TECHNICAL REPORT

Fotoboks

Abstract
The results from a penetration test using OWASP Web Security Testing Guide

Magnus Baugerud, Henrik Mathias Berg, Lars Olsnes @stmo-Saeter

co

Document control

Version

Date

Editor

Comments

1.0

28/04/21

Magnus Baugerud
Henrik Mathias Berg
Lars Olsnes @stmo-Saeter

Finished version that will be sent to client.

C1

Contents

EXECUTIVE SUMIMAIY ittt ettt e e et et e e et ettt e et e e e e e et e e e e e e e e et e e e e e e e e e et eeeeeeeeeeaeaeeeeeeeeeeeeeeeeeneeeeneens 7
T oo [V Tord o] o TSP TOP RSP PP PP UPRRPRUPO 7
(017 -] =T ol U 1 Y URSR 7
High Severity VUINErabilitiesc.ueii it tre e e e e e e e e e e e rae e e e eareeas 7
Moderate/Low Severity VUINErabilitiesoouiiiiiiiiieecee et ettt et e ree s 7
VUINEIADIITY OVEIVIEW..ciiueiiiiiiitiee ettt et e e s e e e st be e e s ssbeeeessbeeessnnbeeesenaseeesennseeas 8

SYSTEM DVEIVIEW eeeeeeeseeeeaaessasssesessseseesesssssesesessnsnnaeeeenens 8
D I=Tol g1] Ao] o HU PP PP PPPTROPPPPP 8
(LTI e Yor=1 o] o F RO 9
ENVIFONMENT Lo et e s s e s e s s re e e s s ae e s e narenes 9

L6 Y= TSP PO PPPPPOTN 9
EXEEINAI FIr@WAIl .ttt et e bt sae e sttt b e be e b saeeeaee s 9
Y=RY LT = o)4V 2PN 9

LCTo T £ O TP O T OSSP PO PPPTOVPTOTOTRPRPPRRIOt 9

1T L 1Y/ Lo Yo =1 1 T =SSR 10
ATEACK SOUICES. ...ttt ettt sttt b e st sa e st e e et e e b e e s b e e saeesanesab e e b e eneenneesaeeenneen 10
Yo AV = o o TP PR 10
ATTACK TARGET ..ttt ettt ettt e e e e ettt e e e e e e e s e a b et e e e e e e e e s anabebeeeeeeeeaaasnbeeeeeeeeeaannsneneaaeas 10
RISK PROFILE ...ttt ettt sttt st st sttt e bt e s b e s aeesan e san e e aneereenreesmeesmeeemeeenneen 10

Vulnerabilities and ReCOMMENTAtIONS........oiiiiiiiiieeie ettt s 11
Definition Of RiSk Cat@BOIIES....ccuviiie ettt e et e et e e e e bt e e e e e bt e e e e s bteeeeesraeeessteeeesnnes 11

LY =TSSP 11
LVEIS. .. ettt h ettt ettt e h e b ea et sa bt et e e bt e bt e eh et eae e e ae e e Ee e bt e eheeeheeeateeabeebe e beenes 11
Observations and RECOMMENAATIONSc.iiiuiiiiierierie ettt st e e b e sree e e 13
1. No Authentication 0N SIMTP SEIVETcocuiiiiiiiieiiereerte ettt 13
U 1] Lo T=To 1Y, = T o 10 Tl 11T SR 14
3. User-input NOt SANItiZedeiiieiiiee et et e e s e be e e e s e ba e e e e sbtaeeesrtaeeesnnes 15
4. CVESs for APache HTTP SEIVEI VEISIONcoiecciiiieeeciiiee e ettt e e ettt e e eeteeeeeettaeeeessaeeeseasaeeeesasaeeesasseeeaans 16
T 2T 0] (=T o T o Y=L YU PP 17
6. Broken Cach@-CONtrOl......c.coiiiiiiiiiiieeieeeeeesee ettt st sttt e sre e sreesane e 18

7. Cookie “session” Missing SECUre ALtriULE........ccuviii i 20

8. Trusting Frontend 0 LiMit POSTooi ittt ettt et e e e atae e e s eara e e e st ae e e eennaeeeean 21
9. No Automated Response t0 REPEAtE EFTOrS......ccuuiiiiciiieiiiieeeeciieeeecteeeeesieeeessvaeeessbaeeessnreeeeas 22
10. CVE fOr NOGEM@IIET ...ttt sttt ettt e s bt e sbe e sane s eebeebeenns 23
Y oY1 | I o= =4 oY TP 24
12. SameSite Cookie Attribute MiISSING......cccuiiiiiiiiiei ittt e bee e s s areeas 25
G oY= YRy o o T T2 =T 1 U N 26

I 3 27eTol o1 o oY W] o X=T a1 To A Nt It TSP 27
FINAING SUMMIATY coeiiiiiiiee et et e et e e e et e e e e et e e e eebteeeeebteeeeeabseeeeaseaeeeanseaeeeastneesassnaesenssneenases 28
OVEIVIBW ..ttt ettt sttt e st e e s eab et e e s e b et e e s ebe e e e s ebeeeessbeeeessbaeeessaneneessanes 28
CombiniNg VUINErabilitieS . cccivieei it e e e s bee e e s s bee e e e sateeeesneaeeesanes 28
Web Application Penetration TESt REPOI......cccuiiiiiiiiieccciiee ettt eette e e e err e e e esrae e e eeatee e e e nsreeesennaneeean 29
el oY aaF=YaTo o W CF- 1 o [T 5 oY -SSP 29
WSTGAINFO-0TL ...t et et et e e e e e e e e et et e e et e e et e e e e e e e e e e e e e e e e e e e saeeeaeeeaeaeeeeeeeeeeeenes 29
WSTG-INFO=02 ...ttt ettt sttt ettt e b e s b e sate st e st e et e e bt e beesbeesaeeeaeeeateebeenbeenbeesanenas 30
WSTG-INFO-03 ...t e et et e e et e e e e et e e et e e e e et eeeeaeeeaeeeaeaeeeaeeeeeeeenes 30
WSTG-INFO=04 ...ttt ettt sttt ettt e bt e s bt e sae e st e et e et e e bt e nbeesbeesaeesaseeateebeenbeesbeesanenas 30
WSTG-INFO-05 ...ttt sttt et ettt s et st et e bt e b e e s be e smeesaeeeaneereesreenseesanenas 31
WSTG-INFO-06 ...ttt sttt et ettt s e st st eb e bt e beesbeesmeesme e et e eneesreesseesanenas 31
WSTG-INFO-07 ...ttt ettt ettt sttt ettt e bt e s bt e saee s abeeabeeabe e bt e abeesbeesaeesaeeenbeenbeenbeesbeesanenas 32
WSTG-INFO-08ottt sttt ettt b e st s et st e st e bt e bt e b e e s beesmeesane et e eneenreesneesanenas 33
WSTG-INFO=09 ...ttt sttt ettt et e s bt e s bt e saee st e sabeeabe e bt e sbeesaeesaeeeabeeaseebeenbeesseesaeenas 33
WSTGINFO-10 ..ttt ettt ettt ettt e b e bt e s b e sae e st e st e et e e bt e beesbeesaeesaeeeabeebeenbeenbeesaeenas 34
Configuration and Deploy Management TESTINGcuuviiiiiieeeiiieee ettt re e st e e e ebre e e e saaeeas 34
WSTG-CONF-0T ...ttt ettt sttt ettt e bt e s bt e s ae e st e et e et e e bt e abeesbeesaeesaeeeabeenbeenbeesbeesaeenas 34
WSTG-CONF-02 ...ttt ettt sttt sttt et e b e s b e sae e st st e e bt e bt e b e e s beesmeesaneenseebeenbeenneesanenas 35
WSTG-CONF-03 ...ttt ettt sttt st et e b e s b e sate st e st e s bt e bt e beesbeesseesaeeenteebeenbeenneesanenas 35
WSTG-CONF-04 ...ttt ettt ettt ettt e b e e s bt e she e sate s abeeabe et e e bt e abeesbeesaeeeateeabeebeesbeesbeesaeenas 35
WSTG-CONF-05 ...ttt sttt et et b e st st sab e e bt e bt e b e e s beesaeessaeenteebeenbeesneesanenas 35
WWSTG-CONF-06eeetietieiieeiee ettt ettt ettt e bt et e e bt e sbeesheesatesabeeabeeabe e bt e abeesbeesaeesateenbeebeesbeesbeesaeenas 35
WWSTG-CONF-07 ..ttt ettt ettt sttt sttt bt et e e ebe e sheesatesabeeabeeabe e bt e abeesbeesaeesabeenbeebeenbeesseesanenas 36

C3

WSTG-CONF-08 ...t b e s sabe e 36

Identity ManagemeENnt TESTING......uuii it e e e et e e e e bte e e e sbteeesebteeeseabtaeeesnsraeeesanes 36
AULhENTICATION TOSTING .. i ciiiie it e e st ee e e et ee e e et ee e e esabeaesennbeeeeennsenas 37
WSTG-ATHN-OTL ..ottt ettt et e b e sae e st e st et e b e e s beesbeesaeesaeeeateebeenbeenseesanenas 37
WSTGATHN-0Z ..ttt ettt sttt ettt e bt e s bt e sat e st e sabe et e e bt e sbeesbeesatesateenteebeesbeesaeesaeesas 37
WSTG-ATHN-03 .ttt ettt sttt ettt e s bt e s bt e sate s abesabe et e e bt e nbeesbeesaeesabeenbeebeesbeesaeesaeesas 37
WSTG-ATHN-OA ...ttt et et e b e s b e s ae e st e st e bt e bt e b e e s bt e smeesaeeenteebeenbeenneesanenas 37
WWSTG-ATHN-05 ...ttt ettt sttt et e b e e s bt e s bt e sate s abesabe et e e beesbee s bt e saeesateenbeebeesbeesaeesanesas 38
WSTGATHN-0B ...ttt ettt ettt et e b e s bt e s aee st e sab e et e e beesbeesbeesaeeeaeeenseenbeenbeesbeesanenas 38
WSTG-ATHN-OT ..ttt sttt ettt e b e s bt e sae e st e st e et e e bt e beesbeesaeeeaeeeateebeenbeesbeesanenas 39
WSTG-ATHN-08 ...ttt sttt ettt ettt sttt e et e e be e s bt e satesabesabesnb e e beesbeesaeesatesaseenseenbeesbeesseesanesas 39
WSTG-ATHN-09 ...ttt sttt ettt e b e s bt e sae e st e st e et e e beeabeesbeesaeesaeeeateenbeenbeesbeesanenas 39
WSTGATHN-LO ettt sttt ettt et sttt ettt et e et e e s bt e satesabesabeenb e e beesbeesaeesaeesasesnteenbeenbeesseesasesas 39
AULNOIIZAtION TESTING . eiiiiciiii et e e et e e s s e e e s st ae e e s sabeeeeesabeeessnnseeesennsenas 40
WSTG-ATHZAOT. ..ttt sttt ettt e b e s bt e sae e st e st e et e e bt e bee s bt e saeeeaeeeateenbeenbeesbeesanenas 40
WSTG-ATHZA02...c ettt ettt ettt sttt et e e b e e s beesatesabesabesmb e e beesbeesaeesatesasesnseenbeesbeesseesanesas 40
WSTG-ATHZ-03. ..ttt ettt ettt e b e bt e s bt e saeesab e st e et e e bt e abeesbeesaeesaeeeateenbeenbeenbeesanenas 40
WSTG-ATHZ-04....ceeeeeeee ettt et et et s e st st e b e bt e b e e s be e smeesane et e eneenreesreesrnenas 40
SESSION MANAZEMENT TOSTING ..uvvrriiiiiiiiiiiiittee et ettt e e e s ssrrree e e e e s e s ssbbateeeeessssssstrsaeeeesssssssssssneeeesssnnes 41
VST G-SESS-0T ...ttt ettt ettt h ettt et e e b e e s bt e s bt e sate st e eab e e bt e bt e beesbeesaeeeateenteenbeenbeesbeesanenas 41
WWSTG-SESS-02.... ettt sttt sttt et e s bt e s e st st sa bt e bt e bt e b e e s beesmeesmne et e eneesreenneesanenas 44
ST G-SESS-03 ..ttt ettt b ettt et e et e e s bt e sheesaeesabesabe et e e bt e bt e sbeesaeeeueeenbeebeenbeesbeesanenas 45
WWSTG-SESS-04...eeeeeetteet ettt h ettt ettt e e s bt e s bt e saeesabe st e e b e e bt e bt e sbeesaeeeaeeemteebeenbeesbeesanenas 45
VST G-SESS-05... ettt sttt et b e s e st st s bt e bt e bt e b e e s be e s meesaee et e ereenreenneesane e 46
WWSTG-SESS-06 ...ttt ettt ettt sh ettt et e e be e s bt e sbeesaeesabeeabeeabe e bt eabeesbeesaeesabeembeenbeenbeesbeesanenas 46
VST G-SESS-07 ...ttt sttt st ettt e s b e s b e sae e st e st e e bt e b e e b e e s beesmeesaneeateebeenbeenneesanenas 47
WSTG-SESS-08....eeieeiiesite ettt ettt ettt sttt ettt e s b e s b e e saee st e st e e bt e bt e b e e sbeesmeesaeeenteebeenbeenneesanenas 48
Data Validation TeStINGuuiiiiiei ittt e et e e e e e e e st re e e e e e e e e s abeseeeaeaeessanstsaneeeessesnnnsenns 48
WSTG-INPV-0L ..ttt ettt s e st st st e b e bt e b e s be e saeesaneenteebeenbeesbeesanenas 48
WSTG-INPV-02 ..ttt e b e e b e s bt e s at e st e s bt et e e bt e ebeesbeesaeesateeabeebeenbeenbeesanenas 48
WSTG-INPV-03 ettt sttt et e b e e b e s bt e s at e st e et e e bt e beeabeesheesaeesateenteebeenbeesbeasanenas 48

C4

WSTGINPV-04 ..o bbb s sab e 49

WSTG-INPV-05 .ttt ettt e b e b e sat e st e st e et e e b e e b e e sbeesaeesaeeeateebeenbeenneesanenas 49
WSTGAINPV-06 ...ttt ettt ettt ettt e e e et e e e e e e e e et eeeeaeeeeeeeaeeeeeaeaeanes 49
WSTG-INPV-07 ettt ettt b e s h e sat e st e st e bt e bt e beesbeesmeesaeeeateebeenbeesneesanenas 49
WSTGAINPV-08 ... ettt ettt et ettt e et e e et et e e et e et e e e e e e e e e e e e e e s e e eeeeeeeeaeeeaeaeaeeeeeaeeeanes 50
WSTG-INPV-09 ..ttt ettt e e e et et e e e e e et e e e et e aeeeeeeeaeeeeeeeaeanes 50
WSTGINPV-10 ettt ettt et b e b e sae e st e st e et e e bt e beesbeesaeesaseenteebeenbeenneesanenas 50
WSTG-INPV-1T ettt ettt et et e et et e e e et e e e e et e e e e e e e e e e e e e e e e e s e s e e e e eeeeaeeeeeeeeeeeeeeeananes 50
WSTG-INPV-12 ettt ettt b e b e st e st e st e et e e bt e be e s bt e saeesaeeeateebeenbeesbeesanenas 50
WSTG-INPV-13 ettt ettt e b e b e s bt e sae e st e s ab e et e e bt e bt e sbeesaeeeaeeeabeebeenbeesbeesaeenas 51
WSTG-INPV-14 ettt et et et e e e e e e et et et e e et eaeeeseeeaeaeeeaeeeeeaeeees 51
WSTG-INPV-L5 ettt ettt e b e b e s b e sae e st e st e et e e bt e beesbeesaeeeateeateebeenbeesbeesanenas 51
WSTGAINPV-L6 .ottt ettt et et et et e e et et e e et e s eeeeaeeeaeseeeeeeeeeaeenes 53
WSTGINPV-17 ettt e et et et e e et et e e et e e e e et e e e e e e e e e e e e e e e e e e e s eeeeaeeeseeeaeaeeeeeeeeeaeanes 53
WSTG-INPV-18 ..ttt ettt b e s bt sat e st e st e b e e bt e beesbeesaeesaeeeabeenbeenbeesbeesanenas 53
WSTGINPV-19 ettt ettt e e e e e e e et e e e et eeaeeeaeeeeeeeeeaeeeaees 53
e ol o = o Yo | 1T Y- USSPt 54
WSTG-ERRH-01 ...ttt sttt ettt st sttt b e b e s be e smeesaeeeaneeneenreesneesanenas 54
(@ RV o1 o T={7- o] 1 1V AP 55
WWSTG-CRYP-0L ...ttt ettt e ettt e e e e e e e bbbttt e e e e e e e aabeb et eeeeeeaaannsbbaeeeeeeaaaannseneeeeeeesaaannrnnes 55
WSTG-CRYP-02 ...ttt ettt sttt ettt et sae e st sab e e st e b e b e e s be e smeesaneeaneeneenreesneesanenas 55
WWSTG-CRYP-03 ..ttt ettt e e ettt e e e e e e e bbbttt e e e e e e e a b e b et eeeeeeaaannssbaeeeeeeaeaannnebeeeeeeesaaannrnnes 55
STV =T o = (ol =Ty [V TSRt 56
WSTG-BUSL-OTL ..ttt sttt st et s e st st et e bt e b e s be e smeesaneean e e bt ereenneesnnenas 56
WSTG-BUSL-02 ...ttt ettt sttt sttt ettt e b e s bt e sat e st e et e et e e bt e abeesbeesaeesateeateebeenbeesbeesanenas 56
WSTG-BUSL-03 ..ottt ettt sttt et b e s b e st st e st et e bt e b e e s beesmeesaaeenteeneenbeenbeesanenas 56
WSTG-BUSL-O4 ...ttt sttt et et b e s st st e st e bt e bt e b e e s beesmeesmaeenseebeenbeenneesanenas 57
WWSTG-BUSL-05 ..ttt ettt et e ettt e e e e e e bbbttt e e e e e e e aab e b et eeeeeeesannssbaeeeeeesesannssbeeeeesesesannrnnes 57
WSTG-BUSL-0B ...ttt ettt sttt sttt ettt sae e st st e bt e bt e b e s beesmeessteenseeneenbeesneesanenas 57
WWSTGBUSL-07 ..ttt ettt et e ettt e e e e e e ettt e e e e e e s aaababeeeeeeeeesanarsbeeeeeeeaeaannnsbeeeeeeesasannnnnes 57
WSTG-BUSL-08 ...ttt ettt ettt sttt ettt et e s bt e s bt e sat e st e s abe et e e beeabeesbeesaeeeabeenbeebeenbeesbeasanenas 58

C5

WSTG-BUSL-09 ... s 58

(O 11T B o [T =Y o1 V=PRSS 59
J AT Y R O B\ O 1 RO PPNt 59
WSTG-CLINT02 ...ttt ettt ettt st sttt et et e b e s bt e saeesatesab e eab e e bt e beesbeesaeesaeeemteenbeenbeenseesanenas 59
AT Y L O R\ O I PPNt 59
AT Y L O R\ 0 PPNt 59
WWSTG-CLINTA05 ...ttt ettt ettt ettt ettt et e b e s bt e saeesab e sab e e b e e bt e beesbeesaeesaeeembeebeenbeenneesanenas 60
AT Y R O B\ 0 PPNt 60
WWSTGCLINT07 ..ottt ettt ettt sttt sttt et e bt e s bt e saeesabesabeeab e e beebeesbeesaeeeaeeemteenbeenbeenbeesanenas 60
WSTG-CLINT08 ...ttt ettt ettt sb et sttt et e et e e b e s bt e satesabesabeeab e e bt e abeesbeesaeeeaeeenseenbeenbeenbeesanenas 60
AT Y L O R\ I 0 PPNt 60
WWSTGCLNT-L0 ettt ettt ettt h e s h ettt e bt e e b e e s beesaeesabeeabeeabeenbeebeesbeesaeesmneeateenbeenbeesbeesanenas 61
J AT Y R O K\ It B RPNt 61
J AT Y L O B\ I PPt 61
WWSTG-CLINT-13 ettt ettt b e s he e ettt et e bt e s bt e saeesab e eat e et e e b e e beesbeesaeesaeeemseenbeenbeenbeesanenas 61

AUTOMATEA TOSES it iiiiiiiie ettt ettt ettt ettt e st e st e e bt e e sttt e s bt e sbee s bt e e sabee e bbeesabeesabbeesabeesabeeeanseesaseeenareens 62
INTKEO ettt ettt ettt e b e bt e s bt e s ae e sab e et e et e e b e e eb et she e e e bt et e et e e ebeeeheeeaneeabeebe e beenes 62
=T] L= TP OPR PR 63
[N [=T o TS TN 63
£ |« TSNt 64

Y g1 o) PSPPI UPPPPPPPPN 67
(0] 0] oTo] X3 WoT ={1 s IR 67
FUZZEE .ttt s e s e s e e s 67
COOKIE/TOKEN [IST 1.evrieiieieiee ettt ettt ettt ettt e e sttt e e e st bt e e s sbbeeesseabaeessasbeeessbbeeessssbeeesssrssessssrbeeessres 69
L ==L o013 69
[aa b =R o T o= 1T Y PSP 70
[0 =0 TU | =] TN 70

REFEIEINCES ..ttt ettt ettt et e bt e sae e s at e s bt e bt e bt e ebe e saeesab e e beeabeesheesabesabeebeeabeens 72

C6

Executive Summary

Introduction

The team have been given permission by NTNU IT to test the web application Fotoboks used for
submitting photo id images for students’ and employees’ NTNU access cards. The team has not tested
the production version of the system but has instead tested another instance hosted at
innsidautv.ntnu.no/fotoboks so that none of the tests would affect the system’s general workflow.
Testing the production version would also require the team to have access to other Feide accounts than
those they already have, otherwise each test posting data would request new student access cards, or
would change the pin of the access cards.

The application was tested between the 25" of January and the end of the bachelor project on the 20
of May 2021. It was tested using some automated tests, but mostly the team has manually tested the
system following methods described in the OWASP Web Security Testing Guide [1]. In order to cover as
many tests as possible, all tests described in the OWASP guide have been considered and either been
performed or given the not applicable status.

Overall security

Overall, the team believes the application has a good Risks identified
level of security. However, one critical issue was found, as
well as some moderate and low risk issues. Many of these
issues stem from the fact that the backend is too trusting
of the frontend. Actions should be taken to fix these
issues in order to prevent any potential future attacks.
The team has detailed recommendations as to what
actions should be taken under “Vulnerabilities and
Recommendations”.

Critical, 1

Moderate, 3

High Severity Vulnerabilities

The critical-risk vulnerability in the application is related
to the SMTP server. This server requires no mCritical mHigh mModerate mlow mNote
authentication of the sender email, which means anyone
can use it to send mail, and the sender address can be set Figure 1: Pie chart presenting the distribution of risk severity.
to make it appear as if someone else sent it. The only

requirements are that the sender is connected to the NTNU or Sit network, and that the receiver is a
NTNU-email-address.

Low, 5

Moderate/Low Severity Vulnerabilities

Two of the moderate-risk vulnerabilities relate to lack of user input sanitization. The user may input files
and text, and the backend will handle these as JPEGs, locations, and PIN-codes, with the only
requirements being that the image format is JPEG, the pin is 10 character or less and the location is 50
characters or less. The frontend sanitizes these inputs, but the backends sanitation is lackluster.
However, the input is only stored in a database by Fotoboks and used by other applications. The other
applications have not been tested, so the exact impact of these vulnerabilities is not known.

Cc7

http://innsidautv.ntnu.no/fotoboks

The third moderate risk is the Apache server the application is using as a reverse proxy. This server has
many known security vulnerabilities. Although the team has not been able to exploit any of these
vulnerabilities, the server should be kept up to date to keep it as secure as possible.

Many of the low-risk vulnerabilities are misconfigurations of headers or cookies. Isolated, they pose
little to no threat to the system. However, if some of these vulnerabilities are used together, they can
pose a higher risk. Other low-risk vulnerabilities are outdated packages, lack of rate limiting and minimal

logging.

Vulnerability Overview
Vulnerability Name Severity

1. No Authentication on SMTP Server

2. Upload Malicious Files

3. User-Input Not Sanitized

4. CVEs for Apache HTTP Server Version

5. Broken Logout Low
6. Broken Cache-Control Low
7. Cookie “session” Missing Secure Attribute Low
8. Trusting Frontend to Limit POST Low
9. No Automated Response to Repeated Errors Low

10. CVE for Nodemailer

11. Minimal Logging

12. “SameSite” Cookie Attribute Missing
13. Long Session Timeout

14. Rpchind on open port 111

Table 1: Compact overview of findings.

System Overview
Description

Fotoboks is a web application where NTNU students and employees can upload an image and a pin for
their access card. It is a react application connected to an Express server which is connected to a SQL
database. The application was created in 2020 to accommodate infection prevention related to the
COVID-19 pandemic. Fotoboks is hosted inhouse by NTNU and is available at innsida.ntnu.no/fotoboks/.
The team was given access to and tested the test version of the application, which can be found at:

innsidautv.ntnu.no/fotoboks/

(OF)

https://innsida.ntnu.no/fotoboks/

URL / Location

URL innsidautv.ntnu.no/fotoboks/
IPv4 129.241.57.104/fotoboks
IPv6 [2001:700:300:31::104]/fotoboks

Table 2: The location of the application.

Environment

Users

Users of the system are students and employees of NTNU that have a Feide account. Users have access
to the service from any web enabled device.

All users of the system have the same level of privileges. They can either update their pin or order a new
student id card with a selected photo.

External firewall

Port Status Protocol | Information

80/TCP open HTTP Apache httpd 2.4.29

111/TCP | open Rpcbind 2-4 (RPC #100000)

443/TCP open SSL/HTTP | Apache httpd 2.4.29 ((Ubuntu))

Table 3: List of open ports and details from Nmap.

Reverse Proxy

The reverse proxy is an Apache server, and it hosts the portals for all of innsidautv.ntnu.no.

Goals

The primary goal of this penetration test is to validate that the system has implemented the necessary
security measures to protect it from malicious actors. Any security vulnerabilities will be reported in this
document and given recommendations on how to fix.

C9

Threat Modelling
Attack Sources

The attack sources are first and foremost students and employees at NTNU, but the service is publicly
available. To gain authenticated access to the system you are asked to sign in through Feide.

Motivation

Attackers would be motivated by denying students or employees access to NTNU buildings. To a lesser
degree they might be motivated by the potential for malicious file upload and any exploits that such an
attack might bring.

ATTACK TARGET

The attack target for this test is only the web service Fotoboks. There are other applications hosted on
the same domain/IP, but these are out of scope.

RISK PROFILE

Information is sent by the user from the application to the database. This information can deny a user
access to NTNU buildings if modified by an attacker. There is a chance that the information also could be
harmful to other NTNU systems.

Tests Not Carried Out

DoS Attack
Denial of Service Attacks.

We have not attempted any tests attacking the service’s capacity, since it was declared out of scope by
NTNU IT.

Brute Force Login

Brute force login attempts on Feide.

We have not attempted any brute force attacks on the user login since it is a service provided by Feide.
Social Engineering

Attempt to gather information or get access through human channels.

Any social engineering attacks would be difficult to conduct as we are working on test instances and it
was declared out of scope by NTNU IT.

c1o

Vulnerabilities and Recommendations

Definition of Risk Categories

Types
Likelihood Score

How likely it is that the vulnerability will be exploited. Both the ease of finding the vulnerability and the
ease of exploitation will be taken into consideration.

Impact Score

How big of an impact the exploitation of the vulnerability will have. How much the attacker will gain
and/or how much of the system will be affected will weigh in on the score.

Overall Risk Severity

How crucial it is that the vulnerability is fixed based on the likelihood and impact as seen in the diagram
below.

Impact

Likelihood Moderate

Low Low

Moderate

High

Table 4: Chart used to calculate risk severity.

Levels
Likelihood Score

It is very likely that the vulnerability will be used
by an attacker, due to it being easy to find and
easy to use.

It probable that this vulnerability will be used,
but it is harder to find and/or exploit.

c1

Low Due to being very difficult to either find or exploit
it is not likely that this vulnerability will be used
by an attacker.

Table 5: Overview of likelihood scores and color codes.

Impact Score

May totally or partially compromise system.

May compromise some users or smaller parts of
the system.

May result in compromising less important parts
of the system, cannot compromise other users on
its own.

Table 6: Overview of impact scores and color codes.

Overall Risk Severity

Must be fixed as soon as possible. It is very likely
that this vulnerability will be exploited, and it will
partially or totally compromise the system.

Should be fixed as soon as possible. This
vulnerability will significantly compromise the
system. It is harder to exploit, or it causes less
damage than a critical issue.

Should be addressed. The impact may be high,
but then the likelihood will be low, and vice
versa.

Has the possibility to cause problems. Due to it
having either a low likelihood or impact means it
is not always a real issue.

Should be looked at, but there is no immediate
danger.

Table 7: Overview of risk severity scores and color codes.

c12

Observations and Recommendations
1. No Authentication on SMTP Server

Description

The mail server requires no authentication of the sender email address. The only requirements are that
the sender is connected to either the NTNU or Sit network, and that the receiver is an NTNU mail
address. This means that an attacker can impersonate anyone using this server.

Risk Assessment

Likelihood Score: High

A quick google of “NTNU smtp” will tell us that this specific mail server is in use. Anyone testing to see if
NTNU mail servers are vulnerable will quickly find out that there is no need to authenticate on NTNU
networks.

Impact Score: High

Being able to send a mail to any NTNU-email with any sender address is a major vulnerability. There are
many people with access to NTNU network and many who should not have access to NTNU network in
Sit housing. Anyone of them can send a mail impersonating official NTNU channels of information.

An attacker can for example pose as an official NTNU channel to spread misinformation. During the
COVID-19 pandemic it would be especially harmful to spread misinformation about the virus. An
attacker could also try and steal sensitive information from people by claiming it is for contact tracing.

Another way an attacker could steal sensitive information is by posing as an official NTNU channel and
claim the victims must update their password for their NTNU account. Updating your password is
something NTNU requires regularly, so an attacker would probably be able to steal a lot of passwords
this way.

Overall Risk Severity: Critical

Anyone with technical knowledge of SMTP, something that is taught to students at NTNU, can find and
exploit this vulnerability. The vulnerability can be exploited in many ways and can most likely be used to
steal sensitive information. Also, it does not seem like smtp.ansatt.ntnu.no should be available to use on
the Sit network.

Recommendation

Implement authentication on the smtp server. Make sure the person sending an email is the person who
owns the sender email. To limit accessibility to the SMTP server, block access from the Sit network.
Limiting access to the SMTP server to the NTNU network will reduce the attack sources and reduce
anonymity in the case of exploitation.

C13

2. Upload Malicious Files

WSTG-BUSL-009

Description

The back-end check for uploaded files only looks at a short prefix in the base64 encoded files. This
makes it possible to upload a malicious file crafted to pass as JPEG.

When the back end receives a base64 encoded JPEG it only decodes it to binary and saves it. This means
that any metadata will be saved along with the image. There are 2 problems with this.

The first problem is that malicious code may be included in the metadata. The user is informed that
someone will review the image, meaning it will be rendered at some point, and the image will also be
printed on the student-card, meaning the image will be sent to a printer. The metadata may include
malicious code crafted to exploit bugs in this specific renderer or printer, which can compromise system
computers and/or printers.

The second problem is that the metadata may contain sensitive information about the user, like GPS-
location and timestamp of the picture. The systems handling the image may not be aware of the
sensitive information being stored at all. This type of information should not be leaked, and storing it
adds unnecessary responsibility.

The front-end will ask the user to crop the image they upload and will at the same time convert
accepted image-formats to JPEG and strip the metadata. This means that to upload a JPEG with
metadata the user must bypass the front-end. This greatly reduces the likelihood of users sending their
sensitive information as metadata unwillingly.

Risk Assessment

Likelihood Score:

exploiting this vulnerability requires knowledge of a vulnerability in either the specific renderer or
specific printer in use, and the skills to exploit it. Since it is given information about neither it would be
accomplished through repeated attempts with specifically crafted exploits.

Impact Score: High
Since the user-input file is saved in the database with potential malicious metadata or as an invalid JPEG
containing malicious code the possible impact on systems further down the line is high.

Overall Risk Severity:

It would be difficult to exploit this vulnerability, since one does not know what systems are handling the
uploaded data. Whether this vulnerability is exploitable is entirely dependent on the security of the
other systems, which it should not be. The uploaded data should be properly sanitized in Fotoboks.
However, if one is able to exploit this vulnerability it could cause a lot of harm to the systems in
question.

C1l4

Recommendation

The back end should strip metadata from the image and check that it is a valid JPEG by loading it as an
image and see if the format is accepted as JPEG.

3. User-input Not Sanitized

WSTG-INPV-15, WSTG-BUSL-01

Description

There are three user inputs that are sent to the back-end server: pin, image, and location.

The pin is supposed to be a four-digit number, which the front-end enforces. The front-end also
prevents you from have four of the same digits or the combinations “1234” and “2580”. However, the
backend does not perform any checks on or sanitizing of the pin at all. It can be any ten-character-long
string, because the database does not allow a larger string.

The location input has the same issue. The front-end gives you options from a list to choose from, but
the back-end does not check if the location is valid, nor does it sanitize it. The location can be any fifty-
character-long string with max length of 50.

Since none of the user inputs are used by the application, not sanitizing them does not pose a threat to
the application. However, if the data is used by another application, it could pose a security risk to that
application. The pin and location can hold JavaScript which may be ran when used by another
application.

Risk Assessment

Likelihood Score:

Discovering this vulnerability is easy. Intercepting and modifying the post request can for example be
done with the Burp Suite Proxy. However, it is not easy to exploit it as an attacker cannot get any
information on the systems that use the uploaded data from Fotoboks. It is possible that the systems
that use this data are properly secured so that an exploit is not possible at all, but Fotoboks should
sanitize this data just to be sure.

Impact Score: High
The impact may vary from wasting your own and administrators time, to denying yourself access to

NTNU’s buildings, to performing an XSS attack on an admin interface or any other system that might use
the data Fotoboks uploads.

C15

Overall Risk Severity:

Finding this vulnerability is easy but performing an XSS attack with it is not. It would require knowledge
of the systems that use the uploaded data, or trial and error. Same as with the malicious file upload
vulnerability, the possibility of this vulnerability being exploitable is dependent on the systems that use
the data. A successful exploit could mean JavaScript being executed, which can cause a lot of harm.

Recommendation

The back end should check that the pin is a four-digit-number, and that the location is one of the
locations users can pick from the list on the front-end.

4. CVEs for Apache HTTP server version

WSTG-INFO-02, WSTG-ERRH-01

Description
Fingerprinting the server returned that it was running an Apache HTTP Server 2.4.29 on Ubuntu. This

version was released in 2017 and has at least 18 CVEs published [2].

There are multiple places the server and version are leaked, for example in the server header in every
HTTP response and on the error-pages shown for error codes 405 and 414. See WSTG-ERRH-01 for more
info about the error pages.

Although the team tested the test version of Fotoboks, which is hosted on innsidautv.ntnu.no, it was
checked whether innsida.ntnu.no uses the same Apache server version. It turns out it does.

Risk Assessment

Likelihood Score:

A lot of the CVEs have a low likelihood score. In addition, we cannot test for these vulnerabilities
because they may affect other systems besides Fotoboks. Therefore, we do not know if any of these
CVEs are applicable or exploitable on Fotoboks.

Impact Score: High

There are CVEs for the outdated server with high an impact score, including one for code execution.
Overall Risk Severity:

As this server version is being used for most of NTNUs web services it is important to secure it.

However, as stated previously, we have not been able to test any of the CVEs and therefore do not know
if any of them can be exploited on Fotoboks or any other system on Innsida.

C1le

Recommendation

Rigorously testing if the apache server is protected against the known vulnerabilities is out of scope, but
it is recommended to review these CVEs to make sure the server is secure. Keeping the server up to date
is the most recommended action.

It is also recommended to obscure the server version, both from error pages and response headers.
Knowing the exact server version gives attackers the option to review CVEs related to the server version,
making it easier to find possible exploits.

5. Broken Logout

WSTG-SESS-06

Description

When you log out the server does not properly invalidate the session. It sends a new session cookie that
indicates that you are logged out, but the old cookie may still be used to authenticate and POST a new
image to the database as well as updating the pin. This means that all authenticated sessions will be
valid until they expire, which is 24 hours for this application.

Risk Assessment

Likelihood Score:

To exploit this vulnerability the attacker would have to get hold of a session cookie from before logout,
from a less than a day-old session, which belongs to another user. It would require the existence of
other vulnerabilities and/or access to the victim’s computer.

Impact Score:

The direct impact is that an attacker who gets hold of another user’s session cookie before it times out
will have full access to the application as the authenticated user, even when the user has logged out and
believes their session is invalidated.

Overall Risk Severity:

Although the impact is moderate this vulnerability requires that the attacker manages to obtain the
victims cookie. It is unlikely the attacker will manage to obtain a cookie unless exploiting other
vulnerabilities. Either way the logout function should invalidate the session properly.
Recommendation

Make sure the server invalidates the session for Fotoboks in addition to the Feide session on logout.

Cc17

6. Broken Cache-Control

WSTG-ATHN-06, WSTG-SESS-04, ZAP

Description

There is one place in the application that cache control is explicitly set by the server and that is the
home page. However, it is set to “public, max-age=0" which means that it can be stored in any cache,
but it is immediately stale as it expires after 0 seconds. The problem with this is that setting the max-age
to 0 does not always stop caches from serving the resource and you can go back to the main page after
logout. If the goal is to always revalidate with the server to check if you are logged in the header should
be set to “public, max-age=0, must-revalidate”; this will stop caches from serving stale resources.

The largest problem with the application concerning cache-control is that responses carrying session
cookies as headers can be cached in private caches. This is a result of not using the Cache-Control
header at all which gives it the default value of “private”.

&= c @ ox abouticache?storage=disk&context=
Kali Linux Kali Training Kali Tools # Kali Docs Kali Forums NetHunter]| Offensive Security Exploit-DB GHDB] MSFU

0 bytes

No expiration

9 bytes)
time

last modified No expiration
0 bytes) -
time time

2021-04-22 2021-04-15

455 bytes
15:43:24 10:20:44

2021-04-22
19569 bytes

182 bytes

665 bytes

2021-04-22

83075 bytes
15:43:23

4756 bytes

2021-04-22

2 s
727 byte 15:43:26

9 Eyiice 2021-04-22
]
CRETVFAVSXtSXVHIRjVNp f14KFh31 yoeDUTM ’ 15:43:31

3f8cb2-2df1-4547-

Ffotoboks%2Fauths?Fdataportens?Fcallback&
detemail&state=74Kx - @ bytes

2021-04-22 Expired
15:43:31 Immediately

Figure 2 : The contents of the private cache for the Firefox browser

c18

Vary: Accept
Content-Type: text/html; charset=utf-8
Content-Length:

original-response- Date: Thu, 22 Apr 2021 13:43:23 GMT

headers: Server: Apache/2.4 Ubuntu)

X-DNS-Prefetch-Control: off
X-Frame-Options: SAMEORIGIN
Strict-Transport-Security: max-age=15552000;
includeSubDomains
X-Download-Options: noopen
X-Content-Type-Options: nosniff
X-XS5-Protection: 1; mode=block
Location: /fotoboks/
Vary: Accept
Content-Type: text/html; charset=utf-8
Content-Length: 64
Set-Cookie: session=i Z gIbjfudmfhcoTviZeA.fk7v2-
MJANCZOSY41yLQrIMGOImxck]aDV1b1L64DQEQ8SF5ZmOYNOUAYVT1dhl gkTk-
eilvaoHX_3w6RMz90Q 6tFejslr86zTEhKulk8GUSAXNYwW-
Vnd3LOWm1zTRi1lE_fOcnzCmSWkKmDEWWCS8bEBKKVmmnOkm syMHLXrLU-
90EuCc2NNWXVT rrn4aZ6GKX9kdUteb-
HOkoyGuNctA.1619098998721.86400000.Dxv0IhKrFIR14h vnlhddraQAlYjhiBa3ZgfNfOIXRY;
path=/; expire i, 23 Apr 2021 13:43:19 GMT; httponly
Connection: close

Figure 3 : Excerpt from the contents of a cache entry showing an authenticated session.

Figure 2 shows content from “about:cache” in the Firefox browser after logging in and out of Fotoboks.
The cached resource from “/fotoboks/auth/dataporten/callback?” seems innocent with its O bytes body,
but it contains the set-cookie header and shows a potentially authenticated session if you view it before
the session has expired. As you can see on Figure 3, we can look at the session cookie and see when it
expires.

This data should not be cached at all, the specific session cookie in the response is supposed to be
accessed once and put in the browser.

Risk Assessment

Likelihood Score:

To exploit this issue, you need access to private caches between the user and the Fotoboks server. This
would typically mean having access to the computer a potential victim used to access the application.
Also, it would need to be done within 24 hours as the session cookie must be valid.

Impact Score:

If an attacker can manage to access a private cache, then they could get full authentication as another
user. Allowing the attacker to do anything the application allows you to do authenticated and
authorized as the victim.

c19

Overall Risk Severity:

Although the impact is moderate this vulnerability requires that the attacker has access to the victim’s
computer and the risk severity is therefore set to low.

Recommendation

It is especially important that the responses setting the session cookie has cache-control set to “no-
store, max-age=0" to prevent caching entirely. Setting “max-age=0" will force caches to revalidate
existing entries and clear the cache for these responses. The main page should set cache control to
“public, max-age=0, must-revalidate” if it is intended that a user should always be sent to login when
accessing the frontpage unauthenticated. [3]

7. Cookie “session” Missing Secure Attribute

WSTG-SESS-02, WSTG-CRYP-03, WSTG-ATHN-01

Description

The session cookie gives authorized access to the application but does not have the “Secure”-attribute
set, meaning the cookie does not require an encrypted connection to be sent. When accessing
“http://innsidautv.ntnu.no/fotoboks” the cookie will be sent over the unencrypted HTTP connection
before redirecting to HTTPS. This vulnerability only works if the browser does not know that the
application uses HSTS. After the browser encounters a HSTS header it will only use HTTPS when
communicating with the web service. For the cookie to be sent over HTTP the browser needs to forget
the HSTS header, for example through deleting the browser data while keeping the cookies.

Risk Assessment

Likelihood Score:

The likelihood of this vulnerability being exploited is low. After connecting to innsidautv.ntnu.no once,
the browser will remember the HSTS header, and that the connection is supposed to go over HTTPS. In
order for this vulnerability to be exploited the victim must delete its browser data, but not their cookie
data, after they have logged in to innsida.ntnu.no or innsidautv.ntnu.no.

Impact Score:

Stealing the session cookie gives full access to the victims Fotoboks. Worst case for the victim is that it
has to cancel a card ordered by the attacker, or has the pin changed to an unknown value.

c20

http://innsidautv.ntnu.no/fotoboks

Overall Risk Severity:

The likelihood of this being exploited is very low but it does make it possible to steal sessions and should
therefore be addressed.
Recommendation

Add the “Secure”-attribute to the session cookie. This attribute will require the connection to be
encrypted for the cookie to be sent.

8. Trusting Frontend to Limit POST

WSTG-BUSL-05

Description

The front-end has a limit of 1 uploaded image per session, but this limit is easy to bypass. This limit is
enforced by updating a variable in the cookie “session”, after this the frontend will notify you that you
have already uploaded and prompt you to log out. If you circumvent the frontend, you will see that you
can repeatedly upload images with no limit as the server still accepts the “session” cookie. It works to
post with both the old and the updated session cookie.

Risk Assessment

Likelihood Score:

Discovering this vulnerability is easy. Intercepting and modifying the post request can for example be
done with the Burp Suite Proxy. The likelihood is lowered by the fact that the exploitation of this
vulnerability is easily tracked to the exploiter’s account.

Impact Score:

By not limiting the rate of image uploads the service is more vulnerable to DoS-attacks.

Overall Risk Severity:

It is easy to discover this vulnerability, but it is traceable to an account and would only affect server-
load.

Recommendation

The user should be logged out of Fotoboks on a successful post, which should invalidate the session
cookie. The user does not have to be logged out from Feide however but can be presented with a
prompt to do so.

c21

9. No Automated Response to Repeated Errors

WSTG-BUSL-07

Description

It appears to be no active defenses against misuse of the application. Although there is some logging on
all requests, there is no rate limiting on errors. Also, as this application is only meant to be used once by
each individual user to send the data needed to make one access-card, it should be easy to detect and
block fuzzing attempts.

Risk Assessment

Likelihood Score:

It is easily discovered that the attempted rate limiting does not actually work as you can confirm it by
sending the same POST request twice.

Impact Score:

No automated responses make probing and fuzzing for weaknesses much faster/easier. This
vulnerability mostly affects the information gathering and preparation phase. It might also be exploited
to launch a DoS attack.

Overall Risk Severity:

This is not a difficult vulnerability to find, but it does not have any direct system impact, apart from
possibly being used in a DoS attack. The OWASP Web Security Testing Guide [1] list the lack of

automated responses as a noteworthy issue.

Recommendation

Since this application only requires one POST request per user, it would be recommended to implement
some form of rate limiting on general use.

C22

10. CVE for Nodemailer

WSTG-CONF-01

Description

The version of Nodemailer was found through reviewing the source code. Searching for the Nodemailer
version shows there is one CVE: CVE-2020-7769 [4]. The issue described is: “Use of crafted recipient
email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.

”

The application does not allow users to decide recipient email, the recipient is decided by data acquired
from Feide. Because of this it is not likely that the application is vulnerable to this issue, but it is still of
note if the situation changes, and users can for any reason set recipient for the sent email.

Risk Assessment

Likelihood Score:
There is no way to exploit this vulnerability since the users can not set the recipient for emails.

Impact Score:
The impact is low as there is no way to exploit this vulnerability.
Overall Risk Severity:

This vulnerability may not be exploited as the application does not use the exploitable features in
Nodemailer, but it is noteworthy since the application may use these features in the future.

Recommendation

There is no immediate action required for this vulnerability, but it should be kept in mind if the app is
ever expanded with new functionality. Updating Nodemailer to version 6.4.16 will eliminate this
vulnerability completely.

Cc23

11. Minimal Logging

WSTG-CONF-02

Description

By reviewing the source code, the team could see exactly what was logged for each request sent to the
server. As it is now there is not a lot that gets logged: standard info about the remote user and the
request, along with the status code. If there are any errors, it will be possible to detect it by looking at
the response code. However, it is not possible to see what caused the error. As the data sent to the
database is supposed to be sanitized user data, the application should notify or at least log when there is
an error with the SQL.

Risk Assessment

Likelihood Score:

The likelihood of this vulnerability being exploited by an attacker is low. This vulnerability would not be
directly exploited by an attacker, but it could hamper the developer’s ability to detect abnormalities.

Logging is a tool used by the developers of the system to monitor it, and a lack of logging makes
monitoring difficult.

Impact Score:

Minimal logging will impact the developers when trying to determent what caused errors.

Overall risk severity:

There is no direct impact on the system and the likelihood of finding a way to exploit this is very low.

Recommendation

Some user input should be included in the log when errors are encountered.

C24

12. SameSite Cookie Attribute Missing

ZAP

Description

The SameSite attribute is an effective counter measure to cross-site request forgery, cross-site script
inclusion, and timing attacks. Fotoboks uses the custom header “x-token” as an anti-CSRF token, but it is
still good practice that the SameSite attribute is set to either 'lax' or ideally 'strict' for all cookies.

Risk Assessment

Likelihood score:

The service is using x-token as an anti-CSRF token; therefore, the likelihood of this vulnerability being
exploited is low to none.

Impact score:

This vulnerability may be exploited in a case where x-token is missing. However, in the current version of
the application, the x-token header is always properly set.

Overall risk severity:

Setting the SameSite attribute is to take extra precautions in case of further development of the system,
and to follow good practice.

Recommendation

The SameSite attribute should be set to either 'lax' or ideally 'strict' for all cookies.

C25

13. Long Session Timeout

WSTG-SESS-07

Description

The application uses the same session cookie to authenticate requests for 24 hours. This is much longer
than what it needs to be, which can lead to sessions being hijacked long after a user used the session.

Risk Assessment

Likelihood score:

It is not likely that this vulnerability will be exploited. It only makes the timeframe in which the session
can be hijacked larger. For example, if an attacker has access to a computer where a victim is logged in,
the attacker could use that session up to 24 hours after the victim logged in.

Impact score:

This vulnerability does not directly make the act of hijacking a session easier. As mentioned in the
likelihood score, it only increases the timeframe in which the session can be stolen.

Overall Risk Severity:

It is not likely that this vulnerability will be exploited, and the impact would be low. Even so, the long
expire time puts the cookie at unnecessary risk.

Recommendation

Reduce the time for the session cookie to expire. OWASP recommends it being set to somewhere
between 15 and 30 minutes. [5]

C26

14. Rpcbind on open port 111

Nmap

Description

The Nmap scan revealed an rpcbind service running on port 111 and is open to the public.

Risk Assessment

Likelihood Score:

There are no vulnerabilities known to the team for this port.
Impact Score:

The open port increases the attack surface.

Overall Risk Severity:

The attack surface is increased, but there are no vulnerabilities known to the team. In the future,
vulnerabilities might be discovered that exploits the fact that port 111 is open.

Recommendation

Evaluate if the rpcbind port 111 is required to be open to the public. If not, it should be closed.

c27

Finding Summary

Overview
Vulnerability Name
. No Authentication on SMTP Server
. Upload Malicious Files
. User-input Not Sanitized
. CVEs for Apache HTTP server version
. Broken Logout
. Broken Cache-Control
. Cookie “session” Missing Secure Attribute
. Trusting Frontend to Limit POST
. No Automated Response to Repeated Errors

Likelihood Severity

OO |N|O|NDWIN |-

10. CVE for Nodemailer Low

11. Minimal Logging Low Low
12. “SameSite” Cookie Attribute Missing Low Low
13. Long Session Timeout Low Low
14. Rpcbind on open port 111 Low Low

Table 8: Overview of findings including likelihood score, impact score and risk severity.

Combining Vulnerabilities

The broken logout means an authenticated session cookie is never invalidated before it expires, this
combined with a long session timeout of 24 hours leaves the cookie vulnerable. On top of that the
cookie is saved in the cache because of broken cache-control. An attacker with access to the machine of
a victim has a 24-hour window to extract the cookie from the cache, even when the user logged out, and
may hijack the session. The fact that these vulnerabilities can be combined were not taken into
consideration when giving them individual likelihood and impact scores, but they are more likely to be
exploited when used together.

Cc28

Web Application Penetration Test Report

Test IDs reference to the OWASP Web Security Testing Guide and results
The following tests are executed as described in the OWASP Web Security Testing Guide [1]. The tests’
reference codes will match a code in the guide. The tests also have a title, a description of the test

performed with results, and a status. The title of the tests also matches a title in the guide. The status is
explained in the table below.

Table 9

Status | Description

Test results revealed no issues

Test results revealed issues

N/A | Test not applicable for this application/service

Table 10: Overview of test status and color codes.

Information Gathering
WSTG-INFO-01

Conduct Search Engine Discovery and Reconnaissance for Information Leakage

All public info that could be found about Fotoboks is that it is a digital photo box that you use to set the
photo for you student id or your employee id card. This information was found on public pages meant
for new students and employees; it did not reveal any sensitive info about the application itself.

Cc29

WSTG-INFO-02

Fingerprint Web Server Issues

Checked the response headers with Burp Suite Proxy and found that the service runs on an Apache HTTP
Server 2.4.29. This version was released October 23, 2017. This server should be updated to version

2.4.46, released August 7, 2020.

Fingerprint through nmap gave:

80/tcp open

http

Apache httpd 2.4.29

443 /tcp open

ssl/http

Apache httpd 2.4.29
((Ubuntu))

Table 11: Nmap results, see Nmap.

More details on this vulnerability and the risk severity can be found under CVEs for Apache HTTP server

version.

WSTG-INFO-03

Review Webserver Metafiles for Information Leakage

Found robots.txt, but the contents were empty.

User-Agent: *
Disallow:
Sitemap: http://innsida.ntnu.no/sitemap.xml

Figure 4: The contents of robots.txt

WSTG-INFO-04

Enumerate Applications on Webserver

N/A

We are only to test https://innsidautv.ntnu.no/Fotoboks/. Meaning the application itself.

C30

https://innsidautv.ntnu.no/Fotoboks/

WSTG-INFO-05

Review Webpage Comments and Metadata for Information Leakage

Read through source code, there are no revealing comments.

WSTG-INFO-06

Identify application entry points

page interesting interesting authenticated/u multi-step websocket
request Where to find request type | parameters headers nauthenticated TLS process s other notes
Only to
innsidautv.n keep
tnu.no/fotob connection
oks/flags GET Cookie: session Cookie: session | yes no open?
sends json
object
containing
Save button in x-token, file, pin and
"Confirm Content- location. Is
innsidautv.n | image and Type: x-token a
tnu.no/fotob choose PIN" application custom
oks/ page POST Cookie: session /json Cookie: session | yes no header?
innsidautv.n Upgrade-
tnu.no/fotob Cookie:JSESSION | Insecure- beginning initiates
oks/logout logout button GET ID=...; session=... Requests Cookie: session | yes of loggout no logout
sends json
save button x-token, object
innsidautv.n | under "just Content- containing
tnu.no/fotob | change PIN" Type:appli pin. X-token
oks/pin option POST Cookie: session cation/json Cookie: session | yes no again
sends json
Save button in object
"Confirm containing
image and x-token, file, pin and
choose PIN" Content- location. Is
innsidautv.n | page after Type: x-token a
tnu.no/fotob | taking foto application custom
oks/ with web cam POST Cookie: session lison Cookie: session | yes no header?

C31

Cookie:
JSESSIONID=...;
COOKIE_SUPPO
RT=true;
GUEST_LANGUA
GE_ID=nb_NO;
ga=...; _gid=...;
nmstat=...; beginning
LFR_SESSION_S of redirect. rediriects to
"For students" TATE_10135=... Leaves innsida info
innsida.ntnu | link after referer: innsidautv. page on
.no/studentk | submitting https://innsidautv.n ntnu.nof/fot student
ort image and pin GET tnu.no/ yes oboks/ no cards
Cookie:
JSESSIONID=...;
COOKIE_SUPPO
RT=true;
GUEST_LANGUA
GE_ID=nb_NO;
ga=...; _gid=...;
nmstat=...; _gat=1; beginning
"For LFR_SESSION_S of redirect. rediriects to
employees” TATE_10135=... Leaves innsida info
innsida.ntnu | link after referer: innsidautv. page on
.no/adgangs | submitting https://innsidautv.n ntnu.nof/fot employee
kort image and pin GET tnu.no/ yes oboks/ no cards
Cookie:
JSESSIONID=...;
COOKIE_SUPPO
RT=true;
GUEST_LANGUA
GE_ID=nb_NO;
innsida.ntnu ga=...; _gid=...;
.no/wiki/- nmstat=...; beginning rediriects to
/wiki/English | "For LFR_SESSION_S of redirect. innsida info
/Photo+requ | employees"” TATE_10135=... Leaves page on
irements+fo | link after referer: innsidautv. accesss
r+access+c submitting https://innsidautv.n ntnu.no/fot card
ards image and pin GET tnu.no/ yes oboks/ no guidelines

Table 12: Overview of all identified non-admin functionality entry points in the application.

WSTG-INFO-07

Map execution paths through application

These are the endpoints used by the application during normal usage:

/fotoboks (GET, POST)

/fotoboks/logout

/fotoboks/auth/dataporten
/fotoboks/auth/dataporten/callback?[code]&[state]
/fotoboks/flags

/fotoboks/pin (POST)

/fotoboks/styles.cc406¢79.css
/fotoboks/src.72cf6el5.js
/fotoboks/favicon.49662822.ico

Figure 5: The endpoint in the application

C32

WSTG-INFO-08

Fingerprint Web Application Framework

Identified node.js by generating 404 error, see WSTG-ERRH-01.
The session cookie is generic.

Wappalyzer fingerprinted OS to be Ubuntu.

WSTG-INFO-09

Fingerprint Web Application

N/A

Merged with WSTG-INFO-08.

C33

WSTG-INFO-10

Map Application Architecture

Frontend React app

Client side
Server side
Apache server
(Ubuntu) working as
areverse proxy
Express/node.js
server Database

Figure 6: An overview of the different components of the system.

Configuration and Deploy Management Testing
WSTG-CONF-01

Test Network/Infrastructure Configuration

There are known exploits for the version of Nodemailer used in this program. The usage of Nodemailer
was found by reviewing the source code.

More details on this vulnerability and the risk severity can be found under Trusting Frontend to Limit
POST.

C34

WSTG-CONF-02

Test Application Platform Configuration

Read source code. Back-end does not log input that caused errors, and it does not react to repeated
errors. The lack of rate limiting is experienced while performing automated scans.

More details on this vulnerability and the risk severity can be found under Minimal Logging.

WSTG-CONF-03

Test File Extensions Handling for Sensitive Information

A Nikto scan was performed. It revealed no files or sensitive information.

A DirBuster scan was also performed but it did not find anything either.

WSTG-CONF-04

Backup and Unreferenced Files for Sensitive Information

Found no backups or unreferenced files in source code.

WSTG-CONF-05

Enumerate Infrastructure and Application Admin Interfaces

Ran a Nikto and a DirBuster scan and found no admin-pages nor endpoints.

WSTG-CONF-06

Test HTTP Methods

C35

The application consistently allows OPTIONS and HEAD. It will allow GET and/or POST if there is
functionality that requires it, if not it will return the standard 404 from the node.js server. Ifitis a
recognized HTTP method the server will reply with a 404 message if it is not one of the methods
specified in OPTIONS.

The exceptions are TRACE and CONNECT. TRACE returns the error code 405 “method not allowed” from
the reverse proxy and CONNECT returns a 400 bad request. If the server receives a request without an
HTTP method or with a non-recognized HTTP method, it will return the error code 400 “bad request”.

WSTG-CONF-07

Test HTTP Strict Transport Security

All responses from the application were checked with Burp proxy. The HSTS header is set correctly.

WSTG-CONF-08

Test RIA cross domain policy

No policy files were found. “crossdomain.xml” and “clientaccesspolicy.xml” was searched for. An
automated scan by DirBuster did not reveal any policy files either.

Identity Management Testing

N/A

Identity management is handled by Feide. We have not performed any tests on the Feide system.

C36

Authentication Testing
WSTG-ATHN-01

Testing for Credentials Transported over an Encrypted Channel

The application was checked for the HSTS in WSTG-CONF-07. It is set properly. However, WSTG-SESS-02
revealed that the “secure” attribute is not set on the “session” cookie. This means it exists an edge case
where the session cookie can be sent over an unencrypted connection. This is detailed under Cookie
“session” missing secure attribute.

WSTG-ATHN-02

Testing for default credentials

N/A

This part of the application is handled by Feide.

WSTG-ATHN-03

Testing for Weak lock out mechanism

N/A

Login is handled by Feide.

WSTG-ATHN-04

Testing for bypassing authentication schema

There is no way to bypass the authentication schema. This was tested by intercepting request with Burp
Suite proxy and tampering with the session cookie and the “x-token” header. Tampering with the “x-
token” header will only display the following message: “Sorry! Saving failed (server error)”.

Tampering with the session cookie will only display this message: “You are no longer logged in” when
sending a POST request.

Sending a GET request to innsidautv.ntnu.no/fotoboks/flags with an invalid session cookie will only
return an empty object like this: “{}".

Cc37

session#_7._Cookie_
session#_7._Cookie_

WSTG-ATHN-05

Test remember password functionality

N/A

Fotoboks does not handle login credentials.

WSTG-ATHN-06

Testing for Browser cache weakness

The cache-control header was checked using Burp Suite proxy.

The main page sets Cache-control header to “public, max-age=0" meaning that it will quite often be
cached, setting the max-age to 0 does not stop the browser from serving cached sites as shown in the
image below.

& >4 & https://innsidautv.ntnu.no/fotoboks/

MNetwork

Img Media Font Doc W

50 ms 60 ms

Reglene

Bildet til bruk pa adgangskort skal vaere tilsvarende et

passfoto. Dette innebeerer: Name Status Type Initiat... Siz

v/ Bakgrunnen mé vare hvit eller neytral

v/ Ansiktet skal fylle 70-80 prosent av bildet

v Bildet ma vise hele hodet

v/ Ansiktet ma vaere avhildet rett forfra

v Blikket ma vaere rettet mot kameraets linse

v @ynene skal vare pne, klart synlige og ikke

dekket av har

Hodeplagg er ikke tillatt, med unntak av religiase

hodeplagg

v solbriller ikke tillatt

v Det er tillatt med vanlige briller, men unnga e £ AU RO
refleksjon i glassene

v Bildet ma ha skarpt fokus og god kontrast

AN

Du ma selv betale for nytt adgangskort ved dpenbare
brudd pa retningslinjene over. Disse retningslinjer
finnes ogsa pa Innsida.&

Velg en fil

Figure 7: A screenshot of the Chrome browser serving the Fotoboks main page from disk cache.

C38

On login and logout, where the session cookie is set there is no cache control header, the server does
not specify any policy on web-caching. It will then default to setting the cache control to private, which
means that your own browser will always store the session cookie in the browser’s web-cache when you
get it. This is usually not a big issue but the case where you access Fotoboks on a system other people
have access to. As a best practice any response sending session cookies should not be cached at all, as
they are supposed to identify a specific session and should be different for each login.

More details on this vulnerability and the risk severity can be found under Broken Cache-Control.

WSTG-ATHN-07

Testing for Weak password policy

N/A

Fotoboks does not handle passwords.

WSTG-ATHN-08

Testing for Weak security question/answer

N/A

This type of functionality is not used, and if it were used it would have been handled by Feide.

WSTG-ATHN-09

Testing for weak password change or reset functionalities

N/A

Fotoboks does not handle passwords.

WSTG-ATHN-10

Testing for Weaker authentication in alternative channel

N/A

Authentication handled by Feide.

C39

Authorization Testing
WSTG-ATHZ-01

Testing Directory traversal/file include

The application uses express and has no endpoints with parameters, therefore, there is no access to the
directory.

WSTG-ATHZ-02

Testing for bypassing authorization schema

Resources cannot be access without authentication, which was tested in WSTG-ATHN-04. Given
that there is only one level of authorization, this cannot be bypassed.

WSTG-ATHZ-03

Testing for Privilege Escalation

The possibility of privilege escalation in this application is dependent on either an SQL injection to do
unauthorized operations in the database, or by changing the ID used to identify each user in the
database. This ID is stored in the “session” cookie, attempts at forging this was unsuccessful.

WSTG-ATHZ-04

Testing for Insecure Direct Object References

No user input was detected that could be used as a direct object reference.

c40

Session Management Testing
WSTG-SESS-01

Testing for Bypassing Session Management Schema

Session cookies were collected from different members of the team with the Cookie/Token list Script.
The cookies seem to be completely random except for dots and the repeated “86400000”. Following is a
small sample of session cookies.

G1jPZDRrtYUp50wKycIMuw.
FDAKORIbSyCJYx3Ps1R1fkPu3vXugacsFtaaC-8l0vLBNsOVT6jXNGCKVyfqf3PPPZFwMCXdBU3IYiCdcnRckCn6LbbISZY3IMhBikxa-
attn4f2ejAMp3Mq613zLjPqWcuDMfDLIaYVva7dnORiFouRedA7bXIRh2f6Zim5JxcOz)iCrcAO5mOQXgph2yEHEE0QiUsefwDcuF2t
429QDyAu715gSAs8SLIbY7luly8.

1612950446586.

86400000.

8PczOjmd1khXF4vON6QNNoIP_2TMGCUE7WQkxiYXBAO

c3u3BrR85kFO7zmblc3QrA.
ZDmwNrGuaZ9CIONvzpLVd1rgngMex9FwDM3laCbbkKaTGpg2Hlyz2gxXhXjvJ2BLhQrs91R7X0YsVrcCXF14y6cM5945;TWp6108
Wc0-jsTgvOhKHx5x8bPF4okObCfmleTwj7ktsn4LYirRO7w2b18pQ-
webmTKxa7K3bh2UnFh6ZY3iSOMKI8bnRIk2D9V00aDjLZz9MadDZMhbFm3NNLhRIDsOjc_4YR19s3Y248.

1612950450546.

86400000.

jBTn94-HajF3EEP6Y28rtG1lhizdTnE4977UVael_XKc

tq9HrWxIGk6xOZYRC_yKsQ.
_hYtYy4Xaqu9fin4tFLnUxc9utDG3s20Qh75UpggR1IWpMmyKTADT7CbWvMeTlyThG37nTUiPXrnuk-
rziQwqc1nfYDzSH8ES5XPyVrgciQhfNYOUBsFqyM3n3WR8Fy6L7FICRVKOoEuYs_vFdOHVoiTdLXHuOvUplJ9wKX-9sX-qCIJHNiNA-
Aac_zdvvbTlts_iyrQ5QikkeNNGvvqtkgQHeTGKNsm9qlcdajtesYHoO.

1612950452466.

86400000.

ASLUDVBj--i7Nxu33MUnQKRN6bBVE8KNmMiNuUVmtiuw4

Table 13: A collection of session cookies.

There is no use looking at the x-token since it always requires valid session cookie, and with a valid
session cookie you may ask for a x-token by sending a request to the /fotoboks/flags endpoint.

c41

SESSION cookie variation

Different characters count on each index of the SESSION cookie over multiple cookies

Same user, Same day

Figure 8: 10 sessions from the same user from the same day.

c42

>
®
©
-
c
)
1
@
e
=
(=]
-
@
17
3
o
£
®
7

Figure 9: 40 sessions from the same user from different days.

Cc43

Different users, Same day

Figure 10: 40 sessions from 2 different users from the same day.

By comparing Figure 8 and Figure 9 we see that there is no significant difference in variation based on
time, meaning it is no way to predict parts of the cookie based on time. By comparing Figure 8 and
Figure 10 we see that there is no significant difference in variation based on the user, meaning there is
no way to predict parts of the cookie based on user-id or something similar.

WSTG-SESS-02

Testing for Cookies attributes

Used Burp Suite Proxy to look at the set-cookies attributes. The "session"-cookie does not use the
"Secure"-attribute. This cookie gives authorized access to Fotoboks. The Strict-Transport-Security header
is set, so there are only very special cases where the cookie may be exposed. These special cases are
described under the Cookie “session” missing secure attribute section.

ZAP found that the cookie “session” is also missing the SameSite attribute. The SameSite attribute is an
effective counter measure to cross-site request forgery, cross-site script inclusion, and timing attacks.

C44

More details on this vulnerability and the risk severity can be found under SameSite Cookie Attribute
Missing.

WSTG-SESS-03

Testing for Session Fixation

The application does not validate existing sessions, but instead creates a valid new session if your SSO
session (Feide session) is valid.

WSTG-SESS-04

Testing for Exposed Session Variables

The application does not make sure that sessions are not cached. To make sure the session cookie is not
cached under any circumstances the Cache-Control header should be set to “no-cache, max-age=0" on
any responses carrying the Set-Cookie header. This will ensure that it will not be cached.

Also as mentioned in WSTG-SESS-02 the secure attribute is missing on the session cookie.

More details on these vulnerabilities and the risk severity can be found under Broken Cache-Control and
Cookie “session” Missing Secure Attribute.

C45

session#_7._Cookie_

WSTG-SESS-05

Testing for Cross Site Request Forgery

The application has a custom header called x-token. This header protects the application against CSRF as
JavaScript cannot set custom headers if it is cross origin. This header was viewed by intercepting a
request to the application with Burp Suite Proxy.

Example of what the x-token looks like:

eyJ0eXAiOiIJKV1QiLCIhbGciOiIUzIINiJ9.ey)zd WIiOil20GMwzjI1Yi03YjBmLTRKNmUtODMwMy02NjQ3Y
mVhZmY2YzEiLCJleHAIOjE2MTgzODg0OTcwNzN9.s2Wm-
KOauLgpypxhJIsMqBrwIN4kG3VdBIL_5VoQ2y4

Figure 11: An x-token.

WSTG-SESS-06

Testing for logout functionality

The logout button is always visible.

The session cookie is not invalidated on the server side on logout. This was tested with Burp Suite
Repeater. The server trusts that the client discards the old session cookie on logout and supplies a new
one that is not authenticated. Using the old session cookie after having been logged out will allow you to
post new data. The x-token times out after 15min, and the session-cookie times out after 24 hours and
can generate new tokens while it is valid. An authenticated session will be valid until it times out, logging
out does nothing to hinder this.

C46

Figure 12: Entering the old cookie after logout allows you to extract new tokens.

If we replace the session cookie with the cookie we had before logging out, we can still get the /flags
endpoint and receive a new valid token.

After reading source code we can see that one session is invalidated and that is the Feide session. This
was confirmed by checking innsida.ntnu.no. If you were logged in to Fotoboks and try to access Innsida
you will be authenticated through Feide. If you try the same after having logged out of Fotoboks you will
not be authenticated and prompted to enter you Feide credentials again. If replicating this make sure to
be logged out of Innsida when testing both cases as you can be logged in to Innsida without having an
active SSO session with Feide.

More details on this vulnerability and the risk severity can be found under Broken Logout.

WSTG-SESS-07

Test Session Timeout

The “session” cookie is valid for 24 hours. This increases the risk of exploiting the exposed session cookie
and broken logout vulnerabilities described in WSTG-SESS-04 and WSTG-SESS-06

The sessions do timeout, attempting to post using a timed-out session returns 401.

More details on this vulnerability and the risk severity can be found under Long Session Timeout.

Cc47

WSTG-SESS-08

Testing for Session puzzling

No variables are used in two different ways. The “session” cookie is updated on logout and on POST
requests for the front-end to enforce change. If you use the old cookies in POST requests, you may
bypass POST limit and still be authenticated after logout. It is also possible to use the updated cookie
after a POST request if you bypass the front-end.

More details on these vulnerabilities and the risk severity can be found under Broken Logout and
Trusting Frontend to Limit POST.

Data Validation Testing
WSTG-INPV-01

Testing for Reflected Cross Site Scripting

No user input, to the backend, is ever presented to the user. It only saves the information posted. The
only user input presented to the user in the front-end is an image.

WSTG-INPV-02

Testing for Stored Cross Site Scripting

No user input is stored and then presented on the site.

WSTG-INPV-03

Testing for HTTP Verb Tampering

Read source code and tested with Burp Suite Proxy. Endpoints configured correctly.

Cc48

WSTG-INPV-04

Testing for HTTP Parameter pollution

During POST requests the input is only read once. The sanitizing that could potentially be bypassed
through HTTP parameter pollution is the check on the filetype. By looking at the source code we can see
that data from the request is immediately converted from base64 and put in another variable before it is
sanitized. Other data in the request is also read only once when put in the SQL query. This means all
data is only used once, so HTTP parameter pollution is not possible in this application.

WSTG-INPV-05

Testing for SQL Injection

Read source code. The service only updates 1 row in the database and is using prepared statements.

WSTG-INPV-06

Testing for LDAP Injection

The application never uses input from the user, it only stores it in a database. There it will not be
possible to execute queries needed for a LDAP injection attack.

WSTG-INPV-07

Testing for XML Injection

N/A

The application never takes any XML as input.

c49

WSTG-INPV-08

Testing for SSI Injection

The user input is only stored in a database, and prepared statements are used to store them. Therefore,
SSl injection is not possible. This was tested by analyzing the source code.

WSTG-INPV-09

Testing for XPath Injection

N/A

No XML is used in requests or responses in this application.

WSTG-INPV-10

IMAP/SMTP Injection

Read source code. Mail service takes no user input, only uses users email from session cookie.

WSTG-INPV-11

Testing for Code Injection

Testing code injection payloads on the image and pin input using Burp Suite Proxy has not been
successful.

WSTG-INPV-12

Testing for Command Injection

User input is only stored in a database using prepared statements, so there are no entry points for
command injection.

C50

WSTG-INPV-13

Testing for Format String

This was tested by sending in strings such as “%s%s%s%s%s%s%s%s” to the server, but it gave no result.
The inputs are only stored in the database.

WSTG-INPV-14

Testing for Incubated Vulnerabilities

Read source code and found that the service does not sanitize user input. We do not have access to the
system that retrieves JPEG, PIN or location from the database, and may therefore not test for
vulnerabilities. Based on our knowledge and access we think it might be possible to enter “js([code])” as
PIN/location, and since the input is not sanitized, cause issues down the line. See WSTG-BUSL-09.

More details on these vulnerabilities and the risk severity can be found under User-input Not Sanitized
and Upload Malicious Files.

WSTG-INPV-15

Testing for HTTP Splitting/Smuggling

HTTP Splitting/Smuggling was tested by running “HTTP Request Smuggler”, which is an automated test
extension for Burp Suite. “Flow”, which is another extension for Burp suite, was also used to see the
responses to the Request Smuggler’s requests. No vulnerabilities were found.

C51

Burp Suite Community

Burp Project Intruder Repeater Window Help
[Dashboard TTarget Proxy | Intruder TRepeater T Sequencer T Decoder I Comparer I Extender T Project options T User options | Flow

| Filter: All, All sources, Capture: All sources
v | Tool | Host | Method | URL | Reflect | Params | Count | Status | Length | MIME | Time
59 Extender https:/finnsidaute. ntnu POST [fotoboks/ €] 4 400 311 HTML 09:37:25 13 Apr 2021
58 Extender https:/ffinnsidautv.ntnu... POST [fotoboks/] 4 400 311 HTML 09:37:24 13 Apr 2021
B/ Extender https:ffinnsidaute. ntnu POST [fotoboks/ €] 2 400 311 HTML 09:37:23 13 Apr 2021
56 Extender https:ffinnsidaute.ntnu... POST [fotoboks/] 2 400 311 HTML 09:37:22 13 Apr 2021
55 Extender https:ffinnsidautv. ntnu POST [fotoboks/)] 4 400 311 HTML 09:37:21 13 Apr 2021
54 Extender https:ffinnsidautv.ntnu... POST [fotoboks/] 4 400 311 HTML 09:37:20 13 Apr 2021
53 Extender https:/ffinnsidautv.ntnu... POST [fotoboks/] 2 400 311 HTML 09:37:19 13 Apr 2021
52 Extender https:/finnsidautv. ntnu POST [fotoboks/] 2 400 311 HTML 09:37:18 13 Apr 2021
51 Extender https:ffinnsidaute.ntnu... POST ffotoboks/] 4 400 311 HTML 09:37:17 13 Apr 2021
50 Extender https:ffinnsidautv.ntnu POST [fotoboks/ €] 4 400 311 HTML 09:37:15 13 Apr 2021
49 Extender https:ffinnsidaute.ntnu... POST [fotoboks/] 2 400 311 HTML 09:37:14 13 Apr 2021
48 Extender https:ffinnsidautv.ntnu... POST [fotoboks/] 2 400 311 HTML 09:37:13 13 Apr 2021
47 Extender https:/finnsidaute. ntnu POST [fotoboks/] 4 400 311 HTML 09:37:12 13 Apr 2021
46 Extender https:ffinnsidautv.ntnu... POST [fotoboks/] 4 400 311 HTML 09:37:11 13 Apr 2021
45 Extender https:ffinnsidaute. ntnu POST [fotoboks/ €] 2 400 311 HTML 09:37:10 13 Apr 2021
44 r y @ = 616 HTML
43 r @ HTML
42 E T ® 4 HTML
41 Ext r 5 () 2 HTML
40 Extender https:ffinnsidaute. ntnu [fotoboks/ €] 2 400 HTML 09:37:05 13 Apr 2021
39 Extender https:/finnsidautv. ntru... ffotoboks/] 4 400 311 HTML 09:37:04 13 Apr 2021
38 Extender https:ffinnsidautv.ntnu [fotoboks/ €] 4 400 311 HTML 09:37:03 13 Apr 2021
37 Extender https:/finnsidautv. ntnu... [fotoboks/] 2 400 311 HTML 09:37:02 13 Apr 2021
36 Extender https:ffinnsidautv.ntnu. .. [fotoboks/] 2 400 311 HTML 09:37:01 13 Apr 2021
35 Extender https:/finnsidaute. ntnu [fotoboks/] 4 400 311 HTML 09:37:00 13 Apr 2021
34 Extender https:/finnsidautv. ntru... [fotoboks/ =@ 4 400 311 HTML 09:36:59 13 Apr 2021
33 Extender https:ffinnsidaute. ntnu [fotoboks/ €] 2 400 311 HTML 09:36:58 13 Apr 2021

Figure 13: flow gives an overview of all the requests.

p—
Raw IParams THeaders]Hex l

1

i Sec-Fetch-Site: cross-site
9 Sec-Fetch-Mode: navigate
) Sec-Fetch-Dest: document

? Transfer-Encoding: chnked

m n Actions v

POST /fotoboks/ HTTP/1.1

Hest: innsidautv.ntnu.ne

Connection: close

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S5 X 10 14 2) AppleWebKit/537,36 (KHTML, like Gecko) Chrome/71.0,3578.98
Safari/537.36

Accept:

text/html,application/xhtel+xml,application/xml;q=0.9,1image/avif,image/webp, image/apng,*/*;q=0.8,application/signed-exchange;v=b3
;q=0.9

T

Referer: https://idp.feide.no/

Accept -Encoding: gzip, deflate

Accept -Language:! en-US.en;g=0.9

Cookie: session=

pKSAEETDa36MBEL xpLUDUA . Z-yKUFEh4by 8AGt j OfpMvh41qq_BZShKSt eCFlgBEbMx xSaVT ¥Wah 6t wvUNPL_01gIwNLCBZRNaHYDvFXt x AGNIuEoSv4_veTdlaMxvwil
441 - KUOPRNIpNJIK3Wc VP7AgT! 1HI2Nv1 6vgFEaBD3zPNVm776hJe 0wl 7Y 4UmwHMUURDEK_YgAD4c7-sc95eYgnhCn - Rp9g_30w3RuDrmt m- xL8690q 7621 VGFTknCO
. 1618320902665 . 86400000 . XNEUSW27ASFont Fj -] SzPPYWMrMet UL OpHk GZ) 7

Content-Type: application/x-www-form-urlencoded

Content-Length: 11

Figure 14: Example of a request sent by HTTP Request Smuggler.

HTTP splitting is not possible as the application never uses user input to generate headers in the
response.

C52

WSTG-INPV-16

Testing for HTTP Incoming Requests

N/A

The team does not have access to the machine running the server, so this test cannot be performed.

WSTG-INPV-17

Testing for Host Header Injection

This was tested by intercepting requests with Burp Suite Proxy and changing the host to a domain
controlled by the team. However, this only resulted in a 403 error.

WSTG-INPV-18

Testing for Server-side Template Injection

This was tested by reviewing requests and responses in Burp Suite Proxy. The application never uses the
input sent in by the user, it only stores it in a database. Therefore, the application has no dynamic
application responses.

WSTG-INPV-19

Testing for Server-Side Request Forgery

This was tested using burp proxy and no entry points were found for SSRF.

C53

Error Handling
WSTG-ERRH-01

Analysis of Error Codes

The error pages for error codes 400 and 404 show the Node.js standard error pages. The error pages for
error code 405 and for 414 return error pages including “Apache/2.4.29 (Ubuntu) Server at
innsidautv.ntnu.no Port 443" . Error code 400, 404 and 405 found with Nikto, and error code 414 found
by manual testing.

Error 413 is just an empty page with the text “Payload Too Large”. Found with Fuzzer Script.

Error

Example of how to recreate

400--Bad
Request

GET https://innsidautv.ntnu.no/fotoboks/%a%s%p%d

404--Not
Found

GET https://innsidautv.ntnu.no/fotoboks/[anything invalid]

405--
Method
Not
Allowed

TRACE https://innsidautv.ntnu.no/fotoboks/

413--
Payload
Too Large

POST https://innsidautv.ntnu.no/fotoboks/ with a large payload

414--
Request-
URI Too
Long

GET https://innsidautv.ntnu.no/fotoboks/[long string]

Table 14: Overview of error codes and how to recreate the errors.

More details on this vulnerability and the risk severity can be found under CVEs for Apache HTTP server

version.

C54

https://innsidautv.ntnu.no/fotoboks/%25a%25s%25p%25d
https://innsidautv.ntnu.no/fotoboks/
https://innsidautv.ntnu.no/fotoboks/
https://innsidautv.ntnu.no/fotoboks/
https://innsidautv.ntnu.no/fotoboks/

Cryptography
WSTG-CRYP-01

Testing for Weak SSL/TSL Ciphers, Insufficient Transport Layer Protection

Certificate:

Signature Key Length: 4096 (Min 2048)

Public Key Length: 2048

Signature Algorithm: sha384RSA (Min SHA-256)
Valid 366 days (<397 days)

Valid from 28/10/2020 to 29/10/2021

CA: GEANT OV RSA CA 4.

SAN: innsidautv.ntnu.no (Match)

Figure 15: Certificate details.

The certificate is ok.

See WSTG-SESS-02 for issue with insufficient transport layer protection.

WSTG-CRYP-02

Testing for Padding Oracle

By analyzing the source code, we found that the “session” token is made with the “client-sessions”
library, and the “x-token” token is made with “jwt-simple”. None of these libraries have any known
vulnerabilities related to padding oracle.

WSTG-CRYP-03

Testing for Sensitive Information Sent Via Unencrypted Channels

Session cookie can be sent over unencrypted channel. See WSTG-SESS-02 and Cookie “session” Missing
Secure Attribute.

C55

session#_7._Cookie_
session#_7._Cookie_

Business logic Testing
WSTG-BUSL-01

Test Business Logic Data Validation

This was tested by reading the source code. There is no validation nor is the user input sanitized. The
user input is saves to the database using prepared statement to prevent SQL-injection. The database
accepts a “PIN” of max length 10 and “location” of max length 50. The backend checks that uploaded
files are in JPEG format by making sure the base64 encodings of the files start with "file":",/9j/".
Metadata on uploaded files is not stripped backend.

The frontend does some input sanitizing. The files accepted is only image files, and they will be
converted to JPEG and stripped of metadata before being sent to the backend. The PIN is required to be
4 digits long, and may not be “1234”, “2580”, or the same number 4 times. The location text input will
be selected from a list.

More details on this vulnerability and the risk severity can be found under User-input Not Sanitized.

WSTG-BUSL-02

Test Ability to Forge Requests

This was tested by reading the source code. There are no hidden fields.

WSTG-BUSL-03

Test Integrity Checks

N/A

The application has no hidden fields, and the logs are predefined.

C56

WSTG-BUSL-04

Test for Process Timing

The only parts of the application dependent on time are the tokens. However, expired tokens are
properly declined. This was tested by using Burp Suite Proxy and injecting intercepted requests with
expired tokens.

WSTG-BUSL-05

Test Number of Times a Function Can be Used Limits

Under normal use the application will stop you from posting twice, but the method used for limiting the
number of posts is ineffective. It works by updating a variable in the session cookie, but the cookie is still
accepted. As long as your session has not timed out you can post as many times as you like.

This makes it very easy to fuzz the input, see Fuzzer Script.

More details on this vulnerability and the risk severity can be found under Trusting Frontend to Limit
POST.

WSTG-BUSL-06

Testing for the Circumvention of Work Flows

This test was performed simply by exploring the application and trying to circumvent the workflow. No
circumventions were found.

WSTG-BUSL-07

Test Defenses Against Application Mis-use

The application’s rate limiting does not work. There is also no response to repeater errors.

C57

More details on these vulnerabilities and the risk severity can be found under No Automated Response
to Repeated Errors and Trusting Frontend to Limit POST.

See also WSTG-BUSL-05 .

WSTG-BUSL-08

Test Upload of Unexpected File Types

The image upload should only accept the format JPEG. It would not accept other file types. Reading the
source code reveals that if the mime header is missing or if the mime header is wrong it will not accept
the file.

WSTG-BUSL-09

Test Upload of Malicious Files

By reading the source code we found that Fotoboks does not strip extra image information from the
JPEGs unless it is posted through the front-end, which means it is possible to upload a JPEG containing
malicious code that is crafted to exploit a certain renderer or printer. The user is informed that a human
will review the picture, which means that the JPEG will be decoded and rendered at some point. If the
renderer has a flaw, it might lead to malicious code executing on a system computer.

The back-end also trusts that all JPEGs received are valid, which it should not. This was found using the
Image post Script. See also WSTG-BUSL-01.

More details on this vulnerability and the risk severity can be found under Upload Malicious Files.

C58

Client-Side Testing
WSTG-CLNT-01

Testing for DOM based Cross Site Scripting

By studying requests and responses with Burp Suite proxy it was found that the application never uses
any input from the user, it only stores it. Therefore, a DOM base XSS attack is not possible.

WSTG-CLNT-02

Testing for JavaScript Execution

The application does not use any user input.

WSTG-CLNT-03

Testing for HTML Injection

This was tested by sending requests to the application and studying the responses using Burp Suite
proxy. The application never uses any input from the user, it only stores it, so HTML injection is not
possible.

WSTG-CLNT-04

Testing for Client Side URL Redirect

This test was tested the same way as WSTG-CLNT-03. The application never uses any user input, it only
stores it, so client-side URL redirection is not possible.

C59

WSTG-CLNT-05

Testing for CSS Injection

From reading the source code we learn that the application never uses any user input, it only stores it.

WSTG-CLNT-06

Testing for Client Side Resource Manipulation

Paths to all resources used are defined either by the “index.html” at “/fotoboks/” or by resources that
were defined by the “index.html” initially. No user input can be used to change which resources will be
loaded.

WSTG-CLNT-07

Test Cross Origin Resource Sharing

There are no endpoints that implements CORS.

WSTG-CLNT-08

Testing for Cross Site Flashing

N/A

This application does not use Flash.

WSTG-CLNT-09

Testing for Clickjacking

The “X-Frame-Options”-header is set to “sameorigin” and therefore Fotoboks will not be rendered
inside an iframe.

C60

WSTG-CLNT-10

Testing WebSockets

N/A

The application does not use WebSockets.

WSTG-CLNT-11

Test Web Messaging

By exploring requests and responses with Burp Suite Proxy it was found that all connection with other
sites is done through hardcoded redirects.

WSTG-CLNT-12

Test Local Storage

All sensitive information handled by the application is in the session cookie.

WSTG-CLNT-13

Testing for Cross Site Script Inclusion

The only sensitive data that should not be leaked is the session cookie, and it has the http only attribute,
and cannot be leaked through JavaScript.

ce61l

Automated Tests
Nikto

2021-04-13 03:36:20 (GMT-4)

+ Target IP: 129.241.57.104

+ Target Hosthame: 129.241.57.104

+ Target Port: 80

+ Start Time: 2021-04-13 03:36:20 (GMT-4)

+ Server: Apache/2.4.29 (Ubuntu)

+ The anti-clickjacking X-Frame-Options header is not present.

+ The X-XSS-Protection header is not defined. This header can hint to the user agent to protect
against some forms of XSS

+ The X-Content-Type-Options header is not set. This could allow the user agent to render the content
of the site in a different fashion to the MIME type

+ Root page / redirects to: https://innsidautv.ntnu.no/

+ No CGI Directories found (use '-C all' to force check all possible dirs)

+ Apache/2.4.29 appears to be outdated (current is at least Apache/2.4.37). Apache 2.2.34 is the EOL
for the 2.x branch.

+ 7916 requests: 0 error(s) and 4 item(s) reported on remote host

+ End Time: 2021-04-13 03:39:13 (GMT-4) (173 seconds)

+ 1 host(s) tested

Table 15: Terminal output from Nikto.

Nikto scans showing all errors were also ran, and the results can be boiled down to the error codes
encountered.

Error Example of how to recreate

400—Bad | GET https://innsidautv.ntnu.no/fotoboks/%a%s%p%d
Request

404--Not | GET https://innsidautv.ntnu.no/fotoboks/[anything invalid]
Found

405-- TRACE https://innsidautv.ntnu.no/fotoboks/
Method
Not

Allowed

c62

https://innsidautv.ntnu.no/fotoboks/%25a%25s%25p%25d
https://innsidautv.ntnu.no/fotoboks/
https://innsidautv.ntnu.no/fotoboks/

Table 16: Overview of error codes found with Nikto and how to recreate the errors.

Summary

This scan revealed multiple missing security headers.

DirBuster

DirBuster 1.0-RC1 - Report
http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
Report produced on Tue Apr 13 10:18:43 EDT 2021

https://innsidautv.ntnu.no:443

Directories found during testing:
Dirs found with a 302 response:
/fotoboks/

/fotoboks/logout/
/fotoboks/Logout/

Dirs found with a 200 response:
/fotoboks/flags/
/fotoboks/Flags/

Dirs found with a 502 response:
/fotoboks/cd-emulator/
/fotoboks/Flags/13643/

Files found during testing:

Files found with a 502 responce:
/fotoboks/flags/macromedia.xml
/fotoboks/logout/products_on.php
/fotoboks/flags/131843.xml
/fotoboks/logout/worcestershire.php
/fotoboks/Flags/13643/19638.xml

Figure 16: Output from DirBuster.

Summary

DirBuster found some files and directories the team did not know about. However, these were found
with a 502 response. This means the responses from the server were invalid, so these directories and
files are probably not interesting.

Nmap

—(kali%kali)-[~]

LS sudo nmap -sV -p1-65535 129.241.57.104

Starting Nmap 7.91 (https://nmap.org) at 2021-04-13 03:19 EDT
Nmap scan report for lvs57vip04.it.ntnu.no (129.241.57.104)
Host is up (0.048s latency).

Not shown: 65532 filtered ports

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.4.29

C63

111/tcp open rpcbind 2-4 (RPC #100000)
443 /tcp open ssl/http Apache httpd 2.4.29 ((Ubuntu))
Nmap done: 1 IP address (1 host up) scanned in 1035.41 seconds

Figure 17: Terminal output from Nmap.

Summary

Port 80 and 443 open for communication with the Apache Server and 111 for the RPC server.

Zap

2021-04-13

ZAP gave these results:

The
service
uses x-
token as
anti-CSRF
token

A cross-site request forgery is an attack that
involves forcing a victim to send an HTTP request
to a target destination without their knowledge
or intent in order to perform an action as the
victim. The underlying cause is application
functionality using predictable URL/form actions
in a repeatable way. The nature of the attack is
that CSRF exploits the trust that a web site has
for a user. By contrast, cross-site scripting (XSS)
exploits the trust that a user has for a web site.
Like XSS, CSRF attacks are not necessarily cross-
site, but they can be. Cross-site request forgery is
also known as CSRF, XSRF, one-click attack,
session riding, confused deputy, and sea surf.

Use a vetted library or framework that
does not allow this weakness to occur or
provides constructs that make this
weakness easier to avoid.

For example, use anti-CSRF packages such
as the OWASP CSRFGuard.

Risk Level | Title Description Solution
Medium X-Frame- X-Frame-Options header is not included in the Most modern Web browsers support the
Options HTTP response to protect against 'ClickJacking' X-Frame-Options HTTP header. Ensure it's
- Header Not | attacks. set on all web pages returned by your site
- Set (if you expect the page to be framed only
by pages on your server (e.g. it's part of a
FRAMESET) then you'll want to use
SAMEORIGIN, otherwise if you never
expect the page to be framed, you should
use DENY. Alternatively consider
implementing Content Security Policy's
"frame-ancestors" directive.
Low Absence of No Anti-CSRF tokens were found in a HTML Phase: Architecture and Design
Anti-CSRF submission form.
- Tokens
POSITIVE

Phase: Implementation

Ensure that your application is free of
cross-site scripting issues, because most
CSRF defenses can be bypassed using
attacker-controlled script.

Phase: Architecture and Design

coe4

CSRF attacks are effective in a number of
situations, including:

* The victim has an active session on the target
site.

* The victim is authenticated via HTTP auth on
the target site.

* The victim is on the same local network as the
target site.

CSRF has primarily been used to perform an
action against a target site using the victim's
privileges, but recent techniques have been
discovered to disclose information by gaining
access to the response. The risk of information
disclosure is dramatically increased when the
target site is vulnerable to XSS, because XSS can
be used as a platform for CSRF, allowing the
attack to operate within the bounds of the same-
origin policy.

Generate a unique nonce for each form,
place the nonce into the form, and verify
the nonce upon receipt of the form. Be
sure that the nonce is not predictable
(CWE-330).

Note that this can be bypassed using XSS.

Identify especially dangerous operations.
When the user performs a dangerous
operation, send a separate confirmation
request to ensure that the user intended to
perform that operation.

Note that this can be bypassed using XSS.

Use the ESAPI Session Management
control.

This control includes a component for
CSRF.

Do not use the GET method for any request
that triggers a state change.

Phase: Implementation

Check the HTTP Referer header to see if
the request originated from an expected
page. This could break legitimate
functionality, because users or proxies may
have disabled sending the Referer for
privacy reasons.

Low Cookie A cookie has been set without the SameSite Ensure that the SameSite attribute is set to
Without attribute, which means that the cookie can be either 'lax' or ideally 'strict' for all cookies.
The SameSite sent as a result of a 'cross-site' request. The
service Attribute SameSite attribute is an effective counter
uses x- measure to cross-site request forgery, cross-site
token as script inclusion, and timing attacks.
anti-XSRF
token
Low Cookie A cookie has been set without the secure flag, Whenever a cookie contains sensitive
Without which means that the cookie can be accessed via | information or is a session token, then it
Secure Flag unencrypted connections. should always be passed using an
encrypted channel. Ensure that the secure
flag is set for cookies containing such
sensitive information.
Low Incomplete The cache-control and pragma HTTP header have | Whenever possible ensure the cache-
or No not been set properly or are missing allowing the | control HTTP header is set with no-cache,
Cache- browser and proxies to cache content. no-store, must-revalidate; and that the
control and pragma HTTP header is set with no-cache.
Pragma

C65

HTTP
Header Set

Low Server Leaks | The web/application server is leaking Ensure that your web server, application
Information | information via one or more "X-Powered-By" server, load balancer, etc. is configured to
via "X- HTTP response headers. Access to such suppress "X-Powered-By" headers.
Powered- information may facilitate attackers identifying
By" HTTP other frameworks/components your web
Response application is reliant upon and the vulnerabilities
Header such components may be subject to.

Field(s)

Low X-Content- The Anti-MIME-Sniffing header X-Content-Type- Ensure that the application/web server
Type- Options was not set to 'nosniff'. This allows older | sets the Content-Type header

- Options versions of Internet Explorer and Chrome to appropriately, and that it sets the X-

- Header perform MIME-sniffing on the response body, Content-Type-Options header to 'nosniff'
Missing potentially causing the response body to be for all web pages.

interpreted and displayed as a content type
other than the declared content type. Current If possible, ensure that the end user uses a
(early 2014) and legacy versions of Firefox will standards-compliant and modern web
use the declared content type (if one is set), browser that does not perform MIME-
rather than performing MIME-sniffing. sniffing at all, or that can be directed by
the web application/web server to not
perform MIME-sniffing.
Timestamp A timestamp was disclosed by the Manually confirm that the timestamp data
Disclosure - | application/web server - Unix is not sensitive, and that the data cannot
Unix be aggregated to disclose exploitable

patterns.

Figure 18: Report from ZAP.

Cc66

Scripts
Fotoboks Login

Input username and password and returns session-cookie and x-token.

import requests
from bs4 import BeautifulSoup

login(username, password):
host = "https://innsidautv.ntnu.no/fotoboks/"
s = requests.Session()
r = s.get(host)
url =r.url
auth_state = url.split('AuthState=")[1]
url = 'https://idp.feide.no/simplesaml/module.php/feide/login?AuthState=' + auth_state + '&org=ntnu.no'
data = {'feidename':username,'password':password}
cookies = {'SimpleSAMLSessionID': s.cookies.get('SimpleSAMLSessionID', domain='idp.feide.no'), 'SimpleSAMLSessionID_n
ss': s.cookies.get('SimpleSAMLSessionID_nss', domain='idp.feide.no')}
r = s.post(url, data=data, cookies=cookies)
soup = BeautifulSoup(r.content)
saml_response = soup.find('input', attrs={'name':'SAMLResponse’, 'type':'hidden'})['value']
url = 'https://auth.dataporten.no/simplesaml/module.php/saml/sp/saml2-acs.php/feide'
data = {'SAMLResponse':saml_response}
cookies = {'SimpleSAMLSessionID': s.cookies.get('SimpleSAMLSessionID', domain='auth.dataporten.no'), 'SimpleSAMLSessi
onlD_nss': s.cookies.get('SimpleSAMLSessionID_nss', domain='auth.dataporten.no')}
r = s.post(url, data=data, cookies=cookies)
print('session: ' + s.cookies.get('session'))
url = 'https://innsidautv.ntnu.no/fotoboks/flags'
cookies = {'session': s.cookies.get('session')}
r = s.get(url, cookies=cookies)
token = r.json()['token']
print('x-token: ' + token)
json = {'session': s.cookies.get('session'), 'x-token': token}
return json
Figure 19: Python script for Fotoboks login.

Used by other scripts.

Fuzzer

Fuzzes PIN input to find accepted ASCII characters and max length.

import requests
from bs4 import BeautifulSoup
from fotoboks_login import login

username ="

password ="
json = login(username, password)

host = "https://innsidautv.ntnu.no/fotoboks/"
s = requests.Session()

ce67

url = host + 'pin’
cookies = {'session': json['session']}
headers = {'x-token': json['x-token']}

print('ASCII Table Fuzzing')

for x in range(0, 128):
data = {"pin":chr(x)}
r = s.post(url, cookies=cookies, headers=headers, json=data)
print(x, data, r, r.text)

print('String Length Fuzzing, 1-99')
for x in range(1, 100):
pin ="A"* x
data = {"pin":pin}
r = s.post(url, cookies=cookies, headers=headers, json=data)
print('A*" + str(x), r, r.text)

print('String Length Fuzzing')
for x in range(1, 10):
pin="1"* (pow(10, x))
data = {"pin":pin}
r = s.post(url, cookies=cookies, headers=headers, json=data)
print(‘Input 1*107" + str(x), r, r.text)

print('0000-9999 Fuzzing')
for x in range(0, 10):
fory in range(0, 10):
for zin range(0, 10):
foriin range(0, 10):

pin = chr(48+x) + chr(48+y) + chr(48+z) + chr(48+i)
data = {"pin":pin}
r = s.post(url, cookies=cookies, headers=headers, json=data)
print(pin, r, r.text)

Figure 20: Python script for fuzzing PIN input.
All ASCII characters were accepted.
Max PIN length is 10 characters.

PIN > 10: [500] Internal Server Error
PIN > 1077: [413] Payload Too Large
PIN > Apache Server answers

No limit for posting PIN, while front-end limits a login to 1 post.

No automated responses of repeated errors/fuzzing.

c68

Cookie/Token list

Writes a list of 10 session-cookies to file and the corresponding x-tokens to another file.

from fotoboks_login import login

username ="'
password ="'
sessions ="
tokens ="

for x in range(10):
json = get_login(username, password)

sessions += json['session'] + '\n'
tokens += json['x-token'] + "\n'
print(json)

sessions_file = open('sessions.txt', "a+")
sessions_file.write(sessions)
sessions_file.close()
tokens_file = open('tokens.txt', "a+")
tokens_file.write(tokens)
tokens_file.close()
Figure 21: Python script for retrieving a list of session cookies and a list of x-tokens.

Ran the script February 10., March 2. and April 8. by 2 different users.

Image post

Posts a base64 encoded image to the /fotoboks/ endpoint.

import requests

from pathlib import Path

import sys

from fotoboks_login import login

path = Path(input('Input text-file with base64 to send: ') or 'base64.txt')
if path.is_file:

print('No file at ' + path)

sys.exit()
pin = input('Input PIN: (1-10 chars) ') or '1337"
if len(pin) > 10 or len(pin) < 1:

pin ='1337"

print('Bad PIN. Changed to ' + pin)
location = 'Sentralbygg'
with open(path, "rb") as image_file:

file =image_file.read()
url = "https://innsidautv.ntnu.no/fotoboks/"
s = requests.Session()
username ="
password ="'
json = get_login(username, password)
cookies = {'session': json['session']}
headers = {'x-token': json['x-token']}

Cc69

data = {'file": str(file), 'pin': pin, 'location': location}

r = s.post(url, cookies=cookies, headers=headers, json=data)
print(r, r.text)
Figure 22: Python script for posting base64 encoded file as image.

Accepts invalid JPEGS.

Image to base64

Base64 encodes a JPEG, adds prefix that is checked server side and writes to file.

import base64
from pathlib import Path
import sys

inp = input('Input name of file to encode: ') or '123.jpeg'
ext = inp.split(".")[-1]
prefix = 'data:image/' + ext +';base64,’
path = Path(inp)
if path.is_file:
print('No file at ' + path)
sys.exit()
outp = Path(input('Input name of base64 encoded file: ') or 'base64.txt')
if outp.is_file:
verify = input('File exists, overwrite?: (y/n) ')
if verify 1="y":
sys.exit()
with open(path, "rb") as image_file:
encoded = base64.b64encode(image_file.read())
b64_file = open(outp, "w")
b64_file.write(prefix + str(encoded)[2:-1])
b64 _file.close()
Figure 23: Python script for base64 encoding of files.

Used to test image post.

Logout Test

Tries to use the old session cookie after logout.

import requests

from pathlib import Path

import sys

from fotoboks_login import login

username ="'

password ="'

json = login(username, password)

host = "https://innsidautv.ntnu.no/fotoboks/"
s = requests.Session()

c70

url = host + 'pin’

cookies = {'session': json['session']}

headers = {'x-token': json['x-token']}

data = {"pin":"1233"}

url3 = 'https://innsidautv.ntnu.no/fotoboks/flags'

r = s.post(url, cookies=cookies, headers=headers, json=data)

print(data, r, r.text)
url2 = host + 'logout'
r = s.get(url2, cookies=cookies, headers=headers, json=data)
print(data, r, r.text)
s = requests.Session()
r = s.get(url3, cookies=cookies)
print(data, r, r.text)
Figure 24: Python script for testing logout functionality.

Session cookie not invalidated on logout.

Cc71

References

[1] "OWASP Web Security Testing Guide," [Online]. Available: https://owasp.org/www-project-web-
security-testing-guide/. [Accessed 27 04 2021].

[2] "Apache Http Server 2.4.29 Security Vulnerabilities," [Online]. Available:
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-66/version_id-
241078/Apache-Http-Server-2.4.29.html. [Accessed 27 04 2021].

[3] "developer.mozilla.org," 17 03 2021. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Cache-Control. [Accessed 27 04 2021].

[4] "Nodemailer CVE," [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-
7769. [Accessed 27 04 2021].

[5] "Session Management Cheat Sheet," [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html.
[Accessed 27 04 2021].

[6] "MDN Web Docs," 12 March 2021. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/X-Content-Type-Options. [Accessed 27 04 2021].

C72

