
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Hans Kristian Olsen Granli
Torje Dahll-Larssøn Thorkildsen

Developing the next iteration of Qs

Can we complete the new Qs so that it will be an
improvement compared to the current system?

Bachelor’s project in Computer Engineering
Supervisor: Tomas Holt

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Hans Kristian Olsen Granli
Torje Dahll-Larssøn Thorkildsen

Developing the next iteration of Qs

Can we complete the new Qs so that it will be an
improvement compared to the current system?

Bachelor’s project in Computer Engineering
Supervisor: Tomas Holt
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Preface

This report is written by two students at NTNU as a part of a bachelor thesis in the course TDAT
3001 - Bachelor Thesis in Computer Engineering. The teams consists of Hans Kristian Olsen Granli
and Torje Dahll-Larssøn Thorkildsen. The assignment was proposed by 3D Motion Technologies,
and we chose this assignment because both members of the team have been using the old version of
the Qs queue system for more than two years. We thought the old system lacked a lot of essential
features, and we wanted to partake in the development of the new version.

First and foremost we would like to thank Tomas Holt of 3D Motion Technologies as both the
project manager and our supervisor. We would also like to thank the student assistants, students
and teachers in the course IDATT2105 - Full-stack application development - for testing our product
and provided valuable feedback throughout the development process.

Hans Kristian Olsen Granli Torje Dahll-Larssøn Thorkildsen

i

Assignment

This assignment is a further development of two bachelor assignments made in the spring of 2020,
as well as one group (group 3) that worked on the project as a part of TDAT 3022 - Software
Engineering Project in the autumn of 2020. The two bachelor groups worked separately on a
front-end and a back-end. The last group tried to put it all together, and fix security flaws.

Our job was then to stitch everything together, make it a commercially viable product in a pro-
duction ready state, and ultimately deliver a superior product to the old version of Qs.

The full list of functional and non-functional specifications can be found in the vision document
in the appendix.

Scope

When examining the project and reading the report from group 3 we quickly found that the back-
end had severe design flaws which would make any security improvements a mere band-aid fix. We
therefore built the whole back-end including the database and API up from scratch.

Additionally previously conducted user tests showed a significant preference towards the old system.
So the front-end would need work on both in terms functionality and appearance.

ii

Summary

Qs is a Queue System made to ease the process of approving and getting help for exercises. It has
roots back so SKS (Smart Køsystem - Smart Queue System). And this will be the second iteration
of the system known as Qs. Qs is a two-part application with a front-end web client and back-end
server. The old iteration of Qs uses NodeJS back-end and AngularJS front-end. We inherited a
project which had been worked on by three previous groups, which uses Java back-end and React
front-end.

Our job was to rectify any bugs, and make the system ready for production. The end goal for the
product owner, 3D Motion Technologies, is to make Qs commercially viable.

During the exploration phase we quickly realized that the new back-end had inherited some severe
design flaws from the old system. Additionally the implementation was lackluster and needed
significant work. We therefore designed a new back-end database, a new RESTful HTTP-API, im-
plemented a connection pooling framework, extended WebSocket service and drastically improved
runtime performance. In order to choose the correct connection pooling framework we conducted
extensive research as well as running benchmarks to verify performance claims. The result of our
work on the back-end resulted in average response times being reduced to 1/10 of the inherited
project.

The previous group who worked on this project conducted user tests which stated clear points
of improvement. The client also had to be updated to meet the functionality offered by the new
back-end. The style sheets on the client has been re-written using modern CSS grid to improve
portability and to make the system easier to maintain. New features such as chat, room editor,
user photos and the possibility of calling a group for video chat have been added.

Covid-19 made testing the system a challenge. However, we managed to conduct two large scale
user test with around 80 participants. This was done to verify both the performance of the back-
end during a moderate and realistic load, and to get feedback on the changes made to the user
interface.

The system we are delivering is still somewhat rough around the edges. Specifically the WebSocket
service should be re-factored to host multiple endpoints to reduce memory strain. Additionally,
editing exercises has potential issues that needs to be sorted out.

However, we believe that this system is in a state where it is ready to replace the old version of Qs.
It has more features, better performance and we believe it offers a superior mobile experience.

iii

Table of Contents

List of Figures viii

List of Tables viii

1 Introduction 1

1.1 Clarifications . 1

1.2 Abbreviations and glossary . 1

2 Theory 2

2.1 Client-server Architecture . 2

2.2 Relational database systems . 2

2.3 REST . 2

2.4 HTTP . 3

2.4.1 HTTP REST-API . 3

2.5 Websocket . 3

2.6 Authorization and Authentication cookies . 4

2.6.1 Authorization . 4

2.6.2 Authentication token . 4

2.6.3 Checksum . 5

2.7 Teamwork Method - Agile Kanban and Lean . 5

3 Method and chosen technologies 7

3.1 Front-end . 7

3.1.1 TypeScript . 7

3.1.2 Babel . 7

3.1.3 React . 8

3.2 Back-end . 8

3.2.1 Hikari Connection Pooling . 8

3.2.2 Java Beans . 8

3.2.3 Jersey . 8

3.2.4 Spring and Spring Beans . 9

3.2.5 Security . 9

3.2.6 Maven & Tomcat . 9

3.3 Teamwork Methodology - Agile Kanban . 9

3.4 Testing . 9

iv

3.4.1 Virtualization - QEMU & KVM . 9

3.4.2 Connection Pool Framework . 10

3.4.3 Performance test . 10

3.5 P5.js . 11

3.6 User testing . 11

4 Results 12

4.1 Scientific results . 12

4.1.1 Back-end . 12

4.1.1.1 Hikari CP Perfomance benchmark 12

4.1.1.2 Performance tests . 14

4.1.1.3 Database . 14

4.1.1.4 REST API . 15

4.1.1.5 Security . 15

4.1.2 Front-end and User interface . 15

4.1.2.1 Design changes . 15

4.1.2.2 User photos . 20

4.1.2.3 Room editor . 20

4.1.2.4 Chatting system . 21

4.1.2.5 Dark mode theme . 22

4.1.2.6 Student queue view . 23

4.1.2.7 Notifications . 24

4.1.3 User testing . 25

4.1.3.1 Production Test 1 . 25

4.1.3.2 Production Test 2 . 25

4.1.4 Code documentation . 26

4.2 Engineering results . 26

4.2.1 Functional properties . 26

4.2.2 Non-functional properties . 27

4.2.2.1 Good security . 27

4.2.2.2 Reliable Website . 27

4.2.2.3 Stability . 27

4.3 Administrative results . 27

4.3.1 Timesheet and activity . 27

4.3.2 Planning and organizing . 28

v

5 Discussion 30

5.1 Scientific results . 30

5.1.1 Back-end . 30

5.1.1.1 Choice of Connection Pool Framework and Benchmarks 30

5.1.1.2 Performance test . 30

5.1.1.3 Database Structure . 31

5.1.1.4 API Design . 32

5.1.1.5 WebSocket . 32

5.1.1.6 Code documentation . 32

5.1.2 Front-end . 33

5.1.2.1 Reactive design . 33

5.1.2.2 Dark mode (theme option) . 33

5.1.3 Code documentation . 34

5.2 Engineering results . 34

5.2.1 User tests . 34

5.2.1.1 Production Test 1 . 34

5.2.1.2 Production Test 2 . 35

5.2.2 Qs in a system perspective . 35

5.2.3 Professional ethics . 35

5.3 Administrative results . 36

5.3.1 Group Reflection . 36

6 Conclusion and Further Work 37

Bibliography 38

Appendix 39

A Old REST-API endpoints 39

B New REST-API endpoints 46

C Gantt diagram 48

D Vision Document 49

E System Documentation 58

F Requirements Documentation 74

vi

G Project Handbook 82

vii

List of Figures

1 Checksum function . 5

2 External CP framework test . 12

3 Cycle Connection graph . 13

4 Cycle statement graph . 13

5 Login page comparison . 16

6 Subjects page comparison . 16

7 Location page comparison . 17

8 Edit room comparison . 17

9 Queue comparison . 18

10 Queue student comparison . 18

11 New approval list . 19

12 Subjects page reactivity . 19

13 Queue element reactivity . 20

14 Settings page . 20

15 Room editor . 21

16 Chatting system . 22

17 Dark mode toggle . 22

18 Dark mode in subjects page . 23

19 Queue view for students . 23

20 Session expiring warning . 24

21 Video call prompt . 24

22 Work activity: Hans Kristian Granli . 28

23 Work activity: Torje Thorkildsen . 28

24 Issue board . 29

25 Gantt diagram . 29

26 Bad documentation naming . 32

List of Tables

1 Performance benchmark of the servers on a powerful virtual machine without ac-
cessing the database . 14

2 Performance benchmark of the servers on a powerful virtual machine with accessing
the database and fetching one cell of data. 14

viii

1 Introduction

Qs is a product that solves the issue of organizing help and approval of exercises on University
Courses. At its core its a queue system with added features. This means that a good implement-
ation can be used for broader problems that involve queues. This project is a continuation of
[AW20], which in turn was a project with the aim of connecting the projects made as a part of the
bachelor theses [AR20] and [MM20].

In this report we aim to answer the following thesis:

Can we complete the new Qs so that it will be an improvement compared to the current system?

The report is divided into 6 main chapters. After the introduction it goes on to explain theory that
is relevant to the project. Following the theory, the methods and chosen technologies of the project
are described. These put the theories from the preceding chapter into use. Then, we display our
scientific, engineering and administrative results, followed by discussion of these findings. The
report ends with a conclusion and suggestions for further work. The bottom half of the document
lists our references and attachments.

1.1 Clarifications

Since we will mention multiple iterations of the same Qs system, we need clarification on which
system we mean.

The system we are delivering and have been working on is referred to as our system.

The system we were given at the start of the assignment will be referred to as the new system.

The currently running system will be referred to as the current system.

1.2 Abbreviations and glossary

• Qs: Abbreviation of Queue System and is the name of the application.

• API: Application programming interface. Defines interactions between two or more software-
components.

• URL: Uniform Resource Locator is often referred to as a web address, but it specifically
specifies the address of a machine on a network.

• HTML: Hypertext Markup Language. The standard language used to create web-pages.

• CSS : Cascading Style Sheets. The standard language used to style an HTML page.

• SQL: Structured Query Language. A language to create and interact with relational data-
bases.

• DAO: Data Access Object. An interface between a database and the rest of the code. These
objects create an abstraction layer and simplifies database access from other parts of the
code.

• Viewport: The area in which the software is rendered. For a website, this will vary based on
the size of the browser window. Smaller devices such as phones will have smaller viewports.

• Cookie: A cookie is a token stored on a client machine. Cookies are often sent along with
requests to servers and provide additional information..

• Distributed Hypermedia Systems: Hypermedia is a medium of information including
graphics, audio, video, plain text and hyperlinks.

1

2 Theory

2.1 Client-server Architecture

Client-server architecture is a system with one or more clients connected to one or more centralized
servers across a network. In this architecture, the clients sends requests to the server, and the server
either responds right away or communicates with another component, like a database.

The theory behind the client-server architecture is described in more detail in the report [MM20].

2.2 Relational database systems

A relational database is a form of data storage. It organizes data in tables and creates relational
connections between the data. Every entry in a relational database must have a unique key or key
pair to separate it from its peers, this key is known as a primary key.

The act of separating related data into different tables and reducing data redundancy is called
normalization. To connect two tables together we store the primary key of a foreign table known
as a foreign key. When fully utilized - normalization leads to less double saving of data, and since
the data is stored as a relation updating a single row will implicitly update all connected rows,
which leads to less complexity.

Most modern relational databases allow us to use SQL to interact with the databases. By using
JOIN statements we can combine the related data between the tables. When designing a relational
database it is important to consider the number of relations and type of relationships. There are
three types of relations; one-to-one, many-to-one and many-to-many. We don’t have to make any
special considerations in the case of one-to-one relations, and we can even store the data in the
same table. The case of many-to-one means that one entry in database A can be mapped to
multiple entries in table B, but an entry in table B can only be mapped to one entry in table A.
Many-to-many relations often force us to create a connection table, connecting multiple entries
from table A to multiple entries from table B.

2.3 REST

Representational state transfer is a design architecture for distributed hypermedia systems [Fie00].
REST has the following characteristics:

• Separation of Client and Server
Separation of client and server improved portability of the user interface, reduces complexity
and improves the scalability of the system.

• Statelessness
Each request must contain necessary information by itself for the server to fulfil the request.

• Cacheable
Cache constraints require that the data within a response to a request be implicitly or
explicitly labelled as cacheable or non-cacheable. This property leads to less strain on the
network and faster response time for the end-user.

• Uniform interface
Uniform interface implies a generalization in the architecture. This means that

• Layered system
A layered style means that the architecture can be built using hierarchical layers and con-
straining each layer to the point where they cannot see the resources they aren’t interacting
with. As an example in the current system: Getting a user should only give access to the
properties of the user, not what subjects the user is a part of.

2

• Code on demand
This is an optional property in REST and extends the functionality of a client by downloading
and executing code in the form of applets or scripts.

2.4 HTTP

HTTP - Hypertext Transfer Protocol is an application layer protocol. This protocol is a set
of standards implemented across the Web (World Wide Web) and is specified by the group IETF
(Internet Engineering Task Force). Any URL starting with HTTP implements the HTTP protocol.
HTTP, like REST, is a stateless protocol.

The HTTP protocol gives us access to these verbs ([Doca]):

• GET - Allows us to fetch a resource. Get requests should only retrieve data.

• HEAD - Should give the same response as a GET request, but without the body. This can
give us useful metadata about a resource.

• POST - Allows us to create an entity on the endpoint

• PATCH - Update a single property on the resource

• PUT - Update one or more properties on the resource

• DELETE - Deletes the resource.

• CONNECT - Establishes a tunnel to the server identified by the target resource. This is
implemented by all modern web-browsers and is not something a developer needs to think
about.

• OPTIONS - Asks the server for allowed methods on the target resource.

• TRACE - Performs a message loop-back test. This can only be used for debugging.

Using the HTTP-verbs allows us to implement multiple actions on the same endpoint, which
improves readability.

2.4.1 HTTP REST-API

Combining HTTP and REST to create an API allows us to use the HTTP verbs and implement
resources in a hierarchical structure, where each property in the resource must have a unique
identifiers. This does also mean that we can do multiple actions on the same endpoint.

2.5 Websocket

A WebSocket is a two-way connection (full-duplex) between two networked machines. The con-
nection uses the Transmission Control Protocol (TCP) to ensure that both parts send and receive
messages successfully. The WebSocket standard was defined by IETF in RFC 6455 [For]. A
resource mounted on ws:// will implement the WebSocket protocol (Docs [Docb]).

WebSockets can be used for a lot of different functionality. A website server might use WebSockets
to notify their users’ browsers when there has been an update that requires them to reload certain
parts of the site. Another common use case is chatting systems. Without two-way communication,
users would have to continually poll and check for updates, which can be resource-intensive for
both the client and the server. This would also affect the responsiveness of the page.

3

2.6 Authorization and Authentication cookies

2.6.1 Authorization

Authentication is the process of confirming a given identity, as well as checking that information
about authenticated identities remains unchanged. There are multiple ways of implementing an
authentication system, but for users on a website, it usually starts with logging in with some of
their personal information like email, phone number, and a password.

Authorization is the act of enabling permissions and privileges for a user. This works in conjunction
with authentication by first confirming a given user’s identity, and then giving them the appropriate
permissions.

2.6.2 Authentication token

After a user has logged in with their credentials we can confirmed their identity. However, given
the stateless nature of HTTP and REST, we must have a way to authenticate each request. We
could send the user’s email and password with every single request, however, this means that we
have to store the password locally on the client’s machine. Even though modern browsers are
relatively memory safe, this is something that should be avoided. What is regarded as a more
secure way is giving the user an authentication token, which stores the identity of the user. This
has the added benefit of being shareable between multiple external resources. This is known as
Cross-Origin Resource Sharing (CORS).

In computer software, there are several different types of tokens, which represent permissions to
perform a certain operation within the system. Session tokens often keep track of an authenticated
user’s session in a system. If the user doesn’t refresh this token within a certain time, it will expire
and require authentication again. This is useful as we can create protected stateless HTTP and
RESTful resources.

4

2.6.3 Checksum

In order to verify the authenticity of a token, the creator of the token should append a checksum
to the token. A checksum can be used to verify that some information has not been modified, and
is generated using a checksum function/algorithm. This function should work in such a way that
even a small change in input will generate a dramatically different checksum. The checksum will
be of a set length. Examples of such checksum algorithms are MD5 and SHA1.

Figure 1: Visualization of how a checksum function modifies the input into a set length of seemingly
random numbers. Small changes in the input produce dramatically different outputs.

Source: https://en.wikipedia.org/wiki/Checksum

2.7 Teamwork Method - Agile Kanban and Lean

Agile Kanban is a system for lean manufacturing. Lean System Development is a part of the
software development paradigm Agile and was created by Mary Poppendieck and Tom Poppendieck
[Mar03]. Lean tries to minimize overhead, and follows the seven Lean Principles:

• Eliminate Waste - Avoid creating something the customer doesn’t want or need.

• Build quality in - Ensure quality in all produced components.

• Create Knowledge - This principle encourages teams to provide infrastructure for document-
ation and retain the knowledge gained from the development process.

• Defer commitment - Options should be kept open, and decisions should be made based on
collected data.

• Deliver fast - Avoid over-engineering solutions that don’t solve the problem at hand.

• Respect people - Communicate proactively and effectively, encourage healthy conflict, surface
issues as a team and empower each other.

• Optimize the whole - A big challenge in software development is making the team greater
than the sum of its parts.

Kanban was originally created by Toyota to improve manufacturing efficiency. It highlights problem
areas by giving each task a lead time and cycle time. This makes it easier to identify bottleneck
areas. In software development, kanban breaks user stories into tasks and makes use of kanban

5

cards on a kanban board. Unlike regular kanban, agile kanban also focuses on iterations. The
kanban cards make the process of improving an already existing system easier, as it exposes areas
of weakness.

When developing software using kanban, the kanban board may be broken down into three cat-
egories:

1. TODO

2. DOING

3. DONE

This makes it easy for all members of the team to know what is being worked on, and when a
member finishes his/her task, they can simply pick a card from the TODO-board. This eliminates
the need to speak with a project manager to be assigned to a new issue.

6

3 Method and chosen technologies

As we are the fourth team to work on this project we did not have a say in the initial decisions
made for the structure of the system. We will therefore only give a brief summary of the relevant
technologies, and refer to the other reports when appropriate. Many of the needs and properties
described in our vision document had already been fully or partially implemented in the version of
Qs we inherited. To meet 3D Motion Technologies’ goal of a production ready product, and our
own thesis, we had to improve all parts of the system.

3.1 Front-end

You can read about the reasoning for choosing the different front-end technologies in [AR20].

3.1.1 TypeScript

Typescript is a framework for writing type-safe JavaScript code:

// javascript

function double(example){

return example+example

}

// typescript

function double(example : number):number{

return example+example

}

It type checks data types, object methods and leads to fewer bugs when writing code, which in
turn means that the developers need to spend less time testing and lurking out bugs and runtime
errors. Additionally TypeScript serves as method documentation and makes it easy to generate
JavaScriptDoc.

3.1.2 Babel

Babel is a framework made to compile code from modern JavaScript syntax to be compatible
with older JavaScript versions. This is to make sure that we don’t eliminate a potential user base
with lower spec computers or outdated software. This means that we can utilize array prototype
methods such as map, without worrying about compatibility. [Con]:

// Babel Input: ES2015 arrow function

[1, 2, 3].map(n => n + 1);

// Babel Output: ES5 equivalent

[1, 2, 3].map(function(n) {

return n + 1;

});

// ref https://babeljs.io/docs/en

7

3.1.3 React

The user interface is created using React, which is a JavaScript framework. It specializes in creating
reactive user interfaces in web-based applications. The report [AR20] goes into great depth as to
why React was chosen as the front-end framework for this project.

3.2 Back-end

The back-end is written in Java and uses a MySQL database. The reasoning for using Java as the
programming language can be found in [MM20].

3.2.1 Hikari Connection Pooling

In order to manage a big load of users at once, and make use of Java’s multi-threading capabilities,
we needed to implement connection pooling (CP). Connection pooling is the act of creating multiple
connections to the database at once and storing them in some data structure. Different parts of the
system can then request a connection, use it for its purposes, and then return it to the connection
pool. This enables multiple threads to read from the same database at once, and avoids various
issues with creating many new connections to a database as it recycles the ones in the pool.

The project we received did not utilize connection pooling. We therefore looked up the different
connection pooling Java frameworks. There are multiple alternatives such as Apache Commons
DBCP, Hikari CP and C3PO. After doing some research and running some open source benchmarks,
we decided to use HikariCP.

3.2.2 Java Beans

In order to reference initiated objects between our classes, we had to implement the connections as
concurrent beans. During testing, we quickly realized that the system we received didn’t implement
resource sharing properly.

Java beans is a standard for Java classes, a bean has the following properties:

1. All properties are private (use getters/setters)

2. A public no-argument constructor

3. Implements Serializable.

Any Java class with these properties can be called a bean. This is important because a serializable
class can be written to an IO stream. In other words, a Java bean is a reusable component
accessible from multiple sources. Therefore different Java frameworks can access, modify and use
the shared objects.

3.2.3 Jersey

Jersey Restful Web Services (JAX-RS) is an open-source framework for developing Restful web
services for Java. It requires API classes in form of Java beans. This framework was chosen by the
previous group, and their reasoning for choosing Jersey can be found here [MM20].

8

3.2.4 Spring and Spring Beans

Jersey is a Java framework with a feature called Spring Beans. The difference between a spring
bean and a Java bean is that a spring bean doesn’t have to meet the same requirements as a Java
bean, but still be shared between different Jersey frameworks. For this to be achieved, the Java
objects have to be created by the Spring Framework Container. In our project, the Java Database
Connectivity Objects (JDBC) are implemented as spring singleton beans and shared between the
Jersey API classes.

A Spring bean is an object managed by spring. It is not held to the same constraints as a
regular Java Bean, but it has to be instantiated, configured and managed by a Spring Framework
container.

3.2.5 Security

The system uses a cookie-based authentication system. We have not altered the cookie-related
security features we have inherited. You can read more about the security features in [AW20].

3.2.6 Maven & Tomcat

Maven is a dependency management tool for Java and Kotlin applications. It builds and stores all
framework and dependencies. Maven can also be configured to run unit tests before compiling and
deploying the application. The reasons for choosing Maven instead of Gradle can found in [MM20].
Maven can be used to compile a Java project to a WAR file which can be used by Tomcat.

Tomcat is a framework that helps deploy an application to the web. Since Tomcat 10 was released
late during the development period, this project is only stable in Tomcat 9.

3.3 Teamwork Methodology - Agile Kanban

We decided to go for Kanban as our development methodology because looking at user stories
made it easy to figure out what the biggest issues with the system were. Additionally, we had little
experience in writing API back-end in Java and did not have a frame of reference for how long it
would take to re-write the parts of the application which we saw as problematic.

We used git and GitLab hosted by the university for version control. Due to the Covid restrictions,
we had to work remotely. Therefore most of our communication went through Discord, which is a
communication platform where you can share text and talk. Additionally, we made use of Microsoft
Teams for documentation sharing.

3.4 Testing

This section is related to our setup and performance tests.

3.4.1 Virtualization - QEMU & KVM

In order to eliminate as many outside factors as possible, we conducted our performance tests using
a virtualized environment.

QEMU is an open-source machine emulator and virtualizer used for creating virtual machines.

KVM - Kernel Virtual Machine is a Linux kernel module that allows a program to utilize hardware
virtualization. This means that a virtual machine can make use of features such as Intel IOMMU

9

(Input-output memory management unit). KVM allows a virtual machine to run at near-native
performance.

Our performance tests were done on a virtualized Ubuntu 21.04 running on Manjaro host machine
with Linux kernel version 5.12 and KVM enabled. The virtual machine was given 16GB RAM and
14 virtual CPU cores from an Intel i9 9900K processor.

3.4.2 Connection Pool Framework

In order to choose the best framework for the project we had to benchmark the different frameworks
available. We ran the benchmark [Woo] on our virtualized system.

3.4.3 Performance test

The inherited project had been performance tested [MM20]. Since we have made multiple changes
to the structure and functionality of the server we wanted to replicate the test to see how our
changes had affected the server. Following our changes to the system, we could not perform the
exact same test to measure the server’s performance.

We decided to create a new test where both versions of the server would send exactly the same
information back to the test client. We made two versions of the test for the current system; one
with a temporary redirect and one with direct access to the endpoint. A temporary redirect was
tested because the current system uses them for all new endpoints to redirect them to the ones
from the old system (this maintains backward compatibility).

The test used a custom endpoint on both versions. The server would always respond with the
same data, which was sent back directly without accessing the database. This way, we could avoid
any potential performance differences in our databases, and directly test the servers. The following
JSON object was sent back from the server to the test clients:

1 {

2 "testObject": "server",

3 "performanceTest": "true",

4 "test1": "test",

5 "test2": "test",

6 "test3": "test",

7 "test4": "test",

8 "test5": "test",

9 "test6": "test",

10 "test7": "test",

11 "test8": "test"

12 }

Listing 1: The test data sent from the server for performance benchmarking without database
access.

The request were sent from a Python script rapidly and asynchronously, meaning they never had
to wait for the preceding request to get a response. With this approach the server was tested for
a load of more than a thousand requests per second, where it always would respond with a JSON
object of typical size for the system.

We also made another test that accessed the database in a fair and minimal way so that it can
show the differences in the database of the current system and the new system. This test sends
requests in a similar Python script and is tested both with temporary redirects, and without.

10

3.5 P5.js

P5.js is a JavaScript library targeted at artist who want a quick and easy way to create sketches
and art within a website. It has a wide range of different drawing functions and website features.
P5.js has a main loop called ”draw” that runs a set amount of timer per second. This is where you
can use the drawing functions and update the website, and optionally animate various features.
This library is used to fulfil our need of a ”Way to create room images” described in our vision
document. It is used for the room editor, as well as the room viewer.

3.6 User testing

Due to the ongoing pandemic of Covid-19 our ability to perform user tests was severely hindered.
We had no physical lectures and NTNU was periodically closed. Our product manager organized
testing with a real class from school to really see if the system was getting production ready.

11

4 Results

4.1 Scientific results

4.1.1 Back-end

4.1.1.1 Hikari CP Perfomance benchmark

JMH Microbenchmarks is a framework created to isolate and measure the overhead of pools.

• One Connection Cycle is defined as opening / close a connection

• One Statement Cycle is defined as a single prepared statement, execution and closing of a
statement.

The benchmark project may be found at [Woo].

Figure 2: Performance of popular CP frameworks

Source: https://github.com/brettwooldridge/HikariCP

We reran the same open source benchmarking framework to see if Hikari is as good as the developers
claim.

12

Figure 3: Cycle connection score and error rate

Figure 4: Cycle statement score and error rate

13

4.1.1.2 Performance tests

For the tables below, we have used the following abbreviations:

NTR: The new system with temporary redirect
NNR: The new system without temporary redirect
OUR: Our system

The following table displays the result of the first tests without accessing the database.

NTR NNR OUR

Samples 50000 50000 50000
Time (min:sec:ms) 01:35:75 01:26:48 00:14:75

Average (ms) 85.60 77.41 9.98
Min (ms) 10.79 9.87 2.35
Max (ms) 1017.20 597.81 334.98
Error % 0.00 0.00 0.00

Throughput (requests/s) 522.21 578.14 3390.84
Sum of response time (hours:min:sec) 01:11:20 01:04:30 00:08:19

Table 1: Performance benchmark of the servers on a powerful virtual machine without accessing
the database

The following table displays the result of the first tests with accessing the database and fetching
one cell of data.

NTR NNR OUR

Samples 50000 50000 50000
Time (min:sec:ms) 02:20:95 02:13:28 00:16:92

Average (ms) 126.21 119.45 12.09
Min (ms) 20.68 17.20 1.97
Max (ms) 760.38 685.24 430.95
Error % 0.00 0.00 0.00

Throughput (requests/s) 354.73 375.15 2955.20
Sum of response time (hours:min:sec) 01:45:11 01:39:32 00:10:05

Table 2: Performance benchmark of the servers on a powerful virtual machine with accessing the
database and fetching one cell of data.

4.1.1.3 Database

We created 7 additional tables for core functionality:

• exercise : table to hold information about an exercise, such as exercise number, due-date,
subject and description

• user exercise : table to store information of which exercises a user has approved

• queue exercise : table to connect exercises to a queue element. This replaces the string stored
in the old database

• queue user : table to connect user and queue element. This does not store the queue element’s
owner

• requirement exercise : table to connect one or multiple exercises to a requirement. This is
opposed to the string relation on the old database

14

• subject role : table made to replace subject-person. This table stores a user id, subject id
and the role id the user has in the subject. This controls access and makes it so that a user
can be both student-assistant and student at the same time.

• queue element message : table where an entry is connected to a queue element and stores a
simple message from the group to student-assistant. This functionality is present on the old
system, but was not a part of the system we inherited.

These were added to improve performance.

Additionally we created the following tables for chat functionality:

• chat message

• chat session

The whole database diagram may be found in system documentation in the appendix.

4.1.1.4 REST API

As a consequence of making the API RESTful compliant, the number of endpoints was reduced
from 104 to 48. A list of endpoints of the new system and our system can be viewed in the
appendix.

4.1.1.5 Security

The server has a cookie based security system. It sends a cookie with relevant information about
the user and their role in the system, which is used for authorization. A user cannot change the
values of their cookie without altering the checksum of the cookie. When a request is sent to the
server, the user’s cookie is sent along with it. The server then checks their privileges and either
performs the requested actions or refuses if they are not authorized. Our system is designed in
such a way that users are only able to receive the minimum amount of information about other
users for the system to function. An example of what this means: a student can get the names of
other students in his subject, because he might create groups with them for approval. However,
he can not retrieve any information about students outside of his subjects.

4.1.2 Front-end and User interface

Throughout the project we have continuously made changes to the user interface, both based on
our own knowledge and responding to input from our testers.

4.1.2.1 Design changes

Our system ended up looking quite different from the new system. The figures below show some
of their differences.

15

Figure 5: Comparison of the new login screen (left) and our (right).

Figure 6: Comparison of the new subjects screen (left) and the our (right).

16

Figure 7: Comparison of the new location page (above) and our (below).

Figure 8: Comparison of the new room-edit screen (left) and our (right).

17

Figure 9: Comparison of the new queue page (left) and our (right).

Figure 10: Comparison of the new options when selecting a student from the queue screen (left)
and our (right).

18

Figure 11: Our system’s approval list page. Functionality for exercise due date has been added,
and exercises approved after due are colored orange.

Figure 12: A figure showing how the subjects page reacts to different viewport sizes

19

Figure 13: A figure showing how the queue element page reacts to different viewport sizes

4.1.2.2 User photos

Our system lets users upload a photo of themselves. This can only be seen by teachers and
assistants, and is meant to simplify the process of finding students withing a room.

Figure 14: The new system’s settings page, with an option to upload a photo of the user.

4.1.2.3 Room editor

As requested by the product manager our system includes a room editing application within the
website. This can save and load rooms so that you can match the real room setup whenever it
changes. It was created using p5.js. The room editor can draw rectangles, circles, text and all

20

kinds of polygons. All of these can be selected and edited. The editor also includes a grid option
for lining up shapes, and a couple of other functions.

Figure 15: Our system’s room editor for creating custom room images. These images can be edited
at any point.

4.1.2.4 Chatting system

Our system includes chatting functionality. There are three types of chats;

• Subject chat is used when chatting will all users in a subject. Students can discuss tasks
and ask teachers for assistants. There is also an option to send messages anonymously.

• Queue group chat is used for chatting within a group waiting for approval/help in a queue.
The teachers can join this chat and read/write to the students. The students are notified
about teachers being able to read their messages in this type of chat, and they have to accept
this to start chatting.

• User-to-user chat is used when chatting directly to user in the system. This functionality
is as of now reserved for teachers and assistants in a subject. Teachers can start conversations
with whoever they want within one of their subjects.

A snippet of the chatting system is shown in 16 below.

21

Figure 16: Our system’s chatting functionality.

Figure 16 shows the state of four chats, from left to right:

1. A collapsed subject chat.

2. A user-to-user chat.

3. A queue group chat, showing the startup warning for group chats.

4. A subject chat.

4.1.2.5 Dark mode theme

Figure 17: While in standard Qs light mode, the moon in the footer can be clicked to enter dark
mode. While in dark mode, this icon turns into a sun that can be clicked to re-enable light mode.

22

Figure 18: The subjects page in our system’s dark mode theme.

4.1.2.6 Student queue view

Figure 19: Students can watch the queue in real time without getting access to other students
information.

23

4.1.2.7 Notifications

Figure 20: Our system will warn the user if he about to be logged out due to inactivity.

Figure 21: Teachers and assistants can call groups, and they will be notified by a sound and this
prompt. Students can also call their groups to start preparing their work before getting help.

24

4.1.3 User testing

Our product manager gave us the opportunity to test the system during a real class at NTNU.
We conducted two production tests. These sessions were digital only, which meant they got to test
the online video chat feature. Many users sent valuable suggestions and bug reports through the
feedback function built into the website.

4.1.3.1 Production Test 1

Feedback from students:

• Message for the queue does not show.

• Can’t figure out how to enter the queue for the respective exercises.

• Queue feels much slower when we can’t see the whole queue and how long the student assistant
has been helping someone.

• Can we see the whole queue?

• I would like to see the whole queue, not just the position.

Feedback from student assistants:

• Me as a student assistant can delete other student assistants, on purpose?

• I think it be nice if the help tab was more distinct when something happens in it. Perhaps
red text or something - so that we don’t overlook them, since we want to prioritize them.

Feedback from teachers:

• Approving exercises is bugged on approval list page. Comments are removed after being
saved, same goes for date. Date doesn’t seem to be set automatically if you click on the
exercise.

• Subject page: It may be confusing that some students may render, and that you have re-
sponsible further down. Especially on mobile, but may be applicable for PC as well. It may
be better if students and responsible could have been collapsed and extended by the user.

• There are some bugs on the subject edit page. I got an error when selecting exercise 1 to be
approved. There was no error on exercise 2, but this was forgotten when reloading the page.
After this the option to select exercises came 4 times after each other.

• Approval List: The sorting seems to be random. Users should be sorted by surname. The
option to download exercises doesn’t work.

4.1.3.2 Production Test 2

Feedback from students:

• Chat is annoying

• Chat is scrolling if you get a message when scrolling and reading the backlog

• Chat is opened automatically when messages are received even if it’s closed, that’s kinda
annoying.

25

• Would be nice to be able to mute the chat without muting the entire tab.

• Bug: Had to refresh the page to get updated position in queue

• There isn’t any profanity filter on the chat

Feedback from student assistants:

• Jitsi in qs doesn’t work neither in Safari nor Chrome

• Page-title when a student assistant wants to start video chat is not very intuitive

• Chat name for queue element chat with subjectcode is not very intuitive. It should be the
name of the students.

• Default font size is too big

• No way to go back to the person you are approving, and it’s impossible to know who you are
approving. There are no buttons to delay an approval.

• Queue page has scroll even without content on the page

4.1.4 Code documentation

Since the front-end is written in TypeScript, JSDoc can be easily generated.

The back-end also has annotations for JavaDoc.

All of the documentation can be found in the system documentation document in the appendix.

4.2 Engineering results

In this chapter we will look into some the goals we set in the vision document. As many of our
initial goals were partially developed when we inherited this project, we will discuss them briefly.

4.2.1 Functional properties

All features in the current system are also present on our system. The functional properties
mentioned in the vision document have all been fulfilled to a degree in which they are usable and
mostly bug free. Present functionality was improved, and several new features were added:

Feature Status
Virtual Meeting This has been implemented using JITSI Meet

See the queue as student This feature has been implemented with limited
details

Room image creation within the website This feature has been implemented with support
for both image, and a dedicated editor

Chatting system This has been implemented with 3 different chat
options

Token timeout warning This has been implemented with warning after 30
minutes

Expiration date for exercises This feature has been implemented
Option to upload user photos This feature has been implemented

Notification about being called This feature has been implemented globally

26

4.2.2 Non-functional properties

4.2.2.1 Good security

This is a somewhat ambiguous goal, but the security on our system is vastly superior compared to
the current system. Access control to the different resources is as strict as possible, and users only
have access to the users they have a relation to.

There is still some work to be done to ensure the security. Even though none of the students
managed to break the security features of the system during the testing, there should be conducted
some more penetration testing to ensure the security.

4.2.2.2 Reliable Website

The website is built using React, which will make it work in all modern browsers. We worked on
the website with the goal of it being usable on mobile, as well as tablets.

4.2.2.3 Stability

The user test we conducted had over 80 students. We saw no issues in terms of the system being
unstable or crashing. The system itself is also fairly simple to setup, and should not require much
resources to maintain.

4.3 Administrative results

4.3.1 Timesheet and activity

At the end of the project we had the following total work hours:

Hans Kristian Granli: 604 hours.

Torje Thorkildsen: 597 hours.

Our main focus varied over the course of this semester. We have visualized our work distribution
in the pie charts below.

27

Figure 22: Hans Kristian’s distribution of work hours.

Figure 23: Torje Thorkildsen’s distribution of work hours.

4.3.2 Planning and organizing

We implemented a kanban board on GitLab.

28

Figure 24: Kanban board on GitLab

The schedule plan was organized into a Gannt diagram, which can be found in the appendix.

Figure 25: Part of the project’s Gantt diagram.

29

5 Discussion

5.1 Scientific results

5.1.1 Back-end

5.1.1.1 Choice of Connection Pool Framework and Benchmarks

Hikari dwarfs the other Connection Pool frameworks in terms of performance, just like the de-
velopers claimed. However the error rate is significant compared to the other frameworks.

Hikari also has some non-performance properties called safe by default that makes it interesting
[Bab]:

• Connections are rolled back when returned to the connection pool , so that uncommited
changes aren’t affected by the next user

• If the connection hasn’t been used in the last 500ms, Hikari will ensure it’s valid before
handing it over

• If an exception occurs in the middle of a statement, Hikari will by default close the statement
when the connection is returned to the pool, which eliminates potential connection leaks on
error.

These properties are possible to achieve when using other frameworks as well, but frameworks with
safe properties out of the box is very much sought after when working in a small team like we did.

5.1.1.2 Performance test

The tests we ran on the server showed extreme differences in the performance of the new system’s
server and our system’s server. Both versions could sustain a heavy load of thousands of requests
per second, but with very different response times. While analyzing the dependencies of the new
system we quickly realized that its server didn’t pool connections at all. It used a class called
DriverManagerDataSource. Its documentation page clearly states: ”NOTE: This class is not an
actual connection pool; it does not actually pool Connections.” ([Hoe]) and explains that it creates
new connections for every request. It goes on to recommend Hikari as a connection pooler, which
we took into consideration when deciding what we would use. The new system might have only
used this for testing purposes, but either way it was a necessary change before production testing.

An even more costly mistake in the new system was how they created a new application context
for each request the server received. This means that it loaded and created new objects of all the
DAO-classes. These classes were meant to be singletons, meaning there only exists one object of
each of the classes in the system. Some of the output logged for every request is shown below.

DEBUG org.springframework.beans.factory.xml.XmlBeanDefinitionReader

- Loaded 2 bean definitions from class path resource [Database/Spring-Datasource.xml]

DEBUG org.springframework.beans.factory.xml.XmlBeanDefinitionReader

- Loaded 1 bean definitions from class path resource [DAOs/Spring-Campus.xml]

.

.

DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory

- Creating shared instance of singleton bean 'org.springframework.context.support.

PropertySourcesPlaceholderConfigurer#0'

DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory

30

.

.

DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory

- Creating shared instance of singleton bean 'subjectDAO'

DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory

- Creating shared instance of singleton bean 'queueAdminDAO'

This resulted in new instances of all DAO classes which were supposed to be singletons. Redesigning
their bean-structure and singleton usage to prevent this made the server much more responsive.
From table 1 and table 2 we can see that the new system’s beans structure came with a huge
performance penalty. The server did not access the database during this the first test, and the
bean/application context changes were the biggest changes when it came to request handling
between the two versions of the server. This test also shows a small but noticeable difference when
using temporary redirects instead of direct access to endpoints. Temporary redirects contribute
to a constant delay to the response time since all they do is reroute the request (and respond to
the client who sent the request with status 302 - temporary redirect). With this in mind, the new
server would have suffered a far greater relative time delay if it still used temporary redirects. The
average response time in 1 increased by approximately 8 seconds when using redirects, or a 10.6%
increase. If we were to add this 8-second delay to the average response time of 10 seconds of our
system’s server, the average response time would increase by 80%. In other words, the server’s
response time would almost be doubled.

5.1.1.3 Database Structure

After analyzing the database of the current and the new system, it was clear to us that we needed
to entirely restructure it. The current system’s database was not even in the first normal form;
it broke the requirement that says that every column in a table need to be atomic, meaning that
is does not contain multiple values per cell. In multiple tables in the database they had comma
separated values within the same cell stored as text, which would not only use more storage than
storing numbers but also forced the system to split and parse the values at some point. The most
obvious problem with this approach was how difficult it would be to extend the functionality of
the system and join certain tables together.

The database redesign resulted in a much more maintainable and extendable system.

Many of the security issues mentioned in previous reports seemed to stem from poor database
design. In our opinion designing a new database altogether would make the system more secure,
increase performance and reduce error sources. The old database also made it impossible to cleanly
implement certain features such as uploading exercises, setting a due-date to an exercise, and giving
an exercise a description.

The new database is normalized and easier to maintain. Among other things we also allowed
queue elements to set their room id to null/0. This is then interpreted as home approval on the
client side, as apposed to the old system where home was set as a regular room.

Requirement logic was also improved. The system we inherited only had support for two types of
requirements; ”total” and ”x of y”. We added a third option ”specific”. The type is still stored in
a single table row:

• Type > 0 : This is ”total” and does not have any exercises tied to it

• Type = 0 : This is ”specific” and means that all exercises connected to this requirement in
the requirement exercise table must be approved

• Type < 0 :This is ”x of y” and means that at least type of the connected exercises in
requirement exercise must be approved

31

5.1.1.4 API Design

When reading the report from [AW20], and looking at the code it was clear that the old API
endpoints were a complete mess. Having 104 endpoints is not necessary. Additionally the API
did not adhere to the REST-principles. We found that rewriting the API would make the system
more intuitive, better to work with and easier to maintain.

5.1.1.5 WebSocket

The old WebSocket implementation was lackluster. It would listen in for incoming messages
and broadcast this message to all connected sessions, even without any form of authentication.
Additionally the event-messages were generic and would be sent out to all connected users. This
means that if something happened in subject A, then all members in subject A and subject B
would get a message saying something had changed and would reload their whole page.

Our implementation requires the user to send their authentication cookie in order to authenticate
themselves. This authentication allows for features such as chat, and calling specific users. Ad-
ditionally when an authenticated user fetches the queue or their subjects they are added to the
related subject-map in the server. When something changes in the queue of this subject only the
subject’s users will receive a websocket message containing information about what has happened
in JSON format. These messages contain no identifiable information. Any information that re-
quires you to be a student assistant, or a teacher to access will not be sent, but rather a generic
message, which means that the clients that know they can access this information can fetch the
info from the HTTP-API, and the rest can ignore it.

This implementation however is not without flaws. The WebSocket service is still only mounted
on the generic endpoint ”/”. Due to time constraints and the large workload we were unable to
refactor this part of the service. This leads to extra overhead on the server side, additionally the
Java API limits message handlers to one per session, this means that the chat and event messages
can block each other and lead to worsened performance.

5.1.1.6 Code documentation

The current system’s code documentation was mostly unfinished and did not help further devel-
opment for the team. The back-end had seemingly auto-generated a lot of it. This, along with
very unhelpful variable and method naming made us spend much more time than necessary get-
ting started with our development. One example of important variables with horrible naming and
documentation from the new system is shown in figure 26 below:

1 /**

2 * The Db.

3 */

4 PersonDAO db = (PersonDAO) context.getBean("personDAO");

5 /**

6 * The Db 2.

7 */

8 LoginDAO db2 = (LoginDAO) context.getBean("loginDAO");

Figure 26: The new system’s naming and corresponding documentation of a few important variables
in the back-end code.

Source: Line 43 in PersonRoute.java of the new system’s server code.

This type of naming and documentation made it near impossible to effectively write code in these
classes, and forced frequent look-ups to other parts of the code. This type of documentation has
no effect on the readability of the code, meaning it could just as well have been left blank. These

32

are the types of documentation issues we tried to address in the new system. All methods in the
API and DAO classes have been documented, making it easy for front-end developers to make use
of them.

5.1.2 Front-end

5.1.2.1 Reactive design

One major focus for the website has been creating a smooth and reactive user interface that
responds to changes and works on all kinds of devices and screens. Our end result was a website
which could respond to any reasonably sized viewport by rendering all functionality in a fitting
manner.

In order to make the new system usable we also had to make sure that the new system was perceived
either as good or better than the current system by the user. Looking at the user tests conducted
by [AW20] and trying the client ourselves we found that the elements in the page took too much
space and looked unprofessional compared to the current system.

The biggest perpetrator of this was the help-component which was easily fixed by making the
button float, instead of occupying a newline without any content. Another problem was the font

CSS on the old system was very difficult to work with and maintain. The old CSS-code referenced
class names incorrectly:

/*

Will apply on the inner element of <div class="btn"><div class ="qs-button"></div></div>

*/

.btn .qs-button{

display : flex;

}

/*

Will apply on element <div class="btn qs-button"></div>

*/

.btn.qs-button{

display:flex;

}

This lead to the CSS-keyword !important being used 264 times, additionally the @media queries
was written before the ”regular” code, which also forced usage of !important. In our system
!important occurs 83 times, with those occurances being mostly fragments from the old system
which we didn’t seem necessary to change.

Additionally the old CSS exclusively used px as measurement. This is a problem when designing
response webpages, since the components won’t respond to bigger or smaller viewports natively.
This leads to unnecessary repetition of code. We therefore changed many of the units to use the
relative units like rem and vh. Additionally most of our CSS is written using grid. CSS grid by
design makes it much easier to create responsive webpages.

5.1.2.2 Dark mode (theme option)

Different users have different preferences. The rise in popularity of giving users choices of how the
systems are presented made us add an option to enable dark mode for the website. This changes
the color theme of the whole website, while keeping the rest of the styling the same.

33

When revamping the style-sheets, we implemented CSS variables for colors. This made implement-
ing a dark mode incredibly easy:

:root {

--main-theme: #2656b2;

--font-color : rgb(0,0,0);

}

:root .dark{

--main-theme : #6d9ff5;

--font-color : lightgray;

}

To activate the dark mode a parent div is set to the class dark. We created a button on the footer
to toggle this class.

5.1.3 Code documentation

The new system had no front-end code documentation when we received it. During the process
of developing the new system we have renamed many variables and methods, as well as written
a lot of code documentation. Our system is first off all focused on using clear and self-explaining
names to avoid unnecessary look-ups and code reading/interpreting. We tried to document and
rename most of the methods and code we worked on, and made readability changes by splitting
bloated code into more digestible smaller methods. While much of the front-end code from the
new system still persists without documentation, it should be easier to read. The service classes
(interfaces between the front-end and the REST-API on the back-end) now have sensible method
naming and documentation, which is important for further work.

5.2 Engineering results

5.2.1 User tests

Due to Covid-19 restrictions testing scientifically was a challenge. We managed to test the system,
but not as scientifically as we would have liked, this is something that should be considered for
further work.

5.2.1.1 Production Test 1

The first test exposed a lot small unforeseen bugs. However these mostly occurred for the subject-
management part of the site, and had little to no effect on the queue part of the system.

The biggest takeaway from the test was that the students really missed a way to watch the whole
queue. Even tough this was a conscious design choice made by one of the previous groups, we
decided the new system should implement this feature for the students again. We still kept the
same security constraints, and made it so that a student in the subject only would get the queue
element IDs and the status of the queue elements. The queue is ordered by the queue element IDs,
and the status tells if the element is receiving help or not. Another addition was a button from
the exercises-view to the queue.

Additionally, the navigation from the subject queue to the subject approval list seemed to be more
clunky than necessary. We therefore added a new tab in the queue view which would bring up the
approval list for all members of the subject, as well as adding a button to go to the approval list
page itself. Another issue was that the student assistants felt like it was unclear whether the queue
message had been altered or not. We therefore made it so that the queue message always renders.

34

Since this is a max 400 character message it won’t break the user experience. They also had issues
identifying what queue element they were currently serving. Therefore, a small icon was added
to replace the queue element position for the queue elements the student assistant was currently
assisting. The report of student assistants being able to remove other student assistants from the
subject was a client side bug, as they would be allowed to press the button, but the back-end server
would deny the operation. These buttons were removed for the student assistants altogether.

We felt like the issue of ”stuff taking too much space” ultimately came down to the modal design.
This was inherited from the previous group, but the component was both tedious and annoying to
work with. Removing the modal design also made it easier to fix components such as the approval
list, which was designed without the React design philosophy in mind.

5.2.1.2 Production Test 2

For the second test the system was stable and there were no big issues during the session. The users
seemed pleased with the changes that had been made since last time, but we still received feedback
on some details to work on. The new chatting system worked well and was used by the students
to communicate with the assistants in the subject. A feature that was suggested repeatedly was
the ability to mute the chat sounds, which was finished a few days later.

One of the bugs reported by the student assistants was that the video chat didn’t work properly
in the modal. For this reason we decided to scrap the built in video chat component, and rather
open it in a new tab. As the website utilizes Jitsi as its video chatting service this turned out to be
a simple fix, since the client would simply open the Jitsi meeting in a new tab. Another bug was
that the queue position didn’t update, this was due to an oversight where the WebSocket handler
only updated the rendered queue and not the card view.

5.2.2 Qs in a system perspective

As many teams have contributed to this project, it has come far as a product and could be
considered ready for production. There will always exist possible improvements, but it works well
and can run on its own without assistance from developers. The system is capable of replacing
the existing one, as it has about all of its core functionality, general improvements and a greater
feature set.

The system is perfectly suited for any schools and universities who need a way to approve and
help students effectively. It could be used for non-educational purposes as well, and might be sold
commercially. Queues exist everywhere, and a simple way to organize them can be of great help to
certain industries. Being able to chat with and video call users remotely is especially helpful during
a world wide pandemic such as Covid-19. One could for example imagine this system being sold
as a customer service organizer, where it would track the users’ position in the queue. No users
would be able to retrieve any information about other users in the queue, but the employees at
the customer service would have everyone waiting for help in a well-organized list. The customer
service could be split into different categories, each being its own ”subject”. Some changes would
have to be made for the system, such as disabling exercises, but this could be done in a relatively
short amount of time.

Our hope is that 3D Motion Technologies feels confident enough in the system to replace the
current running version. It is also in a state where it could be introduced to other schools and
universities with the hope of selling the product and generating revenue.

5.2.3 Professional ethics

Qs is a system meant to improve an otherwise tedious process of managing queues in a class like
environment. We are confident that the system provides a better experience than the current
running version. The new system has inherently greater respect for privacy, as the system follows

35

principle of least privilege, and a user cannot read anything from a user he or she doesn’t share a
subject with. It is also impossible for a user to read queue messages meant for student assistants
and teachers. Students do not get full information about the queue in a subject, and cannot deduct
what exercises another student is in queue for, or which exercises another student has approved.

In terms of privacy there are still some points of improvement. The chat functionality has no
encryption neither when sending nor storing messages, so a database dump will show all messages
in clear-text. Therefore, sending very private content in chat messages should be avoided. A
database dump will not reveal information about the users who sent them however, as there is no
information saved about anonymous users.

5.3 Administrative results

Both team members have been passionate about this project and dedicated much of our spare time
trying to make the system production ready by the deadline. We overshot the expected workload
of 500 hours each by around 100 hours each.

As the charts in figure 22 and and figure 23 show the majority of the work hours were spent fixing
bugs and improving existing functionality. The time we spent creating new features was often
followed up by even longer lasting bug fixing sessions targeted at those features. That is also a
reason why the work hour distributions consist of mostly bug fixes.

The Kanban board in figure 24 was extremely useful during development. It was an easy way to
check what the other team member was working on at any time, and what needed to be done. Our
work never collided at ant point in the development process. Every time we found bugs or other
issues we would immediately note it in the board, even if we did not work on a related issue at the
time. This way, no discovered bugs were forgotten.

The Gantt diagram in figure 25 was an important tool for helping us keep a structured schedule.
We always knew what issues we should be focusing on according to the plan. This diagram was
formed and edited throughout the development process based on our current status. Is helped
us plan how we were going to reach the goals of the finished project, and when we were behind
schedule.

5.3.1 Group Reflection

We have both put in equal amounts of work, and stayed very consistent throughout the semester.
All our conflicts were resolved with little strain. As both of us were passionate about the project,
we tried to deliver as good of a product as possible. Our teamwork methodology also worked
perfectly for us, as it had little administrative overhead and contributed to a smooth developing
experience. All in all we are very satisfied with our team’s effort, methods and results for this
project.

36

6 Conclusion and Further Work

The project we are delivering fulfills all the requested core features of the assignment. The current
Qs system has glaring design flaws which are either partly or completely removed from our version.
We believe that our system, even with its flaws, is ready to replace the current system. Client-wise
it might be worth making some more scientifically based studies on the UI after Covid-19, among
the lines of what [AW20] performed. However, based on the feedback we received on our moderately
large user tests, we feel confident that the new client provides a superior user experience to the
system we inherited. With improved documentation, naming, and code it should be easier for a
group to take up this project and iterate on it.

Our testing shows that the performance on the new back-end is massively improved compared to
the inherited system. As the current system uses a single threaded framework for the server, Java’s
multithreading capabilities make it a much more scalable system at its core. The new normalized
database contributes to a more robust server. However, there is still some work to do when it
comes to protecting the server from spam-requests and DOS attacks.

In order to reach 3D Motion Technologies’ goal of making Qs commercially viable we believe that
the system can benefit from further scrutinize and testing.

Given the reasons stated we believe that the answer to our thesis Can we complete new Qs so that
it will be an improvement compared to the current system? is yes.

We have outlined these suggestions for Further work:

• Refactor WebSocket service

• Scientifically conduct user tests

• As mentioned in [AR20] to port the React client to React Native to create a fully fledged
mobile application

• The system lacks functionality to upload PDF files as exercises. For the project we are
delivering this should be pretty straight forward to implement.

• Encrypt the chat messages to improve privacy

• Penetration testing

• Extend room editor

• Consider profanity filter on anonymous messages

37

Bibliography

[AR20] Vegard Andersson and Erling Roll. ‘Front-end study and application of modern web-app
technologies with the aim of improving an existing system’. In: (2020).

[AW20] Moe Adolfsen Jonson and Willa. ‘A test of the new version of QS’. In: (2020).

[Bab] Nick Babock. url: https : / / github . com / nickbabcock / dropwizard - hikaricp - benchmark
(visited on 18th May 2021).

[Con] Babel Contributors. Babel - A JavaScript Compiler. url: https://babeljs . io/docs/en
(visited on 10th May 2021).

[Doca] MDN Web Docs. HTTP request methods. url: https://developer.mozilla.org/en- US/
docs/Web/HTTP/Methods (visited on 11th May 2021).

[Docb] MDN Web Docs. The WebSocket API (WebSockets). url: https://developer.mozilla.org/
en-US/docs/Web/API/WebSockets API (visited on 10th May 2021).

[Fie00] Roy Thomas Fielding. ‘Architectural Styles and the Design of Network-based Software
Architectures’. In: Doctoral dissertation, University of California (2000). url: https :
//www.ics.uci.edu/∼fielding/pubs/dissertation/rest arch style.htm (visited on 11th May
2021).

[For] Internet Engineering Task Force. The WebSocket Protocol. url: https://datatracker.ietf.
org/doc/html/rfc6455 (visited on 11th May 2021).

[Hoe] Juergen Hoeller. Class DriverManagerDataSource. url: https://docs.spring.io/spring-
framework/docs/current/javadoc-api/org/springframework/jdbc/datasource/DriverManagerDataSource.
html (visited on 19th May 2021).

[Mar03] Tom Poppendieck Mary Poppendieck. Lean Software Development: An Agile Toolkit.
Addison-Wesley Professional, 2003. isbn: 0321150783.

[MM20] Kevin M. Halvarsson Magnus Dahl and Fredrik Monsen. ‘Reimplementasjon av QS’. In:
(2020).

[Woo] Medina Wooldridge Qian. url: https://github.com/brettwooldridge/HikariCP-benchmark
(visited on 18th May 2021).

38

https://github.com/nickbabcock/dropwizard-hikaricp-benchmark
https://babeljs.io/docs/en
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/datasource/DriverManagerDataSource.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/datasource/DriverManagerDataSource.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/datasource/DriverManagerDataSource.html
https://github.com/brettwooldridge/HikariCP-benchmark

Appendix

A Old REST-API endpoints

login

login/checkToken/{token}

login/reset/{email}

login/logout

login/changePassword

buildingRoute

buildingRoute/{id}

buildingRoute/edit/{id}

buildingRoute/delete/{id}

campusRoute

campusRoute/{id}

campusRoute/edit/{id}

campusRoute/delete/{id}

room

room/{id}

room/edit/{id}

room/delete/{id}

room/editRoomImage

room/roomImage/{roomID}

person/getMe

person/editOtherMail/{othermail}

person/subject/{id}

person/exercises/{subid}

person/subjectstudents/{id}

person/subjectStudentsQueue/{id}

person/subjectExerciseGroup/{id}

person/mySubjects

person/subjectFromQueue/{id}

person/queue/{id}

person/element/{queueElid}

person/studentsElement/{id}

39

person/add/element/{subid}

person/element/edit/{queueElid}

person/element/delete/{subid}/{queueelid}/{queueElementPosition}

person/postpone/{subjectid}/{queueelementid}

person/getOwnerOfElement/{id}

person/persontToElement/{id}

person/regStudent

person/regStudent/{id}

person/regStudent/edit/{id}

person/regStudent/delete/{id}

person/employees

person/employee/{id}

person/employeeperson/employee/edit/{id}

person/employee/delete/{id}

person/roles

person/teacherRoles

person/getQueueElementExercises/{id}/{queueid}

person/getQueueElementID/{subjectID}

person/report

person/updateLanguage

person/search

queueRoute/subjects

queueRoute/{id}

queueRoute/disableQueue/{id}

queueRoute/startQueue/{id}

queueRoute/stopQueue/{subid}

queueRoute/closeQueue/{subid}

queueRoute/queueComment/{id}

queueRoute/updateQueueComment/{subid}

queueRoute/getStudentFromSubjectPersonID/{subPersid}

queueRoute/status/{subID}

queueRoute/statusSpecificList/subjectPerson/{subPersid}

queueRoute/exerciseNumber/{id}

queueRoute/element/{queueElid}

queueRoute/getElementStudents/{queueElID}

40

queueRoute/approveElement/{subPersid}/{exeNumber}

queueRoute/quickApproveElement/{subPersid}/{exeNumber}

queueRoute/quickApproveDetailed

queueRoute/disableElement/{queueElid} queueRoute/postpone/{queueElid}

queueRoute/{queueElid}/startElement

queueRoute/{queueElid}/stopElement

queueRoute/{queueElid}/pauseElement

queueRoute/approveAllExercises

subject/specific/{id}

subject/mySubjects

subject

subject/group/{id}

subject/group

subject/group/delete/{id}

subject/getPersons/{id}

subject/getTeachers/{id}

subject/getPersonFromEmail/{email}

subject/resetLearningAssistant

subject/addLearningAssistant

subject/addTeacher

subject/disablePerson/{id}

subject/addStudent

subject/addStudents

subject/regExerciseOnStudent/{subPersid}

subject/archive/{id}

subject/dearchive/{id}

subject/addSubject

subject/editSubject

subject/disableSubject/{id}

subject/subjectExercises/{id}

subject/getQueueLength/{subjectID}

Endpoints redirecting to the endpoints above:

loginForm

logout

41

resetPassword

reset:{token}

updatePassword

res/building

res/specificBuilding

res/addBuilding

res/editBuilding

res/deleteBuilding/{id}

res/campus

res/specificCampus

res/addCampus

res/editCampus

res/deleteCampus/{campusid}

res/changePassword

res/roles

res/teacherRoles

res/employees

res/employee/{personID}

res/addEmployee res/editEmployee

res/deleteEmployee/{id}

res/studentGetStudentId

res/editStudentOtherMail/{newAltMail}

res/subjectAndGroup/{subjectID}

res/studentGetCurrent/{subjectID}

res/getQueueElementExercises/{queueElid}

res/getQueue

res/studentSubjects

res/subject/{subjectID}

res/studentsInSubject/{subjectID}

res/studentsInSubjectFromQueue

res/subjectFromQueue

res/getQueueElement/{queueElementID}

42

res/addQueueElement

res/updateQueueElement

res/deleteQueueElement/{subjectid}/{queueElid}/{position}

res/studentPostponeQueueElement/{subjectid}/{queueelementid}

res/getQueueElementID/{subjectID}

res/addPersonToQueueElement

res/getStudentsInQueueElement/{queueElid}

res/studentGetWithSubjects

res/specificStudent

res/addStudent res/editStudent

res/deleteStudent/{id}

res/subjects

res/allSubjects

res/getQueueDetailed/{subjectid}

res/startQueue/{id}

res/stopQueue

res/closeQueue/{id}

res/restartQueue

res/getQueueComment/{subjectID}

res/updateQueueComment/{id}

res/getQueueElementTeacher/{queueElementID}

res/getStudentsInQueueElementTeacher/{queueElid}

res/deleteQueueElementSimple

res/approveQueueElement

res/quickApproveQueueElement/{subjectPersonID}/{exerciseNumber}

res/quickApproveQueueElementDetailed

res/postponeQueueElement/{queueElementID}

res/startQueueElement

res/stopQueueElement

res/pauseQueueElement

res/getStudentFromSubjectPersonID/{subjectPersonID}

res/getSubjectStatusList/{subjectID}

43

res/getSubjectStatusListSpecific/{subjectID}

res/getSubjectStatusListSpecificList/{subjectPersonID}

res/getExerciseNumber/{subjectID}

res/room

res/specificRoom/{roomID}

res/addRoom

res/addRoom res/deleteRoom/{id}

res/editRoomImage

res/roomImage/{roomID}

res/regSubjectGet

res/regSubjectGetMine

res/regSubjectSpecific/{subjectID}

res/regSubjectGetGroup/{subjectID}

res/regSubjectGroupAdd

res/regSubjectGroupDelete/{subjectid}

res/regSubjectGetStudents/{subjectid}

res/regSubjectGetTeachers/{subjectid}

res/regSubjectSearchStudents/{email}

res/resLearningAssistant

res/regLearningAssistant

res/regSubjectTeacherAdd

res/regSubjectTeacherRemove/{id}

res/regSubjectStudentsAdd

res/regSubjectStudentDelete/{id}

res/regSubjectArchiveSubject

res/regSubjectDearchiveSubject

res/regSubjectAdd

res/regSubjectEdit

res/regSubjectDelete/{SubjectID}

res/subjectExercises/{subjectID}

res/approveAllExercises

res/updateLanguage

44

res/getQueueLength/{subjectID}

res/searchPeople

45

B New REST-API endpoints

/login

api/logout

api/users/{user id}/password

api/password-reset/token

api/password-reset/{email}

api/password-reset/token/{token}

api/campus

api/campus/{campus id}

api/campus/{campus id}/buildings

api/campus/{campus id}/buildings/{building id}

api/campus/{campus id}/buildings/{building id}/rooms

api/campus/{campus id}/buildings/{building id}/rooms/{room id}

api/campus/{campus id}/buildings/{building id}/rooms/{room id}/image

api/users

api/users/{user id}

api/users/{user id}/subjects

api/users/{user id}/subjects/roles

api/users/{user id}/subjects/{subject id}/exercises

api/users/{user id}/subjects/{subject id}/exercises/{exercise id}

api/users/email/{user email}

api/users/{user id}/photo

api/subjects

api/subjects/{subject id}

api/subjects/{subject id}/queue-meta

api/subjects/{subject id}/exercises

api/subjects/{subject id}/exercises/{exercise id}

api/subjects/{subject id}/users

api/subjects/{subject id}/users/available

api/subjects/{subject id}/users/responsible

api/subjects/{subject id}/users/{user id}

46

api/subjects/{subject id}/users/{user id}/photo

api/subjects/{subject id}/users/roles

api/subjects/{subject id}/users/exercises

api/subjects/{subject id}/requirements

api/subjects/{subject id}/requirements/{requirement id}

api/subjects/{subject id}/queue/{queue element id}/call

api/subjects/{subject id}/chat

api/subjects/{subject id}/users/{user id}/chat

api/subjects/{subject id}/queue/{queue element id}/chat

api/subjects/{subject id}/queue

api/subjects/{subject id}/queue/approve

api/subjects/{subject id}/queue/messages

api/subjects/{subject id}/queue/{queue element id}

api/subjects/{subject id}/queue/{queue element id}/message

api/subjects/{subject id}/queue/{queue element id}/users

api/subjects/{subject id}/queue/{queue element id}/approve

api/subjects/{subject id}/queue/{queue element id}/exercises

api/subjects/{subject id}/queue/{queue element id}/exercises/{exercise id}

47

C Gantt diagram

48

D Vision Document

49

E System Documentation

58

System Documentation - Qs

Hans Kristian Granli
Torje Thorkildsen

May 20, 2021

1

Contents

1 Revision History 3

2 Introduction 3

3 Architecture 3

4 Project Structure 3

5 Class Diagram 4

6 Databasemodel 11

7 Server Services 12
7.1 HTTP . 12
7.2 WebSocket . 12

8 Security 12
8.1 Cookie . 12
8.2 Password . 12
8.3 SQL-Injection and X-site scripting . 12

9 Installation and execution 12
9.1 Frontend . 13
9.2 Backend . 13

9.2.1 SQL . 13
9.2.2 JAVA-Server . 13
9.2.3 Tomcat Maven . 14

10 Source code documentation 15

11 Continuous integration and testing 15

2

1 Revision History

Date Version Description Author

09/03/2021 0.1
Wrote introduction, architecture
and project structure

Hans Kristian Granli
Torje Thorkildsen

29/04/2021 0.2
Created Database Model and
Class Diagram

Torje Thorkildsen

14/5/2021 1.0

Wrote about source code docu-
mentation, CI setup, server ser-
vices and installation and execu-
tion

Hans Kristian Granli
Torje Thorkildsen

2 Introduction

This document is written in conjunction with a bachelor thesis in the subject TDAT 3001 spring 2021
at Norwegian University of Science and Technology. The task at hand was creating a new version of
the internal queue system “Qs” - with the goal of improved security, functionality and performance.
The point of this document is explaining the structure of the project, how it communicates and works
together.

This iteration of QS undergone development by three other groups. Two previous bachelor theses
for front and backend respectively, as well as one group who had the task of sewing it together. We
have not altered the structure of the project itself in any major way.

3 Architecture

This project has three major components: a webpage (client), a java server (backend) and an SQL-
database.

Figure 1: Entity classes

The user interacts with the client, which sends HTTP-requests to the server, which then in turn
checks for access control and then queries the database for the relevant information and returns it in
an HTTP-response.

4 Project Structure

Project Structure has already been documented by [Ado20]

3

5 Class Diagram

Figure 2: Entity classes

4

Figure 3: Contsants help class

5

Figure 4: JDBC classes

6

Figure 5: Jersey Config

7

Figure 6: JSON Objects

8

Figure 7: Marshall Classes

9

Figure 8: Route/API classes

10

6 Databasemodel

Figure 9: Database Model

The database is as normalized as possible. Most fields should be self-explanatory. For clarification
the table “queue element message” is an optional message a group can set which only teachers and
student-assistants may access.

Requirement has somewhat advanced logic. There are 3 possible types of requirements:

• X of y: which means that a given number of the connected exercises must be approved.Type
value is negative.

• Total: which means that a given total of exercises in the subject must be approved – this should
not have any exercises connected as its implicit that all exercises in the subject are connected.
Type value is positive.

• Specific: which means that all the connected exercises must be approved. Type value is 0.

To support “home approval” the field room-id in the queue-element table may be 0. Normally an
id cannot be 0, however allowing this means that we implicitly can interpret room-id 0 as home –
without having to get the information from the database.

11

7 Server Services

7.1 HTTP

The REST Api is mounted on /api and is further divided into the following classes:

• Login-API

• Campus-API - Building-API - Room-API

• User-API

• Subject-API - Queue-API

7.2 WebSocket

The WebSocket-API has a single endpoint. To gain access to this resource, the client has to authenticate
itself with the cookie given upon login. When the user is authenticated and either fetches its subjects,
or fetches the queue of a subject, the user is added to the internal WebSocket subject-user-map. This is
a data structure which connects a WebSocket-session to a user, so that we can broadcast subject-events
only to the members of a given subject.

There are multiple different socket-events. When a queue-element is deleted on the backend, every
connected and authenticated client gets a JSON-message in the socket connection telling what element
has been deleted. This reduces the required HTTP-requests to the server. Not all changes are broadcast
to all users, if a protected resource has been altered, a generic message is sent and the clients who
know they can access the resource can make an HTTP-request to get the new information.

8 Security

Apache tomcat has built in support for encrypted HTTPS communication, but this is not configured
on the project we are delivering. Resource authentication is being done server side. Without a cookie
a user can only reach login and reset-password.

8.1 Cookie

The access cookie stores both user information, and a JWT authentication checksum used to verify
authenticity. This checksum is generated using a server-side secret. Access cookies are used for
authentication after login. This cookie has a timeout of one hour, which the client will automatically
refresh if it detects activity.

8.2 Password

The security methods are unchanged from what we received from the previous group. But will be
documented here for completions sake. All security methods are extensions of java memory safe
methods. The current hash method is PBKDF2WithHmacSHA512 with a 1000 iteration key spec.

Passwords on the hashed and salted with a unique salt for every user. The salt is changed on
password change.

8.3 SQL-Injection and X-site scripting

All the JDBC-methods are made using Java prepared statements. React has built in sanitizer against
cross-site-scripting.

9 Installation and execution

To run the system, 2 files must be created. config.js for the frontend, and prod.properties for
the backend, additionally application.properties must be configured on the backend. Tomcat’s
web.xml must be configured with a Cors filter to use cookies.

12

9.1 Frontend

The file config.js must be created under /client/config.js and should look like this:

export const config = {

"server_url":"http://192.168.50.28:8080"

};

The value of server url is the url of the backend server. Out of the box the backend will mount on
port 8080.

Since the frontend is written in react it may be installed using node package manager (npm), to
build this project python2 is also required (python3 will lend syntax error). During the development
a new version of node was released. One of the project dependencies – node sass does at the time of
writing not support node 16 without workarounds, therefore the stable build for this project requires
node 15. There may be some more dependency conflicts in the future. You should however be able to
install the project by running “npm install”. If you run into mentioned issues then “npm install –f”
will force an install. After installing you can start the development version of the client by running
“npm start”.

The development version however – is not suitable for deployment. In which case you should run
“npm run build” which will create a deployable version of the project under /client/dist. From there
you can use solutions like npx serve to host the project. In which case a deployment-script may look
something like this:

#!/bin/bash

cd client

npm install

npm run build

cd dist

npx serve

9.2 Backend

9.2.1 SQL

The relevant SQL-scripts can be found under /server/build test. For production all you really need is
DatabaseSetup.sql. Beware that this file uses the qs-database by default. If you for whatever reason
want to use a database with a different name than qs-simply change line 2 and set the database name
you want.

As far as configuration goes – it is vital that your SQL-server has disabled the clause sql mode=only full group by.
If this is enabled, the queue will only show queue-elements where there are multiple members. To dis-
able this clause from the command line, you need to log into the SQL shell as root and type the
following command:

SET GLOBAL sql_mode=(SELECT REPLACE(@@sql_mode,'ONLY_FULL_GROUP_BY',''));

9.2.2 JAVA-Server

In order to connect the server to our MySql-databse a file by the name prod.properties is required.
This configuration file should be stored under /server/src/profiles/prod/prod.properties and looks like
this:

db.url=jdbc:mysql://*url*/*db-name*

db.username=qsman

db.password=password

Db.url references the address of the MySQL-server. This can be either localhost or an external
server e.g. mysql-ait.stud.idi.ntnu.no. This URL usually requires a port number which by default
is 3306 for MySQL-servers. The value *db-name* must comply with the database you installed the
database script on earlier.. By running our SQL-scripts all tables will be created under a database by
the name qs, but this can of course be altered.

13

Db.username and Db.password is the credentials you use when logging into the mysql server.
Application.properties serves mostly the same functionality as prod.properites. Make sure that the

fields in prod and application match:

db.url=jdbc:mysql://localhost:3306/qs?serverTimezone=Europe/Rome

db.username=qsman

db.password=password

databaseName= qs

dataSourceClassName=com.mysql.cj.jdbc.Driver

hikari.maximumPoolSize=20

serverName=jdbc:mysql://localhost:3306/qs?serverTimezone=Europe/Rome

port=3306

logging.level.com.zaxxer.hikari.HikariConfig=DEBUG

logging.level.com.zaxxer.hikari=TRACE

create-jdbc-connection-pool --ping --restype javax.sql.DataSource --datasourceclassname com.mysql.cj.jdbc.MysqlDataSource\

--property user=root:password=pass:DatabaseName=taman:ServerName=127.0.0.1:port=3306:useSSL=false:zeroDateTimeBehavior=CONVERT_TO_NULL:\

useUnicode=true:serverTimezone=UTC:characterEncoding=UTF-8:useInformationSchema=true:nullCatalogMeansCurrent=true:nullNamePatternMatchesAll=false MySqlPool

9.2.3 Tomcat Maven

To run the backend server, Tomcat 9 is required. Tomcat version 10 was released during development,
but have not tried it, and cannot guarantee compatibility. Hence Tomcat 9 is stable.

We need to configure a Tomcat CORS-filter. Without this our browser won’t allow us to communi-
cate with the backend server. The file we need to change is relative to the installation folder of tomcat
under /tomcat/conf/web.xml. The cors-filter looks something like this:

<filter>

<filter-name>CorsFilter</filter-name>

<filter-class>org.apache.catalina.filters.CorsFilter</filter-class>

<init-param>

<param-name>cors.allowed.origins</param-name>

<param-value>

http://192.168.50.28:8081

</param-value>

</init-param>

<init-param>

<param-name>cors.exposed.headers</param-name>

<param-value>

Access-Control-Allow-Origin,

Access-Control-Allow-Credentials

</param-value>

</init-param>

<init-param>

<param-name>cors.allowed.headers</param-name>

<param-value>

Content-Type,X-Requested-With,accept,

Origin,Access-Control-Request-Method,

Access-Control-Request-Headers,Authorization,

dsName

</param-value>

</init-param>

<init-param>

<param-name>cors.allowed.methods</param-name>

<param-value>POST,GET,DELETE,PUT,PATCH,HEAD,OPTIONS</param-value>

14

</init-param>

<init-param>

<param-name>cors.support.credentials</param-name>

<param-value>true</param-value>

</init-param>

</filter>

<filter-mapping>

<filter-name>CorsFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

The only value that has to be changed is the “allowed origins” param. This refferences the url of
the running frontend. The filter supports an array of addresses, they have to be seperated by commas
like this:

http://192.168.50.28:8081, http://qssystem.club

When all this is setup you can compile the server. Navigate to /server and run

mvn clean install -DskipTests=true {Ptest

This wil generate a file by the name of QsServer.war under /server/target. You now have to move
QsServer.war to /tomcat/webapps. To make sure no other projects are running clear both the ROOT-
directory and ROOT.war in /tomcat/webapps. QsServer.war should now be moved to webapps and
be renamed to ROOT.war.

rm -rf ~/tomcat/webapps/ROOT*

mv ./target/QSServer.war ~/tomcat/webapps/ROOT.war

Now you can run the server either with tomcat or catalina:

~/tomcat/bin/catalina.sh run

~/tomcat/bin/start.sh

The difference being that start.sh wil start a tomcat service, and catalina will run as a regular
application and give the program log in your terminal.

10 Source code documentation

11 Continuous integration and testing

During this project the CI service we have used is GitLab CI hosted by IDI. The Docker image we
decided to use is ubuntu. We have not created any new tests, just altered the existing tests from the
previous project. The tests cover the Api – there are no direct DAO-tests, however since the Api is
directly communication with the DAO – an api test will cover both Api and Dao.

The tests require the project to be running - hence to compile the project one must always skip
the tests. Here is the docker-configuration we used:

References

[Ado20] et al. Adolfsen. A test of the new version of qs. 2020.

15

F Requirements Documentation

74

G Project Handbook

82

Project Handbook - Qs

Hans Kristian Granli
Torje Thorkildsen

May 20, 2021

Contents

1 Gantt Diagram 2

2 Meetings 2
2.1 1. Meeting . 2
2.2 2. Meeting . 2
2.3 3. Meeting . 2

3 Weekly reports 2
3.1 Week 2 . 2
3.2 Week 3 . 3
3.3 Week 4 . 3
3.4 Week 5 . 3
3.5 Week 6 . 3
3.6 Week 7 . 3
3.7 Week 8 . 3
3.8 Week 9 . 4
3.9 Week 10 . 4
3.10 Week 11 . 4
3.11 Week 12 . 4
3.12 Week 13 . 4
3.13 Week 14 . 4
3.14 Week 15 . 5
3.15 Week 16 . 5
3.16 Week 17 . 5
3.17 Week 18 . 5
3.18 Week 19 . 6
3.19 Week 20 . 6

4 Time Sheet 6

1

1 Gantt Diagram

Figure 1: The project’s Gantt diagram.

The excel file containing the Gantt diagram may be found in the attachment.

2 Meetings

2.1 1. Meeting

Date: 13.01.2021

• Received the project

• Talked about vision for the project

• Talked about most important issues

2.2 2. Meeting

Date: 29.03.2021

• Got up to speed on the status of the project

• Planned user test with TDAT2105

2.3 3. Meeting

Date: 20.04.2021

• Talked about feedback from the user test

• Talked about future work

• Discussed approval list CSV format

3 Weekly reports

3.1 Week 2

This week we had a meeting with the project leader and contact person Thomas Holt on Thursday.
We went through the project’s status and what the goals were for the project. We got the project files,
which we spent the Friday testing and understanding the code.

2

3.2 Week 3

In week 3 Torje got back a bacterial infection he had a month earlier, so he was unable to work for
most of the first part of the week. Hans Kristian worked on creating a reliable CI test-environment.

After Torje recovered we looked through the user tests from the previous groups who worked on
the system and made changes to the user interface based on the testers feedback. The system had
some platform specific bugs with the file system which we fixed. The ui improvements were mostly
making the elements smaller to reduce scrolling.

3.3 Week 4

This week we started rethinking the API, the database and the server classes. We spent the first
few days redesigning endpoints and database tables. The server needs a lot of refactoring in both
code and documentation. The code is written in a very unnatural way, with especially senseless
use of inheritance. The server has more than 100 endpoints and has hundreds of useless methods,
with extremely bad naming (short names which do not describe the object nor its purpose). The
documentation almost seems to only be written so the programmers can say “We have documented
all our code”. One example is shown below:

3.4 Week 5

This week we continued implementing the project’s database and REST API. The database was not
normalized and had plenty of design flaws that forced the server to implement unnecessary logic. This
database design was inherently slow and very prone to bugs, and we are quite honestly in a state of
shock. Our redesign addressed these issues but came with the cost of changing a lot of the server code
as well.

The old REST API was not at all RESTful, and we had a lot to do since we decided to redesign it
from scratch the week before. The server used to have more than 100 endpoints. Our redesign changed
this to about 30 for now, is RESTful and very easy to use and extend. The redesign of the database,
server and REST API is forcing us to change a lot on both the client and server, but we are confident
that this is essential refactoring for the project, and that it will pay for itself when we are finished.

3.5 Week 6

The redesigning process continued this week and is taking longer than expected. The server code
proved itself very difficult to understand. The documentation is very poorly written, and most of it
seems to be automatically generated by a program. It doesn’t tell us any more than the method or
variable names. We also haven’t used Jersey, Java Beans or automatic JSON marshallers before, which
were difficult to get used to.

This week we also finished creating the database-setup scripts and generated test data for the
project, and worked on refactoring the server tests.

3.6 Week 7

This week we finished the most important endpoints on the server, so most of the functionality is
restored to the webpage. The server is up and running, and most of the requests work as intended.
We still lack some functionality, like creating requirements for a subject.

We are finding a lot of bad and bloated code, bad security measures and lots of unnecessary
resource-heavy operations. All this needs to be fixed if the project is ever going to be used in a real
uncontrolled environment.

3.7 Week 8

We finally finished the refactoring and redesigning process, and most of the project is working as it
should. The security of the server is better than ever, and all endpoints are working as expected. We
know how everything in the project works and we are finally ready to move on to new functionality
and user tests. There is still a lot of bloated/unnecessary code and classes, but more refactoring is not
going to be the main focus moving forward. During the redesigning process we also set the project up

3

for new features we knew we were going to need, like estimated queue time and “do at least 2 out of
exercises 5, 6 and 7”-type requirements.

3.8 Week 9

We were satisfied with the backend to the point where we merged it into the master branch. We had
no merge conflicts!

Torje fixed the connection pool implementation as well as the bean sharing. It turns out the server
isn’t supposed to create a new singleton for each incoming request, and rather reuse the objects (what
a surprise...).

Backend now uses hikari pooling, which seems to make wonders. We have not yet merged this to
the main branch because it needs more testing.

3.9 Week 10

We started implementing the backend endpoints onto the frontend. Turns out the frontend is quite a
mess as well. CSS is a complete disaster and will need quite some work. A lot of the React components
have bugs that will stop them from rendering at all in certain cases, and some even crash the site.

Hans Kristian created a new subject component which uses less space with less code and looks
better.

We tried to perform a couple of informal online user tests with some friends and family to get some
input on how the site looks. The feedback was mixed, but mostly positive.

3.10 Week 11

Since we are refactoring the CSS we were able to easily integrate a dark mode which turned out
fantastic. We continued progress on the frontend, fixing bugs and improved multiple components.

We decided to change some of the websites basic design. As circles and round edges usually is
correlated with creativity and fantasy, we decided to sharpen edges to make the system look more
structured and professional.

We also implemented async and promise-based polling on the frontend for a faster website. Very
happy with how it turned out.

3.11 Week 12

Started looking at the WebSocket implementation. It broadcasts ANY message send to the websocket-
server to ALL connected users without any authentication no matter what action is being performed.
We really had to fix this, as this is not scalable at all.

Now you need to authenticate yourself to use the websocket-server, and you cannot just broadcast
whatever you want.

As this was the last week before the Easter holiday, we tried to get some input from some friend
on the look and feel of the website. These tests were pretty informal but gave us valuable feedback.

We also agreed with Tomas Holt on a date for testing in a real school class after the easter holiday.

3.12 Week 13

Easter holiday.
Did some work on the websocket implementation. Now you can call users!
We also started working on creating a room editor where you can design rooms within the browser.

3.13 Week 14

Got a VM and managed to set it up after a lot of tinkering. It is now possible to access and use the
website as long as you are connected to an NTNU-network or to the NTNU-vpn.

The room editor is now at the point where it is an MVP (minimal viable product). It can seri-
alize and deserialize rooms so that you can save rooms and load them later. There is still missing
functionality, but it works well enough for now.

4

We got the mailer working as well now. This can be used in conjunction with the CSV functionality
to add users to a subject.

Since we wanted backward compatibility with the current Qs-system we decided to create a
database-conversion script which converts the data in the current systems’ format to work in our
database. This can either create INSERT-sentences or insert the data directly for you.

We had the first real user test with a school class this week. We had to make a crucial hotfix
during the test regarding web socket – and the backend didn’t crash. Also, we don’t believe anyone
managed to get access to – or perform an action they weren’t supposed to. The users sent some
fantastic feedback, and we had a long ongoing conversation with our product manager via email about
bugs and suggestions. We noted all of this and added most of their input as issues in our Kanban
board on Gitlab.

3.14 Week 15

At the start of this week our focus was mainly on fixing the bugs that appeared during the testing we
did with the class the last Friday. Most of these were easy fixes and we could then start working on
the suggestions we got during the testing from the class and our product manager. Among these were
a chatting system, which we got working by the end of the week. This still needs some testing and
adjustments, and we are not sure yet who you should be able to chat with. We also spent some time
discussing the security around this.

Also, we did more optimization work on the WS-server. Now we have a more event-based setup
which MASSIVELY reduces the http strain.

The other Qs-group asked us for our backend. We sent it to them so they could use it for their
frontend project. They are reporting a few bugs which we have not considered.

3.15 Week 16

This week we finalized the student queue view and stopped using modal in queue view. This enables
us to utilize more of the screen space, and it a game changer for mobile devices.

The chat system is still a work in progress both on front and backend, but it is working quite well.
The system is starting to come together.

3.16 Week 17

We finalized the chat system, which is stable and fun to use. It can save and load recently active chats
from local storage. Tomas told us we could have another chance at using the system for approval in a
school class next week, and we are excited to see how this functionality will be used.

The approval list is now its own proper component. Now we could enable it as its own tab in the
queue for studas and teachers, so they don’t have to navigate far from the queue to find it.

Added another endpoint to approve the whole queue – to improve performance.
We also added a system to automatically refresh access token – this will only trigger if the user is

active – if they are inactive for too long, they will get a prompt asking if they are still there. If they
don’t respond within a certain amount of time, they will be automatically logged out.

3.17 Week 18

Even though we thought we were finished with the chatting system for now, we decided to reimplement
the backend-side of it. The chat messages are now sent through HTTP-endpoints instead of through
the websocket-server as JSON-objects. We did this because the HTTP-server is extremely quick and
multithreaded, as well as that the JSON-parsing could cause trouble with certain characters. This
change was also made for the calling system, where users now will be notified about teachers and
group members calling.

The students in group chats will also get a warning about teachers and assistants being able to
read what they say, which was an important ethics-related function.

Friday this week we had the second real class user test. Users seemed to love the new chatting
functionality, but it was also where most of the feedback was targeted. They especially wanted a way
to mute the notification sound, something which was already in progress but not finished. We also

5

had a couple of instances of explicit/offensive language in the subject chats, sent with the anonymous
functionality. At least we can say they trusted our implementation of anonymous messaging, and we
do not have any way of tracking those users.

3.18 Week 19

Although we had started working on a few parts of the report over the semester, this is where we really
got into it. Most of our time was spent writing. However, we did manage to fix a severe chatting bug
which allowed some users to read other chats’ messages. The chat also has a mute option now.

We created and ran some stress tests for the server to see how it compares to the server we inherited
at the start of the semester. Knowing we had made big improvements, the results still shocked us. It
has an average response time of about 10

In the weekend we finally finished the room editor. It can definitely be extended and improved,
but it works very well.

3.19 Week 20

This week we finished the report and documentation. The system is still lacking some code documen-
tation, but we do not have time to write documentation for all the code we have not touched since we
inherited the system (especially on the frontend). We fixed a couple of bugs as well.

4 Time Sheet

Figure 2: Hans Kristian’s distribution of work hours.

6

Figure 3: Torje Thorkildsen’s distribution of work hours.

The full spreadsheet is a part of the attachment.

References

7

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Hans Kristian Olsen Granli
Torje Dahll-Larssøn Thorkildsen

Developing the next iteration of Qs

Can we complete the new Qs so that it will be an
improvement compared to the current system?

Bachelor’s project in Computer Engineering
Supervisor: Tomas Holt

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	List of Figures
	List of Tables
	Introduction
	Clarifications
	Abbreviations and glossary

	Theory
	Client-server Architecture
	Relational database systems
	REST
	HTTP
	HTTP REST-API

	Websocket
	Authorization and Authentication cookies
	Authorization
	Authentication token
	Checksum

	Teamwork Method - Agile Kanban and Lean

	Method and chosen technologies
	Front-end
	TypeScript
	Babel
	React

	Back-end
	Hikari Connection Pooling
	Java Beans
	Jersey
	Spring and Spring Beans
	Security
	Maven & Tomcat

	Teamwork Methodology - Agile Kanban
	Testing
	Virtualization - QEMU & KVM
	Connection Pool Framework
	Performance test

	P5.js
	User testing

	Results
	Scientific results
	Back-end
	Hikari CP Perfomance benchmark
	Performance tests
	Database
	REST API
	Security

	Front-end and User interface
	Design changes
	User photos
	Room editor
	Chatting system
	Dark mode theme
	Student queue view
	Notifications

	User testing
	Production Test 1
	Production Test 2

	Code documentation

	Engineering results
	Functional properties
	Non-functional properties
	Good security
	Reliable Website
	Stability

	Administrative results
	Timesheet and activity
	Planning and organizing

	Discussion
	Scientific results
	Back-end
	Choice of Connection Pool Framework and Benchmarks
	Performance test
	Database Structure
	API Design
	WebSocket
	Code documentation

	Front-end
	Reactive design
	Dark mode (theme option)

	Code documentation

	Engineering results
	User tests
	Production Test 1
	Production Test 2

	Qs in a system perspective
	Professional ethics

	Administrative results
	Group Reflection

	Conclusion and Further Work
	Bibliography
	Appendix
	Old REST-API endpoints
	New REST-API endpoints
	Gantt diagram
	Vision Document
	System Documentation
	Requirements Documentation
	Project Handbook

