilities that lead to exposure of child images.

6.2 Workflow and Deliveries

Generally our proposed workflow have applied several agile principles and worked well within a
remote setting. Using PTES and OWASP as a basis was a great help to mitigate some of our lack
of experience, and we would recommend others do the same. Compartmentalizing the different
PTES phases into recon and exploit tickets has some pros and cons, and future projects should
take their collaborative environment into account when deciding if this can be useful. Some of
the pros are that the team-members are able to work more independently, preventing work queues
and maintaining the PTES high-level structure. Some of the cons are a less flexibility, lack of
adaptation to new information and might incentivice less collaboration.

Our deliveries were handed in on time and included the app-testing which was initially uncertain.
We made a few changes to how the technical report is structured for the sake of increasing readab-
ility and to have a structure more oriented towards Picterus’s needs. In the executive summary we
attempt to present a more complete picture of risk by accounting for vulnerability and scope, and
although our variant of risk-analysis might be overly simplified, we believe it was more appropriate
given our situation and system-breadth.

6.3 Further work

There are still many attacks that can be performed, as there are endless combinations of attacks
that can be utilized together. The OWASP checklist is continuously being expanded and developed,
with more tests that can be tried in the future. As this project was limited by time, there may
also be more sophisticated attacks which require more research and planning that should be tried.

Since this penetration test predominantly involved black-box testing, there could be some value
in conducting an audit with similar tools and methodologies while having internal access and the
source code available. This could potentially uncover vulnerabilities not generally available to
external actors.

Among other things worth doing, making some changes to the overall process based on some
of the weaknesses found here might prove useful. Making an iterative version could yield some
interesting results as well as attempting the concept of recon and exploit tickets in a traditional
working environment. In the traditional environment having a focus on levels of collaboration and
how the tickets play into it, can be of interest.

32

Bibliography

Ali, O. et al. (2020). ‘Assessing information security risks in the cloud: A case study of Australian
local government authorities’. In: Government Information Quarterly 37, pp. 1–17.

Baeli, D. and M. Ballé (n.d.). Why there is no Lean Manifesto. https://planet- lean.com/lean-
manifesto-balle-baeli/. Accessed: 26-04-2021.

Beckers, Jeroen (n.d.). Intercepting Traffic From Android Flutter Applications. https://blog.nviso.
eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/. Accessed: 29-3-2021.

Beedle, M. et al. (n.d.). Agile Manifesto. https://agilemanifesto.org/. Accessed: 26-04-2021.
BoringSSL (n.d.). BoringSSL Docs. https://commondatastorage.googleapis.com/chromium-boringssl-

docs/headers.html. Accessed: 29-3-2021.
Branwen, Gwern (n.d.). Silk Road 1: Theory Practice. https://www.gwern.net/Silk-Road. Accessed:

07.05.2021.
Casalicchio, E. and S. Iannucci (2020). ‘The state-of-the-art in container technologoies: Application

orchestration and security’. In: Concurrency Computat Pract Exper 32, pp. 0-17.
Cruzes, D. et al. (2017). ‘How is Security Testing Done in Agile Teams? A Cross-Case Analysis of

Fours Software Teams’. In: XP International Conference 18, pp. 201–216.
Dingsøyr, T. et al. (2012). ‘A decade of agile methodologies: Towards explaining agile software

development’. In: Journal of Systems and Software 85, pp. 1213–1221.
Eismont, A. (2020). ‘A Software Security Assessment using OWASP’s Application Security Veri-

fication Standard: Results and Experiences from Assesing the DHIS2 Open-Source Platform’.
In: pp. 0-100.

Falk, H. and O. Jensen (2018). ‘A machine learning approach for jaundice detection using color
corrected smartphone images’. In: pp. 0-129.

Frida (n.d.). Frida JavaScript API. https://frida.re/docs/javascript-api/. Accessed: 07.05.2021.
Gitlab (n.d.). Gitlab Documentation. https://gitlab.com/help. Accessed: 22-3-2021.
Google (n.d.[a]). Access Control For Projects using IAM. https : / / cloud . google . com / resource -

manager/docs/access-control-proj. Accessed: 22-02-2021.
— (n.d.[b]). Android Fundamentals. https://developer.android.com/guide/components/fundamentals.

Accessed: 29-3-2021.
— (n.d.[c]). Cloud Storage Docs. https://cloud.google.com/storage/docs. Accessed: 22-02-2021.
— (n.d.[d]). Dart Platform Overview. https://dart.dev/overview#platform. Accessed: 29-3-2021.
— (n.d.[e]). Kubernetes Basics. https://kubernetes.io/docs/tutorials/kubernetes-basics/. Accessed:

29-3-2021.
— (n.d.[f]). Load Balancing Overview. https : / / cloud . google . com / load - balancing / docs / load -

balancing-overview. Accessed: 23-02-2021.
— (n.d.[g]). Understanding Custom Roles. https ://cloud.google .com/iam/docs/understanding-

custom-roles. Accessed: 22-02-2021.
— (n.d.[h]). using Firewalls. https://cloud.google.com/vpc/docs/using-firewalls. Accessed: 23-02-

2021.
Greenberg, Andy (n.d.). This machine kills secrets. http://104.131.187.8/read/7113/pdf. Accessed:

07.05.2021.
Highsmith, J. (2010). Agile Project Management. US: Pearson education, Inc.
Householder, A. et al. (2017). ‘The CERT® Guide to Coordinated Vulnerability Disclosure’. In:

22, pp. 0-121.
Imperva (n.d.). Penetration Testing. https : / / www . imperva . com / learn / application - security /

penetration-testing/. Accessed: 22-2-2021.
Khan, Mohd Ehmer (2011). ‘Different Approaches to Black Box Testing Technique for Finding

Errors’. In: International Journal of Software Engineering Applications 2, pp. 31–40.
Lean Pathways Inc. (n.d.). Lean Pathways Lean Manifesto. http://www.leansystems.org/images/

Lean Pathways Lean Manifesto.pdf. Accessed: 26-04-2021.
Miessler, Daniel (n.d.). Seclists GitHub Project. https://github.com/danielmiessler/SecLists. Ac-

cessed: 15-02-2021.
Mueller, B. et al. (n.d.). Mobile Security Testing Guide. https : / / mobile - security. gitbook . io/.

Accessed: 29-3-2021.
Offensive Security (n.d.). The Exploit Database. https://www.exploit-db.com/n. Accessed: 26-02-

2021.

33

https://planet-lean.com/lean-manifesto-balle-baeli/
https://planet-lean.com/lean-manifesto-balle-baeli/
https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/
https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/
https://agilemanifesto.org/
https://commondatastorage.googleapis.com/chromium-boringssl-docs/headers.html
https://commondatastorage.googleapis.com/chromium-boringssl-docs/headers.html
https://www.gwern.net/Silk-Road
https://frida.re/docs/javascript-api/
https://gitlab.com/help
https://cloud.google.com/resource-manager/docs/access-control-proj
https://cloud.google.com/resource-manager/docs/access-control-proj
https://developer.android.com/guide/components/fundamentals
https://cloud.google.com/storage/docs
https://dart.dev/overview##platform
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://cloud.google.com/load-balancing/docs/load-balancing-overview
https://cloud.google.com/load-balancing/docs/load-balancing-overview
https://cloud.google.com/iam/docs/understanding-custom-roles
https://cloud.google.com/iam/docs/understanding-custom-roles
https://cloud.google.com/vpc/docs/using-firewalls
http://104.131.187.8/read/7113/pdf
https://www.imperva.com/learn/application-security/penetration-testing/
https://www.imperva.com/learn/application-security/penetration-testing/
http://www.leansystems.org/images/Lean_Pathways_Lean_Manifesto.pdf
http://www.leansystems.org/images/Lean_Pathways_Lean_Manifesto.pdf
https://github.com/danielmiessler/SecLists
https://mobile-security.gitbook.io/
https://www.exploit-db.com/n

OWASP (n.d.). OWASP Top Ten. https://owasp.org/www-project-top-ten/. Accessed: 18-01-2021.
PTES (n.d.). Penetration Testing Execution Standard. https://buildmedia.readthedocs.org/media/

pdf/pentest-standard/latest/pentest-standard.pdf. Accessed: 23-01-2021.
Ropnop (n.d.). Configuring Burp Suite with Android Nougat. https://blog.ropnop.com/configuring-

burp-suite-with-android-nougat/. Accessed: 29-3-2021.
Saltzer, Jerome (1974). ‘Protection and the control of information sharing in multics’. In: Com-

munications of the ACM. 17, pp. 388–402.
Shaikh, A. and B. Meshram (2021). ‘Security Issues in Cloud Computing’. In: Intelligent Computing

and Networking 146, pp. 63–78.
Statista (n.d.). Number of Worldwide Social Network Users. https://www.statista.com/statistics/

278414/number-of-worldwide-social-network-users/. Accessed: 25-02-2021.
Vartdal, G. (2014). ‘Development of a Samrtphone-based diagnostic Tool for Jaundice’. In: pp. 0-75.

34

https://owasp.org/www-project-top-ten/
https://buildmedia.readthedocs.org/media/pdf/pentest-standard/latest/pentest-standard.pdf
https://buildmedia.readthedocs.org/media/pdf/pentest-standard/latest/pentest-standard.pdf
https://blog.ropnop.com/configuring-burp-suite-with-android-nougat/
https://blog.ropnop.com/configuring-burp-suite-with-android-nougat/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/

Appendix

A Statement of Work

35

Statement of Work

Bachelor Project 11

version 1.0

Jakob Lønnerød Madsen
Sebastian Ikin

January 2021

1

Version history

Date Change Version
19.01.2021 First draft. 0.1
28.01.2021 Changes based on feedback. 0.5
29.01.2021 Adding website to scope. 1.0

1 Introduction

The purpose of this document is to give the reader an overview of the penetration
test project given by NTNU in cooperation with Picterus. This project involves
doing a series of penetration tests against Picterus’s systems and infrastructure
with the intent to uncover bugs and potential vulnerabilities. The project will
last from January 2021 to May 2021, and take place in Trondheim. The testing
will done by third year computer science students Jakob Madsen and Sebastian
Ikin with the supervision and guidance of Donn Morrison as part of the Students
Bachelor Thesis.

2 Stakeholders and Distribution of work

2.1 Stakeholders

Who Role Interest

Picterus Client
Have their system tested for vulnerabilities
and be given a report.

JakobMadsen,
Sebastian Ikin

Students
Test system for educational purposes and
utilize results in bachelor thesis.

Donn Morrison
Student
Supervisor

Advice and evaluation regarding the work of
the Students.

NTNU University
Institution that Students and Student
Supervisor are part of.

Google
Cloud
Provider

Infrastructure Provider, with own guidelines
for pen-testing.

Various
Threat
Actors

Exploit existing vulnerabilities in the client’s
system.

2

2.2 Distribution of work and responsibilities

The bachelor project covers a total of 1000 hours (500 per student), where
around 600 are reserved for the testing itself, not including documentation of
findings and any meetings that might occur. For research, intelligence gathering
and documentation we have reserved around 200 hours, leaving 200 hours for
the thesis itself. This leaves a total of 800 hours allocated to direct work for the
Client.

The Students are responsible for setting up necessary meetings and writing
notices/minutes for each. The Students are also responsible for this Statement
of Work, client contract and non-disclosure in thesis as described in signed NDA
by Students and Student Supervisor. Finally, the Students are responsible for
producing the deliveries within the agreed time frame as described in Section 6,
and only carry out attacks on vectors described in Section 3.

3 Scope

Together with the client we have agreed that the following systems are eligible
for testing

• Servers

- Kubernetes cluster

- Cloud SQL

- Cloud Storage

- Gitlab server

- Metrics dashboard

• Android app

• Public-facing API

• Website Picterus.com

Regarding the Android Application: The app mentioned in scope refers to a
prototype of a new version of Picturs’s mobile app. The Client’s old app has
already been penetration-tested. Testing of the new App is contingent on it
being released in due time (current estimate is March).

3

3.1 Off limits and blacklisted attacks

Due to the destructive nature or lack of interest in some attacks, the testers
and the client has agreed that the following attacks are blacklisted (i.e not to
be carried out):

• Denial of service

• All attacks that affects other Google Cloud customers. See (1)

• Any and all forms of physical attacks and social engineering.

3.2 Guidelines on System Penetrated

Per client’s request, they will be notified and will discuss further testing of
any found vulnerability on a case by case basis. This means that further
investigation of an unwanted access to a private resource will stop until the
students are told otherwise by the client.

4 Threat model and methodology

When assessing a system it is important to get an overview of realistic threats
and exploits. The client handles user information which subsequently needs a
high degree of authentication and integrity.

Our main strategy to finding and exploiting will follow the OWASP testing
methodology version 4 as detailed in Section 4.1. In particular, we will aim to
prioritise the OWASP Top Ten(2) which represents a broad consensus about
the most critical security risks to mobile and web applications. The OWASP
Top Ten is a standard awareness document for developers and web application
security.

All servers and applications that are exposed to the internet are constantly being
attacked by automated attacks, but by using a more specialized and focus plan
of attack we have a higher chance of finding weak points and combinations of
attack vectors that might result in a data leak or takeover.

Our plan is to mainly utilize attacks that can be done remotely (i.e over the
Internet). A system is only as strong as its weakest point, such that any
overlooked area might yield more results. Depending on our clients failure

4

procedures their system may shutdown or stay online, if their systems do not
detect an intrusion or does not stop it we can utilize this to spread our control.

4.1 Methodology

Generally the Students will carry out testing as described in the Penetration
Testing Execution Standard(3); however, should there be time constraints Students
will prioritize focus on the OWASP Top 10 (2) within the stated scope in section
3. There will be no physical attacks or forms of social engineering during the
penetration-testing.

4.2 Threat Model

As part of the Technical Report the Student will make a Threat Assessment
based on OSINT about potential Threat Actors. This assessment will be limited
to Threat Actors only using remote or network-oriented attacks. In short, like
the students, threat-actors mainly utilizing physical attacks will be excluded
from the assessment. Threat-actors fitting our criteria will be classified according
to the PTES(3).

5 Disclosure and Test Notification

The bugs we find during this project will be relayed back to the client together
with our recommendations for fixing issues and how to proceed with these in
the future.

Any sensitive information and/or trade secrets will not be made public, and
should be handled with the utmost respect for all parties involved. This also
involves protecting and handling any and all sensitive data that the Students
might come across during testing. Risks related to data-exposure will therefore
be mitigated by communication over encrypted and/or client-approved messaging
platforms and by using local disk-encryption, preferably on virtual machines.
Generally, if there is a risk of data-exposure over unprotected network-packets
(f.ex HTTP vs. HTTPS), the Students will confer with the Client prior to
carrying out the test.

As per Client’s request, they will be notified prior to tests that might affect
their metrics, so that outliers caused by Students can be accounted for.

5

6 Deliveries

The result of this project will give Picterus guidelines and recommendations for
their system which is currently in use. All of our findings will be documented
together with how to reproduce them, should any exploit be deemed to destructive
or critical it will be reported while the project is ongoing such that an immediate
patch can be deployed.

6.1 Technical Report

The technical report will primarily contain what attacks we carried out, the
results of each, how to reproduce found bugs/vulnerabilities and recommendations
as to how to handle them. The Report will also contain an overview of system-risks
classified by severity of associated vulnerability. In short, the basic outline of
the technical report is like so:

• System Overview: The system tested as determined by Scope.

• Goals: What the Students want to achieve with each test based on determined
scope.

• Threat Assessment: How exposed the Client is to Threat Actors, and what
system-vulnerabilities are considered severe

• Results: Vulnerability-findings grouped by relevant OWASP-class, and
results of each test carried out.

• Vulnerabilities, Observations and Recommendations: What we discovered
and recommend based on the results found during testing.

6.2 Executive Summary

The executive summary can be viewed as an abstract of the of the most important
take-aways of the Technical Report. Here we describe the overall exposure to
any attack and list the most severe vulnerabilities. This has been separated into
its own document for the convenience of the client.

6

7 Permission to Test

Based on the scope and methodology described in this document, the Client
gives permission to Students to carry out necessary tests. Furthermore the
Students will follow Google Cloud’s separate guidelines for penetration on their
infrastructure.

Picterus Representatives Date

Student Supervisor Date

Student Date

Student Date

References

[1] Goolge, “Google cloud acceptable use policy.”
https://cloud.google.com/terms/aup. Accessed: 23-01-2021.

[2] OWASP, “Owasp top ten.” https://owasp.org/www-project-top-ten/.
Accessed: 18-01-2021.

[3] PTES, “Penetration-testing execution standard.”
https://buildmedia.readthedocs.org/media/pdf/pentest-standard/latest/pentest-standard.pdf.
Accessed: 23-01-2021.

7

29.01.2021

29.01.2021

B Scripts

43

B.1 Password search

Supply script with search words in words.txt to search all files in the current working directory
and below. Utilizes the Ripgrep command to recursively search.

Usage:

Python check_words.py

Usage with desired output name suffix:

Python check_words.py -s test

1 import os

2 import sys

3

4 suffix = ''

5 for i, arg in enumerate(sys.argv):

6 if '-s' in arg:

7 suffix = sys.argv[i+1]

8

9 in_filename = 'words.txt'

10 out_filename = 'output'+('_'+suffix if suffix else '')+'.txt'

11

12 def main() -> None:

13 global in_filename

14 global out_filename

15

16 with open(in_filename) as f:

17 content = f.readlines()

18 f.close()

19

20 content = [*map(lambda x: x.replace('\n', ''), content)]

21

22 # deletes old output file and create a new.

23 try:

24 os.remove(out_filename)

25 except Exception as e:

26 pass

27

28 os.system('touch '+ out_filename)

29

30 for word in content:

31

32 print('Checking:', word)

33 cmd = 'rg -i '+ word +' >> '+ out_filename

34 os.system(cmd)

35

36 # removes CR from CRLF

37 os.system('sed -i -e "s/\r//g" '+ out_filename)

38

39 if __name__ == '__main__':

40 main()

44

B.2 Subdomain checker

Checks all subdomains in surface.log. It is recommended to use X to generate this file.

Usage:

Python check_subdomains.py

Usage with verbose debugging output:

Python check_subdomains.py -v

1 import requests

2 import threading

3 import os

4 import sys

5

6 from collections import defaultdict

7 from pathlib import Path

8

9 mod_path = Path(__file__).parent

10

11 domains = defaultdict(lambda: [

12 0, # http status code

13 '', # http status message

14 [] # port scan (unused)

15])

16

17 res_lock = threading.Lock()

18 print_lock = threading.Lock()

19 threads = []

20

21 # for verbose realtime output

22 DEBUG = '-v' in sys.argv

23

24 def check_domain(domain: str, debug: int =0, is_http: int =0) -> None:

25 res = None

26

27 try:

28 protocol = (('http://' if is_http else 'https://') if 'http' not in domain else '')

29 res = requests.get(protocol + domain)

30 except Exception as e:

31 exception_type = e.__class__.__name__

32

33 # HTTP domains give SSL error on get with HTTPS

34 if exception_type == 'SSLError':

35

36 # break if already in HTTP mode

37 if not is_http:

38 check_domain(domain, debug, 1)

39 return

40

41 if debug:

42 with print_lock:

43 print('Exception', exception_type, 'for', domain)

44

45 with res_lock:

46 domains[domain] = [

47 0,

45

48 exception_type,

49 ''

50]

51 return

52

53 if debug:

54 with print_lock:

55 print(res.status_code, 'for', domain)

56

57 with res_lock:

58 domains[domain] = [

59 res.status_code,

60 requests.status_codes._codes[res.status_code][0],

61 portscan

62]

63

64 # read file and extract subdomains

65 def read(filename: str) -> list:

66 retval = []

67 with open(filename) as f:

68 for line in f.readlines():

69 retval.append(line.split()[-1])

70 return retval

71

72 def main() -> None:

73 global domains

74

75 filename = str(mod_path) + os.path.sep + 'surface.log'

76

77 for domain in read(filename):

78 domains[domain] = [0, '', []]

79

80 for domain in domains.keys():

81 threads.append(threading.Thread(target=check_domain, args=(domain, DEBUG,)))

82 threads[-1].start()

83

84 for thread in threads:

85 thread.join()

86

87 # get max length for left just value

88 longest_domain = max(map(lambda x: len(x), [*domains.keys()])) + 1

89 longest_info = max(map(lambda x: len(x), [*zip(*[*domains.values()])][1])) + 1

90

91 # sort dict based on status code

92 domains = dict(sorted(domains.items(), key=lambda x: x[1][0], reverse=True))

93

94 print(

95 'Domain'.ljust(longest_domain),

96 'Code'.ljust(5),

97 'Info'.ljust(longest_info),

98)

99

100 for key, (code, info, ports) in domains.items():

101 print(

102 key.ljust(longest_domain),

103 str(code).ljust(5),

104 info.ljust(longest_info),

105)

46

106

107 if __name__ == '__main__':

108 main()

B.3 Feedback XSS

Used for inserting XSS in the /feedback endpoint. For this we had to extract authentication token
from the mobile application.

1 #!/bin/sh

2

3 ENDPOINT=${endpoint:<Redacted>}

4

5 curl -s -X POST "${ENDPOINT}/feedback" \

6 -H "accept: application/json" \

7 -H "Authorization: <Redacted>" \

8 -H "Content-Type: application/json" \

9 -d '{

10 "application_user":"<Redacted>",

11 "application_version":"2.0.1",

12 "capture_context":"default",

13 "message":"<script>alert("you have been hacked")</script>"

14 }'

B.4 Frida Script For String URL in x86 binary during Runtime

Used to overwrite the API server string in the x86 64 picterus App build. Used in conjucion
withthe frida tool and requires having the frida-gadget or server running on the target device.

Usage: frida -U -f <Process Name> -l alt_inject.js --no-pause

Requires a server to listen to ”http://<device name with server>.local:8080/<middleware to pad
if necessary>” for any endpoints found in the relevant binary.

1 function stringToArrayBuffer(urlString) {

2 // Returns an array-buffer for a given string

3 let buffer = new ArrayBuffer(string.length);

4 let bufferView = new Uint8Array(buffer);

5 for (let i=0, stringLen=urlString.length; i<stringLen; i++) {

6 bufferView[i] = urlString.charCodeAt(i);

7 }

8 return buffer;

9 }

10

11

12 function hook_string(address){

13 console.log("Called")

14 // Needs to have the same amount of chars as the URL-string and listen to your server port

15 var new_server = "http://<device_name>.local:8080/mid"

16 var bytes = stringToArrayBuffer(new_server)

17 Memory.patchCode(address, 34, function (code) {

18 console.log(bytes)

19 var cw = new X86Writer(code, { pc: address });

20 cw.putBytes(bytes);

21 cw.flush();

22 console.log("Code Patched")

47

23 });

24

25 }

26

27

28 function printString()

29 {

30 var m = Process.findModuleByName("libapp.so");

31 var pattern = "<BYTE-ENCODED TARGET-URL>"

32 var res = Memory.scan(m.base, m.size, pattern, {

33 onMatch: function(address, size){

34 console.log('Found at: ' + address.toString());

35 hook_string(address);

36

37 },

38 onError: function(reason){

39 console.log('Error during search');

40 },

41 onComplete: function()

42 {

43 console.log("All done")

44 }

45 });

46 }

47 setTimeout(printString, 1000)

B.5 Google Cloud Project Enumiration

Enumerate permutations and number-padded key-words from a word-list against Google Cloud.
Requires a file with a request-body as stated in the script in order to authenticate your Google
user.

Function getPermutations() is taken from:
https://stackoverflow.com/questions/23305747/javascript-permutation-generator-with-permutation-length-parameter/
23306461#23306461

Usage:

node google_cloud_project_enumeration.js

1 const fetch = require('node-fetch');

2 const readlineCmd = require('readline-sync');

3

4 // A file containing the request body you can get by

5 // signing in to your google account and make a request to

6 // https://console.cloud.google.com/m/project/testesttest

7 const fetch_body = require('./fetch_body.json')

8 const readline = require('readline');

9 const fs = require('fs');

10

11 function readFile(path){

12 var array = fs.readFileSync(path).toString().split("\n");

13 return array

14 }

15

16 function simplePermutate(path){

17 let array = readFile(path)

18 let projectList = []

48

 https://stackoverflow.com/questions/23305747/javascript-permutation-generator-with-permutation-length-parameter/23306461#23306461
 https://stackoverflow.com/questions/23305747/javascript-permutation-generator-with-permutation-length-parameter/23306461#23306461

19

20 for (let index in array){

21 projectList.push("picterus_"+array[index])

22 }

23 return projectList;

24 }

25

26 // Taken from

27 // https://stackoverflow.com/questions/23305747/javascript-permutation-generator-with-permutation-length-parameter/23306461#23306461

28 var getPermutations = function(list, maxLen) {

29 // Copy initial values as arrays

30 var perm = list.map(function(val) {

31 return [val];

32 });

33 // Our permutation generator

34 var generate = function(perm, maxLen, currLen) {

35 // Reached desired length

36 if (currLen === maxLen) {

37 return perm;

38 }

39 // For each existing permutation

40 for (var i = 0, len = perm.length; i < len; i++) {

41 var currPerm = perm.shift();

42 // Create new permutation

43 for (var k = 0; k < list.length; k++) {

44 perm.push(currPerm.concat(list[k]));

45 }

46 }

47 // Recurse

48 return generate(perm, maxLen, currLen + 1);

49 };

50 // Start with size 1 because of initial values

51 return generate(perm, maxLen, 1);

52 };

53

54 function getPossible(permutations, prioritized_keywords){

55 result = []

56 for(index in permutations){

57

58 // Validate that the permutation contains one of the prioritized keywords

59 is_valid = false

60 for (word_index in prioritized_keywords){

61 if (permutations[index].includes(prioritized_keywords[word_index])){

62 is_valid = true

63 break

64 }

65 }

66

67 if(!is_valid){

68 continue

69 }

70

71 // Generate the two valid string-variants

72 let dash_seperated = ""

73 let underscore_seperated = ""

74

75

76 for (item in permutations[index]){

49

77 if (dash_seperated !== ""){

78 dash_seperated += "-"

79 }

80 if (underscore_seperated !== ""){

81 underscore_seperated += "_"

82 }

83 word = permutations[index][item]

84 dash_seperated += word

85 underscore_seperated += word

86 }

87

88 result.push(dash_seperated)

89 result.push(underscore_seperated)

90

91 }

92 return result

93 }

94

95 function getKeywordWithNumbers(keyword){

96 // Check all 5-digit numbers for project

97 number_padded_keywords = []

98 for(let i = 10000; i < 100000; i++){

99 number_padded_keywords.push(keyword+"-"+i)

100 }

101 return number_padded_keywords;

102

103 }

104

105 async function tryProject(project_id){

106

107 let response = await fetch("https://console.cloud.google.com/m/project/" +project_id+"?authuser=0", fetch_body)

108

109 if (response.status === 200 || response.status === 403){

110 return true

111 }else if(response.status === 401){

112 console.log("\n--- REQUEST TOKEN HAS TIMED OUT... ---")

113 let has_update = readlineCmd.question("update fetch_body.json and confirm...");

114 }else{

115 return false

116 }

117

118 }

119

120 async function main(){

121 let line_list = readFile("../dictionaries/picterus_keywords")

122 prioritized_keywords = line_list.slice(0, 1)

123

124 let result = await tryProject("jaundice-webapi")

125 console.log(result)

126 let simpleList = simplePermutate("../dictionaries/picterus_keywords")

127 for (option_index in simpleList){

128 let result = await tryProject(simpleList[option_index])

129 if (result){

130 console.log(simpleList[option_index]+" exists")

131 }else{

132 console.log(simpleList[option_index]+" does not exist")

133 }

134 }

50

135

136 for (index in prioritized_keywords){

137 console.log("\n--- PROCESSING NUMBER-PADDED ---")

138 console.log((prioritized_keywords.length * 90000) + " options\n")

139 possible = getKeywordWithNumbers(prioritized_keywords[index])

140 for (option_index in possible){

141 let result = await tryProject(possible[option_index])

142 if (result){

143 console.log(possible[option_index]+" exists")

144 }else{

145 console.log(possible[option_index]+" does not exist")

146 }

147 }

148

149 }

150

151 permutations = getPermutations(line_list, 2)

152 possible = getPossible(permutations, prioritized_keywords)

153

154 console.log("\n--- PROCESSING PERMUTATIONS ---")

155 console.log(possible.length + " options\n")

156 for (index in possible){

157 let result = await tryProject(possible[index])

158

159 if (result){

160 console.log(possible[index]+" exists")

161 }else{

162 console.log(possible[index]+"does not exists")

163 }

164

165 }

166 }

167

168 main()

B.6 Username:Password-Permutation List Generator Script

Will prompt you to input the types of username and password dicts you want to generate per-
mutations of, as well as ask if you wish to append the full email as well. Will only select passwords
with over 8 characters.

Usage:

python password_list_generator.py

1 import os

2 this_path = os.path.dirname(os.path.abspath(__file__))

3

4 PWD_DICTS_PATH = os.path.join(this_path, "../dictionaries/pwd_lists")

5 USER_NAME_DICTS_PATH = os.path.join(this_path, "../dictionaries")

6

7 def resolve_matching_paths(substring, path):

8 paths = []

9 for subdir, dirs, files in os.walk(path):

10 for filename in files:

11 if substring in filename:

12 filepath = subdir + os.sep + filename

51

13 paths.append(filepath)

14

15 return paths

16

17 def generate_email_credential_pairs(user_substring, pwd_substring, append_mail=False):

18

19 pwd_paths = resolve_matching_paths(pwd_substring, PWD_DICTS_PATH)

20 user_paths = resolve_matching_paths(user_substring, USER_NAME_DICTS_PATH)

21

22 pwds = []

23 usernames = []

24

25 for file_path in pwd_paths:

26 pwds += get_entries_from_file(file_path)

27

28 for file_path in user_paths:

29 usernames += get_entries_from_file(file_path, "usernames")

30

31 username_pwd_pair = []

32 for pwd in pwds:

33 for username in usernames:

34 if append_mail:

35 username = "{}@picterus.com".format(username)

36 if len(pwd) >= 8:

37 username_pwd_pair.append((username, pwd))

38

39 return username_pwd_pair

40

41

42 def get_entries_from_file(path, default_value="password"):

43

44 results = []

45 with open(path, "r") as file:

46 for line in file:

47 if ":" in line:

48 if default_value == "username":

49 results.append(line.split(":")[0].strip())

50 else:

51 results.append(line.split(":")[1].strip())

52 else:

53 results.append(line.strip())

54 return results

55

56

57 if __name__ == "__main__":

58 pwd_list_substring = input(

59 "What password-list do you want to join with? ")

60 username_list_substring = input(

61 "What username-list do you want to join with? ")

62 append_picterus_email = input(

63 "Do you wish to append picterus-email to the usernames? (y/n) ")

64

65 if append_picterus_email == "y":

66 pwd_username_list = generate_email_credential_pairs(

67 username_list_substring,

68 pwd_list_substring,

69 append_mail=True

70)

52

71

72 else:

73 pwd_username_list = generate_email_credential_pairs(

74 username_list_substring,

75 pwd_list_substring,

76)

77

78 with open("generated_pwd_list.txt", "w") as file:

79 for username, password in pwd_username_list:

80 file.write("{}:{}\n".format(username, password))

B.7 Custom Brute Forcing Script

Multi-threaded brute-forcing script with restoration functionality on failure. Optional argument
to use custom username-password dictionary.

python custom_bruteforce.py <custom wordlist>

1 from timeit import default_timer as timer

2 import atexit

3 import threading

4 from threading import Lock

5 import os

6 import sys

7 import requests

8 import json

9

10 PASSWORD_DICT = "generated_pwd_list.txt"

11 GITLAB_LOCATION = "<Redacted>"

12 OUTPUT_LOC = "grafana_output.txt"

13 mutex = Lock()

14 kill_all = False

15

16

17 def get_usernames_and_pwd_from_file(path, drivers):

18

19 restore_state = None

20 if os.path.exists("restore_process.json"):

21 with open("restore_process.json", "r") as file:

22 restore_state = json.load(file)

23

24 user_pwd_pairs = []

25 with open(path, "r") as file:

26 for line in file:

27 if ":" in line:

28 user_pwd = line.strip().split(":")

29 username = user_pwd[0]

30 pwd = user_pwd[1]

31 if len(pwd) >= 8:

32 user_pwd_pairs.append((username, pwd))

33 pairs_with_driver_ref = [[] for x in range(drivers)]

34 pairs_per_driver = int(len(user_pwd_pairs)/drivers)

35 remaining_diff = len(user_pwd_pairs) % drivers

36 driver_index = 0

37 pair_index = 0

38 for username, password in user_pwd_pairs:

39 if pair_index > (driver_index+1)*pairs_per_driver and driver_index != drivers-1:

53

40 driver_index += 1

41

42 pairs_with_driver_ref[driver_index].append((username, password, driver_index))

43

44 pair_index += 1

45

46 restored_list = []

47 if restore_state:

48 for key, pwd_list in enumerate(pairs_with_driver_ref):

49 key_as_str = "{}".format(key)

50 if key_as_str in restore_state:

51 start_index = restore_state[key_as_str]-1

52 else:

53 start_index = 0

54 restored_list.append(pwd_list[start_index:-1])

55 else:

56 restored_list = pairs_with_driver_ref

57 return restored_list

58

59

60 def thread_wrapper(arg_set):

61 thread_start = timer()

62 rate_lim_time = None

63 rate_lim = None

64 time_at_rate_lim = None

65 current_thread_num = None

66 error_counter = 0

67 req_index = 0

68 for username, password, thread_num in arg_set:

69 current_thread_num = thread_num

70 post_body = {"user": username, "password": password}

71 start = timer()

72 try:

73 with requests.post(GITLAB_LOCATION, post_body) as response:

74 end = timer()

75 if response.status_code != 401:

76 print("!!VALID:", username, password, "!!")

77 with open("grafana_result.txt", "a") as file:

78 file.write("{}:{}:{}\n".format(

79 response.status_code,

80 username,

81 password)

82)

83 else:

84 if response.json()["message"] != "Invalid username or password":

85 print(response.json())

86 print("INVALID:", username, password)

87 req_index += 1

88 if end - start >= 1 and not rate_lim and not rate_lim_time:

89 # interpret any delay over 1 sec as a rate-limit

90 # and print for debugging purposes

91 rate_lim_time = timer()

92 rate_lim = req_index

93 time_at_rate_lim = rate_lim_time - thread_start

94 print(time_at_rate_lim, rate_lim)

95 except Exception as e:

96 print(e)

97 error_counter += 1

54

98 # kill thread on 10 errors, state of thread will be backed up

99 if error_counter >= 10 or kill_all:

100 backup_thread_state(req_index, current_thread_num)

101 sys.exit()

102

103

104 def backup_thread_state(pwd_list_index, thread_number):

105 thread_number_str = "{}".format(thread_number)

106 mutex.acquire()

107

108 if not os.path.exists("restore_process.json"):

109 json_body = {

110 thread_number_str: pwd_list_index

111 }

112 with open("restore_process.json", "w") as file:

113 json.dump(json_body, file, indent=4)

114 mutex.release()

115 else:

116 with open("restore_process.json", "r") as file:

117 json_body = json.load(file)

118 json_body[thread_number_str] = pwd_list_index

119 with open("restore_process.json", "w") as file:

120 json.dump(json_body, file, indent=4)

121 mutex.release()

122

123

124 def handle_exit(threads):

125 global kill_all

126 kill_all = True

127

128 for thread in threads:

129 thread.join()

130

131

132 if __name__ == "__main__":

133 arg_list = sys.argv

134 if len(arg_list) > 1:

135 PASSWORD_DICT = arg_list[1]

136 thread_num = 6

137 print("using pwd_dict", PASSWORD_DICT)

138 pairs = get_usernames_and_pwd_from_file(PASSWORD_DICT, thread_num)

139 pair_sum = 0

140 for pair_set in pairs:

141 pair_sum += len(pair_set)

142 print("# pair_set has {} pairs".format(len(pair_set)))

143 print("Total number of tries is {}".format(pair_sum))

144 line_index = 0

145

146 threads = [threading.Thread(

147 target=thread_wrapper,

148 args=([pairs[x]])) for x in range(thread_num)]

149

150 for thread in threads:

151 thread.start()

152

153 atexit.register(handle_exit, threads)

55

C Gant Diagrams

56

Figure 10: Hourly Gantt Chart

57

Figure 11: Daily Gantt Chart

58

TASK NAME START DATE END DATE TEAM MEMBER
PERCENT

COMPLETE
DURATION

(Approx. hour)
ACTUAL END* DAYS OVERDUE*

DAYS
REMAINING*

DAYS SPENT*
DAYS

ALLOCATED*
END WEEK*

HOURS
COMPLETE*

HOURS SPENT*
HOURS

OVERDUE*
HOURS

REMAINING*
START DAY* START HOUR* START WEEK*

Overview and Plannig (Weeks 2 - 4)

Kickoff 1/11/2021 1/11/2021 Both 100% 4 1/11/2021 0 0 1 1 2 4 4 0 0 1/11/2021 0 2

Find client +
recon 1/11/2021 1/15/2021 Both 100% 10 1/21/2021 6 0 5 5 2 10 10 0 0 1/11/2021 0 2

Overview of
project,
templates and
misc 1/12/2021 1/15/2021 Sebastian 100% 7 1/22/2021 7 0 4 4 2 7 14.5 7.5 0 1/12/2021 8 2

Start meeting 1/14/2021 1/14/2021 Both 100% 1 1/14/2021 0 0 1 1 2 1 1 0 0 1/14/2021 24 2

Problem
description v1 1/18/2021 1/22/2021 Both 100% 3 1/22/2021 0 0 5 5 3 3 3 0 0 1/18/2021 56 3

Statement of
work v1 1/18/2021 1/22/2021 Both 100% 10 1/26/2021 4 0 5 5 3 10 17.5 7.5 0 1/18/2021 56 3

System overview and pentestplan (Weeks 4 - 7)

Thesis: write
method 1/18/2021 1/29/2021 Sebastian 100% 16 2/1/2021 3 0 12 12 4 16 10 -6 0 1/18/2021 56 3

Contract, NDA
and SoW
meeting 1/22/2021 1/29/2021 Both 100% 4 1/29/2021 0 0 8 8 4 4 4 0 0 1/22/2021 88 3

Statement of
work v2 1/25/2021 1/29/2021 Both 100% 6 1/29/2021 0 0 5 5 4 6 8 2 0 1/25/2021 112 4

Class activites 1/26/2021 1/27/2021 Both 100% 10 1/27/2021 0 0 2 2 4 10 12 2 0 1/26/2021 120 4

Technical
Report: Threat
Modelling 2/1/2021 2/5/2021 Jakob 100% 16 2/13/2021 8 0 5 5 5 16 16 0 0 2/1/2021 168 5

Recon
Kubernetes 2/1/2021 2/6/2021 Sebastian 100% 23 2/12/2021 6 0 6 6 5 23 23 0 0 2/1/2021 168 5

Recon API 2/2/2021 2/6/2021 Both 100% 23 2/19/2021 13 0 5 5 5 23 22.5 -0.5 0 2/2/2021 176 5

Problem
Statement
Presentation 2/4/2021 2/4/2021 Both 100% 6 2/4/2021 0 0 1 1 5 6 6 0 0 2/4/2021 192 5

Recon Cloud
Storage 2/8/2021 2/12/2021 Sebastian 100% 23 2/23/2021 11 0 5 5 6 23 14 -9 0 2/8/2021 224 6

Recon GitLab
Server 2/8/2021 2/19/2021 Sebastian 100% 23 2/23/2021 4 0 12 12 7 23 23 0 0 2/8/2021 224 6

Recon Metrics
Dashboard 2/8/2021 2/12/2021 Jakob 100% 23 2/23/2021 11 0 5 5 6 23 29.5 6.5 0 2/8/2021 224 6

Recon Cloud
SQL 2/8/2021 2/19/2021 Jakob 100% 23 2/18/2021 -1 0 12 12 7 23 10 -13 0 2/8/2021 224 6

Recon Website 2/8/2021 2/12/2021 Jakob 100% 23 2/19/2021 7 0 5 5 6 23 17.5 -5.5 0 2/8/2021 224 6

Update
Meeting 1 2/19/2021 2/19/2021 Both 100% 1 2/19/2021 0 0 1 1 7 1 1 0 0 2/19/2021 312 7

Relevant theory and some thesis writing (Weeks 8 - 10)

Recon
Password
Dumps 2/17/2021 3/6/2021 Both 100% 25 3/7/2021 1 0 18 18 9 25 52.5 27.5 0 2/17/2021 296 7

Thesis: write
theory 2/22/2021 3/5/2021 Both 100% 30 3/6/2021 1 0 12 12 9 30 36.5 6.5 0 2/22/2021 336 8

Thesis: write
preface 2/22/2021 2/26/2021 Sebastian 100% 5 2/26/2021 0 0 5 5 8 5 3.5 -1.5 0 2/22/2021 336 8

Technical Report: Goals2/22/2021 3/5/2021 Jakob 100% 5 3/5/2021 0 0 12 12 9 5 5 0 0 2/22/2021 336 8

Thesis: write
assignment,
structure and
wordlist 3/1/2021 3/5/2021 Jakob 100% 8 3/5/2021 0 0 5 5 9 8 8 0 0 3/1/2021 392 9

Technical
Report: System
Overview 3/1/2021 3/5/2021 Sebastian 100% 10 3/5/2021 0 0 5 5 9 10 11 1 0 3/1/2021 392 9

Grooming and admin: week 93/5/2021 3/6/2021 Both 100% 3 3/4/2021 -2 0 2 2 9 3 3 0 0 3/5/2021 424 9

Practical testing and consqutive result writing (Weeks 10 - 16)

Exploit Website 3/8/2021 3/20/2021 Jakob 100% 38 3/25/2021 5 0 13 13 11 38 44 6 0 3/8/2021 448 10

Exploit GitLab
Server 3/8/2021 3/20/2021 Sebastian 100% 38 3/16/2021 -4 0 13 13 11 38 38.5 0.5 0 3/8/2021 448 10

Update
Meeting 2 3/11/2021 3/11/2021 Both 100% 1 3/11/2021 0 0 1 1 10 1 1 0 0 3/11/2021 472 10

Grooming and
admin: week 10 3/12/2021 3/13/2021 Both 100% 1.5 3/13/2021 0 0 2 2 10 1.5 1.5 0 0 3/12/2021 480 10

Grooming and
admin: week 11 3/19/2021 3/20/2021 Both 100% 1.5 3/20/2021 0 0 2 2 11 1.5 0.5 -1 0 3/19/2021 536 11

Recon Android
App 3/22/2021 3/24/2021 Both 100% 34 3/25/2021 1 0 3 3 12 34 35.5 1.5 0 3/22/2021 560 12

Exploit Android
App 3/24/2021 4/2/2021 Sebastian 100% 64 4/8/2021 6 0 10 10 13 64 58.5 -5.5 0 3/24/2021 576 12

Grooming and
admin: week 12 3/26/2021 3/27/2021 Both 100% 1.5 3/27/2021 0 0 2 2 12 1.5 0.5 -1 0 3/26/2021 592 12

Exploit API 3/29/2021 4/2/2021 Jakob 100% 50 4/6/2021 4 0 5 5 13 50 53 3 0 3/29/2021 616 13

Grooming and
admin: week 13 4/2/2021 4/3/2021 Both 100% 1.5 4/3/2021 0 0 2 2 13 1.5 1 -0.5 0 4/2/2021 648 13

Exploit Cloud 4/5/2021 4/10/2021 Sebastian 100% 16 4/10/2021 0 0 6 6 14 16 14.5 -1.5 0 4/5/2021 672 14

Exploit Metrics
Dashboard 4/5/2021 4/10/2021 Jakob 100% 34 4/9/2021 -1 0 6 6 14 34 28.5 -5.5 0 4/5/2021 672 14

Update
Meeting 3 4/8/2021 4/8/2021 Both 100% 1 4/8/2021 0 0 1 1 14 1 1 0 0 4/8/2021 696 14

Grooming and
admin: week 14 4/9/2021 4/10/2021 Both 100% 1.5 4/8/2021 -2 0 2 2 14 1.5 1 -0.5 0 4/9/2021 704 14

Exploit
remaining 4/12/2021 4/16/2021 Sebastian 100% 16 4/20/2021 4 0 5 5 15 16 16 0 0 4/12/2021 728 15

Grooming and
admin: week 15 4/16/2021 4/17/2021 Both 100% 1.5 4/17/2021 0 0 2 2 15 1.5 1 -0.5 0 4/16/2021 760 15

Techincal Report and finalization of thesis (Weeks 15 - 20)

Technical
Report: Results,
Vulnerabilites,
Observations 4/12/2021 4/30/2021 Both 100% 68 4/16/2021 -14 0 19 19 17 68 38.5 -29.5 0 4/12/2021 728 15

Technical
Report:
Recommendati
ons 4/12/2021 4/30/2021 Both 100% 20 4/22/2021 -8 0 19 19 17 20 24.5 4.5 0 4/12/2021 728 15

Executive
summary 4/12/2021 4/30/2021 Both 100% 34 4/22/2021 -8 0 19 19 17 34 15 -19 0 4/12/2021 728 15

Thesis: Correct
Old 4/12/2021 4/30/2021 Both 100% 32 4/28/2021 -2 0 19 19 17 32 29.5 -2.5 0 4/12/2021 728 15

Thesis: First
draft 4/21/2021 5/4/2021 Both 100% 100 5/5/2021 1 0 14 14 18 100 96 -4 0 4/21/2021 800 16

Grooming and
admin: week16 4/23/2021 4/24/2021 Both 100% 1.5 4/24/2021 0 0 2 2 16 1.5 0.5 -1 0 4/23/2021 816 16

Update
Meeting 4 4/26/2021 4/26/2021 Both 100% 1 4/26/2021 0 0 1 1 17 1 1 0 0 4/26/2021 840 17

Review
Technical
Report 4/27/2021 5/4/2021 Both 100% 8 4/26/2021 -8 0 8 8 18 8 1 -7 0 4/27/2021 848 17

Grooming and
admin: week 17 4/30/2021 5/1/2021 Both 100% 1.5 4/27/2021 -4 0 2 2 17 1.5 1 -0.5 0 4/30/2021 872 17

Grooming and
admin: week 18 5/7/2021 5/8/2021 Both 100% 1.5 5/8/2021 0 0 2 2 18 1.5 1.5 0 0 5/7/2021 928 18

Make Technical
Report
Presentation 5/3/2021 5/10/2021 Both 100% 25 5/11/2021 1 0 8 8 19 25 37.5 12.5 0 5/3/2021 896 18

Present Thesis 5/11/2021 5/11/2021 Both 100% 2 5/11/2021 0 0 1 1 19 2 2 0 0 5/11/2021 960 19

Review
appendices and
admin 5/5/2021 5/14/2021 Both 100% 16 5/14/2021 0 0 10 10 19 16 22.5 6.5 0 5/5/2021 912 18

Thesis: Second
draft 5/5/2021 5/15/2021 Both 100% 54 5/15/2021 0 0 11 11 19 54 56.5 2.5 0 5/5/2021 912 18

Grooming and
admin: week 19 5/14/2021 5/15/2021 Both 100% 1.5 5/15/2021 0 0 2 2 19 1.5 0.5 -1 0 5/14/2021 984 19

Review Thesis 5/13/2021 5/20/2021 Both 100% 20 5/20/2021 0 0 8 8 20 20 10 -10 0 5/13/2021 976 19

COMPLETION 1/11/2021 5/20/2021 99.95% 1000 0.065 129.935 130 20 1028 999.5 0 -28 2

D Status Reports and Time Sheets

62

Sebastian Ikin and Jakob Madsen
TDAT3001

Project Status Summary for bachelor-project 11, week 19 2021
Trondheim, 15.05.2021

This summary contains the key take-aways for all project-reports produced during the
bachelor-project. For more details on the individual weeks, please refer to the relevant
reports.

Hours Worked Per Week:
Number of hours worked per week for a given team-member throughout the project.
Week Sebastian Jakob Sum

2 13 9 22

3 13.25 16.25 29.5

4 16.5 13 29.5

5 25 20 45

6 33 43 76

7 15 21.5 36.5

8 38 34 72

9 23.5 31 54.5

10 30.5 29 59.5

11 23.5 5 28.5

12 34 19 53

13 35 43 78

14 28 42 70

15 34 30.5 64.5

16 32.5 31 63.5

17 31 37.5 68.5

18 32 36 68

19 35 36 71

Hours Worked Assigned on Gantt and Worked Total:
The total number of hours worked vs the hours assigned. Tickets where both are assigned are
split 50/50 for the allocation estimation, and this may not always be fully representative of
the labour-division for the given ticket.

Sebastian Ikin and Jakob Madsen
TDAT3001

Stats Hours worked Hours Allocated

Jakob 497 494

Sebastian 493 513

Totalt 990 1006

Hours Spent and Allocated Per Phase
The number of absolute hours spent per phase vs number of hours assigned for estimation.
Phase Hours Worked Hours allocated

Overview and Planning 50 35

System overview and pentestplan (Recon) 196.5 220

Relevant theory and some thesis writing 119.5 86

Practical testing and consecutive result writing (Exploit) 296 301

Technical Report and finalization of thesis 327.5 386

Percentage of Tickets Allocated Per Person
The absolute percentage of tickets assigned to a given team-member. Keep in mind that this is
not a measurement of the time each of those tickets took, but just the number of them.

Sebastian Ikin and Jakob Madsen
TDAT3001

Weekly Statuses

● Economy is a measure of how many hours used for a given week.
● Results indicating the number of unfinished tickets for a given week.
● Cooperation the difference in hours worked for both team members in the given week.
● Calendar Time is a measure of the status of all the tickets behind schedule.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Economy

Results

Cooperation

Calendar Time
(Green is better, red is worse)

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 2 2021
Trondheim, 16.01.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Kickoff 2 2 4 4

Find client + recon 3 5.5 8.5 8.5

Overview of project, templates and misc 7.5 1 8.5 8.5

Start meeting 0.5 0.5 1 1

Week Sebastian Week Jakob Totals Week Totals Project

SUM 13 9 22 22

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Kickoff, Overview of project, templates and misc, Start meeting

Tasks next week Problem description, Statement of work

Tasks left from week Find client + recon

Problems Hitting a bottleneck due to lack of client. Several have been contacted and
showed interest.

Solutions Following up leads and being patient, it is a matter of waiting for potential
clients to respond to our offer.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 3 2021
Trondheim, 18.01.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Statement of work v1 3 7 10 13

Thesis: write method 4 0 4 4

Find client + recon 0.75 0.75 1.5 10

Contract, NDA and SoW meeting 1 1 2 2

Overview of project, templates and misc 3 3 6 14.5

Week Sebastian Week Jakob Totals Week Totals Project

SUM 11.75 11.75 23.5 48.5

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Find client + recon, Overview of project, templates and misc

Tasks next week Statement of work v2, Recon, pentestplan v1

Tasks left from week Problem description v1, Statement of work v1

Problems Most tickets assigned for this week have not been finished due to them being
dependent on us having a client, which we didn’t have until Thursday. The
tickets are however close to being finished.

Solutions The ticket causing the bottleneck has been dealt with and as such there is no
need to make any direct mitigations.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 4 2021
Trondheim, 29.01.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Statement of work v1 2.5 2 4.5 17.5

Class activites 6 6 12 12

Statement of work v2 4 4 8 8

Thesis: write method 3 0 3 7

Contract, NDA and SoW meeting 1 1 2 4

Week Sebastian Week Jakob Totals Week Totals Project

SUM 16.5 13 29.5 78

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Statement of work v1, Class activites, Statement of work v2, Contract,
NDA and SoW meeting

Tasks next week Recon Kubernetes, Recon Metrics Dashboard, Recon Cloud SQL,
Recon Website, Problem Statement Presentation

Tasks left from week Thesis: write method

Problems a bit behind on method writing due to Statement of work taking priority.

Solutions Write parts of method relevant for Recon tickets early next week.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 5 2021
Trondheim, 29.01.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Thesis: write method 3 0 3 10

Problem Statement Presentation 3 3 6 6

Recon Kubernetes 8.5 0 8.5 8.5

Recon API 8.5 9 17.5 17.5

Technical Report: Threat Modelling 2 8 10 10

Week Sebastian Week Jakob Totals Week Totals Project

SUM 25 20 45 123

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Thesis: write method, Problem Statement Presentation

Tasks next week Recon Cloud Storage, Recon GitLab Server, Recon Metrics Dashboard,
Recon Cloud SQL, Recon Website

Tasks left from week Technical Report: Threat Modelling, Recon API, Recon Kubernetes

Problems A bit behind on the amount of hours for recon.

Solutions Worst case scenario is to have a combined approach to exploits and recon,
as some recon/exploits will be more obvious as we are actively exploiting.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 6 2021
Trondheim, 14.02.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Recon Kubernetes 14.5 0 14.5 23

Recon Cloud Storage 6 0 6 6

Recon GitLab Server 10.5 0 10.5 10.5

Recon API 2 0 2 19.5

Technical Report: Threat Modelling 0 6 6 16

Recon Metrics Dashboard 0 15.5 15.5 15.5

Recon Website 0 13.5 13.5 13.5

Recon Cloud SQL 0 8 8 8

Week Sebastian Week Jakob Totals Week Totals Project

SUM 33 43 76 199

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Recon Kubernetes, Technical Report: Threat Modelling

Tasks next week Recon GitLab Server, Recon Cloud SQL

Tasks left from week Recon API, Recon Cloud Storage, Recon Metrics Dashboard, Recon
Website

Problems Cooperation is yellow due to difference in hours, results and calendar time are
in the yellow due to us being behind on several tickets.

Solutions Although the difference in hours looks bad, the total hours spent across the
project are equal for both Jakob and Sebastian. Calendar time is due to us
underestimating the recon tickets, and being unable to work more hours this
week, due to another class. Results are behind for the same reason. To
mitigate, we will reestimate the relevant tickets and accounting for hours
available each week. This problem will solve itself mid-march as we only have
the thesis left.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 7 2021
Trondheim, 21.02.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Recon GitLab Server 8.5 0 8.5 19

Recon Cloud Storage 3 0 3 9

Recon API 3 0 3 22.5

Update Meeting 1 0.5 0.5 1 1

Recon Website 0 11 11 24.5

Recon Metrics Dashboard 0 9 9 14.5

Recon Cloud SQL 0 2 2 10

Week Sebastian Week Jakob Totals Week Totals Project

SUM 15 22.5 37.5 236.5

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Update Meeting 1

Tasks next week Research relevant theory, Thesis: write theory, Thesis: write preface,
Thesis: write assignment, Technical Report: System Overview, Technical
Report: Goals

Tasks left from week Recon API, Recon Cloud Storage, Recon GitLab Server

Problems Calendar time is still yellow due to being somewhat behind on recon, There
are still many tasks left. Some discrepancy in available time worked due to
Innovation project in different subject.

Solutions Although it might look like much, the remaining tickets only have a little bit of
work left (5%-20%), so it may not be ideal, but is not critical as of yet. Results
are in the green due to us achieving more than expected despite only being
able to dedicate half of this week towards the bachelor.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 8 2021
Trondheim, 28.02.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Thesis: write theory 17.5 4 21.5 21.5

Recon GitLab Server 4 0 4 23

Recon Cloud Storage 5 0 5 14

Thesis: write preface 3.5 0 3.5 3.5

Recon Password Dumps 8 20 28 34

Recon Metrics Dashboard 0 5 5 29.5

Thesis: write assignment, structure
and wordlist 0 4 4 4

Technical Report: Goals 0 1 1 1

Week Sebastian Week Jakob Totals Week Totals Project

SUM 38 34 72 307.5

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Recon GitLab Server, Recon Cloud Storage, Thesis: write preface,
Recon Metrics Dashboard

Tasks next week Thesis: write assignment, structure and wordlist, Technical Report:
System Overview, Thesis: write theory

Tasks left from week Recon Password Dumps, Technical Report: Goals

Problems The password-dump investigation is a task we decided to add as it’s own
ticket, due to the time and scripts required to do it properly. Due to
Password-dumps taking priority, the Goals part of the technical report is not
finished.

Solutions This currently sit’s at 85% completion as they are currently being searched
through by a script, once done, we can close the ticket.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 9 2021
Trondheim, 07.03.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Technical Report: System
Overview 11 0 11 11

Thesis: write theory 5 10 15 36.5

Recon Password Dumps 3.5 14 17.5 51.5

Grooming and admin: week 9 2 1 3 3

Thesis: write assignment, structure
and wordlist 1 3 4 8

Technical Report: Goals 1 3 4 5

Week Sebastian Week Jakob Totals Week Totals Project

SUM 23.5 31 54.5 362

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Technical Report: System Overview, Thesis: write theory, Recon
Password Dumps, Grooming and admin: week 9, Thesis: write
assignment, structure and wordlist, Technical Report: Goals

Tasks next week Exploit Website, Exploit GitLab Server, Grooming and admin: week 10

Tasks left from week

Problems Some discrepancy in cooperation due to reading for exams. Lots of misses on
end dates for tickets over the past few weeks. Password dumps research took
twice as long as estimated.

Solutions The discrepancy in hours due to exams will even out over the next couple of
weeks. Introduced weekly grooming sessions to mitigate unrealistic time
estimations.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 10 2021
Trondheim, 14.03.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Exploit GitLab Server 29 0 29 29

Update Meeting 2 0.5 0.5 1 1

Grooming and admin: week 10 1 0.5 1.5 1.5

Exploit Website 0 27 27 27

Recon Password Dumps 0 1 1 52.5

Week Sebastian Week Jakob Totals Week Totals Project

SUM 30.5 29 59.5 421.5

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Update Meeting 2, Grooming and admin: week 10, Recon Password
Dumps

Tasks next week Grooming and admin: week 11, Exploit Website, Exploit GitLab Server

Tasks left from week

Problems Currently no pressing problems, moving along nicely. Possibly less hours next
week due to exams.

Solutions

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 11 2021
Trondheim, 21.03.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Exploit GitLab Server 9.5 0 9.5 38.5

Recon Android App 13.5 0 13.5 13.5

Grooming and admin: week 11 0.5 0 0.5 0.5

Exploit Website 0 5 5 32

Week Sebastian Week Jakob Totals Week Totals Project

SUM 23.5 5 28.5 450

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Exploit GitLab Server, Grooming and admin: week 11

Tasks next week Recon Android App, Exploit Android App, Grooming and admin: week
12

Tasks left from week Exploit Website

Problems Disconnect in cooperation and number of hours worked caused by exams,
this will even out now that bachelor tasks are all that are left.

Solutions

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 12 2021
Trondheim, 28.03.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Recon Android App 19 3 22 35.5

Exploit Android App 14.5 4 18.5 18.5

Grooming and admin: week 12 0.5 0 0.5 0.5

Exploit Website 0 12 12 44

Week Sebastian Week Jakob Totals Week Totals Project

SUM 34 19 53 503

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Recon Android App, Grooming and admin: week 12, Exploit Website

Tasks next week Exploit API, Grooming and admin: week 13, Exploit Android App

Tasks left from week Exploit Android App

Problems Disconnect in cooperation due to upcoming easter holidays. App exploitation
taking longer than expected.

Solutions Cooperation will even out when holiday is over, expanded App-exploitation
time into next week.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 13 2021
Trondheim, 04.04.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Exploit Android App 34 0 34 52.5

Grooming and admin: week 13 1 0 1 1

Exploit API 0 43 43 43

Week Sebastian Week Jakob Totals Week Totals Project

SUM 35 43 78 581

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Grooming and admin: week 13

Tasks next week Exploit Cloud, Exploit Metrics Dashboard, Grooming and admin: week
14

Tasks left from week Exploit Android App, Exploit API

Problems Disconnect in cooperation due to catching up from last week. Found a couple
of interesting opportunities in current tickets, as such, neither have been listed
as done.

Solutions Cooperation will even out, might need to assign more time to current tickets.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 14 2021
Trondheim, 11.04.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Exploit Android App 6 0 6 58.5

Exploit Cloud 14.5 0 14.5 14.5

Exploit Metrics Dashboard 5 23.5 28.5 28.5

Update Meeting 3 0.5 0.5 1 1

Grooming and admin: week 14 1 0 1 1

Exploit remaining 1 0 1 1

Exploit API 0 10 10 53

Technical Report: Results, Vulnerabilites,
Observations 0 8 8 8

Week Sebastian Week Jakob Totals Week Totals Project

SUM 28 42 70 654

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Exploit Android App, Exploit Cloud, Exploit Metrics Dashboard, Update
Meeting 3, Grooming and admin: week 14, Exploit remaining, Exploit API

Tasks next week Exploit remaining, Grooming and admin: week 15, Technical Report:
Results, Vulnerabilites, Observations, Technical Report:
Recommendations, Executive summary

Tasks left from week

Problems Major disconnect in hours worked due to Sebastian being sick Monday, and
hours still being caught up from easter. Total hours worked by both are now
the same.

Solutions As described above this is really not a problem this time around, but know that
it’s there.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 15 2021
Trondheim, 18.04.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Exploit remaining 10.5 0 10.5 11.5

Technical Report: Recommendations 22.5 0 22.5 22.5

Grooming and admin: week 15 1 0 1 1

Technical Report: Results, Vulnerabilites,
Observations 0 30.5 30.5 38.5

Week Sebastian Week Jakob Totals Week Totals Project

SUM 34 30.5 64.5 718.5

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Grooming and admin: week 15

Tasks next week Grooming and admin: week16, Update Meeting 4, Technical Report:
Results, Vulnerabilites, Observations, Technical Report:
Recommendations, Executive summary

Tasks left from week Exploit remaining

Problems A few minor things remaining on Exploit Remaining.

Solutions Finish investigating next week, generally we are doing well in terms of time.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 16 2021
Trondheim, 25.04.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Executive summary 9 6 15 15

Exploit remaining 4.5 0 4.5 16

Thesis: Correct Old 11 10 21 21

Technical Report: Recommendations 2 0 2 24.5

Thesis: write results 5.5 15 20.5 20.5

Grooming and admin: week16 0.5 0 0.5 0.5

Week Sebastian Week Jakob Totals Week Totals Project

SUM 32.5 31 63.5 782

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Exploit remaining, Thesis: Correct Old, Grooming and admin: week16

Tasks next week Update Meeting 4, Grooming and admin: week 17, Technical Report:
Results, Vulnerabilites, Observations, Technical Report:
Recommendations, Executive summary, Thesis: write results

Tasks left from week

Problems Had to move finishing technical report and executive summary one week
ahead for some feedback.

Solutions Start writing thesis-results in the meantime.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 17 2021
Trondheim, 02.05.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Thesis: Correct Old 5.5 3 8.5 29.5

Thesis: First draft 24 33 57 77.5

Update Meeting 4 0.5 0.5 1 1

Grooming and admin: week 17 1 0 1 1

Review Technical Report 0 1 1 1

Week Sebastian Week Jakob Totals Week Totals Project

SUM 31 37.5 68.5 850.5

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Thesis: Correct Old, Update Meeting 4, Grooming and admin: week 17,
Review Technical Report

Tasks next week Make Technical Report Presentation, Thesis: Second draft, Review
appendices and admin, Grooming and admin: week 18, Thesis: First
draft

Tasks left from week

Problems Minor disconnect in cooperation due to catch up in terms of total hours.

Solutions Will correct itself.

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 18 2021
Trondheim, 09.05.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Thesis: First draft 12.5 6 18.5 96

Make Technical Report Presentation 9.5 23 32.5 32.5

Thesis: Second draft 6 5 11 11

Review appendices and admin 2.5 2 4.5 4.5

Grooming and admin: week 18 1.5 0 1.5 1.5

Week Sebastian Week Jakob Totals Week Totals Project

SUM 32 36 68 918.5

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Thesis: First draft, Make Technical Report Presentation, Grooming and
admin: week 18

Tasks next week Review Thesis, Present Thesis, Grooming and admin: week 19, Thesis:
Second draft, Review appendices and admin

Tasks left from week

Problems

Solutions

Sebastian Ikin and Jakob Madsen
TDAT3001

Status-report for bachelor-project 11, week 19 2021
Trondheim, 15.05.2021

Activity Sebastian Jakob SUM Week SUM TOTAL

Thesis: Second draft 26.5 19 45.5 56.5

Review appendices and admin 7 11 18 22.5

Present Thesis 1 1 2 2

Grooming and admin: week 19 0.5 0 0.5 0.5

Make Technical Report Presentation 0 5 5 37.5

Week Sebastian Week Jakob Totals Week Totals Project

SUM 35 36 71 989.5

* Green is ok, yellow is danger and red is critical, colors are presented as a range.
Economy Results Cooperation Calendar time

Project status

Done Thesis: Second draft, Review appendices and admin, Present Thesis,
Grooming and admin: week 19, Make Technical Report Presentation

Tasks next week Review Thesis

Tasks left from week

Problems Not a problem per se, but an important note. One ticket remains, and we have
decided a full documentation-freeze in order to have all the appendixes for the
thesis ready.

Solutions The final ticket review thesis is what we will be spending the rest of our time
doing.

E Meeting Notices and Minutes

84

Notice for bachelor-meeting project 11, 1/2021 Trondheim,
12.01.2021

Meeting notice goes to:
Jakob Madsen, Sebastian Ikin and Donn Morrison

Time and place: Thursday ​14.01.2021​ ​10.00 – 11.00​. ​Digital meeting on Zoom.
Referent: ​Sebastian Ikin

Agenda:

There will be no pauses and serving during the meeting.

Get in touch with Sebastian (sebastai@stud.ntnu.no / tlf 472 66 380) if you are unable to
attend.

Welcome!

Sebastian Ikin

Case-nr. Case Time Responsible
1/2021

2/2021

3/2021

4/2021

Go through the task

Suggested work-plan

Establishment of responsibilities

Guidelines for evaluation

20 min

10 min

5 min

10 min

Sebastian

Sebastian

Jakob

Jakob

5/2021 Relevant parts of project
handbook

10 min Jakob

6/2021 Approval of minute and misc 5 min Sebastian

Minute for bachelor-meeting project 11, 1/2021 Trondheim,
14.01.2021

Attendees:
Jakob Madsen, Sebastian Ikin and Donn Morrison

Meeting took place on Thursday ​14.01.2021​ ​10.00 – 11.00​. ​Digital meeting on Zoom.
Referent: ​Sebastian Ikin

Case-nr Resolution

1/2021 Donn offered to ask some companies for opportunities for pentesting
and suggested testing routers/IoT devices.
Should find a client before the end of next week.
Setup a workflow with a virtual machine.
Divide pentestplan: reconnaissance, attack phase, write up, feedback to
client.

2/2021 Current work plan looks good and will be updated once the plan is
discussed with the client.

3/2021 We will talk directly with the client.
There will be a meeting with the client to discuss the systems we will
test.

4/2021 Focus on writing a clean rapport and relevant documentation.
Clear presentation of results and thorough methodology.

5/2021 We will stick to the project handbook.

6/2021 Minute approved, Signal chosen as informal line of communication.

Notice for bachelor-meeting project 11, 2/2021 Trondheim,
20.01.2021

Meeting notice goes to:
Roald Fernandez, Sigbjørn Kjensmo, Donn Morrison, Jakob Madsen and Sebastian Ikin

Time and place: Thursday ​21.01.2021​ ​13.30 – 14.15​. ​Digital meeting on Google Meet.
Referent: ​Sebastian Ikin

Agenda:

There will be no pauses and serving during the meeting.

Get in touch with Sebastian (sebastai@stud.ntnu.no / tlf 472 66 380) if you are unable to
attend.

Welcome!

Case-nr. Case Time Responsible
7/2021

8/2021

9/2021

10/2021

11/2021

12/2021

General info

Available infrastructure and
scope of testing
Limitations on destructive
attacks
Procedure for reporting exploits

Disclosure and deliveries

Next steps

5 min

15 min

5 min

5 min

5 min

5 min

Jakob

Jakob

Jakob

Jakob

Jakob

Jakob

13/2021 Approval of minute and misc 5 min Sebastian

Minute for bachelor-meeting project 11, 2/2021 Trondheim,
21.01.2021

Attendees:
Roald Fernandez, Sigbjørn Kjensmo, Donn Morrison, Jakob Madsen and Sebastian Ikin

Meeting took place on Thursday 21.01.2021 13.30 – 14.15. Digital meeting on Google
Meet.
Referent: Sebastian Ikin

Case-nr Resolution

7/2021 Picterus informed about pentest-project, dates and hours allocated. Roald
works with infrastructure, Sigbjørn software + infrastructure. App uses ML
for detection of Jaundice based on skin-color.

8/2021 App security has been tested before. They have a web server with a public
api which sends userkey for data. Picterus prefers focus on weaknesses in
the api. Servers run on a Kubernetes Cluster and Gitlab server is used for
deployments to kubernetes security and VC. A Metrics dashboard also runs
on the Kubernetes cluster. Wordpress web-server also on cluster. Other
backend on cloud sql, and google cloud storage. Everything on Google
Cloud. Most critical is image access. No Image metadata in new app. We are
welcome to play with the Staging cluster. Possibly test early prototype of
new app if time, should be finished in early march.

9/2021 Check with Picterus on a situational basis, we will get a list. Do not breach
Google!

10/2021 Alert on testing certain features for metrics sake. Setup proper
communications-line after NDA signed

11/2021 Picterus will draft NDA, Picterus informed about final report.

12/2021 Draft document for scope, agreement on a time to start. Statement of work.
New meeting soon for Statement of work signing.

13/2021 No misc.

Notice for bachelor-meeting project 11, 3/2021 Trondheim,
28.01.2021

Meeting notice goes to:
Roald Fernandez, Sigbjørn Kjensmo, Jakob Madsen and Sebastian Ikin

Time and place: Friday ​28.01.2021​ ​9:30-9:50​. ​Digital meeting on Google Meet.
Referent: Jakob Madsen

Agenda:

There will be no pauses and serving during the meeting.

Get in touch with Sebastian (​sebastai@stud.ntnu.no​ / tlf 472 66 380) or jakob
(​jakoblm@stud.ntnu.no​ / tlf 92694433) if you are unable to attend.

Welcome!

Case-nr. Case Time Responsible
14/2021

15/2021

Statement of work

Bachelor contract

10 min

10 min

Sebastian

Sebastian

Minute for bachelor-meeting project 11, 3/2021 Trondheim,
29.01.2021

Attendees:
Roald Fernandez, Sigbjørn Kjensmo, Jakob Madsen and Sebastian Ikin

Meeting took place on Friday 29.01.2021 9:30-9:50. Digital meeting on Google Meet.
Referent: Jakob Madsen

Case-nr Resolution

14/2021 Picterus wants their website (picterus.com) added to the scope.
Final draft will be sent to all parties when the necessary changes are made.
Gathering of intelligence will start after both contracts are signed.

15/2021 The bachelor will not be public for 3 years.

Notice for bachelor-meeting project 11, 4/2021 Trondheim,
19.02.2021

Meeting notice goes to:
Donn Morrison, Jakob Madsen and Sebastian Ikin

Time and place: Friday ​19.02.2021​ ​13:00-13:30​. ​Digital meeting on Zoom.
Referent: Sebastian

Agenda:

There will be no pauses and serving during the meeting.

Get in touch with Sebastian (​sebastai@stud.ntnu.no​ / tlf 472 66 380) or jakob
(​jakoblm@stud.ntnu.no​ / tlf 92694433) if you are unable to attend.

Welcome!

Case-nr. Case Time Responsible
16/2021

17/2021

18/2021

Current State of Project

Current Challenges

Found Targets

10 min

10 min

10 min

Jakob

Jakob

Jakob

Minute for bachelor-meeting project 11, 4/2021 Trondheim,
19.02.2021

Attendees:
Donn Morrison, Jakob Madsen and Sebastian Ikin

Meeting took place on Friday 19.02.2021 13:00-13:30. Digital meeting on Zoom
Referent: Sebastian Ikin

Case-nr Resolution

16/2021 Innovation camp slowed the project down, worked 211 hours total, lots of
research has been done and we need to do more. Basic workflow of their
API has been found.

17/2021 Finding unpatched weak points. Look into asset-finder. Ask for the App
again, look for a token. Subdomain Scan with asset finder, AMASS (zap).
Look for password-dumps. Collections, comb-breach dump. Credential
stuffing. Reverse proxies for the webserver (see smuggling and
cache-poisoning), see James Kettle, use smuggler tool (see github, needs
post-endpoint) is possible. GitLab images is a long-shot, try sending a
packet from ntnu..?
Find something: document enough for reproduction. For pass; document
what tests you used.

18/2021 Basic auth could be anything, gitlab can be brute forced.

Notice for bachelor-meeting project 11, 5/2021 Trondheim,
11.03.2021

Meeting notice goes to:
Donn Morrison, Jakob Madsen and Sebastian Ikin

Time and place: Thursday 11.03.2021 13:00-13:30. Digital meeting on Zoom.
Referent: Jakob Madsen

Agenda:
Case-nr. Case Time Responsible
19/2021

20/2021

21/2021

Project State and Plan Forward

Passwords Dump Results

App Exploitation

10 min

10 min

10 min

Sebastian

Sebastian

Sebastian

There will be no pauses and serving during the meeting.

Get in touch with Sebastian (sebastai@stud.ntnu.no / tlf 472 66 380) or jakob
(jakoblm@stud.ntnu.no / tlf 92694433) if you are unable to attend.

Welcome!

Minute for bachelor-meeting project 11, 5/2021 Trondheim,
11.03.2021

Attendees:
Donn Morrison, Jakob Madsen and Sebastian Ikin

Meeting took place on Friday 11.03.2021 13:00-13:30. Digital meeting on Zoom
Referent: Jakob Madsen

Case-nr Resolution

19/2021 We are focusing on the Owasp checklist and pursuing vectors which look
promising. Donn recommended checking if subdomain takeover is possible.
Check Subdomain with blind SSRF. Donn gave us clues as to which version
the Gitlab instance might be running.

20/2021 We found 2 passwords belonging to a board member. Invited Donn to the
Gitlab repo which contains results.

21/2021 We are getting access to the app today (thursday 11.03). Check the apk for
URLs and keys with APLleaks.

Notice for bachelor-meeting project 11, 6/2021 Trondheim,
06.04.2021

Meeting notice goes to:
Donn Morrison, Jakob Madsen and Sebastian Ikin

Time and place: Thursday 08.04.2021 13:00-13:30. Digital meeting on Zoom.
Referent: Sebastian Ikin

Agenda:
Case-nr. Case Time Responsible
22/2021

23/2021

24/2021

App Exploit Results

API Exploit Results

Structure of Technical Report

10 min

10 min

10 min

Sebastian

Jakob

Jakob

There will be no pauses and serving during the meeting.

Get in touch with Sebastian (sebastai@stud.ntnu.no / tlf 472 66 380) or jakob
(jakoblm@stud.ntnu.no / tlf 92694433) if you are unable to attend.

Welcome!

Minute for bachelor-meeting project 11, 6/2021 Trondheim,
08.04.2021

Attendees:
Donn Morrison, Jakob Madsen and Sebastian Ikin

Meeting took place on Friday 08.04.2021 13:30-14:00. Digital meeting on Zoom
Referent: Sebastian Ikin

Case-nr Resolution

22/2021 We can capture the traffic now, found the auth-token, most OWASP mobile
tests carried out as a result.

23/2021 Failed attacks:
● HTTP smuggling
● Cache poisoning
● Flaws in business logic

XSS injection in /child and /feedback waiting to be triggered.

API crashes on strings larger than 45 characters in endpoint /child and
parameter "ethnicity_father". This can be used to coordinate a Denial of
Service attack.

Recommendations from Donn:
https://github.com/terorie/cve-2021-3449
https://github.com/irsl/CVE-2020-1967

24/2021 About two weeks each for technical report and thesis is recommended by
Donn. Clear date for first draft of technical report.

Notice for bachelor-meeting project 11, 7/2021 Trondheim,
22.04.2021

Meeting notice goes to:
Donn Morrison, Jakob Madsen and Sebastian Ikin

Time and place: Thursday 26.04.2021 10:00-10:30. Digital meeting on Zoom.
Referent: Jakob Madsen

Agenda:
Case-nr. Case Time Responsible
25/2021

26/2021

27/2021

Technical Report Feedback

Questions regarding theory and
method
Questions about results and
discussion

10 min

10 min

10 min

Sebastian

Sebastian

Jakob

There will be no pauses and serving during the meeting.

Get in touch with Sebastian (sebastai@stud.ntnu.no / tlf 472 66 380) or jakob
(jakoblm@stud.ntnu.no / tlf 92694433) if you are unable to attend.

Welcome!

Minute for bachelor-meeting project 11, 7/2021 Trondheim,
26.04.2021

Attendees:
Donn Morrison, Jakob Madsen and Sebastian Ikin

Meeting took place on Friday 26.04.2021 10:00-10:30 11:15-11:45. Digital meeting on
Zoom
Referent: Jakob Madsen

Case-nr Resolution

25/2021 Technical report: Looks good, some comments:
● Mention theft of assets and IP.
● Double check subdomains, especially API.
● page 28: mention why Donn was searched for in passwords.

Summary:
● Fix capitalization

Let Picteruses's security deal with leaked passwords.
(credential stuffing)

26/2021 Method:
● Referring to specific documentation is fine.
● Covering specifics of standard to illustrate our differences is also

fine.

27/2021 Results:
● How we worked together
● PTES + Agile
● Include failed tests, mention high success in test coverage
● Mentioned custom attacks that failed

○ include scripts in appendix
● Don’t include evidence in thesis
● Include delivery of results to Picterus
● Cover OWASP vulnerabilities in general terms
● Include CVEs where possible

Notice for bachelor-meeting project 11, 8/2021 Trondheim,
30.04.2021

Meeting notice goes to:
Donn Morrison, Roald Fernandez, Sigbjørn Kjensmo, Gunnar Vartdal, Jakob Madsen and
Sebastian Ikin

Time and place: Tuesday 11.05.2021 15:00-15:50. Digital meeting (link coming).

Agenda:
Case-nr. Case Time Responsible
28/2021

29/2021

30/2021

Present bachelor

Present Technical report and
Executive summary

Questions

30 min

10 min

10 min

Sebastian

Sebastian

Jakob

There will be no pauses and serving during the meeting.

Get in touch with Sebastian (sebastai@stud.ntnu.no / tlf 472 66 380) or jakob
(jakoblm@stud.ntnu.no / tlf 92694433) if you are unable to attend.

Welcome!

Minute for bachelor-meeting project 11, 8/2021 Trondheim,
11.05.2021

Attendees:
Donn Morrison, Roald Fernandez, Sigbjørn Kjensmo, Gunnar Vartdal, Jakob Madsen and
Sebastian Ikin

Meeting took place on Tuesday 11.05.2021 15:00-15:50. Digital meeting on Google Meet
Referent: Jakob Madsen

Case-nr Resolution

28/2021 We showed Picterus a video presentation of our bachelor thesis.
There were some questions regarding the assumption of 500 HTTP error
codes, whether these meant that the server crashed or not, as they were used
where normally one would use 4xx codes.

29/2021 Sebastian gave a quick overview of the Technical report and Executive
summary. He also gave summaries of the issues found and our
recommendations.

30/2021 There were no questions other than the question mentioned above.
After the meeting Picterus was sent the products together with the issue
specific documentation.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jakob Lønnerød Madsen,
Sebastian Anthony Ikin

Agile Security Audit of Picterus

Bachelor’s project in Computer Science
Supervisor: Donn Morrison

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	List of Figures
	List of Tables
	Introduction
	Acoronyms and Abberations
	Problem Statement
	Assignment
	Thesis Structure

	Theory
	Picterus
	Agile and Lean Development
	Ethical Hacking
	Types of Hacking
	CVDs, CVEs and Vulnerability Databases
	Black Box Testing

	Web Authentication Security Features
	The Cloud
	Security Challenges
	Containerization
	IAM Polices
	VPCs and Cloud Firewalls
	Cloud Storage

	OSINT
	Digital footprint and privacy
	The Dark Web

	Common Attacks Used
	Brute-Forcing
	XSS injection
	SQL injection
	HTTP Smuggling

	Android Application Structure and Security
	Native Code and the DVM
	Reverse Engineering of Mobile Applications
	Instrumentation

	Method and Technologies
	Technologies
	Project Workflow
	Basic overview
	Pre-engagement Interactions
	Intelligence Gathering
	Threat modeling
	Vulnerability Analysis
	Exploitation
	Post Exploitation
	Reporting

	Administrative Workflow
	Artifacts and Deviation From Established Standard
	General Work-units
	Lines of Communication

	Scientific Workflow

	Results
	OWASP Testing
	Coverage and Tests Passed

	Custom Exploits
	Password Dump Scanning
	Application Traffic Capture Through Instrumentation

	Unsuccessful Exploits
	Combined Grafana Brute-Force
	Kubernetes Path-Traversal
	Google Cloud Enumeration

	Delivarables and Goals
	Status of Technical Report Goals
	Technical Report, Executive Summary and Evidence

	Workflow and Administration
	Project Artifacts
	Agility of Process
	Issue-Tracking and Time Management

	Discussion
	Project Limitations
	Exploits and OWASP Testing
	Test Observations
	Importance of Good OSINT
	Security as a Process

	Deliveries and Goals
	Client Oriented
	Risk Calculations

	Workflow and Administration
	Reconnaissance and Exploit
	Working as a Remote Team
	Adapting to Changes and Delays
	PTES and Best Practice

	Possible Improvements

	Conclusion
	Security at Picterus
	Workflow and Deliveries
	Further work

	Bibliography
	Appendix
	Statement of Work
	Scripts
	Password search
	Subdomain checker
	Feedback XSS
	Frida Script For String URL in x86 binary during Runtime
	Google Cloud Project Enumiration
	Username:Password-Permutation List Generator Script
	Custom Brute Forcing Script

	Gant Diagrams
	Status Reports and Time Sheets
	Meeting Notices and Minutes

