
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Søvik, Trøan, Tveiten and Tuv
Extrusion Planner

Emma Sofie Søvik
Jesper Trøan
Kristian Tveiten
Nils Olav Tuv

Extrusion Planner

Bachelor’s project in Engineering - Computer Science
Supervisor: Sony George
Co-supervisor: Hilda Deborah

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Emma Sofie Søvik
Jesper Trøan
Kristian Tveiten
Nils Olav Tuv

Extrusion Planner

Bachelor’s project in Engineering - Computer Science
Supervisor: Sony George
Co-supervisor: Hilda Deborah
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Extrusion planner

Sammendrag av Bacheloroppgaven
Tittel: Extrusion planner

Dato: 14.05.2021

Deltakere: Jesper Trøan
Kristian Tveiten
Nils Olav Tuv
Emma Sofie Søvik

Veiledere: Sony George
Hilda Deborah

Oppdragsgiver: Benteler Automotive

Kontaktperson: Gerda Nubdal

Nøkkelord: Fullstack, API, React, JavaScript, Java, Spring, MSSQL, Web
Antall sider: 101
Antall vedlegg: 10
Tilgjengelighet: Åpen

Sammendrag: Teknologi er i konstant endring, og det er viktig for selskapene
å holde seg oppdatert på disse endringene for å rykke videre i
bransjen. Spesielt moderne programvare forbedres raskt, og det
er viktig å oppgradere gammel programvare for å følge nye stan-
darder og trender for å unngå å være utdatert. På grunn av dette
bestemte en gruppe fra den globale bedriften Benteler at det var
på tide å oppgradere deres excelbaserte planleggingsverktøy, og
ønsket at vi skulle være innovative og lage en ny programvare
for å erstatte den.
Løsningen er en web applikasjon som dekker alle steg i Ben-
teler’s planleggingsprosesser. Frontend koden er implementent
med det populære JavaScript rammeverket React, og Backend
API’et er utviklet i Java med hjelp av Spring Boot biblioteket.
Vårt fokus var å lage et brukervennlig verktøy som kunne hjelpe
Benteler rasjonalisere planleggingsprosessen deres, og for å
gjøre dette fulgte vi dagens programvare trender, i tillegg til å
finne innovative løsninger for å løse spesifikke problemer.
Utviklingsmodellen Scrum ble brukt til å administrere prosjektet
effektivt, og teamet fikk nyttig erfaring med full stack utvikling.
Videre fikk teamet erfaring innen programmering, sikkerhet,
testing og distribusjon, som til slutt resulterte i en komplett Ex-
trusion Planner web applikasjon.

i

Extrusion planner

Summary of Bachelor Thesis
Title: Extrusion planner

Date: 14.05.2021

Authors: Jesper Trøan
Kristian Tveiten
Nils Olav Tuv
Emma Sofie Søvik

Supervisor: Sony George
Hilda Deborah

Employer: Benteler Automotive

Contact Person: Gerda Nubdal

Keywords: Fullstack, API, React, JavaScript, Java, Spring, MSSQL, Web
Pages: 101
Attachments: 10
Availability: Open

Abstract: Technology is in constant change and it is important for busi-
nesses to keep up with these changes to advance in the indus-
try. Modern software in particular is rapidly improving, and up-
grading old software to follow new standards and trends is key
to avoid being outdated. On account of this, a group from the
global enterprise Benteler decided it was time to upgrade their
excel based planning tool and wanted us to be innovative and
create a new software to replace it.
The solution is a web application that covers every step in Ben-
teler’s planning process. The frontend code is implemented with
the popular JavaScript framework React, and the backend API
is written in Java with the help of the Spring Boot library. Our
focus was to create a user-friendly tool that could help Benteler
streamline their planning process, and to do this we followed to-
day’s software trends as well as finding innovative solutions to
solve certain problems.
The development model Scrum was used to manage the project
effectively, and the team got useful experience in full stack de-
velopment. Furthermore the team acquired experience within
programming, security, testing and deployment, which in the end
resulted in a complete Extrusion Planner web application.

ii

Extrusion planner

Preface
This bachelor thesis is written by Jesper Trøan, Kristian Tveiten, Nils Olav Tuv and Emma Sofie Søvik,
students at NTNU Gjøvik, Department of Computer Science.

We wish to thank our supervisors Sony George and Hilda Deborah for good teamwork with regular
meetings and guidance. We also want to thank Benteler Automotive Raufoss, especially our contact persons
Gerda Nubdal and Frode Paulsen for great availability and follow-up. The assignment has provided us with
great experience in full stack development and more.

Finally we want to thank each other for good cooperation during this project. This has been an educational
and interesting process.

iii

Extrusion planner

Contents

Preface iii

Contents iv

Listings viii

List of Figures x

List of Tables xii

Terms and abbreviations 1

1 Introduction 2
1.1 Background . 2

1.1.1 The extrusion planning process . 3
1.2 Task description . 3

1.2.1 Functionality . 4
1.2.2 User group . 4
1.2.3 Profile recognition . 4
1.2.4 Our contribution to the task . 5
1.2.5 Why Benteler wanted a new solution . 5

1.3 Limitations . 8
1.3.1 Time limitations . 8
1.3.2 Scope . 8

1.4 Team members . 8
1.4.1 Specific project roles . 8
1.4.2 Earlier experience . 9
1.4.3 What we had to learn . 9

1.5 Why we chose this task . 9
1.6 Thesis structure . 10

2 Development process 11
2.1 System development model . 11
2.2 Project characteristics . 11
2.3 Choice of system development models . 11

2.3.1 Following the Scrum and Kanban practice . 12
2.3.2 Time estimation models . 12

2.4 Process execution . 13

iv

Extrusion planner

2.4.1 Purpose of each sprint . 13
2.4.2 Scrum board . 14
2.4.3 Meeting minutes . 15
2.4.4 Mindmanager . 16
2.4.5 Project time usage . 16

3 Requirements 19
3.1 Use Case diagram . 19

3.1.1 High level Use Cases . 21
3.1.2 Detailed Use Cases . 23

3.2 Non functional requirements . 26
3.3 Operational requirements . 26
3.4 Security requirements . 26

4 Technologies 27
4.1 The application type . 27
4.2 Frontend . 29

4.2.1 Resources used . 29
4.2.2 Choice of React UI framework . 30

4.3 Backend . 30
4.3.1 Resources used . 31
4.3.2 Learning material . 32

4.4 Testing . 32

5 Design and implementation 33
5.1 Application structure . 33

5.1.1 JSON . 35
5.2 Frontend web-interface . 36

5.2.1 Design . 39
5.2.2 Setup of the forms . 40
5.2.3 Functions in TFC . 40
5.2.4 Automatic version and status control . 41
5.2.5 Invalid requests . 44
5.2.6 Change measurement system . 45
5.2.7 Security . 46

5.3 Backend API . 54
5.3.1 API Layer / Controller classes . 56
5.3.2 Model layer . 57
5.3.3 Service layer . 58
5.3.4 Database . 58
5.3.5 CostCalc/Product Controller data export document 60
5.3.6 Security . 62

5.4 Deployment of the application . 65
5.4.1 Backend deployment . 65
5.4.2 Frontend deployment . 65

6 User interface 67
6.1 Color pallet . 67
6.2 Layout . 68

v

Extrusion planner

6.2.1 Side menu . 68
6.2.2 Topbar . 70
6.2.3 Footer . 71

6.3 Pages . 71
6.3.1 Login page . 71
6.3.2 Search page . 72
6.3.3 Request, TFC, CostCalc and Order main pages . 74
6.3.4 The forms . 76
6.3.5 Edit Database page . 79
6.3.6 Users page . 83
6.3.7 Home and FAQ page . 84

7 Overview of the development environments 86
7.1 Frontend . 87
7.2 Backend . 87
7.3 Database . 88

8 Code quality 89
8.1 Code review . 89
8.2 Code documentation . 90
8.3 Frontend . 91
8.4 Backend . 92
8.5 Code redundancy . 92

8.5.1 Large SQL queries in the API . 92
8.5.2 Large ResultSet to object conversions and prepared statements value bindings 92

9 Testing 93
9.1 Cross-browser compatibility . 93
9.2 Acceptance tests . 93
9.3 Lighthouse . 94
9.4 Traffic testing of the server . 95
9.5 Unit tests . 96

10 Conclusion 98
10.1 Summary of contributions . 98
10.2 Feedback from Benteler . 99
10.3 Future Work . 100
10.4 Learning Outcomes and Concluding Remarks . 101

Bibliography 102

A Project plan 104

B Documentation and procedures regarding the code, web-server and code assuring longevity
and re-usability of the application 119

C Feedback from testing phase with solutions and status per case 148

D CostCalc document code 152

vi

Extrusion planner

E Mindmanager map 156

F Project agreement 158

G Group rules 162

H Meeting minutes 164

I Full project time usage report 178

J Feedback from Benteler 183

vii

Extrusion planner

Listings

5.1 Axios GET . 35
5.2 Response from GET request . 36
5.3 Example of Routing . 37
5.4 ReactDOM render function . 37
5.5 Index.html . 38
5.6 MakeStyles . 39
5.7 CSS progressbar . 39
5.8 Structure of a form . 40
5.9 React hooks . 40
5.10 useEffect hook . 41
5.11 Frontend API call for retrieving the latest Request version per a given ID 41
5.12 Backend API function for retrieving the latest Request version per a given ID 42
5.13 Example functions for automatic status control in frontend following a submission of a form 43
5.14 Functions for automatic status control in the backend API following a submission 43
5.15 Conversion example . 45
5.16 Authentication request . 47
5.17 Authentication function in authContext . 48
5.18 isAuthenticated in authContext . 48
5.19 The routing authentication . 49
5.20 The authorization functions . 50
5.21 An example showing the authorization routing . 50
5.22 Authorization in the sidemenu . 51
5.23 Email validator . 52
5.24 Lazy Loading . 53
5.25 Strength meter . 54
5.26 Example of controller class . 56
5.27 Controller class receiving URL parameters . 56
5.28 Example of a smaller model class . 57
5.29 Example of a smaller service class . 58
5.30 Snippet of CostCalc main function see appendix D for full code 60
5.31 JWTService: Creation of a JWT . 62
5.32 JWTService: Assert a JSON Web Token . 63
5.33 JWT Controller class (API Endpoint) . 63
5.34 Prepared statement . 64
5.35 Hashing function . 64
5.36 web.config IIS module configuration . 66
8.1 Example of docstring in Java . 90
9.1 Command to run traffic test . 95

viii

Extrusion planner

9.2 Function to retrive an spesific press . 97
D.1 Cost Calc main function for producing a bridge file with accessory functions 152

ix

Extrusion planner

List of Figures

1.1 Process parameters . 2
1.2 Flowchart explaining properties of the process planning . 3
1.3 User hierarchy . 4
1.4 Profile example . 5
1.5 The main page on Benteler’s old system . 6
1.6 The search page before the TFC form . 7
1.7 The old TFC form . 7

2.1 Sprint overview . 13
2.2 Scrum board in Trello . 15
2.3 Meeting minutes example . 16
2.4 Structure of a meeting in mindmanager . 16
2.5 Working hours spent on different activities . 17
2.6 Working hours spent per week . 18

3.1 Use Case diagram . 20

5.1 MVC pattern of the system . 33
5.2 Main Application Structure . 34
5.3 Overview over the code . 35
5.4 Layout of the application . 36
5.5 Frontend structure . 38
5.6 Status field/overview . 44
5.7 Status overview in popup after selecting an old TFC as base for a new TFC 44
5.8 Toggle invalid Request with disabled buttons . 45
5.9 Backend API data flow when submitting data . 55
5.10 Backend API data flow when fetching data . 55
5.11 Database Structure . 59
5.12 API Service folder . 65

6.1 Benteler color guideline . 67
6.2 Closed menu . 69
6.3 Opened menu . 69
6.4 Topbar, with the user settings opened . 70
6.5 The change password popup . 70
6.6 Footer . 71
6.7 Login page . 71
6.8 Search page with an Alloy filter . 72
6.9 Popup menu with parameter choice . 74

x

Extrusion planner

6.10 TFC search page . 75
6.11 Request form . 76
6.12 Profile category in the Request-form . 77
6.13 Input field . 77
6.14 Drop-down-menu field . 77
6.15 Disabled field . 78
6.16 Input-field with a limit warning. 78
6.17 Input-field with conversion to inches. 78
6.18 TFC-form . 79
6.19 The Edit Database page . 80
6.20 Popup to update a press . 81
6.21 Edit Database - Alloy . 82
6.22 Edit Database - Others . 82
6.23 Edit Database - Others with Customers list opened . 83
6.24 Users page . 83
6.25 The user popup menu . 84
6.26 Home page of the application . 84
6.27 The FAQ page displaying questions and answers in expandable UI boxes 85

7.1 Overview of the development environments . 86

8.1 A card with QA in trello . 90
8.2 Docstring interface example . 91

9.1 Excerpt from LOP action items list . 94
9.2 Our lighthouse score . 94
9.3 Results of traffictesting using autocannon . 95
9.4 Postman example: Testing getPressByName functionality 97

xi

Extrusion planner

List of Tables

4.1 Overview over pros and cons for desktop vs web application 28

10.1 Extract of survey result . 100

xii

Extrusion planner

Terms and abbreviations

API Application Programming Interface. An interface that defines interactions be-
tween multiple software applications.

Backend Server side. What happens on the server and the database.

Client/Stakeholder The company supplying this thesis project; Benteler.

CSS Cascading Style Sheets. Specifies a documents style and layout.

Extrusion The process when a material is pushed through a die to form a profile.

Form In this context, a form is the input forms used for Requests, Orders and TFC’s.

Framework Resources and tools used to build and manage web applications.

Frontend What happens in the browser. What the user see and interacts with.

Full stack project A project containing all work of database, server, system engineering and client
side.

High Level Non-detailed explanation to get an overview.

IDE Integrated Development Environment. A software application that provides com-
prehensive facilities for software development.

JDBC Java Database Connectivity

JWT JSON Web Token, a token where session and user data is stored on the users
machine and it contains anti-tamper measures.

Order An order based on Request data.

Request The Request document is a initial document containing only a certain set of pa-
rameters.

Team The student group working on this project.

TFC Team Feasibility Commitment. A document result of a meeting, where all pa-
rameters necessary for the production of a profile is calculated/extracted into this
document.

UI User Interface.

VPN Virtual Private Network.

1

Extrusion planner

Chapter 1

Introduction

1.1 Background
Benteler is a big worldwide company that has its headquarters in Salzburg, Austria. The company employs
around 30 000 employees from around 100 locations around the globe [37], and Raufoss in Norway is one
of them. Extrusion is done to make metal profiles with a specific shape, and Benteler is currently doing
extrusion in France, USA and Norway [6]. Extrusion is done by heating up material, which is then pushed
through a die of the desired cross-section. This may be reminiscent of the toothpaste effect where material is
forced through the die and becomes the desired shape. After the material is put through the die, the material
will be cooled down, straightened out and cut to the correct lengths. One of the key parameters through the
whole extrusion process is temperature. As you can see in figure 1.1 the keys to achieve good surface quality
and at the same time maximum productivity is to always be at the correct temperature and ram speed.

The cost for producing the profiles is given by the size and complexity of the profile as well as the type
of aluminum alloy. Benteler in Raufoss, Norway has an existing application for planning the profiles and
calculating the costs. This Extrusion planner application lacks wanted functionality and does not cover the
needed operational requirements. This led Benteler to propose this task to create a new improved and faster
system for planning and calculating profiles.

Figure 1.1: Process parameters

2

Extrusion planner

1.1.1 The extrusion planning process
Benteler has a structured and efficient extrusion process they follow for each new profile (see Figure 1.2).
This applies to both the planning phase and the production phase. We will focus only on the planning phase,
since that is what our application should contribute to.

Figure 1.2: Flowchart explaining properties of the process planning

Request is the first part of the extrusion planning process. Every profile starts with a request. This request
is made by an employee and contains specific values for the desired profile.

TFC, after a Request is made a project planner will call in a TFC-meeting (Team Feasibility Commitment
meeting). The meeting attendees will review the pending Request, and will discuss and decide relevant plan-
ning parameters for the new profile. Sometimes one Request requires multiple TFC-meetings, for instance
when alternative extrusion presses are considered for extruding the profile.

Calculations, specified parameters from the Request and TFC-report are needed for cost calculations of
the profile. Cost calculations are made by the CostCalc team. They fetch values from the Request and TFC
and plot them into their own program to do the required calculations.

Order, after the TFC-meeting and calculations have been made the next step is to order the new profile.
This is done only if the team has decided that the profile is possible and profitable.

1.2 Task description
The task in short is to create a system for planning operating parameters (and thus the cost) for new or
changed profiles. Benteler did not have any predefined requirements for what technologies and tools the
solution should have, but they had an existing database that the old system used and that could be used or
modified in the new application.

3

Extrusion planner

1.2.1 Functionality
Benteler wanted the solution to contribute to every phase in the extrusion planning process. They wanted
employees to utilize the application to create new Requests. Also, the solution should make it possible for
employees to review and modify existing Requests. The solution should in the same way handle TFC reports
and Orders, and it should be easy for the CostCalc team to receive the needed values for their calculations. A
more precise description of the desired functionality for the application is written in chapter 3, Requirements,
below.

1.2.2 User group
There were about 20 employees who had access to Benteler’s old system. With the new solution they wish
to expand and make it accessible for more employees. Thus they want to divide the users into several user
roles. Users were divided into 4 roles; CostCalc-team, normal user, superuser and admin. In which admins
have the most rights above superuser who has the second most rights. After that are normal users and the
CostCalc-team. This works in the way that admins inherit all the rights superusers have, plus a few extras,
and superusers inherit every right a normal user and CostCalc user have (see Figure 1.3). You can read more
about the user roles in the requirements description in chapter 3.

Figure 1.3: User hierarchy

1.2.3 Profile recognition
As an extra task, Benteler also had an interest in having a system that could take a profile sketch and compare
it with existing profiles to find similar and relevant profiles.

In this context, a profile is the geometric shape of a product Benteler is going to extrude for a client. See
Figure 1.4. This task was put aside, as Benteler clearly stated that this was a bonus-task if we had time by the
end of the project.

4

Extrusion planner

Figure 1.4: Profile example

1.2.4 Our contribution to the task
Benteler did not have any predefined requirement specification for what technologies and tools the solution
should have. This meant that we had free disposal to evaluate and select the tools and solutions that would fit
the task at hand in the best way possible. These solutions were then proposed to the client for approval.

One of the biggest decisions was whether we were to develop a desktop application or a web application.
After discussing, the team identified that a web application would fit the task the best, with the main reasoning
that a web application would be the most accessible solution and it would make it easier for Benteler to have
more employees utilize the application.

Seeing that we lacked experience in web development we knew that a period of the project would go to
researching and learning about web development. Consequently, this meant that we would have less time for
extra functionality like profile recognition.

The team and Benteler discussed the two options with pros and cons for both of them and concluded that
web application would be the best fit even though the research and learning period would be longer.

Another decision that was made was to keep Benteler’s existing database. More about the technology
choices and reasoning behind it is written in the Technologies chapter 4.

1.2.5 Why Benteler wanted a new solution
Considering the fact that Benteler already had an existing application to handle extrusion planning, we could
simply describe the task as to improve the system. However, Benteler was looking for a new solution,
since their existing one was slow, inefficient and were lacking in key departments and functionality. The
old solution relies heavily on passing excel documents around by email which is one of the reasons why
Benteler wanted us to come up with new solutions and ideas that can make the extrusion planning process
run smoothly.

5

Extrusion planner

Therefore, we decided not to use the old application as a base, and instead develop our new application
from scratch based on the requirements and wishes Benteler gave us.

Figure 1.5 is the main page of Benteler’s old application.

Figure 1.5: The main page on Benteler’s old system

As you can see from this figure, the main page of Benteler’s old application consisted of a start menu with
all the different choices for the application, which meant that the users of the system had to use this page to
navigate through the application.

The Request, Order and TFC rows all contain different options within the category. For example TFC’s
four options: "Run TFC" to create a new TFC document. "Bridge X-Calc" to export specific TFC to the
CostCalc program. "Full report" and "Limited report" to fetch specific TFC reports. The "Admin" row
contains options for the administrator to edit parts of the application, like certain values used in formulas.

The bottom three rows in the figure were only used by the developers for testing and were not something
the new solution needed to have.

To further explain the UI of the old system, we will take a look at how to create a new TFC, with the
reasoning that the process for creating a new TFC is fairly similar to creating Request and Orders.

After clicking on the "Run TFC" option on the main page, the user gets sent to a search page containing
the most recent TFCs (see Figure 1.6). The search page contains a limited search box to insert search criteria
on only a few pre-selected parameters as well as a table of the most recent TFCs. On the search page, the
user has the option to select a specific TFC to insert into the forms or to create a form from scratch with only
Request values. The user also has an option to remove existing TFCs.

6

Extrusion planner

Figure 1.6: The search page before the TFC form

If the user selects a specific TFC and clicks the "Start With old" button, the user gets sent to the TFC
form (which is shown in Figure 1.7) with the specific TFC values inserted in the form. The user then has the
options to change the desired values and send the new TFC to the database.

Figure 1.7: The old TFC form

As explained earlier, the process for creating a Request and Order is similar to the TFC process, and the
different search pages and forms all have a very similar design.

Even though we decided to not use the old application as a base for our new one, we still spent time re-
viewing their old system. We made an effort to understand what our application needed to do better, since
our main goal was to make an application that could replace it.

7

Extrusion planner

1.3 Limitations
The project had a couple of limitations, especially related to time and scope. There were no financial limita-
tions, since Benteler was responsible for the servers and there were no other expenditures connected to this
project.

1.3.1 Time limitations
The due date for the bachelor thesis report was set the 20th of May. Even though the report was written over
the whole period, we decided that we would finish the project development and deploy during the last week
of April. This gave us time to finalize the report before the deadline.

1.3.2 Scope
The scope was limited to a web application optimized to be used on a computer, since Benteler does not
use smartphones or tablets to complete these tasks. Benteler is an international company and the software
is going to be used worldwide. Because of this, we chose to limit the language of the application, code and
documentation to English.

1.4 Team members
The team members are Emma Sofie Søvik, Jesper Trøan, Nils Olav Tuv and Kristian Tveiten. We are all in
the same study program, computer science. Consequently, the group members share the same professional
experience.

1.4.1 Specific project roles
Working on the project, every team member had a general role of being developers, where we all worked
on the entirety of the application. After developing the different modules of the application, we each took
responsibility of a larger section of the application of which we had worked the most with.

Jesper Trøan was selected as the project leader, which had the main responsibility of making sure the meet-
ing agenda was followed, keeping the MindManager map up to date and write meeting minutes. In addition
to this he took the main responsibility for the layout and infrastructure of the forms with the progress bar.

Kristian Tveiten was selected as the document manager. He was responsible for documenting the meet-
ing minutes with Jesper, documenting the time usage with data from Toggl, keeping backups of both the
repository and the report. He also took the responsibility of setting up the main API infrastructure, deploy-
ment of the application and the database.

Nils Olav Tuv was responsible for conducting tests and improving the application based on this, he also
took the responsibility of the CostCalc infrastructure and parameter management within the application. This
included the database page where the admin could view, modify and delete parameters stored in the database
and used in the whole application.

Emma Sofie Søvik had the main responsibility of being the contact person with Benteler for information
flow besides meetings, she also took the main responsibility of implementing the formulas and the infrastruc-
ture behind the TFC Forms.

8

Extrusion planner

1.4.2 Earlier experience
Through our studies, we have acquired knowledge about the whole development process. In particular the
class Software Engineering (IMT2243)[24], where we got knowledge on the software development process
and on tools to use in the different phases of the process. We also got experience in project planning. This is
all something we know will be useful and relevant for this project.

In addition to that, we have also gained relevant experience and knowledge on databases, application
development, and software security through various other classes.

Besides this, the group also had previous experience in working as a team together during a diversity of
projects throughout the study. We have learned a lot of tools necessary for working with such a project and
was both confident and excited to exercise our knowledge with this real-life task.

1.4.3 What we had to learn
Although we all have earlier relevant experience through our studies, there was still a lot to be learned before,
and during, the project. Specifically, the group lacked important knowledge on web development and the
deployment phase. Our learning experience and our technology decisions are written about throughout the
whole report.

1.5 Why we chose this task
The group wanted a challenging and exciting task, that would give us developing experience that could later
give us an advantage when entering the job market.

The group agreed that Benteler’s Extrusion Planner task fulfilled these wishes and it was immediately put
into a list of relevant tasks.

After reviewing the task description and discussing the task with Benteler, we acquired a big interest in
this particular task and we thought that it would be a good task to have as our bachelor thesis.

The Extrusion Planner project is a full-stack development project, which is something that we found
very exciting and something we thought we would obtain a lot of learning experience from. All four group
members wanted more experience in both frontend development and backend development, and this task
would give us that. In addition to that, we also liked the freedom in this task and that we would be able to
decide what technologies would fit the task the best. We thought this would be a good opportunity to use
popular languages and technologies that are relevant for our future as developers, but of course also make
decisions based on what would fit the task and Benteler’s wishes.

Benteler had many functionality requirements and operational requirements that we found exciting and
challenging. We will not only have the opportunity to build and design an application from scratch, but we
also will have the responsibility of securing the application. By choosing this project we would not only
become better code developers, but would gain experience in testing and the deployment phase as well.

9

Extrusion planner

1.6 Thesis structure
Introduction The reader is introduced to the task and the team, as well as the limitations.
Development Process How and when the different parts of the application is developed and what develop-
ment model is followed to reach the goal of the application.
Requirements This chapter contains all the requirements the team gathered from Benteler in the planning
phase.
Technologies Here the reader can read what tools that were used by the group to solve the various tasks and
problems that were faced. Including descriptions on specifically which parts of the used technologies that
were of great use in the case of this development process.
Design and implementation The reasoning for certain design choices, what, why and how things were done
the way they were done to enhance the user experience and make the application as easy as possible to use.
User Interface Descriptions and pictures of the different parts of the application and user interface, here you
can see the result of the application.
Overview of the development environments An overview of the development environments and different
tools the team used in the development, divided into frontend, backend and database.
Code Quality In this chapter, the different measures taken to ensure a certain quality of the code are pre-
sented to the reader.
Testing How we decided to test the application and description of the various results.
Conclusion Here the reader can read more details about the team’s experience and our thoughts at the end of
the project. The result is discussed by the team and also includes feedback from the client.

10

Extrusion planner

Chapter 2

Development process

2.1 System development model
Using system development models during development aids in succeeding with development projects that
deliver on certain premises and requirements. It helps keep the work organized and structured as well as
easily keeping track of what tasks are done, when and how the development process is executed. With this
task, there were not a lot of restrictions and desires for how the development process should play out from
the client, but still we had criteria we needed to follow.

In the project plan (appendix A), the choice and reasoning behind the selection of the development model
is described in more detail.

2.2 Project characteristics
Below are the characteristics of the project that were taken into consideration when choosing the development
model.

1. Set deadline for delivery

2. Smaller development team of four

3. Regular meetings with the client to receive frequent feedback on the work and new ideas or room for
improvement.

4. Functionality and requirements of the system is mostly figured out but there are still room for improve-
ments and ideas from the team/client.

2.3 Choice of system development models
The client had presented a couple of core requirements/functionality initially, but it was anticipated that more
requirements to the software would come underway as the initial requirements did not go into complete detail.

This meant that choosing an incremental development model was not a viable solution. Meanwhile, an
agile development model would allow us to continuously receive suggestions and feedback, and make core
changes to the functionality underway.

11

Extrusion planner

The team strongly converged towards Scrum, which is a known practice used on earlier occasions. We
also evaluated Extreme Programming (XP), for its fast-paced working environment that values teamwork and
communication. However, as the client needed documentation of the application, which is lacking in the XP
practice, it was ruled out.

In combination with Scrum, we chose to follow the Kanban practice of keeping track of backlog elements
and their status in a Kanban board.

2.3.1 Following the Scrum and Kanban practice
Combining Kanban with Scrum was an excellent choice for this project, as the Kanban board could be
revised/balanced during sprint meetings/scrum meetings, to catch up to tasks that have stayed in a certain
phase for too long. This combats congestion of tasks in a certain phase, so those backlog elements are not
abandoned.

The team decided that the sprint intervals should be two weeks, as we found out that having shorter inter-
vals than two weeks would be counterproductive. The sprints were set to start on Wednesdays and would end
on Tuesdays when we had a meeting with the product owner. Trello1 was used as a tool to follow the Kanban
practice.

Scrum meetings with Product Owner
The team had scrum meetings with the product owner after every sprint, where finished software modules
were presented and reviewed. From this meeting, we received feedback on the developed software and sug-
gestions for further development which would be added to the backlog. We also conducted meetings with the
product owner in the middle of each sprint to discuss the status and provide a way for the client to follow the
development process closer during the sprint.

Internal scrum meetings
The group also conducted scrum meetings internally 3 days of the week, to review progress and re-prioritize
important tasks, change or break down certain backlog elements. On Fridays, the group met internally to
discuss the current sprint status and share what each member had been working on with code explanation.
This session was also used to share knowledge of new ways of coding and techniques that were discovered
during development, this greatly improved the learning process and startup time.

Documentation with scrum
Scrum combined with Kanban also allowed us to conduct the documentation routines we needed to complete
the project with the report. We just simply added the documentation task in the backlog, so that they could
easily be added as a task to complete during a Sprint.

Scrum roles
We decided that the role of scrum master should be delegated to the project leader Jesper Trøan. Frode, Gerda
and Kristian-Inge from Benteler were the product owners.

2.3.2 Time estimation models
Planning poker2 was utilized as a way for us to estimate the time usage per backlog item. Planning poker is
a technique for estimating the effort necessary to complete a software development task. The team members
give an estimate each and the estimates are discussed until they are at agreement. At the start of every sprint,

1https://trello.com/
2https://en.wikipedia.org/wiki/Planning_poker

12

Extrusion planner

the team estimated the time usage per backlog item verbally in order to estimate how many backlog items
could be assigned to each team member.

2.4 Process execution
The project was divided into 6 sprints, and as explained earlier each sprint lasted 2 weeks. To keep track of
the process and each sprint’s task the team made use of a variety of helpful tools and programs, which is all
documented below.

2.4.1 Purpose of each sprint
The 6 sprints were distributed evenly over the period February 1. - April 30 as seen in Figure 2.1. During the
planning phase the team set up the sprints and started discussing each sprint. We decided to give each sprint
a purpose and set a rough plan for each one, to help us keep the process going and to be able to finish the
project on time.

Figure 2.1: Sprint overview

Sprint 1: Login and main interface components
We decided to dedicate this sprint to creating a solid foundation in both the frontend and backend. Our
focus was on the login functionality and to work on authentication/authorization. The foundation for the UI
was also a focus, and our goal was to implement a couple of the main components of the application like
side-menu, footer and a navigation-bar.

We also wanted to start design and implement the Request form and search functionality, which would
give us a good start on sprint 2.

13

Extrusion planner

Sprint 2: TFC, Request and Order functionality
The focus on this sprint was the core functionality of the application, the TFC, Request and Order function-
ality. Our goal was to have a good foundation of the three forms, as well as three main pages with different
options for the three categories. We knew that this was a lot to implement in both frontend and backend and
that it would be time-consuming and challenging. Consequently, our backlog for this sprint was big and we
had expectations that a part of the task would be pushed to the next sprint.

Sprint 3: Finishing touches on core functionality and cost calculations.
The goal of this sprint was to complete the rest of the important functionality of the application. We knew
we had to keep working on the core functionality, the TFC, Request and Order functionality. We also had to
implement the cost calculation functionality and other functionalities that might be missing.

Sprint 4: Design and Security
In this sprint, the main focus would be the design and to secure the application. We decided not to spend too
much time on design early in the project, since the functionality of the application was a priority. The design
was therefore pushed aside until sprint number 4 where we had set off time to make finishing touches on the
design. Security was also something we thought would be a good thing to focus on later in the project. We
planned to implement good security practices from the start, but to have a sprint to go over it and prioritize it
towards the end.

Sprint 5: Testing
This sprint was set aside to test the application. Our main task was to deploy the first version of the appli-
cation to let Benteler test it themselves. In the meanwhile, the team would also be running different tests to
ensure that the application behaved as expected.

Sprint 6: Deployment
In this sprint, we finished all the finishing touches, and are ready to deploy the final version. The application
is deployed on Benteler’s servers and the database connection is changed from their test database to their
main one.

2.4.2 Scrum board
The Kanban board (Figure 2.2) was an important tool during the execution of the project, and as mentioned
before the Kanban-style list-making application Trello was used for this. Our Trello board consisted of 10
lists: Backlog, Next-up, Current Sprint, In Progress, Quality Assurance, On Hold, Bugs, Done, Ideas and
Abandoned Ideas. This lists gave us a constant overview of the project and which part of the process each
task where. Every task was divided into separate cards, and each card consisted of what the task was about,
which team member was working on this task, and comments if we needed to add more information.

14

Extrusion planner

Figure 2.2: Scrum board in Trello

Most of the board follows standard Scrum setup with lists like backlog, in progress and done. In addition,
the team decided to add a few extra lists to have an even more detailed process. An example of this is the
"Quality Assurance/Refactoring" list, which every task had to go through before moving it further to "Done".
This list is written more about in section 8.1. Another example is the "Idea" list, where the member could add
new ideas and solutions for the application or the report and it would be discussed at the next sprint meeting.

2.4.3 Meeting minutes
At the end of each sprint, we had sprint review meetings with Benteler to show them what had been done
during the sprint. In addition, the team had internal sprint planning meetings to discuss what should be
prioritized at the beginning of each sprint. The team also had frequent status meetings inside the sprints
to discuss how well the progress is developing (as described in 2.3.1). After each meeting it was written
a meeting minutes for it in Google docs, and in appendix H you can see the meetings minutes for all the
meetings, but in Figure 2.3 we have added an example of a written meeting minutes from a meeting with
Benteler.

15

Extrusion planner

Figure 2.3: Meeting minutes example

2.4.4 Mindmanager
The visualization tool Mindmanager [21] was used during the process execution to visualize and bring struc-
ture to all the meetings that were held during the project. This was visualized in a mind map with meetings
with Benteler, internal meetings, and supervisor meetings as main nodes in the map. The whole mind map
can be found in appendix E, but in Figure 2.4 we have added a clip of the structure of a meeting in the mind
map. The attendees and agenda are saved in sub-nodes, and in the notes section it is saved a PDF of the
meeting minutes of the specific meeting.

Figure 2.4: Structure of a meeting in mindmanager

2.4.5 Project time usage
Executing a bachelor thesis project successfully requires spending a good amount of work hours. To reach
our goals within the project, we as a team decided to set ourselves a target of 30 hours per week each, or 6
hours per day working with the project (appendix G). This amount was estimated as the necessary amount of

16

Extrusion planner

work required for a subject worth 20 study points. The team utilized Toggl3 for time registration and tagging
with different activity types.

The document manager (Kristian) also coordinated an Excel sheet with the results from Toggl for a better
overview of exactly how much time was spent per activity, member, week etc. The full Excel sheet can be
seen in appendix I.

Time usage per activity can be seen in Figure 2.5. As seen in Figure 2.6, the team has managed to hover
around the 120 hours mark, which is the combined work target for all the group members each week. In the
13th week, the team decided that we could take Easter off, with only a slight amount of work being done
during this holiday.

The reason for the low amount of registered testing activity in Figure 2.5, is that most testing has been
done underway of developing and separate testing sessions were rarely done. This led to time spent testing
being registered as development as this was an activity that went hand in hand.

Testing by the client is also not taken into account, which is a considerable amount of time. Take note
that Figure 2.6 only contains data from week 2-19, meaning that all the report work done after this time is
not taken into account.

Figure 2.5: Working hours spent on different activities

3https://toggl.com/

17

Extrusion planner

Figure 2.6: Working hours spent per week

The total amount of hours spent on this project was just below 2000 (1941), this results in an average of
114 hours a week in total or 28.5 hours a week per group member if the Easter week is not taken into account.
This was really close to our goal of 30 hours a week and we are really satisfied with the effort put into the
project by the team as a whole.

18

Extrusion planner

Chapter 3

Requirements

By using Scrum as our development model we opened up to receive requirements during the project, but it
was still important for us to have a rough overview of the most important functionalities and non functional
requirements at the start. Because of this, the team had multiple meetings with the product owners in the
planning phase to discuss the requirements of the application.

3.1 Use Case diagram
To easily distribute the functional requirements per the different actors of the system, the team decided to
create a Use-case diagram (see Figure 3.1) to describe the requirements. The users of the system are divided
into four different roles with each their own permissions of what can be accessed. Admin has the most access,
followed by the only slightly restricted superuser, then CostCalc users and normal users. We chose to explain
more complex use cases in detail with alternative scenarios and failed scenarios, where as the simpler ones
were only described in a high level (non-detailed) way.

19

Extrusion planner

Figure 3.1: Use Case diagram

The arrows between the actors indicate inherited use cases. Where the actors with a higher rank inherit
the use cases belonging to lower-ranked actors which is illustrated by the arrows on the diagram.

The actor “Project Planner” is used as an illustration only, in reality, the Project Planner is included in the
Superuser group.

20

Extrusion planner

3.1.1 High level Use Cases
Use Case Create/modify user

User Admin
Goal Add a new user to the system or modify an existing user.

Description

Admin has the opportunity to create new users with a specific role
(Normal user, CostCalc-team, superuser etc). A new user will then be
added to the system, and a username and password will be added to the
database. In addition to that the administrator also has the opportunity
to modify the existing user, this means updating the user information or
deleting a user from the system.

Use Case Update Database
User Admin
Goal Modify, add or delete properties in the database.

Description Admin should be able to modify, add or delete properties and parame-
ters in the database.

Use Case Correct Request
User Superuser, Admin
Goal Correct existing Requests

Description

Superusers and admin have the opportunity to change a Request without
creating a new Request number or version number, this is used to cor-
rect simple mistakes made by the requestor. The superuser and admin
should also have a way of deleting a Request or making it invalid.

Use Case Order Profile
User Normal user, Superuser, Admin
Goal Create an order.

Description

The user should be able to create a new Order by inputting the required
information in an Order form. The user should be able to open an
empty form or choose the specific Request and TFC data to fill parts
of the form. The user should also be able to update an existing Order by
choosing an Order to insert into the form.

Use Case View Request
User Normal user, Superuser, Admin
Goal View a specific Request

Description Users should be able to view a specific Request with all its parameters.

21

Extrusion planner

Use Case Log in
User CostCalc-team, Normal user, Superuser, Admin
Goal Log into the system.

Description Users can gain access to the system by logging in with a correct user-
name and password which has been registered in the system.

Use Case Export CostCalc report
User CostCalc-team, Superuser, Admin
Goal Export the relevant data to the CostCalc report

Description The CostCalc team should be able to search for TFC and export the
chosen data to a CostCalc report.

22

3.1.2 Detailed Use Cases
Use Case Create/update TFC

User Superuser, Admin
Goal Create a new TFC or change an existing one.

Description

The user should be able to create a new TFC by inputting the required information
in a TFC form. The user should be able to open an empty form with only the se-
lected Request data or to open a form with data from a chosen existing TFC. The new
TFC should receive a new TFC number (unique with the Request number) and should
receive 1 as the version number.
The user should also have the option to update/change the values of an existing TFC.
A new version with the same TFC number and new version number is then created.

Pre-Conditions User is logged in with enough permission and a Request for the profile has been made

Post-Conditions A complete TFC is made with legal values which makes the product producible. The
TFC is then sent to the API and saved in the database

Main Success Scenario

1. The user selects TFC in main menu, then clicks the TFC search tab

2. The user selects a desired TFC to base a new on using the search interface

3. The user clicks on “Create new TFC based on a earlier TFC”

4. The application displays a selection window to choose what Request should be accompanied with
the TFC.

5. User clicks a desired Request.

6. All appropriate values are pulled from the database for the chosen TFC and Request and inserted
into the TFC form.

7. Meeting commences, and the rest of the values are finalized or modified.

8. All values are within legal thresholds, and the user clicks “Send TFC to database”

9. TFC is successfully sent to the database.

Alternative Scenario

1a) The user selects the Request search tab

1. The user selects the desired Request

2. The user selects "Create a new TFC from Request"

3. The user is presented with the form pre-filled with Request data

4. The TFC meeting commences and the rest of the data is filled in

5. The user submits the TFC to the database

Failed Scenario

9a) The database/backend is not reachable

1) User gets a message saying the database is not available, and an option to save the TFC as
a draft locally.

Use Case Create/update Request
User Normal user, Superuser, Admin
Goal Create a new Request or change an existing one.

Description

The user should be able to create a new Request by inputting the required infor-
mation in a Request input form/page. The user should be able to open an empty
form or choose existing Request data which should be inserted in the form. The
new Request should receive a new unique Request number and start with version
number 1. In addition to creating a Request the users should also be able to change
one. The user should then be able to choose a Request and change specific values
on that Request in the form. A new version of that Request is then created.

Pre-Conditions User is logged in with enough permissions
Post-Conditions A complete Request is made, which is then sent to the database.
Main Success Scenario

1. Use Case "Log in" is executed successfully

2. The user navigates to the Request page

3. The program shows an interface for searching for existing Requests.

4. User selects a Request

5. User clicks on “New with old as base”

6. A Request form is displayed with the parameters from the corresponding base-
Request already filled in from the database.

7. The Request gets a new Request number and the user changes necessary param-
eters.

8. User clicks send.

Alternative Scenario

5a) The user clicks on “New Request from scratch”

1) An empty Request form is displayed.

2) The user fills in all desired and needed parameters

3) User clicks send.

5b) The user clicks on "Change Request"

2) Request form is displayed with the parameters from the corresponding
base-Request already filled in from the database.

3) The Request gets a new version number and the user changes the desired
and allowed values.

4) User clicks send

5c) The user clicks on "Recalc"

1) Request form is displayed with the parameters from the corresponding
base-Request already filled in from the database.

2) The Request gets a new version number and the user changes the desired
and allowed values.

3) User clicks send

Extrusion planner

Use Case Browse TFC/Request/Order
User User, CostCalc, Superuser, Admin
Goal Search for a desired TFC/Request/Order document

Description

The user should be able to search for the TFC/Request/Order categories they have access to. The
user should be able to search for specific data by choosing which category and which parameter
to search for. Having multiple search terms at once as filters should be possible. With the search
function it should also be possible to export the desired data.

Pre-Conditions The user is logged in and there is TFC/Requests/Order available in the database.
Post-Conditions The user views the desired TFC/Requests/Orders data.
Main Success Scenario

1. User navigates to the search page.

2. An interface for searching is presented

3. User chooses between:

a) "Search for TFC"

b) "Search for Request"

c) "Search for Orders"

4. The table of the chosen category is presented.

5. User types in the search criteria per a selected parameter to search by

6. All Requests/TFC/Orders matching with the searching criteria are displayed,

7. User wants to download data:

a) User selects a specific row to download.

b) User downloads a file with the whole search results.

8. A file is downloaded to the users computer

25

Extrusion planner

3.2 Non functional requirements
After discussing the initial design proposed by the team, the client wanted us to follow a certain Benteler
design guideline. This was a guideline provided by Benteler which would make the design comply with
their existing web-sites or services. This enhances the user experience as they navigate something that seems
familiar to the target group of the system.

3.3 Operational requirements
After questioning the client, the team landed on a requirement that the application should handle at least 20
simultaneous users as this was the initial number of users of the application.

3.4 Security requirements
When it came to the security requirements of the system, the team had to evaluate what would be necessary
for the system. This was due to the lack of requirements obtained from the client, most probably due to the
lack of security experience. Even though we did not receive any specific security requirements from Benteler,
we still wanted to make sure that the application was safe and followed the most important security standards.
Because of this, the team decided to contact the software security lecturer Shao-Fang Weng, to discuss our
security needs in detail and to receive tips on what we should prioritize.

The team decided to follow the most important security principles to prevent malicious activity. The
biggest focus was on authentication and authorization since this could lead to malicious activity on the appli-
cation if not done right. The deployment server that was supplied by the IT team at Benteler was restricted in
the form of only allowing access from within the Benteler internal network or by using a Benteler VPN. This
meant that outsiders could not access the application without being employed or having access to the VPN
which in itself enforced strong authorization requiring a dynamic pin code/password every time. Having this
level of security relieved some of the importance of having certain security measures in place. The in-depth
security measures and implementations can be read about in chapter 5.2.7 and 5.3.6.

26

Extrusion planner

Chapter 4

Technologies

The client did not propose any predefined requirements for which technologies and tools to solve the task
with. Therefore, the team had to evaluate the different technologies available and find out what would be the
best fit to solve the task. In this chapter we will discuss our reasoning behind the choices of technologies we
made and why we chose to abandon others.

4.1 The application type
The first thing we had to consider was the type of application the solution should be. We knew that their older
solution was a desktop type application, that was spreadsheet-based and created excel documents. We found
this solution not only to be slow and inefficient, but also not user-friendly and poorly designed. We then had
to consider what type of application we wanted to create and what type we found the most fitting for the task.
We ended up having two choices, a desktop application and a web application and we thoroughly considered
them both. In Table 4.1 you can see an overview of the pros and cons for the two choices, and below the table
there is a more detailed description of the two options.

27

Extrusion planner

Table 4.1: Overview over pros and cons for desktop vs web application

Desktop application Web application

Pros

• Earlier experience

• Not so dependent on internet speed

• Performance

• Popular and high demand

• No need to download software

• Easily accessible

• Not hardware dependent

• More easily expand the software

• Easier to manage and update

• Great learning opportunity

Cons

• Must be downloaded and installed

• Hardware dependent

• More challenging to maintain and update

• More dependent on internet speed

• Lack of experience

• Sacrifice a bit of development time to re-
search

Desktop application
The team already had earlier experience within desktop application development. The members all had the
elective subject Application Development (IMT3281)[25] where we completed a couple of desktop applica-
tion projects. Considering this the group found a desktop type application to be fitting and at the start it was
our primary choice.

One big advantage of developing a desktop application would be the teams earlier experience. In addition
to that desktop applications has several advantages compared to web applications. A desktop application is
very easily accessible after download, as it is on the users computer and the icon can be visible at all times.
Another advantage is the performance, a desktop application does not have to be dependent on internet speed.

However, after doing more research and discussing the requirements with the client we started consid-
ering a web application more. We found that the pros of a desktop application were not as relevant for this
particular project, especially because the solution would be dependent on the internet either way because of
the database connection. Besides that a big disadvantage is that the application would have to be downloaded
on every users computer, this makes it harder for Benteler to extend the use of the application and allow more
employees to download it. Another disadvantage of desktop applications is that it is hardware dependent.
Managing and updating a desktop application is also a bit more challenging than doing it for a web applica-
tion, and that is also something we had to consider.

Web application
Web-based application has grown in popularity and has the highest demand at the moment. With a web
application the user does not need to download anything on their computer, and they can easily access the
application from a web browser wherever and whenever they want to. A web application is not hardware-
dependent like a desktop application, and the team does not have to consider the software of the client when
developing it.

28

Extrusion planner

However a web application is dependent on an internet connection, but as mentioned earlier the solution
would have to use an internet connection anyway. Another thing to consider with a web solution is the teams
lack of experience within web development. We knew that if a web solution was chosen we would have to
spend a period of time learning about web development and researching tools. As a consequence of this we
would have to sacrifice some of the development time just to learn and research, this meant that extra tasks
like profile recognition would be pushed aside and only considered if we had extra time in the end.

A web application would make it easier for the client to give more employees access to the application.
We also figured that a web application would be easier to manage and update if necessary. It is also a great
learning opportunity for the team, as web development is dominating the software market at this moment.
Consequently it is important to gain experience within this type of programming.

The team and the client discussed the pros and cons of web and desktop application and concluded that a
web application would be the most fitting solution for the project. The team made it clear for the client that
they lacked the experience, but also that we were confident that we would be able to create a good solution if
we reserved extra time for learning and researching at the start.

4.2 Frontend
The Extrusion planner project is a Full-Stack project, which means that it consists of both frontend- and
backend-development. Considering the lack of web-development the group had, frontend was something the
group had to learn from scratch. In the research period, the group started learning and researching HTML,
CSS, and JavaScript. We read multiple articles and tutorials on frontend development to obtain a basic
understanding of frontend-development. W3School1 was a resource the group used frequently to quickly
gain basic knowledge on the languages in frontend development.

4.2.1 Resources used
Early in the research period, we figured out that we had to decide on what frontend framework to use. A fron-
tend framework would help us create a consistent and intuitive UI, while also helping us create maintainable
code and prevent spaghetti code[26].

We quickly realized that the decision was between three JavaScript frameworks, Angular2, Vue3 and
React, because these are the three most widely used framework and we wanted to choose something with
high demand. After research on the different frameworks/languages and consultation from a developer who
has worked with them all, the choice fell quickly on React. The decision was made due to Reacts versatility
and flexibility with components, state handling and way of rendering the web page dynamically. React also
uses JavaScriptX instead of Angular’s TypeScript, which means we would be developing with a more widely
used script language, which presumably will lead to better support online for problems and making a concept
happen [10].

1https://www.w3schools.com
2https://angular.io
3https://vuejs.org

29

Extrusion planner

4.2.2 Choice of React UI framework
As for components that are repeated often in the application, we wanted to follow a user interface library, so
we got a common thread through the whole application.

Early in the project, we discovered a library called Material UI [34]. Material UI is an open-source project
that features React components that uses Googles material design. One of the things that makes material UI
fit to this project is that it offers great customization to for example text-fields that we use in a big part of the
application. Another thing that makes the use of Material UI great in this application is the we can create
default themes that are used on all the components. This makes it easier for us to implement the primary and
secondary colors of Benteler over the whole application and make the application better looking. Another
advantage is that Google maintains Material design and keeps documentation for how to use and implement
it. This makes it easier for us to apply it to our project. After comparing Material UI to other user interface
libraries and a discussion in the group we found out that Material UI would fit our project better than other
libraries like bootstrap because of the way the application would look and its practicality in use.

As the team wanted the best possible learning outcome it was decided to design certain components
ourselves so that we learned to use a popular UI framework, but also learned to design components from
scratch using HTML, JavaScript and CSS.

4.3 Backend
API
For the backend, we needed something versatile that delivers a lot of functionality in pre-made libraries to
make the API solution easy to create, maintain and develop. Due to us choosing a new framework/language
for the frontend which requires learning, we decided to look into Java first.

The team has six months of experience in Java coding, as well as having courses about object-oriented
programming in earlier semesters, which easily translates into Java. We quickly found that Java was a very
popular backend/API framework, due to a library called "Spring Boot" 4.

Database + Management Software
When researching which database server/management system to go for, the criteria was to find something
which is easy to use and delivers powerful software for managing the database.

HeidiSQL5, phpMyAdmin6, MariaDB7 and others were explored until we stumbled upon the tried and
tested Microsoft SQL Server 20198 in combination with Microsoft SQL Server Management Studio. This
turned out to be the best package in terms of usability, familiarity and easy integration with the API as the
online support is massive, with corresponding drivers readily available.

4https://spring.io/projects/spring-boot
5https://www.heidisql.com
6https://www.phpmyadmin.net
7https://mariadb.org
8https://www.microsoft.com/en-us/sql-server/sql-server-2019

30

Extrusion planner

Testing Server
To run the backend, we had to obtain a server that would allow us to set up the software/system like it would
be deployed early on. This would make it much easier to develop the software as the database and backend
functions would be unified.

The team requested a development server from Benteler early on, but as the development started we de-
cided to consult NTNU to obtain a server through the SkyHiGH service until we got access to the client’s
server. The team requested a server with two CPU cores and 4 GB of RAM, which were estimated to be
sufficient for the purpose of testing. On this server, we installed MS SQL Server 2019, SSMS, IntelliJ and
Git. Git was used to pull new revisions from GitLab, and IntelliJ was used to quickly run the API server
without having to build a new JAR.

Deployment Server
As of the 11th of March, we obtained access to the client’s own web server, where they pre-installed a couple
of the required software like SQL Server and SSMS. They also requested a walkthrough/recipe on how to set
up the server from scratch, with all our settings, dependencies, data, software and connections used. Due to
earlier experience where older software would stop working due to the developers using a dependency that
stopped working and deemed the software unusable.

The team also proposed to make documentation on how to do changes to the database content and update
the SQL queries in the backend, in case they would like to add or remove certain columns in existing tables
after we were done with the project. This was appreciated and a document explaining how to edit the applica-
tion code and re-deploy the application was supplied by the team, see Appendix B. The backend will need to
be rebuilt in that case, which required thorough documentation as it is not always a straightforward process.

4.3.1 Resources used
Spring Boot
Spring Boot is an incredibly powerful platform for getting an API up and running in no time. It transforms the
project into a stand-alone server and delivers easy ways to define API endpoints, and HTTP request methods.

Spring Boot also lays the foundation for a stable server, as every HTTP request is treated independently
and does not affect the well-being of the server if something goes wrong with one request.

Microsoft SQL Server 2019 + SSMS
As stated earlier, this combination turned out to be the best package in terms of usability, familiarity and easy
integration with the API as the online support is massive, with corresponding drivers readily available.

The decision was later reinforced when we got information about the client’s current database which used
Microsoft SQL Server 2012. This made importing tables straightforward when we got sent their test database
11. February.

31

Extrusion planner

4.3.2 Learning material
Lecture style YouTube tutorials were widely used as it was very helpful in learning new language concepts
and ways of doing certain things. This helped a lot with learning both React and the Spring Boot API from
scratch.

A book about Java programming was also obtained for reading, but we used it in a limited fashion due to
the fact that the learning required was mostly about Spring Boot[9]. To understand the Spring Boot API, we
used the API documentation9 as well as YouTube tutorials.

We used the Software Engineering course book[24] to re-visit and refresh our knowledge about the system
development process in order to have a professional approach to the project.

Naturally, StackOverflow10 was also used to search for different ways of solving issues or ideas we had
during the project.

To learn about how to deal with security in React, an React security course[7] was taken by all the team
members to better understand what to implement.

4.4 Testing
This section contains an overview of the testing tools we used to test the application, to read about the tests
and the results check chapter 9 Testing.

Node/npm
To run the frontend locally we used Node [12] and npm [23], in order to launch a development test server,
which automatically opens the website and refreshes every time the code in the IDE is saved. This saved a
lot of time, due to being able to see results immediately.

This solution provided us with an automatic code-linter as well, which checked the code for errors and
warnings every time it was saved. It then displayed errors when the build failed or existing warnings when
the build compiled, for example if there were unused dependencies or certain code practices/standards that
were not followed correctly.

Postman
In order to test the backend early on, the team decided to utilize Postman[29], which is an API testing service,
where the user can create and save certain HTTP requests using different methods, and see the status result
of the request, as well as the result, returned from the API. It allowed us to test changes in the API quickly
without having to update the frontend accordingly to see the result.

Lighthouse (Google Chrome extension)
Lighthouse[35] is an extension in the web browser Chrome made by Google. It delivers the ability to run
automated performance tests on a given web page, and then generate a performance result that pinpoints what
elements or pages are slowing the page down. This made it easier to improve the overall performance of the
application.

9https://spring.io/projects/spring-boot
10https://stackoverflow.com/

32

Extrusion planner

Chapter 5

Design and implementation

In this chapter we will be presenting the ways we implemented certain functionality and go in-depth in both
the code and structure. The reader should obtain a clear understanding of how all the parts of the system work
together, as well as how the functions responsible for a functionality works to deliver the expected result.

5.1 Application structure
As we chose to structure our application after the MVC architecture (see Figure 5.1), we could split our
application into different parts.

Figure 5.1: MVC pattern of the system

33

Extrusion planner

The application structure is illustrated in Figure 5.2. First, we have our frontend web application coded
in React. This is what the user sees and where the interaction with the application happens, it is considered
a thin client as all information is fetched server-side and nothing besides cookies is stored client-side. The
interface is delivered with Microsoft Internet Information Services on the web server. When IIS receives a
request on port 3000, the interface is returned to the client using Lazy Loading. [31]

Figure 5.2: Main Application Structure

The frontend interface then communicates with the backend Java application, where we utilized the Spring
Boot framework. This powerful framework provided an easy way to make API endpoints in order for the
backend to host a range of API endpoints reachable by HTTPS methods: GET, POST, PUT and DEL.

The backend does the heavy work in the application by tying the frontend and database together by logic
consisting mainly of SQL Queries for fetching, manipulating and deleting data in the database. In addition,
the backend handles security and authentication using JSON Web Tokens.

For storage of the application’s data we utilized a Microsoft SQL Server, chosen for its familiarity and
easily available JDBC drivers.

Figure 5.3 shows an overview of the code the web application is written in. Most of the code is written
in JavaScript. This includes most of the web application, and is involved in making the web application
interactive. 18,99% of the code is written in Java. This includes the whole backend API with the Spring boot
framework. The rest small percentage of the code is written in CSS and HTML. We have also added the total
hours of development work and total lines of code in the figure, to give an impression of the scope of the
coding work.

34

Extrusion planner

Figure 5.3: Overview over the code

5.1.1 JSON
For requests between backend and frontend we have used the text-based format Javascript object notation
(JSON). This is a standard used for transmitting data in web applications1. We have chosen this standard
because we thought it was an easy to use standard and it is a popular format that many developers swear to.

When we are sending large amounts of data from our web application we use the JavaScript function
JSON.stringify() 2. This is attached to the body of the fetch function and then sent to the backend. You can
see in section 5.3.2 for more about how the server processes these requests.

Listing 5.2 contains a response from a request to fetch a specific Request based on Request number and
Request version number. This request have been sent with Axios. Axios3 is a promise based HTTP client
for the browser and Node.js and is used to send HTTP requests to REST endpoints. In listing 5.1 Axios will
perform a GET request that has the intention to fetch a specific Request with Request number and Request
version number as parameters. This function returns the response from the GET request and we are saving
the response by setting variables to the response of the HTTP request.

1 /**
2 * Function to retrieve a specific Request based on its id and version
3 * @param {Int} id the id of the request to fetch
4 * @param {Int} ver the version of the request to fetch
5 * @returns {JSON} Request data
6 */
7 getRequestByIDandVer = (id , ver) => {
8 return axios.get(API_URL + "request/${id}/${ver}");
9 }

Listing 5.1: Axios GET

1https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
3https://www.npmjs.com/package/axios

35

Extrusion planner

1 {
2 "Email_requestor": "test@test.com",
3 "Product_controller": "test@test.com",
4 "Request_date": "2021 -04 -26",
5 "Due_date": "2021 -04 -02",
6 "Sketch_no": "4",
7 "Sketch_rev": "1",
8 }

Listing 5.2: Response from GET request

5.2 Frontend web-interface
As for the frontend web interface we have chosen a layout that consists of (Figure 5.4):

• Topbar

• Side menu

• Main area

• Footer

Figure 5.4: Layout of the application

The frontend web-interface was developed in React as described in 4.2.1. The main area of the application
(as seen in Figure 5.4) is the place for the main content of the application which varies depending on which
page the user is on, the components Sidemenu, Topbar, and the footer stays consistent and does not change
when navigating through the application.

36

Extrusion planner

As for basic navigation around our application we have used Reacts own react-router DOM library. This
allows us to easily navigate around the application by defining paths to different pages in the application,
see listing 5.3. These paths is defined in the App.js file. This is the main component of the app and acts as
a container for all other components in the application. The routes are wrapped inside a switch that looks
through the routes and renders the ones that match the current URL. In addition to that, we also used the
routes to ensure that the user is authorized for the different pages, this is written about in 5.2.7 Authentication
& Authorization.

1 /* Sets the path to each page */
2 <Switch >
3 <AdminRoute path="/database">
4 <Database />
5 </AdminRoute >
6 <AdminRoute path="/users">
7 <Users />
8 </AdminRoute >
9 <Route path="/FAQ">

10 <FAQ />
11 </Route >
12 <Route path="*">
13 <NoPageFound />
14 </Route >
15 </Switch >

Listing 5.3: Example of Routing

This App.js file is then rendered in the index.js file (see listing 5.4). Index.js stores the main render call
from ReactDOM, imports the App.js file and tells React to render it inside the root div which is located in
the index.html file.[10] The ReactDOM.render() function therefore takes two arguments, HTML code and an
HTML element which in our case is the root div in the index.html file.

1 /**
2 * Function that tells React to render inside the root div
3 * @param {app} The HTML code to render
4 * @param {document.getElementById ("root")} Where to render the HTML
5 */
6 ReactDOM.render(
7 <React.StrictMode >
8 <App />
9 </React.StrictMode >,

10 document.getElementById("root")
11);

Listing 5.4: ReactDOM render function

37

Extrusion planner

In listing 5.5 we see that the index.html file includes a main div that the React app will show up inside.
This is the source of the React app.

1 /* The main HTML file with the root div */
2 <!DOCTYPE html>
3 <html lang="en">
4 <head>
5 <title >Extrusion planner </title >
6 </head>
7 <body>
8 <div id="root"></div>
9 </body>

10 </html>

Listing 5.5: Index.html

Figure 5.5 sums up the structure of the frontend.

1. The browser sends http requests to the server which then retrieves the index.html page.

2. This html page contains the main div that the index.js renders to.

3. The render function renders the app.js file which routes the component that matches with the current
URL.

Figure 5.5: Frontend structure

38

Extrusion planner

5.2.1 Design
For the components that were often repeated throughout the application, we used the popular Material UI
framework as described in 4.2.2. This includes all the buttons, text-fields and popup menus. These compo-
nents came with a standard styling, but they were also highly customizable. For the Material UI buttons, we
did not need to change anything other apart from the size and the color of the button. The color of all the
buttons was easily customizable by creating a MUI theme and setting the color of the button to primary or
secondary.

The text-fields were also easily customized. Here we could set different properties inside the element tag
<>, but also overriding the style of the component by using class names. We could use makeStyles() to inject
custom styles to the element and pass the class name to the className of the specific component [34]. In
listing 5.6 we have created a style like this.

1 const useStyles = makeStyles ((theme) => ({
2 root: {
3 "& .MuiTextField -root": {
4 /* Sets the default spacing between the textfields */
5 margin: theme.spacing (4),
6 },
7 "& .MuiInputBase -root": {
8 color: "black",
9 },

10 },
11 /* Declares a own style "highlighted" that creates a border around the textfields

that gets this style as classname */
12 highlighted: {
13 "& .MuiOutlinedInput -root": {
14 border: "6px solid yellow",
15 },
16 },
17 }));

Listing 5.6: MakeStyles

The rest of the components we designed from scratch by ourselves. This includes among other things the
progressbar, the top navbar, the sidemenu and the tables in the search pages. This was done with CSS. In
listing 5.7 we can see a small part of the CSS code of the progressbar. This code colors the progressbar as
the user clicks forward and backward in the form. This is done by setting the background color to Benteler’s
secondary color orange (Figure 6.1) when the className of an element in the progressbar is set to active.

1 /* Colors the main circle elements when a page is clicked , and sets shadow */
2 .progressBar li.active:before {
3 background -color: rgb (228 ,108 ,10); //test
4 box -shadow: 0 3px 5px 2px rgba(0, 0, 0, .25);
5 }
6 /* colors the line after the main circle elements when a page is clicked */
7 .progressBar li.active + li:after {
8 background -color: rgb (228 ,108 ,10);
9 }

Listing 5.7: CSS progressbar

39

Extrusion planner

5.2.2 Setup of the forms
When it comes to the setup of the forms we chose to develop it as a multi-step form [20] with a clickable
progressbar where the user easily can navigate back and forward. The multi-step form was developed by
making a default form page which contains a switch that switches between the different pages in the form
(see listing 5.8). This default form page also includes all the parameters for the form, functions to set the
number of the step, a function to handle the change of the values and more.

1 /**
2 * Switch function to switch back and forward in the form based on the number of the

step
3 * @param step the number of the step
4 */
5 switch (
6 step
7) {
8 case 1:
9 return (

10 <Order
11 parameters ...
12 />
13);
14 case 2:
15 return (
16 <Order2
17 parameters ...
18 />
19);
20 ...
21 }

Listing 5.8: Structure of a form

5.2.3 Functions in TFC
When developing the Request- and Order-form we used the ES6 class component to define the components
in the forms, see [16]. This class components use states to declare data, and the component re-renders every
time the state gets updated. When these two forms were finished developed, we discovered React Hooks
[17]. The team then decided to develop the TFC form and the rest of the application using React Hooks as
we thought this was an easier and more modern way of coding in React. React hooks lets us use states and
other React features without declaring a class. When we are declaring a hook we declare the value of the
state, and a function to update it. This can be seen in listing 5.9. The function to update the hook is similar to
the this.setState function in the class component.

1 /*State for reduction ratio*/
2 const [reductionRatio , setReductionRatio] = useState(tfcValues.Reduction_ratio);

Listing 5.9: React hooks

The TFC form consists of many functions that have the task to calculate different values. This is done by
using Reacts useEffect hook [18]. The useEffect hook adds the ability to perform side effects when one or
more states are updated. The useEffect hook runs after every render, but with a dependency array, the hook
can be customised to run when the variables in the dependency array is updated. In listing 5.10 we are using
the dependency array to calculate reductionRatio each time the profileArea, containerArea or tfcBufferValues
are being updated.

40

Extrusion planner

1 /**
2 * Function to calculate ReductionRatio when profileArea and containerArea is changed
3 */
4 useEffect (() => {
5 setReductionRatio(profileArea > 0 ? (containerArea/profileArea) : (0))
6 },[profileArea , containerArea , tfcBufferValues]);

Listing 5.10: useEffect hook

TFC confirm page optimization

Since the TFC-form contains almost 100 text-fields, drop-downs, functions and dates, we made the decision
to split up the forms into different pieces to keep the application neat and high-performing. Our initial line
of thinking was that Benteler would fill out the TFC streamlined from top to bottom. The confirm page,
containing all the input fields, was initially meant for only checking that the values previously added were
correct. After implementing and showing this solution to Benteler, they wished to be able to change every
value in the confirm page as well. We expressed our concern for a drop in performance. As initially thought,
changing values in the confirm page can be experienced as having a bit of latency on input or switching fields,
but it is still fully functional.

5.2.4 Automatic version and status control
To eliminate having to rely on the user typing the correct ID and version number for any Request, TFC or
Order, we decided to automate this process. This meant that for each time a user wanted to perform an
operation on any type of form, whether it would be creating a new one, base off an old, change or update, the
application would deal with keeping integrity.

For example at the Request main page, when a user selects a desired Request and the menu option
"Change Request", the web interface automatically calls the API as seen in listing 5.11. This API call then
is received and processed by the backend API as seen in listing 5.12. The API then receives which Request
number the user has chosen, and then queries the database to find the newest version in use. This version is
then returned to the web interface and added up to a new unique version number to be inserted automatically
into the form.

1 /* Frontend function calling the API for the latest version */
2 getLastVersionById = (id) => {
3 return axios.get(API_URL + "request/${id}/ lastVersion");
4 }

Listing 5.11: Frontend API call for retrieving the latest Request version per a given ID

41

Extrusion planner

1 //API Endpoint function (receiving function)
2 @GetMapping(path="{id}/ lastVersion")
3 public String getLastVersionById(@PathVariable("id") String id){
4 return(RequestService.getLastVersionById(id , con));
5 }
6

7 // Function called by API endpoint to retrieve the last request version
8 public static String getLastVersionById(String id , Connection con){
9 String version = null;

10 try{
11 ResultSet rs;
12 // Queries the database for the latest version
13 PreparedStatement st = (PreparedStatement) con.prepareStatement("Select MAX(

request_ver_no) as Version FROM Request WHERE Request_no = ?");
14 st.setString(1, id);
15 rs = st.executeQuery (); // Executing the statement
16 while (rs.next()) {
17 version = rs.getString("Version");
18 }
19 }catch(SQLException ee){
20 ee.printStackTrace ();
21 }
22

23 return version; // Returns the latest version
24 }

Listing 5.12: Backend API function for retrieving the latest Request version per a given ID

The application also automatically keeps track of the status per a Request. A Request can have either status:
Open, the Request is not used anywhere yet, just created.
TFC, the Request has been used in a Team Feasibility Commitment meeting (TFC) and is included in a TFC
form.
Order, the Request has been used in a submitted Order

These statuses are automatically set whenever the Request is created, a TFC is made or Order is created.
As seen in listing 5.13 on line 20, the web interface calls the accompanied web-interface service to call the
API. The API then receives the Request number, Request version number and the status as a parameter (seen
in listing 5.14). The status field for the specific request is then updated in the database to contain the attached
status.

This status is then displayed when the user is browsing Requests in the search pages (See Figure 5.6).
This is most useful for when the user is creating a new Order or TFC, to more easily keep track of which
Request is already used and which are ready to be processed (See Figure 5.7).

42

Extrusion planner

1 /* Submit function for the TFC form */
2 const handleSubmit = () => {
3 fetch(configData.API_URL + "tfc/", {
4 method: "POST",
5 headers: {
6 "Content -type": "application/json",
7 },
8 body: JSON.stringify(tfcValues),
9 })

10 .then((response) => response.json())
11 .then((result) => {
12 setOpen(true);
13 if (result != true){
14 setSeverity("error");
15 setMessage("Failed to add TFC to database!")
16 }
17 else{
18 /* Removed code for readability */
19 /* This next line sets the status of the given request to "TFC"

automatically */
20 RequestService.setStatus(tfcValues.Request_no , tfcValues.

Request_ver_no , "TFC");
21 }
22 });
23 };

Listing 5.13: Example functions for automatic status control in frontend following a submission of a form

1 //API Endpoint function (receiving function)
2 @PostMapping(path = "/setstatus /{ requestno }/{ requestver }/{ status}")
3 public boolean setStatus (@PathVariable("requestno") int requestNo , @PathVariable("

requestver") int requestVer , @PathVariable("status") String status){
4 return(RequestService.setStatus(requestNo ,requestVer ,status ,con));
5 }
6

7 // Function called by API endpoint to change status parameter of a request
8 public static boolean setStatus(int requestNo , int requestVer , String status ,

Connection con){
9 try{

10 // Updates the status field in the database
11 PreparedStatement st = (PreparedStatement) con.prepareStatement("UPDATE

Request SET Status = ? WHERE Request_no = ? AND Request_ver_no = ?");
12 st.setString(1, status);
13 st.setInt(2, requestNo);
14 st.setInt(3, requestVer);
15

16 st.execute (); // Executing the statement
17

18 return true; // Returns true if successful
19 }catch(SQLException ee){
20 ee.printStackTrace ();
21 return false; // Returns false if not successful
22 }
23 }

Listing 5.14: Functions for automatic status control in the backend API following a submission

43

Extrusion planner

Figure 5.6: Status field/overview

Figure 5.7: Status overview in popup after selecting an old TFC as base for a new TFC

5.2.5 Invalid requests
The process for setting a Request as invalid is code-wise pretty similar to setting status, besides it having
dedicated buttons in the interface only viewable for the Admin/Superuser. In addition an invalid Request also
triggers logic when selected that disables all buttons to process the Request further, so that the Request has
to be set as valid to be further processed. In the main Request menu, a Request’s valid/invalid can be toggled
by buttons in the UI as seen in Figure 5.8.

44

Extrusion planner

Figure 5.8: Toggle invalid Request with disabled buttons

5.2.6 Change measurement system
The switch in the topbar, see Figure 5.4, changes the measurement system used in the application between
metric and imperial system. Since Benteler has divisions in the United States, one of the requirements was to
be able to create Requests, TFC’s and Orders in both systems. When pressing the switch, the page re-renders
and every measurement is changed to the opposite. The measurement system is then stored in the browser so
the users preference is saved.

To convert between units, we have used an existing JavaScript library called convert-units [1]. This library
is easy to use and includes almost all the conversions needed for the application. The values are stored as
metric values in the database, so if the user uses imperial, the values need to be converted when displayed in
the application as well as when the user submits a form. An example is shown in listing 5.15 underneath.

1 /**
2 * A snippet from the billet length textfield in TFC , if the user has
3 * switched to imperial. Converts the billet length from millimeters to
4 * inches.
5 */
6 convert(tfcValues.Billet_length_mm).from('mm').to('in'))
7 /**
8 * Function to handle input from inches to millimeter. Used to convert users
9 * inch -input to millimeter stored in the database. parseFloat used to

10 * limit number of decimals.
11 */
12 const handleInputChangeINtoMM = (e) => {
13 const {name , value} = e.target
14 setTfcValues ({
15 ... tfcValues ,
16 [name]: parseFloat(convert(value).from('in').to('mm')).toFixed (3)
17 })
18 }

Listing 5.15: Conversion example

45

Extrusion planner

5.2.7 Security
In the research period, the team found a React Security online course [7] which we found to be relevant
and the team decided to take. From this course we got ideas on what frontend security measures we should
implement, which we will present in this chapter.

Authentication & Authorization
Even though the application is only accessed through a VPN or by the client’s internal network, there was
a need for access control. Due to the requirement to limit what certain users can view and access in the
interface, users were divided into multiple groups with different permissions.

The first thing the user meets when using the application and one of the first things the team decided to
implement was the login functionality. It was important that this was secure and that we meet the authoriza-
tion requirements.

We knew that the security of the application was highly dependent on how we were to implement the
authentication and authorization, and we had to do a lot of research to come up with a good solution concern-
ing this. The solution we landed on was to use JSON Web Token (JWT) to authenticate and authorize each
user. By using JWT we prevented session hijacking and manipulation of the user’s cookie to obtain access,
which was a couple of the main security concerns. To read more about JWT and how we implemented it go
to section 5.3.6.

In addition to the security aspect, we also knew that the login functionality had to cover the authorization
requirements. To solve this we wanted each user to have a role saved with the user in the user database which
should be returned from the API when the user submits a successful login.

The login functionality is implemented by creating a simple login page where the user can insert its
username and password, when the user submits this the information will be sent to the API through Axios
(listing 5.1).

46

Extrusion planner

1 /**
2 * Login function called every time a user clicks submit
3 * Sends the username and password to the API ,
4 * which returns the JWT and role.
5 * This information gets saved to the user 's cookie
6 * and is used to authenticate the user with the authenticate function
7 * in authContext
8 * Sets loading to false after the API response.
9 */

10 function login() {
11 var token;
12 var role;
13 var username = details.name;
14 setLoading(true);
15

16 /* sends username and password and returns JWT and role */
17 axios
18 .post(API_URL + "auth", details)
19 .then((response) => {
20 token = response.data [0];
21 role = response.data [1];
22 Cookies.set("token", token);
23 Cookies.set("role", role);
24 Cookies.set("username", username);
25 authContext.Authenticate ({ token , role , username });
26 setLoading(false);
27 });
28 }

Listing 5.16: Authentication request

As you can see in listing 5.16 the login information is sent to the API on line 17 and gets the token and role
as a response. The token, role and username are then saved to the user’s cookie and the further authentication
is done by the Authenticate function in the authContext file.

One of the things we learnt from the React Security online course is to make use of React’s Context API.
"Context provides a way to pass data through the component tree without having to pass props down manually
at every level." 4, this was something we considered to fit our authentication and authorization functionality.
Because of this, every authentication and authorization code was then implemented in the file AuthContext.js.

The AuthContext file contains a state called authState which consists of the user’s username, token and
role and is used in many of the authentication and authorization functions. The Authenticate function used in
login (Listing 5.17), sets the authState to contain the relevant values. The state can also be set by getting the
information from the user’s cookies, this ensures that a user stays logged in as long as the user contain the
correct values in their cookies.

4https://reactjs.org/docs/context.html

47

Extrusion planner

1 /** Function used in login class , to authenticate the username and password */
2 const Authenticate = (data) => {
3 setAuthState ({
4 username: data.username ,
5 token: data.token ,
6 role: data.role
7 })
8 }

Listing 5.17: Authentication function in authContext

After the user has submitted the login information and the authState has been updated, the App.js file with
all the routing gets rendered again. The App.js uses the authContext and the first function called is the
isAuthenticated function listed in 5.18, which will change the authContext state "Approved" to true only if
the token has been checked and is approved by the API. This function gets a new JWT and updates the user’s
cookies to always contain the newest JWT, this is important since the JWT contains an expiration time and it
will not be approved if that time has expired. Since this function gets called on every App.js render (which is
every time a user navigates through the application), the rest of the authentication in the application is done
by simply checking the "Approved" state. The function approvedJWT is made for that and will return the
value of the state.

1 /**
2 * This function retrieves the JSON Web Token from the cookie ,
3 * and then calls the API with it in the HTTP body ,
4 * the JSON Web Token is then asserted in the API
5 * and the response is the data contained in the JWT ,
6 * which is then used to update the data in the cookie
7 * and updated the state that tells if the JWT was approved or not
8 * @state approved {boolean} Is the JWT approved or not?
9 */

10 const isAuthenticated = async () => {
11

12 await axios.post(API_URL + "auth/jwtCheck", {}, {
13 headers: {
14 "Authorization": Cookies.get("token")
15 }
16 })
17 .then((response) => {
18 if (response.data) {
19 Cookies.set("token", response.data.jwt);
20 Cookies.set("role", response.data.role);
21 setApproved(true)
22 }
23 else {
24 setApproved(false)
25 }
26 });
27 };

Listing 5.18: isAuthenticated in authContext

48

Extrusion planner

As you can see in listing 5.19 the approvedJWT function (on line 10) is used to check what route to return
to the user. If the JWT is approved the user will be able to navigate through the main routes of the application,
but if the JWT is not approved the user gets sent back to the login page. Since the App.js renders every time
the user navigates through the application, the authentication happens constantly and the user will be logged
out as soon as the JWT is no longer approved.

The authorization of the application is also implemented in the file authContext. Listing 5.20 shows the
three authorization functions in the authContext file, and as you can see the functions returns true if it is either
the specific role asked for or the roles above in the hierarchy. These functions are used every place in the
code where the access is restricted to specific roles.

1 const AppRoutes = () => {
2 const auth = useContext(AuthContext); /*Using authcontext for authentication */
3 auth.isAuthenticated () /* Checks if the user is authenticated */
4 /**
5 * Returns the whole application and the path to each page.
6 */
7 return (
8 <>
9 <Suspense fallback={<div><CircularProgress /></div>}>

10 {auth.approveduJWT () ? (// Returns if the JWT is approved
11 <div>
12 <TopNavbar />
13 <Sidebar/>
14 <div className="main -big">
15 <Switch >
16 <Route path="/" exact>
17 <Home />
18 </Route >
19 <Route path="/search">
20 <Search />
21 </Route >
22 ...
23 </Switch >
24 </div>
25 <Footer />
26 </div>
27) : (
28 /*Send user to login page if not logged in*/
29 <div>
30 <Redirect to="/login" />
31 <Route path="/login">
32 <Login />
33 </Route >
34 </div>
35)}
36 </Suspense >
37 </>
38);
39 };

Listing 5.19: The routing authentication

49

Extrusion planner

1 /**
2 * Functions to determine the user's role , used for determining available menu

options
3 * @state authState A const temporarely storing user data
4 */
5 const isAdmin = () => {
6 return authState.role === "admin";
7 };
8 const isSuperuser = () => {
9 return (authState.role === "admin" || authState.role === "superuser");

10 };
11 const isCostcalcuser = () => {
12 return (authState.role === "admin" || authState.role === "superuser" || authState

.role === "costcalc");
13 };

Listing 5.20: The authorization functions

An example of using the authorization functions is in the routing in App.js. Pages like TFC and CostCalc
needs to be restricted and only accessible for the roles that should have access to those, to solve this we
created routes named "AdminRoute", "SuperuserRoute" and "CostCalcRoute" which uses the authorization
functions to check if the user has the correct access and if not the user is redirected to the home page. Listing
5.21 shows the AdminRoute function and how it is used in the switch tag.

Another example of using the authorization function is in the sidemenu, which only shows the icons the
user has access to viewing (Listing 5.22).

1 /**
2 * Function to redirect every non admin users if they try to access admin pages
3 * @param {*} children The files using admin routes.
4 * @param {*} ... rest Paths to each file.
5 */
6 const AdminRoute = ({ children , ... rest }) => {
7 const auth = useContext(AuthContext); /*Using authcontext for authentication */
8 return (
9 <Route

10 {... rest}
11 render ={() =>
12 auth.approvedJWT () && auth.isAdmin () ? (
13 <>{children}</>
14) : (
15 <Redirect to="/" />
16)
17 }
18 ></Route>
19);
20 };
21 <Switch >
22 <Route path="/" exact>
23 <Home />
24 </Route >
25 ...
26 <AdminRoute path="/users">
27 <Users />
28 </AdminRoute >
29 ...
30 </Switch >

Listing 5.21: An example showing the authorization routing

50

Extrusion planner

1 /**SidebarData examples */
2 {
3 id: 3,
4 title: "Requests",
5 path: "/requests",
6 icon: <AiIcons.AiOutlineFileAdd/>,
7 allowedRoles: ["admin", "superuser", "normaluser"]
8 },
9 {

10 id: 4,
11 title: "TFC",
12 path: "/tfc",
13 icon: <AiIcons.AiOutlineFileText/>,
14 allowedRoles: ["admin", "superuser"]
15 },
16

17 {SidebarData.map((item) => {
18 return(
19 div key={item.id}>
20 {(item.allowedRoles.includes(authContext.authState.role)) && (
21 <li className = "menu -text -close">
22 <NavLink to={item.path} exact activeClassName="active" >
23 <div>
24 <>{item.icon}</>
25 <p className="menu -text -p">{item.title}</p>
26 </div>
27 </NavLink >
28
29)}
30 </div>
31)
32 })}

Listing 5.22: Authorization in the sidemenu

51

Extrusion planner

Input validation
As our application relies heavily on input from the user, input validation had to be done properly. The
Material-UI components in the frontend already provided us with basic numeric and date validation. In
addition, we used a npm library called "validator" which is an API that we used to validate emails and text
(Listing 5.23 line 11 and 12).

1 import validator from "validator"
2 ...
3 <TextField
4 id="Product_controller"
5 placeholder="Product Controller Email"
6 label="Product Controller Email"
7 margin="normal"
8 variant="outlined"
9 defaultValue ={ values.Product_controller}

10 onBlur ={ handleChange("Product_controller")}
11 /* Following line sets field border to red if validation fails */
12 error ={ validator.isEmail(values.Product_controller) ? false : true}
13 /* Following line displays a message if validation fails */
14 helperText = {validator.isEmail(values.Product_controller) ? "" : "Not a valid

Email"}
15 inputProps ={{
16 maxLength: 100,
17 style: {
18 width: "28ch",
19 },
20 }}
21 className ={ classes.textField2}
22 />
23 ...

Listing 5.23: Email validator

Lazy loading
Another security measure we implemented was Lazy Loading5, which means that the website only loads
the code that is needed. This was especially relevant to our application since we have divided the users into
different roles, this means that the normal users will not load all the code that is only relevant to the superuser
or admin. The reason we thought this was a good security measure was because it limits the access to the
code, which prevents a restricted user from getting secret information from the code. In addition to being a
security measure, it could also increase the efficiency of the application by not loading as much code at once.

To implement Lazy Loading we used React’s functions lazy and Suspense6 as shown in listing 5.24.
We used the lazy function to import the different files in App.js. This function imports each file into a
lazy-component, and the code in that file is not loaded until the lazy-component is rendered. The Suspense
component is used in addition to the function to show fallback content (such as a loading screen) while
waiting for the lazy-component to load, this was implemented by adding a Suspense around the routing with
the lazy components.

5https://en.wikipedia.org/wiki/Lazy_loading
6https://reactjs.org/docs/code-splitting.html

52

Extrusion planner

1 /**
2 * Lazy function used to import the files so that the application uses lazy loading.
3 */
4 const Sidebar = lazy (() => import("./ components/Sidebar"));
5 const Home = lazy (() => import("./pages/Home"));
6 const Search = lazy (() => import("./ pages/Search"));
7 const RequestForm = lazy (() => import("./ pages/Request/RequestForm"));
8 const SearchRequest = lazy (() => import("./pages/Request/SearchRequest"));
9 const TFC = lazy (() => import("./ pages/TFC/TFC"));

10 const CostCalc = lazy (() => import("./pages/CostCalc"));
11 const Order = lazy (() => import("./pages/Order/OrderForm"));
12 const Database = lazy (() => import("./pages/Database"));
13 const Users = lazy (() => import("./pages/Users"));
14 const TopNavbar = lazy (() => import("./ components/TopNavbar"));
15 const Footer = lazy (() => import("./ components/Footer"));
16 const TFCForm = lazy (() => import("./ pages/TFC/TFCForm"));
17 const SearchOrder = lazy (() => import("./ pages/Order/SearchOrder"));
18 const FAQ = lazy (() => import("./ pages/FAQ"));
19

20 /**
21 * Returns the whole application and the path to each page.
22 */
23 return (
24 <Suspense fallback={<div><CircularProgress /></div>}>
25 {auth.approvedJWT () ? (// Returns if the JWT is approved
26 <div>
27 <TopNavbar />
28 <Sidebar/>
29 <div className="main -big">
30 <Switch >
31 <Route path="/" exact>
32 <Home />
33 </Route >
34 ...
35 <\Switch >
36 <\div>
37 <\div>
38 <\Suspense >
39);

Listing 5.24: Lazy Loading

Password
The criteria we have used to ensure the user changes to a strong password, are from OWASP Password
Security Requirements [13]. OWASP [8] is an online community that produces freely available tools and
documentation used for web application security.

The main requirements we have implemented is that the password should contain both numbers, lower-
case letters and uppercase letters. The password length must be at least 8 characters, but 12+ characters are
recommended. According to the OWASP requirements, we implemented a password strength meter (Figure
6.5). The user can see the strength of the password in realtime, which helps make good and strong passwords.
In listing 5.25 is the function setting the progress of the strength meter. The meter increases if the password
meets the different requirements. To max out the meter, the user has to have at least one special character,
which can not be at the end, as well as a length of over 11 characters.

53

Extrusion planner

1 /**
2 * Function used to set the strength of the strength meter. Runs when the first
3 * password is changed. Checks if the user uses numbers , letters and special
4 * characters.
5 */
6 useEffect (() => {
7 let num = 0;
8 if(number) { num += 15; }
9 if(lowercase) { num += 10; }

10 if(uppercase) { num += 15; }
11 if(pwd1.length > 7) { num += 10 }
12 if(pwd1.length > 9) { num += 15 }
13 if(pwd1.length > 11) { num += 15 }
14 if(pwd1.match("/[!@#$%^&*()_+\ -=\[\]{}; ':\\| ,. < >\/?]/")) {
15 num += 10
16 }
17 if(pwd1.match("/[!@#$%^&*()_+\ -=\[\]{}; ':\\| ,. < >\/?]/")
18 &&
19 !pwd1.charAt(pwd1.lastIndexOf).match("/[!@#$%^&*()_+\ -=\[\]{}; ':\\| ,. < >\/?]/")

) {
20 num += 10
21 }
22 setProgress(num);
23 }, [pwd1]);

Listing 5.25: Strength meter

Every password field has a visibility button, for the user to check the password entered. The goal of the user
to view their password is to improve the usability and help motivate the users to choose long passwords. The
users also have to enter their old password before they are allowed to change it.

5.3 Backend API
We divided the backend into multiple packages: API, model and service, to create an clear architecture (as
seen in Figures 5.9 and 5.10). The API package contains all the API endpoints reachable by HTTP requests
and we separated the different endpoints by defining separate paths or using separate HTTP request methods.
The endpoint functions responsibility is calling the corresponding service in the service package. The services
consist of classes that are responsible for:

• Inserting, fetching or modifying data

• Handling JSON Web Tokens received from the user by assertion, updating with new expiry and en-
cryption.

• Mail service to utilize Gmail’s SMTP service [22] to send both confirmation emails and notifying
emails to the respective users. Changed to use Benteler’s internal SMTP upon deployment.

The model package contains classes that are utilized by the services and are used to create objects from
retrieved database data. These objects are then returned to the user in the shape of a JSON Object by the API
classes.

54

Extrusion planner

Figure 5.9: Backend API data flow when submitting data

Figure 5.10: Backend API data flow when fetching data

The way parameters are sent from the web interface to the backend via HTTP requests is both in the HTTP
body as well as in the HTTP path if the number of parameters are three or fewer. These parameters are then
extracted using Spring Boot’s @PathVariable notation, or @RequestBody if the HTTP body contains the data.

Spring boot also delivers an integrated tomcat server and handles all networking and routing. First of all,
it lowered the required work to get up and running, and second provided us with a tried and tested proto-
col. This eliminates potential security, performance or instability issues from developing a similar protocol
ourselves.

55

Extrusion planner

5.3.1 API Layer / Controller classes
As illustrated in the code example 5.26, all controller classes job is to convert incoming data contained in the
URL or JSON objects in the HTTP body to a known object that the services can work with. @PostMapping
tells Spring Boot that this function should be called when the defined URL is received by the built-in tomcat
server.

Once the function is called, the @RequestBody notation is used to tell Spring Boot to convert the incom-
ing data format into an object as defined following the notation. In this example the data is converted into the
format of the TFCForm class in the models layer.

1 @PostMapping(path = "{id}/{ ver}") /* Defining the path/URL variables anticipated */
2 /* JSON data converted to TFC Object with @RequestBody: */
3 public boolean updateTFC(@PathVariable("id") String id , @PathVariable("ver") String

ver , @RequestBody TFCForm tfcf) {
4 return(TFCService.updateTFCByID(tfcf , id,ver , con)); /* Calls TFCService.js */
5 }

Listing 5.26: Example of controller class

For classes where having a dedicated object was unnecessary (see listing 5.27), we first defined the path with
@PostMapping while defining the variable names. Then we used the @PathVariable notation followed by
the variable name as its parameter. Lastly defining the data type it should be converted to.

1 @GetMapping (path = "spacer /{name}")
2 /* URL parameter converted to function parameter with @PathVariable: */
3 public Spacer getSpacer(@PathVariable("name") String name) {
4 return(ParamService.getSpacerByName(name , con)); /* Calls ParamService.js */
5 }

Listing 5.27: Controller class receiving URL parameters

56

Extrusion planner

5.3.2 Model layer
The structure of the model classes is rather simplistic as illustrated in listing 5.28, with the purpose of serving
objects usable for the service layer. To avoid creating too many unnecessary model classes, we decided to
send certain parameters via the URL. This is done for the retrieving classes which for example receives index
numbers and revision to search the database for.

As illustrated in listing 5.28, we had to implement the @JsonProperty notation in order to specifically
tell the class constructor which JSON name/value pair is intended to be stored into the specified variable for
the created object. The model class then contains all necessary retrieval "get" functions for extracting object
data.

1 import com.fasterxml.jackson.annotation.JsonProperty;
2

3 public class Spacer {
4 String spacertype;
5 float weight;
6 float height;
7

8 /* @JSONProperty used to map JSON key -value pairs to function parameters */
9 public Spacer(@JsonProperty("Spacertype") String spacertype ,

10 @JsonProperty("Weight") float weight ,
11 @JsonProperty("Height") float height) {
12

13 this.spacertype = spacertype;
14 this.weight = weight;
15 this.height = height;
16 }
17

18 public String getSpacertype () { /* Functions used for retrieving object data */
19 return spacertype;
20 }
21

22 public float getWeight () {
23 return weight;
24 }
25

26 public float getHeight () {
27 return height;
28 }
29 }

Listing 5.28: Example of a smaller model class

57

Extrusion planner

5.3.3 Service layer
Listing 5.29 illustrates a common format of a function in the service classes. The illustrated function queries
the database and returns a list with the result.

1 /* Function for retrieving all spacers from the database */
2 public static List <Spacer > getAllSpacers(Connection con) {
3 Spacer spacer = null; // Buffer
4 List <Spacer > spaceList = new ArrayList <>(); // List to be returned
5

6 try {
7 ResultSet rs;
8 PreparedStatement st = (PreparedStatement) con.prepareStatement("SELECT *

FROM Spacers;");
9 rs = st.executeQuery ();

10

11 while (rs.next()) {
12 spacer = new Spacer(
13 rs.getString("Spacertype"),
14 rs.getFloat("Weight"),
15 rs.getFloat("Height")
16);
17 spaceList.add(spacer);
18 }
19 } catch (SQLException ex) {
20 ex.printStackTrace ();
21 }
22

23 return spaceList;
24 }

Listing 5.29: Example of a smaller service class

The service layer consists mainly of functions querying the database using SQL. Where data is either stored,
retrieved, modified or deleted. These service classes utilize the model classes for creating objects from
retrieved database data, to make a returnable object or list with objects.

The service layer also contains the JWTService and MailService. In the backend these classes have
the unique responsibility of managing user session tokens and sending notification by email (using SMTP)
respectively.

5.3.4 Database
A central part of the application is the database, as the application heavily relies on the flow of information.
The nature of the application did not require a database containing interconnected tables, besides the con-
nection between a TFC entry and its corresponding Request done with a simple SQL query. This made the
design of the database structure pretty simple, but still while providing a non-redundant data structure as you
can see in Figure 5.11.

58

Extrusion planner

Figure 5.11: Database Structure

The CostCalc team at Benteler was unsure if exporting required data for profile cost calculations to Excel,
or saving the required data to an SQL Database was the best solution. This led us to create a table in the
database with the necessary fields called Costcalc, in case it would be of need in the future. 14th of April the
team got an update that the CostCalc team preferred to have the export be in the Excel file format for the time
being, but the Costcalc table is still kept in case they change their mind in the future.

The database was made using Microsoft SQL Server 2019 and managed using Microsoft SQL Server
Management Studio software. After migrating the web server from Openstack to Benteler’s own server, the
SQL database had to be downgraded to SQL Server 2012 due to licensing issues.

59

Extrusion planner

Structure
The database consists of three types of tables, the first type is the main form data. The main form data tables
are catering to the main forms used in the application; TFC, Request and Order. These are responsible for
storing large amounts of data that has been filled in by the user using the web interface forms.

The second type of tables, are the tables used for storing the parameters that are used by the frontend to
deliver drop-down selection fields where the user can select among the existing entries in the parameter table.
The content of these tables can be altered using the database page in the web interface of the application.
This means that the admin or superuser can modify what the users can choose in the drop-down menus, as
well as alter formulas used in the TFC form by changing certain parameters used in the formulas. The TFC
form also uses this data to calculate real-time warnings to warn the user if they are moving beyond possible
values for certain fields.

The last type is the application metadata like the user data and key storage for security measures. Here
all the users information is stored, like their ID, name, password and role. The password is stored using a
hashing method to ensure a degree of confidentiality. The keys table stores the signing key used with signing
the JSON Web Tokens before sending them to the user.

5.3.5 CostCalc/Product Controller data export document

1 public static byte[] getBridge(int requestNo , Connection con) {
2 try {
3 //Gets all costcalc relevant data for each TFC per a requet number
4 List <Costcalc > costcalcs = getCostCalcPerRequest(requestNo ,con);
5

6 // Retrieving the file from JAR
7 Path temp = Files.createTempFile("BridgeFile", ".xlsx");
8 Files.copy(CostcalcService.class.getClassLoader ().getResourceAsStream("

BridgeTemplate.xlsx"), temp , StandardCopyOption.REPLACE_EXISTING);
9 FileInputStream inputStream = new FileInputStream(temp.toFile ());

10 Workbook workbook = WorkbookFactory.create(inputStream);
11

12 // Function to fetch a specific sheet , did not work unless index =0
13 Sheet sheet = workbook.getSheetAt (0);
14

15 Costcalc costcalc; // Buffer
16

17 // Initializes the document for manipulation , avoids errors
18 initializeSheet(costcalcs ,sheet);
19 int offset = 1; // Defines the row -offset into the document
20 for(int i = 2; i<= costcalcs.size()+1; i++) {
21 costcalc = costcalcs.get(i-2); // Indexing starts at 0
22

23 String suffix = "";
24 int press = Integer.parseInt(costcalc.getPress ().substring (1));
25 if(press == 22 || press == 40 || press == 55)
26 suffix = " (NO)";
27 if(press == 16)
28 suffix = " (FR)";
29 if(press ==27 || press == 35)
30 suffix = " (US)";
31

32 sheet.getRow (0+ offset).getCell(i).setCellValue(costcalc.getRequest_no ());
33 // .. Rest of the cells (x34) .. //
34 sheet.getRow (99+ offset).getCell(i).setCellValue(costcalc.getDie_life ());
35

60

Extrusion planner

36 }
37

38 inputStream.close ();
39

40 ByteArrayOutputStream outputStream = new ByteArrayOutputStream ();
41 // Writes the workbook to the stream to be returned to the web interface
42 workbook.write(outputStream);
43 workbook.close();
44

45 // Returns the ByteArray to be returned to the web interface
46 return outputStream.toByteArray ();
47 // outputStream.close(); //Not needed for a byteArrayStream
48 } catch (FileNotFoundException e) {
49 e.printStackTrace ();
50 } catch (IOException e) {
51 e.printStackTrace ();
52 }
53 return null;
54 }

Listing 5.30: Snippet of CostCalc main function see appendix D for full code

One of the functional requirements of the application was having a data export in the form of an Excel
document. This document is intended for the Product Controller (earlier named CostCalc) to utilize in order
to calculate the necessary costs derived from the process parameters decided in the TFC meeting. We started
by having a simple export of the CostCalc document to a blank sheet all created in the frontend web interface.
Later in the development process the client realized it was too simple for their needs. They wanted a solution
that modified the existing Excel document they had used in their previous program which contained different
formulas, parameters and drop-downs. Some fields of this document were then automatically calculated and
filled in based on stored parameters on another sheet that was interconnected.

The issue with this was that it could not be done directly in the frontend web interface, we had to instead
use the API to do most of the process. The only functionality of the process we could keep in the frontend
was the selection of Request numbers from which to gather all data contained in the corresponding TFCs.
The API then receives this Request number and starts out by retrieving the necessary data in the shape of
CostCalc objects in a list.

We then had to implement their existing file as a template file in the API that was to be packaged in the
JAR during deployment. To modify the template document, we used the Apache POI library for Java7, which
provides an API for handling Microsoft Office document formats. This was necessary to enable modification
of an existing Excel template. By traversing the excel document using the coordinate index system, specific
cells could be chosen and modified. A for loop for each unique TFC per Request number was used to fill in
multiple columns.

Unfortunately, time was spent to make the program work with the client-supplied document, as it was
later found out that the function from the Apache POI API that fetches an Excel sheet from a specific index
did not properly work unless the index was 0. Choosing any other index would result in an empty document,
where as when we moved the sheet to be modified to index 0 and changed hereafter in the code, it worked
flawlessly.

When the Excel document was finalized in the API, the file was converted into a ByteArray and then
returned to the frontend. In the frontend the file-saver library was used, which delivered an API to save the
generated Excel file to the users machine.

7https://poi.apache.org/

61

Extrusion planner

5.3.6 Security
JSON Web Tokens
The core of our applications authentication lies in the JSON Web Token or JWT for short. Using JWT for
authentication moves the responsibility of storing the session data from the server to the users own machine.
We configured our JWT token as seen in listing 5.31, which illustrates the function that is responsible for
creating a JSON Web Token upon a successful login by a user or a successful JWT assertion. This token is
then sent in return to the user and then stored on the users machine in form of a cookie.

1 /* Function responsible for creating a JSON Web Token to be sent to the user */
2 public static String createJWT(String id, String issuer , String subject , String role)

{
3 SecretKey originalKey = getKeyFromDatabase ();
4

5 Calendar cal = Calendar.getInstance ();
6

7 cal.setTime(new Date());
8 Date currentTime = cal.getTime ();
9 cal.add(Calendar.HOUR_OF_DAY , 1); //Adds one hour to current time

10 Date expiryTime = cal.getTime (); //Sets expiry time to one hour
11

12 String jwt;
13 jwt = Jwts.builder () //Build a new JSON Web Token with key
14 .setIssuer(issuer)
15 .setSubject(subject)
16 .claim("id", id)
17 .claim("role", role)
18 .setIssuedAt(currentTime)
19 .setExpiration(expiryTime)
20 .signWith(originalKey)
21 .compact ();
22

23 return jwt;
24 }

Listing 5.31: JWTService: Creation of a JWT

Whenever the user decides to navigate to a new route (see listing 5.3), the web interface retrieves the cookie
from the browser and sends it to the API for authentication as illustrated in listing 5.32. The assertion function
first verifies the tokens signature, integrity or expiry. This is done using JJWT from the io.jsonwebtoken
library [19] by retrieving the signature key from the database and calling the parseBuilder supplied by JJWT.
The parsebuilder then checks for modification, signature and expiry of the token in one API call.

If the JWT was accepted, the function will return a new JWT or null if any of the violations mentioned
was found. The API endpoint controller class responsible for handling JWT requests then uses this return
value to either log the user out by returning null, or recreating the JWT using the function illustrated in listing
5.31. The JWT data, called claims, is extracted from the asserted JWT and then fed into the creating function
as parameters. The new JWT is then returned to the user and saved in the browser, while the web interface
allows the user to view the requested page.

The expiry time claim is then set to one hour from the current time, in order to log out users after an hour
of inactivity when changing routes in the web interface. This means that the users are not logged out while
filling out the forms, as this is a process that may take a while. Meanwhile, if they wish to navigate the side
menu after the expiry, a new login is required.

62

Extrusion planner

1 public static Jws <Claims > assertJWT(String jwtString) {
2 Jws <Claims > jwt; // Buffer to store JWT content/claims
3 try {
4 SecretKey key = getKeyFromDatabase ();
5 jwt = Jwts.parserBuilder () //JWT is parsed and validated
6 .setSigningKey(key)
7 .build()
8 .parseClaimsJws(jwtString);
9

10 }
11 catch (SignatureException | MalformedJwtException | ExpiredJwtException me){
12 System.out.println("Assertion failed");
13 return null;
14 }
15 return jwt; // JWT content is returned
16 }

Listing 5.32: JWTService: Assert a JSON Web Token

1 /* Function responsible for receiving a JSON Web Token from the user and then
2 asserting it*/
3 @PostMapping(path = "/jwtCheck")
4 public Response authJWT(@RequestHeader(value="Authorization") String jwt) {
5 Calendar cal = Calendar.getInstance ();
6

7 Jws buffer = JWTService.assertJWT(jwt);
8 if(buffer !=null) {
9 Claims body = (Claims) buffer.getBody ();

10 String updatedJWT = JWTService.createJWT(body.getId (), body.getIssuer (),
body.getSubject (), body.get("role").toString ());

11 System.out.println(cal.getTime () + " - JWT Approved for " +
body.getSubject ());

12

13 Response rs = new Response(updatedJWT , body.get("role").toString ());
14

15 return rs;
16 }
17 else
18 return null;
19 }

Listing 5.33: JWT Controller class (API Endpoint)

SQL prepared statement
To ensure a level or protection against SQL injection, we used prepared statements in all the database SQL
queries in the backend. "Prepared statements are resilient against SQL injection because values which are
transmitted later using a different protocol are not compiled like the statement template. If the statement
template is not derived from external input, SQL injection cannot occur" [38]. This limits an abuser, removing
the ability to query the database maliciously like retrieving sensitive data, hashed passwords and modifying
with malicious intent. In listing 5.34 you can see an example of a prepared statement in the API.

63

Extrusion planner

1 public static boolean saveAlloy(Alloy alloy , Connection con) {
2 try {
3 PreparedStatement st = (PreparedStatement) con.prepareStatement(
4 "INSERT INTO Alloy " +
5 "(Alloy_name , " +
6 "Density) " +
7 "VALUES (?, ?);"
8);
9 //Bind first parameter in the statement

10 st.setString(1, alloy.getAlloy_name ());
11 //Bind second parameter in the statement
12 st.setFloat(2, alloy.getDensity ());
13 st.execute ();
14 return true;
15 } catch (SQLException ex) {
16 ex.printStackTrace ();
17 return false;
18 }
19 }

Listing 5.34: Prepared statement

Hashing passwords
Password hashing was implemented in order to put a level of security in the storage and handling of the
passwords. The API automatically hashes passwords when new users are created, passwords are updated
or when a user tries to log in. A hashing mechanism avoids the passwords being stored in plain text in the
database. The code for the hashing method can be seen in listing 5.35.

Unfortunately, we did not have time to implement the infrastructure for adding salts to the passwords,
which would have increased the obscurity of the passwords. A salt is random data that is added to the hash of
a password [39], meaning that the hashed password will be stored with nonsense data. An intruder that has
access to such a salted hash of a password, will not know this specific salt and will not be able to decode the
password.

Having to use Benteler’s internal network or the Benteler VPN to access the application limits the po-
tential vulnerability of not having salts, but it is still something that we would like to have implemented to
ensure a good level of password obscurity.

1 /* Function that hashes the incoming string parameter using SHA -1 */
2 public static String hashPass(String password) {
3 MessageDigest messageDigest = null;
4 try {
5 messageDigest = MessageDigest.getInstance("SHA");
6 messageDigest.update(password.getBytes ());
7 byte[] resultByteArray = messageDigest.digest ();
8

9 StringBuilder sb = new StringBuilder ();
10

11 for(byte b: resultByteArray) {
12 sb.append(String.format("%02x",b));
13 }
14 return sb.toString ();
15 } catch (NoSuchAlgorithmException e) {
16 e.printStackTrace ();
17 }
18 return "";
19 }

Listing 5.35: Hashing function

64

Extrusion planner

5.4 Deployment of the application
Like most software, the application had to be deployed somewhere for the user to reach and use. This seemed
intriguing as none of the team members had experience of properly deploying a web application to a server.
While deploying we met a set of challenges that had to be solved.

Initially, we only had access to the server supplied by NTNU, where we did not have the need for regular
deployment as we easily could run the API with IntelliJ and test the backend using NodeJS development
server locally. When we got access to a web server supplied by Benteler, we had to explore the properties on
how this was set up to tailor the deployment strategy.

5.4.1 Backend deployment
We initially thought the task of deploying the backend API was rather easy, as the Maven API8 simplified
the task of building the deployment JAR file with all necessary dependencies (as long as the POM.xml file
was correctly set up). We ran the JAR file on the server but soon discovered that the server would log out
the active user after disconnecting from the remote desktop service used. This meant that we had to instead
install it as a service to prevent the API from being stopped automatically.

Luckily we found the open-source software called WinSW 9 which did exactly that. The software package
consisted of a .exe file and an xml document for the service properties (see Figure 5.12). This XML document
had to be edited with the intended properties of the service, like name, automatic start and so on. When all
this was configured, we placed the packaged JAR file into this folder and ran the WinSW executable file and
voila the service was installed and automatically started. The only drawback of this was that you had to open
the output file and scroll all the way down to see the console output from the API.

To re-deploy, all we had to do was stop the service, replace the JAR and then start the service. Besides
the slow transfer speed of the deployment server, this solution was fast and easy to perform.

Figure 5.12: API Service folder

5.4.2 Frontend deployment
Deploying the frontend web interface came with its own challenges, we already deployed the frontend (and
backend but only by running the JAR) on our testing server supplied from NTNU. This meant that we figured
out how to do this rather early in the development process and could redo the process on the server supplied
by Benteler when the opportunity was presented.

8https://en.wikipedia.org/wiki/Apache_Maven
9https://github.com/winsw/winsw

65

Extrusion planner

We had a meeting with our supervisor and an expert in this field to consult on how we could deploy the
web interface in the best way possible. We learned that the best solution was to use IIS10, which is a service
already included with copies of Windows 10. This feature only had to be activated, and then we could start
the process with deployment. First, we had to create a production optimized build of the application using
the NodeJS API, then we specified this folder in IIS in a newly created website in IIS.

When we finished following the tutorial we got recommended for deploying with IIS11, we realized that
CORS (Cross Origin Resource Policy) and the routing we used in React did not work at all. This was due to
the nature of IIS, this was remedied by installing the URL Rewrite Module12 and CORS Module 13 from the
IIS web page. In addition we had to configure these modules by including a web.config (see listing 5.36) file
inside the build folder specified in IIS. This web.config had to specify certain rules for both in order for the
web page to work as expected.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <configuration >
3 <system.webServer >
4 <cors enabled="true">
5 <add origin="*" />
6 </cors>
7 <rewrite >
8 <rules>
9 <rule name="React Routes" stopProcessing="true">

10 <match url=".*" />
11 <conditions logicalGrouping="MatchAll">
12 <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />
13 <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />
14 <add input="{REQUEST_URI}" pattern="^/(api)" negate="true" />
15 </conditions >
16 <action type="Rewrite" url="/" />
17 </rule>
18 </rules >
19 </rewrite >
20 </system.webServer >
21 </configuration >

Listing 5.36: web.config IIS module configuration

10https://en.wikipedia.org/wiki/Internet_Information_Services
11https://dev.to/sumitkharche/how-to-deploy-react-application-on-iis-server-1ied
12https://www.iis.net/downloads/microsoft/url-rewrite
13https://www.iis.net/downloads/microsoft/iis-cors-module

66

Extrusion planner

Chapter 6

User interface

In the planning phase, when we discussed the requirements with our contacts at Benteler, we were told that
they did not have any specific design-requirements and we could design the application as we saw fit.

We then had a meeting to decide the main layout of the application and what design principles we should
prioritize and implement. Our goal was to create an application that is user friendly and also had a modern
look to it. One way of doing this is by having a recognizable layout and recognizable components, which we
accomplished when using the framework Material UI for our most repeated components. As written earlier
Material UI features React components that uses Googles material design, and are components that is widely
used and easily recognizable.

Later in the project the project owner came with the wish that we use Benteler’s color scheme and guide-
lines for the application, since that would fit with their other websites and applications. This was easily
implemented by using Material UI’s default themes where we put the primary and secondary colors of Ben-
teler. We also made sure to use the colors on the components that were not Material UI components.

The team reviewed Benteler’s old system to obtain a good understanding on how the employees were used
to move around in the application, and from there started brainstorming on how to improve the efficiency and
make it more user friendly.

6.1 Color pallet
Figure 6.1 is an extract of the design guidelines provided by Benteler. We have mostly used their main colors
in the application, but in some cases we used the further colors to make content stand out.

Figure 6.1: Benteler color guideline

67

Extrusion planner

6.2 Layout
For our layout we decided to use well known components like topbar, side menu and a footer which would
be visible at every page after login (see Figure 5.4).

6.2.1 Side menu
With the side menu, the users are easily able to move around the application and change pages, in contrast to
their old system where they would have to go back to their main page every time they wanted to see the menu
(as seen in section 1.2.5).
The main area of the application contains content like forms and tables, which rely on a lot of space. Accord-
ingly, the team wanted to keep the menu small and compact. The solution was a small side menu with icons,
which extends when the mouse hovers on it and text would appear below the icons.

The side menu is one of the main components of the system, and the team decided to design this without
a framework. The color of the menu is Benteler’s primary color, dark blue, and the icons and text are white.
The menu is designed with a transition so that when the mouse hover over it, it will smoothly slide out to a
bigger size and slide in again when the mouse leaves the menu.

Another detail on the menu is the button colors. The buttons are transparent on default but turns a brighter
blue when hovering over it. This is a very popular approach which most big websites follow, and it makes it
easy for the user to understand that it is a clickable button. We also wanted a color to mark which button was
active so it will show which part of the application the user is on. A light blue color was chosen for this. The
colors were both chosen from Benteler’s color pallet (see Figure 6.1).

Content
The application is divided into 9 different parts: Home, Search, Request, TFC, Cost Calc, Order, Edit
Database, Users and FAQ. The 9 parts appear in the side menu with an icon and with text on the extended
version. The icons were chosen from React Icons1, and the team wanted to have recognizable icons for the
different part. An example is a house icon for the home page. The administrator users are the only users that
will see all of the 9 parts, other roles will only see the icons available to their role. In Figure 6.2 and 6.3 is
two examples with open and closed side menu.

Dividing Request, TFC, CostCalc and Order into their own pages was something the team decided on
early. Having these on their own pages made it easy to divide the access to different roles, as well as just
being a clear way of dividing the application.

In addition to these four main pages of the application, the team also decided to add a search page. In
this page the user could search and find the needed data from the categories the user has access to. The Edit
Database page was added as an easy way for the administrator to add or change values used in formulas to the
database. Users is another administrator page, in which the administrator can add or edit users of the system.
More about the different pages and content is written below.

1https://react-icons.github.io/react-icons/

68

Extrusion planner

Figure 6.2: Closed menu

Figure 6.3: Opened menu

69

Extrusion planner

6.2.2 Topbar
From reviewing other popular applications and discussing what we liked and wanted to implement on our
own, we decided that a topbar would fit our application well. As it is a well-known component and popular
websites like Facebook, Google and Youtube have it.

For the topbar (Figure 6.4) we wanted to go with the popular approach which is having the users settings
at the far right corner, this is something that we considered very recognizable since the approach is used by
many big websites. With this button, a user can choose to change their password or log out of the applica-
tion. Another thing we added to the topbar was the metrics switch. Here the user can change between U.S.
customary units and the Metric system.

The design of the topbar was kept very simple, with a black background and white text for the logo and
buttons. Just like with the rest of the application the button changes when the mouse hovers over it, this time
to a white background with black text. We also decided to use one of Benteler’s accent colors, orange, for the
metrics switch.

Figure 6.4: Topbar, with the user settings opened

The "Change password" button opens a popup menu (Figure 6.5), with three fields to enter the old and
the new password as well as information about the password criteria. To change the password the user must
choose a password that covers every criteria set, this assures that the users of the application create strong and
safe passwords. The popup dialog consist of a password strength meter, as well as an interactive checklist to
make sure the users new password is strong enough.

Figure 6.5: The change password popup

70

Extrusion planner

6.2.3 Footer
Footer (Figure 6.6) was another one of the components we decided to add after reviewing other websites. The
footer on the application does not have any functionality and was only added as an extra design component
to tie the whole design together. We wanted the footer to resemble the topbar, so we chose to give it a black
background color. In the middle of the footer we also added Benteler’s logo with the primary color dark blue,
which match with the side menu and other components around the application.

Figure 6.6: Footer

6.3 Pages

6.3.1 Login page
The login page, as seen in Figure 6.7, is the first page the user meets when opening the website. The design of
the page is kept very simple and the page only consist of a white login box where the user can enter the login
criteria. We wanted to keep the login page as simple as possible. We also wanted the login page separated
from the rest of the application to not give away any unnecessary information about the application.

Figure 6.7: Login page

At the bottom of the box is two buttons "Want access?" and "Forgot your password?" which both open
a popup with the administrators contact information. This is because the administrator has the right to add
new users or to update an existing user. This implementation was made because only employees of Benteler
should gain access to the system, and the product owner wanted an administrator to control this.

71

Extrusion planner

Another functionality in the login page is that the user gets an error message if the login fails. "The
email or password you have entered is not correct." The error is very generic and does not explain whether
the problem is the email or password. This is to prevent hackers from trying to "brute force" the account by
guessing the password of the account.

After the login, the user will be sent to the home page and can navigate through the application with the
side-menu. The user will be logged out again if it is inactive for one hour or if the user logs out with the
button on the top-bar.

6.3.2 Search page
The search page was made as an easy way for the user to find the data they are looking for. The options for
what you can search for varies from role to role. For example, a normal user is only able to search for Request
data and Order data, while a superuser and an admin can search for Requests, TFCs and Orders. The Request
section of the search page can be seen in Figure 6.8.

Figure 6.8: Search page with an Alloy filter

With Benteler’s old system they were only able to search for 4-7 parameters from Requests, TFCs and
Orders. Sometimes it can be necessary to search for other parameters as well so they came with a wish to
expand the available parameter-search from the old system. Another desired functionality was to be able
to search for multiple parameters at the same time. This is all something that we managed to do with the
application’s search function.

Another thing we wanted to accomplish with the search pages was to conserve the performance of the
application. We knew that Benteler’s database could contain big tables and loading it all at once could really
slow down the application. We discussed this with Benteler and found out that they typically only searched

72

Extrusion planner

for the newest data in the database. Our solution to conserve the application’s performance was then to only
load 100 rows from the database each time. This means that each table contains 100 rows as default, but we
also added a button at the bottom of the table which loads a hundred more rows each time it is pressed.

The search function works in a way that a user can choose which parameter to search for in a drop-down
menu and then type what that parameter should contain, the filtered result will then show up in the table.
For example, if a user is looking for a Request with a specific alloy. The user can then choose alloy as the
search parameter and type the desired number in the text-field, the table will then be filtered and only show
the Requests containing that specific alloy number. The user also has the option to save the search as a filter,
which allows the user the opportunity to make a new search with another parameter. The user can choose to
add as many filters as desired and can also easily delete them when needed.

In contrast to Benteler´s old system it is now possible to search for all the relevant parameters. The search-
type drop-down menu contains all the parameters from the different databases. This means that the drop-down
menu for Request contains all Request parameters and the same goes for TFCs and Order. After reviewing
the functionality the product owner came with a suggestion to make it possible to search for Request values
in the TFC table. This is because Requests and TFCs are linked together and it can be relevant to search for
Request values when looking for a specific TFC. The functionality was then improved by letting the users
choose from both Request parameters and TFC parameters when looking for TFCs.

In addition to that, the table is customizable. This means that the users can choose which parameters to
show in the table. There is a setting-button above the table which opens a popup (Figure 6.9) menu with the
parameter choices. This makes it easy for the user to customize the table to its own wishes. The customization
will be saved in the user’s local storage.

Another functionality in the search page is the report-functionality. On the right side of the search page
there are two buttons. With these, the user can download reports with desired data. For example the user
can select a row in the Request-table and download data for that Request. A PDF or an Excel file is then
downloaded based on the users choices to the user’s computer. Another option is if the user wants to download
the result from a search, the user can then add the search as a filter and click the "Download result report"
button. Here the user has the option to choose between downloading the search results in a PDF or an Excel
file.

73

Extrusion planner

Figure 6.9: Popup menu with parameter choice

6.3.3 Request, TFC, CostCalc and Order main pages
The Request, TFC (see Figure 6.10), CostCalc and Order main pages are all very similar to the Search page,
they all contain a customizable table with a search function. The difference is the buttons on the right, which
varies in all three categories. Another difference is the data the user can search for. The user only has the
options to search for the data that is relevant to the category, for example for TFC the user has the option to
search for either Requests or TFCs.

74

Extrusion planner

Figure 6.10: TFC search page

The different options in the main pages:

• Request

View Request

New Request from scratch

New with old as base

Change Request

Recalc

Correct Request (only for admins)

Set valid (only for admins)

Set invalid (only for admins)

• TFC

Create a new TFC from Request

Create a new TFC based on an earlier TFC

Update TFC

• CostCalc

Download CostCalc Bridge report

75

Extrusion planner

• Order

R&D Order

Create a new Order from Request

Update Order

6.3.4 The forms
The application has three different forms, the Request form, TFC form and Order form. These are used to
send more data to the database. The three forms all have a very similar design and consists of the same
components.

Instead of having every text-field pressed into one page like their old system, we decided to divide each
form into different parts and add a progress bar to gain a clear overview and to easily navigate between the
parts. This approach is very popular in applications with larger forms, and is something we thought could
improve the user experience. We suggested the idea to the project owner early in the project and they agreed
that it could be a good solution. It could also make the application’s performance better by not having to load
all the text-fields at once.

Figure 6.11: Request form

In addition to the progress bar, the forms also have buttons at the bottom to navigate through the form.
These buttons are to go forward to the next part or backward to the previous part. This makes it easy for the
user to move forward after filling in all the values. The forms also have a button at the top left to leave the
form and go back to the main page again, when clicking this the user gets a warning that they are about to
leave the form and they will have the option to cancel or continue.

The parameters were divided into different categories, and each category has its own box with the corre-
sponding text-fields (Figure 6.12). Each part in the progress bar contains one or more of these boxes.

76

Extrusion planner

Figure 6.12: Profile category in the Request-form

The forms consist of many different types of text-fields, which are all Material UI components. The main
types are drop-down-menus, input-fields and disabled-fields. The drop-down menus (Figure 6.14) make the
user choose from a predefined set of values, and can be empty on default or have a default value. The input-
fields (Figure 6.13) are fields that the user can type into, some of these fields are restricted to numbers only
which means the user can only type in a number. The last type of field is the disabled field (Figure 6.15),
these fields contain values from data being sent to the form or from formulas calculating its value.

Figure 6.13: Input field

Figure 6.14: Drop-down-menu field

77

Extrusion planner

Figure 6.15: Disabled field

In addition to this the fields also have different types of properties depending on the parameter. Some
will have warnings that pop up if the value is outside of a certain limit (Figure 6.16). Another property on
the fields is that some of the number fields have a button to view the value in another unit (Figure 6.17). For
example if the user writes a value in millimeters and wants to view the value in inches, he can hover over this
button.

Figure 6.16: Input-field with a limit warning.

Figure 6.17: Input-field with conversion to inches.

The last part of each form is the confirm-page. This page was added so the user could have an overview
of the filled in text-fields before the data is sent to the database. On this page, the user will receive an error on
each text-field that must be filled in and is not, and the send button will be disabled until all these fields are
filled. The user also has the opportunity to change values or fill in an empty field on this page, but the fields
are only updated after the user exits the field to conserve the performance of the application. In addition to
a send button, the confirm page also has a button to download the data to an excel sheet. This option allows
the user the opportunity to save the data locally on their computer as well as it is a option to secure the data
if the data is not successfully sent to the database. In the case of the data not being sent to the database, the
user will receive a message and stay on the confirm page.

The biggest form is the TFC form (see Figure 6.18), which is unique by having a summary-box to the left
of the page. This is because the TFC form consists of a lot of formulas and many of the fields are dependent
on each other. With this reasoning, the product owner wanted an effective way to view earlier values in the
form while keep moving forward in the progress. We thought that adding a summary-box to solve this could

78

Extrusion planner

be a good solution that would still conserve the applications performance. The summary-box is filled with
every Request and TFC value on the form, and is updated every time a field is changed, the user can use this
to view earlier values and values that are forward in the form.

Figure 6.18: TFC-form

6.3.5 Edit Database page
The Edit Database page (Figure 6.19) is a page only the administrators have access to. The page was made
as a way for the administrator to add or change values that is used in formulas and drop-down menus. The
page is split into three parts: Press, Alloy and Others.

79

Extrusion planner

Figure 6.19: The Edit Database page

Press
The first part of the page is the Press part. This part consists of a table containing all presses and their values.
The presses are used in the TFC form in a drop-down menu, and the values corresponding to each press
are used in formulas and limits. The administrator has the option to delete or change the values on existing
presses. The administrator also has an option to add a new press with the corresponding values. When
updating or adding a press a popup menu (see Figure 6.20) appears where the user can input the correct
values.

80

Extrusion planner

Figure 6.20: Popup to update a press

Alloy
The next part of the page is the Alloy part (Figure 6.21). This part consists of an alloy table, with the alloy
number and corresponding density, a box to add new alloys and a text-box explaining the "Reduction Ratio
Recommendations". The alloy values are used in all three forms and are presented in a drop-down menu
similar to the press values.

81

Extrusion planner

Figure 6.21: Edit Database - Alloy

Others
The others part (Figures 6.22 and 6.23) consist of the other parameters used in the drop-down menus and
formulas that are not in the press or alloy part. It consists of 10 lists where the user has the option to delete
or add new values to each list. The lists appear in drop-down menus in different forms.

Figure 6.22: Edit Database - Others

82

Extrusion planner

Figure 6.23: Edit Database - Others with Customers list opened

6.3.6 Users page
The users page (Figure 6.24) is another page only for the administrators. This is the page where the admin-
istrators can add, update or delete users. The design of the page is kept very simple and it only consist of a
table containing all the different users and their roles.

Figure 6.24: Users page

Every row on the table has an update and a delete button, so that the administrator can easily update or
delete the desired user. At the top right of the table is there also an add button that the administrator can use
to add a new user to the system. The update and add buttons open a popup-menu (see Figure 6.25), where
the administrator can input the users email address and temporary password as well as choosing a role for the
user. When an administrator clicks the delete button, a popup asking if they are sure will show up.

83

Extrusion planner

(a) Add user popup (b) Update user popup

Figure 6.25: The user popup menu

6.3.7 Home and FAQ page
The Home and FAQ page was not a part of the functionality requirements, but it was something we decided
to add to improve the design and user experience.

The home page (Figure 6.26) is the first page the user sees after login. It is also the page that is returned
on every reload for safety reasons. The home page consists of a welcome message wishing the user a good
morning, afternoon, evening or night depending on the time of day. It also shows a big version of Benteler’s
logo.

Figure 6.26: Home page of the application

84

Extrusion planner

The FAQ page was implemented to provide answers to frequently asked questions or anticipated questions
regarding the application or process. The product owner liked this idea, and they wanted to contribute to
creating questions and answers that could be added to this page after the testing phase. The FAQ page can
be seen in Figure 6.27. We decided to use ExpansionPanels supplied by the Material UI framework. This
provided us with a sleek interface where all the answers to the questions displayed is hidden to save space
until the user clicks on one and displays the corresponding answer.

Figure 6.27: The FAQ page displaying questions and answers in expandable UI boxes

85

Extrusion planner

Chapter 7

Overview of the development
environments

In this chapter we explore the environments and tools used to facilitate the development of the application.
The environments had to allow for effective and fast testing of newly developed code as well as being able to
easily deploy the code to both the testing server and the deployment server. In Figure 7.1 we see an overview
of all the environments and tools we have used for this project.

Figure 7.1: Overview of the development environments

86

Extrusion planner

7.1 Frontend
For the development of the frontend web interface, the team decided to use Visual Studio Code1. This is a
great tool that integrates a lot of neat features that help in the development process. Like integrated Git2 for
version control, terminal window to perform npm commands from the NodeJS API3, as well as the numerous
plugins available for VS Code to make developing code faster and easier.

The NodeJS framework allowed us to continuously run and test the frontend web interface locally on
the machine with a local development server. This local server continuously updated every time a new code
change was saved so any changes made could be seen in real time. This made learning React, HTML and
CSS much easier as results could be seen right away.

NodeJS also served as a tool to build the project into a production optimized build ready to be deployed
on the web server. To deploy to the deployment server we used the command to create a build, and then
replaced the old build folder followed by a restart of the web page in IIS4. As doing this procedure was only
necessary when updating the production server, the team chose to save time by doing this manually rather
than creating automated scripts for this.

7.2 Backend
As the application’s backend API was chosen to be developed in Java, the team chose to utilize the go-to IDE
(Integrated Development Environment) for Java development called IntelliJ5. In conjunction with IntelliJ, we
used Apache Maven6 as a project management and comprehension tool. Maven served us with a structured
way of managing dependencies, dependency versions, custom configurations and generally most parameters
regarding the whole API. The product of the Spring Boot Initializr7 project generator was already a maven
project, which saved time.

On the OpenStack8 testing server supplied by NTNU, we also simplified the process of deployment of
development builds. We decided to not keep building the JAR or implement a solution like Jenkins9 to
automate the process of deploying the JAR. Instead we installed Git and IntelliJ so new code easily could be
pulled from the central GitLab repository, and then run the backend API code within IntelliJ using its built
in capabilities. This also provided us with the opportunity to test certain API code on the testing server first
before pushing tested and working code to the repository when finished.

When deploying the backend API to the deployment server we tried to build the JAR and then run it on
the machine. We quickly figured out that this was the wrong approach, due to the fact that the windows
server supplied as our deployment server automatically logged out the user after exiting the remote desktop.
This meant that we had to install the API as a service instead by using WinSW Service Wrapper10. WinSW
allowed us to have the API running as a service continuously without interference, while still keeping the
API output available in a dedicated file.

This allowed us to build the API locally using maven, and then replacing the old JAR file on the deploy-
ment server followed by a restart of the API service. This can be read more about in section 5.4. As this was

1https://code.visualstudio.com/
2https://no.wikipedia.org/wiki/Git
3https://nodejs.org/en/
4https://en.wikipedia.org/wiki/Internet_Information_Services
5https://www.jetbrains.com/idea/
6https://maven.apache.org/
7https://start.spring.io/
8https://www.ntnu.no/wiki/display/skyhigh/Openstack+at+NTNU
9https://www.jenkins.io/

10https://github.com/winsw/winsw

87

Extrusion planner

a process only done when the team decided the new additions to the application were significant enough to
demand a redeployment, we felt this solution was sufficient and efficient enough.

7.3 Database
As the team used Microsofts SQL Server, using the Microsoft SQL Server Management Studio11 (SSMS) was
the obvious choice. SSMS provided us with easy interfaces for developing the database with tables and user
permissions. The built in table designer, data editor and SQL Query editors and executors came in handy as
the database tables had to be manipulated regularly, following the changing requirements and needs of the
client. For example, when we needed to increase the size of certain columns due to a change in permitted
values in the frontend, we could increase its size just using SQL alter table queries.

11https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15

88

Extrusion planner

Chapter 8

Code quality

Code quality has been important to us during this whole development process. After we were done devel-
oping, Benteler’s IT-department took over maintaining and further development. They have limited coding
experience, and need the code to be readable and understandable.

8.1 Code review
One of the methods we used to ensure good code quality was code review of other team member’s code.
We had a column in the Trello-board (Figure 2.2) called QA (Quality Assurance) where every Trello-card is
moved after the team member responsible for that task had finished it. Every Trello-card had a checklist and
a description of the functionality and in which files the changes were made (as seen in Figure 8.1). The card
could not be archived until every team member had tested the implemented functionality and understood the
code. Every section of the report has been through Quality Assurance from every team member.

89

Extrusion planner

Figure 8.1: A card with QA in trello

8.2 Code documentation
Almost all functions in the web application are documented with a docstring1. This is a type of comment
which is parsed by the editor/compiler and retained during the run time of the program. It makes the docu-
mentation more interactive and can be accessed across all modules. Docstrings in Java is called Javadoc [15]
while in JavaScript they are called JSDoc [2].

1 /**
2 * A short description of the function goes here.
3 * <p>
4 * A more detailed description follows here if necessary. That depends on
5 * the size and how advanced the function are.
6

7 * @param nameOfFirstParam A short description of the first parameter , if
8 * it exist. Followed by further * parameters.
9 * @return If the column returns anything , it should be described here. If

10 * possible , it should also mention what will be returned in special cases or
11 * if the function fails in any way.
12 */

Listing 8.1: Example of docstring in Java

1https://en.wikipedia.org/wiki/Docstring

90

Extrusion planner

Some functions in the application are not documented with docstrings. These are mainly small/self-
explanatory functions. An example could be a getter in the backend, where the function’s only mission is to
publicly return the value of a private variable. In those cases our focus was to make the variable names and
function names descriptive.

Figure 8.2 shows an example of what a docstring looks like when you hover over a documented function
in the IDE. In our case this will be helpful for the team taking over any further development of the application,
since it works like a contract where the next person to use the function knows what to expect.

Figure 8.2: Docstring interface example

8.3 Frontend
We have used a couple of plugins to assure that the code quality was on point. As mentioned, the IDE we
have used is VScode, which offers a broad selection of linters and extensions to help the developer. A linter
analyses the code, find problems and suggests what can be done. We have also used a code formatter to en-
sure our coding styles and formatting is the same through the entire frontend of the application, which makes
the code easier to further develop and maintain. For coding effectivity we have used tabnine.

• ESLint - A pluggable linter for JavaScript used to secure good coding practices and remove problems
that can cause a drop in performance. Comes with a set of rules for good syntax [32].

• Prettier - A VScode plugin that automatically formats code so all code is formatted in the same way
[30].

• Tabnine - A powerful AI assistant that helped us a lot with coding faster, reduce mistakes and discover
better coding practices [33].

91

Extrusion planner

8.4 Backend
In the backend we have used a plug-in named SonarLint [11]. This linter is quite similar to ESLint, and also
has a set of rules that help make the code as good as possible. It also gives an interactive view while coding,
where it squiggles flaws so they can be fixed before running the code through the debugger.

8.5 Code redundancy
As the team faced a new challenge in form of the unexplored coding language, React, it led to us not im-
mediately be able to use Reacts capabilities to its full extent. This applied to the big input forms in the web
interface, where the user could input TFC, Request and Order data. As a solution to keep pace in the project,
the team decided to develop similar code for all the pages of a form as on the last confirmation page. This
meant that code had to be changed at two locations to update the form or three places as the Request form is
displayed in the TFC form as well. We later figured out we could have developed components instead, which
could have taken in parameters to customize the input fields that way. Implementing this would have saved
lines of code, and possibly performance too but that would be negligible.

8.5.1 Large SQL queries in the API
The forms used in the application were rather large, which led to us having to write large SQL queries
when saving or updating/modifying a form. This led to the need to update every SQL query when a new
variable/parameter was introduced to that specific form. We explored solutions to simplify these SQL queries
but it was not recommended as it would make us rely on the exact layout of the tables. This was deemed a
rather bad approach by several members of the StackOverflow community [5], so we stuck with what we had
implemented.

8.5.2 Large ResultSet to object conversions and prepared statements value bindings
Following the SQL Queries, we also had to convert the result set returned from the database into usable
objects by our application, whenever we wanted to retrieve data from the database.

Having a layer of security by using prepared statements in the API, we also had to use large sections
where we set a certain parameter by its index in the prepared statement. As the biggest form, TFC, consists
of 96 parameters, we had to bind 96 parameters for the necessary prepared statements. The most important
issue with this is again having to add/delete/change the same parameter multiple places in the code, which
can be time-consuming and could lead to errors if not done correctly. We tried to explore the internet for any
libraries that would simplify the SQL process in Java but we were not successful in finding any.

92

Extrusion planner

Chapter 9

Testing

To be sure that the application is stable and working as it should, we have through the whole development
process tested the application in different ways. The team researched to find the best practices for web
applications, and we found out that some of the most important ones for our application were acceptance
testing, unit testing, compatibility testing, and performance testing [36].

9.1 Cross-browser compatibility
The web application was tested in Google Chrome, Safari and Microsoft Edge, and we found out that the
elements were being displayed properly in all those browsers. We also found out that requests from all the
different browsers worked as excepted. We did not prioritize testing the compatibility on mobile devices,
with the reasoning that the application is only going to be used on computers.

9.2 Acceptance tests
Acceptance testing also refers to the type of testing done by the users of the application 1. This is one of the
most important steps of the testing phase, and is the final stop in the testing phase [27]. In sprint 5 that started
March 31 we started on this type of testing. In this period we asked Benteler to test the application to see if
they could find any minor or major faults that we have not been able to see. The people at Benteler created
an excel sheet where everybody could add things they came over consecutively.

Most of the faults added by Benteler were quite easy for us to fix, and we chose to not implement some of
them due to lack of time and that they were not major faults. Many of the faults were about different wishes
they had regarding the forms. Examples are adding new text-fields, implement drop-down fields, implement
autofill from the username, which characters that should be allowed to type in and more.

Another thing that was added to the list was a few wishes for new functionality. An example of this
was implementing a button located in the confirm pages that prints all the values typed into excel. This we
considered an important functionality because if the API is not reachable they need a backup solution to save
the values, so that they do not lose everything.

Another part of the faults was about the functions in the TFC form. Here we got feedback that a couple of
functions did not calculate the correct values, some limit values were wrong and wishes to highlight certain
important values.

1https://en.wikipedia.org/wiki/Acceptance_testing

93

Extrusion planner

Another example of things Benteler added to the list was which questions we should add to the FAQ page.
This helped the FAQ page becoming as effective as possible in helping new users.

We also gave Benteler an overview of two different designs for the application, and asked them which
design they preferred. They preferred the design with a grey background, and this was implemented. The
whole excel sheet "LOP action Item List can be found in appendix C, but in Figure 9.1 you can see an excerpt
from this excel sheet.

Figure 9.1: Excerpt from LOP action items list

9.3 Lighthouse
To test the performance of the application we have used an open-source, automated tool called Lighthouse
[35]. Lighthouse can be run against any web page, and generates a report for performance, accessibility and
best practices.

Figure 9.2: Our lighthouse score

As you can see in Figure 9.2, our Lighthouse scores were to satisfaction. The performance score is a
weighted average of different metrics. The most weighted metrics are total blocking time, largest contentful
paint and time to interactive which in total is two thirds of the score. The only issue Lighthouse sees in its
report is that the Benteler logo used in the footer does not have explicit height and width.

On accessibility we got a score of 92 out of 100. Accessibility, in Lighthouse setting, refers to the
experience of users outside what would be considered a "typical" user. This would be someone who accesses
and interact with the application in another way than what we initially think of. It can also be other issues
like struggling to navigate the desktop site on a mobile phone [3]. To receive a good score on accessibility
on Lighthouse it is important to name labels, pictures and buttons correctly, so it helps people using screen

94

Extrusion planner

readers. Although this was not a functional requirement from Benteler we did our best to keep it in mind,
since it is a good coding practice.

The last part of the report, best practices, was our lowest score of the three. The main part Lighthouse
points out is the lack of HTTPS. This was not prioritized enough to complete within the time frame, since the
application is only available through a secure VPN or from within their internal network.

9.4 Traffic testing of the server
We also wished to test how much traffic the server could handle under pressure. This type of testing is
important because it can identify inefficient code and it can make customer satisfaction better because they
become aware of the limitations of the system [28]. To test this we used an HTTP benchmarking tool called
Autocannon [4]. This is a tool written in node, and it allows us to generate many requests to the web server
every second.

We chose to perform this type of test on our test server provided by NTNU because of the fact that the tool
generates many requests every second and this can cause the server to crash or getting slower. We compared
the two servers before starting this test, and we found out that it is minimal differences between the two
servers. Both servers utilize Intel Xeon CPUs and both have 4 GB of RAM. Therefore the results we got are
easily comparable to the production server.

We ran the test for 30 seconds each with 2 minutes break between all the API endpoints. In listing 9.1
we see the command we ran in our terminal to execute the test. This command starts generating many GET
requests with 150 connections (-c) for 30 seconds (-d).

1 autocannon -c 150 -d 30 http ://129.241.150.48:8080/ api /...

Listing 9.1: Command to run traffic test

Figure 9.3: Results of traffictesting using autocannon

95

Extrusion planner

In Figure 9.3 we see the results of the test. We can see that the GET requests per second vary from 1673
at the most, to only 7 per second at the least. This has a logical explanation because the amount of data that
is retrieved during these requests varies a lot. That the server only handles 7 GET requests per second on
the tfc/amount endpoint is because this endpoint retrieves 100 TFC’s per GET request if the parameter is 1
(that we used in this test), and this is taking time to retrieve. This is shown in the results by that although
this endpoint only handles 7 GET requests per second it retrieves 1760 kilobytes per second which is a good
result. This also applies to the request/amount endpoint that only handles 40 GET requests per second, but
retrieves 3780 kiloBytes per second. It is also important to remember that there are not so many users that
have access to the TFC page, so the fact that the function that gets TFC’s have the lowest GET requests per
second score will not be a problem. We also have to mention that the explanation for that the amount of
kiloBytes retrieved per second for one request, one TFC, and one user is quite low is due to what is returned
does not contain many bytes.

Further on we see that many of the API endpoints handle over 300 GET requests per second, and that
the amount of kiloBytes retrieved per second for many API endpoints lies on over 800 kiloBytes per second.
This is a result we are satisfied with, and is a result that will satisfy Benteler’s needs by a good margin.

9.5 Unit tests
Unit testing is a type of software testing where individual components/functions are tested to see if they are
performing as excepted. We chose to use this testing method because it is a great way to find and fix bugs
early in the development process which leads to saving time [14]. We have used Postman [29] to test the
backend API’s correctness. Postman is a tool to help building your API faster and better. We have used the
Postman desktop client mainly to test the response of the API to ensure the functionality is working before
implementing the functions in the frontend.

96

Extrusion planner

Figure 9.4: Postman example: Testing getPressByName functionality

Inside the green rectangle in Figure 9.4 we see the API path to fetch the press named P55. In the red
rectangle, we see the info regarding the API request. Firstly is the status code. A status code 200 simply
means OK and that the request was received and understood. The time is the response time, the time from
the request is sent to the response is returned. Size is the size of the returned object. The blue rectangle
contains what is returned from the API. In this case the response consists of a JSON object with all press
P55’s parameters. The response can be in many forms, depending on the code in the API. For example for
a POST request, meaning adding something to the database, the response could be "true" if successful or
"false" if something goes wrong.

After the function had been tested in Postman, we knew the API was working. The next step was then to
call the function in the frontend. In this case the function would look like this:

1 /**
2 * Function to retrieve a specific press based on its name.
3 * @variable {String} API_URL The server ip-adress.
4 * @param {String} name The name of the press to be returned.
5 * @returns {JSON} The press object.
6 */
7 getPressByName = (name) => {
8 return axios.get(API_URL + `press/${name}`);
9 }

Listing 9.2: Function to retrive an spesific press

97

Extrusion planner

Chapter 10

Conclusion

10.1 Summary of contributions
Benteler wanted an application that would replace the old Excel-based program and exceed in user-friendliness,
ease of use, user experience and meanwhile implementing new features and conveniences. They wanted a
more integrated and complete experience, where everything was centralized. We definitely feel we delivered
on these aspects. After the end of project, we had finished a complete application that delivers a flexible
experience compared to the old solution. First of all, the only required step to begin using the application is
to enter the address in the web browser, where the user is greeted with the same interface, data, parameters,
forms as everyone else, leading to a consistent experience. The old Excel was more fragmented in terms of
not being able to update forms/formulas/parameters in the document without having to distribute it again to
everyone.

The old Excel program did not have any form of security, an area where we did not receive specific
requirements, regardless we knew it had to be dealt with in the application. First, we implemented an au-
thentication system with multiple roles, making sensitive parts of the system not accessible to everyone with
access to the web interface. Then we implemented security in form of password hashing and JSON Web
Tokens to avoid session hijacking and other security risks associated with using server-side session tokens
and client-side cookies with session IDs. As described in 5.2.7, the material UI components provided us with
numeric and date validation, and we also implemented email validation. The most important security measure
in the API is the use of prepared statements. We also implemented criteria to ensure strong passwords, that
follows the OWASP Password Security Requirements [13].

A big and central part of the application is the searching functionality, which was an important require-
ment from the client. We catered to this requirement by implementing a refined searching experience, that
both looked good and is intuitive to use. It hosts great flexibility, like being able to search for any parameters
and having as many filters active as there are parameters available. Contrary to the old program, we also saw
the opportunity to automate as much as possible to create a consistent experience. We automated many of
the starter fields in TFC and Request, where data is automatically filled in to save time. We implemented
automatic version control, which enumerate everything automatically based on the existing contents of the
database. In addition, we implemented automatic status control and a way to mark requests as invalid instead
of deleting and creating gaps.

To enable the extrusion process to happen, the requirements were to implement the three forms for data
input: Request, TFC and Order. These forms started pretty simple after we received our first basic require-
ments. As time passed we soon received more detailed and advanced requirements regarding the forms,
ranging from automatic version control, automatic input of data without user interaction, drop-down menus

98

Extrusion planner

presenting options stored in the database and regulated by the admin from the database page and so on. Later
we received input regarding implementing formulas in the TFC form for automatic calculations of certain
fields. We fulfilled these requirements, but we must admit that developing such a big form as TFC with all
the automatic formulas attached was not entirely straightforward in React. We also encountered a couple of
bugs after implementing the formulas, which were fixed after we received feedback. See appendix C.

As described in 5.2.3 the team did not have a full overview of all the functionalities of React in the
beginning of the development process, so the first two forms were developed using classes instead of hooks.
Since the rest of the application was chosen to be developed with hooks, we had some start issues with
sending parameters between classes and functions. This was not such a big issue since we managed to find
out how we could solve it quite fast. However, in our next development project we will decide which method
to use before we start developing.

Another point we had to deliver, was being able to easily export the data from the application to a format
accepted by the cost calculation team. We initially only knew that this was a requirement, but it took a while
before the CostCalc team decided on what solution they felt would be the best. We discussed having the data
be exported to an Excel document, storing the data in the SQL database for later retrieval or full integration
with the application. The team determined that the last option was out of the question due to time constraints
as this suggestion came rather late. The CostCalc team ended up deciding that exporting to an Excel format
would be the ideal solution for the time being. Initially, we developed a simple export with data only in an
empty sheet, but this was found to be inadequate. We then reworked the process to be done in the API which
modifies their existing document by inserting all the data at the correct indexes in the document. The modified
document is then sent from the API to the requesting user’s browser and downloaded on the machine. This
was found to be a good solution.

10.2 Feedback from Benteler
We wanted to receive written feedback from Benteler to evaluate our project and how we as a team have
worked during these last months, to help us improve in the future. To reach this purpose, we decided to create
a survey for the people who had tested the application at Benteler. The survey consisted of 16 questions, but
some questions were meant for special user groups, so only half of the questions were mandatory. Unfortu-
nately, Benteler only had the capacity for three people to answer the survey. The full survey can be found in
Appendix J.

The survey mainly consisted of questions where the respondents rated different parts of the application
from 1 to 5, where 5 is the best. We also added a long answer question where the respondent could elaborate
on their previous answers. Table 10.1 consists of an extract of a couple of the key questions.

99

Extrusion planner

Table 10.1: Extract of survey result

Nr Question Average
rating

Total
answers

1 In your opinion, where does the new application compare in relation to the
old application?

4,33/5 3

2 Considering your complete experience with our software, how likely would
you be to recommend replacing it with the old software?

4,33/5 3

3 How satisfied are you with the solution of exporting data to a bridge file on
the CostCalc page? (Only available for CostCalc, Superusers and Admin)

2,66/5 3

The answers to question 1 show that we have made an improved application, compared to the old one. We
feel that the new solution outperforms their old in every way, but we agree with one respondent who writes
that the application still needs a bit of bug-fixing.

Question 3 was something we predicted would receive a lower score than the rest. As mentioned in
section 10.1, Benteler spent time deciding what kind of solution they wanted, which led us to getting a late
start. We did not quite understand their proposed solution at first, so we did not start developing the cost
calculation in the way they wanted before 22. April, when we had a meeting with Benteler dedicated to the
cost calculation process. This led us to only have a week to finish the CostCalc functionality requested from
Benteler. Eventually, this functionality was finished behind schedule on the 6th of May (which were after the
survey answers). One of the respondents wrote:

"Other lack of functions caused by Benteler late or missing input. A more frequent cross check on planned
solutions from students vs Benteler expectations before putting too much work into solving task could have
increased the completion level a bit to date".

In hindsight, we should have made sure we were in complete understanding when they first decided what
they wanted according to the CostCalc functionality, instead of starting developing.

10.3 Future Work
We feel that our finished product is complete, but like most development projects there is always something
that can be improved. In the case of our application, we would like to improve the efficiency and latency
of the forms. We would like to explore and find an alternative to how the data is stored and handled, as
modifying the large TFC data buffer induced a bit of latency on the last confirm page. This is due to the fact
that the confirm page displays all the fields. When anything in the state would be updated, all the 96 fields
would re-render and cause latency. A workaround of this would be to split the buffer state into multiple parts
and merge it before submission but we believe there is a better solution.

We would also like to decrease the amount of code written to create the forms, where we would rather
make reusable and customizable field components. This component could then instead take all the necessary
customization as parameters and thus limit the amount of code. Creating components containing the different
sections with fields in the forms would also be done, to re-use these in the confirm pages without having to
have the sections defined in two places.

To further improve the security of the application, we wanted to finish implementing HTTPS and adding
salt to the passwords to improve the obscurity of the passwords rather than using hash only.

100

Extrusion planner

10.4 Learning Outcomes and Concluding Remarks
In the past, none of the team members had ventured into the world of web development. At first, it seemed
like a big task to dive into a completely new way of making applications while simultaneously having to
execute the bachelor thesis project in the best way possible. It was tempting to go for something known, but
the team instead saw this as a wonderful learning opportunity! Choosing to utilize web development to solve
the task gave us two things; experience within an important development field and the premises to develop
the best solution suited for the client’s needs. We learned to develop an application that could be reached
from anywhere, requiring only a device and an internet connection. We learned to develop intuitive solutions,
good designs, user experience, data management, inter-connectivity with an API, routing, navigation within
the application, and much more. In hindsight, this was the right and obvious choice and has now equipped us
with the necessary tools to combat more diverse tasks in the future.

101

Extrusion planner

Bibliography

[1] jiminikiz & benng. convert-units. https://www.npmjs.com/package/convert-units. [Online;
Cited: 10.05.2021].

[2] A Guide to using JSDoc for React.js | Better Documentation in React. https://www.inkoop.io/
blog/a-guide-to-js-docs-for-react-js/. [Online; Cited: 30.04.2021].

[3] Accessibility. https://developers.google.com/web/fundamentals/accessibility?utm_
source=lighthouse&utm_medium=devtools. [Online; Cited: 04.05.2021].

[4] Autocanon. https://github.com/mcollina/autocannon. [Online; Cited: 04.05.2021].

[5] Automatically match columns in insert into select from. https://stackoverflow.com/questions/
1787634/automatically-match-columns-in-insert-into-select-from. [Online; Cited:
04.05.2021].

[6] Benteler. Business Unit Structures. https://www.benteler-automotive.com/en/products-
competencies/structures/. [Online; Downloaded: 13 january 2021].

[7] Ryan Chenkie. React Security Fundamentals. https://courses.reactsecurity.io/courses/
react-security-fundamentals. [Online; Cited: 02.02.2021].

[8] Wikipedia contributors. OWASP. https://en.wikipedia.org/w/index.php?title=OWASP&
oldid=1017293558. [Online; Cited: 05.05.2021].

[9] P.J. Deitel. Java : how to program. [Book; Cited: 06.05.2021]. 2012.

[10] Manjula Dube. Get Started with Your First React.js App. https://we-are.bookmyshow.com/get-
started-with-your-first-react-js-app-part1-34eee7b8559b. [Online; Cited: 16 April
2021]. Apr. 2017.

[11] Fix issues before they exist. https://www.sonarlint.org/. [Online; Cited: 03.05.2021].

[12] OpenJS Foundation. Node.js. https://nodejs.org/en/. [Online; Cited: 02.02.2021].

[13] The OWASP® Foundation. “V2.1 Password Security Requirements”. Version 4.0.2. In: (Sept. 2020).
[Cited: 05.05.2021].

[14] Guru99. Unit Testing Tutorial: What is, Types, Tools & Test EXAMPLE. https://www.guru99.com/
unit-testing-guide.html. [Online; Cited: 01.05.2021].

[15] How to Write Doc Comments for the Javadoc Tool. https://www.oracle.com/technical-
resources/articles/java/javadoc-tool.html. [Online; Cited: 30.04.2021].

[16] Facebook Inc. Components and Props. https://reactjs.org/docs/components-and-props.
html. [Online; Cited: 02.02.2021].

[17] Facebook Inc. Introducing Hooks. hhttps://reactjs.org/docs/hooks-intro.html. [Online;
Cited: 20.02.2021].

102

https://www.npmjs.com/package/convert-units
https://www.inkoop.io/blog/a-guide-to-js-docs-for-react-js/
https://www.inkoop.io/blog/a-guide-to-js-docs-for-react-js/
https://developers.google.com/web/fundamentals/accessibility?utm_source=lighthouse&utm_medium=devtools
https://developers.google.com/web/fundamentals/accessibility?utm_source=lighthouse&utm_medium=devtools
https://github.com/mcollina/autocannon
 https://stackoverflow.com/questions/1787634/automatically-match-columns-in-insert-into-select-from
 https://stackoverflow.com/questions/1787634/automatically-match-columns-in-insert-into-select-from
https://www.benteler-automotive.com/en/products-competencies/structures/
https://www.benteler-automotive.com/en/products-competencies/structures/
https://courses.reactsecurity.io/courses/react-security-fundamentals
https://courses.reactsecurity.io/courses/react-security-fundamentals
https://en.wikipedia.org/w/index.php?title=OWASP&oldid=1017293558
https://en.wikipedia.org/w/index.php?title=OWASP&oldid=1017293558
 https://we-are.bookmyshow.com/get-started-with-your-first-react-js-app-part1-34eee7b8559b
 https://we-are.bookmyshow.com/get-started-with-your-first-react-js-app-part1-34eee7b8559b
https://www.sonarlint.org/
https://nodejs.org/en/
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/unit-testing-guide.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
hhttps://reactjs.org/docs/hooks-intro.html

Extrusion planner

[18] Facebook Inc. Using the Effect Hook. https : / / reactjs . org / docs / hooks - effect . html.
[Online; Cited: 20.02.2021].

[19] Java JWT: JSON Web Token for Java and Android. https://github.com/jwtk/jjwt. [Online;
Cited: 22 April 2021].

[20] Traversy media. Multi Step Form With React & Material UI. https://www.youtube.com/watch?
v=zT62eVxShsY. [Online; Cited: 25.01.2021].

[21] Mindmanager. Bring clarity and structure to plans, projects, and processes. https://www.mindmanager.
com/en/?link=wm. [Online; Cited: 02.02.2021].

[22] netcorecloud. Send email in java using Gmail SMTP. https://netcorecloud.com/tutorials/
send-email-in-java-using-gmail-smtp/. [Online; Cited: 25 March 2021].

[23] Inc npm. Build amazing things. https://www.npmjs.com/. [Online; Cited: 02.02.2021].

[24] NTNU. IMT2243 - Software Engineerings. https://www.ntnu.edu/studies/courses/IMT2243/
2016#tab=omEmnet/. [Online; Downloaded: 12 february 2021].

[25] NTNU. IMT3281 - Application Development. https : / / www. ntnu . edu / studies / courses /
IMT3281#tab=omEmnet/. [Online; Downloaded: 12 february 2021].

[26] Max Pekarsky. Does your web app need a front-end framework? https://stackoverflow.blog/
2020/02/03/is-it-time-for-a-front-end-framework/. [Online; Cited: 02.05.2021]. Feb.
2020.

[27] Performancelab. What is User Acceptance Testing (UAT) for Websites? Definition & Examples. https:
//performancelabus.com/what-is-uat-for-websites/. [Online; Cited: 27.04.2021].

[28] Performancelab. Why Is Load Testing Important for Web Applications. https://performancelabus.
com/load-testing-for-web-applications/. [Online; Cited: 27.04.2021].

[29] Inc. Postman. Send Requests and View Responses. postman.com/product/api-client/. [Online;
Cited: 05.05.2021].

[30] Prettier. https://prettier.io/. [Online; Cited: 03.05.2021].

[31] ReactJS. Code Splitting. https://reactjs.org/docs/code-splitting.html. [Online; Cited:
03 April 2021].

[32] Rules. https://eslint.org/docs/rules/. [Online; Cited: 03.05.2021].

[33] Tabnine Autocomplete AI. https : / / marketplace . visualstudio . com / items ? itemName =
TabNine.tabnine-vscode. [Online; Cited: 20.01.2021].

[34] Material UI team. MATERIAL-UI. https://material-ui.com. [Online; Cited: 02.02.2021].

[35] Tools for developers. https://developers.google.com/web/tools/lighthouse. [Online;
Cited: 04.05.2021].

[36] Rebecca Vogels. A 6-Step Guide to Web Application Testing. https://usersnap.com/blog/web-
application-testing/. [Online; Cited: 27.04.2021].

[37] Wikipedia. Benteler International. https://en.wikipedia.org/wiki/Benteler_International.
[Online; Downloaded: 13 january 2021]. Dec. 2020.

[38] Wikipedia. Prepared Statement. https://en.wikipedia.org/wiki/Prepared_statement.
[Online; Cited: 12.05.2021].

[39] Wikipedia. Salt (cryptography). https://en.wikipedia.org/wiki/Salt_(cryptography).
[Online; Cited: 04.05.2021].

103

https://reactjs.org/docs/hooks-effect.html
 https://github.com/jwtk/jjwt
https://www.youtube.com/watch?v=zT62eVxShsY
https://www.youtube.com/watch?v=zT62eVxShsY
https://www.mindmanager.com/en/?link=wm
https://www.mindmanager.com/en/?link=wm
 https://netcorecloud.com/tutorials/send-email-in-java-using-gmail-smtp/
 https://netcorecloud.com/tutorials/send-email-in-java-using-gmail-smtp/
https://www.npmjs.com/
https://www.ntnu.edu/studies/courses/IMT2243/2016#tab=omEmnet/
https://www.ntnu.edu/studies/courses/IMT2243/2016#tab=omEmnet/
https://www.ntnu.edu/studies/courses/IMT3281#tab=omEmnet/
https://www.ntnu.edu/studies/courses/IMT3281#tab=omEmnet/
https://stackoverflow.blog/2020/02/03/is-it-time-for-a-front-end-framework/
https://stackoverflow.blog/2020/02/03/is-it-time-for-a-front-end-framework/
https://performancelabus.com/what-is-uat-for-websites/
https://performancelabus.com/what-is-uat-for-websites/
https://performancelabus.com/load-testing-for-web-applications/
https://performancelabus.com/load-testing-for-web-applications/
postman.com/product/api-client/
https://prettier.io/
 https://reactjs.org/docs/code-splitting.html
https://eslint.org/docs/rules/
https://marketplace.visualstudio.com/items?itemName=TabNine.tabnine-vscode
https://marketplace.visualstudio.com/items?itemName=TabNine.tabnine-vscode
https://material-ui.com
https://developers.google.com/web/tools/lighthouse
https://usersnap.com/blog/web-application-testing/
https://usersnap.com/blog/web-application-testing/
https://en.wikipedia.org/wiki/Benteler_International
https://en.wikipedia.org/wiki/Prepared_statement
https://en.wikipedia.org/wiki/Salt_(cryptography)

Extrusion planner

Appendix A

Project plan

104

Bachelor Thesis
Project plan

Kristian Tveiten Jesper Trøan Emma Sofie Søvik Nils Olav Tuv

January 2021

1

Contents
1 Goals and frames 3

1.1 Background . 3
1.2 Project Goals . 3

1.2.1 Outcome goals . 3
1.2.2 Performance goals . 3
1.2.3 Learning objectives . 4

1.3 Project frames . 4

2 Scope 4
2.1 Problem area . 4
2.2 Limitations . 5
2.3 Task description . 5

3 Project organization 5
3.1 Responsibilities and roles . 5
3.2 Routines and group rules . 6

3.2.1 Routines . 6
3.2.2 Group Rules . 6

4 Planning, follow up and reporting 7
4.1 Choice of system development models 7

4.1.1 Scrum + Kanban . 7
4.1.2 Time estimation models . 8

4.2 Main division of the project . 8
4.3 Plan for status meetings and decisions in the period 9

5 Quality assurance 9
5.1 Standard tools . 9

5.1.1 General tools . 9
5.1.2 Issue tracking tools . 9
5.1.3 Documentation tools . 10
5.1.4 Development and testing tools 10
5.1.5 Time tracking Tools . 10

5.2 Documentation . 10
5.3 Risk analysis . 11

6 Plan for execution 12
6.1 Activities . 12
6.2 Gantt schema . 13

2

1 Goals and frames

1.1 Background
Benteler is a big worldwide company that has its headquarters in Salzburg, Austria.
The company employs around 30 000 employees from around 100 locations around the
globe [3], and Raufoss in Norway is one of them. Extrusion is done to make profiles
with a specific shape, and Benteler are currently doing extrusion in Germany, USA and
Norway. [1] The cost for producing the profiles are given by the size and complexity
of the profile as well as the type of aluminium alloy. Therefor Benteler came up with
a task suggestions that was approved by NTNU and we thought was interesting. In the
task description they describe that they want us to create an application with a database
connection for adding new profiles and retrieving data from previous assessed profiles.

1.2 Project Goals
Goals for the project is divided into three categories, outcome goals, performance goals
and learning objectives.

1.2.1 Outcome goals

Outcome goals are the goals describing the wanted result from the project.

• When the project is over Benteler should have a well-functioning application
with the needed functionality.

• The application should connect to the Database in an safe and secure way.

• The application should make it easy to add, remove or edit needed properties in
the database.

• The application should be easy to use. It should have a clean and easy design,
with recognizable parts (like header, sidemenu, footer etc.)

1.2.2 Performance goals

Performance goals is the goals describing what Benteler wish to accomplish with the
application.

• Make it easier for employees to use and understand the system.

• Extend the use of the system, and give more employees access to a restricted part
of the application.

• Save time using the new application, as their old program is slow and ineffective.

3

1.2.3 Learning objectives

Learning objectives is the knowledge and experience we hope to gain during the project.

• Gain experience on the system development process. A project like this will be
relevant experience for future development project and future jobs.

• Gain more knowledge and experience on web-applications and web develop-
ment. The group members does not have previous experience on web develop-
ment.

• More experience with database and database connections.

• Gain experience on backend development.

• Gain experience on frontend development.

1.3 Project frames
This bachelor thesis has a time frame. The project starts 11.01.21 and has to be deliv-
ered by 20.05.21. The software should then be handed over to Benteler together with
the bachelor thesis report. Apart from that there is no frames we need to take into con-
sideration, and we are free to choose the development tools and development languages
we see fit.

2 Scope

2.1 Problem area
As Benteler already have an existing application for this problem they wish to develop
a new solution that simplifies and makes things easier for them. The old system lacks
key functionality in places where the new system will fill in. The old system is slow
and inefficient, and Benteler wants a new program to take over its place.

The program is divided into four main parts:

• Request A request to produce a new profile. Creating a new request can happen
in two ways, from scratch or based on an earlier request. It is also possible to
update or view existing requests.

• TFC TFC meetings occurs for each new request, and in those meetings the atten-
dees will create a TFC form. One request can result in multiple TFCs, depending
on the machines being used. There are two ways of creating new TFC form,
based on a request or based on an existing TFC with the possibility of collecting
new request data and update the needed values. Viewing and updating existing
TFCs is also possible.

4

• CostCalc CostCalc is a report with specific parameters from the request and
TFC, these values and input of more data are used by the CostCalc-team to cal-
culate the cost of the new profile.

• Profile order The order is put together with information from the request, TFC
and calculations from the CostCalc-teams. Also possible to Re-order and order
single materials without reference to a specific request.

2.2 Limitations
Benteler has a desire that they want us to improve their old firmware in a way that
makes the system faster and more intuitive to use. To get this system out to as many
Benteler employees as possible we will write the code documentation, user guide and
the program itself in English.

2.3 Task description
In order to plan the operating parameters and the cost for each profile Benteler wants
us to create a application with a database connection for this purpose. The application
is going to be used by Benteler both nationally and globally. Users should be able
to enter data for new profiles and retrieve data for previously assessed profiles in a
clear and simple way. The user interface should be simplistic and in English. The
application should also link the model/drawing to the corresponding forms and accept
both International System of Units (SI) and United States customary units (US). As
Benteler already have an old solution for some of this, our main tasks is to:

• Reduce amount of manual parameter handling

• Make a new easier and faster solution that suits their needs

• Provide more flexibility in searchable parameters

• Make the solution work closer with the CostCalc team

3 Project organization

3.1 Responsibilities and roles
The group chose Jesper Trøan as the Project leader(Scrum master). The project leader
is responsible for keeping the MindManager(5.1.1) node map up-to-date, planing agen-
das for each meeting, and must monitor the group progress so the schedule is followed.

The group also decided to have a document manager, which has the responsibility
of taking backups of documents, writing minutes of meetings, document important
decisions and monitor the time tracking for the project. Kristian Tveiten got the role of
document manager.

Every member has the responsibility of their own to keep track of their working
hours and log them.

5

3.2 Routines and group rules
3.2.1 Routines

Weekly work
Every group member is expected to work approximately 30 hours every week with the
project. The project backlog management Trello (5.1.2) is used to always have a grasp
on available tasks. The Trello board should be updated during every meeting. The
members will have an overview on how much they work each week in the time track-
ing program Toggl (5.1.5), this will make it easier for each member to stay on track
with the working hours.

Meeting times
The group has scheduled weekly meetings with both the supervisor and the client (Ben-
teler). Supervisor meetings is every Monday 11:00-12:00, and with Benteler every
Tuesdays 11:30-12:30. Every meeting will result in a written meeting report. These
meetings is obligatory and every member has to attend. If it is not seen necessary by
the members and Benteler or the supervisor to have a meeting one week, the meeting
can be canceled, this should be decided in advance.

The group has also planned group work on campus every Monday from 08:00-12:00,
Tuesdays 08:00-12:00 and Wednesdays 08:00-12:00. This is not obligatory and it is set
up as a way to communicate with the other team members while working individually.
It is possible to add more days or hours to the group work sessions if the team members
wish to do so.

3.2.2 Group Rules

To ensure the groups well being and effectiveness is kept, we decided to implement
group rules applying to every member.

Absence
Every member should and is expected to attend all meetings with either our supervi-
sor, Benteler and sprint meetings. If this is not possible the group member should let
the other group members know ahead of time with a reason (minimum two hours in
advance, unless an emergency).

Effort
Every group member is expected to work 30 hours during the week with the bachelor
thesis project. This includes meetings and collective work.

Conflicts
In the case of an internal conflict where two or more group members disagree on some-
thing, the whole group should discuss this and come to a solution by discussion or vot-
ing, where the group leader has two votes if there is a draw.

General rules

6

After each meeting, every group member should have a clear picture of what they are
supposed to work with towards the next meeting. If this is not clear, the member should
let the group know and together find a solution. If it is not clear due to unorganized
meetings, the meeting format should be improved.
If a member is stuck on a task, the member should try to get help from the other mem-
bers in the group. If no one can figure out the problem, the group should contact for
example our supervisor, Benteler or people with relevant knowledge to solve the issue.

Consequences of breaking the rules
In the case of a member breaking the rules, like being absent a period of time or not
working enough hours, the person will be contacted by the other members and given a
written warning. If this does not solve the problem the group will contact our supervi-
sor or the bachelor thesis managers for discussion on further corrective action.

4 Planning, follow up and reporting

4.1 Choice of system development models
We have discussed both agile and plan-driven development methods. We have come
to the conclusion that plan-driven development methods don’t match the challenges in
this project. This is mainly because of the projects flexibility.[2] The stakeholder has
stated that they want a core functionality, but that changes can appear and the final
product can be a bit different from what they initially thought.

Extreme programming (XP) was also a option that could fit the project well, as it´s
a fast-paced working environment that values teamwork and good communications. A
con with XP would be the lack of written documentation. A big part of this project
is to write the report and document the process, therefore a development method with
the possibility to add good documentation routines is needed. The group also lack
experience in the XP practices like Test-first development and Pair programming. And
with these reasons we decided to look for a different approach.

We also evaluated Kanban as it is a great visual development model, which helps
to keep track of the backlog and the current backlog elements that is either worked on,
finished or put to testing/quality assurance phase. With Kanban we can also limit the
amount of concurrent backlog tasks on a given stage, so backlog elements does not
accumulate.

4.1.1 Scrum + Kanban

Combining Kanban with scrum is an excellent choice for this project, as the Kanban
board can be revised/balanced during sprint meetings/scrum meetings, to catch up to
tasks that have stayed in a certain phase for too long. This combats congestion of tasks
in a certain phase. The average team velocity will also help us estimate time even better
for upcoming backlog tasks.

As we are not experienced at all in web-languages, using scrum will also allow
us to come with ideas of our own or change programming language for a part of the

7

system if we see fitting. Product owner has not set limitations on this, so we are free to
choose the technologies we believe is the best fit.

Regular scrum meetings with the product owner every two weeks will allow us
to present finished software modules to Benteler, and get response and input on what
needs to be changed or improved, which would then be added to the backlog and used
in a coming sprint. Scrum is also fitting for a smaller development team and it will
also allow us to prioritize the most important parts early so we can deliver a functional
program early.

The group will have scrum meeting at least 3 days of the week, to review progress
and possibly re-prioritize, change or break down certain backlog elements. The sprint
duration will be two weeks, starting on Wednesdays and ending on Tuesdays when we
have meetings with the product owner. On Fridays the group will have presentations
internally for newly developed software modules if the group see it fitting, and the
software is complex enough to require a walk through for the other group members to
gain understanding of the code.

Scrum is also a fitting method to add the documentation routines we need to com-
plete the project with the report. We just simply add the documentation task in the
backlog, so that they can easily be added as a task to complete during a Sprint.

We decided that the role of scrum master should be delegated to the project leader
Jesper Trøan, and Frode from Benteler is the product owner.

4.1.2 Time estimation models

Planning poker will be utilized in combination with the group velocity for average tasks
completed in a week. As we are not very experienced in time estimation, we will both
use the group velocity and our supervisor to get a pinpoint on which time-range we
should expect, and then use planning poker to come to a agreement.

4.2 Main division of the project
The project starts with us getting familiar with what is required for the task. After that
we can start with developing the diagrams such as an use case diagram and also get
the requirements in place. We also have to set up a fixed time to focus on researching
languages and tools for the project considering that we do not have enough experience
with web development to start right away. Once we have control over that, the project
will mainly consist of four main parts:

• Develop the frontend of the web application

• Develop the database

• Develop the backend of the web application

• Write the report

8

4.3 Plan for status meetings and decisions in the period
We have planned weekly meetings with our supervisor Sony George where the goal
is to share the progress and discuss coming issues. This can change depending on the
necessity. Since we have two week long sprints we will have the opportunity to get
feedback before, during and after the sprints.

5 Quality assurance

5.1 Standard tools
For the project we have a large toolbox of tools we have learnt that we will utilize to
keep us as organized and effective as possible. We also utilize some new tools which
simplify the process of documenting and reporting.
We utilize the following tools:

5.1.1 General tools

Notion
Notion is a great productivity application, with a spectrum of different functions that
are great for planning and being productive. We have chosen to use this application as
a shared calendar, where we will have an overview on all the meetings and deadlines
relevant to the project.

MindManager
MindManager is used for planning the meetings for the project. All meeting will be
added to a mindmap with nodes like agenda, Meeting Minutes and parkinglot. The
application makes it possible to have a systematic overview over all the meetings, and
makes it easy to find information about specific meetings when needed. The Meeting
Minutes are written in Google Docs, but are added into the mindmap when completed.

5.1.2 Issue tracking tools

Trello
This tool is used as a kanban board 1 for the scrum backlog, where we have the follow-
ing columns: To Do, Doing, Quality Assurance, and done. Quality assurance is used
for when a group member is finished with a task, either coding or writing a section in
the report, and the artifact is subject to quality checking by the other members. We can
then read and edit, and mark the issue with their name once they are finished, and once
that is done, the issue is moved from Quality Assurance to done.

1A visualisation tool to help optimize work flow

9

5.1.3 Documentation tools

Overleaf
Overleaf 2 is used for writing the report and project plan with precise structure and
layout.

Google Docs
Google Docs is used for writing meeting reports as well as agendas for upcoming meet-
ings. We found that having a docs is a easy way for everyone to take notes together and
have control over agendas.

5.1.4 Development and testing tools

For concurrency control and repository we utilize NTNU’s GitLab solution, which en-
sures us safety in regards of uptime. When it comes to development environment we
are free to use the technologies and tools we see fit. In our opinion a web application
will be the most fitting solution for Benteler and for solving this specific task. Con-
sidering the lack of experience the group has in web development, proper research is
needed before the languages and tools are decided. After the fixed research period the
group will have an overview on all the technologies that are needed for the solution,
and can then decide on extra tools like for example what linter tool to use for static
code analysing.

5.1.5 Time tracking Tools

Toggl
For keeping track of time we use a service called Toggl, it enabled us to selectively
log time spent working on a single task. It is organized so all of the group members
log spent time on a shared project, and names the activity they worked on like "Quality
assurance", "Creating use case diagram", "Internal meeting, etc. The activities is also
tagged with "Meetings", "Project Plan", "Report" and "Coding" to enable structured
time log extraction. This tool gives the group members an overview of the time spent
on the project, and it makes it possible to check each members weekly effort on the
project.

5.2 Documentation
To properly document time usage for the different activities concerning the project,
we have set up a Excel document where the document manager will collect data from
Toggl and fill in time usage each Friday after the week ends, to keep track of time usage
and possibly catch anomalies in the reported time, to ensure as correct time logging as
possible.

All our meetings with either the supervisor, Benteler or internally is documented
in the form of meeting minutes, where whatever was discussed and agreed on is writ-

2Cloud based Latex editor

10

ten. This way we have a clear picture of all the information that has been given and
decisions that has been made previously.

Trello will also aid in documenting tasks that has been done, who has reviewed
tasks in the "Quality Assurance" phase, which development activity a task belongs to
and so on.

Our calendar in Notion will document our plan for the weeks, being meetings,
campus work and similar.

5.3 Risk analysis
Below is a table that shows the risks of the project and their probability and the possible
consequences they have. Probability is divided into 4 cases: low, moderate, high and
very high. The consequences the risks are divided into: insignificant, tolerable, serious
and catastrophic.

Number Risk Probability Consequence
1 Project is not completed before deadline Moderate Serious

2 One team members get sick and is absent
an extended amount of time. Low Tolerable

3 Loss of data, code or report. Moderate Catastrophic
4 Supervisor is not available as needed. Moderate Tolerable

5 Benteler (Product owner) is not available
as needed. Moderate Serious

6 Lack of documentation High Serious

Measures
This is the measures that are planned to decrease the probability of the risk happening,
as well as lower the consequence of the risk if it does happen.

11

Measure Number
Have a plan for the entire project that is realistic and possible to follow,
and easy to check if the project is on time or not. If a delay should hap-
pen, inform the product owner and discuss if removing some planned
functionality is an option.

1

To reduce the consequences of a member being sick the members will
constantly review the others work. This is done by adding a finished
task to the Quality Assurance list (Kanban board), and then every mem-
ber has to review the task before it is moved further. The members will
then always be up to date on what has been done and how to do it.

2

The code will be in a repository in Gitlab, and also locally on all the
members’ computers. The report will be written in overleaf, the group
leader has the responsibility to regularly download and keep a backup
of the report.

3

Weekly meetings with the supervisors are planned. If the supervisors
do not attend these meetings, contact them and ask for new meetings.
If the supervisors are not available consider contacting other NTNU
employees to ask for the help needed.

4

Weekly meetings with Benteler are planned. If Benteler does not attend
these meetings and are not able to reschedule, the members will make
assumptions about the product and Bentelers preferences.

5

Documentation tasks will be added to the backlog and will be seen
as high priority as it is important to get proper documentation on the
project.

6

6 Plan for execution

6.1 Activities
The Gantt schema is divided in to three main parts: Planning, Development and Writing
report.

Planning is dedicated to writing the project plan and researching web-development.
The Development part is divided in to two week long sprints, starting on Wednesday
and ending on Tuesdays as decided in 4.1.1. The content of the sprints is decided in
the coming sprint meetings.

We hope to get more knowledge on what to include in each Sprint and when dif-
ferent part of the system should be done after out research period. Although we use
an agile development method, having an overview of when we expect to be done with
certain parts of the system can help us plan each Sprint accordingly and increase our
chances of completing the project in time.

The final part, Writing project, is divided in to two main parts. The first priority is
to finalize the written report before the due date May 20th. The second is to work on
the presentation taking place two weeks later.

12

6.2 Gantt schema

13

References
[1] Benteler. Business Unit Structures. https://www.benteler-automotive.

com/en/products-competencies/structures/. [Online; Downloaded: 13
january 2021].

[2] Ian Sommerville. Software engineering. Pearson, 2016.

[3] Wikipedia. Benteler International. https : / / en . wikipedia . org / wiki /
Benteler_International. [Online; Downloaded: 13 january 2021]. Dec. 2020.

14

Extrusion planner

Appendix B

Documentation and procedures
regarding the code, web-server and code
assuring longevity and re-usability of the
application

119

Benteler Automotive Instructions 29.04.2021

Code structure 2
Frontend 2
Backend 3

How to add, change or delete parameters to the database and code. 5
Database 5

Backend (All forms) 8
Request 11

Database 11
Backend 11
Frontend 11

TFC 14
Database 14
Backend 14
Frontend 14

Order 16
Database 16
Frontend 16
Backend 17

How to add, change or delete a simple textfield in the forms. 17

How to re-deploy the application/update the application. 19
Required software that must be installed: 19

Procedure (Backend Java API) 20
Procedure (Frontend React web interface) 21

How to add or delete an Alloy in the ranked list on dropdowns. 23

Suggested reading/viewing: 27

The server setup (if the application is to be moved to another server) 28

1

Benteler Automotive Instructions 29.04.2021

Code structure

This is a rough description of the entire application. First we have our frontend web
application coded in React. This is what the user sees and where the interaction with the
application happens, it is considered a thin client as all information is fetched server side
and nothing besides cookies is stored client side. The interface is delivered with Microsoft
Internet Information Services on the web server.

Frontend
node_modules is where all packages are downloaded to.

The public folder is used to contain things used public, in
our application it is not much used.

src is where the entire frontend of the application lays.

The .json files is where the dependencies lay. Here you
can controll whitch version of the packages is installed.

2

Benteler Automotive Instructions 29.04.2021

components: This folder is for components much used in the
application. Here we have the footer, sidemenu, topmenu and a
popup file containing most dialogs in the application. This includes
dialogs to add and update press, alloys and etc.

context: This folder is containing files used to make calls to the
backend. Every call made to the backend goes through files in this
folder. The files are named after what place in the backend they make
the calls to. For example UserService.js is containing functions to
add, update and delete users.

images: Contains bentler logos.

pages: Pages includes folders for order, request and tfc, as well as the files for every other
page in the application. Each page has its own .css file which includes all css used for each
file.

App.js: This is the application's “main” file. It does all the routing in the application. Here the
users privileges are checked and returns the sites the user is allowed to see.

index.js: Here the application is rendered. The root of the application is rendered:

Backend
The backend is structured like this:

The src folder contains all the code for the backend, as well as other
resources used.
The backend code is divided into three parts: api, model and service.

api: The api is the controller folder and is responsible for controlling the
application. The controllers returns the response of the requests.
model: The model components represent the data being transferred.
For example the user controller will retrieve user models from the
database.
service: Service folder is the methods to perform operations with one or
more models.
To explain this a bit better, I will include a full example to add a user:
Let's start with the user-model:
pom.xml: Includes all dependencies for the backend.

3

Benteler Automotive Instructions 29.04.2021

This is the main part of the user model. The model also has getters.

So over to the service-layer. Here is the function to create a new user.

The function in the service-layer includes the prepared statement to insert the user to the
database. The use of prepared statements is important to secure the application from
SQL-injections.

Create user in the controller:

The controller requests a body containing the attributes from the user-model. It then runs the
createNewUser-function in the service-folder with the attributes from the User-model sent
from the frontend.

To see how this function is called in the frontend we have to take a look in the context-folder.
In the file UserService.js we find every function connected to the user-backend.

This is the function that calls for the addUser-function in the UserController. The parameter
sent, data, is containing the user-data as the user-model. We use axios, a promise based
http client, to connect the frontend with the backend. The API_URL is the ip of the backend.
In this case the function returns a boolean, either true if the request is successful or false if it
fails.

4

Benteler Automotive Instructions 29.04.2021

How to add, change or delete parameters to the
database and code.

Database
Generally when you are adding, changing or deleting parameters in the backend and
frontend code, you have to do the same changes in the corresponding database too. Now
we will go through step by step how to make these changes in the database. On all these
operations you first need to open SQL Server management studio (SSMS) on the server.
How to add a parameter in a table in SSMS:

1. Head over to the left corner in the object explorer to get an overview over what the
different tables are named.

2. Click on new query in the topnavbar of the SSMS:

3. A new query editor will open. Here you have to write in this SQL query:
USE [ExtrusionPlanner] (←------ The name of the database)
GO
ALTER TABLE [dbo].[Order] (←------ Name of the table)
ADD Testvariable varchar(20) (←---The name of the new variable, and then the datatype)
GO

5

Benteler Automotive Instructions 29.04.2021

After you have put in the right names of the database, tables, name and datatype of
the new parameter you just have to right click in the editor and then click on Execute
or just F5. If you get a message under the query editor that the command completed
successfully, you have done it right.

There are many different datatypes to choose from, but the most common ones is int
(if the type is a number) and varchar(size) (if the type consists of letters). You can get
an overview of the different datatypes here:
https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sq
l-server-ver15.

How to modify a parameter in a table in SSMS:
1. Open a new query by clicking the new query button in the topnavbar in SSMS.

2. Write this SQL query in the query editor:
USE [ExtrusionPlanner] (←---- Name of the database)
GO
ALTER TABLE [dbo].[Order] (←--- which table to modify)
ALTER COLUMN Part_category varchar(20) (←- Which parameter to modify, and
what new datatype to change to.)
GO

6

Benteler Automotive Instructions 29.04.2021

Here we will change the column Part_category in the order table to maximum take 20
characters instead of 10.
Right click inside the editor and then click Execute, or click F5. If you have done it
right you get the message under the query editor that the command completed
successfully.

How to delete a parameter in a table in SSMS:
1. Open a new query by clicking the new query button in the topnavbar in SSMS.

2. Write this SQL query in the query editor:
USE [ExtrusionPlanner] (←---- Name of the database)
GO
ALTER TABLE [dbo].[Order] (←--- which table to modify)
DROP COLUMN Part_category (←- Which parameter to delete)
GO

Here we will delete the column Part_category in the database. Right click inside the
editor and then click Execute, or click F5. If you have done it right you get the
message under the query editor that the command completed successfully.

7

Benteler Automotive Instructions 29.04.2021

Backend (All forms)
Adding a new parameter:
When we are adding new parameters to the tables we have to add them in the backend
code too. The first place we have to add this new parameter is in the model of the
corresponding forms. An important note is when you are adding new parameters to the TFC
or Request form you also have to add this parameter to the TFCandRequest model.
path:
src → main → java → com/benteler/extrusionAPI → api → model → The specific form
Here is an example of adding a parameter to the orderform. The procedure is very similar in
the TFC and requestForm, except from that you then have to add this parameter to the
TFCandRequest model too.

1. Here you can add a new parameter under the last parameter with the datatype first
and then the name of the parameter. You also have to add this new parameter in the
same order as where you declared the parameter in the constructor by typing
@JsonProperty("New_parameter") int new_parameter. Here is an example of doing
this:

2. You also have to add this sentence: “this.new_parameter = new_parameter;” under the
declaration of the Jsonproperties, and add a getNew_parameter function with the
parameter type before the functionname like this:

8

Benteler Automotive Instructions 29.04.2021

3. Now you are done updating the model.
4. The next step is to update the functions in the corresponding service file.

path: src → main → java → com/benteler/extrusionAPI → api → service → The
specific form. The new parameter has to be added in all the functions that are using
all the parameters. So for the orderform you have to add this new parameter in the
same order as it is in the model in Saveorder, getOrderByID, getmostRecentOrders
and updateOrderByID. As the saveform files uses preparedstatement we have to add
the new parameter under the last parameter in the sql query, and also add an extra ?
like this:

We also have to set the value of this new ? by adding one to the number to 52 and
using the getfunction we made in the model. You have to use st.setInt if the
parameter is an int, and st.setString if the parameter is an String like this:

In the getOrderByID and getMostRecentOrders functions we just have to add this:

Also here we have to use rs.getInt if the parameter is an int and rs.getString if the
parameter is an String.
For the updateOrderByID function we have to add the new parameter in the sql query
like this:

And then set this parameter as the second last like this:

9

Benteler Automotive Instructions 29.04.2021

5. You have now updated the service.
How to modify a parameter in the backend:

1. Find the parameter you want to modify in the model. Change the name of the
parameter or/and datatype everywhere where the parameter you want to change is
listed in the model. If you are changing the datatype it is important to also change this
everywhere in the form, also in the getfunction of that specific parameter.

2. Go to the corresponding service file and rename the parameter you are changing to
the new name everywhere where the parameter is listed. In the getByID and
getMostRecent functions it is important to change the getfunction if you have
changed the datatype.

3. You have now updated the parameter in the backend
How to delete a parameter in the backend:

1. Find the parameter you want to delete in the model. Remove this parameter
everywhere where it is listed in the model.

2. Head over to the service file. Remove this parameter everywhere where it is listed.
For the save and updatefunction it is important to also remove a ? from the SQL
query. For these two functions it is also important that the numbering is in the right
order according to the parameters in the SQL query:

10

Benteler Automotive Instructions 29.04.2021

Request

Database
For changing the database for the Request, we have to write [dbo].[Request] in the name of
the table to modify. See the section about adding, modifying and deleting parameters in the
database for the rest of the steps.

Backend
Follow the steps for adding, modifying and deleting steps in the backend above.

Frontend
The Request data exists in several parts of the frontend code. In the application there is
Request data in the Search page, Request page, TFC page, CostCalc page and Order
page, this means that if the data is changed it should also be changed in these different
pages. There are also textfield in the Request and TFC form that contain Request-data, this
might also have to be altered if the Request-data is changed. How to change textfields is
written about in a section below.

Search
To make the Request data in the Search page consistent with the database and backend,
you have to make changes in the Search.js file. The search page has Request values in two
tables, the Request table and the TFC table. Because of this the search file has 4 states that
need to be changed when Request data is updated, these are visibleRequestColumns,
requestColumnNames, visibleTfcColumns and tfcColumnNames. These all contain Request
data and need to be in the same order as the relevant data in the backend code. These
states also exist in other files, and the same changes must be made to them, the other files
are written about below.

Path:
SRC → pages → Search.js

11

Benteler Automotive Instructions 29.04.2021

To add a new parameter to visibleRequestColumns and visibleTfcColumn all you have to do
is to follow the same format as the other parameters, the correct parameter name (the name
in the database) and a colon followed by a true or false value depending on whether you
want the parameter to be a default parameter in the table or not. To delete a parameter you
just find the parameter in the list and delete that line.

To add a new parameter to the requestColumnNames and tfcColumnNames you just have to
write the correct name and a colon and then the name you want the parameter to have in the
table in quotation marks. Make sure that the place of the new parameter is in the same place
in the visibleColumns states and also in the corresponding backend code.

Request
The request pages consist of a search page as well as the form. The search page file
“searchRequest.js” contain the states visibleColumns and columnNames which should be
updated the same way as visibleRequestColumns and requestColumnNames in the general
search file.

The searchRequest.js file also has three more states to modify, the confirmEmpty,
permanentEmpty and optionalEmpty state. These states should contain all Request
parameters, which means that if you add a new parameter you also have to add it to these
and the same goes for any other type of modification.The order of these forms is not
important. The confirmEmpty state should have the name of the parameter, and the value
after should always be false. The same goes for permanentEmpty, but the value can be true
if the value of it is permanent/uneditable. With the optionalEmpty state the value following
the name should state whether or not the values should be required or not in the forms.

12

Benteler Automotive Instructions 29.04.2021

Requestform files:
The next step is to navigate to requestForm.js which is located in the same folder as
searchRequest.js. The class in this file has a state that consists of all the parameters in the
request form. It is important to also add the new parameter to this state. Under the render
method we also have a const that pulls out every value from the state so here you also have
to add this new parameter. Under this we have a new const that sets all the parameters to
the name “values”. Here you also need to add the new parameter.

1. Next step is to add a textfield corresponding to this parameter. See the section about
How to add, change or delete a simple textfield in the forms for that.

TFC
In the TFC search page Request-data is shown in two tables just like the general search
page. There are 5 states in the TFC.js file that need to be updated when the Request
database is updated.

These are requestValuesEmpty, which is a state containing all the request parameters and
an empty string following it, this state is used to send request values to the form. The next
states are visibleTfcColumns and columnTfcNames, these contain all TFC parameters and
Request parameters together and are the parameters shown in the TFC table. These states
need to be the same as the general search page and be in the same order as the backend
code. The last state is visibleRequestColumns and columnRequestNames which contain all
the parameters shown in the Request table, this also needs to be in the same order as the
states in the general search file and in the corresponding backend code.

CostCalc
The CostCalc page contains another search page, this time only with the TFC table.
Similarly to the TFC-table in the search and TFC page, the table contains both TFC and
Request values. Therefore you must change the states visibleTfcColumns and
tfcColumnNames here too.

Order
There is a Request-table in the order search page, which means the states
visibleRequestColumns and columnRequestNames must be changed too whenever the
Request database is changed. These should be changed the same way as in the search.js ,
searchRequest.js and TFC.js files earlier.

TFC

Database
For changing the database for the TFC, we have to write [dbo].[TFC] in the name of the
table to modify. See the section about adding, modifying and deleting parameters in the
database for the rest of the steps.

13

Benteler Automotive Instructions 29.04.2021

Backend
Follow the steps for adding, modifying and deleting steps in the backend above.

Frontend
The TFC data exists in several parts of the frontend code. In the application there is
TFC-data in the Search page, TFC page and Cost Calc page, this means that if the data is
changed it should also be changed in these different pages.

Search
To make the TFC data in the Search page consistent with the database and backend, you
have to make changes in the Search.js file. This file has two states that needs to be changed
when TFC data is updated, these are visibleTfcColumns and tfcColumnNames. These both
contain TFC-data and Request-data and need to be in the same order as the relevant data
in the backend code. These states exist in every search page containing TFC data, which
means they should be changed in everyone of those files (TFC.js, CostCalc.js).

Path:
SRC → pages → Search.js

TFC
The TFC pages consists of a search page, as well as the TFC form. This means that in the
same way as the general search page the TFC data in the table has to be consistent with
the database and backend. This is done by changing the visibleTfcColumns and
tfcColumnNames states in the TFC.js file, these states should be the same as in Search.js.
In addition to visibleTfcColumns and tfcColumnNames, the TFC.js file has another state
called tfcValuesEmpty. This state contains every TFC parameter (Not Request parameters)
and is used to send data to the forms. When updating the TFC database and backend code
it is also important to update this state, with the correct name and an empty string following
it.

14

Benteler Automotive Instructions 29.04.2021

Path:
SRC → pages → TFC → TFC.js

Cost Calc
Cost calc also has a search page with TFC data that needs to be updated if the TFC data is
changed. The file to make these updates is the CostCalc.js file, and it contains the states
visibleTfcColumns and tfcColumnNames just like the other search pages with TFC data, and
needs to be updated in the same way.

Path:
SRC → pages → CostCalc.js

Order

Database
For changing the database for the Order table, we have to write [dbo].[Order] in the name of
the table to modify. See the section about adding, modifying and deleting parameters in the
database for the rest of the steps.

Frontend
2. For adding parameters to the frontend of order we have to first navigate to:

src → pages → Order → SearchOrder.js
Here we have the visibleOrderColumns and columnOrderNames that have to be in
the same order as the parameters are in the backend. So if you have added the new
parameter as the last one in the backend you have to do that also in
visibleOrderColumns and columnOrderNames like this:

15

Benteler Automotive Instructions 29.04.2021

The columnOrderNames is the name of the columns, so here you have to write the
name that you want to call the column that will be displayed in the frontend. This
searchOrder file also has a enabledFields const that has the task to set which fields
should be editable or not in the form. If the new parameter you are adding is not
going to be editable if for example it is sent from a request you can add the new
parameter in this list, and set it to true which means that the parameter is editable.
We also have to add this new parameter to the async function enablefields when we
are adding the parameter to the enabledFields const. If you do not want the
parameter to be editable when it is coming from a request you have to add this code
to the async function enablefields:

3. The changes made to the visibleOrderColumns and columnOrderNames does also
have to be done in the search.js file.

4. The next step is to navigate to orderform.js which is located in the same folder. The
class in this file has a state that consists of all the parameters in the order form. It is
important to also add the new parameter to this state. Under the render method we
also have a const that pulls out every value from the state so here you also have to
add this new parameter. Under this we have a new const that sets all the parameters
to the name “values”. Here you also need to add the new parameter.

5. Next step is to add a textfield corresponding to this parameter. See the section about
How to add, change or delete a simple textfield in the forms for that.

16

Benteler Automotive Instructions 29.04.2021

When modifying a textfield you just have to change the name of the parameters in all the
places we have been through here. When deleting a parameter you simply have to remove
the line of code with the specific parameter in all the places we have been through here.

Backend
Follow the steps for adding, modifying and deleting steps in the backend above.

How to add, change or delete a simple textfield in the forms.
To explain how to add, change and delete textfields, we need to explain the textfield a bit
first. The textfields used in the request, order and tfc are a Material-ui component
(https://material-ui.com/api/text-field/).

This is some of the props that can be used in a textfield.
Things to think of when adding a textfield:

● Does the value exist in a state? To save the coming value in a state, the value has to
be defined somewhere.

17

Benteler Automotive Instructions 29.04.2021

● Has the textfield been given an id, a correct name, a label and a defaultValue/value?
This is the most important props of the textfield. If the textfield is only used for output
you can use value, else use defaultValue.

● Does the textfield have an onChange/onBlur function? This is only needed if the
value is supposed to be changeable.

When deleting a textfield, the only thing you really need to do is remove the textfield code.
But it would be a good idea to clear up the rest of the frontend and backend, if the value is
no longer in use.

When updating a textfield, you can use the material ui documentation to see what can be
done with the textfields.

18

Benteler Automotive Instructions 29.04.2021

How to re-deploy the application/update the
application.
Project need to be cloned first from this repository using “Git Bash”
https://gitlab.stud.iie.ntnu.no/kritveit/extrusion-planner/-/tree/master/extrusionAPI/src/main/ja
va/com/benteler/extrusionAPI

In Git Bash: Navigate to a desired folder then use the command “git clone” following the
HTTP clone request link found in the repository, it is possible that your username must be
permitted to access the repository so contact us if it is necessary.

Required software that must be installed:
Node.JS - (https://nodejs.org/en/)
Node is a JavaScript runtime that is used to compile the react application and build the
application for production.

Java - (https://www.oracle.com/java/technologies/javase-downloads.html)
Java JDK is needed for the backend API and the code editor IntelliJ. Install the newest
version of the Java JDK, make sure it is the JDK and not JRE!.

Visual Studio Code - (https://code.visualstudio.com/)
Visual Studio Code is a code editor we used to develop the React frontend (Web interface).

IntelliJ Community Edition-
(https://www.jetbrains.com/idea/download/#section=windows)
IntelliJ Community Edition is the free version of IntelliJ used by us to develop the Java
Backend API.

Git Bash - (https://gitforwindows.org/)
Code revision tool for downloading from repositories and pushing code updates to the
repository.

19

Benteler Automotive Instructions 29.04.2021

Procedure (Backend Java API)
1. Save changes, make sure that it compiles correctly by running it:

https://www.jetbrains.com/help/idea/running-applications.html#rerun
2. Note that the database connection will return an error if the application is not run on

the deployment server.
3. To build the project into a JAR, open the Maven tool window:

4. Then you will get a Maven tool window on the right.
5. Press the blue lightning icon to skip tests if this is done outside of the deployment

server.

6. Then press “Execute Maven Goal”

7. Select/write “maven package”, and the JAR will be created in the target folder
(extrusion-planner/extrusionAPI/target)

ON THE WEB SERVER/DEPLOYMENT SERVER:
8. Open “Local Services” in Windows by searching in the Windows taskbar.
9. Find the “Extrusion Planner API” service, right click and press “Stop”

20

Benteler Automotive Instructions 29.04.2021

10. Navigate to the folder containing the “WinSW” service installer/the JAR, currently
“C:\ExtrusionPlanner-APIService”, and replace the JAR file with the newly packaged
one. (Must be the same name)

11. Right click the “Extrusion Planner API” service again and press “Start”
12. The backend is now updated! If you need to see the program output, see the bottom

of the “WinSW.NET4.out” file, it is updated each time it's opened (so not live).

Procedure (Frontend React web interface)
(In the terminal window in Visual Studio, run “npm install react-scripts” to install the
necessary scripts for the following steps.)

1. Save changes and make sure the program works as expected by running it using the
command “npm start” in the terminal window in the bottom of Visual Studio Code, is it
not open? See the top toolbar and press Terminal > New Terminal. (Must be
connected like you would normally to reach the backend API to ensure that the
application works during testing)

2. To build the application, make sure you are navigated in the root project folder for the
frontend in the Terminal in Visual Studio Code. (Can be done without VS Code in the
normal command prompt too as long as you are in the right folder.)

3. Run the command “npm run-script build”
4. Look for the “build” folder in the root frontend directory “frontend”, now replace the

“build” folder on the deployment server (currently in documents), NB: DO NOT
DELETE “web.config”, this will break the web server configuration for IIS.

21

Benteler Automotive Instructions 29.04.2021

5. Go into IIS (Internet Information Services) and navigate to the web page “Extrusion
Planner” and restart it from the right tool window.

6. The frontend is now updated!

22

Benteler Automotive Instructions 29.04.2021

How to add or delete an Alloy in the ranked list on
dropdowns.
The ranked list of the most popular Alloys exists in the dropdown menu in 8 places in the
code, so to update this list you must update it in all 8 places. The code is very similar for all
the 8 places, so once you change it in one file you just have to repeat it on the other files. If
you want the Alloy dropdown field to be similar in all forms, you have to make sure that the
list in the code for each form is the same.

This is the code for all Alloy field in the application. And to add or delete an Alloy to the
ranked list in the dropdown area, you just have to change the code within the red circle on
the picture. If you want to add a new Alloy to the list, you have to first make sure that the
Alloy exists in the list of Alloys in the application (you can check this in the Edit Database
page).

All you need to do to add a new Alloy to the list is to add another “MenuItem” to the list with
the relevant key and value. For example if you want to add Alloy 6060.85 to the list.

<MenuItem key=”6060.85” value=”6060.85”>6060.85</MenuItem>
You just add this line wherever you want it in the list, if you want it on top of the list you place
the line first. Make sure to place the line after the > tag and before the <Divider /> tag.

If you want to delete an Alloy from the list you just have to find the MenuItem with that
specific Alloy and remove that line.

In request form:

23

Benteler Automotive Instructions 29.04.2021

In request form the Alloy dropdown field exists in two places, in page two “Profile” and in the
confirmPage. The files “Request2.js” and “confirmRequest.js” must be edited to change the
dropdown list in these places.

Path:
SRC → pages → Request → Request2.js
SRC → pages → Request → confirmRequest.js

Request2.js:

confirmRequest.js

In TFC form:

24

Benteler Automotive Instructions 29.04.2021

In TFC form the Alloy dropdown field exists in two places, in page two “Profile” and in the
confirm page. The TFC form code is divided in two, one part for the metrics system and
another one for imperial units. This means you must change 4 files to add or delete Alloys in
the ranked list, this is the files “TFCForm2.js”, “TFCConfirmForm.js”, “TFCUSForm2.js” and
“TFCUSConfirmForm.js
The code in the TFC form2 and in the confirm forms is similar to the ones in Request, and
you can follow the same steps to add or delete an Alloy on the list.

Path:
SRC → pages → TFC → TFCForm2.js
SRC → pages → TFC → TFCConfirmForm.js
SRC → pages → TFC → TFCUS → TFCUSForm2.js
SRC → pages → TFC → TFCUS → TFCUSConfirmForm.js

TFCForm2.js and TFCUSForm2.js

TFCConfirmForm.js and TFCUSConfirmForm.js

In Order form:

25

Benteler Automotive Instructions 29.04.2021

In Order form the Alloy dropdown field also exists in two places, in page two “Profile” and in
the confirm page. You must change the two files “Order2.js” and “confirmOrder.js” to change
the ranked list. As you can see from the pictures below this code is the same as the other
places, and all you have to do is to repeat what you did with the other files.

Path:
SRC → pages → Order → Order2.js
SRC → pages → Order → confirmOrder.js

Order2.js

confirmOrder.js

26

Benteler Automotive Instructions 29.04.2021

Suggested reading/viewing:
A starter guide for react:
https://www.w3schools.com/react/

React hooks (State hook and Effect hook most relevant):
https://reactjs.org/docs/hooks-overview.html

Spring boot, and how to test the backend using postman:
https://www.youtube.com/watch?v=vtPkZShrvXQ (00:20:00 -> 01:00:00 is the most relevant)

A small intro to Axios:
https://www.youtube.com/watch?v=qM4G1Ai2ZpE

27

Benteler Automotive Instructions 29.04.2021

The server setup (if the application is to be moved
to another server)
(This procedure does not include the database as it is not necessary to set up again)
Steps:

1. Enable IIS in Windows (Must be Windows 10) how to :
https://enterprise.arcgis.com/en/web-adaptor/latest/install/iis/enable-iis-10-componen
ts-server.htm

2. Install CORS Module https://www.iis.net/downloads/microsoft/iis-cors-module
3. Install URL Rewrite Module https://www.iis.net/downloads/microsoft/url-rewrite
4. Deploy the frontend web interface with IIS using the existing build folder or a newly

created one following the mentioned redeployment procedure in the other chapter:
(https://www.youtube.com/watch?v=eA9p68rjuJI&ab_channel=SteveYu

5. Make sure the “web.config” file from the build folder from the old server is copied into
the new build folder on the new server, this ensures correct configuration of the URL
Rewrite module and CORS module.

6. Copy the entire ExtrusionPlanner-APIService folder at
“C:\ExtrusionPlanner-APIService” to a desired location on the new server.

7. Then simply run the WinSW.NET4.exe executable to install the service for the API.
8. Navigate to Local Services in Windows and find “Extrusion Planner API”, right click

and select “Start” to run the service, voila the API and web interface is up and
running!

28

Extrusion planner

Appendix C

Feedback from testing phase with
solutions and status per case

148

T.QM.110 General LOP_Action Item List.xltx/ 2020 09 / 307822 / File: LOP Action Item List (Server updated 01.05 12:00) / 1 von

List of OpenPoints Topic: Language:
Extrusion Planner Application English

Responsible: Creator: Last change:
GLN GLN 30/04/21

No. Date Triggered by Area Open issue / Finding Action and expected result and/or deliverable Due date Responsible Supported by Status
47 8 4

1

4/19/2021 GLN Innlogging

Lukket vindu:
Mulig å gå inn igjen uten passord etter å ha besøkt annen
web side i samme tab, med "back" knapp i nettleser

Innlogging varer i en time med mindre nettleser lukkes eller
bruker trykker "logg av". Denne timen blir oppdatert etter
aktivitet, dvs at etter en time med inaktivitet logges brukeren
ut.

21/04/21 Done

2
4/19/2021 GLN Tilgangskontroll

bruker oversikt:
viser ikke alle brukere

På grunn av glipp under oppdatering kom feil IP med i
websiden som førte til at feil API/Database ble sett 21/04/21 Kristian Done

3

4/19/2021 GLN Innlogging

pålogging:
ikke mulig å logge på hjemmefra selv med fullt navn i
adressefeltet i stedet for ip adresse

Går ikke å logge på via intern nettverk, kun med VPN
GLN: Sender forespørsel til Benteler Service Desk

Kristian
in work

4

4/20/2021 GLN Request

Autofill:
Databasen burde "lære" eller tilby autofill på navn av
forespørrere / e-post requestor / e-post product controller

Alternative nå er å komme med en liste vi kan legge inn i en
dropdown meny. Eventuelt tilby et eget felt på database
siden for å legge til innhold i dropdown listen.
27.04: Har implementert autoinnfylling av requestor name og
email requestor. Også lagt til dropdown på product controller
email. Man kan legge til flere product controllere på
databasesiden
30.04: Liste med product controllere er sendt til Jesper

Jesper

Done

5

4/20/2021 GLN General

Cost-Calc:
Personen heter nå: Product controller --> Email cost calc
burde hete e-mail Product Controller også i databasen som
feltnavn.
Cost calc som funksjon kan fortsatt beholdes tenker jeg

Løst

21/04/21 done

6

4/20/2021 GLN Request

Alloy:
Drop list her må sorteres som i forrige request skjema. Dvs
de mest brukte legeringer øvers i listen , deretter i stigende
rekkefølge

Hent sortert liste fra tidligere program og sorter det i den
rekkefølge i request skjema 23/04/21

Emma
Done

7

4/20/2021 GLN TFC

Profile:
Profile number kan bestå av både tall, bokstaver og
spesialtegn, MÅ ikke fylles ut., kan autofylles fra database
dersom kjent

Fikse sånn at det ikke er et nummer i feltet, og at det ikke er
required. Blir hentet fra request om det er mulig. 21/04/21

Emma
Done

8

4/20/2021 GLN FAQ

Request:
Forklare at på Request skjema under PPart description =
Part name

21/04/21
Kristian

Done

9

4/20/2021 GLN Unit

Switch between units:
Prøvde bytte fra SI til US enheter midt i en TFC for å se hvor
mange lb presserest var, da hoppet den ut av systemet og
tilbake til hovedmeny. Her må vi kunne switche fra enhet til
enhet og fortsette på TFC utfyllingen underveis.

NT: Knappen er helt disabled under tfc, fra første verdien er
endret. Den blir disabled til brukeren har gått ut av tfc
gjennom Back-knapp eller tfc er sendt. NB: Hvis man går ut
av TFC gjennom sidemenyen vil ikke switchen bli enablea
igjen automatisk, da må man refreshe siden, jobber med
saken.

23/04/21

Nils

in work

10

4/20/2021 GLN TFC

Process:
Last billet additional scrap må være et felt som kan fylles
inn. Pluss litt mer utfyllende navn.

Endret navn til Last billet additional scrap, og gjør det feltet
mulig å endre på 23/04/21

Emma
Done

11

4/20/2021 GLN General
Desimalskilletegn:
Her bør både komma og punktum aksepteres hvis mulig

Må finne hvilke felt det gjelder
TFC - based on request "Profile Weight" på 2, Circumscribed
Circle samme side, Chamber area (skjønt her bruker vi ikke
desimaler)
Non performance scrap, Safety margin og alle avkapp
lengder front / rear, hastighet side 4,
Konklusjon - dere må ganske enkelt teste alle felter i alle
skjema og verifisere at det
28.04.21: Benteler sliter med bruk av komma, studentene har
ikke problem med komma. Hva kan det skyldes?

Escalation

12

4/20/2021 GLN TFC

Saw:
Cavities stacked - MÅ fylles ut kun hvis: Press- No of
Cavities > 1, skal IKKE fylles om No of Cavities = 1 så
default verdi kan være ved siden av hverandre eller ingen
verdi, det kommer litt an på hvordan denne verdien brukes
videre

Gjøre "side-by-side" til default verdi, sånn at man kan bla
forbi feltet uten å gjøre en endring. Om No of cavities er 1
skal ikke feltet gå an å endre på. 23/04/21

Emma

Done

13

4/20/2021 GLN TFC

Chamber area - kriterie feil. Dette kan jeg sende en tabell
på. Sjekkliste legering og presse --> utvalg av max chamber
area
Max 80 som dere har brukt skal brukes på feltet "Reduction
Ratio" under Presse. Det må også kunne bekreftes og
tillates > 80 men det skal markeres rødt og komme warning.

Endre målenhet på chamber area.Må ha mer informasjon om
Reduction Ratio grensen.

21/04/21

Emma

Done

14

4/20/2021 GLN TFC

Send:
Fylte ut TFC og trykkte "send", fikk feilmeldingen "Failed to
add to database" og alle data vekk. Dersom den ikke kan
skrives til databasen, bør oppsummeringssiden stå og evt
kunne printes så ikke alle data går tapt. Evt kunne
eksporteres ved feil på skriving til databasen? De bør ikke
bare forsvinne i alle fall.

Sørge for å ikke resette siden ved feilet databaseinnsending,
reset kun ved vellykket innsendning. Ferdig på TFC, request
og order

28/04/21

Jesper

Done

15 4/20/2021 GLN General Print av de ulike skjema gjerne fra "Confirm" siden hadde
vært nyttig.

Knapp for å printe ut utfylling til PDF på siste side av hvert
skjema, som backup. Velger å bruke excel istedet da dette
fungerer bedre med mange parametre

28/04/21
Jesper

Done

16 4/20/2021 GLN Search Søke i request versjons nr mangler, min feil - spesifiserte
sketch rev men ser at vi trenger også request revisjon i
tillegg når vi skal søke opp forespørsler. Når det kommer til
Sketch revisjon - så må bokstaven i Sketch nr flyttes ut av
cellen og inn i sketch rev nr kolonnen.

Legge til request ver nr som default visningsparameter i de
ulike tabellene. Også legge til sketch rev i skjemaet slik at
brukerene kan legge inn bokstaven i skjema

Emma

Done

17 4/20/2021 GLN / KIA Search Mulighet for å endre rekkefølge på feltene som vises? Vil ikke prioriteres, kommer til å ta mye tid. 01/08/21 not started
18 4/20/2021 GLN / KIA Cost Estimation Cost-Calc: ikke implementert enda? Her må en kunne søke

og velge request nr og versjon, TFC nr og versjon som skal
eksporteres til excel.

Cost calc funksjonen fungerer, dog ikke med det originale
skjemaet da det ikke var mulig å redigere 30/04/21

NTNU Gerda
In work

19 4/20/2021 KIA/GLN Request Skulle hatt funksjonen "View Request"
Foreslår å legge til denne som egen funksjon i tillegg til
"Correct request".
View request blir da kun en "død" visning av en gitt request
basert på nr og index

21/04/21

Kristian

Done

20 4/20/2021 KIA Request Endre rekkefølge på felter i Project.
Øverst fra venstre: Customer - Proje name - SAP - PPA -
Delivery - SOP
Nederst fra venstre: Proj phase - Design - Avg volume -
Peak volume - Total volume

21/04/21

Jesper

Done

21 4/20/2021 KIA TFC Process - "Gross extrusion length" burde kopieres inn slik at
den også vises på "Press" da denne er gitt av input på
"Billet length" og da bør vi se allerede her at det er for lang
bolt

Legge Gross extrusion length både i Press og i Process.

21/04/21
Emma

Done

22 4/20/2021 KIA TFC Oversikten på venstre side burde også vise Request data
input da dette er viktig å ha med seg i evalueringen

Innført 21/04/21 Jesper Done

23 4/20/2021 KIA TFC Highlighte noen verdier av spesiell interesse i confirm siden:
Presse, profilhastighet,net productivity, recovery, die cost pr
kg

21/04/21
Jesper

Done

24 4/20/2021 KIA Request Change request: Skal ikke være lov å registrere en change
request med mindre minimum CAD / SAP nr er endret.

Har endra så CAD / SAP må endres på change. Warning på
textboxen og disablea send-knapp til den er endra.
26.04. GLN: Ser at vi har vært for raske på labben nok en
gang. Det er visstnok mulig å endre slik at det oppfyller krav
til "change request" uten nytt SAP / CAD nr, så regelen
burde bli endret : Minst en av følgende verdier må være
endret: SAP/CAD nr , alloy, temper, customer standard, rex,
igc, ductility, geometric std

30/04/21

Nils

done

25 4/20/2021 KIA Request Change request: Skal ha varsel om "er du sikker på at du vil
endre...." kun dersom verdien er endret, ikke når vi bare har
klikket innom feltet

Har fikset feilen på de boksene det gjaldt. Endret funksjonen
som sjekker om verdien er endret til å sammenligne
uavhenging av number og String.

21/04/21
Nils

Done

26 4/20/2021 KIA General Farge hvit - grå foretrekkes Ferdig med Order, Request og TFC 28/04/21 Kristian done

T.QM.110 General LOP_Action Item List.xltx/ 2020 09 / 307822 / File: LOP Action Item List (Server updated 01.05 12:00) / 2 von

27 4/20/2021 KIA General Progress bar - kan nummer på det arket vi jobber med ha
egen farge?

Lyseblå for ferdig og oransje for den man er på, forsøkte
men slet litt.
GLN: konkludert i møtet i dag at "større og tykkere" teskt på
tallet holder som en start, vi hadde bare ikke oppdaget det
ved første test

23/04/21

Kristian

done

28 4/20/2021 KIA TFC Update TFC genererer ikke ny TFC versjons nr - det MÅ den
gjøre

Vi må avklare TFC versjons nr bruk ift bridge 21/04/21 Jesper in work

29 4/23/2021 GLN Request BTM mangler under Project for request. Vi har ikke sett at
dette manglet før nå, skulle vært på vårt template men
manglet tydeligvis der også.

01/08/21
Kristian

Done

30 4/23/2021 GLN Order BTM på side 3 kan flytes inn på side 2 sammen med
Standarder 01/08/21 Jesper Done

31 4/23/2021 KIA TFC Warning dersom saw time > extrusion time, lå inne i gammel
TFC skjema som betinget formatering celle P40

La til warning. (Ble utført på lørdag, og forrige oppdatering på
serveren var fredag.)
26.04: Testet på TFC basert på gammel TFC med ny
forespørsel, sagetid 11.3min og extrusion tid 6.5min men
ingen advarsel.

30/04/21

Emma

Done

32 4/23/2021 GLN / KIA Search Søkesiden og de respektive rapportsidene:
Siden egen tilpasning av felter som skal vises resettes
ved hver logut, kan vi sette opp disse som default felter:
Request default felter: Request nr - Request version nr -
Date - Sketch nr - Request name - Customer - Project name
- Part category - Status
TFC default felter: Request nr - Request version nr -
Request Date - TFC number - Sketch nr - Sketch rev -
Request name - Customer - Project name - Part category
Order default felter: Request nr - Request version nr - TFC
nr - TFC Version nr - Oder nr - Customer - Project name -
Part description - Profile nr

Endret default parameter visning til listen. Bortsett fra status
(se punkt under), dette blir vist ved grå tekst i tabellen.

30/04/21

Emma

Done

33 4/23/2021 GLN / KIA Search Endre eller sette status på en request - hvor skriver vi den
verdien til database? Kan det legges et felt på request
skjema

Status ble slettet fra databasen og koden etter diskusjon om
det i møtet (mulig den fortsatt lå i search siden ved en feil). I
stede er Invalid parameteren der, som admin kan justere i
request siden. De requestene som blir satt til invalid blir grå i
tabellen, og går ikke an å prosessere videre.
GLN: Riktig, status ble ikke brukt i forrige versjon men kom
opp som et ønske fra KIA, hvordan se hvilke requests som er
behandlet og ikke...
Kan request nr som ikke er brukt / prosessert i TFC ha en
annen farge? Font eller kjennetegnes i oversikten over
Request nr - versjon nr på et eller annet vis?
Løsning: Lagt til tre forskjellige statuser (Open, TFC, Order)
som settes automatisk eller ved "Correct Request" for
Admin/SU. Status er og lagt til i popup request-velgeren samt
vanlige oversikten over requests

30/04/21

Kristian

Done

34 4/23/2021 GLN / KIA Request Når vi har laget en ny forespørsel så kommer ikke den
automatisk inn på listen i oversikten, vi må "refreshe" siden
for å se siste

Er vel også iorden?
30/04/21 Escalation

35 4/23/2021 GLN / KIA General print / download to pdf med alle parametre virker ikke for
request, tfc eller order, får da bare overskrift og nr

Vi finner desverre lite informasjon om generering av pdf fil
med tabell med mange parametere. Implementerer at man
kan velge excel sheet istede, som vil fungere bedre med
mange parametere.

30/04/21
Emma Nils

In work

36 4/23/2021 GLN / KIA TFC Gross run out length er flyttet til side 3, men blir ikke
beregnet før man har vært innom side 4 og tilbake og da er
vi like langt som da den stod kun på side 4

28.04.21: verdien kommer inn ser det ut til.
30/04/21

Emma
Escalation

37 4/23/2021 GLN / KIA TFC Feil i nummerering av TFC, blir dobbelt opp på samme
nummer i alle fall når vi lager ny TFC på basis av en gammel
TFC og henter forespørsel informasjon fra annet request nr

Dette skal vel være iorden?
30/04/21 Escalation

38 4/23/2021 GLN / KIA TFC Parametrene sorteres i ønsket rekkefølge og boksene
merkes etter hva som beregnes / fylles inn særlig under
Prosess, forslag kommer mandag.

Venter på forslag
01/08/21 in work

39 4/23/2021 GLN / KIA TFC Side 5 under Die - Mandrel set må ikke være et obligatorisk
felt

Fikset
30/04/21

Emma
Done

40 4/23/2021 GLN / KIA Order Oversikten / search tabellen for request nr må vise kun de
request der det allerede finnes en TFC, ellers kan man ikke
bestille på basis av request nr

Viser nå bare requests der det allerede finnes minst en TFC.
30/04/21

Jesper
Done

41 4/23/2021 GLN / KIA Order Request nr, request version eller order nr SKAL ikke kunne
endres, du velger først request nr og version, mens ordre nr
autogenereres

Satte disse disabled
30/04/21

Jesper
Done

42 4/23/2021 GLN / KIA Request Sketch nr skal ikke kunne endres, det er låst dersom en
kjører update request.

Sketch nr er nå låst på menyvalget "Correct Request" 30/04/21 Kristian done

43 4/23/2021 GLN / KIA Request Recalc: SAP nr skal være låst, kan få lov til å skrive i feltet
bare hvis verdi mangler

SAP nr er låst hvis felt er fylt ut, men har satt det slik at feltet
kan endres hvis felt er tomt, inneholder "?" eller "na" 30/04/21 Kristian done

44 4/23/2021 GLN / KIA Request Recalc: Comment felt er ikke aktivt, får ikke lov å legge til
kommentar, det må vi kunne gjøre

Comment feltet er aktivert for endring på ReCalc og Change 30/04/21 Kristian done

45 4/26/2021 GLN Request Når jeg taster inn verdi i et felt og forslag popper opp.
Eksempel skriver Au i felt for kunde, da kommer 3 forslag
opp, bruker jeg piltast ned til riktig forslag og tab for å velge
og gå videre så velges ikke dette slik som i excel eller andre
skjema, jeg må aktivt klikke på alternativet for å få det valgt.
Kan vi få "Tab" til å virke som enter når feltet er endret? Dvs
på volum så ser det ut til at tab virker slik men ikke på drop
lister muligens....

Vi skal se på hva muligheter vi har. Feltene på skjemaene er
Material UI komponenter, det er et framework vi har tatt i
bruk for visse deler av applikasjonen for å få bedre design og
brukervennlighet enn det vi føler vi hadde klart å få til uten
framework. Vi skal se litt om det går an å endre bruken av
tab, men siden dette er en ferdigbygd komponent er det ikke
sikkert vi kan gjøre det. Dette er nå implementert

30/04/21

Jesper

Done

46 4/26/2021 GLN Request Send knappen er ikke aktiv når vi velger "New request from
scratch"

Fjernet Sketch_no som påkrevd felt for at send knappen skal
aktiveres 30/04/21 Kristian Done

47 4/26/2021 GLN General Søkefelt - når jeg har valgt et oppsett for felter jeg vil vise så
burde disse minimum holde hele min innlogging. Nå velger
jeg felter for søk request, deretter går jeg innom en TFC for
å sjekke noe og når jeg kommer tilbake til request så vises
bare standardfeltene og jeg må på nytt legge til de feltene /
filteret jeg ville se på....

Valgte parametere for alle tabeller lagres nå slik at man kun
må endre parametere for Request, TFC eller Order en gang
hver. 30/04/21

Kristian

Done

48 4/26/2021 GLN General Request og TFC, ,når jeg står i et skjema og vil avlutte dette
uten å sende, klikker da meny til venstre og velger for
eksempel requst for å få starte på nytt, får spørsmål om jeg
virkelig vil avbryte, bekrefter denne og så skjer det ikke noe,
blir fortsatt stående i samme skjema, må gå via en annen
side - eksempel hjem eller search, eller dersom jeg står på
request og vil avbryte denne holder det ikke og velge requst
men må ta alt annet. står jeg i TFC kan alt annet ta meg
tilbake men ikke TFC der jeg egentlig vil tilbake til å starte ny
etter å ha bekreftet at jeg vil forkaste pågående TFC.

Kjenner til problemet, vi la til en tilbakeknapp øverst til
venstre i hvert skjema for å gå tilbake til hovedmenyen som
en midlertidig løsning. Måten skjemaet vises på gjorde det
vanskelig å hoppe tilbake ved å trykke på samme menyvalg.
Skal forsøkes på igjen hvis vi blir ferdig med høyere
prioriterte feilrettinger. Løsning blir å disable menyknappen
der man står i programmet

Emma

Done

49 4/26/2021 GLN TFC Default verdi på last billet scrap skal være 1m om jeg ikke
husker feil, ser at det nå kommer inn rare tall som 1,02 /
1,05 m blant annet, hvor kommer disse fra?

Default verdi på last billet scrap er profileLength/1000, slik
som i excel programmet. Kan runde av verdien om det er
ønskelig.
Beklager - hadde glemt det var formel. holder med 1 desimal
ja.
ES: verdien blir nå avrundet hvis den kommer fra formelen,
om det blir skrive inn så blir det ikke avrunding

Emma
Done

50 4/26/2021 GLN TFC Utregning av "extrusion time to fill saw table " fungerer ikke
som den skal, det hender at den kommer når siden fullføres,
men den forsvinner igjen til confirm page.. og da kan man
heller ikke sende TFC
Sagetid endres også fra side 5 til confirm page får ny
verdi?? samtidig som extrusion time forsvinner

Extrusion time skal være fikset på forrige oppdatering.
Har testet sagetid og opplever ikke samme feilen selv, kan vi
få mer informasjon om når det oppstår? 27.04: Tror kanskje
dette er fikset nå

Emma Jesper

Done

51 4/26/2021 GLN TFC Prøvde lage TFC basert på gammel TFC og nytt request nr,
da feiler chamber area med feilmeldingen "This value should
be between 0 and 0"

Dette er mulig grunnet til at chamber area i gamle databasen
er i cm2, menst nå er det mm2. Vi har planlagt å endre det til
cm2 igjen om vi får tid, men har valgt å prioritere de andre
punktene først siden funksjonen ellers fungerer. 27.04: Har
endret til cm2 i backend og frontend

Kristian Jesper

Done

52 4/26/2021 GLN TFC Profile weight må ha 3 desimaler Mer informasjon? Skal være mulig å skrive 3 desimaler på
profile weight.
upresist av meg: Det er mulig å skrive inn, men når jeg
velger pil opp eller ned så går den kun på hele tall? Evt bare
ta bort opp/ned funksjonen der, vi skriver nok alltid inn verdi
direkte.
NT: Vil du at pilene skal fjernes på alle bokser med number,
eller kun der det er snakk om desimaltall ol.
GLN: Disse kan generelt fjernes for tall, vi endrer ikke i så
små steg

Nils

done

53 4/26/2021 GLN Users Prøvde legge til ny bruker"usertestGerda@gmail.com" for å
teste ut hva jeg har tilgang til som bruker i kategori "user",
men får ikke lagt til, får feilmelding om at username already
in use og user not added

Har fikset feilen, men den har ikke blitt sendt til deres server
enda.

Nils
done

T.QM.110 General LOP_Action Item List.xltx/ 2020 09 / 307822 / File: LOP Action Item List (Server updated 01.05 12:00) / 3 von

54 4/26/2021 GLN General Omregning TFC Die info, °C skal regnes om til F - er ikke
implementert, die cost pr kg har enhet NOK/kg, kan vises i
EUR/kg om currency er EUR(ingen omregning), eller regnes
om og vises i blå for $/lb om det jobbes i US unit

Lagt til currency i databasen, tempratur omregning er ok,
tittelen på die cost er endret til die cost [currency/(kg eller lb)]

Nils

done

55 4/29/2021 GLN Request Når en prøver å endre kappelengde profil, eller part length
så får en opp varselboks når første siffer skrives inn, denne
må vente til enter eller tab eller ny celle er trykket

Fikset med onblur istedet for onchange
30.04: Fungerer ikke på request update som er der jeg har
rukket å teste så langt. 01.05: Skal funke nå siden benteler
serveren ble oppdatert idag

Jesper
Done

56 4/29/2021 GLN Request Surface quality legges til under Profile info 30.04: Lagt inn på order men ikke på request såvidt jeg kan
se (GLN)

Nils in work

57 4/29/2021 GLN Order Surface quality tas med i skjema - kan endres ved bestilling 30.04: ok - finnes i skjem Jesper Done
58 4/29/2021 GLN TFC Run-out length feilmelding selv om lengden er innenfor spec,

ref e-post - varsel/feilmelding forsvant om jeg gikk til neste
side og så tilbake
Run-out length - ingen feilmelding selv om lengden er
utenfor spec, ref e-post - varselet kom om jeg gikk til neste
side og så tilbake....

not started

59 4/29/2021 GLN TFC TFC based on old TFC with new request, endret profilvekt
men da blir ikke run-out length endret - den ser ut til å bli
endret først etter at jeg har vært innom side 4 og så går
tilbake til side 3.
Endrer jeg andre verdier på side 3 (bille length eller butt end)
så beregnes ny gross length med en gang, men dette
gjelder ikke om jeg endrer verdier på sidene før eller etter....

not started

60 4/29/2021 GLN Users Ser at vi ikke har holdt tunga rett i munnen ved
gjennomgang usecase fra dere tidlig i prosjektet og har
derfor ikke riktige rettigheter lagt ut.
user: request, order
superuser: request, TFC, cost-calc og order
Product Controller: Cost-Calc - hente ut bridge fil
Admin: se og editere alt, parametre og brukere

ES: kommer med neste oppdatering Emma

Done

61 4/29/2021 GLN Users Cost-Calc user har ikke tilgang til noe, tom meny fane 30.04: fortsatt tomme faner når jeg logger inn som costcalc
user
ES: kommer med neste oppdatering

Emma
Done

62 4/29/2021 GLN TFC Reduction ratio - upresis formulering av meg, warning skal
si: This value should be between 15-and...

Emma not started

63 4/30/2021 GLN General Automatisk e-post: når databasen er ferdig testet må vi
kunne slå på automatisk e-postvarsler.
Vi må sende dere innhold - standardoppsett for disse om
dere ikke finner de fra gammel vb rutine tror de står der..
1) Request utfylt og sendt --> mail to "requestor", "Profile
planner" = hara.extrusion@benteler.com
2) TFC utført og sendt til db --> mail to "requestor", "Product
controller" med beskjed om at TFC ferdig og at bridge fil kan
hentes
3) Order utfylt og sendt --> mail to "profile planner"

Skal endre IP til Benteler sin interne SMTP server, og legge
til mail på order og TFC. Ønsker gjerne å få tilsendt format
på E-post. Automatisk mail etter ferdig TFC og Order er lagt
til, men alle sender mail til en fast mail adresse for testing
foreløpig for å unngå spam.

Kristian

in work

64 4/30/2021 GLN General FAQ side info
Bilde til førstesiden / Layout

Kristian Inge Gerda
not started

Extrusion planner

Appendix D

CostCalc document code

1 public static byte[] getBridge(int requestNo , Connection con) {
2 try {
3 List <Costcalc > costcalcs = getCostCalcPerRequest(requestNo ,con); //Gets all

costcalc relevant data for each TFC per a requet number
4

5 // Retrieves the file
6 Path temp = Files.createTempFile("BridgeFile", ".xlsx");
7 Files.copy(CostcalcService.class.getClassLoader ().getResourceAsStream("

BridgeTemplate.xlsx"), temp , StandardCopyOption.REPLACE_EXISTING);
8 FileInputStream inputStream = new FileInputStream(temp.toFile ());
9 Workbook workbook = WorkbookFactory.create(inputStream);

10

11 Sheet sheet = workbook.getSheetAt (0);
12

13 Costcalc costcalc; // Buffer
14

15 // Prepares the area of the Excel document for manipulation
16 initializeSheet(costcalcs ,sheet);
17 int offset = 1; // Offset in the excel sheet (Where the first row starts)
18 for(int i = 2; i<= costcalcs.size()+1; i++) {
19 costcalc = costcalcs.get(i-2); // Indexing starts at 0
20

21 String suffix = "";
22 int press = Integer.parseInt(costcalc.getPress ().substring (1));
23 if(press == 22 || press == 40 || press == 55)
24 suffix = " (NO)";
25 if(press == 16)
26 suffix = " (FR)";
27 if(press ==27 || press == 35)
28 suffix = " (US)";
29

30 sheet.getRow (0+ offset).getCell(i).setCellValue(costcalc.getRequest_no ());
31 sheet.getRow (1+ offset).getCell(i).setCellValue(costcalc.getSketch ());
32 sheet.getRow (2+ offset).getCell(i).setCellValue(costcalc.getProfile_no ());
33 sheet.getRow (3+ offset).getCell(i).setCellValue(costcalc.getTFC_no ());
34 sheet.getRow (4+ offset).getCell(i).setCellValue(costcalc.getCustomer ());
35 sheet.getRow (5+ offset).getCell(i).setCellValue(costcalc.getProject ());
36 sheet.getRow (6+ offset).getCell(i).setCellValue(costcalc.getProduct ());
37 sheet.getRow (7+ offset).getCell(i).setCellValue(costcalc.getAlloy ());
38 sheet.getRow (8+ offset).getCell(i).setCellValue(costcalc.getTemper ());

152

Extrusion planner

39 sheet.getRow (9+ offset).getCell(i).setCellValue(costcalc.
getReq_part_length ());

40 sheet.getRow (10+ offset).getCell(i).setCellValue(costcalc.
getParts_pr_vehicle ());

41 sheet.getRow (11+ offset).getCell(i).setCellValue(costcalc.
getAvg_annual_volume ());

42 sheet.getRow (13+ offset).getCell(i).setCellValue(costcalc.getPress ()+
suffix);

43 sheet.getRow (19+ offset).getCell(i).setCellValue(costcalc.
getProfile_weight ());

44 sheet.getRow (20+ offset).getCell(i).setCellValue(costcalc.getBillet_length
());

45 sheet.getRow (21+ offset).getCell(i).setCellValue(costcalc.getButt_end ());
46 sheet.getRow (22+ offset).getCell(i).setCellValue(costcalc.

getDelivered_profile_length ());
47 sheet.getRow (23+ offset).getCell(i).setCellValue(costcalc.

getExtrution_speed ());
48 sheet.getRow (24+ offset).getCell(i).setCellValue(costcalc.

getDie_change_time ());
49 sheet.getRow (25+ offset).getCell(i).setCellValue(costcalc.

getBatch_size_billets ());
50 sheet.getRow (27+ offset).getCell(i).setCellValue(costcalc.getScrap_front ()

);
51 sheet.getRow (28+ offset).getCell(i).setCellValue(costcalc.getScrap_rear ())

;
52 sheet.getRow (29+ offset).getCell(i).setCellValue(costcalc.

getScrap_first_billet ());
53 sheet.getRow (30+ offset).getCell(i).setCellValue(costcalc.

getScrap_last_billet ());
54 sheet.getRow (31+ offset).getCell(i).setCellValue(costcalc.

getNon_performance_scrap ());
55 sheet.getRow (33+ offset).getCell(i).setCellValue(costcalc.

getSurcharge_tooling_tol ());
56 sheet.getRow (35+ offset).getCell(i).setCellValue(costcalc.

getLengths_per_layer ());
57 sheet.getRow (36+ offset).getCell(i).setCellValue(costcalc.

getLayers_per_rack ());
58 sheet.getRow (37+ offset).getCell(i).setCellValue(costcalc.

getCycletime_packing_rack ());
59 sheet.getRow (38+ offset).getCell(i).setCellValue(costcalc.

getAdditional_invest_extrspeed ());
60 sheet.getRow (39+ offset).getCell(i).setCellValue(costcalc.

getInvest_comment ());
61

62 sheet.getRow (96+ offset).getCell(i).setCellValue(costcalc.getDie_price ());
63 sheet.getRow (97+ offset).getCell(i).setCellValue(costcalc.getBolster_price

());
64 sheet.getRow (98+ offset).getCell(i).setCellValue(costcalc.getNo_cavities ()

);
65 sheet.getRow (99+ offset).getCell(i).setCellValue(costcalc.getDie_life ());
66

67 }
68

69 inputStream.close ();
70

71 ByteArrayOutputStream outputStream = new ByteArrayOutputStream ();
72 workbook.write(outputStream);
73 workbook.close();
74

75 return outputStream.toByteArray ();

153

Extrusion planner

76 // outputStream.close(); //Not needed for a byteArrayStream
77 } catch (FileNotFoundException e) {
78 e.printStackTrace ();
79 } catch (IOException e) {
80 e.printStackTrace ();
81 }
82 return null;
83 }
84

85

86

87

88 public static void initializeSheet(List <Costcalc > costcalcs , Sheet sheet) {
89 for(int i = 2; i<= costcalcs.size()+2; i++) {
90 for (int j = 0; j <= 101; j++) {
91 if (sheet.getRow(j) == null) {
92 System.out.println("Creating row");
93 sheet.createRow(j);
94 }
95 if (sheet.getRow(j).getCell(i) == null) {
96 System.out.println("Creating cell");
97

98 sheet.getRow(j).createCell(i);
99 } else {

100 sheet.getRow(j).getCell(i);
101 }
102 }
103 }
104 }
105

106

107

108

109 public static List <Costcalc > getCostCalcPerRequest(int requestNo , Connection con) {
110 List <Costcalc > costcalcs = new ArrayList <Costcalc >();
111

112 Costcalc buffer = null;
113 try{
114 ResultSet rs; //TFC query
115 ResultSet rs2; //Press query
116 ResultSet rs3; // Request query
117

118 // Getting TFC data
119 PreparedStatement st = (PreparedStatement) con.prepareStatement("Select *

FROM TFC WHERE Request_no = ?");
120 st.setInt(1, requestNo);
121 rs = st.executeQuery ();
122

123 while (rs.next()) {
124

125 // Getting press data
126 PreparedStatement st2 = (PreparedStatement) con.prepareStatement("SELECT

Die_change_time FROM Press WHERE Press_name = ?");
127 st2.setString(1,rs.getString("Press"));
128 rs2 = st2.executeQuery ();
129 while (rs2.next()) {
130

131 // Getting request data
132 PreparedStatement st3 = (PreparedStatement) con.prepareStatement("

SELECT * FROM Request WHERE Request_no = ? AND Request_ver_no = ?");

154

Extrusion planner

133 st3.setInt(1, rs.getInt("Request_no"));
134 st3.setInt(2, rs.getInt("Request_ver_no"));
135 rs3 = st3.executeQuery ();
136 while (rs3.next()) {
137 String sketchRev = "";
138 if(rs3.getString("Sketch_rev") != null)
139 sketchRev = rs3.getString("Sketch_rev");
140

141 buffer = new Costcalc(
142 rs.getInt("Request_no")+"-"+rs.getInt("Request_ver_no"),
143 rs3.getString("Sketch_profileno"),
144 rs.getString("Sketch") + sketchRev ,
145 rs.getInt("TFC_no"),
146 rs3.getString("Customer"),
147 rs3.getString("Project_name"),
148 rs3.getString("Part_description"),
149 rs.getString("Alloy"),
150 rs.getString("Temper"),
151 rs3.getFloat("Part_length"),
152 rs3.getInt("Parts_pr_vehicle"),
153 rs3.getInt("Average_volume_y"),
154 rs.getString("Press"),
155 rs.getFloat("Profile_weight_kg_pr_m"),
156 rs.getFloat("Billet_length_mm"),
157 rs.getFloat("Butt_end_mm"),
158 rs.getFloat("Profile_length_mm"),
159 rs.getFloat("Extrusion_speed_m_min"),
160 rs2.getFloat("Die_change_time"), //From inner query
161 rs.getInt("No_of_billets_batch"),
162 rs.getFloat("Front_scrap_m"),
163 rs.getFloat("Rear_scrap_m"),
164 rs.getFloat("First_billet_additional_scrap_m"),
165 rs.getFloat("Last_billet_additional_scrap_m"),
166 rs.getFloat("Non_perf_scrap_pct"),
167 rs.getFloat("Safety_margin"),
168 rs.getInt("Profiles_per_layer"),
169 rs.getInt("No_of_layers"),
170 0, //Is calculated in schema
171 rs.getFloat("Investment_req"),
172 rs.getString("Investment_description"),
173 rs.getInt("Die_cost_kg"),
174 rs.getInt("Bolster_cost"),
175 rs.getInt("No_of_cavities"),
176 rs.getInt("Die_life")
177);
178 }
179 }
180 costcalcs.add(buffer);
181 }
182

183 }catch(SQLException ee){
184 ee.printStackTrace ();
185 }
186 return costcalcs;
187 }

Listing D.1: Cost Calc main function for producing a bridge file with accessory functions

155

Extrusion planner

Appendix E

Mindmanager map

156

Extrusion planner

157

Extrusion planner

Appendix F

Project agreement

158

Extrusion planner

Appendix G

Group rules

162

Grupperegler:

- Alle må delta i møte med veileder*
- Alle må delta i møte med benteler*
- Alle må delta i sprint møte (om vi velge scrum)*
- Etter hvert møte skal alle ha klart for seg hva de skal jobbe med til neste gang.
- Hvis en person ikke har mulighet til å delta på et møte, så må det sies i fra om minst
to timer i forveien.
- Ved lengre fravær skal situasjonen diskuteres med veileder.
-Antall timer som er forventet å arbeide i uken? 30, 6 per dag
-Ved uenigheter i gruppen blir det avstemning, om det er likt får gruppeleder ta
avgjørelsen.
-Alle må loggføre timene de jobber med prosjektet

Extrusion planner

Appendix H

Meeting minutes

164

Meeting minutes

14.01.2021
Agenda: Requirements and desires for the program. Project agreement
Place: Microsoft teams
Duration: 30 minutes
Participants:
Kristian, Jesper, Emma, Nils, Frode and Gerda
Outcome:
Discussed what requirements Benteler had for our application, as well as the inner workings
of the current application used, which lacked functionality in key places where our application
will fill in. This includes the current way the CostCalc team receives process parameters by
Excel documents, instead our application should directly send this data using some form of
integration with the CostCalc program.
Security was also discussed but no clear opinion was formed, so the next meeting is planned
with someone from IT at Benteler. For the next meeting we are also supposed to discuss
what developing language is the most fitting, (web or java).
We were also promised a schema showing the current workings of the current program as
well as some key requirements for the next meeting on Tuesday.

15.01.2021
Agenda: Project rules, routines, tools, Planning the start of next week. Plan things that have
to be done
Place: Teams
Duration: 1 hour
Participants: Nils, Jesper, Kristian, Emma
Outcome:
Came up with some project rules that the group has to follow. We also found some time slots
where the whole group can meet and work together. We came up with some tools that we
want to use during this project. Things we have to do next were also discussed during the
meeting.

18.01.2021 (11-12) - Supervisor meeting.
Agenda: Discuss development language in context of usage (little experience with web vs.
alot of java experience), how we should consider Bentelers current program solution, the
current received requirements.
Place: Teams
Duration: 30 minutes
Participants:
Kristian, Jesper, Emma, Nils, Sony and Hilda
Outcome:
Look at previous courses in web languages
LinQ for SQL to visual basic
Split what we learn of the language, so we all learn different special stuff.
Ask for if they want to extract to a pdf for example? for a report

We discussed the dilemma of client versus web application, and got recommended to take a
week (week #3) to learn about web languages, like react javascript etc, and after this week

we should make a decision if we believe we can finish the project using web languages.
Looking at previous courses in web development was recommended.
It was also recommended that we split non-basic web development research, so we each
learn a specialized “field”. We should discuss if the database content will need to be
extractable to for example PDF with Benteler.They also mentioned that we can use ASP.net
for the web application, and visual studio for the development because visual studio
connects both the frontend, backend and the database.

19.01.2021 (11:30-12:30) - Meeting with Benteler
Agenda: Get a walk through of the flow chart/functionality of the current program solution,
and receive concrete functional requirements.
Place: Teams
Duration: 60 minutes
Participants:
Kristian, Jesper, Emma, Nils, Frode and Gerda
Outcome:
A complete walkthrough of how Benteler handles requests, TFC, intercommunication with
databases, teams and so on. Also got a general idea of privileges that certain user groups
should have.
Detailed meeting notes/use cases/workflows:

• When a profile request is made, the project planner is notified (today with an email),
this must happen.

• Then the internal TFC meeting is called, where the request is evaluated and most of
the process parameters is decided/calculated/estimated from the meeting.

• The “admin” section in the current program describes access to certain stuff, today its
done in excel

• “OrderTest” is the test database, which we will get access to in form of a copy that we
have to set up ourselves.

• Number and index on a request is tied to a schema/drawing tied to a type of alloy,
with parameters.

• The program should be able to search for matches based on all parameters (at least
those available in the database).

• A user can start a totally new request, or utilize a previous request and its data.
• If a user select “Change” the purpose is that the changes to a existing request is big

enough that it requires a new calculation by the CostCalc team, so its sent to them.
Significant changes includes change of alloy or running parameters. Gets a new
index number after this change.

• If a user selects “ReCalc” only certain parameters can be changed, and the program
will automatically recalculate values in the request. The expert team will not have to
meet after this. Calculations are based on volume or length.

• Fields that cannot be changed from the copied request are marked with orange, fields
that HAS TO BE approved are marked with red, fields that needs to be filled are
marked with yellow.

• Indexing/enumeration is done automatically by the program, when a profile/TFC is
changed (enough?) it gets a new index.

• A user can also request an old profile again.
• The program should keep static parameters like alloys, presses etc in the database,

today it’s kept in excel in a drop down menu.
• Profile drawing number is always in the request if the drawing exists.
• SAPID (the id of the profile drawing) is in the request, we could also include an image

of the drawing or a link to the drawing in addition.

• All purple fields in the TFC document represent fields where values are automatically
retrieved from the request the TFC is based on. These values come from the
database, and the rest is filled in during the meeting.

• Some options/choices in the TFC have some linked parameters that’s automatically
filled in other places in the document like press capacity and so on.

• A user can also start with a previous TFC as a base, and change it.
• Some fields should include formulas and limits, so the user cannot input illegal values

that are either too high or too low. The color of a field should also change if values
are coming too close to an illegal value. This is done to alarm the TFC team.

• TFCs with illegal values and hence are not producible should not pass.
• There should be functionality to change units used (metric/imperial)
• Language should be English ONLY
• A profile drawing has the request number and version number attached to it.
• A request can have multiple TFCs, a TFC for a small press and a TFC for a large

press.
• When a user presses update after finishing the change of the TFC/Request it is sent

to the database.
• A user should be able to search for requests/TFCs with for example a cyclus time of

more than X or less than Y or both. Which has a minimum wall thickness and number
of chambers.

• A user should be able to delete requests/TFCs
• When a TFC is finished it is sent to the CostCalc team using a button, (today the most

important values is sent with a excel document.)
• The CostCalc team has access to the BridgeCalc report which is sent.
• For a order to be made, it requires that something has been requested first, then a

order is made based on that request.
• When a order is made, the request, TFC and what was ordered is sent to “base”?
• RND orders doesn’t require a previous project/tfc/request, it is a open order.
• The program should provide functionality to adjust database data like static values

and other values.(insert/delete/update etc).

Permissions:
• Reports of which requests that are made are open to everyone
• TFC evaluation is not open for everyone (certain people)
• Full report is really limited with all key profiles.
• Permissions could be ordered in such a way that the leftmost column in their existing

program belongs to user group 1, and middle user group 2, and right user group 3.

25.01.2021 (09-10) - Internal Meeting
Agenda: Status meeting
Place: Teams
Duration: 60 minutes
Participants:
Kristian, Jesper, Emma, Nils
Outcome:
Discussed our progress in learning front- and backend languages/tools.

25.01.2021 (11:00-11:30) - Supervisor meeting.
Agenda: Discuss how comfortable we have become in terms of the web programming
languages. Discuss the Use case diagram, and requirements.
Place: Teams
Duration: 30 minutes
Participants:
Kristian, Jesper, Emma, Nils, Sony and Hilda
Outcome:
Discussed what can be added to the project plan, and that the plan looked good. Also
discussed that we need to collect everything our application does better than the old
application so that the sensors see that we not only have copied the old application.

26.01.2021 (11:30-12:30) - Meeting with Benteler
Agenda: Present use cases, who creates the accounts?, do you still need the testing
functionality from the old software, filename format: [request number]:[TFC number]
Place: Teams
Duration: 60 minutes
Participants:
Kristian, Jesper, Emma, Nils, Frode and Gerda
Outcome:
We got a run through of the use cases, as well as comments and improvements on what we
made. Admin will be creating the accounts with necessary permissions as it is the safest. We
will also attend a meeting where we will learn about the extrusion process to get some
background knowledge when developing the application. We also discussed how we could
improve the current methods. Like letting the program evaluate if a Recalc, Update etc is
required. We also got approval of the idea of filling out the TFC section by section, but then
we need to have certain parameters visible at all times (like extrusion length).
TFCs should still be sent to the database even though any values are outside given
thresholds, as an expert needs to assess this and approve it for production before it can be
sent as an order.
There was also discussed that they would want a report of multiple TFCs with only selected
values (which is done in our application). This report should not be changed so it could be in
PDF format.
Discussed also whether mail or any task program would be the best choice for notifying the
project planner.
The threshold values for deciding whether a profile is legal or not should be in the database.
Normal users can see whole requests. Also discussed that normal users should only be able
to see requests and not delete. They also want us to find a suited format for printing of
request reports, and also be able to choose which parameters to print out on the report.

08.02.2021 - Supervisor meeting.
Agenda: Discuss NDA, citing code usage
Place: Teams
Duration: 30 minutes
Participants:
Kristian, Jesper, Emma, Nils, Sony and Hilda
Outcome:
Discussed the NDA and that we could sign it and send a mail with it describing what we need
to show (?). Also discussed that the NDA was a quite standard NDA so it shouldn't be any
problem, but Sony is going to check with Tom. Got input from the supervisors to convey in
the report and presentation that we are working on the whole process from frontend to
database as well as planning testing and input from external people. The A grade is in the

fine details! We should also research if there is something already existing that could be
used for the purpose, and show it to Benteler to get a response if it could solve the case, or if
it is lacking and what our application should be doing differently. (I doubt it though as the case is very

specific -Kristian).

09.02.2021 (11:30-11:45) - Meeting with Benteler
Agenda: Discuss the NDA. Also discuss if the application can be tested during a period
before the deployment phase.
Place: Teams
Duration: 15 minutes
Participants:
Kristian, Jesper, Emma, Nils, Frode and Gerda
Outcome:
Discussed the NDA, and agreed on that we should have a meeting closer towards the end of
the project to make sure we are not disclosing unwarranted information in the report or
during the presentation. Unwarranted information is mostly production data regarding certain
profiles for example. The programs workings, Request/TFC input schemas and such can be
shared. Snippets of the code can be used in the report/presentation for demonstration
purposes. A period of testing was also agreed upon further towards the end of the project.

16.02.2021 (11:30-12:10) - Meeting with Benteler
Agenda: Discuss the NDA. Also discuss if the application can be tested during a period
before the deployment phase.
Place: Teams
Duration: 40 minutes
Participants:
Kristian, Jesper, Emma, Nils, Frode, Geir and Gerda
Outcome:
Showed the progress, and got some feedback; in the search interface, only show the last
requests per the last six months, and the search interface should be flexible to adjust the
shown columns to a personal preference, perhaps create personal views.
Titles in the search interface should be translated to human readable text.
Export of selected parameters from the request into a PDF document.
Explore the possibility of manipulating columns in the database without needing to change
the code/SQL Queries. Also discussed access to a webserver at Benteler. They are going to
send us some papers that we have to sign, and then we will get the server.

23.02.2021 (12:30-13:00) - Meeting with Benteler
Agenda: Walkthrough for the cost-calc process
Place: Teams
Duration: 30 minutes
Participants:
Kristian, Jesper, Nils, Frode and Markus
Outcome:
We got a walkthrough by Markus from the CostCalc team on the process of calculating from
TFC to order, where he explained that the calculation is done in multiple steps by multiple
people possibly in different locations. Discussed how we could accomplish this in our
program, that we could either:

1. Export a excel documents with required information
2. Export to database (SQL)
3. Integrate the whole process, by providing access for different people to

calculate/input different values at each step in the costcalc process.
We also received the costcalc schema by mail.

Contact: Markus.werz@benteler.com for further questions to CostCalc

24.02.2021 (14:00-15:20) - Meeting with Benteler
Agenda: Detailed walkthrough of the extrusion process
Place: Teams
Duration: 1 hour and 20 minutes
Participants:
Kristian, Jesper, Nils and Gerda
Outcome:
We got a detailed walkthrough of the extrusion process and explanation of the different
process parameters used in the TFC schema. For example how you get metal scrap out of
the extrusion process, what happens when a new bolt is inserted back to back with the old
one. Temperature and speed limits for keeping certain properties of the metal and different
types of alloys and how that affects the strength, extrusion speed and crushability.
We also got input to our request schema that we should add “Due date”, “Extrusion
Length/Delivery Length”, and we could also combine multiple steps in the TFC/Request
Scheme like TFC : (6,7,8) and format/group more fields together (we will get input on this
from Gerda). In order main page the user should be able to search for request and TFC
number to input in the order schema.

02.03.2021 (11:30-12:21) - Meeting with Benteler
Agenda:Show what we have done in this sprint. Also discuss if they want to export to excel
or pdf or both. We should also ask for which parameters that can change in change/recalc
etc. Also ask about the parameter intervals.
Place: Teams
Duration: 51 min
Participants:
Kristian, Jesper, Emma, Nils and Gerda
Outcome:
Showed development progress, got input on certain menu options to be improved as no
request can be changed without recalculation. TFC also cannot be created from scratch,
must be based on at least an earlier request. Choosing an old TFC and then picking the
desired request afterwards was also discussed for implementation. Parameters and limits for
certain fields were explained, as well as how certain values are calculated using for example
press parameters.
Admin should also be able to mark a request as invalid, instead of deleting which creates
gaps. Our program should also account for “Die Change Time” in addition to “Dead Cycle
Time” when calculating time usage. Press parameters were also desired to be translated into
something more readable. When the user gets close or beyond limits in a field like
“Reduction ratio” a confirm dialog could pop up to make the user confirm the input. But other
values like “Gross extr length” could only be marked with red. (Will get further input on this
later). Agreed on only “translating” the values to imperial if that option is chosen, meanwhile
all saved data is metric.
Only a set of parameters should be visible to choose from in the search pages, input on this
will come later from Gerda. We also got input that only the admin user should have an option

to “update request” on the request mainpage. This is for if normal users fill some wrong
parameters.

09.03.2021 (11:30-12:12) - Meeting with Benteler
Agenda: Some questions about parameters and order-setup
Place: Teams
Duration: 42 min
Participants: Nils, Kristian, Jesper, Emma, Frode, Gerda and Kristian Inge
Outcome: Got input on the order mainpage that they want to search from requests and get
the option to choose an tfc number based on that requestnumber they choose. Kristian Inge
also came up with a suggestion to change the TFC forms so that they always see the input
they have entered in the previous steps. The students are going to do some research and try
to come up with a solution to this. The duplicated fields "Alloy" and "Temper" in the TFC form
were discussed, input on this will come later. The dropdowns for alloy and temper should be
sorted by the most used, but input on which is the most used is needed for this to happen.
We also discussed testing. Benteler wants to be able to test the program's functionality early
on. The students will discuss internally and give Benteler a response of when we believe it
will be ready for testing.
From week 12 and onwards, meeting time will be Wednesday 11:30 to better suit all
participants schedules

15.03.2021 - Supervisor meeting.
Agenda: Showing progress
Place: Teams
Duration: 40 minutes
Participants:
Kristian, Jesper, Emma, Nils and Hilda
Outcome:
Showed progress and discussed more about the wow factor. We need to finish main
functionality and get it working correctly before figuring out the wow factor. Having a per
project report was also discussed but it is not that applicable to the cause.
In the report we should also provide screenshots and comparisons to the old software and
how we exceed that in which ways. If images are too large we could put them in the
appendix last in the report.
We also discussed when testing could be done, and that we could request Benteler to give
feedback on how our program helped their workflow in certain areas/sections in the program.

16.03.2021 - Benteler meeting
Agenda: Meeting end of sprint, showing the latest progress
Place: Teams
Duration: 28 minutes
Participants:Nils, Kristian, Jesper, Emma, Frode, Gerda and Kristian Inge
Outcome:
Everything in the TFC form is required besides packing, investments and comments, which
can be left optional for now. We will be testing the TFCForm with all formulas, but if that
becomes slow the amount of fields could possibly be cut down in the final schema. Having a
dropdown on the fields “Email Product Controller” and “Email Requestor” should be added to

save time and ensure integrity. Apart from that they were pleased with how things are
progressing.

17.03.2021 - Internal meeting
Agenda: Meeting end of sprint, showing the latest progress
Place: Teams
Duration: minutes
Participants:Nils, Kristian, Jesper, Emma
Outcome:
Discussed colors on backgrounds in forms, red color in invalid request is a bit too strong,
disabled requests should not be viewable in request-selection popups, but viewable in main
search page with the samef red color.

Speak with Steven from the software security course - meeting next week or after easter
vacation.
We agreed on backlog items/tasks. This sprint is mainly focused on security and design, with
further improvements on the existing functionality/forms/pages etc.

19.03.2021 - Internal meeting
Agenda: Showing the latest progress
Place: Teams
Duration: minutes
Participants:Nils, Kristian, Jesper, Emma, Frode
Outcome: Discussed process. Came up with a solution to make the tfc form faster by
making a own form that will be runned when US metrics are chosen. Also agreed to that
everyone needs to research more on deployment before the next meeting.

23.03.2021 - Supervisor meeting
Agenda: Get information about deploying a website on a webserver like IIS
Place: Teams
Duration: 20 min
Participants: Kristian, Nils, Emma, Jesper, Sony and Doney
Outcome:
https://stackoverflow.com/questions/41519198/how-can-i-host-a-spring-project-in-
windows-iis-using-tomcat

https://www.youtube.com/watch?v=yVKiNAkhav8

https://www.codejava.net/servers/tomcat/how-to-deploy-a-java-web-application-on-tomcat

https://www.guru99.com/deploying-website-iis.html

Tomcat can be used with IIS, by connecting in through that. HTTPS was a good idea for
traffic encryption.

23.03.2021 - Internal meeting
Agenda: Showing the latest progress
Place: Teams
Duration: 40 minutes
Participants:Nils, Kristian, Jesper, Emma
Outcome: Discussed process.

24.03.2021 - Meeting with Benteler
Agenda: Discussing US/Metric conversion, show and discuss the overview over previous
filled in parameters in TFC.
Place: Teams
Duration: 40 minutes
Participants:Nils, Kristian, Jesper, Emma, Frode, Gerda, Kristian inge.
Outcome: Got feedback that we don't have to prioritize implementing saving forms locally
because internet shutdown is very rarely to happen. Showed also the latest process. We got
feedback that they had envisioned a bit different solution of the summary in TFC, but they
were willing to test it out first. Benteler also asked what would happen if two people were
working with the same request/index and we agreed to implement a solution where the index
number would change and notify the user on send, if someone already has sent in the same
request/index combo.

07.04.2021 - Meeting with Steven (Security)
Agenda: Get input on what security and methods is appropriate for our application, discuss
HTTPS/Authentication/Frameworks
Place: Teams
Duration: 35 minutes
Participants:Nils, Kristian, Jesper, Emma and Steven
Outcome:
We need to identify the most important and critical functions/parts of the application and
implement relevant security or methods to protect. A important thing is to use the spring
framework and surrounding modules as much as possible, like spring boot security to do
authentication (we need to see if this is necessary).
Input validation is also a thing we need to assess, should perhaps be done in frontend, like
email validation. For input validation we should use existing APIs or libraries. Numerical
validation is already done by using material ui fields.
We should identify certain Owasp practices which is relevant and important for our
application.
Concrete security criteria we try to assess/protect with security practices should be properly
listed in the report, and the countermeasures should be compared to the OWASP Application
Security Verification Standard 4.0.2.

13.04.2021 - Internal meeting
Agenda: Sprint meeting
Place: Teams
Duration: 1 hour and 10 minutes
Participants:Nils, Kristian, Jesper, Emma
Outcome: Discussed what has to be done in the next sprint.

14.04.2021 - Benteler meeting
Agenda: Sprint progress meeting
Place: Teams
Duration: 25 minutes
Participants:Kristian, Jesper, Emma, Kristian Inge, Gerda and Frode
Outcome: Showed progress and discussed when testing will be available. Requested to get
feedback from testing which we will add in the report. Also requested feedback on how our
application differ from the old solution. We also got feedback on the cost calc page, that
exporting relevant costcalc data to Excel file format is sufficient for now. Content on the FAQ
(Frequently Asked Questions) page will be evaluated to see what should be there.

19.04.2021 - Supervisor meeting about report
Agenda: Get feedback on the report
Place: Teams
Duration: 27 min
Participants: Kristian, Nils, Emma, Jesper, Sony and Hilda
Outcome:

• Text heavy in tech but short in introduction, balance it
• Put big/complex code stuff in the appendix, but smaller snippets or important snippets

for illustrating a point directly in the report
• Use appendix for non-important content
• Have a diagram describing sprints and how it affects different part of the system
• Dont have chapter for terminology. Just normal section (Use star?)
• Dont mix group challenges and project challenges, have a separate section about

group limitation, team members. Then have another section with project part.
• Add more diagrams above the text to easier explain certain concepts. Should add a

bigger diagram explaining the system as a whole.
• Add our motivation behind the project and how we wanted to create something far

superior to the old solution.
• Make a list with with how the old system was bad, and compare how our was much

better.
• Inn the first chapter we should sell our project properly, also sell how we did security

in comparison to the old solution

21.04.2021 - Benteler meeting
Agenda: Walk through the testing result feedback list
Place: Teams
Duration: 60 minutes
Participants: Kristian, Nils, Emma, Jesper, Kristian-Inge, Gerda and Frode
Outcome:

• On requestor name and email the username can be used to fill in both if a new empty
request is created.

• Product Controller Email can have a modifiable list in the database page to modify
the dropdown list.

• Alloy should be sorted like the dropdown in the old program.
• FAQ Questions can be formulated by Benteler.
• When filling out the TFC form, the field “Last billet additional scrap” should be able to

be overridden.

• Side-by-side is made the default value for “Cavities stacked”, and lock this field if No
of cavities is 1.

• Switch between units: Agreed to a small tooltip in each box with the conversion.
Textsize h2 and bentler blue and light blue colors.

• If send to database fails, the user should not be sent to the menu and should have
the option to download the data to a pdf. Option to print to pdf should be added to all
confirm pages.

• Possibility to change order of search table column-order for users will not be
implemented, but Benteler can send us changes they would like and we will change
them.

• Highlighting of some specific fields should be done with a yellow border and only on
the tfc confirmpage.

• Gerda will plan a meeting to discuss costcalc in the near future.

22.04.2021 - Benteler meeting
Agenda: Cost Calc discussion
Place: Teams
Duration: 42 minutes
Participants: Kristian, Nils, Emma, Jesper and Gerda
Outcome:

• Direct import of data into the existing CostCalc excel document would be the optimal
solution, but if there are time constraints having the data be exported into an empty
excel sheet can be a plan B solution. Macros can then be used to extract to the
proper excel sheet.

• CostCalc relevant data should be exported for all TFCs per a request number (and
version numbers).

• Research and testing on how to properly import the live database is going to be done
to ensure that the data integrity is kept when the application goes live.

27.04.2021 - Internal meeting
Agenda: Go through the LOP action item list
Place: Teams
Duration: 1 hour and 30 minutes
Participants:Nils, Kristian, Jesper, Emma
Outcome: Went through the list with bugs and distributed the last items on the list. Planned a
new meeting on thursday.

28.04.2021 - Benteler meeting
Agenda: Status meeting
Place: Teams
Duration: 1 hour
Participants: Kristian, Nils, Emma, Jesper, Frode and Gerda
Outcome:

• Comma doesn't work on some textfields in the application on the benteler servers.
Have to test and find out why.

• We need to add Surface quality in request and orderform. Surface quality cannot be
changed in TFC but is open to be changed in request and Order.

• Benteler is going to send us an CostCalc excel document with no password
protection.

• Benteler also wanted the order page to be available for normal users.

03.05.2021 - Supervisor meeting about report
Agenda: Get feedback on the report
Place: Teams
Duration: 25 min
Participants: Kristian, Nils, Jesper and Sony
Outcome:

• Got feedback that it is smart to prepare a survey and send to benteler so we can get
feedback about how satisfied they are. (Measure the quality of the application, ask if
they feel the security is good, how easy is it to locate and use)

• Put LOP action items list in the appendix.
• Add a discussion part, where we discuss how things could be improved (like points

with low rating from the survey).
• An idea is to make a screenrecord for the application that we can show during the

presentation.
• Look at old bentelerreports, to see if theres anything we have missed.
• Important to cite all figures in the report.
• Also important to add at least one comment in the code listings (So the examiners

see that we follow general coding standards).
• The survey should contain about 10 different questions, look after a standardized

questionnaire for applications.
• We should also send a draft 15th of May or earlier for evaluation.
• In the following text after a figure, it should explain sufficiently so that the examiner

does not have to look at the figure. (This should be fixed @ figure 6)
• The presentation can be a reflected version of the report or go in more detail, there

should be slides where we have answers to anticipated questions (like security)

05.05.2021 - Benteler meeting
Agenda: Status meeting
Place: Teams
Duration: 10 minutes
Participants: Kristian, Nils, Emma, Jesper, and Gerda
Outcome:

• Agreed that they will answer our survey, with at least 10 people.

06.05.2021 - Internal meeting
Agenda: report discussion
Place: Teams
Duration: 30 minutes
Participants: Emma, Nils, Jesper and Kristian
Outcome:

• Discussed what should be focused on in the report during the next few days.

10.05.2021 - Internal meeting
Agenda: report discussion
Place: Teams

Duration: 2 hours
Participants: Emma, Nils, Jesper and Kristian
Outcome:

• Went through the project and discussed what we have to prioritize this week.
• Agreed to have a new meeting on wednesday.

11.05.2021 - Supervisor meeting
Agenda: report discussion
Place: Teams
Duration: 50 minutes
Participants: Emma, Nils, Jesper and Kristian, hilda, sony
Outcome:

• fix spacing (tabulating)
• Fix upper and lower case letters in listings
• Always add text before a figure in chapters.
• Figures always show up after the reference.
• Terms and abbreviations instead of dictionary.
• Change document type to report, and Use report -> section -> subsection

• Make a table/figure in technologies for pros and cons about different technologies.
• Abstract:
• Brag a bit, Dont use adjectives. Mention everything that we have done. Mention that we

have learned a lot of platforms. Everything we have learned. What we adressed.
• Add why we chosed the testing methods.
• Add that we tested on different browsers and OS.
• Find which tests are most common to use in web applications.
• Change discussion to conclusion.
• Center references and appendix titles.
• Write about VPN and why it remedied some security concerns
• In the end of conclusion, have “Concluding Remarks” as a ending (where everything is tied

together), learning outcome section can be used here.

Extrusion planner

Appendix I

Full project time usage report

178

Week #2 Kristian Jesper Emma Nils
Project Plan Work 72 240 250 ?
Internal Meeting 130 130 130 130
Supervisor Meeting 60 60 60 60
Meeting with Benteler 30 30 30 30
Research 220
Other 120
SUM: 4,87 7,67 13,50 3,67

Week #3 Kristian Jesper Emma Nils
Project Plan Work 667 1016 867 870
Internal Meeting 60 0 0 0
Supervisor Meeting 30 0 30 30
Report Work 217 120 252 0
Meeting with Benteler 60 60 60 0

Research 255 370 861 701
Other 60 0 0 0
SUM: 22,48 26,10 34,50 26,68

Week #4 Kristian Jesper Emma Nils
Development 328 0 0 0
Testing 0 0 0 0
Report Work 87 0 0 0
Project Plan Work 0 0 0 0
Research 1108 1659 1666 1542
Other 234 90 15 0
Internal Meeting 60 60 60 60
Supervisor Meeting 20 20 20 20
Meeting with Benteler 45 45 45 45
SUM: 31,37 31,23 30,1 27,78

Week #5 Kristian Jesper Emma Nils
Development 786 938 1029 567
Testing 0 0 0 0
Report Work 112 0 634 88
Research 0 356 183 711
Other 0 0 0 0
Internal Meeting 341 145 319 309
Supervisor Meeting 0 0 0 0
Meeting with Benteler 0 0 0 0
SUM: 20,7 24,0 36,1 27,9

Week #6 Kristian Jesper Emma Nils
Development 812 1399 1269 1610
Testing 0 0 0 0
Report Work 143 90 185 74
Research 529 120 155 0
Other 521 0 0 0
Internal Meeting 0 275 227 113
Supervisor Meeting 30 30 90 0
Meeting with Benteler 13 15 14 14
SUM: 34,1 32,2 32,3 30,2

Week #7 Kristian Jesper Emma Nils
Development 1351 434 1597 1350
Testing 0 0 0 0
Report Work 0 60 132 0
Research 0 797 70 0
Other 27 0 91 0
Internal Meeting 131 60 54 54
Supervisor Meeting 0 0 0 0
Meeting with Benteler 40 40 40 40
SUM: 25,8 23,2 33,1 24,1

Week #8 Kristian Jesper Emma Nils
Development 1826 1361 976 1752

Testing 0 0 0 0
Report Work 95 30 0 0
Research 0 165 0 0
Other 0 0 76 0
Internal Meeting 0 0 0 0
Supervisor Meeting 0 0 0 0
Meeting with Benteler 115 115 0 129
SUM: 33,9 27,9 17,5 31,4

Week #9 Kristian Jesper Emma Nils
Development 1794 1173 1633 1512
Testing 0 40 0 0
Report Work 0 0 94 0
Research 0 185 0 44
Other 44 29 186 0
Internal Meeting 148 150 151 143
Supervisor Meeting 18 20 22 20
Meeting with Benteler 51 55 61 60
SUM: 34,3 27,5 35,8 29,7

Week #10 Kristian Jesper Emma Nils
Development 1673 1530 1776 1658
Testing 0 0 0 0
Report Work 116 114 35 0
Research 78 0 0 0
Other 13 0 0 0
Internal Meeting 66 70 69 75
Supervisor Meeting 0 0 0 0
Meeting with Benteler 45 45 43 0
SUM: 33,2 29,3 32,1 28,9

Week #11 Kristian Jesper Emma Nils
Development 1367 1717 1402 1559
Testing 0 0 0 0
Report Work 0 0 0 0
Research 38 0 196 0
Other 23 60 225 0
Internal Meeting 217 225 214 210
Supervisor Meeting 40 40 45 38
Meeting with Benteler 30 30 34 32
SUM: 28,6 34,5 35,3 30,7

Week #12 Kristian Jesper Emma Nils
Development 845 1411 1748 1280
Testing 0 0 0 0
Report Work 0 0 0 0
Research 0 0 0 0
Other 31 111 0 0
Internal Meeting 55 0 0 43
Supervisor Meeting 15 0 13 23
Meeting with Benteler 30 45 47 37
SUM: 16,3 26,1 30,1 23,1

Week #13 Kristian Jesper Emma Nils
Development 130 347 75 224
Testing 0 0 0 0
Report Work 0 104 90 0
Research 0 0 0 102
Other 0 0 0 0
Internal Meeting 0 0 0 0
Supervisor Meeting 0 0 0 0
Meeting with Benteler 0 0 0 0
SUM: 2,2 7,5 2,8 5,4

Week #14 Kristian Jesper Emma Nils
Development 1080 1335 753 1470
Testing 0 0 0 0

Report Work 53 0 0 0
Research 219 119 0 0
Other 38 0 691 0
Internal Meeting 0 0 0 0
Supervisor Meeting 35 0 0 34
Meeting with Benteler 0 0 0 0

SUM: 23,8 24,2 24,1 25,1

Week #15 Kristian Jesper Emma Nils
Development 1313 1163 530 1542
Testing 0 0 60 0
Report Work 515 470 878 19
Research 0 0 0 103
Other 18 48 219 0
Internal Meeting 67 75 81 64
Supervisor Meeting 15 15 13 16
Meeting with Benteler 0 35 31 0

SUM: 32,1 30,1 30,2 29,1

Week #16 Kristian Jesper Emma Nils
Development 958 1712 1007 1448
Testing 0 0 158 0
Report Work 146 43 153 193
Research 0 0 32 0
Other 355 0 171 0
Internal Meeting 128 142 140 126
Supervisor Meeting 27 30 33 71
Meeting with Benteler 102 102 103 67

SUM: 28,6 33,8 30,0 31,8

Week #17 Kristian Jesper Emma Nils
Development 1507 1094 950 1709
Testing 0 0 0 0
Report Work 0 65 0 0
Research 0 0 0 0
Other 323 612 819 0
Internal Meeting 56 208 242 110
Supervisor Meeting 0 0 0 0
Meeting with Benteler 67 60 63 63

SUM: 32,6 34,0 34,6 31,4

Week #18 Kristian Jesper Emma Nils
Development 374 0 0 0
Testing 0 82 0 0
Report Work 1430 1805 2018 1678
Research 0 0 0 79
Other 15 0 0 0
Internal Meeting 0 0 81 49
Supervisor Meeting 25 30 0 24
Meeting with Benteler 0 10 0 0

SUM: 30,7 32,1 35,0 30,5

Week #19 Kristian Jesper Emma Nils
Development 0 0 0 0
Testing 0 0 0 0
Report Work 1617 1881 1763 1499
Research 0 0 0 0
Other 0 0 0 0
Internal Meeting 289 227 138 300
Supervisor Meeting 49 0 51 52
Meeting with Benteler 0 0 0 0

SUM: 32,6 35,1 32,5 30,9

TOTAL MINUTES
Kristian Jesper Emma Nils TOTAL MIN TOTAL HRS

28083 29194 31164 28075 116516 1941,93

TOTAL MINUTES PER ACTIVITY
Kristian Jesper Emma Nils TOTAL MIN TOTAL HRS

Development 16144 15614 14745 17681 64184 1069,73

Research 2227 3771 3383 3282 12663 211,05
Report Writing 4531 4782 6234 3551 19098 318,30
Internal Meeting 1748 1767 1906 1786 7207 120,12
Supervisor Meeting 364 245 377 388 1374 22,90
Meeting with Benteler 628 687 571 517 2403 40,05
Project Plan Work 739 1256 1117 870 3982 66,37
Other 1702 950 2613 0 5265 87,75
Testing 0 122 218 0 340 5,67

Checksum: 1941,93

Note:
Document manager (Kristian) should fill in time usage each Monday from Toggl

TOTAL HOURS PER WEEK
2 29,70
3 109,77
4 120,48
5 108,6
6 128,8
7 106,1
8 110,7
9 127,2

10 123,4

11 129,0
12 95,6
13 17,9
14 97,1
15 121,5
16 124,1
17 132,5
18 128,3
19 131,1

Extrusion planner

Appendix J

Feedback from Benteler

183

18.5.2021 Benteler feedback

https://docs.google.com/forms/d/1dftjNRwJjs8JkeOHWl9zwrEm3fwv5-5wOkxmAe71exY/viewanalytics 1/8

Considering your complete experience with our software, how likely would
you be to recommend replacing it with the old software?

3 svar

In your opinion, where does the new application compare in relation to the
old application?

3 svar

Benteler feedback
3 svar

Publiser analytics

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (33,3 %)

0 (0 %)0 (0 %)0 (0 %)

2 (66,7 %)

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

2 (66,7 %)

1 (33,3 %)

18.5.2021 Benteler feedback

https://docs.google.com/forms/d/1dftjNRwJjs8JkeOHWl9zwrEm3fwv5-5wOkxmAe71exY/viewanalytics 2/8

How easy is it to navigate the software? (Are there any areas that cause
confusion etc)

3 svar

How secure do you feel the application is?

3 svar

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (33,3 %)

2 (66,7 %)

1 2 3 4 5
0

1

2

3

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

3 (100 %)

0 (0 %)0 (0 %)0 (0 %)

18.5.2021 Benteler feedback

https://docs.google.com/forms/d/1dftjNRwJjs8JkeOHWl9zwrEm3fwv5-5wOkxmAe71exY/viewanalytics 3/8

How satisfied are you with the new search functionality and having the
ability to search within multiple parameters?

3 svar

How easy do you feel the database page is in use compared to your old
solution? (Add, update, delete parameters, presses etc. Only available for
admin.)

2 svar

1 2 3 4 5
0

1

2

3

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

3 (100 %)

1 2 3 4 5
0,00

0,25

0,50

0,75

1,00

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (50 %) 1 (50 %)

18.5.2021 Benteler feedback

https://docs.google.com/forms/d/1dftjNRwJjs8JkeOHWl9zwrEm3fwv5-5wOkxmAe71exY/viewanalytics 4/8

How satisfied are you with the solution of exporting data to a bridge file on
the CostCalc page? (Only available for CostCalc, Superusers and Admin)

3 svar

How satisfied are you with the new forms compared to the old solution?
(With multiple steps, and progressbar)

3 svar

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %)

2 (66,7 %)

0 (0 %)0 (0 %)0 (0 %)

1 (33,3 %)

0 (0 %)0 (0 %)0 (0 %)

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (33,3 %)

0 (0 %)0 (0 %)0 (0 %)

2 (66,7 %)

18.5.2021 Benteler feedback

https://docs.google.com/forms/d/1dftjNRwJjs8JkeOHWl9zwrEm3fwv5-5wOkxmAe71exY/viewanalytics 5/8

Which feature of our web-application are you most pleased with?

3 svar

The GUI looks very nice

TFC

Enkelt brukergrensesnitt.

Do you want to continue using the application?

3 svar

Please elaborate about your answers or other things the questions did not cover
about the software.

1 svar

The GUI appearance really want you to use the application

Process

Yes
No
Maybe, needs more testing

33,3%

66,7%

18.5.2021 Benteler feedback

https://docs.google.com/forms/d/1dftjNRwJjs8JkeOHWl9zwrEm3fwv5-5wOkxmAe71exY/viewanalytics 6/8

To what grade has the development team shown initiative and came with
their own suggestions during the development?

3 svar

How satisfied are you with the development teams time management?

3 svar

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (33,3 %)

2 (66,7 %)

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (33,3 %)

0 (0 %)0 (0 %)0 (0 %)

2 (66,7 %)

18.5.2021 Benteler feedback

https://docs.google.com/forms/d/1dftjNRwJjs8JkeOHWl9zwrEm3fwv5-5wOkxmAe71exY/viewanalytics 7/8

How satisfied are you with the development teams professionalism during
this project?

3 svar

In total, how satisfied are you with the development teams effort?

3 svar

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

2 (66,7 %)

1 (33,3 %)

1 2 3 4 5
0

1

2

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (33,3 %)

2 (66,7 %)

18.5.2021 Benteler feedback

https://docs.google.com/forms/d/1dftjNRwJjs8JkeOHWl9zwrEm3fwv5-5wOkxmAe71exY/viewanalytics 8/8

Please elaborate about your answers or other things the questions did not cover
about the process.

2 svar

The team has worked structured and well organized. Changes and suggestions have
been implemented directly upon request. The communication with and within the team
has worked well. All-in-all a good project!

Still some bug fixing required, smaller design adjustments required.
Other lack of functions caused by Benteler late or missing input.
A more frequent cross check on planned solutions from students vs Benteler
expectations before putting too much work into solving task could have increased the
completion level a bit to date.

Dette innholdet er ikke laget eller godkjent av Google. Rapportér misbruk - Vilkår for bruk - Retningslinjer for
personvern

 Skjemaer

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Søvik, Trøan, Tveiten and Tuv
Extrusion Planner

Emma Sofie Søvik
Jesper Trøan
Kristian Tveiten
Nils Olav Tuv

Extrusion Planner

Bachelor’s project in Engineering - Computer Science
Supervisor: Sony George
Co-supervisor: Hilda Deborah

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Preface
	Contents
	Listings
	List of Figures
	List of Tables
	Terms and abbreviations
	Introduction
	Background
	The extrusion planning process

	Task description
	Functionality
	User group
	Profile recognition
	Our contribution to the task
	Why Benteler wanted a new solution

	Limitations
	Time limitations
	Scope

	Team members
	Specific project roles
	Earlier experience
	What we had to learn

	Why we chose this task
	Thesis structure

	Development process
	System development model
	Project characteristics
	Choice of system development models
	Following the Scrum and Kanban practice
	Time estimation models

	Process execution
	Purpose of each sprint
	Scrum board
	Meeting minutes
	Mindmanager
	Project time usage

	Requirements
	Use Case diagram
	High level Use Cases
	Detailed Use Cases

	Non functional requirements
	Operational requirements
	Security requirements

	Technologies
	The application type
	Frontend
	Resources used
	Choice of React UI framework

	Backend
	Resources used
	Learning material

	Testing

	Design and implementation
	Application structure
	JSON

	Frontend web-interface
	Design
	Setup of the forms
	Functions in TFC
	Automatic version and status control
	Invalid requests
	Change measurement system
	Security

	Backend API
	API Layer / Controller classes
	Model layer
	Service layer
	Database
	CostCalc/Product Controller data export document
	Security

	Deployment of the application
	Backend deployment
	Frontend deployment

	User interface
	Color pallet
	Layout
	Side menu
	Topbar
	Footer

	Pages
	Login page
	Search page
	Request, TFC, CostCalc and Order main pages
	The forms
	Edit Database page
	Users page
	Home and FAQ page

	Overview of the development environments
	Frontend
	Backend
	Database

	Code quality
	Code review
	Code documentation
	Frontend
	Backend
	Code redundancy
	Large SQL queries in the API
	Large ResultSet to object conversions and prepared statements value bindings

	Testing
	Cross-browser compatibility
	Acceptance tests
	Lighthouse
	Traffic testing of the server
	Unit tests

	Conclusion
	Summary of contributions
	Feedback from Benteler
	Future Work
	Learning Outcomes and Concluding Remarks

	Bibliography
	Project plan
	Documentation and procedures regarding the code, web-server and code assuring longevity and re-usability of the application
	Feedback from testing phase with solutions and status per case
	CostCalc document code
	Mindmanager map
	Project agreement
	Group rules
	Meeting minutes
	Full project time usage report
	Feedback from Benteler

