
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Danielsen, Eirik Martin
Dyrkorn, Herman Andersen
Langlie, Anders Sundstedt
Magnussen, Andrea

Salamander Identification Application

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical
Engineering
Department of Computer Science

Bachelor’s project in Programming
Supervisor: Pedersen, Marius

Ba
ch

el
or

’s
pr

oj
ec

t

Danielsen, Eirik Martin
Dyrkorn, Herman Andersen
Langlie, Anders Sundstedt
Magnussen, Andrea

Salamander Identification Application

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Bachelor’s project in Programming
Supervisor: Pedersen, Marius
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

iii

Sammendrag av Bacheloroppgaven

Tittel: Salamander Identification Application

Oppgave nr. 23
Dato: 20.05.2021

Deltakere: Eirik Martin Danielsen
Herman Andersen Dyrkorn
Anders Sundstedt Langlie
Andrea Magnussen

Veileder: Marius Pedersen

Oppdragsgiver: Norsk Institutt for Naturforskning (NINA)
Kontaktperson: Børre Dervo, borre.dervo@nina.no, 907 60 077

Nøkkelord: Fullstack, Mobile, REST API, Datasyn, Kunstig Intelli-
gens, Cross Platform

Antall sider: 103
Antall vedlegg: 12
Tilgjengelighet: Åpen

Sammendrag: Salamanderartene storsalamander og småsalamander
har hatt en dramatisk nedgang i populasjon i løpet
av det siste århundret. I 2019 utlyste Norsk Institutt
for Naturforskning (NINA) en oppgave som omhandlet
å utvikle et system som kunne identifisere salaman-
dere basert på det unike magemønsteret deres. Selv
om det forrige prosjektet resulterte i en algoritme som
klarte å identifisere salamandere, ble det ikke laget et
grafisk brukergrensesnitt. Dette resulterte i at NINA
ikke tok i bruk systemet. Derfor ønsket NINA denne
gangen å få utviklet en applikasjon som benytter seg
av algoritmen, slik at de kan bruke den i feltarbeid.
Denne rapporten beskriver en fullstack applikasjon-
sutviklingsprosess, inkludert bildegjenkjenning og kun-
stig intelligens. Det endelige produktet består av en mo-
bilapplikasjon, en REST API og en forbedret versjon av
identifikasjonsalgoritmen.

iv

Summary of Graduate Project

Title: Salamander Identification Application

Project no. 23
Dato: 20.05.2021

Authors: Eirik Martin Danielsen
Herman Andersen Dyrkorn
Anders Sundstedt Langlie
Andrea Magnussen

Supervisor: Marius Pedersen

Employer: Norwegian Institute for Nature Research (NINA)
Contact Person: Børre Dervo, borre.dervo@nina.no, 907 60 077

Keywords: Full Stack, Mobile, REST API, Computer Vision, Artifi-
cial Intelligence, Cross Platform

Pages: 103
Attachments: 12
Availability: Open

Abstract: During the last century, the salamander species north-
ern crested newt and smooth newt, have dramatically
declined in population. In 2019, the Norwegian Insti-
tute for Nature Research (NINA) issued a task to iden-
tify salamanders based on its unique abdominal pat-
tern. Even though the previous project resulted in an
algorithm that accomplished this, no graphical user in-
terface was implemented for the researchers at NINA
to interact with. This time, NINA requested an applica-
tion that could incorporate this algorithm, so it could be
used during field work. This thesis describes the process
of a full stack application development, including image
recognition and artificial intelligence. The finished sys-
tem consists of a mobile application, a REST API and an
improved version of the salamander identification algo-
rithm.

Preface

We would like to thank everyone who has been involved in this bachelor’s project.
Thanks to our supervisor, Marius Pedersen, for actively supporting us and pro-
viding feedback throughout the entire project. We want to thank the Norwegian
Institute for Nature Research for providing us with an interesting and unique task.
We also want to thank our Product Owner, Børre Dervo, for his tremendous en-
gagement and will to assist us in developing the best possible product. Thanks to
Lars Erik Pedersen for quickly providing us with an OpenStack server, when we
had to rethink our initial deployment plan.

Lastly we want to thank all friends and family who kept us motivated, helped us
with testing the system, and provided feedback on our thesis.

v

Contents

Preface . v
Contents . vi
Figures . xi
Tables . xiii
Code Listings . xiv
Acronyms . xv
Glossary . xvi
1 Introduction . 1

1.1 Subject Area . 1
1.2 Target Audience . 2

1.2.1 Thesis . 2
1.2.2 Product . 2

1.3 Group Background . 3
1.3.1 Academic Background . 3
1.3.2 Motivations . 3

1.4 Delimitations . 3
1.5 Constraints . 4

1.5.1 Time Constraints . 4
1.5.2 Hardware and Software Constraints 4
1.5.3 Legal Constraints . 4

1.6 Group Organization . 5
1.7 Thesis Structure . 5

2 Requirements . 7
2.1 Project Goals . 7

2.1.1 Result Goals: . 7
2.1.2 Effect Goals: . 8

2.2 PACT-Analysis . 8
2.2.1 People . 8
2.2.2 Activities . 9
2.2.3 Context . 9
2.2.4 Technologies . 10

2.3 Use Case . 10
2.3.1 Use Case Diagram . 11
2.3.2 Actors . 11

vi

Contents vii

2.3.3 High Level Use Case . 12
2.3.4 Low-level Use Case . 15

2.4 Performance . 17
2.5 Security . 18

2.5.1 Functional Security Requirements 18
2.5.2 Non-functional Security Requirements 19

3 Development Plan . 20
3.1 Software Development Model . 20

3.1.1 Characteristics of the Project . 20
3.1.2 Software Development Model 21
3.1.3 Usage of Software Development Model 22
3.1.4 Plan for Meetings and Decision Points 22

3.2 Gantt Diagram . 23
3.3 Development Environment . 23

3.3.1 Technology Choices . 23
3.3.2 Tool Overview . 25

4 Technical Design . 26
4.1 System Architecture . 26
4.2 Networking . 27
4.3 Front End . 27

4.3.1 Libraries . 27
4.3.2 Navigation Overview . 28
4.3.3 File Hierarchy . 30

4.4 Back End . 30
4.4.1 REST API . 30
4.4.2 Algorithm . 32

4.5 Data Storage . 33
5 Development Process . 36

5.1 Tools . 36
5.1.1 Planning Poker . 36
5.1.2 Trello . 37
5.1.3 Sprint Burndown Chart . 37

5.2 Sprint Overview . 38
5.2.1 Sprint: Getting Started . 38
5.2.2 Sprint: Accelerating . 39
5.2.3 Sprint: Assembling . 41
5.2.4 Sprint: Ragnarok . 43

6 Graphical User Interface . 46
6.1 Prototyping . 46
6.2 Aesthetics . 46

6.2.1 Colors . 46
6.2.2 Application Icon . 47
6.2.3 Main Screens . 47

6.3 GUI-elements . 48

Contents viii

6.3.1 Navigation Bar . 48
6.3.2 Buttons . 48
6.3.3 Radio Buttons and Dropdown Menus 49
6.3.4 Use of Modals . 49
6.3.5 Visual Feedback . 50

6.4 GUI-evolution . 51
7 Implementation . 53

7.1 Front End . 53
7.1.1 Modules . 53
7.1.2 Components . 54
7.1.3 Navigation . 55
7.1.4 Networking . 56
7.1.5 State Management . 58

7.2 Back End . 59
7.2.1 REST API . 59
7.2.2 Algorithm . 63
7.2.3 Abandoned implementations 72

7.3 System Flow . 74
8 Deployment . 76

8.1 Mobile Application . 76
8.1.1 Development . 76
8.1.2 Build . 76

8.2 REST API and Algorithm . 78
8.2.1 OpenStack . 78
8.2.2 Future Deployment . 79

9 Testing . 80
9.1 Development Testing . 80
9.2 Performance Testing . 81

9.2.1 First Test . 81
9.2.2 Second Test . 83
9.2.3 Discussion . 85

9.3 User Testing . 85
9.3.1 User Experience Testing . 86
9.3.2 Field Testing . 88

10 Discussion . 92
10.1 Process . 92

10.1.1 Project Plan . 92
10.1.2 Technologies . 93
10.1.3 Scrum . 94
10.1.4 Communication . 95
10.1.5 Group Work . 95
10.1.6 Work Allocation . 96
10.1.7 Covid-19 Situation . 96
10.1.8 Critique of Process . 97

Contents ix

10.2 Product . 97
10.2.1 Revisiting Result Goals . 97
10.2.2 Consequences of Design Choices 99
10.2.3 Ethical and Societal Outcomes 100
10.2.4 Critique of Product . 100

11 Conclusion . 102
11.1 Summary . 102

11.1.1 Process . 102
11.1.2 Product . 102

11.2 Future Work . 102
11.3 Final Words . 103

Bibliography . 104
A Group Rules . 110
B Project Agreement . 113
C Task Description . 117
D Documentation . 118
E Project Plan . 119
F Detailed Work Allocation . 142
G Prototypes . 144

G.1 Simple Prototype . 144
G.2 Adobe XD Prototype . 145

H Final Graphical User Interface . 146
I Testing . 149

I.1 User Test Guide . 149
I.2 Usability Tests . 151
I.3 Google Form Answers . 176
I.4 Field Test Guide . 179
I.5 Pictures From the Field Test . 181

J Burndowncharts . 182
K Regular Expressions . 183
L Meeting Logs . 184

L.1 1st meeting . 184
L.2 2nd meeting . 184
L.3 3rd meeting . 184
L.4 4th meeting . 185
L.5 5th meeting . 186
L.6 6th meeting . 187
L.7 7th meeting . 188
L.8 8th meeting . 189
L.9 9th meeting . 189
L.10 10th meeting . 190
L.11 11th meeting . 190
L.12 12th meeting . 191
L.13 13th meeting . 191

Contents x

L.14 14th meeting . 192
L.15 15th meeting . 192
L.16 16th meeting . 192
L.17 17th meeting . 193
L.18 18th meeting . 193
L.19 19th meeting . 193
L.20 20th meeting . 194
L.21 21st meeting . 194
L.22 22nd meeting . 194
L.23 23rd meeting . 195
L.24 24th meeting . 195
L.25 25th meeting . 196
L.26 26th meeting . 196
L.27 27th meeting . 196
L.28 28th meeting . 197
L.29 29th meeting . 198

Figures

1.1 Smooth Newt and Northern Crested Newt 2
1.2 Map of Team Structure . 5

2.1 Use Case Diagram . 11

3.1 Gantt Diagram . 23
3.2 Development Environment . 25

4.1 System Architecture . 26
4.2 Navigation Diagram: First Draft . 28
4.3 Navigation Diagram: Final . 29
4.4 Front End File Hierarchy . 30
4.5 REST API File Hierarchy . 32
4.6 Folder Structure . 34
4.7 Database Diagram . 35

5.1 Trello . 37

6.1 NINA Logo . 47
6.2 Application Icon . 47
6.3 Main Screens . 47
6.4 Main Buttons . 48
6.5 Special Buttons . 49
6.6 Dropdown and Radio Button . 49
6.7 Toast Messages . 50
6.8 Helper Text . 50
6.9 Home Screen Iterations . 51
6.10 Register Salamander Screen Iterations 52

7.1 Authentication Diagram . 62
7.2 Smooth Newt Sample . 65
7.3 Loss and Learning Rate . 67
7.4 Loss and Learning Rate Overlayed . 67
7.5 Model Comparison . 68
7.6 Exploding Gradients . 69

xi

Figures xii

7.7 Straightening Process . 70
7.8 Failed Straightening Process . 70
7.9 Sex Estimation Using YoloV3 . 73
7.10 Sequence Diagram of Match Salamander 75

8.1 Expo History . 77
8.2 Expo Build . 77

9.1 Performance Test: Set 1 . 82
9.2 Straightened Images . 83
9.3 Performance Test: Set 2 . 84
9.4 Straightened Images . 85
9.5 Re-iteration of Add Location . 87
9.6 Reiteration of Pending Users . 87
9.7 Mobile Application in Use . 89

10.1 Work Allocation . 96

I.1 Images From the Field Test . 181
I.2 Images From the Field Test . 181

J.1 Sprint burndown chart sprint 1 . 182
J.2 Sprint burndown chart sprint 2 . 182

Tables

2.1 Use Case: Register User . 12
2.2 Use Case: Login . 12
2.3 Use Case: Logout . 12
2.4 Use Case: Edit Personal Data . 13
2.5 Use Case: Manage Users . 13
2.6 Use Case: Delete User . 13
2.7 Use Case: Navigate Map . 13
2.8 Use Case: Register Location . 14
2.9 Use Case: Take Picture . 14
2.10 Use Case: Use Existing Image . 14
2.11 Use Case: Upload image . 14
2.12 Use Case: Process image . 15
2.13 Use Case: Register Salamander . 15
2.14 Low-level Use Case: Match Image . 16
2.15 Low-level Use Case: Match Salamander 17

3.1 Sprint Structure . 22

5.1 Planning Poker Sprint 1 . 38
5.2 Planning Poker Sprint 2 . 40
5.3 Planning Poker Sprint 3 . 41
5.4 Planning Poker Sprint 4 . 43
5.5 Low-level use case: Manage Salamander 44

9.1 First Test: Results . 82
9.2 Second Test: Results . 84

10.1 Hours Used Per Sprint . 95

xiii

Code Listings

7.1 React Native Component example . 55
7.2 Stack navigation example . 56
7.3 Axios instance . 56
7.4 Access Token. 57
7.5 GET request example. 57
7.6 Redux example part 1. actions . 58
7.7 Redux example part 2. reducer function. 59
7.8 __init__.py . 60
7.9 Run.py . 60
7.10 Create user . 61
7.11 Login.py . 61
7.12 JSON Web Token . 61
7.13 Encode Images . 62
7.14 Python code example limiter . 63
7.15 Salamander Table . 63
7.16 DeepLabCut CSV exerpt . 65
7.17 Semaphore Example . 71
7.18 Match single image method . 71
7.19 Match over multiple directories . 72
7.20 Creating a new process to run estimation 74

xiv

Acronyms

AI artificial intelligence. 3, 40, 43, 73, 103

API Application Programming Interface. xviii, 25, 27, 31, 32, 42, 43, 57, 60

CPU Central Processing Unit. 39, 78, 81

GDPR General Data Protection Regulation. 4

GPU Graphical Processing Unit. 39, 42, 66, 70, 73, 74, 81, 99

GUI Graphical User Interface. 1, 5, 6, 20, 28, 46–48, 54, 64, 66

JWT JSON Web Token. xvii, 19, 31, 39, 57, 61

LTS Long term support. 78

NaN Not a Number. 69, 73

NINA Norwegian Institute for Nature Research. 1–5, 8, 9, 11, 18, 20–24, 33, 39,
41, 42, 46, 65, 66, 73, 76, 78, 79, 85, 86, 88, 97, 98, 100, 102, 103

NTNU Norges teknisk-naturvitenskapelige universitet. 3, 5, 65, 78, 96

PIT Passive Integrated Transponder. 2, 8, 100

SSL Secure Socket Layer. 79

WIP Work in Progress. 37

xv

Glossary

Adobe XD A tool for creating digital prototypes. 28, 39, 46, 51, 52

Amazon Web Services Cloud service provided by Amazon. 3

Axios A javascript library that provides functionality to do HTTP requests. 27, 40,
42, 56, 57

Base64 In programming, Base64 is a group of binary-to-text encoding schemes
that represent binary data in an ASCII string format by translating the data
into a radix-64 representation. 31, 62

cloaca The opening for the amphibians that works as the outlet for feces, urine
and reproduction. 41, 69, 73

Clockify A web-based time tracking tool for projects. 94

Cross-Site Request Forgery Cross-Site Request Forgery (CSRF) is an attack that
forces an end user to execute unwanted actions on a web application in
which they’re currently authenticated [1]. 27

daily scrum 15 minute meeting held every day during a sprint. 21, 22, 38, 94

decorator A decorator pattern allows a user to add new functionality to an ex-
isting object without altering its structure. 61

DeepLabCut DeepLabCut is a python library that uses Tensorflow for pose esti-
mation of animals and humans. 24, 32, 33, 39, 41, 42, 45, 64–66, 70, 71,
73, 93

Docker A tool that simplifies deployment of programs on cross platform at the
cost of storage and performance. 79

DOS attack Denial of service (DOS) attack is a cyber-attack in which the per-
petrator seeks to make a machine or network resource unavailable to its
intended users by temporarily or indefinitely disrupting services of a host
connected to the Internet. 42, 63

xvi

Glossary xvii

dot product In mathematics, the dot product is an algebraic operation that takes
two equal-length sequences of numbers, and returns a single number. 69

Eduroam A service used internationally by for example universities to exclude a
network from the internet. 78

Fibonacci number In mathematics, the Fibonacci numbers form a sequence, such
that each number is the sum of the two preceding ones, starting from 0 and
1. 36

Flask A python library that is used for web applications [2]. 24, 25, 30, 31, 39,
60, 62, 79, 93

Flask-Bcrypt A python library for hashing and salting passwords. 60

Flask-JWT-Extended An extension to handle JSON Web Token for authentication
[3]. 60, 61

Flask-Limiter An extension that allows for easy implementation of rate limiters
for endpoints [4]. 42, 63, 94

Flask-SQLAlchemy Flask-SQLAlchemy is an extension for Flask that adds sup-
port for SQLAlchemy. 31, 39, 94

GitLab A web-based DevOps lifecycle tool that provides a Git-repository manager
providing wiki, issue-tracking and continuous integration and deployment
pipeline features. 53, 94

ImageAI A library that focuses on computer vision using Tensorflow. 32, 33, 42,
72, 73

InceptionV3 A convolutional neural network model. 72

Kanban Agile software development method. 21, 94

Microsoft Azure Cloud service provided by Microsoft. 4

northern crested newt Red listed species of salamander in the subfamily Pleu-
rodelinae. 1, 2, 41, 49, 65, 66, 72, 98, 100, 103

Openstack A platform on the internet where users can share questions, answers
and discuss. 78

Overleaf A collaborative cloud-based LaTeX editor used for writing, editing and
publishing scientific documents. 94

PIP PIP is a package manager for Python. 39

Glossary xviii

planning poker A gamified technique in Scrum (also called Scrum Poker) that
helps a team estimate the required time it takes to complete the tasks in a
sprint backlog. 36, 38, 94

Postman A tool for testing and documenting web APIs. 31

product backlog A structure of all the requirements for the end product. 22

product owner Term used in Scrum. Owner of the product being made. 22, 33,
34, 38, 42, 43, 46, 66, 78, 86, 88, 95, 98, 100, 102

RAW An uncompressed image format by Adobe. 1, 4

React React is a javascript framework for developing web applications. 24, 54,
58

React Native React Native is an open-source mobile application framework cre-
ated by Facebook. It is used to develop applications for Android and iOS,
among other things, by enabling developers to use React’s framework along
with native platform capabilities[5]. 24, 27, 28, 30, 53–56, 93

REST API An API that conforms to the constraints of REST architectural style. xi,
3, 20, 24–26, 30–32, 34, 37–42, 53, 57, 59–63, 70, 73, 74, 76, 79, 80, 93,
95, 97, 98, 103

Scrum Agile software development method. 21, 38, 92, 94, 102

scrum master Ensures the team follows agile values, principles and practices that
the team agreed they would use. 22

semaphore A variable that controls the program/programs access to a set of
memory. 42, 70

SHA-1 An algorithm that encrypts strings/character arrays. 78

smooth newt Species of salamander in the subfamily Pleurodelinae. 1, 2, 65, 66,
98, 100, 103

sprint backlog The Sprint Backlog is the set of Product Backlog items selected
for the Sprint. 21, 36–38, 94

sprint burndown chart A diagram displaying for a set timestamps the amount
of time left to complete the current sprint backlog. 36–38

sprint planning meeting A sprint planning meeting is an event that establishes
the product development goal and plan for the upcoming sprint, based on
the team’s review of its product backlog. 21, 22, 36, 94

Code Listings xix

sprint retrospective meeting A meeting at the end of a sprint, where the pur-
pose is to plan ways to increase quality, effectiveness and look back at the
sprint.. 21, 22, 46

sprint review meeting A meeting at the end of a sprint where the purpose of the
is to inspect the outcome of the Sprint and determine future adaptations.
The Scrum Team presents the results of their work to key stakeholders and
progress toward the Product Goal is discussed. 21, 22, 43

Tensorflow A library that focuses on machine learning, including deep learning.
xvi, xvii, 33, 42, 66, 70, 73, 74

Trello Issue tracking software, styled as a kanban board. 22, 36, 37, 94

use case A use case is typically a list of actions defining the interactions between
a role/actor and a system to achieve a goal. 11, 12, 29

VPN Virtual Private Network, is a service that allows a user to stay anonymous
on the internet by sending their data to another computer that encrypts the
origin of that data. 78

VRAM Memory on the GPU. 70

YoloV3 A convolutional neural network model user for object detection. 33, 69,
73

Chapter 1

Introduction

This bachelor’s project was provided by the Norwegian Institute for Nature Re-
search (NINA), and our contact person from the institute is Børre Dervo.

NINA is an independent foundation for nature research and research on the in-
teraction between human society, natural resources, and biodiversity [6]. Back
in 2019, NINA issued a bachelor’s project where they requested a program that
would be able to recognize a salamander based on a unique pattern located on its
abdomen [7]. The previous bachelor’s group was able to develop a system using
machine learning and computer vision to match images of caught salamanders
against a database of previously found salamanders. Unfortunately, they did not
have enough time to make a proper Graphical User Interface (GUI) and instead
resorted to using command line arguments. This resulted in it not being actively
used by the scientists at NINA.

For this project, NINA want us to develop an easy to use GUI, using the existing
system developed in the previous bachelor’s project. They also wants us to make
the system compatible with RAW images, and improve the algorithm overall. Ad-
ditionally, NINA wants the ability to classify other traits eg. sex, weight and length.
The full task description can be found in Appendix C.

1.1 Subject Area

One of the fields of research at NINA are salamanders. Salamanders are a group of
amphibians, who thrive in marshlands, open woodlands, and cultural landscapes,
with sufficient access to water and hiding places. In Norway, there are two dif-
ferent species of salamander; northern crested newt and smooth newt [8]. The
northern crested newt is red listed [9], and the smooth newt while not red listed
has declined in population [8]. It is therefore crucial to monitor changes in the
population. By monitoring the number of individuals, one can get a good indica-
tor of whether the active measures in place to aid in increasing the population are
working.

1

Chapter 1: Introduction 2

Currently, NINA uses a Passive Integrated Transponder (PIT) placed under the
skin of the salamander, to identify individuals that exist in Norway. This tagging
method requires an invasive procedure, in addition to being expensive. By using
computer vision to identify salamanders, this can be done in a non-invasive way,
which is more humane and is less stressful to the salamanders. NINA is constantly
looking for more ethical ways to conduct their research, making this a motivating
factor for proposing this project. Figure 1.1a shows an image of a smooth newt
and Figure 1.1b shows an image of a northern crested newt.

(a) A Smooth newt as seen from below. (b) A Northern crested newt as seen from below.

Figure 1.1: Images of the two salamander species.

1.2 Target Audience

The target audience for this thesis can be divided into two categories, one for the
thesis and one for the end product.

1.2.1 Thesis

This thesis will first and foremost be interesting for anyone involved in the grading
process, but also for others interested in the development process in regards to
computer vision and mobile application development. The thesis requires that the
reader has a basic understanding of programming, as well as some understanding
of how software is developed.

1.2.2 Product

The target audience for the finished product is primarily the researchers at NINA.
However, other researchers who are involved in the field of salamanders, may also
find this product interesting.

Chapter 1: Introduction 3

1.3 Group Background

In this section, we will present our academic background and motivations for
choosing this particular bachelor’s project.

1.3.1 Academic Background

We are all bachelor’s students studying programming at NTNU in Gjøvik [10]. The
study program is divided into two slightly different paths. One focuses on appli-
cation development, while the other focuses on game development. While many
of the courses run for both fields of study, there are a few differences. Relevant
experience for this thesis is artificial intelligence (AI) from the game development
path, and web technologies from the application development path. Other rele-
vant topics like software development, cloud technologies and mobile application
development have been covered in both paths. Herman Dyrkorn, Andrea Mag-
nussen and Anders Langlie followed the application path, whereas Eirik Danielsen
chose game development.

1.3.2 Motivations

After reading several bachelor’s proposals, the project description, as shown in
Appendix C, was the one which gave us the best impression. It seemed interest-
ing, exciting, and fun to work on. It also matched well with our line of study, as it
involved full stack development of an application.

The project will consist of developing three different components, including a
REST API, a mobile application, and an algorithm using computer vision with
deep learning. This makes it quite easy for us to divide the different tasks be-
tween the group members based on interests and personal skills in the relevant
subject areas. Another reason we desired this project was that it would allow us to
learn about new exciting technologies and frameworks, like AI and cross platform
mobile development.

We also got the impression that NINA was in a genuine need for a better solu-
tion than the one currently in use, which served as a significant motivating fac-
tor. Lastly, we got a great impression of our contact person at NINA, as he re-
sponded quickly to our emails. He also seemed motivated to follow up on the
group throughout the project in order to get the best possible result.

1.4 Delimitations

In this thesis, we will only focus on making a system for NINA and not for an in-
ternational user base. The software will be deployed on a server stationed locally
at NINA, and will not be deployed on a cloud service e.g. Amazon Web Services or

Chapter 1: Introduction 4

Microsoft Azure. We will not implement measures to detect if an image actually
contains a salamander or not, and we will primarily develop the system to handle
images of good quality. By good quality, we do not necessarily mean good techni-
cal quality, but rather images where the salamander pattern is clearly visible and
not obstructed.

We have decided that our application should require iOS 14.0 on an iOS device,
and Android 8.0 Oreo on an android device. Lastly, due to our decision to use
pictures taken with mobile cameras, we will only focus on using PNG and JPG
image formats. Therefore, after discussions with our contact person at NINA, we
will not optimize for the use of RAW images.

1.5 Constraints

The constraints are divided into three categories; time constraints, hardware- and
software constraints, and legal constraints. These constraints will be taken into
consideration when working on this project.

1.5.1 Time Constraints

• The product needs to be complete before 20th of May 2021.
• For the system to be deployed at NINA, we need a server at their location

within April 2021, to do proper user testing.

1.5.2 Hardware and Software Constraints

• The software identifying salamanders and determining their sex is a de-
manding program, that requires a lot of processing power to run at sufficient
speed. Therefore, it needs to run on a powerful computer.
• As the previous system was written in Python, we decided to continue using

this language, as transferring the code to a different language would cost a
considerable amount of time.
• Since the system will be utilized in fieldwork, the hardware needs to be

lightweight and easily portable.
• For the software to function reliably, the image has to have a certain amount

of sharpness and contrast. This might be limited by the quality of the camera
taking the picture.

1.5.3 Legal Constraints

• Since users will store personal information, the application must conform
to the General Data Protection Regulation (GDPR) [11].

Chapter 1: Introduction 5

1.6 Group Organization

Figure 1.2 shows an overview of our team structure and group responsibilities.

Børre Dervo
Role: Conact person

Andrea
Magnussen

Role: Developer

Herman A.
Dyrkorn

Role: Group Leader,
Developer

Eirik M.
Danielsen

Role: Developer,
Minutes taker

Anders S. Langlie
Role: Developer,

Responsible for
Communication

Marius Pedersen
Role: Supervisor

Figure 1.2: The map shows the different roles in the bachelor’s project.

• Contact person: The contact person for this project is Børre Dervo. He rep-
resents NINA and provides us with information about their workflow, so we
can fulfill the requirements in the project description. He will follow the
project from start to finish and provide feedback regularly.
• Supervisor: Our supervisor is Marius Pedersen. He will provide guidance

throughout the project with feedback and suggestions.
• Developer: Every group member will take part in developing the software.

This includes taking part in all phases of the software development lifecycle [12].
• Group Leader: The group leader is responsible for making critical decisions

and solving any potential conflicts or disagreements within the group.
• Minutes Taker: This role covers documenting all meetings with our super-

visor and contact person.
• Responsible for communication: This role is responsible for email com-

munication with the supervisor, contact person and other people involved
in the project.

1.7 Thesis Structure

This thesis includes a list of acronyms and a glossary, which can be found above
the introduction. We were provided with a LaTeX template from NTNU [13], made
by Ivar Farup, and followed this as it is a baseline for computer science theses. In
addition to the chapters the template suggested, we added a couple of additional
ones: Chapter 3 Development Plan and Chapter 6 Graphical User Interface. Below
is a listing of all chapters featured in this thesis, in chronological order.

1. Introduction: Contains a description of the task, as well as an introduction
to the group.

2. Requirements: Covers the requirement specifications for the system.
3. Development Plan: Covers early choices we made before we started devel-

oping, in regards to both software development model and technologies.
4. Technical design: Presents an overall view of the final technical design.

Chapter 1: Introduction 6

5. Development Process: Covers the development process and tools used, in-
cluding a short summary of all the sprints in a chronological order.

6. Graphical User Interface: Covers the GUI in the mobile application.
7. Implementation: Goes into detail about the implementation of the system’s

features.
8. Deployment: Covers how the mobile application was built and how the

back end is deployed.
9. Testing: Covers testing of the system’s performance and usability.

10. Discussion: Contains reflections on both the process and the final product.
11. Conclusion: Summarizes the final product’s result, future work, and a few

final words.

Chapter 2

Requirements

To make sure the product will satisfy the end users, it is important to spend a
considerable amount of time on requirement specifications. Doing this will also
help detecting possible challenges that may appear later on in the project.

2.1 Project Goals

The project goals are categorized into result goals and effect goals.

2.1.1 Result Goals:

• A working web-server that incorporates an improved version of the previous
matching algorithm and will communicate with mobile phones used in the
field.
• A cross-platform mobile application that will work as a client to the server.
• The system should have a better user experience than the existing system.
• The system should be able to classify the sex of the salamander with 95%

accuracy.
• The system should be able to classify the salamander’s species with 95%

accuracy.
• Reduce the search time for matching salamanders by 50% on average by

dividing the search by sex.
• Reduce the search time for matching salamanders by another 50% on aver-

age by dividing the search by species.
• Reduce the search time by 50-99% by dividing the search by geographical

location.
• The server must support a capacity of at least five researchers concurrently.

The result goals will be revisited in Chapter 10 Discussion, to discuss to what
degree these goals were met.

7

Chapter 2: Requirements 8

2.1.2 Effect Goals:

• Qualitative Goals:

� The salamanders will be more carefully handled with the new system.
� Increase the number of researchers tracking salamanders in the field,

by eliminating the need for a special license for PIT.
� The system should make it more efficient for researchers at NINA to

conduct their research.

• Quantitative Goals:

� Reduce the number of work hours needed to identify salamanders for
the researchers at NINA by 75%.
� The new system should replace the need for PIT-tagging within two

years.
� The system will reduce NINA’s cost toward salamander research by

30% after five years.

These goals can only be measured over time, and will not be revisited in this thesis.
However, they still might be useful for NINA to monitor over time.

2.2 PACT-Analysis

To define requirements in regards to user experience, we will conduct a PACT-
analysis. A PACT (People, Activities, Contexts, and Technologies) analysis is a use-
ful framework for thinking about human centered design [14].

2.2.1 People

Demography

The application is aimed towards researchers and others who might intern at
NINA, who usually are in the range of 20-70 years old. This is quite a large span,
which makes it important that the system is developed for a wide range of age
groups. However, this is not an application that will be used by the general pub-
lic, but rather a small group of researchers.

Computer Literacy

Most of the researchers at NINA use their mobile phones daily. To ensure that the
researchers will be able to use the application without problems, the application
should not require more technical skills beyond basic operations such as taking
pictures and writing text into input fields.

Chapter 2: Requirements 9

Language

The system mainly targets Norwegian researchers at NINA, who also knows En-
glish. There may also be interns at NINA who only knows English. That is why we
have decided that the default language for the application will be English. While
we might add support for Norwegian at a later time, this will not be a priority.

Physical Abilities and Disabilities

Some of the researchers at NINA might have weak eyesight. This makes it nec-
essary for the physical appearance of the application, such as the text size and
buttons to be of large enough scale to accommodate these users.

2.2.2 Activities

Regular Operations

Functionality in the application should be designed intuitively, and operations
should be logically performed. The application will have one primary goal, which
is to aid the researchers in their fieldwork in regards to identifying caught sala-
manders. We will limit unnecessary features to avoid distracting from the main
task.

Usage

The application will be designed to aid each researcher individually, and there
will be no cooperation in the application other than the shared database with
salamander images and locations.

2.2.3 Context

Physical Environments

The application will primarily be used outside, so it is important that the user can
see the screen even when it is sunny. Since the researchers will use the application
in their fieldwork, it is important to create an application that can be used on a
portable device.

Social Environments

The application will be used in a professional setting, either individually or with
other researchers.

Chapter 2: Requirements 10

2.2.4 Technologies

Network

Since the application will communicate with a web-server located elsewhere, the
user has to have connection to the internet at all times when using the system.

View

As the users will interact with the system on a smart phone, the design will have to
follow mobile design principles [15]. The application will also not support land-
scape mode, as this will not enhance the functionality.

Data Transmission

It will be necessary for the application to have access to the mobile phone’s camera
and the local camera storage on the device. The user must also accept that the
application uses their position if they want to get access to location services.

2.3 Use Case

To capture core functionalities of our system and visualize the interactions of dif-
ferent actors, we have decided to utilize a use case diagram, with corresponding
high level use cases and low level use cases. This makes it easier to keep the re-
quirements of the system in mind, while in development. It will also show us the
bigger picture in regards to important decisions we have to make in the require-
ment phase [16].

Chapter 2: Requirements 11

2.3.1 Use Case Diagram

Researcher

Admin

Log in
Register user

Take picture

Register location

Edit personal data

Delete user

Navigate map

Use existing image

Manage users

Match image

Register salamander

Process image

Match salamander

Upload image
<<include>>

<<include>>

Server

Log out

Figure 2.1: Use case diagram of the system.

Figure 2.1 shows a use case diagram of the system. To avoid too much clutter in
the diagram, the admin actor only has a single connection to a use case, which is
unique for the admin role. However, the admin will also be able to do everything
a researcher can do, except for registering and deleting their user. Finally, all use
cases, except for "Take picture", "Use existing image", and "Navigate map", involves
server processing.

2.3.2 Actors

• Researcher: Works in the field, and will use the application for the individ-
ual detection of salamanders.
• Admin: Administrates the application by managing all users that request

access to the server.
• Server: Will host all back end code and process requests from the mobile

application. The server is planned to be located at NINA’s headquarters in
Trondheim.

Chapter 2: Requirements 12

2.3.3 High Level Use Case

The standard pre-conditions for all use cases is that the actor has to have an in-
ternet connection. In addition, in all use cases, except for register user (Table 2.1)
and login (Table 2.2), the actor needs to be logged in.

Table 2.1: Use case for registering a user.

Use Case: Register User
Actor(s): Researcher.
Goal: Create user with name, email and password.
Pre-condition: The name, email and password is valid. The email must not

exist in the database already.
Description: The actor fills in name, email, password and a confirm

password and clicks on the register button. Newly created
users will not have access before they are approved by an
admin.

Table 2.2: Use case for logging into the application.

Use Case: Login
Actor(s): Admin and Researcher.
Goal: Login to the mobile application to gain access.
Pre-conditon: Have an account that has the correct permissions.
Description: The actor uses their email and password to login to the

mobile application. The server checks their credentials and
either accepts or declines their login request.

Table 2.3: Use case for logging out of the application.

Use Case: Logout
Actor(s): Admin and Researcher.
Goal: Logout of the mobile application.
Pre-conditon: Standard pre-conditions.
Description: The actor navigates to the profile page and clicks on the

logout button.

Chapter 2: Requirements 13

Table 2.4: Use case for editing personal data.

Use Case: Edit Personal Data
Actor(s): Admin and Researcher.
Goal: Edit password, email or name.
Pre-condition: The name, email, and password is valid. Email does not

exist in the database already. The actor must be
re-authenticated to edit password and email.

Description: The actor navigates to the profile page. Here they can
choose to edit their password, email or name.

Table 2.5: Use case for managing users.

Use Case: Manage Users
Actor(s): Admin.
Goal: Administrate users.
Pre-condition: Admin privileges are required and the actor must be

re-authenticated.
Description: The admin will have the ability to approve or decline new

users. They will also be able to either make users admin,
remove their admin access, revoke approval, or completely
delete their account from the application.

Table 2.6: Use case for deleting a user.

Use Case: Delete User
Actor(s): Researcher.
Goal: Delete own user from system.
Pre-condition: The actor must be re-authenticated.
Description: The actor navigates to the profile page where they are able

to delete their user. This decision must be confirmed twice
by the user.

Table 2.7: Use case for navigating the map.

Use Case: Navigate Map
Actor(s): Admin and Researcher.
Goal: Navigate the map to see all registered locations.
Pre-condition: Standard pre-conditions.
Description: The user navigates the map by zooming or dragging their

finger across it. The map will display all registered locations
and the user can click on a location to display the name.

Chapter 2: Requirements 14

Table 2.8: Use case for registering locations.

Use Case: Register Location
Actor(s): Researcher and Admin.
Goal: Add a new salamander location to the system.
Pre-condition: Standard pre-conditions.
Description: The actor creates a new location by registering position,

create a name and set a radius.

Table 2.9: Use case for taking pictures.

Use Case: Take Picture
Actor(s): Researcher and Admin.
Goal: Take picture of caught salamander with the mobile camera.
Pre-condition: System must have access to mobile camera.
Description: The researcher uses the camera function in the application

to take a picture of the abdomen of a salamander.

Table 2.10: Use case for using existing image.

Use Case: Use Existing Image
Actor(s): Researcher and Admin.
Goal: Choose an image from mobile storage.
Pre-condition: System must have access to mobile storage.
Description: The actor can select an image from their mobile storage to

be used in the application.

Table 2.11: Use case for uploading an image.

Use Case: Upload image
Actor(s): Researcher and Admin.
Goal: Receive a processed image from the server.
Pre-condition: The actor either has to take a picture or use an existing one.
Description: The actor uploads an image to the server, which processes

it. After processing, the actor receives a response containing
either the processed image or an error message.

Chapter 2: Requirements 15

Table 2.12: Use case for processing image.

Use Case: Process image
Actor(s): Server.
Goal: The server computes salamander data and returns it.
Pre-condition: The server must have received an image.
Description: The server computes the salamanders sex and species. It

also isolates the abdominal pattern of the salamander and
returns the data to the client.

Table 2.13: Use case for registration of salamanders.

Use Case: Register Salamander
Actor(s): Server.
Goal: Register a salamander into the system.
Pre-condition: Salamander does not exist in the system.
Description: The server registers a new salamander in the database with

a unique ID, location, sex, species, date, and which user
uploaded the image.

2.3.4 Low-level Use Case

We have made low level use cases for the use case Match image and Match sala-
mander, which can be seen in Table 2.14 and Table 2.15. Our reason for choosing
these specific requirements is because they are the most vital and substantial parts
of the system. We wanted to cover the matching functionality of the system in both
the client and the server.

Chapter 2: Requirements 16

Table 2.14: Low-level use case of matching image.

Use Case: Match image
Actor(s): Server.
Goal: Match caught salamander against registered salamanders.
Description: The server matches the incoming image against

preprocessed images in the database.
Preconditions: Server has received a request with an image and

salamander data.
Post- Sends a response back to client.
conditions:
Special The request needs to come from an authenticated
Requirements: user with the correct access privileges.
Success 1. The server receives a request from a user.
Scenario: 2. The server checks the access rights of the user.

3. The server validates the input data.
4. The server processes the image.
5. The server loads a subset of preprocessed images from
the database, based on location, sex and species.
6. The server brute force matches the processed image
against the subset.
7. The server returns a response back to the client.

Alternative 5-6. If the salamander is a juvenile, it will only be
Scenarios: stored in the database and not matched against other

salamanders.
7a. The server finds a match, and returns a confirmation
message to the user.
7b. The server does not find a match, and register a new
salamander in the database.

Fail Scenarios: 2. The user does not have the right privileges, and the
server will abort the request.
3. The data sent to the server lacks important information,
and the server will return an error response.
2-7. Internal server error while trying to process the
request.

Chapter 2: Requirements 17

Table 2.15: Low-level use case of match salamander.

Use Case: Match Salamander
Actor(s): Researcher and Admin.
Goal: To see if the salamander has been captured before.
Description: The actor can match a salamander against the existing

salamanders in a specific capture area, and get a response
telling them if it was a match or not.

Preconditions: The actor has to be logged in to the system. They also have
to have cell coverage or WiFi on their mobile device.

Post- The actor will always get feedback,
conditions: either if it is a match, not match or server timeout.
Special There has to be a registered location in the system,
Requirements: for an actor to be able to match a salamander.
Success 1. The actor navigates to the camera view.
Scenario: 2. The actor takes a picture of the salamander.

3. The actor confirms the image and fills in the required
salamander information. This includes sex, species and
location.
4. The actor clicks on the match salamander button, which
sends a request to the server.
5. The server processes the request.
6. The actor receives feedback from the server.

Alternative 2. The actor can upload an existing image instead.
Scenarios: 6a. The server finds a match, and sends a confirmation to

the actor.
6b. The server does not find a match, and sends a message
to the actor with the new entry information.

Fail 3a. The actor fills in wrong information about the
Scenarios: salamander, and it will not match against the correct

dataset.
3b. The image is not of sufficient quality, which will make
the matching difficult.
6. The request times out, and an appropriate message will
be displayed to the actor.

2.4 Performance

The systems performance relies on the cell coverage the user has when using the
application in the field. By using Equation (2.1) [17], we can calculate the time it
takes to upload an image.

• Mb: Megabit.
• Mbps: Megabit per second.

Chapter 2: Requirements 18

• MB: Megabyte.

Time(s) =
F ileSize(M b)

U ploadSpeed(M bps)
(2.1)

According to Speedtest Global Index [18], the upload speed in Norway for cell
coverage is 18.35 Mbps.

If we have an image of e.g 2 MB, which is equal to 16 Mb, we can calculate
different scenarios based on the upload speed:

• 4G average (18.35 Mbps): According to Equation (2.1) it will take 0.871
seconds to upload the image.
• 4G fast (50 Mbps): According to Equation (2.1) it will take 0.320 seconds

to upload the image.
• Edge (0.2 Mbps): An edge connection will only be able to upload 0.2 Mbps
[19]. According to Equation (2.1) it will take 80 seconds to upload the im-
age.

By looking at the calculations above, it is clear that the system will not perform
sufficiently if there is bad cellular coverage. To ensure that the processing never
takes too much time, there will be implemented a system timeout. If the system
uses more than 50 seconds, the request will be aborted. However, our contact
person at NINA said that most of their salamander locations have good cellular
coverage. In addition, we will make it possible to upload images from the camera
roll at a later point in time, if the cellular coverage is too slow at the exact location.

After the server receives an image from the client, the performance relies on how
fast the matching algorithm is, which includes the pre-processing of the image
and the brute force matching. The speed of the matching will slowly decrease
as the database grows. However, by dividing the database into species, sex and
location, the decrease in speed will happen at slower rate. This will also increase
the accuracy of the matching as it only needs to match against the correct species,
sex and location of the salamander.

2.5 Security

Security is an important part of the whole development process. Therefore, prin-
cipal security measures will be kept in mind and followed when designing the
system.

2.5.1 Functional Security Requirements

• When a new user wants to register, they have to:

� Register a valid username.

Chapter 2: Requirements 19

� Register a valid email.
� Use a password with at least nine characters, letters, and at least one

number.

• If the user tries to log in with an incorrect password, they will get a response
like "username or password is incorrect".
• To use the system, a user has to be approved by an admin.
• The user will not be allowed to send a request to the server before they have

provided all necessary data on the client side.
• Critical features will require re-authentication.

2.5.2 Non-functional Security Requirements

• The server should encrypt passwords before being stored in the database.
• Each user should have a role, which will decide what kind of functionality

the user will have available.
• A JSON Web Token should be assigned to each user session in order to have

safe user persistence across multiple requests without needing manual re-
authentication.
• The client should validate all input from the user.
• The server should validate all input from the client.
• The server should have a rate limit to how many requests it can receive per

minute.

While there is no dedicated security chapter in this thesis, security measures will
be covered further in Chapter 4, Chapter 6, Chapter 7, and Chapter 8.

Chapter 3

Development Plan

This chapter will cover early decisions we made in regards to development. This
includes which software development model we decided to use, as well as which
tools we used throughout the project.

3.1 Software Development Model

In this section the characteristics of the project will be discussed, as well as our
choice of development model and its use.

3.1.1 Characteristics of the Project

This project is a continuation of a previous bachelor’s project from 2019 [7]. We
decided to incorporate the code from the previous project, as well as improv-
ing and adding new functionality. The system will be developed independently
as three components; an image recognition algorithm, a REST API, and a mobile
application. Later in the development, the algorithm and the REST API will be
merged together as one component.

Considering that the project deadline is the 20th of May, including thesis writing,
the system development needs to be adapted to the given time frame. The require-
ments from NINA are also quite ambiguous, especially with regards to design. This
means that we will have to refine the requirements during the development pro-
cess.

One of the most important tasks in this project is to develop a Graphical User In-
terface (GUI), so that the algorithm can be used by the researchers at NINA. They
are not software developers and some of the researchers may lack technical expe-
rience in computer science. Therefore, we need to establish a close collaboration
between NINA and us, especially in regards to design and functionality.

The members of our group have limited experience when it comes to a project of

20

Chapter 3: Development Plan 21

this scale. This makes it difficult to plan the entire project before it starts and also
hard to estimate the time needed to implement each task. However, if the final
system lacks minor features, it can still be useful for the researchers at NINA.

All of these characteristics will need to be taken into consideration when choosing
the software development model.

3.1.2 Software Development Model

Based on the characteristics in Section 3.1.1, we have concluded that we need an
agile software development model [20]. Relevant software development models
includes Kanban and Scrum. Both models have advantages and disadvantages in
regards to a bachelor’s project setting.

Kanban is an agile software development model where you visualize the whole
project by dividing the project work into smaller tasks and placing them on a Kan-
ban board [21]. The developers are free to choose tasks from the board and there
are no specific roles in the developer team. This leads to Kanban being highly flex-
ible [22]. Such flexibility could be an advantage for our group, considering the
loose boundaries in the project description. On the other hand, this flexibility can
lead to hard or boring tasks getting ignored, if none of the group members takes
the responsibility to do it [23]. Besides, it might be more difficult for the group
members to follow up on each other’s contribution and workflow, if there are no
set deadlines and planned meetings [24].

Scrum is an agile software development model based on incremental develop-
ment, where the entire project is divided into sprints with set deadlines [25].
Each sprint will usually have a set length between two to four weeks. Roles, meet-
ings, and other tools, aids this methodology in achieving structure and managing
workload. Having proper structure and good routines could be especially helpful
for us in our team, as we are quite inexperienced with projects of this scale. An
important factor for us is that Scrum is suitable for smaller teams [25]. By utilizing
daily scrums, all members of the group will get a good overview of what everyone
is doing. On the other hand, we are currently in a pandemic, which means that
we are not able to have physical meetings with our supervisor and contact person.
This can hinder the full potential of having sprint planning meetings, sprint review
meetings, and sprint retrospective meetings. Although fixed meetings contribute
to maintaining structure, there may be occasions where they are not necessary. As
a consequence, time may be wasted.

After looking at both of these models, we have concluded that Scrum is a fitting
software development model for this project, as it can help our group maintain
proper structure. We also want to incorporate some features from Kanban, like
the Kanban board, for keeping track of the project backlog and sprint backlog. If

Chapter 3: Development Plan 22

necessary, we will bring in pair programming from eXtreme Programming [26].
Lastly, we concluded that the inability to have physical meetings with our super-
visor and the product owner, does not significantly harm this project, as online
meetings will be adequate.

3.1.3 Usage of Software Development Model

Andrea Magnussen will be the scrum master on our team. The product owner is
Børre Dervo, as he is the contact person from NINA. Sprint lengths will be set to
two weeks per sprint, as the project timeline is quite short. By splitting each sprint
into two weeks, we will at least be able to finish four sprints during the project
period. By having short sprints, it will keep our product owner frequently updated
on the development of the system.

The sprints will start with a sprint planning meeting on the first Monday, and
end on the second Friday with a sprint review meeting and a sprint retrospective
meeting. The product owner will be included in the sprint review meeting. Every
day, there will be a daily scrum. It will be timed and it will last 15 minutes, where
each team member updates each other on what they have worked on. The scrum
master will time the meeting. The entire product backlog will be tracked using
Trello as a Kanban board. We will have one board containing the process of all the
tasks in the entire backlog and one board for each sprint.

3.1.4 Plan for Meetings and Decision Points

By the end of April, we need to be finished with a product that satisfies NINA’s
needs. The final deadline for the entire project, software and thesis, is the 20th of
May. The meeting with our product owner at the end of each sprint will be used
to keep him updated on where we are in the process, and to get input towards the
next sprint. Meetings with our supervisor on Tuesdays will be used to get guid-
ance in progressing the product development, and also for asking questions about
technologies, workflow, and thesis writing. See Table 3.1 for an overview of what
our sprint schedule looks like.

Table 3.1: Sprint structure.

Week Mon Tue Wed Thu Fri

1st Sprint plan
Daily Scrum
Supervisor-
meeting

Daily Scrum Daily Scrum Daily Scrum

2nd Daily Scrum
Daily Scrum
Supervisor-
meeting

Daily Scrum Daily Scrum
Daily Scrum
Sprint retro
Sprint review

Chapter 3: Development Plan 23

3.2 Gantt Diagram

Figure 3.1 shows how we have planned to have in total four sprints before Easter,
where we will develop the application. We decided early on that we wanted to in-
corporate thesis writing during development, as shown with the light green color.
The plan is to write roughly one or two chapters each sprint and send them to our
supervisor for feedback. If everything goes according to plan, we will hopefully
have written half of the report when we reach Easter.

With this in mind, developing the application and programming will have a larger
priority than thesis writing during the sprints. It is important that we uphold the
deadline of having developed the application before the break, so that we are
ready for testing. This focus will shift after Easter, like Figure 3.1 shows. We will
also conduct a user test to catch flaws, bugs and collect feedback, so that we can
improve the system.

Figure 3.1: Gantt diagram for the project period.

3.3 Development Environment

In the beginning of the project period, we made multiple decisions in regards to
development. This includes decisions about technologies and tools that we wanted
to use to reach our end goal.

3.3.1 Technology Choices

Mobile Application

Given the desires from the researchers at NINA, we have decided to develop a
mobile application. We considered the possibility to develop both a web applica-

Chapter 3: Development Plan 24

tion and a desktop application. However, the fact that the researchers at NINA
wanted something that could aid in fieldwork weighed heavily in on our decision
to develop for smart phones and tablets. At some point we considered doing both
a mobile and a desktop application. However, due to the limited time frame, we
decided to focus exclusively on a mobile application.

For developing the mobile application, we decided to use React Native. According
to Statcounter [27], the mobile operating market share in Norway as of January
2021, is that 61.17% of mobile phones run on iOS and 38.61% run on Android.
React Native allows us to develop an application that can run on both Android and
iOS devices, which was a big factor as to why we decided to use this framework.
It is also a framework that is rising in popularity [28]. In addition, we all have
experience with native Android development from a previous course, and wanted
to explore new technologies. Lastly, three out of four members of our team, use
windows computers and are unable to develop native iOS applications easily [29].

We will be using Expo for testing and building our mobile application. Expo is a
framework for universal React applications [30]. It is a set of tools and services
that is built around React Native and native platforms. Expo aids in developing,
building, deploying, and quickly iterating on iOS and Android applications, from
the same JavaScript codebase.

Algorithm

The algorithm, developed by the previous group from 2019 [7], was written in
Python. This is why we decided to continue working with the algorithm in this
language, as it would be very time consuming and complicated to convert to an-
other programming language. The previous group used DeepLabCut for finding
the center line of the salamanders. DeepLabCut is an open source library made
for pose estimation of humans and animals, and uses deep learning to accomplish
this. As this library is made for Python 3.7, we will have to conform to this version
[31]. For species and sex estimation we will be using a neural network for object
recognition.

REST API

To make sure that the REST API, running on NINA’s server, is compatible with
the salamander matching algorithm, we decided to use the same programming
language, which was Python. We also became restricted to using Python 3.7 quite
early, as DeepLabCut needs this version to run properly for our application [31].
There are different frameworks for Python to develop REST API’s. We mainly
looked at two; Django and Flask.

In 2020, Michael Herman [32] looked at Flask and Django, and compared the two.
They are both free open source Python frameworks for building web-applications

Chapter 3: Development Plan 25

and API’s. Flask is a so called microframework, whereas Django provides more out
of the box features. Django is better for large scale applications with bigger teams,
while Flask is better for smaller and less complicated projects. Herman also stated
in his comparison that Django is best for full web development with routing and
templating, and that Flask is better for developing REST API’s.

For our use case, which is to develop a REST API that serves a mobile application,
we have decided to use Flask. Since Flask is a microframework, we can easily
add more Flask-compatible libraries, instead of having to work with unnecessary
features that comes with Django. Flask also provides an easy setup that makes it
fast to start development.

3.3.2 Tool Overview

Figure 3.2 shows an overview of all the tools and frameworks we plan to use in
this bachelor’s project including development, documentation, deployment, and
collaboration tools.

Python

GitLab Git

Trello

Local Server

Local
Database

Clockify

React Native

PyCharm

Visual Studio Code

Core Libraries

Languages and frameworks

Collaboration tools

Documentation

Development
environments

Grammarly

Deployment environment

React
Navigation

React Native
Paper

Expo

Figure 3.2: Different tools we are going to use in the project.

Chapter 4

Technical Design

In this chapter we will go through the technical design of the completed system.
This includes the high level architecture of the entire system, as well as a deeper
look at each of the main components.

4.1 System Architecture

REST API

Application

Database

DeepLabCut OpenCV

Client

Server

Algorithm

ImageAI

Figure 4.1: System architecture displaying the client/server interaction.

The system is divided into a client (mobile application) and a server (see Fig-
ure 4.1). The server consists of the REST API and the algorithm. We have decided
to go for a thin client because the system will store a lot of data, primarily con-

26

Chapter 4: Technical Design 27

sisting of images. This will eventually require more storage space than what is
available on a smart phone. In addition, the algorithm has to be as precise as pos-
sible to reduce incorrect identifications. Running this algorithm reasonably fast
will therefore require significantly more processing power than what is available
on a modern smart phone.

Due to our choice of developing a thin client, the mobile application relies on
having a connection to the server to function properly. We also wanted to make
sure that the data is always consistent across all devices at all times, which means
the user needs to be connected to the server to register locations and images of
caught salamanders.

4.2 Networking

There are several libraries that makes it possible to send and receive network re-
quests and API calls from a client to a server. We mainly looked at two ways of
achieving this; Axios and Fetch.

Fetch provides a JavaScript interface for accessing and manipulating parts of the
HTTP pipeline, such as requests and responses [33]. However, compared to Axios,
it requires more work by the developer to fully utilize the freedom it gives. Ax-
ios have several built in functionalities that would help reduce development time
and unnecessary overhead. One of these functionalities is the ability to create one
standard instance of Axios that could be utilized everywhere. In addition, Axios
has built in Cross-Site Request Forgery protection [34]. If we were to justify the
use of Fetch it would mean that we would have to provide solutions for Cross-Site
Request Forgery that are better than what Axios’s API has to offer.

All in all, we decided to use Axios to handle communication between the client
and the server, as it seemed to fit our use case, and provided extra security.

4.3 Front End

In this section, a selection of the most important libraries used in the React Native
application, and an overview over the navigation between the different screens
are covered.

4.3.1 Libraries

We used several third-party libraries for creating this mobile application. Libraries
worth mentioning are:

• React Navigation: A routing and navigation library for React Native [35],
which makes navigation more elegant by removing boiler plate code and

Chapter 4: Technical Design 28

taking care of the logic.
• React Native Paper: A standard-compliant Material Design library for React

Native [36], which allows for importing already designed GUI components.
• React Native Axios: Discussed in Section 4.2, and handles network requests

in the application.
• React Redux: An open-source JavaScript library for managing application

state [37].

In addition to these libraries, we have used several smaller libraries to complement
our application. These will be covered in further detail in Chapter 7 Implementa-
tion.

4.3.2 Navigation Overview

The purpose of the following diagrams is to give an overview of how the different
screens are connected, and the different paths a user can take to navigate between
them.

Sign inSign up

Profile

Register
Location

Home/MapCamera

Register
Salamander

Delete User Edit Name Edit
PasswordEdit Email

<Sign Out>

Figure 4.2: Initial navigation diagram.

Figure 4.2 shows how we initially planned to connect the various screens in the
mobile application, and is based on the Adobe XD prototype (see Appendix G.2).
There was no focus on implementing a feature for an admin to manage salaman-

Chapter 4: Technical Design 29

der data after registration. However, this use case was added during the last sprint
(see Section 5.2.4).

Sign inSign up

Profile

Register
Location

Home/MapCamera

Register
Salamander

Delete User Edit Name Edit
PasswordEdit Email

Edit
Location

Change
salamander

Manage
Salamander

Pending
Users

Manage
Users

Salamander
Overview

<Sign Out>

Admin

Figure 4.3: Final navigation diagram.

Figure 4.3 shows how the screens in the final product are connected. If we com-
pare the final diagram to Figure 4.2, we added several more screens to the appli-
cation. Primarily we added screens for an administrator allowing for management
of users and salamanders. All of these screens are located inside the admin field at
the bottom of the diagram. All admin related screens are located together under
the same category in the profile settings. Lastly, we also wanted all users to have
the ability to edit existing locations from the home screen.

Chapter 4: Technical Design 30

4.3.3 File Hierarchy

In Figure 4.4 the overall file hierarchy of the mobile application is shown.

Figure 4.4: File hierarchy in the mobile application.

We divided the files based on their general purpose; assets, components, con-
stants, navigation, redux and screens. Node modules has to be included in all
React Native projects, and it includes all the imported libraries.

4.4 Back End

This section will cover the REST API and algorithm, and how they are structured
to fit our case.

4.4.1 REST API

The REST API that runs on the server is written in Python. As discussed in Chap-
ter 3, we chose this language so that the REST API and the algorithm could easily
communicate together.

Libraries

The main library we used for creating the REST API is Flask. We also used other
libraries, including Flask extensions. The libraries worth mentioning are:

Chapter 4: Technical Design 31

• Flask: A web development library for creating API’s [2].

� Flask-restful: An extension which helps to create REST API’s [38].
� Flask-jwt-extended: An extension to handle JSON Web Token for au-

thentication [3].
� Flask-sqlalchemy: An extension to handle database functionality [39].
� Flask-bcrypt: An extension to hash passwords and compare passwords

to the hashed ones [40].
� Flask-limiter: An extension that allows for easy implementation of

rate limiters for endpoints [4].

• Image-encoder: Takes in a file path to an image and returns a string repre-
sentation of Base64 encoded bytes [41].

Using Flask-restful allowed us to easily create different endpoints and use different
HTTP methods on the same endpoint, such as POST, GET, PUT and DELETE.

Endpoints

All data is transferred as form data from the client and returned as JSON from the
server. All HTTP requests, except for login and sign up, are authenticated using a
JSON Web Token created by the server and transferred to the client. It serves as
an identifier for each user by encrypting their unique user ID inside it. The token
is sent with each request and is decrypted by the server (see Section 7.2.1 for fur-
ther details).

The API consists of 12 different endpoints. Some of these endpoints accepts differ-
ent HTTP methods. In total, there are 21 ways of requesting the API. For example,
the location endpoint has four allowed HTTP methods while the match salaman-
der endpoint only has one. The different HTTP methods that we used throughout
the project are GET, POST, PUT and DELETE. For instance, the location endpoint
that accepts all HTTP methods, uses GET to get information about all the loca-
tions and POST for registering a new location. PUT is used for editing the location,
which includes name and radius, and DELETE is used for deleting a location.

The API is documented using Postman. This documentation explains the usage of
all of the endpoints and their different HTTP methods. The full documentation
can be found in Appendix D.

For storing data on the server, we use a file structure (Figure 4.6) to store pro-
cessed and original images, and a local database (Figure 4.7) to store all other
data such as users, metadata for salamanders and locations. All processed images
are always stored as JPG images, and the originals are stored in their original for-
mat. However, the server only accepts JPG, jpeg and PNG formats. For the local
database we use Flask-SQLAlchemy which uses Sqlite dialect.

Chapter 4: Technical Design 32

File Hierarchy

Figure 4.5 shows how we set up the project structure for the REST API.

Figure 4.5: File hierarchy of the REST API.

The API folder is the root and is further divided into four sub folders. The database
folder contains the local database for storing data about users, salamanders and
locations. The endpoint folder contains all the different endpoints that the mobile
application can request. The forms folder contains user related forms for input
validation, and the models folder contains all the database models for the different
tables in the database.

4.4.2 Algorithm

Libraries

• DeepLabCut: A library for pose estimation of humans and animals using
neural networks [42].
• Tensorflow: A free open source library for machine learning [43]. Used in

DeepLabCut and ImageAI.
• ImageAI: A library for generic categorization and object detection [44].
• OpenCV: A broad library with several functionalities for image manipula-

tion [45].

The algorithm utilizes two separate neural networks to determine sex and to find
the abdominal pattern of a given salamander. The previous bachelor’s group used
DeepLabCut to train a ResNet_50 model in one of their attempts to estimate the
abdomen of the salamander. After looking further into this library we decided to

Chapter 4: Technical Design 33

also use DeepLabCut for our project. DeepLabCut uses Tensorflow to create their
models and they support models of various depths.

DeepLabCut is used to identify the abdomen, and ImageAI is used to determine
the sex, as seen in Figure 4.1. Both of these libraries use Tensorflow for model gen-
eration and estimation [46] [42]. As precision is paramount we use ResNet_152
for DeepLabCut and YoloV3 for ImageAI. These models produce great accuracy,
but require more computation time than less accurate alternatives [47] [48].

4.5 Data Storage

In the project planning phase, we had a meeting with our product owner, where
we began discussing how we were going to structure our database and storing
the images. We also discussed how to best register the salamanders in the system,
both for the researchers at NINA, and for the algorithm to be as effective as pos-
sible.

At first, we discussed dividing all captured salamander images into folders based
on either county, municipality or city. This would be chosen by the researchers
each time they would upload an image. This could reduce the time it would
take for the algorithm to search through images, as it would only need to search
through a single folder. The problem with this approach was that some of these
ponds were located at the borders of the areas. There might be some confusion for
the researchers to determine the right area for the pond. This would be critical,
because the algorithm might search through the wrong area.

The next approach we looked at was to read the image metadata and extract the
coordinates. According to our product owner, a salamander usually does not wan-
der more than about 500 meters away from its birth pond. This means that there
is no point in matching a salamander against others caught more than 500 me-
ters away. When a salamander is caught we would then be able to calculate the
coordinates and search through all the salamanders that are inside of a 500 me-
ter radius from the image metadata. However, there are multiple issues with this
approach. Based on the workflow of the researchers, this would not be suitable.
Sometimes they will bring caught salamanders to a lab or another area, and if the
system used this approach when matching salamanders, the coordinates would
be incorrect. Another issue with this approach is that the coordinate of an image
may not necessarily correspond to the salamanders birth pond, which violates the
assumption that a salamander only wanders 500 meters away from the center of
the pond.

After realizing that our approaches would not fit the needs of either the researchers
or the algorithm, we had to look at other solutions. We have come up with a reg-
istration system, where the researchers at NINA can register locations on a map

Chapter 4: Technical Design 34

on their mobile device. When they register a location, they will give it a name
and radius, and the coordinate will automatically be registered in the database.
The purpose of the radius is only to visualize how big the area is. In this way, the
researchers will have full control over which locations cover what ponds. When
they upload images, they should easily be able to choose the right location from
those which have been registered. When a location is selected and an image of
a salamander is posted to the REST API, the server will automatically match the
salamander with other salamanders that were caught at this location. Our prod-
uct owner found this way of storing salamanders to be intuitive, easy to use, and
effective for matching salamanders.

We created a folder structure that would accommodate this design, shown in Fig-
ure 4.6. The folder structure is divided into locations, species, and sex of the sala-
mander. When registering a new location, the system will create a new folder with
the location name, containing all sub folders.

Northern
Crested Newt

Juvenile

Male

Female

Smooth Newt

Locations

Salamander IDs

Images

Images

Same folder
structure as

below

Same folder
structure as

below

Same folder
structure as

below

Figure 4.6: How the images of the salamanders get stored in the folder structure.

Based on our final design choice, we made a database diagram, Figure 4.7, that
shows how data is stored on the server and how this data is connected. When
a salamander is registered in the database, it will get a foreign key to the user
that registered it and a foreign key to where it was caught. The researchers will
also be able to register the salamander’s weight and length. The purpose of the
SalamanderGrowth table is to track the individual salamander over time. The
location table will include a unique ID, name, longitude, latitude and radius. With
these data we can render all the locations in the mobile application. The date
logged in SalamanderGrowth is not read from the metadata stored in the image
file, but rather the date the image was uploaded to the server.

Chapter 4: Technical Design 35

User

PK user_id int NOT NULL

name int NOT NULL

email char(255) NOT NULL

Location

PK location_id int NOT NULL

 name char(255) NOT NULL

longitude float NOT NULL

Salamander

PK salamander_id int NOT NULL

sex char(255) NOT NULL

location char(255) NOT NULL

species char(255) NOT NULL

uid int NOT NULLFK1

password char(255) NOT NULL

radius int NOT NULL

date date NOT NULL

location_id int NOT NULLFK2

admin boolean NOT NULL

accepted boolean NOT NULL

SalamanderGrowth

PK id int NOT NULL

length float NULLABLE

date date NOT NULL

weight float NULLABLE

salamander_id int NOT NULLFK

latitude float NOT NULL

image_id int NOT NULL

Figure 4.7: ER-diagram of our database.

Chapter 5

Development Process

This chapter will describe our usage of different tools during the development pro-
cess, as well as what we did in each sprint. We had four sprints, where each sprint
was two weeks long. This chapter will not go into detail about implementation,
but simply give a summary of what was implemented in each sprint. Implemen-
tation details will be covered in Chapter 7.

5.1 Tools

We used various tools during development to keep track of our progress and to
estimate workload. We used Trello and planning poker in all sprints. The plan
was also to use a sprint burndown chart to keep track of our progress during the
sprints.

5.1.1 Planning Poker

During each sprint planning meeting, tasks from the product backlog were chosen
and estimated using planning poker. For each sprint, we estimated 240 hours total
workload, which is 30 hours per person per week, for two weeks. However, we
decided to only estimate development related tasks when using planning poker,
which means we would use the remaining time working on thesis related activi-
ties.

When one task was chosen from the product backlog, a short introduction of the
task was given. Each group member then gave a time estimate in hours using
Fibonacci numbers. A discussion followed after each time estimate, and the final
estimate of the task was set. After all tasks were given an estimate, they were
added to the sprint backlog. If the total estimate differed significantly from our
estimated total time use per sprint, we would either remove or add tasks to the
planning poker. The minimum amount of estimated workload was set to 150 hours
and the maximum was set to 240 hours. For the actual number of hours spent each
sprint, see Chapter 10.

36

Chapter 5: Development Process 37

5.1.2 Trello

We used Trello throughout the development process to keep track of the sprint
backlog for each sprint. Figure 5.1 shows an example of how we used this tool for
a single sprint in the development process.

Figure 5.1: Example of Trello usage in sprint 2.

We divided the board into four categories; TODO, Work in Progress (WIP), To
Review and Done. As the sprint progressed the tasks would move from TODO,
and eventually end up in the Done category. We color coded the tasks into four
different categories. Purple was used for tasks regarding mobile application devel-
opment, blue was used for REST API related work, green was used for the image
recognition algorithm and yellow was used for tasks covering thesis related activ-
ities. We also assigned group members to each task.

5.1.3 Sprint Burndown Chart

We initially planned to draw a sprint burndown chart for every sprint. During the
first two sprints this was done successfully, as seen in Appendix J. However, dur-
ing the last two sprints we became increasingly less consistent with our updates
to the diagram, eventually leading to the discontinuation of this tool in sprint 4.

One of the reasons for the discontinuation of sprint burndown charts, was that
we got little value from using it. We realized we were able to maintain awareness
of our progress without using this tool. This realization resulted in us prioritizing
other work over the burndown chart. Due to our style of working, as we mostly
worked together on campus, we could easily keep everyone up to date. We believe

Chapter 5: Development Process 38

that using sprint burndown charts would have been more useful if the sprints were
longer, and the group members worked remotely, and only communicated during
the daily scrum meetings.

We also found it quite hard to estimate remaining workload, as we were inexpe-
rienced with the Scrum methodology. At times we would add more tasks to the
sprint backlog, which made estimating challenging. Some of the larger tasks were
also hard to accurately estimate as there was significant uncertainty regarding the
time needed to complete the task. This was due to us not having experience with
several of the technologies that was used in this project.

5.2 Sprint Overview

In this section we will cover the four sprints from this project. Each sprint will be
given an overview, as well as a summary of the progress for the mobile application,
REST API, and algorithm.

5.2.1 Sprint: Getting Started (01.02.2021 - 12.02.2021)

The first sprint started in the beginning of February, and was mostly focused on
formalizing requirements and getting to know the technologies we decided to use.
Table 5.1 shows the resulting estimates from this sprints planning poker.

Table 5.1: The tasks estimated during planning poker in sprint 1.

Task Name Time (hours)
1 /matchSalamander endpoint 8
2 Database and image storage 13
3 Database-design 13
4 Project setup - REST API 2
5 React Native research 8
6 Find abdomen - deeplabcut 89
7 Paper prototype 10
8 Adobe XD prototype 10

Sum: 153

In addition to the tasks estimated in Table 5.1, a lot of time during this sprint also
went to writing the requirements.

Mobile Application

The main focus in this sprint was design and user experience in regards to the
mobile application. A simple prototype was made and shown to our product owner
(see Appendix G.1). We got feedback, and a more detailed prototype was made in

Chapter 5: Development Process 39

Adobe XD (see Appendix G.2). After receiving feedback on this as well, we were
ready to develop the application.

REST API

The first goal for the REST API was to setup the project and get the library Flask to
work with some basic endpoints. Initially there was some difficulties with Python,
Pycharm, and PIP. However, after restructuring the project, the errors got sorted
out.

The endpoints that were implemented in this sprint were; a salamander match-
ing endpoint, a login endpoint with JWT authentication, a find salamander data
endpoint, and a register user endpoint.

A database using Flask-SQLAlchemy was also implemented. It consists of three
tables; user, salamander, and location. A lot of time went into researching authen-
tication, database, and setting up the project structure to avoid errors.

Algorithm

The source code from the previous bachelor’s thesis [7] was missing crucial func-
tionality, such as automatically locating the abdomen of the salamander. Two
members were therefore assigned the task to train a neural network model and
change some of the source code to satisfy the requirements.

The images we received from our contact person at NINA was in JPG format and
was taken in a high resolution. As our neural network works faster with images
in lower resolutions, we had to downscale all the images. Additionally we had to
convert the images to PNG format to be compatible with DeepLabCut.

We encountered an issue with getting DeepLabCut to use the GPU on our com-
puters. This was problematic as using only the CPU would make the training and
estimating take significantly more time. After four days we managed to solve this
issue and was able to use the GPU.

5.2.2 Sprint: Accelerating (15.02.21-26.02.21)

The second sprint started in the middle of February, and marked the beginning
of the development of the software solution. We spent time on designing our
database, and implemented the various libraries and frameworks we chose in
sprint one. Table 5.2 displays the resulting estimates from the planning poker
session.

Chapter 5: Development Process 40

Table 5.2: Planning Poker for sprint 2.

Task Name Time (hours)
1 Register user-GUI 3
2 Profile-GUI 6
3 Login-GUI 2
4 /registerLocation endpoint 3
5 Authentication - REST API 2
6 Classify species and sex 89
7 Authentication - APP 3
8 Navigation - APP 8
9 Project setup - APP 2

10 System architecture 14
11 /editUser endpoint 4
12 /deleteUser endpoint 1
13 Find abdomen - deeplab 13

Sum: 150

In addition to the tasks estimated in Table 5.2, a lot of time during this sprint also
went to documenting the technical design and the development plan.

Mobile Application

In the second sprint, all the screens designed in the first sprint were implemented,
and the application was tested in the Expo development environment. Naviga-
tion was also implemented, and it became possible to navigate to all the different
screens. We also started on networking with Axios, and tried to connect the ap-
plication to the server. This was the main focus in the next sprint.

REST API

The second sprint mainly consisted of creating more endpoints, and adding more
tables and entries to the database. We made an endpoint to verify passwords and
an endpoint for a user to be able to edit personal information such as password,
name and email. A location registration endpoint was also created, which lets a
user register a location with a name, latitude and longitude, and a radius. These
data would then be stored in the new database that was created, see Figure 4.7.

In this sprint we also merged some of the algorithm with the REST API. The find
salamander data endpoint now used the image processing AI for straightening and
cropping the abdominal pattern. We added the matching algorithm to the match
salamander endpoint to match the processed image with other salamanders inside
a specified folder in the hierarchy.

Chapter 5: Development Process 41

Algorithm

In this sprint we continued with the matching logic. Specifically the model made
in DeepLabCut got improved. We added extra points in order to find the width of
the abdominal pattern by locating the shoulders. The model was changed from
ResNet_50 to ResNet_101. In addition, two functions were made to communicate
with the REST API to estimate and match a salamander.

We started to work on the automatic identification of sex. We decided to only
classify males and females, as we got far too few images of juveniles to properly
train a model. In the beginning we tried making an image classification model to
classify the sex, but ran into precision issues. Because of this we went with an ob-
ject identification method instead, which would identify the cloaca (the intestinal,
urinary, and genital tracts), of a given salamander and identify the sex based on it.

Finally we also decided to not identify species, because the images we got from
NINA was only of northern crested newts. Further discussion behind this decision
will be covered in Chapter 7.

5.2.3 Sprint: Assembling (01.03.21-12.03.21)

The third sprint started the first day of March. It was mostly focused around the
development of the mobile application. The REST API and algorithm was merged
together and we continued on automatically identifying the sex of salamanders.
This sprint was almost exclusively focused on software development, and thesis
writing was put on hold. Table 5.3 shows the results of the planning poker session.

Table 5.3: Planning Poker for sprint 3

Task Name Time (hours)
1 Classify sex 10
2 Merge algorithm with REST API 3
3 Merge find abdomen and classify sex algorithms 1
4 Sign out - APP 3
5 Camera - GUI 80
6 Register salamander - GUI 35
7 Store data fetched from API - APP 6
8 Home - GUI 55
9 Edit Profile - APP 15
10 Visual feedback - APP 10

Sum: 218

Chapter 5: Development Process 42

Mobile Application

For the third sprint, a lot of time went to develop the mobile application. Every-
one in the group started to work on different aspects of the application, as it at
this point had to be connected to the REST API. The camera functionality was
implemented, as well as the map functionality. An instance of Axios was also im-
plemented, and was used to handle all the HTTP requests. We also implemented
state management using Redux, to make the data in the application persistent
over multiple screens.

Most of the originally planned features was implemented during this sprint, and
we were able to give a demo to our product owner. During this meeting, our prod-
uct owner wondered whether it was easy for the researchers at NINA to manage
the registered salamanders. We came to the conclusion that it would not be that
easy for them to manually move or edit salamander data on the server side, and
decided that we should add functionality in the application that would cover this.
This was the focus in the last sprint, as well as looking at deployment of the mobile
application.

REST API

For this sprint we had not planned on more development of the REST API. Even-
tually, it became clear that further development was needed to fulfill the new
functionality added in the front end.

The main feature that was implemented was an endpoint for administrators to
manage users, by accepting or denying their access to the system. This endpoint
is restricted to only admin users so that non-admin users will not have access
to these features. We also implemented an endpoint for all users to change their
passwords.

There were also some bug fixing and refactoring. We implemented a rate limiter to
the REST API using Flask-Limiter, so that each endpoint has a set limit per minute.
This was implemented so that the system would be less vulnerable to DOS attacks.
Lastly we implemented status codes to the message that was returned to the client
from the API.

Algorithm

In this sprint we continued on developing the sex identification algorithm. An
issue we encountered was that DeepLabCut, and ImageAI used for sex identifi-
cation, would not work together. This was because the two libraries would fight
for GPU resources, and because of issues with Tensorflow. We also implemented
a semaphore in the algorithm to control access to the GPU. Lastly we chose to run
all code using Tensorflow in their own processes to free up GPU memory after use.

Chapter 5: Development Process 43

After testing the sex identification AI multiple times, we did not get acceptable ac-
curacy, leading us to abandon the idea. Further discussion about this decision will
be covered in Chapter 7 Implementation.

5.2.4 Sprint: Ragnarok (15.03.21-26.03.21)

The final sprint started in the middle of March and had a major focus on admin-
istrative features allowing for quality control and salamander data management.
Several new API endpoints and mobile application screens were created. This was
additional features we had not planned for, but decided to implement after the
meeting with our product owner in the sprint review meeting of the previous
sprint. We also began looking at deployment. Table 5.4 shows the results of the
planning poker session for this sprint.

Table 5.4: Planning Poker for sprint 4

Task Name Time (hours)
1 Deployment - APP 34
2 Deployment - REST API 55
3 Sanitize input - APP 12
4 Move salamander endpoint 8
5 Salamander overview - GUI 7
6 Salamander list - GUI 8
7 Edit salamander - GUI 14
8 Get salamander images endpoint 3
9 Get salamanders endpoint 3
10 Delete salamander endpoint 10
11 Rematch salamander 3
12 Merge find abdomen and classify sex algorithms 2

Sum: 159

This sprint was focused on development, as this was our last sprint and the new
features we wanted to implement were quite challenging and time consuming. To
be able to implement these new features, we needed to conduct new requirement
specifications and create a use case. Table 5.5 is a low level use case of the manage
salamander requirement.

Chapter 5: Development Process 44

Table 5.5: Low-level use case for managing registered salamanders.

Use Case: Manage salamanders
Actor(s): Admin
Goal: Ensure that registered salamander data is correct.
Description: An admin can see a list of all caught salamanders based on

a location, see images and data on one specific salamander,
and change these data if necessary.

Preconditions: There has to be registered salamanders in the database on
the given location.

Post- Server sends a response back to client.
conditions:
Special The request needs to come from an authenticated
Requirements: user with the correct access privileges.
Success 1. The admin navigates to the manage salamander screen.
Scenario: 2. The admin verifies their password.

3. The admin selects a location and fetches all salamanders
from the server on the given location.
4. The admin scrolls through a list of salamanders and
clicks on the one they want to look at.
5. The admin navigates to a new screen containing all the
original images of the salamander.
6. The admin chooses one of the original images and gets
navigated to a new screen containing all salamander data
for the specific salamander. This includes weight, length,
location, species and sex, in addition to the original and
processed image.
7. The admin verifies the data.
8. The admin click the confirm button when data is verified
and gets navigated back to the salamander list.

Alternative 4. If the admin does not want to manage the
Scenarios: salamanders, they can click the done button instead.

7a. The admin may delete the salamander from the
database.
7b. The admin may update any of the salamander data.
This includes weight, length, location, species and sex. If
the sex, location or species is changed, the back end will
match the salamander against the salamanders new data.

Fail 2. The user does not have the right privileges, and the
Scenarios: server will abort the request.

3. There are no registered salamanders on the location that
the admin chooses.
2-8. Internal server error when trying to process the
request.

Chapter 5: Development Process 45

Mobile Application

As mentioned earlier, this sprint was focused around implementing the new fea-
ture regarding management of salamanders. We used approximately one week to
implement it, and the last week was used to debug and polish the application. We
also added the ability to edit and delete a location, as well as making it possible
for the admin to reset a users password.

REST API

During this sprint, the main tasks were to implement endpoints that would work
with the new use case as seen in Table 5.5. This included an endpoint for getting
all salamanders based on a location, getting all original salamander images based
on its ID, and get the original and the processed image of a specific salamander. We
also implemented an endpoint for deleting salamanders and changing their data.
If data about the salamander’s species, sex or location is changed, the salamander
would need to be re-matched.

Algorithm

In this sprint, not much happened with the algorithm. The only notable change
was moving from using ResNet_101 to the deeper network ResNet_152 for DeepLab-
Cut. This was done to improve accuracy further, but required more powerful hard-
ware to train on. See Section 7.2.2 for further details on this.

Chapter 6

Graphical User Interface

This chapter will cover choices we made in regards to colors, GUI-elements and
visual feedback, in the mobile application.

6.1 Prototyping

During the first sprint we made a simple prototype of the application (see Ap-
pendix G.1) and presented it to our product owner. After receiving feedback, we
reiterated and made a more complex and interactive prototype in Adobe XD. This
was shown to our product owner during the sprint retrospective meeting of sprint
1, so he could get a refined impression of the functionality of the application, and
its workflow. Screenshots of the Adobe XD prototype can be seen in Appendix G.2,
in addition to a clickable link to the interactive version.

6.2 Aesthetics

This section covers choices in regards to colors, application icon and an overview
of how the main screens are designed.

6.2.1 Colors

When deciding the colors in the application, we decided to use NINA’s logo (see
Figure 6.1) as a reference. Light blue is used as a background color in the sign in
and sign up screens, and orange is used throughout the applications headers and
the bottom navigation bar. For the buttons we used a dark blue color.

46

Chapter 6: Graphical User Interface 47

Figure 6.1: NINA’s logo.

6.2.2 Application Icon

When drawing the icon for the application we designed a salamander (see Fig-
ure 6.6, and made it look like an S, as in Salamander.

Figure 6.2: Salamander application icon.

6.2.3 Main Screens

The finished application consists of three main screens; a home screen, a camera
screen and a profile screen. The overall look and feel can be seen in Figure 6.3.
The rest of the final GUI of the application is shown in Appendix H.

(a) Home screen. (b) Camera screen. (c) Profile screen.

Figure 6.3: Images of the main screens.

Chapter 6: Graphical User Interface 48

6.3 GUI-elements

To avoid spending too much time on designing the GUI-elements ourselves, we
decided to use React Native Paper. By using this, our application got a modern
look and feel with minimal effort, as well as automatically adjusting the GUI to
the operating system of the mobile device.

6.3.1 Navigation Bar

As seen in Figure 6.3, we decided to use a bottom navigation bar to handle naviga-
tion between the three main screens. According to Material Design [49], a bottom
navigation bar should only be used if there are between three and five main des-
tinations, which there are in our case. We also discussed using a drawer style
navigation menu as well. However, this would only be useful if the application
had more than five main screens to traverse between [50].

6.3.2 Buttons

When positioning buttons, we followed this article by Carlson [51]. Secondary
buttons, typically representing cancellation of an action, were mostly placed on
the left side of the screen. Primary buttons, typically representing an action, were
placed on the right side. This is due to western style of reading going from left to
right, which means the primary button will be the last destination.

In cases where the keyboard was triggered automatically, the buttons were placed
vertically, as shown in Figure 6.8. This choice was due the keyboard creating noise
when triggered, and we wanted to make sure the buttons were easily noticeable.
The primary button was placed on top, as it is the most likely outcome when the
user navigated to such a screen.

(a) Secondary button style. (b) Primary button style.

Figure 6.4: Buttons in the application.

We decided to use the mode "contained", seen in Figure 6.4b, for primary buttons.
For secondary buttons we decided to go with the mode "outlined", as seen in Fig-
ure 6.4a. This button is less highlighted than the primary one, but still noticeable
enough for a user to see it.

For special case buttons, such as disabled buttons or buttons for critical operations,
the respective styles are shown below in Figure 6.5a and Figure 6.5b.

Chapter 6: Graphical User Interface 49

(a) Disabled button style. (b) Delete button style.

Figure 6.5: Special case buttons in the application.

6.3.3 Radio Buttons and Dropdown Menus

When a user is working with standardized data, we decided to implement a radio
button group or a dropdown menu. By using a dropdown menu or radio button
group, it is certain that the values the user chooses are correct. If the values could
be entered through a text input field, the user could have typos or write values
that do not exist.

For specifying sex, radio buttons were used, as it is only three options; female,
male and juvenile. According to an article by Minhas [52], dropdown menus
should only be used if there are more than five options, or if the default option is
the recommended one. This is not the case for sex, as it can differ from case to case.

We used dropdown menus for locations due to the possibility of many locations
being registered. In addition, the last selected location is always remembered, so
the user will not have to select the location again. A dropdown was also used in
the case of species. Currently, the application only works properly for northern
crested newts, which is set as the default option. In addition, more species might
be added in the future.

Figure 6.6: Our use of dropdowns and radio buttons.

6.3.4 Use of Modals

In each main screen there are tasks that require input from the user. In the home
screen, the user may want to register a new location or edit an existing one. To
do one of these tasks, we have decided to utilize a modal screen that slides up
from below. This modal will not display the bottom navigation bar, and can be

Chapter 6: Graphical User Interface 50

thought of as a sub screen from their main screen. The user will either have to
cancel or complete the operation to return to the main screen. In this way, a user
can focus on the task at hand, and not be distracted by other functionality in the
application.

6.3.5 Visual Feedback

When users interact with the system they will expect some form of feedback. When
they make requests, the server will send back a response, even if the response is
an error. We decided to show this feedback in the form of a toast message. A toast
provides simple feedback about an operation in a small popup, and only fills the
amount of space required for the message [53]. The popup will disappear if the
user dismisses it, or its timeout has passed. The different toasts a user can get is
info, success, and error (seen in Figure 6.7). These toasts are displayed when a
request has been processed.

(a) Toast Info.

(b) Toast Success.

(c) Toast Error.

Figure 6.7: Images of the different toast messages in the application.

In addition to toast messages, we have also implemented responsive input valida-
tion in our application. This is showcased in Figure 6.8.

Figure 6.8: Helper text when typing in email.

The user will not be able to proceed if they have not provided the correct data,

Chapter 6: Graphical User Interface 51

and they will be visually notified of what is wrong. We use regular expressions for
validating text input. Each regular expression is shown in Appendix K.

6.4 GUI-evolution

(a) Prototype version. (b) Final version.

Figure 6.9: Home screen iteration from prototype to final product.

Figure 6.9 shows a comparison between the prototype we made in Adobe XD
(see Figure 6.9a) and the final version of the application’s home screen (see Fig-
ure 6.9b). The original plan was to have a "+" button in the top right corner that
would be used to register locations. When the button was pressed the user would
be able to press anywhere on the map to render a point. When the point was ren-
dered they would have to confirm, and then they would be navigated to a new
screen. There they could fill in the location name and radius to register the loca-
tion.

The final version does this in a different way. For a user to register a location, they
first need to long press the map to render a point. When the point is rendered, a
button is shown, and the user can navigate to the register location screen. Here
they can fill in location name and radius to register the location. We also added a
refresh button in the final application.

Chapter 6: Graphical User Interface 52

(a) Prototype version. (b) Final version.

Figure 6.10: Register salamander screen iterations.

Figure 6.10 shows a comparison between the prototype we made in Adobe XD
(see Figure 6.10a) and the final version of the application’s register salamander
screen (see Figure 6.10b). The original plan was to only choose the sex and species
for the salamander before registering it. The location would be chosen in the pre-
vious screen.

As we progressed in development, we decided it would be better to group all
salamander data in one screen. We also added optional text inputs for weight and
length. The user will also get a better overview of the salamander’s abdominal
pattern shown in Figure 6.10. The user would now be able to look at the image
that the server has processed and ensure that it is not warped.

Chapter 7

Implementation

This chapter is divided into front end implementation and back end implementa-
tion. The back end implementation is again divided into a section about the REST
API and the algorithm.

7.1 Front End

The front end code is written using the React Native framework and JavaScript. We
will cover the most important modules implemented in the application and what
they contain, as well as how navigation is implemented. We will also showcase
how networking is handled, as well as state management. The code examples are
excerpts from the source code, and some are shortened for example purposes. For
a more detailed look into the source code, see the GitLab-repository in Appendix D.

7.1.1 Modules

We have implemented three main modules in our application; Home, Camera and
Profile. Each module contains multiple screens and different functionalities that
are linked with the respective module.

Home

The home screen is the first screen users see when they log into the application.
In this module, users can see all registered locations, register new locations and
edit locations. If users give the application permission to use their location, this
will also be displayed on the map.

To add the map feature into our application, we imported the React Native Maps
library1.

1see, https://github.com/react-native-maps/react-native-maps date: 5.12.21

53

https://github.com/react-native-maps/react-native-maps

Chapter 7: Implementation 54

Camera

The second main module is the camera module. This module covers the ability to
upload an image or take a picture, as well as registering and matching a salaman-
der.

We imported two libraries into this module: expo-image picker and expo-camera.
The image picker lets users pick and upload images from their local storage, and
expo camera lets the application utilize the phone’s camera to take a picture.

Profile

The profile module covers all user administrative features, such as the ability to
change name, email and password, and deletion of the account. All operations,
except for changing name, are password protected. This is an extra security im-
plementation to protect administrative features in case an administrator’s phone
gets stolen.

In addition to the features above, admins will have the ability to manage users
access rights and salamanders data.

7.1.2 Components

React Native is based on the React-framework, and the premise is to use compo-
nents to make the code reusable, easy to read and maintainable [54]. We mostly
imported GUI-components from the library React Native Paper. By doing this, we
did not need to make all the GUI-components ourselves, as we could just import
them from the library. We did, however, make separate components for larger
components, like expo-camera. We also made components for functionality that
would be used in multiple files, like the drop-down menu.

There are two ways to make components in React Native, class components and
functional components. Class components have been used for a long time, and a
lot of documentation and examples online use this. However, functional compo-
nents have less boilerplate code, and most updated tutorials use this way of build-
ing components. The official React Native docs2 also encourages new projects to
use functional components, where they note that this is the future-facing way of
using React [55]. This is why we decided to only use functional components in
this project.

Code listing 7.1 shows an example of how we implemented our components. This
component renders the screen where users can edit their profile name.

2see, https://reactnative.dev/docs/getting-started date: 5.12.21

https://reactnative.dev/docs/getting-started

Chapter 7: Implementation 55

Code listing 7.1: React Native Component example
1 const ChangeNameScreen = (props) => {
2

3 return (
4 <SafeAreaView>
5 <CustomActivityIndicator
6 ...
7 />
8 <AccountData
9 currentLabel="Current Name"

10 ...
11 />
12 <TextInput
13 mode="flat"
14 ...
15 />
16 <CustomButton
17 title="Confirm"
18 ...
19 />
20 </SafeAreaView>
21);
22

23 export { ChangeNameScreen };

The component consists of a SafeAreaView, which is a built in React Native com-
ponent that makes sure the content is rendered within the safe area boundaries
of a device [56]. This component wraps around our four custom components;
the CustomActivityIndicator, AccountData, TextInput and CustomButton. The Cus-
tomActivityIndicator only appears on the screen if something is being processed.
AccountData is a component that shows a user’s current data, TextInput is a com-
ponent that handles user input and CustomButton is a component that renders a
button.

The content inside the components, for example "currentLabel", are called prop-
erties, and are passed down to the custom component. This is how we can reuse
the component elsewhere in our application and customize it the way we want.

7.1.3 Navigation

We used the React Navigation library, and followed the official documentation
when implementing navigation in the application. Code listing 7.2 shows how we
implemented a stack navigation for the authentication screens.

Chapter 7: Implementation 56

Code listing 7.2: Stack navigation example
1 import React from "react";
2 import { createStackNavigator } from "@react-navigation/stack";
3 import { SignInScreen } from "../screens/SignInScreen";
4 import SignUpScreen from "../screens/SignUpScreen";
5

6 // Creating the navigator
7 const AuthStack = createStackNavigator();
8

9 const AuthStackScreen = () => (
10 <AuthStack.Navigator>
11 <AuthStack.Screen
12 name="SignIn"
13 component={SignInScreen}
14 />
15 <AuthStack.Screen
16 name="SignUp"
17 component={SignUpScreen}
18 />
19 </AuthStack.Navigator>
20);

A stack navigator provides a way for an application to transition between screens
where each new screen is placed on top of a stack [57]. We first defined the authen-
tication stack, by calling a function from the React Navigation library. This stack
contains the components SignInScreen and SignUpScreen. Like all components
in our React Native application, this AuthStackScreen-component is exported and
can be used elsewhere in the application.

In addition to the stack screens, we also implemented a bottom tab navigator. This
allows users to switch between the home screen, camera screen and profile screen
using a bottom tab bar.

7.1.4 Networking

Code listing 7.3: Axios instance
1 import axios from "axios";
2

3 // Create axios client, pre-configured with baseURL
4 let APIKit = axios.create({
5 baseURL: "http://0.0.0.0:5000",
6 timeout: 50000,
7 headers: { "Content-Type": "multipart/form-data" },
8 });

As mentioned in Chapter 4, we used the library Axios for networking. As seen in
Code listing 7.3, we implemented an instance of Axios in a variable called "APIKit".

Chapter 7: Implementation 57

The baseurl defines the address which will receive the requests. If the request goes
on for more than 50 seconds, the request will time out. The instance also contains
a set header, that allows the application to send forms and images. This variable
is imported and used wherever there is a need for an API call.

When a user logs in successfully, a JSON Web Token will be generated by the
REST API and returned back to the user. This token will be placed in the header
of the Axios instance (see Code listing 7.4), and will grant the user access to other
endpoints.

Code listing 7.4: Access Token.
1 APIKit.defaults.headers.common[
2 "Authorization"
3] = ‘Bearer ${response.data.access_token}‘;

Code listing 7.5 shows an example of a GET request. It shows how to access end-
points correctly, how response from the server is parsed, and applicable error han-
dling.

Code listing 7.5: GET request example.
1 const getPendingUsers = () => {
2 setShowIndicator(true);
3

4 APIKit.get("/pendingUsers")
5 .then(function (response) {
6 setShowIndicator(false);
7

8 if (response.data.status === 200) {
9 setPendingUsers(response.data.users);

10 } else {
11 Toast.show(...);
12 }
13 })
14 .catch(function (response) {
15 setShowIndicator(false);
16 Toast.show(...);
17 });
18 };

When the function is triggered, the activity indicator is set to true, and will appear
on the screen. To send the request to the correct endpoint, the get-function, on line
4, takes a string parameter. This parameter is appended to the baseurl of the Axios
instance. When the server returns a response, the activity indicator will disappear.
If it returns a 200 status response, the data is extracted into the "pending users"
array as seen on line 9. If something goes wrong, an error message is shown in
the form of a toast.

Chapter 7: Implementation 58

7.1.5 State Management

For state management we used useState from React, which is how functional com-
ponents handles states. A state functions like a variable that triggers any compo-
nent it is used in, whenever it receives a new value. As components were rendered
on load, we had some difficulties when we wanted data to update dynamically
across multiple screens. This is because states are intrinsic to their own component
and cannot be passed to outside components. If we navigate back to a previously
used component from another screen, it will not be rendered again, because it is
already in memory. To handle this problem, we decided to use a third-party library.

At first, we looked into using AsyncStorage, and tried to dynamically update the
data in the application. We quickly ran into problems, as the purpose of Async-
Storage is not to handle states, but rather to store data locally, causing us to scrap
the idea.

After further research, Redux seemed like the best option. For Redux to work
properly, we had to create actions, an object describing what happened, and a
dispatch to update the redux store. The whole global state of the application is
stored in an object tree inside a single store. Code listing 7.6 shows an action that
dispatches the action to update the store.

Code listing 7.6: Redux example part 1. actions
1 /**
2 * To edit the users name in the application and to change the state.
3 *
4 * @param {*} props conatains the name to be edited
5 * @returns async dispatch from redux
6 */
7 export const onEditName = (props) => {
8 return async (dispatch) => {
9 try {

10 dispatch({ type: EDIT_NAME, payload: props.name });
11 } catch (error) {
12 dispatch({ type: ON_ERROR, payload: error });
13 }
14 };
15 };

This action receives the updated name from the user, and sends it to the reducer
to update the global state. In the reducer, seen in Code listing 7.7, the updated
state will overwrite the current state.

Chapter 7: Implementation 59

Code listing 7.7: Redux example part 2. reducer function.
1 case EDIT_NAME:
2 return {
3 ...state,
4 user: {
5 ...state.user,
6 name: action.payload
7 }
8 };

This is an excerpt from the switch in the reducer, which has cases for each action.
By using the spread-operator ("..."), the other states in the user-object will be kept,
and only the specified state will be overwritten with the payload.

7.2 Back End

The back end section will cover the REST API and the image recognition algorithm
for processing images and matching them.

7.2.1 REST API

This section will explain how the REST API for our system was implemented. It
will include endpoint registration, user authentication, how files are returned to
the client, rate limiting and the database.

Endpoint Registration

When implementing the REST API, we wanted to make it modular so that it would
be easy to add more functionality as the project grows. By structuring the project,
as the file hierarchy in Figure 4.5 shows, it is easy to add more endpoints, alter the
database and adding different form validators. When adding a new endpoint, all
the developer has to do is to create a new file in the endpoint folder, and register
the endpoint in the __init__.py file, shown on line 10 and 17 in Code listing 7.8.

Chapter 7: Implementation 60

Code listing 7.8: __init__.py
1 from flask import Flask
2 from flask_restful import Api
3 from flask_sqlalchemy import SQLAlchemy
4

5 app = Flask(__name__)
6 app.config[’SECRET_KEY’] = ’randomgeneratedstring’
7 app.config[’SQLALCHEMY_DATABASE_URI’] = ’sqlite:///database/database.

db’
8 api = Api(app)
9

10 from api.endpoints.login import Login
11 from api.endpoints.user import UserEndpoint
12 from api.endpoints.location import LocationEndpoint
13 from api.endpoints.salamanderclass import SalamanderClass
14 from api.endpoints.matchsalamander import MatchSalamander
15 from api.endpoints.findsalamanderinfo import FindSalamanderInfo
16

17 api.add_resource(Login, "/login")
18 api.add_resource(UserEndpoint, "/user")
19 api.add_resource(LocationEndpoint, "/location")
20 api.add_resource(SalamanderClass, "/editSalamander")
21 api.add_resource(MatchSalamander, "/matchSalamander")
22 api.add_resource(FindSalamanderInfo, "/findSalamanderInfo")

A file named run.py, located in the same folder hierarchy as the api folder, is used
to run the API in development mode during development. Code listing 7.9 show
how the app variable is imported from the __init__.py file and run in debug mode
with a specific IP address. The default port that the Flask server runs the REST
API on is 5000.

Code listing 7.9: Run.py
1 from api import app
2

3 if __name__ == "__main__":
4 app.run(debug=True, host=’0.0.0.0’)

User Authentication

User authentication is handled by using Flask-Bcrypt, combined with Flask-JWT-
Extended. Flask-Bcrypt has two main functionalities that we used; hashing and
salting the passwords, and comparing the hash to a string. In Code listing 7.10,
the hash is generated before storing it in the database. After the hashed password
is stored and the user is approved by an admin, the user can log in to the system. In
Code listing 7.11 on line 2, we compare the hashed password against the password
the user entered. This function will either return true if the passwords match, or
false if they do not.

Chapter 7: Implementation 61

Code listing 7.10: Create user
1 password_hash = bcrypt.generate_password_hash(data.password)

When a user successfully types their email and password correctly and logs into
the system, a JSON Web Token (JWT) will be generated, seen in Code listing 7.11
on line 4. The JWT that is generated also encrypts the user’s ID. This token will
be sent back to the user that requested the login, and will later be used to access
all the other endpoints. In the mobile application the JWT that is returned will be
placed in the header of each request and thereby granting users access to protected
endpoints.

Code listing 7.11: Login.py
1 user = db.session.query(User).filter_by(email=data[’email’].lower()).

first()
2 if user and bcrypt.check_password_hash(user.pwd, data[’password’]):
3 if user.accepted:
4 ret = {
5 ’access_token’: create_access_token(identity=user.id),
6 ’message’: "successfully logged in",
7 ’admin’: user.admin,
8 ’name’: user.name,
9 ’email’: user.email,

10 ’status’: 200
11 }
12 return jsonify(ret)

By using a simple decorator, provided by Flask-JWT-Extended, we can choose
which endpoints that requires a JWT. Line 1 in Code listing 7.12 shows how this
is implemented in one of the endpoints. The last feature the REST API uses from
Flask-JWT-Extended is the get_jwt_identity() function. When a user requests an
endpoint with a JWT, the function on line 3 in Code listing 7.12 decodes the user’s
ID from the JWT. This allows the system to verify users without the need for re-
authentication. If users try to request an endpoint without the JWT, the server
will respond with a 401 HTTP status code, and they will not be given access.

Code listing 7.12: JSON Web Token
1 @jwt_required
2 def get():
3 user_id = get_jwt_identity()
4 user = db.session.query(User).filter_by(id=user_id).first()

To further visualize how the authentication is handled in the system, see Fig-
ure 7.1.

Chapter 7: Implementation 62

Database

Client Server
1. Login with email

and password

3. Checks if user is

approved by an admin.

Checks if password matches

against the hashed

password stored in

the database.

REST API

4. If password matches

and user is approved,

the API generates a

JSON Web Token and

returns it to the client.

5. The client places the

authentication token

inside the header for

all other requests.
2.

Fetch

user

data.

Figure 7.1: Authentication diagram. The diagram should be read following the
numbers in ascending order.

Image Encoder

During the salamander registration, the REST API will return the processed ver-
sion of the originally uploaded image. This lets the user verify the quality of the
processed image before submitting it to the matching algorithm. At first, we tried
to use Flask’s built in send_file() function. Even after testing and a deeper look
into the documentation, we still struggled to get this to work when sending the
file to the mobile application.

The send_file() function was then replaced with an image encoder instead. The
encode() function on line 4 in Code listing 7.13 encodes the image to a Base64
string. This string could now be returned back to the client in a JSON object.

Code listing 7.13: Encode Images
1 for path in list_of_paths:
2 basename = os.path.basename(path)
3 if basename.__contains__(str(image_id)):
4 encoded = encode(path)[2:-1]
5 image_data = {"url": "data:image/png;base64," + encoded}
6 salamander_images.append(image_data)

Chapter 7: Implementation 63

Rate Limiter

To improve security and performance of the REST API, we implemented a rate
limiter. This is to prevent DOS attacks, and attempts to brute force passwords [58].
The library that handles the rate limiter is called Flask-Limiter. Code listing 7.14
shows an example of how the limiter is implemented and how each endpoint can
have different rate limits. It is important to make sure the rate limit is not too low
as being too strict can adversely affect the user experience. Also, by implementing
a limiter, the system makes sure that no user can occupy the server’s resources for
too long.

Code listing 7.14: Python code example limiter
1 decorators = [limiter.limit("60/minute")]

Database

The database was implemented by using the Flask-SQLalchemy library with SQLite
dialect. Code listing 7.15 shows the implementation of the salamander table, also
seen in Figure 4.7. When a new salamander is registered, the ID auto increments,
and the date gets auto generated. The uid is a foreign key to the user that regis-
tered the salamander and the location_id is a foreign key to the location where
the salamander is registered.

Database.db is the file that keeps the stored data about salamanders, users, loca-
tions and the salamander growth. It is located in the database folder, as shown
in Figure 4.5. For storing all the images we use the folder structure as seen in
Figure 4.6.

Code listing 7.15: Salamander Table
1 class Salamander(db.Model):
2 id = db.Column(db.Integer, primary_key=True, autoincrement=True)
3 sex = db.Column(db.String(255), nullable=False)
4 species = db.Column(db.String(255), nullable=False)
5 location_id = db.Column(db.Integer, db.ForeignKey(’location.id’),

nullable=False)
6 uid = db.Column(db.Integer, db.ForeignKey(’user.id’), nullable=

False)
7 first_date = db.Column(db.DateTime, default=datetime.now)

7.2.2 Algorithm

The code from the previous bachelor’s project, that identifies the salamander,
needed significant changes to work properly. After looking into the previous source
code, we realized that it is actually a collection of several individual scripts that
could be run separately from the command line. From these scripts we kept the
code that straightens an image and the code that matches two images.

Chapter 7: Implementation 64

Matching Process

It is important to mention that the matching algorithm requires a fixed image size
to compare two straightened images. This means that all the straightened images
have to be the same size. To straighten the abdomen in an image, the straighten-
ing algorithm needs to know how wide the salamander is in pixels. This width is
a float, even though we are working with pixels, because it is only used as a factor
for scaling the original image. We also need to know the position of the spine of
the salamander. This will be represented by four evenly spaced out points along
the salamander from the shoulders to the pelvis (see Figure 7.5b). These points
will be generated by the model from DeepLabCut after feeding it an image.

These key points function as indicators, which are used by the straightening algo-
rithm to interpolate a line down the spine to straighten the image. A single point
on each shoulder of the salamander would be used to calculate the width of the
salamander and how much the image needs to be scaled to cover the required
fixed image ratio.

Once the image is straightened, it is returned back to the user. The processing will
not continue if the user does not approve the straightened image via the mobile
application, and ensures that it is not warped. If the user does not approve the
image, a new one will have to be uploaded. When approving an image, the user
also specifies how to match the salamander based on location, species, and sex.
The matching algorithm will traverse a list of folders, each representing a sala-
mander, and brute force match the incoming image using functionality provided
by OpenCV3. If there is no match, a new salamander will be registered in the
database. A folder will be created containing a copy of the original and processed
image.

Dataset

To train a model we need a large set of sample images of salamanders, which
we had to manually label using DeepLabCut’s GUI based labeling tool. This tool
lets us easily label the six key points we previously described in Section 7.2.2. We
had to label the images twice, because after training the first model, we chose
to add two shoulder points for estimating the width of the salamander. This was
done to make sure the final cropped image containing the pattern would have as
little background showing as possible in order to hopefully improve the matching
accuracy. These points then got written to a CSV file, which made them ready to
be used for training. Code listing 7.16 shows how the labeled points were saved
to the file. To increase the size and variety of the training set, DeepLabCut uses
Imgaug [59] to rotate some of the existing images. We do not know exactly how
much larger the dataset became after augmentation, as DeepLabCut uses Imgaug

3see https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_
feature2d/py_matcher/py_matcher.html date: 5.12.21

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html

Chapter 7: Implementation 65

by default. However, after looking through DeepLabCut’s source code, we can
estimate the total amount of images to be 2,688 original images and 1,344 rotated
images.

Code listing 7.16: DeepLabCut CSV exerpt
1 bodyparts bodypart1 bodypart1 ... shoulder_R shoulder_R
2 coords x y ... x y
3 labeled-data\1\img0.png 409.66 116.23 ... 306.45 138.19
4 labeled-data\1\img1.png 433.82 100.86 ... 306.45 129.41
5 labeled-data\1\img10.png 501.89 632.28 ... 398.68 568.60

Later in development, we also made a training set for object detection. We sepa-
rated images based on male, female, and juvenile into three folders. There were in
total 1,450 males, 1,076 females, 26 juveniles, and 139 with unidentifiable sex.
To draw and store the bounding boxes (seen in Figure 7.9) we used Labelimg4

which saved the labeling data into separate XML files.

Our contact person at NINA provided us with a large collection of 2,688 sample
images of northern crested newts from 2019. It is important to note that there
would never be more than one salamander per image. Not every image would
contain a salamander in frame, and some images would not show the entire sala-
mander.

Figure 7.2: A sample from the older collection of smooth newt images.

Since we wanted a larger dataset of greater variety, our supervisor at NTNU pro-
vided us with an older collection of images of smooth newts taken using a passport
scanner. Figure 7.2 shows an example of one of these images. The background and
framing on these images differed heavily from the newer images in the collection

4see, https://github.com/tzutalin/labelImg date: 5.12.21

https://github.com/tzutalin/labelImg

Chapter 7: Implementation 66

we got from our product owner.

At this point, we had two separate datasets. Due to them having little intrinsic
variety, being of different species, and captured in completely different ways, we
concluded to not use both of them in a single model. The neural network might
locate the points or estimate species based on these factors, rather than the sala-
mander itself. Therefore, we chose to not use the older set of smooth newts, be-
cause NINA no longer captures images with passport scanners. A consequence of
this is that we loose the ability to determine species, as we are left with only the
set containing northern crested newts.

It is important to note that the exact impact of using both datasets for point esti-
mation is not clear to us. Labeling, training and validating were quite time con-
suming, and we did not want to risk spending too much time on this issue. As the
researchers at NINA knows the difference between species, we prioritized other
more important requirements. A new model will have to be trained on a larger
and more varied dataset if NINA wants it to perform better, or be able to recognize
multiple species.

Models and Performance

Training accurate models can take several days. It all depends on the complexity
of the model, the hardware used, and the size of the dataset used for training.
At least one strong GPU is needed to speed up the process. We specifically used
DeepLabCut-core for training models and for estimating an image in the algo-
rithm, because it supports the latest version of Python and Tensorflow. This was
important as the GUI version of DeepLabCut used an outdated version of Tensor-
flow, which did not support the latest 30-series GPUs from Nvidia.

We trained several models, and at first we trained our models on an Nvidia RTX
2080 super. The final model was trained on an Nvidia RTX 3080. Tensorflow and
DeepLabCut allows for dividable and continuous training, allowing us not hav-
ing to train the complete model in one sitting. The longest training session took
around 48 hours and trained a model for one million iterations.

Figure 7.3 shows the loss and the learning rate over iterations for our ResNet_50
and ResNet_152 models. The blue line represents loss, while the red line represents
learning rate. Loss is a value that represents how poorly the model performed
(lower is better). In Figure 7.3 it displays the average loss over 100 and 10,000
iterations. The learning rate is a value that affects how much the model should
change its weights between each iteration. Overlapping loss and learning rate
gives a good visualization of how learning rate impacts loss.

Chapter 7: Implementation 67

(a) ResNet_50 loss and learning rate over 90,000
iterations.

(b) ResNet_152 loss and learning rate over
1,000,000 iterations.

Figure 7.3: Loss and learning rate over iterations.

In Figure 7.4 the loss series from both models is overlayed. The loss from the
ResNet_50 model looks quite erratic compared to the ResNet_152 model. It is im-
portant to note that the sample rate for the ResNet_50 model is every 100 itera-
tions, compared to 10,000 iterations for the ResNet_152 model. Still, by taking into
account the higher sample rate from ResNet_50, its loss still seems quite dispersed
compared to the ResNet_152 model. Despite this, both models follow a similar
median slope. Ideally the loss should asymptotically flatten out at a specific value.
Once the loss hits this "plateau" it is not usually needed to train further [60].

Figure 7.4: Loss and learning rate overlayed.

We trained various types of models to find the one with the best possible accuracy.
At first we trained a ResNet_50 model with 30 000 iterations. It did not perform

Chapter 7: Implementation 68

well on most of the test images. The model continued training for another 20,000
iterations, but its performance still did not meet satisfaction. We moved on to a
ResNet_101 model with 100,000 iterations, and although it performed a lot better,
some images were still too hard to estimate.

We were hesitant of using a deeper model because we did not want it to slow down
the straightening process too much. That proved to be an unnecessary concern,
because one estimation never took more than ten seconds. At that point we did
not see any reason not to move onto ResNet_152. It also proved to significantly
improve accuracy with only 50,000 iterations. For our final training session we
decided to train the model for one million iterations.

As seen in Figure 7.5, the model has significantly improved estimating on that
specific image after an increase in iterations and being upgraded to a deeper net-
work. However, testing a models performance is not as straight forward. To say
that a model is 90% accurate, does not tell us much about how the model per-
forms. One could give a well trained model similar images to its training set, and
it would probably score high. However, if the model receives an image which is
significantly different from its training data, it will most likely score badly. Thus,
highlighting the importance of a varied training set.

(a) ResNet_50 after 90K iterations. (b) ResNet_152 after 1M iterations.

Figure 7.5: A comparison between models with different amount of training.

A colored image is a large list of numbers, where each pixel is represented by three
or four numbers. By looking at a single pixel, it is impossible to tell the context
of that pixel. This is why a traditional simple neural network would typically not
perform well on object recognition or determining points [61]. They are simply
not complex enough, but due to how today’s neural networks are designed to use
backwards propagation to update each of the neurons weights, one cannot just
increase the depth of a model in layers without consequences. Doing so can result
in a vanishing gradient or an exploding gradient [62].

Vanishing or exploding gradients are problems encountered in the training of neu-
ral networks. These problems happen when the updates to the weights of a model
under training either changes by exponentially increasing amounts, exploding gra-

Chapter 7: Implementation 69

dient, or decreasing amounts, vanishing gradient. An exploding gradient will typ-
ically lead to an unstable model incapable of effective learning [63]. A vanishing
gradient will result in a model that is incapable of further learning as its loss has
stagnated [64].

If we were looking at an image of 2x2 pixels, a simple neural network would
work fine, because there are only four dependent variables. Since most images
are quite large in size, these problems become more apparent. As seen in Fig-
ure 7.6, we likely experienced a case of exploding gradients in a YoloV3 model,
that was setup to locate the cloaca of the salamander. After looking at the results
of a training session, all the weights had become NaN.

Figure 7.6: Possibly a case of exploding gradients

Today’s feed-forward neural networks are not flawless, but there are workarounds
to these problems. ResNet for example, use convolutional layers. Each convolution
layer have neurons where their weights work more like filters [65]. The previous
layer sends the image(s) to each filter. A filter can be looked at like a matrix that
convolve over the image with a given stride and returns the dot product between
that filter and the part of the image it is comparing to. These filters will give
suggestions to where the correct spots lay based on an evolving pattern they are
looking for.

ResNet also has residual blocks that works as a way to sum up the weights from
a higher layer to a lower layer in the network [66]. Residual blocks help against
vanishing or exploding gradients, because they use shortcuts and identity map-
pings, while propagating the gradient back up the network. A residual neural net-
work can therefore send gradients long distances depending on how the residual
blocks are made, and hopefully maintain a more reasonable gradient. This allows
the earlier layers to learn faster [67].

Chapter 7: Implementation 70

(a) Unprocessed image of a
Northern Crested Newt

(b) Image with labels from
DeepLabCut

(c) Straightened and isolated
abdominal pattern

Figure 7.7: Order of straightening process.

(a) Unprocessed image of a
Northern Crested Newt

(b) Image with labels from
DeepLabCut

(c) Straightened and isolated
abdominal pattern

Figure 7.8: Failed straightening process.

Figure 7.7 shows the different stages a raw unprocessed image goes through when
the algorithm runs. Figure 7.7a displays an untreated image. Figure 7.7b shows
the same image, but with the points from DeepLabCut overlaid. Here the four
midline points, and the shoulder points are visible. These points are then used
to create a cropped image containing a straightened version of the abdominal
pattern, seen in Figure 7.7c. In Section 7.2.2, it is explained how the points are
used. When matching two abdominal patterns the images are converted to gray
scale. Figure 7.8 shows how an older model failed to straighten an image. The
points were misplaced, causing the final pattern to be warped.

Incorporating the AI into the REST API

Several challenges occurred while trying to incorporate the algorithm into the
REST API. One of the problems was that multiple users may try to process an
image at once. We had to make sure that the server would not try to start several
Tensorflow sessions at once while estimating. This is necessary because the server
only has one GPU, and it can only handle one estimation at a time without running
out of VRAM. Therefore, a semaphore was implemented to prevent this (see Code
listing 7.17). Any thread that tries to access the straightening function while it
is in use, will be blocked until the semaphore is freed. If the system were to be
further developed to support several estimations at once, a system that assigns
and frees several GPUs would be necessary.

Chapter 7: Implementation 71

Code listing 7.17: Semaphore Example
1 def straighten(image):
2 with _ACCESS_TF_AND_GPU_SEMA:
3 # straightening...

Brute Force Matching

After an incoming image has been processed by DeepLabCut, and a straightened
image is produced, it has to be matched against existing images. This is done us-
ing a brute force image matcher provided by OpenCV. Code listing 7.18 shows
an example of this image matcher being used. The first two variables define the
minimum requirements for a match to occur. When the brute force image matcher
runs, it makes several comparisons, each with slightly different parameters. In our
case the minimum number of successful matches is 15, which we found to be strict
enough to avoid false positives, but not so strict to where the same pattern with
differing contrast, lighting etc. would not match. The second value indicates how
similar the images have to be in order to be considered the same. This value was
set by the previous group from 2019, and since it gave good results we decided
not to alter it.

The match_single_image() function on line 3, in Code listing 7.18, shows how we
prepare the two images for matching by generating all the necessary data needed
for the brute force matcher. After the match results have been generated, they
are iterated through in a for loop, where they are validated against the minimum
requirements. Finally, the function returns true or false depending on the final
result.

Code listing 7.18: Match single image method
1 min_good_match = 15
2 match_dist = 0.75
3 def match_single_image(input_image, match_image) -> bool:
4 bf = cv2.BFMatcher()
5 input_salamander = create_salamander_image(input_image)
6 match_salamander = create_salamander_image(match_image)
7

8 match = bf.knnMatch(input_salamander.descriptors, match_salamander
.descriptors, k=2)

9

10 goodmatch = []
11 for m, n in match:
12 if m.distance < match_dist * n.distance:
13 goodmatch.append([m])
14 if len(goodmatch) > min_good_match:
15 return True, len(goodmatch)
16 return False, 0

Chapter 7: Implementation 72

Code listing 7.19 shows how the prior function is used on images from several di-
rectories. The function is given an input image and a directory to iterate through.
This directory would contain other directories containing salamanders of a partic-
ular species and sex, from the same location. The matching function would then
be run against each straightened image inside the directories, storing the score
and ID of any image which passes the matching requirements. If an image gets a
better score than the previous best, its ID and score overrides the previous. When
every image has been checked, the ID of the highest scoring image is returned. If
no match is found the function returns -1, since no salamander can have a negative
ID, to indicate that no match was found.

Code listing 7.19: Match over multiple directories
1 def match_file_structure(input_image: str, match_directory: str):
2 best_match = -1
3 match_count = 0
4

5 # check if input path is valid:
6 if os.path.isfile(input_image):
7 for folder in os.listdir(match_directory):
8 name_list = glob.glob(os.path.join(match_directory, folder

, "*_str.*"))
9 for filename in name_list:

10 res, num_matches = match_single_image(input_image,
filename)

11 if res and num_matches > match_count:
12 match_count = num_matches
13 best_match = int(folder)
14 return best_match
15 else:
16 return None

7.2.3 Abandoned implementations

Looking back at the requirements in Chapter 2, we were not able to implement a
system that could automatically recognize the salamanders sex and species. Since
the dataset we chose were specifically of northern crested newts, we were there-
fore not able to train a model to recognize species.

An attempt was made to implement sex recognition. All models trained for this
purpose was done with ImageAI. At first we created a training set by dividing
the images into folders based on sex. We trained an InceptionV3 model for image
classification, and trained it for 80,320 iterations, but it performed poorly by of-
ten leaning towards guessing only female or male. We originally wanted to use
ResNet_152, but we had some problems using some of the models in the ImageAI’s
library, and resorted to using what worked. Training the InceptionV3 model for
another 48,192 iterations did not seem to improve its accuracy either.

Chapter 7: Implementation 73

(a) Female salamander. (b) Male salamander.

Figure 7.9: Successful sex estimations using YoloV3.

Another attempt was to use object detection by defining bounding boxes of where
the cloaca was located (see Figure 7.9). This would specify to the AI what to look
for, and possibly clarify what the difference between the two sexes are. A YoloV3
model was trained and performed better with fewer iterations, but as previously
explained with Figure 7.6, after 204,816 iterations the weights turned NaN be-
cause of possibly exploding gradients.

Further investigation to fix this could have been carried out, but due to the sheer
amount of time it took to do one estimation we decided to discontinue this. Set-
ting up Tensorflow to estimate the points already takes around 10-20 seconds, and
it would take another 10-20 seconds to start another session for sex estimation.
The fact that the researchers at NINA already knows the salamander’s sex before
identification, means that it would be a waste of time to force them to wait for
our system to assume it.

Another challenge was Tensorflow itself. We could not find a way to make it release
the GPU and its allocated memory. Also, ImageAI required a different Tensorflow
session from DeepLabCut. Running both AI’s together caused a clash between
the Tensorflow sessions. We discovered this problem when we were still trying to
merge DeepLabCut with ImageAI’s sex identification into the REST API. Also, sev-
eral processes will run on NINA’s server and they may also want to use the GPU.
We tried multiple methods and functions from the Tensorflow documentation, but
none of them actually freed up the memory from the GPU.

Once Tensorflow is given a key to the GPU, it will not release that key until the
process is ended [68]. Our solution was to start a new process for every estimation,
as seen in Code listing 7.20. In other words, the REST API starts a new process to
use the model and then returns whatever the model finds back to the REST API
before terminating the process.

Chapter 7: Implementation 74

Code listing 7.20: Creating a new process to run estimation
1 def get_prediction_dlc(config,image,shuffle=1,
2 trainingsetindex=0,gputouse=None):
3 return_dict = Manager().list()
4 args = (config, image, shuffle, trainingsetindex, gputouse,

return_dict)
5 p = Process(target=run_prediction_dlc, args=args)
6 p.start()
7 p.join()
8 return return_dict[0], return_dict[1], return_dict[2], return_dict

[3]

A downside to starting a new process and Tensorflow session for each estimation
is that it takes the majority of the total estimation time. In addition, if the model
is stored on a hard drive, rather than on an SSD, the total time will also be longer.
If we were to actually incorporate sex recognition into the REST API, managing
Tensorflow sessions and GPU access would have to be taken into consideration.
In our case, the system is only given a partial amount of the servers hardware
resources and the program is only using one Tensorflow session. The issue of the
GPU not being released is therefore not a concern.

7.3 System Flow

The mobile application, the REST API, and the algorithm were all developed in-
dependently. They are not heavily dependent on each other, but they are intended
and customized to work together. A user will use the mobile application to send
requests to the REST API, and the REST API will call the algorithm when doing
image processing.

To visualize how the different components in the system work together, we have
created a sequence diagram of how the registration of a salamander works. We
chose this example as it involves all sides of the system, from the mobile appli-
cation, to the REST API and algorithm. Figure 7.10 illustrates the process from
when an image is uploaded from the mobile application, approved by a user, and
a result is returned from the algorithm.

Chapter 7: Implementation 75

alt

alt

alt

:API :Temp_folder :Image_folder :Database:Algorithm:Application

POST findData
storeOriginalImage

processImage

 return

storeProcessedImage

GET processed image
getProcessedImage

returnreturn

POST match

if image
is

accepted
by user

getProcessedImage

return

bruteForceMatching

 return

return

uploadImage

displayData

confirm

if sex
!=

juvenile

if
match

storeOriginalAndProcessedImage

else createNewSalamander

storeOriginalAndProcessedImage

else
createNewJuvenileSalamander

storeOriginalAndProcessedImage

return

returnMessage

else
cancel

:User

registerMatchAndSalamanderData

navigatesToCamerascreen

Figure 7.10: Sequence diagram of matching a salamander.

The alt boxes indicates alternative routes the system can take depending on cer-
tain conditions.

Chapter 8

Deployment

This chapter is divided into deployment of the mobile application and deployment
of the REST API and algorithm.

8.1 Mobile Application

For the mobile application, we used Expo CLI throughout development. Expo CLI
is a command line application that is the main interface between a developer and
Expo tools [69]. It can be used for creating new projects, developing an applica-
tion, publishing an application, building binaries, and manage Apple Credentials
and Google Keystores.

8.1.1 Development

During development, we continuously deployed our mobile application to the
Expo servers, by using the command "expo start" in the terminal. We could then
scan a QR-code, and test the application on either an emulator, or on our own
device through the Expo Go-app. This made it easy for us to rapidly monitor any
changes we did to the application.

8.1.2 Build

When building we used Expo’s built-in tool. It allowed us to configure different
build parameters inside a single JSON file. Using a single command, Expo can
generate executable files for both Android and iOS. We focused on building for
Android first, due to most of the researchers at NINA having Android phones.
In addition, to build an iOS application, an Apple developer account is needed,
which costs money. This will therefore not be done, unless it is financed by NINA.

We decided to use EAS Build to build our application in the beginning, as it al-
lowed us to quickly and easily build and keep track of all builds and logs. Fig-
ure 8.1 shows how the different builds are listed based on creation date.

76

Chapter 8: Deployment 77

Figure 8.1: Expo history.

EAS Build is a service provided by Expo which allows for building, signing, and
distributing Expo applications [70]. This made it easy for us to debug any errors
while building. Figure 8.2 shows how a single build is presented with its build
details, runnable file, and build logs.

Figure 8.2: Expo build.

Chapter 8: Deployment 78

EAS Build also generates a SHA-1 certificate fingerprint, which is needed for de-
ploying the application to the GooglePlay Store or the App Store. In addition, this
hash is important for the restriction of the Google Maps API key, as it needs to
know the application package name and fingerprint. In the beginning we took ad-
vantage of EAS build’s one month free trail for their premium subscription. This
service gave us access to their priority builds feature, which made it easy to iterate
and try several build configurations, as building with the free version can take a
long time due to having to wait in a build queue. After the month had passed we
went back to using the free version, using the working configuration we ended up
with from earlier.

8.2 REST API and Algorithm

During development, we had close collaboration with NINA. According to our
product owner, we could get access to one of their severs for deployment. How-
ever, during the end of the development period, it became clear that this would
not be possible before the deadline. Therefore, we chose to deploy the back end
on Openstack. In this way, we could test deployment on a similar server to NINA’s.

8.2.1 OpenStack

NINA provided us with the specifications to their server. Although we did not get
access to their server in time, we wanted to deploy the system to a similar server to
NINA’s. Thankfully, NTNU were able to provide us with access to a similar server
on Openstack.

Unfortunately, the server on Openstack, running on NTNU’s network, is blocked
from outside access. This means that to access the server, we had to work on the
Eduroam network or use a VPN. To use the application in the field, it is crucial
that the server is able to receive requests from the outside.

Hardware

The server we got access to has 8 CPU cores, 90GB of RAM and has 40GB of storage
on a hard drive. We also got access to 1/4th of an Nvidia Tesla V100 32GB graphics
card.

Instance

Since NINA’s server runs on Ubuntu 18.04 LTS, we chose to use the corresponding
operating system on the Openstack server.

Chapter 8: Deployment 79

Security Groups

For testing the system with Flask’s development server, we used port 5000. Port
80 and 443 was opened for HTTP/HTTPS requests on the production server.

Nginx and Gunicorn

For the production web server we used Nginx combined with Gunicorn to serve the
REST API. Nginx is a free open source web server that is optimized for routing,
handling incoming traffic, forward requests to Gunicorn, and terminating SSL.
Gunicorn is a web server gateway interface, which allows for requests to be trans-
lated and makes sure that the correct piece of code is executed [71].

8.2.2 Future Deployment

In the middle of April we got contacted by NINA’s IT department. They told us
that the server we planned to deploy on was not open for outside access. How-
ever, they suggested that we could deploy on their server by splitting the back
end on two different servers. The REST API would run on a server that is open
for outside access and the algorithm would run on the internal server. The public
server would then be able to forward the images for processing to the internal one.

They also suggested to create Docker containers for deploying on the servers. As
we got noticed of this quite late in the project period, we decided that we did not
have time to do this within the deadline. This will then become future work.

Chapter 9

Testing

This chapter is divided into testing we did during development, performance test-
ing, and user testing.

9.1 Development Testing

During development we only did manual testing. Based on our Gantt-diagram,
seen in Figure 3.1, we concluded that if we only had eight weeks to develop the
entire system, it would be wiser to spend most of that time on developing, and
not on making automated tests.

In retrospect, we should probably have had some form of unit testing on the REST
API. Even though we would not have been able to implement as many features as
we did, there were occasions where manual testing became tedious. In addition,
automated testing would save us time in the long run, especially during imple-
mentation of new features. This was especially noticeable when we implemented
the manage salamander feature, described in detail in Table 5.5.

Each time something crucial went wrong in the database or in the file hierarchy, it
would have to be manually wiped and reset. An automated procedure that wiped
and reset the database with new entries, would have saved us a lot of time. In
addition, an automated procedure that sends requests to the REST API could be
run after the reset. Having such a procedure would have saved time rather than
doing it manually.

If we were to do this process all over again, unit testing for the back end is abso-
lutely something we would have implemented, in addition to an automated script
with test data.

80

Chapter 9: Testing 81

9.2 Performance Testing

A series of performance tests were done to investigate the system’s accuracy and
its speed. We performed two different tests, one with images that differed heavily
from the original training set, and one that was conducted during fieldwork test-
ing. The purpose was to see how the system would work with images that varied
in quality.

The hardware that was used in both tests for the back end was a Windows 10
computer with an Nvidia RTX 3080 10GB GPU, AMD Ryzen 3900X CPU, with 32
GB of RAM. The mobile phone we used to capture images for the second test was
a Huawei p20 pro, capturing images in 10 megapixels.

9.2.1 First Test

The first test set was not from the original training set, and differed heavily from
it. The images were characterized by the abdominal pattern of the salamander not
being clearly visible, and captured using a different method than what is intended
for this system. The current method is imaging salamanders inside a custom built
enclosure with a transparent bottom. The method which was used in the first test-
ing set, was by placing salamanders inside a curved glass bottle and photographing
them from the outside.

Test set

This test set consisted of 100 images in total, divided into 10 images per individ-
ual salamander. Most of the images would not be considered to be of adequate
quality, as the salamanders often lay sideways or in other challenging positions.
The reason for doing such a test, was to see how the model would handle images
captured in a different way from the images we used for training. Three different
images from the test set can be seen in Figure 9.1.

Results

The results of the first test can be seen in Table 9.2.

• Failed to process: Images that could not be straightened.
• Managed to process: Images that could be straightened, and was returned

to the client.
• Badly processed: Images that were able to be straightened, but the re-

turned abdominal pattern clearly showed signs of being warped and was
not submitted. These images are a part of the "Managed to process" col-
umn.
• Number of matches: How many times match was registered per salaman-

der. These images are a part of the "Managed to process" column.

Chapter 9: Testing 82

• False negatives: Salamanders that were wrongly registered as a new sala-
mander, even though they had been uploaded before. These images are a
part of the "Managed to process" column.

Table 9.1: Results from the first test.

Number
Failed

to process
Managed
to process

Badly
processed

Number
of matches

False
Negatives

1 5 5 0 3 2
2 10 0 0 0 0
3 6 4 2 2 0
4 5 5 0 3 2
5 1 9 2 5 2
6 5 5 0 4 1
7 3 7 1 6 0
8 5 5 2 2 1
9 3 7 5 2 0
10 2 8 1 7 0

Sum: 45 55 13 34 8

Out of the 100 images, 45 could not be processed. This means that the straighten-
ing algorithm was not able to process the image at all, and the user would have to
upload a new image. These images were of too poor quality, as the user could not
even proceed with these images. Figure 9.1 shows three different images used in
the test, and explains what results they generated.

(a) Image could not be pro-
cessed.

(b) Image was processed, but
produced a false negative.

(c) Image was processed and
matched correctly.

Figure 9.1: Images from the first test set.

Figure 9.1a was an image that could not be processed. The abdominal pattern in
this image was not clear, and there were some reflection from the bottle that may
have disturbed the processing. Figure 9.1b was processed, but resulted in a false
negative. This image did not look like it would fail, but due to the salamanders
position, some of its side was visible. The algorithm was likely unable to identify
the mid line of the pattern, and probably used the mid line of the silhouette of
the salamander as its reference point. This consequently caused the final pattern
to be wrongly straightened. Different factors like lighting, background and dirt

Chapter 9: Testing 83

on the bottle may have contributed to cause this misjudgment. Figure 9.1c was
processed and matched correctly. The abdominal pattern in this image was both
clear and distinct.

The problematic part was the false negatives. In these cases, the image was able to
be processed, which meant the user had to approve the straightened image they
got back from the server. In most cases, it was clear that the images was badly
processed (see the badly processed column in Table 9.2), and were not approved
for further matching. However, there were a few that on first inspection did not
look like badly processed images, and were wrongly matched by the algorithm.
Figure 9.2 shows different processed images.

(a) Image is clearly mal-
formed and would likely be
discarded by a user.

(b) Image might be accepted
by a user, but produced a false
negative.

(c) Image is properly pro-
cessed.

Figure 9.2: Images showing different results of the straightening process.

Figure 9.2a is clearly distorted, and would probably have been caught when the
user were to confirm the processed image. Figure 9.2b is an image that might
look like it is a good straightening on first impression, but does not work properly
when it comes to matching. Figure 9.2c is a properly processed image, where the
pattern is clear and distinct.

Out of the 100 images we tested, we had eight false negatives, and four of them
were approved with reservations. If these images were captured in the way the
system is intended for, the result would not be satisfactory. However, since these
images were especially challenging and captured in a non intended way, these
results does not reflect the systems capabilities when in actual use.

9.2.2 Second Test

The second test set was achieved from the field test we performed, with focus on
capturing clear and precise images. This set of images was captured similar to the
training set, in the way that the system is intended to be used.

Test set

This test set also consisted of 100 images in total, divided into 10 images per in-
dividual salamander. As in the first test, this test was not performed during field-
work. This means that if some of the images were not able to be processed, there
would be no way of taking new and better picture. The reason for performing

Chapter 9: Testing 84

this test, was to see how the model would handle images which was captured in
the intended way. Still, it does not properly simulate the exact workflow, as the
researchers in a fieldwork setting could just take a new picture if the straightening
failed. Images from the test set can be seen in Figure 9.3.

Results

The results of the second test can be seen in Table 9.2. The same table descriptions
as in the first test is used. Salamanders 1 and 2 were imaged extra carefully by
three people. These images had a clear and uniform background compared to the
rest. The latter images were taken by two people in a less precise and faster way,
due us having little time at the test site. This might have affected the results.

Table 9.2: Results from the second test.

Number
Failed

to process
Managed
to process

Badly
processed

Number
of matches

False
Negatives

1 1 9 2 7 0
2 1 9 0 9 0
3 4 6 0 6 0
4 0 10 0 10 0
5 1 9 6 3 0
6 0 10 1 9 0
7 1 9 1 8 0
8 0 10 0 10 0
9 1 9 7 2 0
10 6 4 2 2 0

Sum: 15 85 19 66 0

This time, out of the 100 images, only 15 could not be processed and there were
no false negatives. This test produced much better results than the first test, both
in terms of images that were able to be processed and number of images that were
able to be matched. Figure 9.3 shows two different images used in the test, and
explains what results they generated.

(a) Image was not able to be
processed.

(b) Technically good image,
but bad for the algorithm.

(c) Image was processed and
matched correctly.

Figure 9.3: Images from the second test set.

Chapter 9: Testing 85

Figure 9.3a was not able to be processed. This could be due to human fingers or
excessive clutter in the background, the overall shape of the salamander, reflec-
tions or debris over the pattern, or other factors. Figure 9.3b is a technically good
image with good contrast, lighting, and focus, but was not able to be processed
properly. Figure 9.3c was able to be processed, likely due to its clear and distinct
pattern.

(a) Image might be accepted
by a user, but produced a false
negative.

(b) Image is properly pro-
cessed.

Figure 9.4: Images showing different results of the straightening process.

Figure 9.4 shows a badly processed image and a properly processed image from
the field test.

9.2.3 Discussion

From the first test we can see that when the test data differ significantly from
the training set, the algorithm often fails to process the images. However, from
the second test, we can see that when given images taken in a similar way to the
training set, it performs significantly better.

The positive we can extract from the first test, is that in 45 cases of 66 negative
outcomes (45 failed to process + 13 badly processed + 8 false negatives), the al-
gorithm refused to straighten the image, and the user was not be able to continue.
This may sound contradictory, but it is better that the algorithm fails at processing
a poor quality image, than to return a badly straightened image. The users may
think that if the image is able to be processed, it is acceptable. This could then lead
to the user accepting the badly processed image and result in a false negative.

In the second test, there were zero false negatives. In addition, only 15 images out
of 100, failed to be processed. This is a significant improvement from the first test.
However, there still were 19 images that were badly processed. This means that
the researchers still have to be cautious before approving a straightened image,
so that no false negatives will be registered.

9.3 User Testing

Our original plan was to perform user testing with researchers at NINA, while
they were working in the field. The salamanders were expected to wake up from

Chapter 9: Testing 86

hibernation around 15th of April. However, due to no rain and low temperatures,
this was postponed until 5th of May. As the deadline of the bachelor’s thesis was
20th of May, we had to rethink our plans.

9.3.1 User Experience Testing

We decided to perform an overall usability focused test with both our product
owner from NINA and non-researchers. This means, we tested the application in
a controlled environment, instead of during fieldwork. The aim of this test was
to see how intuitive the functionality of the application was, and to catch flaws
we had yet to discover. There are not that many salamander experts in Norway,
and we wanted to expand our pool of testers, which is why we included non-
researchers to test the usability.

For this test, we made a guide for us to follow. This guide can be seen in Ap-
pendix I.1. We drew inspiration from the use cases (seen in Section 2.3), and
observed the participants while they performed the tasks. After the test was over,
the participants answered an anonymous Google survey, where they could rate
their first impressions and provide additional feedback. This was to catch possible
feedback the participants either forgot to provide, or if there were something they
wanted to say that they did not want to say to us directly. In total, there were
eight testers. The notes from the observation can be seen in Appendix I.2, and the
results from the Google survey can be seen in Appendix I.3.

Results

The participants liked the color scheme and the overall simplicity of the applica-
tion. We got feedback that some of the terminology used in the application, like
’confirm’ was a bit confusing for some operations and ’choose image’ was a bit am-
biguous. In addition, there were some bugs like the default android back-button
not functioning properly on some screens, and some regexes not working the way
we intended.

The most crucial flaw, was that almost all participants seemed to struggle with
registering a new location. For some, it took time to figure out that they had to
long press the map to add a marker. The ones that did figure this out, struggled
to understand that they had to click on the marker again to go to the register lo-
cation screen.

Another flaw was that the buttons for accepting and denying users were too small
and too light to easily tell the difference between the two. This was something that
needed to be fixed, as the outcomes of the two buttons are critically different.

Chapter 9: Testing 87

Reiteration

After the testing, we began to fix some of the issues we observed based on the
feedback we received. We fixed the biggest flaw, which was the register location
use case. The user still has to long press to add a location, but after performing
that action, a button on the bottom part of the screen will appear (see Figure 9.5).

Figure 9.5: The final version of the add location functionality.

For pending users, we simply changed the color from yellow to red for denying
users, and green for approving users. In addition, we made the buttons larger so
they are more easily visible. This is shown in Figure 9.6.

(a) First version. (b) Final version.

Figure 9.6: Reiteration of pending users.

Chapter 9: Testing 88

As shown in Figure 9.6a, it was quite hard to differentiate the two buttons when
they had the same color, and the color blended in with the background. Look-
ing back at the PACT-analysis, this was one area where we did not fulfill our re-
quirement in regards to bad eyesight. Thankfully, this was caught during the user
experience test.

Criticism

For this testing session, we did not have a large test group, as only eight testers
is a limited amount. This was mostly due to Covid-19 restrictions at the time.
In addition, there are limited salamander experts in Norway, and it was hard to
find relevant testers. We did discuss to only test on NINA researchers, however
we decided that it was not necessary to be acquainted with the subject to test the
usability.

Besides our product owner, we mostly tested on family and friends. This probably
generated some biases in our favor when getting feedback. To mitigate this, we
tried to observe the participants reactions as best as possible. This would make it
easier for us to catch flaws the testers either forgot to provide feedback on, or if
they glossed over some of the struggles when reviewing the application.

9.3.2 Field Testing

For the field testing, we conducted a new test guide with a different focus com-
pared to the user experience test. This time, the purpose was to observe and ana-
lyze how the researchers at NINA used the application during fieldwork. The test
was conducted during night time, as the salamanders wanders to their birth pond
at this time of day, after waking up from hibernation. The guide can be seen in
Appendix I.4. Additional images from the fieldwork testing can also be seen in
Appendix I.5.

Results

In the guide, we defined a set of questions we wanted answers to, when conduct-
ing the fieldwork test. The questions and answers are listed below:

How do the researchers interact with the application during field work?

The researchers would attempt to get a good shot of the salamander by storing
it in a transparent container. They would keep the salamander in place with a
wet piece of cloth and take an image with the application from outside of the
container. To get the right brightness, a lamp was used and the researcher tried
to make sure that there were no reflection from the light source in the captured
image. In Figure 9.7, usage of the application and setup is shown.

Chapter 9: Testing 89

Figure 9.7: Capturing an image of a salamander with the mobile application.

Does lighting have any impact on taking pictures and processing?

Lighting was discovered to be a large factor as it is important to take images where
the abdominal pattern is clear and distinct. As the test was conducted during the
night, the light source came from a light bulb. The reflection of the light source
some times disturbed the image. In addition, it was hard to take a good picture
without assistance from another person, as one person would have to hold the
mobile phone, light source and the salamander at the same time. A proper setup
could fix this issue.

How does the outside environment affect the application?

Background and obstructions in front of the pattern seem to affect how the model
will determine the points. Any form of obstruction between the pattern and the
camera, affected the straightening and matching. Since it was dark outside, and
no natural lighting, there were some difficulties regarding reflection from the light
sources available. Future salamander registrations will be conducted during day-
time as the salamanders are caught in the ponds, and not at night.

Is the user experiencing any annoyances during periods of waiting/bottle-
necks in workflow?

The researcher found the application to be fast, as they were used to an even

Chapter 9: Testing 90

slower process. However, downloading images were the obvious sign of bottle-
necks, and this needs to be addressed in a future release.

Does the researchers understand the feedback?

Whenever the researcher made a mistake, like trying to register an invalid pass-
word, the helper text helped guiding the user.

How does the mobile cellular coverage affecting the application?

The speed of the internet connection had a huge impact on the application’s per-
formance, mostly in regards to managing salamanders. When downloading im-
ages from the server, to be able to manage them, we experienced at one point
that the request timed out. This was due to the slow 4G download speed. We did
try to connect to a WiFi, which had faster network speed, and it resulted in the
salamander being managed.

How is the mobile’s battery life affected?

As the screen is always on and the outside temperature was low (2 degrees Cel-
sius), the power consumption was rather high.

How is the workflow if there are several users at the same time?

Unfortunately, we did not have enough testers to test this.

Conclusion

After the test was finished and the data was gathered, we started processing it.
The first thing that we noticed was that the setup for capturing images of sala-
manders was not ideal. At some point we needed three people for capturing the
best possible image. One for holding a light source, one for holding the salaman-
der and one for capturing the image. A better setup, which we discussed with the
researcher, was to place the salamander enclosure on a table with enough space
in between, where the transparent enclosure could be stationed.

The most significant flaw we discovered during the test was the slow performance
when managing salamanders. This was mostly due to slow network speed. Future
work will be to look at another way to send the images from the server to the
client. The best option may be to compress the images before they are sent.

Criticism

Unfortunately, we were only able to get one researcher to test the system during
fieldwork. While we did get useful information from this test, it would have been

Chapter 9: Testing 91

ideal to test on multiple people. This was due to the same reasoning as in the
usability test, except for this time the tester was required to be acquainted with
the subject to properly test the system.

Chapter 10

Discussion

This chapter will discuss and reflect on both the process and the product of the
project.

10.1 Process

This section will discuss aspects regarding the bachelor’s thesis process, including
how the initial plan was followed, thoughts on the usage of Scrum, how the group
worked together and critique of the process.

10.1.1 Project Plan

We were able to follow our initial project plan. We accomplished this by laying out
a plan for each week, and we rarely diverged from what we agreed upon. During
each sprint, we allocated a few hours each week for thesis writing. We feel this
approach made the content more accurate, as we where able to write in real time
and not in retrospect. In addition, we were able to get feedback from our supervi-
sor on a regular basis. The downside was that we had to rewrite some of the early
chapters as some of the requirements changed throughout the development. Still,
we believe that the quality of the writing increased during the project period, and
that by starting early, we had more time to get accustomed to English academic
writing. We also had more time in the end to polish the thesis.

By Easter, the system was mostly finished, and the only thing we were not able
to do before the break was deployment. However, our continuous writing on the
thesis during the sprints gave us enough time to deploy the system after the break.

Another issue was that testing had to be postponed due to the dry, cold weather.
The salamanders had not yet woken up from their hibernation to start migrating
to their birth pond. We could not perform fieldwork tests on the planned date, so
we decided to conduct a user experience test earlier in the process to make up for
this hindrance. By doing this, we were able to do one iteration of the application.

92

Chapter 10: Discussion 93

However, due to the postponement of the fieldwork test, we did not have time to
improve the system after the fieldwork test.

10.1.2 Technologies

In this section, the overall experience of our technology choices, including the
front end, the back end, and other tools used in the bachelor’s project will be
discussed.

Front End

Our experience of using React Native to develop the mobile application was good.
Expo made it easy to test during development and see changes live. Since we had
some experience with web development from a previous course, it was easy to
adapt to React Native as many of its aspects resemble HTML and CSS. Compared
to development of Native applications in Android Studio, we all agree that us-
ing React Native gave a better development experience. This was due to multiple
factors, with the most prominent factor being that it was easier to style the appli-
cation by using a CSS-like grid system rather than the way done in Android Studio
using XML.

Back End

As mentioned in Chapter 3, we chose to write the back end in Python primar-
ily because the original source code was written in it. Considering the nature of
what Python is and its flaws, there are many reasons we could have used another
programming language. For instance, C++ is a faster language, and would most
likely have performed better [72]. However, by not rewriting the source code to
a different language, we saved a lot of time.

Our decision to use DeepLabCut for finding the salamander pattern was strongly
driven by its previous usage in the bachelor’s project from 2019 [7]. This tool
proved to be reliable and easy to use. However, since it is made for specifically
estimating the pose of animals and humans, and not for pattern recognition on
salamanders, we had to make some adjustments for it to work properly in our case.

In the middle of the development period, we chose to discontinue our work on au-
tomatic sex identification. After getting undesirable results from several models of
different types, we decided to stop working on this. We believe the time needed to
get an accurate model, would be better spent on developing other crucial features.

Our decision to use Flask as the main library for creating the REST API proved to
be good choice. Its built in development server helped us throughout the devel-
opment period for both testing and debugging. Since Flask also allows for many

Chapter 10: Discussion 94

different extensions, we were able to easily incorporate the ones we needed, like
Flask-Limiter and Flask-SQLAlchemy.

Additional Tools

Our workflow in GitLab was to create merge requests of each issue, which was
based on tasks from the sprint backlog. When a task was completed, it was merged
into the master branch. We had two different code bases: one for the mobile appli-
cation, and one for the server. We did not use GitLab to its full potential, and if we
were to do this project over again, we would have utilized pipelines for automatic
testing and quality control.

Clockify was used to track time continuously throughout the project. This was a
useful tool, as we could go through the logs if we had forgotten when we did a
certain activity or implemented a feature. This was especially helpful in regards
to thesis writing, as we sometimes had to write about something we had done
months prior. The interface was easy to use, and it also gave us statistics that we
could use in the end of the project, which can be seen in Appendix F.

To write our thesis, we used a template made by Ivar Farup [13] in Overleaf.
Overleaf made it easy for us to work on the thesis concurrently, and was a great
tool to use for writing. The tips provided by Farup also aided us in writing this
thesis. Still, we made slight modifications to the template to accommodate our
thesis.

10.1.3 Scrum

During the development phase of the project we used Scrum as our software de-
velopment model. This proved to be useful as our system requirements changed
several times during development. However, we did not use Scrum to its full po-
tential. In the beginning we scheduled daily scrum meetings. As development pro-
gressed, these meetings became less frequent and were only held when necessary.
Although we used Scrum, we incorporated more features from Kanban than orig-
inally intended, and one could argue that our software development model was
more similar to Scrumban [73].

Scrum Tools

The use of Trello differed between the group members. Some used it actively,
while others did not. However, we found it to be a useful tool to keep track of
what was remaining in each sprint. It might have been even more useful if we
had performed code reviews regularly, as the "to review" column was rarely used.

A planning poker session was always carried out during each sprint planning meet-
ing. Our estimations varied throughout each sprint, which we will go deeper into

Chapter 10: Discussion 95

in the next section. One of the main problems was estimating tasks that involved
unfamiliar technologies. They were often given high estimates, because of our
inexperience and the tasks usually being large in scope. Ideally, the large tasks
should have been divided into smaller, more manageable ones.

Sprints

Below is a comparison of our initial estimations in regards to development during
each sprint, to the actual time spent on it. The numbers can be seen in Table 10.1.

Table 10.1: Table of hours used per sprint.

Sprint
Number

Estimated
Development

(hours)

Actual
Development

(hours)

Total Available
(hours)

Actual
Time Spent

(hours)
1 153 141 240 223
2 150 174 240 230
3 218 225 240 240
4 159 184 240 236

Sum: 680 724 960 929

When looking back at the estimations we made for each sprint, the estimated
development hours and actual development hours are quite close. Sprint 1, 2,
and 3 had at most a deviation of 24 hours in regards to development. Sprint
4 had the largest deviation with 25 hours. Although this seems acceptable, we
actually failed to estimate development hours for this sprint correctly. Table 5.4,
in Chapter 5 shows that we estimated 89 hours for deployment of the application
and the REST API. However, deployment did not happen during that sprint, as we
had to focus on implementing the manage salamander feature. This means that
we actually underestimated time spent on development by 114 hours.

10.1.4 Communication

Overall, we had good communication during the whole process. We had weekly
meetings with our supervisor, and meetings with our product owner every two
weeks. This was maintained during the whole project. In addition, we continu-
ously met at school, and everyone was kept in the loop. Our group communication
was definitely a big factor as to how we were able to stick to schedule and reach
our deadlines.

10.1.5 Group Work

The group worked really well together, as we all had similar expectations in re-
gards to how much effort we wanted to put into this bachelor’s project. We also
had a similar approach regarding workdays, agreeing to meet at school at 9 am

Chapter 10: Discussion 96

and work until 4 pm. This approach worked for us in earlier projects during our
time at NTNU, and it worked well during this thesis.

As we all became invested in the project, we had several discussions regarding
both the product and the thesis. Any disagreement were brought to the table and
we had a group discussion. Even though our group leader had the ability to make
the final decision, we often came to an agreement without this being necessary.
We also made sure to do activities unrelated to the bachelor’s project together, to
boost team morale.

10.1.6 Work Allocation

Figure 10.1: Work allocation.

Figure 10.1 shows how we spent our time during the entire project period. We
grouped similar activities using tags, so we could easily track time spent per ac-
tivity. Most of the time was used on thesis writing and programming. We also
wanted to track time used on smaller activities like design, deployment, and test-
ing, which did not fit into the bigger categories.

Looking at the end product and thesis, we are satisfied with how we allocated our
available time. We managed to complete our product in time, and we also got to
use a considerable amount of time writing our thesis. If we were to do this project
again, we would choose a similar approach.

10.1.7 Covid-19 Situation

As we were aware of the ongoing Covid-19 pandemic in the planning phase, we
tried to plan and organize to accommodate the situation. We made several plans
based on the possibility of new and stricter Covid-19 restrictions, in addition to

Chapter 10: Discussion 97

keeping the number of personal interactions to a minimum. We also made sure
we had an additional physical place to work together in case of a new lockdown
on campus, as this was our preferred style of working. Additionally, we had digital
communication tools like Discord, Messenger, and Microsoft Teams that could be
utilized in the case of potential quarantines.

10.1.8 Critique of Process

During the development process we did not take advantage of automated unit
tests. We focused on getting the functionality done and only did manual testing.
In retrospect, we see that it would have been helpful to have automated tests for
the REST API, as this was where the main functionality was. This was also where
we spent most time manually testing. If we had planned accordingly, we could
have been able to go for a more test driven development approach. However, we
realized this too late in the process, and decided not to implement it just for the
sake of adding it. In addition, the project period was rather short, and it would
have made sense to use more time on testing if the project had a longer time frame.

We also did not use code reviews regularly. Several bugs and issues could have
been avoided by reviewing the code in addition to improving the code quality.
However, as we often worked together in the same room or did pair program-
ming, issues were often caught during implementation.

We originally planned to deploy our system on one of NINA’s servers. This proved
to be problematic as the server we were given access to did not allow for com-
munication with clients outside NINA’s network. Since we were made aware of
this late in the process, we did not have enough time to solve the issue. A con-
tributing factor to this was that we got in contact with the server technicians at
NINA too late. If we had started on deployment sooner, we might have gotten this
information early enough to accommodate the situation.

10.2 Product

In this section, we will revisit our result goals, discuss how choices we made during
development affected the end product, the product’s ethical and societal outcomes
and a critique of the product.

10.2.1 Revisiting Result Goals

We will revisit the result goals from Chapter 2, and discuss to what degree these
goals were met. A goal will be listed first in bold, with our assessment below.

A working web-server that incorporates an improved version of the previous
matching algorithm and will communicate with mobile phones used in the

Chapter 10: Discussion 98

field.

This goal was met as our end product includes a mobile application that communi-
cates with a REST API that has incorporated an improved version of the matching
algorithm from 2019.

A cross-platform mobile application that will work as a client to the server.

We managed to develop an application which is able to connect to a remote server
on a different network. Even though we used a cross platform development frame-
work, we only built the mobile application for Android since the researchers we
tested with only had Android phones. However, building it for iOS in the future is
possible, but will require an Apple developer account.

The system should have a better user experience than the existing system.

The old system was never a standalone application. It was instead a collection of
files which could be run sequentially from the command line. We, together with
our contact person at NINA, concluded that our system delivered a significantly
better user experience than the old system.

The system should be able to classify the sex of the salamander with 95%
accuracy.

Although we got close to completing this feature, we concluded with our product
owner not to incorporate it. We determined that due to the increased time a sex
estimation took, and how imprecise the model was, it was not worth including in
the finished product. In addition, this feature was non-critical as the researchers
at NINA are able to recognize both sex and species without problems.

The system should be able to classify the salamander’s species with 95% ac-
curacy.

We did not have the ability to implement this, because we only used images of
northern crested newts to train a model. Even if we had a dataset of smooth newts
captured in a similar way to our training set, we would have come to the same
conclusion as we did with sex estimation. Similarly to sex identification, the re-
searchers at NINA know what species they are identifying, and this feature was
deemed non-critical.

Reduce the search time for matching salamanders by 50% on average by di-
viding the search by sex.

In theory, the search time should be reduced by 50% on average because of how

Chapter 10: Discussion 99

we have structured the database. In hindsight, this is not a good quantitative goal,
considering that we could have calculated the outcome of the planned implemen-
tation.

Reduce the search time for matching salamanders by another 50% on aver-
age by dividing the search by species.

In theory, the search time should also be reduced by another 50% after the previ-
ous goal because of the way we have structured the database.

Reduce the search time by 50-99% by dividing the search by geographical
location.

We were able to structure the salamander data in a way that allowed us to sepa-
rate it by location. Assuming each location has the same number of salamanders
associated with it, we can calculate the estimated time savings in matching com-
pared to not dividing by location. The more locations the system has, the more
time is saved.

The server must support a capacity of at least five researchers concurrently.

For most of the requests, the user does not have to wait more than a second to
get a response. The only request that takes a considerable amount of time is the
straightening request. This operation uses a semaphore to make sure only a single
user has access to the GPU at a given time. When multiple users try to use it they
will be put in a queue, which can cause delays and timeouts.

10.2.2 Consequences of Design Choices

In this section, design choices that especially affected the end product will be
discussed.

Folder Structure

Our decision to divide salamanders into species, location, and sex proved to be
useful for registering salamanders. Although we never registered enough salaman-
ders in our tests to measure any meaningful data on time taken by the matching
function or its accuracy, we still found this way of grouping salamanders intuitive
and orderly. Being able to look up salamanders based on these aspects proved to
be useful regardless. In addition, it makes it easier to estimate the salamander
population based on locations.

Chapter 10: Discussion 100

Confirmation of Processed Image

Early in the process, we decided to return the processed image to the user, so they
could confirm that it had been straightened properly. Even though we thought this
feature would be useful for quality control, we did not imagine how important this
feature proved to be. As the performance tests showed, while we tried to capture
images to the best of our ability, there were still some badly processed images. If
the system had not returned these images to the user, the user would have had
no way of knowing if the image was acceptable or not. This would most certainly
have led to faulty matching.

Manage Salamanders

In the end of sprint 3, we had a meeting with our product owner and decided to
implement the ability to manage salamanders. Even though this led to a delayed
deployment, it made the end product more refined. This made the user able to
correct any mistakes made when registering salamanders, which would not have
been possible without manually editing data on the server. Due to the modular
design of the system, this proved easy to incorporate.

Sex Estimation

Our decision to end our attempt at automatic sex identification proved to be a
good idea. There is a chance we would have been able to make it work before the
end of development, but it most likely would have taken time away from other
more important tasks. We also observed how simple it was for the researchers
from NINA to identify the sex manually and enter it into the mobile application
during our field test.

10.2.3 Ethical and Societal Outcomes

The system will hopefully reduce the need for PIT-tagging, and other invasive
procedures. In addition, by helping the researchers track measures implemented
to increase the salamander population, we hope this tool will aid in increasing the
population of the northern crested newts, and eventually the smooth newts.

10.2.4 Critique of Product

One criticism of the product is how we handle image transfer between the mobile
application and the server. Downloading images from the server takes a long time.
This was discovered during the field test we conducted, as we had mainly used
internet with high speed during development. The reason for the slow download
is still not clear.

One hypothesis is that the way the system encodes images on the server and is
sent to the client is inefficient. Another hypothesis is that the images sent to the

Chapter 10: Discussion 101

mobile application are too large, which affects the time it takes to download them.
For example, when managing salamanders, the original image is sent back in its
original resolution. If a salamander has several high resolution images attached
to it, downloading all of them can take a long time. This is also a concern when
using mobile data, as most people have strict data quotas which will quickly be
exhausted. This is something we should have considered when implementing the
manage salamanders feature.

The way we chose to implement the "forgot password" feature is not ideal. Only
an administrator can reset a user’s password. The new password will be set to a
random string of characters which the admin has to relay to the affected user. This
system puts a tremendous amount of trust on the administrators as they can easily
abuse the system. In retrospect, we should have set up a mail server that could
send a reset password link to the user who needs to reset it. The reason we chose
our approach is because we did not have time to learn and set up a mail server.
A mail server also requires a domain which often costs money. Since our system
will only be used by a small group of people, we do not consider this feature a
significant security concern.

Chapter 11

Conclusion

This chapter will conclude our thesis providing a summary of our process and end
product, in addition to cover future work and our final words.

11.1 Summary

This section will provide a summary of our bachelor’s thesis process and the final
product.

11.1.1 Process

We are pleased with how we planned and structured this project. By choosing
Scrum as our software development model and having consistent meetings with
both our supervisor and product owner, we were able to complete both the prod-
uct, and our thesis in time. However, we should have clarified deployment with
NINA earlier in the process, which could have resulted in the system being de-
ployed on their server. Overall, despite the ongoing Covid-19 pandemic, we were
able to support and motivate each other throughout this period.

11.1.2 Product

The final product is in essence a tool with a single purpose, which we hope will
satisfy NINA’s needs. With proper instructions, researchers will find this tool useful
and easy to use. During the field test, the application proved its usefulness, and
our product owner was pleased with the results. With limited changes and training
of new models, this system can serve as a template for other species with unique
patterns, like trouts and frogs.

11.2 Future Work

Below is a list of features we did not have time or resources to implement, and
should be implemented in the future.

102

Chapter 11: Conclusion 103

• Collect more images of northern crested newts and smooth newts with vary-
ing backgrounds in order to create a larger and more varied data set. This
will allow for the creation of better training sets resulting in better models,
and the possibility of automatic species estimation.
• Implement automatic identification of the salamander’s sex.
• More efficient file transfer between the server and client; particularly down-

loading images from the server as downloading took significantly longer
than uploading.
• Allow for straightening salamander images concurrently, as they currently

happen sequentially. Adding this feature would significantly reduce waiting
times when multiple users try to straighten images.
• Implement a feature for automatic population estimation at locations.
• Deployment of the back end on NINA’s server.
• Build the mobile application for iOS.

11.3 Final Words

During this bachelor’s thesis, we have acquired new knowledge of working on
large group projects and several technologies. Developing a system meant to aid
the researchers at NINA in preserving, monitoring, and increasing the population
of an endangered species has been both exciting and rewarding.

This bachelor’s project gave us the opportunity to not only dive into new fields
like artificial intelligence and image recognition, but also expand our knowledge
in fields like full stack application development and REST API design. We were
able to dive deeper into new frameworks and libraries, and have improved our
ability to take new challenges head on.

In conclusion, we are very satisfied with how this project turned out. Due to great
teamwork and a strict schedule, we were able to develop a complete system and
a thesis we are proud of.

Bibliography

[1] KirstenS and contributors, Cross site request forgery (csrf), Aug. 2021. [On-
line]. Available: https://owasp.org/www-community/attacks/csrf.

[2] F. community, Flask, web development, one drop at a time, 2010. [Online].
Available: https://flask.palletsprojects.com/en/1.1.x/ (visited on
02/26/2021).

[3] F. community, Flask-jwt-extended, 2020. [Online]. Available: https://flask-
jwt-extended.readthedocs.io/en/stable/ (visited on 02/26/2021).

[4] A.-A. Saifee, Flask-limiter 1.4, Aug. 2020. [Online]. Available: https://
pypi.org/project/Flask-Limiter/ (visited on 05/15/2021).

[5] Wikipedia contributors, React native — Wikipedia, the free encyclopedia,
2021. [Online]. Available: https://en.wikipedia.org/w/index.php?
title=React_Native&oldid=1005998180 (visited on 02/15/2021).

[6] Nina - the norwegian institute of nature research. [Online]. Available: https:
//www.nina.no/english/Home (visited on 01/15/2021).

[7] J. Bakløkken, F. Schoeler, and H. Nørholm, Automated salamander recogni-
tion using deep neural networks and feature extraction, May 2019. [Online].
Available: https://ntnuopen.ntnu.no/ntnu- xmlui/handle/11250/
2617897 (visited on 01/15/2021).

[8] B. K. Dervo, Salamander. [Online]. Available: https://www.nina.no/
salamander (visited on 01/15/2021).

[9] Artsdatabanken, Norsk rødliste for arter, Mar. 2020. [Online]. Available:
https://artsdatabanken.no/Rodliste (visited on 11/24/2021).

[10] N. U. of Science and Technology, Programmering. [Online]. Available: https:
//www.ntnu.no/studier/bprog (visited on 02/02/2021).

[11] Lov om behandling av personopplysninger (personopplysningsloven), 2018.
[Online]. Available: https://lovdata.no/dokument/NL/lov/2018-06-
15-38 (visited on 01/15/2021).

[12] A. ALTVATER, What is sdlc? understand the software development life cycle,
Apr. 2020. [Online]. Available: https://stackify.com/what-is-sdlc/
(visited on 03/22/2021).

104

https://owasp.org/www-community/attacks/csrf
https://flask.palletsprojects.com/en/1.1.x/
https://flask-jwt-extended.readthedocs.io/en/stable/
https://flask-jwt-extended.readthedocs.io/en/stable/
https://pypi.org/project/Flask-Limiter/
https://pypi.org/project/Flask-Limiter/
https://en.wikipedia.org/w/index.php?title=React_Native&oldid=1005998180
https://en.wikipedia.org/w/index.php?title=React_Native&oldid=1005998180
https://www.nina.no/english/Home
https://www.nina.no/english/Home
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2617897
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2617897
https://www.nina.no/salamander
https://www.nina.no/salamander
https://artsdatabanken.no/Rodliste
https://www.ntnu.no/studier/bprog
https://www.ntnu.no/studier/bprog
https://lovdata.no/dokument/NL/lov/2018-06-15-38
https://lovdata.no/dokument/NL/lov/2018-06-15-38
https://stackify.com/what-is-sdlc/

Bibliography 105

[13] I. Farup, Thesis-ntnu. [Online]. Available: https://github.com/COPCSE-
NTNU/thesis-NTNU (visited on 02/02/2021).

[14] V. Trulock, Pact analysis. [Online]. Available: http://hci.ilikecake.ie/
requirements/pact.htm (visited on 02/09/2021).

[15] C. Jensen, Learn from the best: Mobile design principles, Sep. 2020. [On-
line]. Available: https://uxdesign.cc/learn-from-the-best-mobile-
design-principles-f1bdc46bc016 (visited on 05/12/2021).

[16] Usability, Use cases, Unknown. [Online]. Available: https://www.usability.
gov/how-to-and-tools/methods/use-cases.html (visited on 02/10/2021).

[17] Egnyte, How long will it take to upload, backup, or download my files? [On-
line]. Available: https://helpdesk.egnyte.com/hc/en-us/articles/
201637064-How-Long-Will-it-Take-to-Upload-Backup-or-Download-
my-Files- (visited on 02/08/2021).

[18] Ookla, Speedtest global index, Dec. 2020. [Online]. Available: https://
www.speedtest.net/global-index/norway (visited on 02/08/2021).

[19] Willip, Is 2g data still usable? Jul. 2019. [Online]. Available: https://www.
giffgaff.com/blog/is-2g-data-still-usable/ (visited on 02/08/2021).

[20] Wikipedia contributors, Agile software development — Wikipedia, the free
encyclopedia, Jan. 2021. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=Agile_software_development&oldid=999545034
(visited on 01/26/2021).

[21] Wikipedia contributors, Kanban (development) — Wikipedia, the free ency-
clopedia, Jan. 2021. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Kanban_(development)&oldid=1002634912 (visited on
01/26/2021).

[22] M. REHKOPF, Kanban vs. scrum: Which agile are you? [Online]. Available:
https://www.atlassian.com/agile/kanban/kanban-vs-scrum (visited
on 01/26/2021).

[23] M. Gorman, Scrum vs kanban: Weighing their pros and cons. [Online]. Avail-
able: https://www.kovair.com/blog/scrum-vs-kanban-pros-and-
cons/ (visited on 01/26/2021).

[24] T. Hristovski, Agile methodologies: Kanban vs scrum – advantages and disad-
vantages, Dec. 2017. [Online]. Available: https://iwconnect.com/agile-
methodologies-scrum-vs-kanban-advantages-disadvantages/ (visited
on 01/26/2021).

[25] Wikipedia contributors, Scrum (software development) — Wikipedia, the free
encyclopedia, Jan. 2021. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=Scrum_(software_development)&oldid=999915311
(visited on 01/26/2021).

https://github.com/COPCSE-NTNU/thesis-NTNU
https://github.com/COPCSE-NTNU/thesis-NTNU
http://hci.ilikecake.ie/requirements/pact.htm
http://hci.ilikecake.ie/requirements/pact.htm
https://uxdesign.cc/learn-from-the-best-mobile-design-principles-f1bdc46bc016
https://uxdesign.cc/learn-from-the-best-mobile-design-principles-f1bdc46bc016
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://helpdesk.egnyte.com/hc/en-us/articles/201637064-How-Long-Will-it-Take-to-Upload-Backup-or-Download-my-Files-
https://helpdesk.egnyte.com/hc/en-us/articles/201637064-How-Long-Will-it-Take-to-Upload-Backup-or-Download-my-Files-
https://helpdesk.egnyte.com/hc/en-us/articles/201637064-How-Long-Will-it-Take-to-Upload-Backup-or-Download-my-Files-
https://www.speedtest.net/global-index/norway
https://www.speedtest.net/global-index/norway
https://www.giffgaff.com/blog/is-2g-data-still-usable/
https://www.giffgaff.com/blog/is-2g-data-still-usable/
https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=999545034
https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=999545034
https://en.wikipedia.org/w/index.php?title=Kanban_(development)&oldid=1002634912
https://en.wikipedia.org/w/index.php?title=Kanban_(development)&oldid=1002634912
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.kovair.com/blog/scrum-vs-kanban-pros-and-cons/
https://www.kovair.com/blog/scrum-vs-kanban-pros-and-cons/
https://iwconnect.com/agile-methodologies-scrum-vs-kanban-advantages-disadvantages/
https://iwconnect.com/agile-methodologies-scrum-vs-kanban-advantages-disadvantages/
https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=999915311
https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=999915311

Bibliography 106

[26] L. C. Team, What is extreme programming? an overview of xp rules and val-
ues. [Online]. Available: https://www.lucidchart.com/blog/what-is-
extreme-programming (visited on 01/26/2021).

[27] StatCounter, Mobile operating system market share norway, Jan. 2021. [On-
line]. Available: https : / / gs . statcounter . com / os - market - share /
mobile/norway (visited on 02/15/2021).

[28] Techliance, Unraveling the growing popularity of react native, 2021. [On-
line]. Available: https://blog.techliance.com/unraveling-the-growing-
popularity-of-react-native/ (visited on 02/26/2021).

[29] F. Faisal, How to develop ios apps on windows, Jan. 2021. [Online]. Available:
https://mindster.com/how-develop-ios-apps-windows/ (visited on
05/14/2021).

[30] Expo, Introduction to expo, 2021. [Online]. Available: https://docs.expo.
io/.

[31] D. contributors, How to install deeplabcut. [Online]. Available: https://
github.com/DeepLabCut/DeepLabCut/blob/5154c336f81ca57a05409c90a08aac7a9451eef9/
docs/installation.md (visited on 05/03/2021).

[32] M. Herman, Django vs. flask in 2020: Which framework to choose, Oct. 2020.
[Online]. Available: https://testdriven.io/blog/django-vs-flask/
(visited on 02/15/2021).

[33] M. contributors, Https://developer.mozilla.org/en-us/docs/web/api/fetchapi/using f etch,
Apr. 2021. [Online]. Available: https://arxiv.org/abs/1804.02767.

[34] V. Anushka, Difference between fetch and axios.js for making http requests,
Aug. 2020. [Online]. Available: https://www.geeksforgeeks.org/difference-
between-fetch-and-axios-js-for-making-http-requests/.

[35] R. N. Community, React navigation, 2021. [Online]. Available: https://
reactnavigation.org/ (visited on 02/24/2021).

[36] Callstack, Making your react native apps look and feel native, 2019. [Online].
Available: https://reactnativepaper.com/ (visited on 03/25/2021).

[37] Wikipedia contributors, Redux (javascript library), Mar. 2021. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Redux_(JavaScript_
library)&oldid=1012646179.

[38] K. Burke, K. Conroy, R. Horn, F. Stratton, and G. Binet, Flaskrestful, 2020.
[Online]. Available: https://flask-restful.readthedocs.io/en/latest/
(visited on 02/26/2021).

[39] A. Ronacher, Flask-sqlalchemy, 2020. [Online]. Available: https://pypi.
org/project/Flask-SQLAlchemy/ (visited on 02/26/2021).

[40] Flask-Bcrypt contributers, Flask-bcrypt. [Online]. Available: https://flask-
bcrypt.readthedocs.io/en/latest/ (visited on 02/26/2021).

https://www.lucidchart.com/blog/what-is-extreme-programming
https://www.lucidchart.com/blog/what-is-extreme-programming
https://gs.statcounter.com/os-market-share/mobile/norway
https://gs.statcounter.com/os-market-share/mobile/norway
https://blog.techliance.com/unraveling-the-growing-popularity-of-react-native/
https://blog.techliance.com/unraveling-the-growing-popularity-of-react-native/
https://mindster.com/how-develop-ios-apps-windows/
https://docs.expo.io/
https://docs.expo.io/
https://github.com/DeepLabCut/DeepLabCut/blob/5154c336f81ca57a05409c90a08aac7a9451eef9/docs/installation.md
https://github.com/DeepLabCut/DeepLabCut/blob/5154c336f81ca57a05409c90a08aac7a9451eef9/docs/installation.md
https://github.com/DeepLabCut/DeepLabCut/blob/5154c336f81ca57a05409c90a08aac7a9451eef9/docs/installation.md
https://testdriven.io/blog/django-vs-flask/
https://arxiv.org/abs/1804.02767
https://www.geeksforgeeks.org/difference-between-fetch-and-axios-js-for-making-http-requests/
https://www.geeksforgeeks.org/difference-between-fetch-and-axios-js-for-making-http-requests/
https://reactnavigation.org/
https://reactnavigation.org/
https://reactnativepaper.com/
https://en.wikipedia.org/w/index.php?title=Redux_(JavaScript_library)&oldid=1012646179
https://en.wikipedia.org/w/index.php?title=Redux_(JavaScript_library)&oldid=1012646179
https://flask-restful.readthedocs.io/en/latest/
https://pypi.org/project/Flask-SQLAlchemy/
https://pypi.org/project/Flask-SQLAlchemy/
https://flask-bcrypt.readthedocs.io/en/latest/
https://flask-bcrypt.readthedocs.io/en/latest/

Bibliography 107

[41] J. J. Kumar, Image-encoder 0.0.8, May 2020. [Online]. Available: https:
//pypi.org/project/image-encoder/ (visited on 05/15/2021).

[42] DeepLabCut contributors, Deeplabcut, Mar. 2021. [Online]. Available: http:
//www.mackenziemathislab.org/deeplabcut (visited on 03/24/2021).

[43] W. contributors, Tensorflow — Wikipedia, the free encyclopedia, 2021. [On-
line]. Available: https :/ /en .wikipedia .org / w/ index. php? title=
TensorFlow&oldid=1018433675.

[44] I. contributors, Imageai, 2021. [Online]. Available: https://github.com/
OlafenwaMoses/ImageAI.

[45] O. contributors, Open source computer vision, 2021. [Online]. Available:
https://docs.opencv.org/4.5.2/d1/dfb/intro.html.

[46] M. Olafenwa and J. Olafenwa, Imageais repository, 2020. [Online]. Avail-
able: https://github.com/OlafenwaMoses/ImageAI (visited on 02/26/2021).

[47] J. Redmon and A. Farhadi, Yolov3: An incremental improvement, Mar. 2021.
[Online]. Available: https://arxiv.org/abs/1804.02767 (visited on
03/24/2021).

[48] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition, 2015. [Online]. Available: https://arxiv.org/abs/1512.03385
(visited on 02/24/2021).

[49] Google, Bottom navigation. [Online]. Available: https://material.io/
components/bottom-navigation#usage (visited on 03/25/2021).

[50] Google, Drawer navigation. [Online]. Available: https://material.io/
components/navigation-drawer#usage (visited on 03/25/2021).

[51] B. Carlson, Designing for action: Best practices for effective buttons, Unknown.
[Online]. Available: https://balsamiq.com/learn/articles/button-
design-best-practices/ (visited on 05/06/2021).

[52] S. Minhas, 7 rules of using radio buttons vs drop-down menus, May 2018.
[Online]. Available: https://blog.prototypr.io/7-rules-of-using-
radio-buttons-vs-drop-down-menus-fddf50d312d1 (visited on 05/06/2021).

[53] A. developers, Toasts overview, Apr. 2021. [Online]. Available: https://
developer.android.com/guide/topics/ui/notifiers/toasts (visited
on 05/12/2021).

[54] Wikipedia contributors, React (javascript library) — Wikipedia, the free en-
cyclopedia, 2021-04-19, 2021. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=React_(JavaScript_library)&oldid=1018689613.

[55] F. Inc., Function components and class components, 2021. [Online]. Avail-
able: https://reactnative.dev/docs/getting- started (visited on
04/19/2021).

[56] F. Inc., Safeareaview, 2021. [Online]. Available: https://reactnative.
dev/docs/safeareaview (visited on 04/19/2021).

https://pypi.org/project/image-encoder/
https://pypi.org/project/image-encoder/
http://www.mackenziemathislab.org/deeplabcut
http://www.mackenziemathislab.org/deeplabcut
https://en.wikipedia.org/w/index.php?title=TensorFlow&oldid=1018433675
https://en.wikipedia.org/w/index.php?title=TensorFlow&oldid=1018433675
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://docs.opencv.org/4.5.2/d1/dfb/intro.html
https://github.com/OlafenwaMoses/ImageAI
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1512.03385
https://material.io/components/bottom-navigation#usage
https://material.io/components/bottom-navigation#usage
https://material.io/components/navigation-drawer#usage
https://material.io/components/navigation-drawer#usage
https://balsamiq.com/learn/articles/button-design-best-practices/
https://balsamiq.com/learn/articles/button-design-best-practices/
https://blog.prototypr.io/7-rules-of-using-radio-buttons-vs-drop-down-menus-fddf50d312d1
https://blog.prototypr.io/7-rules-of-using-radio-buttons-vs-drop-down-menus-fddf50d312d1
https://developer.android.com/guide/topics/ui/notifiers/toasts
https://developer.android.com/guide/topics/ui/notifiers/toasts
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1018689613
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1018689613
https://reactnative.dev/docs/getting-started
https://reactnative.dev/docs/safeareaview
https://reactnative.dev/docs/safeareaview

Bibliography 108

[57] R. N. Community, Createstacknavigator, 2021. [Online]. Available: https:
//reactnavigation.org/docs/stack-navigator/ (visited on 04/19/2021).

[58] J. Simpson, Everything you need to know about api rate limiting, Apr. 2019.
[Online]. Available: https://nordicapis.com/everything-you-need-
to-know-about-api-rate-limiting/ (visited on 04/20/2021).

[59] imgaugs contributors, Imgaug. [Online]. Available: https://github.com/
aleju/imgaug (visited on 04/27/2021).

[60] C. Versloot, Getting out of loss plateaus by adjusting learning rates, 2020.
[Online]. Available: https://www.machinecurve.com/index.php/2020/
02/26/getting- out- of- loss- plateaus- by- adjusting- learning-
rates/ (visited on 05/05/2021).

[61] C. Szegedy, A. Toshev, and D. Erhan, On the difficulty of using simple neural
network. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/
1809/1809.09645.pdf (visited on 04/23/2021).

[62] R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent
neural networks. [Online]. Available: https://arxiv.org/abs/1211.5063
(visited on 04/19/2021).

[63] K. Pykes, The vanishing/exploding gradient problem in deep neural networks,
May 2020. [Online]. Available: https://towardsdatascience.com/the-
vanishing-exploding-gradient-problem-in-deep-neural-networks-
191358470c11 (visited on 05/14/2021).

[64] C.-F. Wang, The vanishing gradient problem, Jan. 2019. [Online]. Available:
https://towardsdatascience.com/the-vanishing-gradient-problem-
69bf08b15484 (visited on 05/14/2021).

[65] Z. Li, W. Yang, S. Peng, and F. Liu, A survey of convolutional neural networks:
Analysis, applications, and prospects. [Online]. Available: https://arxiv.
org/abs/2004.02806 (visited on 04/19/2021).

[66] K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep residual net-
works. [Online]. Available: https://arxiv.org/abs/1603.05027 (visited
on 04/19/2021).

[67] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition. [Online]. Available: https://arxiv.org/abs/1512.03385 (visited
on 04/19/2021).

[68] gustavla, Gpu resources not released when session is closed. [Online]. Avail-
able: https://github.com/tensorflow/tensorflow/issues/1727 (vis-
ited on 04/23/2021).

[69] E. community, Expo cli. [Online]. Available: https://docs.expo.io/
workflow/expo-cli/ (visited on 04/26/2021).

[70] Expo, Eas build. [Online]. Available: https://docs.expo.io/build/
introduction/ (visited on 04/28/2021).

https://reactnavigation.org/docs/stack-navigator/
https://reactnavigation.org/docs/stack-navigator/
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting/
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting/
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://www.machinecurve.com/index.php/2020/02/26/getting-out-of-loss-plateaus-by-adjusting-learning-rates/
https://www.machinecurve.com/index.php/2020/02/26/getting-out-of-loss-plateaus-by-adjusting-learning-rates/
https://www.machinecurve.com/index.php/2020/02/26/getting-out-of-loss-plateaus-by-adjusting-learning-rates/
https://arxiv.org/ftp/arxiv/papers/1809/1809.09645.pdf
https://arxiv.org/ftp/arxiv/papers/1809/1809.09645.pdf
https://arxiv.org/abs/1211.5063
https://towardsdatascience.com/the-vanishing-exploding-gradient-problem-in-deep-neural-networks-191358470c11
https://towardsdatascience.com/the-vanishing-exploding-gradient-problem-in-deep-neural-networks-191358470c11
https://towardsdatascience.com/the-vanishing-exploding-gradient-problem-in-deep-neural-networks-191358470c11
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://arxiv.org/abs/2004.02806
https://arxiv.org/abs/2004.02806
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1512.03385
https://github.com/tensorflow/tensorflow/issues/1727
https://docs.expo.io/workflow/expo-cli/
https://docs.expo.io/workflow/expo-cli/
https://docs.expo.io/build/introduction/
https://docs.expo.io/build/introduction/

Bibliography 109

[71] vsupalov, Gunicorn and nginx in a nutshell. [Online]. Available: https:
//build.vsupalov.com/gunicorn-and-nginx/ (visited on 04/28/2021).

[72] D. Zarya, The best programming language for ai: Your ultimate guide, Jun.
2020. [Online]. Available: https://www.zfort.com/blog/best-programming-
language-for-ai (visited on 05/15/2021).

[73] Savita Pahuja, What is scrumban, May 2017. [Online]. Available: https://
www.agilealliance.org/what-is-scrumban/ (visited on 05/10/2021).

https://build.vsupalov.com/gunicorn-and-nginx/
https://build.vsupalov.com/gunicorn-and-nginx/
https://www.zfort.com/blog/best-programming-language-for-ai
https://www.zfort.com/blog/best-programming-language-for-ai
https://www.agilealliance.org/what-is-scrumban/
https://www.agilealliance.org/what-is-scrumban/

Appendix A

Group Rules

110

Appendix B

Project Agreement

113

1 av 3

ØNTNU
Norges teknisk-naturvitenskapelige universitet

Vår dato Vår referanse

Prosjektavtale

mellom NTNU Fakultet for informasjonsteknologi og elektroteknikk (IE) på Gjøvik (utdanningsinstitusjon), og

IM ST'TOTT FOfl 1K)6

________________ (M ik \A^)___________________________ ______________ (oppdragsgiver), og

AnJDE-O-S S. .LANifeUE.04 MvlPEEft rt>4é>^usS£fU

__ (student(er))

Avtalen angir avtalepartenes plikter vedrørende gjennomføring av prosjektet og rettigheter til anvendelse av de
resultater som prosjektet frembringer:

1. Studenten(e) skal gjennomføre prosjektet i perioden fra V OL 2-1 til_

Studentene skal i denne perioden følge en oppsatt fremdriftsplan der NTNU IE på Gjøvik yter veiledning.
Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til rådighet kunnskap og
materiale som er nødvendig for å få gjennomført prosjektet. Det forutsettes at de gitte problemstillinger det
arbeides med er aktuelle og på et nivå tilpasset studentenes faglige kunnskaper. Oppdragsgiver plikter på
forespørsel fra NTNU å gi en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomføringen av prosjektet dekkes på følgende måte:
• Oppdragsgiver dekker selv gjennomføring av prosjektet når det gjelder f.eks. materiell, telefon, reiser

og nødvendig overnatting på steder langt fra NTNU i Gjøvik. Studentene dekker utgifter for
ferdigstillelse av prosjektmateriell.

• Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som
er brukt til prototypen. Dersom det er nødvendig med større og/eller spesielle investeringer for å få
gjennomført prosjektet, må det gjøres en egen avtale mellom partene om eventuell
kostnadsfordeling og eiendomsrett.

3. NTNU IE på Gjøvik står ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei heller
at prosjektet blir fullført. Prosjektet må anses som en eksamensrelatert oppgave som blir bedømt av intern og
ekstern sensor. Likevel er det en forpliktelse for utøverne av prosjektet å fullføre dette til avtalte
spesifikasjoner, funksjonsnivå og tider.

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk

4. Alle beståtte bacheloroppgaver som ikke er klausulert og hvor forfatteren(e) har gitt sitt samtykke til
publisering, kan gjøres tilgjengelig via NTNUs institusjonelle arkiv NTNU Open.

Tilgjengeliggjøring i det åpne arkivet forutsetter avtale om delvis overdragelse av opphavsrett, se «avtale om
publisering» (jfr Lov om opphavsrett). Oppdragsgiver og veileder godtar slik offentliggjøring når de signerer denne
prosjektavtalen, og må evt. gi skriftlig melding til studenter og instituttleder/fagenhetsleder om de i løpet av
prosjektet endrer syn på slik offentliggjøring.

Den totale besvarelsen med tegninger, modeller og apparatur så vel som programlisting, kildekode mv. som inngår
som del av eller vedlegg til besvarelsen, kan vederlagsfritt benyttes til undervisnings- og forskningsformål.
Besvarelsen, eller vedlegg til den, må ikke nyttes av NTNU til andre formål, og ikke overlates til utenforstående uten
etter avtale med de øvrige parter i denne avtalen. Dette gjelder også firmaer hvor ansatte ved NTNU og/eller
studenter har interesser.

5. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjør studenten(e) i sin
besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom oppdragsgiver
og student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

6. Ut over den offentliggjøring som er nevnt i punkt 4 har studenten(e) ikke rett til å publisere sin besvarelse, det
være seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende samtykke
må foreligge i forholdet mellom student(er) og faglærer/veileder for det materialet som faglærer/veileder
stiller til disposisjon.

7. Studenten(e) leverer oppgavebesvarelsen med vedlegg (pdf) i NTNUs elektroniske eksamenssystem. I tillegg
leveres ett eksemplar til oppdragsgiver.

8. Denne avtalen utferdiges med ett eksemplar til hver av partene. På vegne av NTNU, IE er det
instituttleder/faggruppeleder som godkjenner avtalen.

9. I det enkelte tilfelle kan det inngås egen avtale mellom oppdragsgiver, student(er) og NTNU som regulerer
nærmere forhold vedrørende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og økonomisk
utnyttelse av resultatene. Dersom oppdragsgiver og student(er) ønsker en videre eller ny avtale med
oppdragsgiver, skjer dette uten NTNU som partner.

10. Når NTNU også opptrer som oppdragsgiver, trer NTNU inn i kontrakten både som utdanningsinstitusjon og som
oppdragsgiver.

11. Eventuell uenighet vedrørende forståelse av denne avtale løses ved forhandlinger avtalepartene imellom.
Dersom det ikke oppnås enighet, er partene enige om at tvisten løses av voldgift, etter bestemmelsene i
tvistemålsloven av 13.8.1915 nr. 6, kapittel 32.

2

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk

12. Deltakende personer ved prosjektgjennomføringen:

NTNUs veileder (navn): i nS____

Oppdragsgivers kontaktperson (navn):

Student(er) (signatur):

. j^=tAr\

Oppdragsgiver (signatur) : \c Q-Oiys^t

dato IJLAAJLI

dato 1 2.01.2.1

dato 1 2. .0 1 . 2l

dato 12.0 i, 2 \

dato

Signert avtale leveres digitalt i Blackboard, rom for bacheloroppgaven.

Godkjennes digitalt av instituttleder/faggruppeleder.

Om papirversjon med signatur er ønskelig, må papirversjon leveres til instituttet i tillegg.

Plass for evt sign:

Instituttleder/faggruppeleder (signatur):____________________________________ dato

3

Appendix C

Task Description

Salamanders have a uniquely identifiable pattern located on their abdomen, which
makes it possible to recognize each individual, similar to a human fingerprint.
Currently, the Norwegian Institute for Nature Research (NINA), uses a Passive In-
tegrated Transponder (PIT) placed under the skin, to identify individual salaman-
ders that exist in Norway. This tagging method requires an invasive procedure, in
addition to being expensive. Since the abdominal pattern is unique, it is possible
to use it for identification instead. Our two species of salamander are red-listed,
which makes it important to be able to monitor their population robustly and eas-
ily.

In the spring of 2019, a bachelor thesis was completed at NTNU, where a tool
for the recognition of salamanders based on their abdominal pattern was devel-
oped[7]. The tool is based on machine learning, pattern recognition, and is written
in Python. The tool was tested on a small data set and looks promising for the re-
searchers at NINA. At this point, the tool is only usable through the command line,
which is not an optimal solution with user experience in mind. It should also sup-
port the RAW image format. Additionally, the current matching algorithm should
be improved as it is not robust. The ability to classify the salamanders based on
sex and species is also wanted. Despite these weaknesses, the tool has gotten both
national and international attention from researchers who wish for a tool to aid
in fieldwork. Therefore, NINA wishes for a continuation of development for the
tool, so it can be usable in the field. This project will result in software that can
be used by the researchers at NINA.

The project consists of creating a graphical user interface (GUI), optimize usage
of RAW pictures, a faster and better way to match salamanders, and classification
of the salamander’s sex and species.

117

Appendix D

Documentation

Front-end: https://git.gvk.idi.ntnu.no/eirikmda/salamander-app

Back-end: https://git.gvk.idi.ntnu.no/HermanDyrkorn/salamander-api

API-Documentation: https://documenter.getpostman.com/view/8860712/TzJvcbk9

118

Appendix E

Project Plan

119

Project Plan

Eirik Martin Danielsen Anders Sundstedt Langlie
Andrea Magnussen Herman Andersen Dyrkorn

May 6, 2021

Contents

Contents . i
Figures . iii
Tables . iv
1 Project Goals and Constraints . 1

1.1 Background . 1
1.2 Project Goals . 2

1.2.1 Result Goals: . 2
1.2.2 Effect Goals: . 2

1.3 Constraints . 2
1.3.1 Time Constraints: . 2
1.3.2 Hardware and Software Constraints: 3
1.3.3 Legal Constraints: . 3

2 Scope . 4
2.1 Subject Area . 4
2.2 Task Description . 4
2.3 Delimitation . 5

3 Project Organization . 6
3.1 Responsibilities and Roles . 6
3.2 Rules and Routines . 6

4 Planning, Followup and Reporting . 7
4.1 Development Process . 7

4.1.1 Characteristics of Project . 7
4.1.2 Software Development Model 7
4.1.3 Usage of Software Development Model 8

4.2 Plan for Meetings and Decision Points 9
5 Quality Assurance . 10

5.1 Documentation and Source Code . 10
5.1.1 Documentation . 10
5.1.2 Source Code . 10

5.2 Configuration Management . 10
5.3 Risk Analysis . 12

6 Development Plan . 14
6.1 GANTT - Diagram . 14
6.2 Milestones, Decision Points and Activities 15

6.2.1 Milestones . 15
6.2.2 Decision points . 15

i

Contents ii

6.2.3 Activities . 15
Bibliography . 16

Figures

3.1 Map of Team Structure . 6

5.1 Map of Tools . 11

6.1 Gantt Diagram . 14

iii

Tables

4.1 Sprint Structure . 9

5.1 Risk Standardization . 12
5.2 Risks . 12
5.3 Mitigation . 13

iv

Project Goals and Constraints

1.1 Background

This project was provided by Norwegian Institute for Nature Research (NINA),
and our contact person from the institute is Børre Dervo. NINA is an independent
foundation for nature research and research on the interaction between human
society, natural resources, and biodiversity[1].

One of the fields of research at NINA is salamanders. Salamanders are a group of
amphibians, who thrive in marshlands, open woodlands, and cultural landscapes,
with sufficient access to water and hiding places. In Norway, there are two differ-
ent species of salamander; northern crested newt and smooth newt[2]. Both of
these species are red-listed, and NINA’s goal is to monitor and ultimately increase
their population.

Back in 2019, NINA issued a bachelor project where they requested a program
that would be able to recognize a salamander based on a unique pattern located
on its abdomen[3]. The previous bachelor group was able to make a system that
allowed the user to match images of caught salamanders against a database of
previously found animals. Unfortunately, they did not have enough time to make
a proper graphical user interface and instead resorted to using command line ar-
guments. This resulted in it not being actively used by the scientists at NINA.

For this project, NINA wants us to develop an easy to use- graphical user interface,
using the existing system developed in the previous bachelor project. Additionally,
NINA wants the ability to classify other traits eg. sex, weight, length, etc.

1

Chapter 1: Project Goals and Constraints 2

1.2 Project Goals

The goals are divided into result and effect goals, with effect goal again being
divided into qualitative and quantitative goals.

1.2.1 Result Goals:

• The system should make it easier for scientists at NINA to conduct their
research.
• A working web-server that uses the previous system and will communicate

with portable devices used out in the field (mobile phones).
• A cross-platform mobile application that will work as a client to the server.
• The system should be able to classify the sex of the salamander with 95%

accuracy.
• The system should be able to classify the salamander’s species with 95%

accuracy.
• Reduce the search time of an animal by 50% by dividing the search by sex.
• Reduce the search time by 5-50% by dividing the search by geographical

location.
• The system must support a capacity of 5 scientists concurrently.
• The system has to work as long as there is an internet connection for both

the client and the server.

1.2.2 Effect Goals:

• Qualitative goals:

� The system should have a better user experience than the existing sys-
tem.
� The salamanders will be more carefully handled with the new system.
� Increase the number of researchers tracking salamanders in the field,

by eliminating the need for a special license.

• Quantitative goals:

� Reduce the number of work hours for the researchers at NINA by 75%.
� The new system should substitute the amount of PIT-tagging by 20%

each year.
� The system will reduce NINA’s cost toward salamander research by

30%.

1.3 Constraints

1.3.1 Time Constraints:

• The product needs to be complete before 20.5.2021.

Chapter 1: Project Goals and Constraints 3

• If the system will run at NINA, we need a server at their location within
April, to do some proper user testing.

1.3.2 Hardware and Software Constraints:

• The software identifying the animals and determining their sex is a heavy
program running on a heavy language that takes a lot of electricity and
processing power.
• The previous system was written in Python, so we need to continue using

this language to improve the algorithm.
• Since the image processing algorithm requires quite powerful hardware, it

will be limited to only run on a dedicated server.
• Since the system will be utilized in fieldwork, the hardware needs to be

lightweight and easily portable.
• The light outside needs to be bright enough for a mobile camera to take a

good quality picture.
• Poorly taken photos where there are particles between the camera and the

animal, the animal is not straightened or the picture was taken with flash
enabled will inhibit the matchmaking.

1.3.3 Legal Constraints:

• If a user can store any personal information that operation must apply to
General Data Protection Regulation (GDPR)[4].

Scope

2.1 Subject Area

The salamander species that NINA are researching are the northern crested newt
and the smooth newt. The northern crested newt is red listed[5], and the smooth
newt while not red listed has decreased in population[2]. It is therefore crucial
to monitor changes in the population. By monitoring the number of individu-
als, one can get a good indicator on whether the active measures in place to aid
in increasing the population is working. In order to estimate the population the
capture-mark-recapture method is used. We can look at the ratio between the in-
dividuals that have been caught previously and the ones that have not. By using
the Lincoln-Peterson method[6] we can then estimate the population.

• item N is the total number of salamanders in the population.
• N is the total number of salamanders in the population.
• n is the number of salamanders that were marked on the first visit.
• k is the number of recaptured salamanders that were marked.

N
n
=

K
k

(2.1)

If we rearrange, we see that we can estimate the total population N̂ using the
following equation:

N̂ =
Kn
k

(2.2)

2.2 Task Description

Salamanders have a uniquely identifiable pattern located on their abdomen, which
makes it possible to recognize each individual, similar to a human fingerprint.
Currently, the Norwegian Institute for Nature Research (NINA), uses a Passive In-
tegrated Transponder (PIT) placed under the skin, to identify individual salaman-
ders that exist in Norway. This tagging method requires an invasive procedure, in
addition to being expensive. Since the abdominal pattern is unique, it is possible
to use it for identification instead. Our two species of salamander are red-listed,

4

Chapter 2: Scope 5

which makes it important to be able to monitor their population robustly and eas-
ily.

In the spring of 2019, a bachelor thesis was completed at NTNU, where a tool
for the recognition of salamanders based on their abdominal pattern was devel-
oped[3]. The tool is based on machine learning, pattern recognition, and is written
in Python. The tool was tested on a small data set and looks promising for the re-
searchers at NINA. At this point, the tool is only usable through the command line,
which is not an optimal solution with user experience in mind. It should also sup-
port the RAW image format. Additionally, the current matching algorithm should
be improved as it is not robust. The ability to classify the salamanders based on
sex and species is also wanted. Despite these weaknesses, the tool has gotten both
national and international attention from researchers who wish for a tool to aid
in fieldwork. Therefore, NINA wishes for a continuation of development for the
tool, so it can be usable in the field. This project will result in software that can
be used by the researchers at NINA.

The project consists of creating a graphical user interface (GUI), optimize usage
of RAW pictures, a faster and better way to match salamanders, and classification
of the salamander’s sex and species.

2.3 Delimitation

In this thesis, we will only be focusing on making a system for NINA and not for an
international user base. The software will be deployed on a server stationed locally
at NINA, and will not be running in a cloud service e.g. AWS or Azure. We will not
implement measures to detect if a taken image is an image of a salamander. The
program will not be able to work with pictures of poor quality. The react native
framework’s minimum requirements are iOS 10.0 or Android 4.1 (API 16)[7].
However, we have decided that our application should require iOS 14.0 on an iOS
device, and Android 8.0 Oreo on an android device. Lastly, due to our decision to
use pictures taken with mobile cameras, we will only focus on using PNG and
JPG/JPEG image formats.

Project Organization

3.1 Responsibilities and Roles

Figure 3.1 shows an overview of our team structure and group responsibilities.

Figure 3.1: The map shows the different roles in the bachelor project.

3.2 Rules and Routines

• Herman A. Dyrkorn is the group leader.
• Decisions are done in a democratic way where the majority wins.
• The group leader has the ability to decide the outcome of a tied group vote,

meaning that Herman A. Dyrkorn has two(2) votes in a tied vote.
• Each member has to work roughly 30 hours a week at least (this corresponds

to the expected workload for a 20 study points course).
• We expect that all members show up to scheduled meetings and arrange-

ments, unless it is notified beforehand.
• If a member refuses to work, he/she will first get a written warning. If this

does not better the situation, we will try to get external help from the de-
partment. In an extreme case, the member can be removed from the group.
• Everyone has to show respect towards one another.
• Communication between members needs to be open and clear. This means

that if there is a problem that prevents a given task from being completed,
then every group member needs at the very least to be informed.
• We all have agreed to work towards a top grade, A, B or C.

6

Planning, Followup and Reporting

4.1 Development Process

4.1.1 Characteristics of Project

This project is a continuation of a previous bachelor’s project from 2019[3]. We
will have to incorporate the code from the previous bachelor, as well as improv-
ing and adding new functionality to it in this project. The system will consist of
independent components: The image recognition Algorithm, a web server API,
and a mobile app connected to the server. These components can be developed
independently in our team of four people.

Considering the project deadline is the 20th of May, including thesis writing, the
system needs to be developed in a short amount of time. The requirements from
NINA are also quite ambiguous, especially in regards to design. This means that
we will have to refine the requirements during the development process.

One of the most important tasks in this project is to develop a graphical user inter-
face (GUI), so that the algorithm can be used by the scientists at NINA. They are
not software developers and some of the scientists may lack technical experience
in regards to computer science. Therefore we need to establish a close collabora-
tion between NINA and us, especially in regards to design and functionality.

The members of our group do not have that much experience when it comes to a
project of this scale. This makes it hard to plan the entire project before it starts
and also hard to estimate the time needed to implement each task. However, if
the final system lacks minor features, it can still be useful for the researchers at
NINA.

All of these characteristics will need to be taken into consideration when choosing
a software our development model.

4.1.2 Software Development Model

Based on the characteristics in Section 4.1.1, we have concluded that we need
an agile software development model (SDM)[8]. Relevant SDM’s includes Kan-

7

Chapter 4: Planning, Followup and Reporting 8

ban and Scrum. Both models have advantages and disadvantages in regards to a
bachelor’s project setting.

Kanban is an agile SDM where you visualize the whole project by dividing the
project work into smaller tasks and placing them on a Kanban board[9]. The de-
velopers are free to choose tasks from the board and there are no specific roles in
the developer team. This leads to Kanban being highly flexible[10]. Such flexibil-
ity could be an advantage for our group, considering the loose boundaries in the
project description. On the other hand, this flexibility can lead to hard or boring
tasks getting ignored, if none of the group members takes the responsibility to do
it[11]. Besides, it might be more difficult for the group members to follow up on
each other’s contribution and workflow, if there are no set deadlines and planned
meetings[12].

Scrum is an agile SDM that is based on incremental development, where the en-
tire project is divided into sprints with set deadlines[13]. Each sprint will usually
have a set length between two to four weeks. Roles, meetings, and other tools aids
this methodology in achieving structure and managing workload. Having proper
structure and good routines could be especially helpful for us in our team, as we
are quite inexperienced with projects of this scale. An important factor for us is
that Scrum is suitable for smaller teams[13]. By utilizing daily Scrum, all mem-
bers of the group will have a good overview of what everyone is doing. On the
other hand, we are currently living in a pandemic, which means that we are not
able to have physical meetings with our supervisor and product owner (PO). This
can hinder the full potential of having sprint planning meetings, sprint review
meetings, and sprint retrospective meetings. Although fixed meetings contribute
to maintaining structure, there may be occasions where they are not necessary. As
a consequence, time may be wasted.

After looking at both of these models, we have concluded that Scrum is a fitting
SDM for this project, as it can help our group maintaining proper structure. We
also want to incorporate some features from Kanban, like the kanban-board, for
keeping track of the project backlog and sprint backlog. If necessary, we will bring
in pair programming from eXtreme Programming[14]. Lastly, we concluded that
the inability to have physical meetings with our supervisor and the PO, does not
significantly harm this project, as online meetings will be adequate.

4.1.3 Usage of Software Development Model

Andrea Magnussen will be the scrum master on our team. The PO is Børre Dervo,
as he is the contact person from NINA. We have decided on sprint lengths of two
weeks per sprint, as the project timeline is quite short. By splitting each sprint into
two weeks, we will at least be able to finish four sprints during the project period.
By having short sprints, it will keep our PO frequently updated on the development

Chapter 4: Planning, Followup and Reporting 9

of the system. The sprints will start with a sprint planning meeting on the first
Monday, and end on the second Friday with a sprint review and retrospective
meeting. The PO will be included in the sprint review meeting. Every day, there
will be a daily scrum. It will be timed and it will last 15 minutes, where each team
member updates each other on what they have worked on. The scrum master will
time the meeting. The entire product backlog will be tracked using Trello as a
Kanban board. We will have one board containing to process of all the tasks in the
entire backlog and one board for each sprint.

4.2 Plan for Meetings and Decision Points

By the end of April, we need to be finished with a product that satisfies NINA’s
needs. The final deadline for the entire project, software and thesis, is the 20Th
of May. The meeting with Børre Dervo before every sprint will be used for mak-
ing user stories and get a picture of what needs to be made during the upcoming
sprint. Meetings with Marius Pedersen on Tuesdays will be used to get guidance
in progressing the product development, and also for asking questions about tech-
nologies, workflow, and report writing. See Table 4.1 for an overview of what a
sprint looks like.

Table 4.1: Sprint structure

Week Mon Tue Wed Thu Fri

1 Sprint plan
Daily scrum
Meeting Daily scrum Daily scrum Daily scrum

2 Daily scrum
Daily scrum
Meeting Daily scrum Daily scrum

Daily scrum
Sprint retro
Sprint review

Quality Assurance

5.1 Documentation and Source Code

5.1.1 Documentation

After completing our bachelor’s, there exists a possibility that someone will have
to re-visit our code. It is therefore important that we document the functionality
of the system, as well as our process a long the way. For code documentation, we
will mostly use commits is GitLab. Therefore, it is imperative that each member
commits regularly with satisfactory commit messages. All meetings will be docu-
mented by writing a small report that explains what the meeting was about, its
participants, and the duration of the meeting. Finally we will create a manual for
deploying and using the server, as well as a manual for use of the mobile applica-
tion.

5.1.2 Source Code

All source code needs to follow code standards for their respective language. For
python we will be using PEP 8 code standard[15]. By following these standards,
it will make it easier for others to read the code. All written code should have
sufficient commenting, so other members in the group can read and understand
it, as well as for documentation purposes. It is required that all functions have a
comment explaining what the function does.

5.2 Configuration Management

Standard Tools

• Overleaf will be used for document writing in the bachelor’s thesis. This
includes the project plan and the main thesis.
• Trello will be used as a Kanban board for visualizing the product backlog.

The board will also work as an issue tracker, where we can keep track of the
status of each task.
• We will be using GitLab for version control. There will be a total of three

separate GitLab projects. One for the API, one for the mobile application,

10

Chapter 5: Quality Assurance 11

and one for the salamander matching algorithm.
• We will be using Clockify for logging hours. This will give us a good indica-

tion if we have worked enough or not. This will also give us an overview of
what we are spending our time on.
• For the salamander matching algorithm we will be using Python. Python

will also be used to create the REST API, with the Flask library. The IDE for
Python development will be PyCharm.
• React Native will be used to develop the mobile application. The IDE for

developing the mobile app will be Visual Studio Code, with appropriate
addons and extensions.
• We will be using APIDOC for documenting the REST API.
• For the AI we will use OpenCV, Tensorflow and Deeplabcut because that is

what the previous group used in their program. We might have to use other
libraries as well.
• Grammarly will aid us in our writing, and ensure the written report reads

well.

Figure 5.1 visualizes how all the tools will be working together in our development
environment.

Figure 5.1: An overview of the different tools we will utilize in the project.

Chapter 5: Quality Assurance 12

5.3 Risk Analysis

Table 5.1 shows the different degrees of likelihood and consequence for all risks.
In Table 5.2 we have described eight risks, and given them a degree of likelihood
and consequence. In Table 5.3, we have made a prioritization of the risks, and
also come up with a mitigation that will lower the risk.

Table 5.1: Risk standardization

Likelihood/
Consequence Minimal Minor Moderate Significant Critical

highly likely 5 10 15 20 25
likely 4 8 12 16 20

probable 3 6 9 12 15
unlikely 2 4 6 8 10

highly unlikely 1 2 3 4 5

Table 5.2: Risks

Risk Description
Likelihood/
Consequence

1 We will not be able to do any physical user testing
due to covid-19.

Likely/
Significant

2 The system performs badly and has a lot of bugs
Probable/
Significant

3 Overestimating our capabilities in terms of
project size, tools or complexity

Likely/
Moderate

4 NINA does not provide any images for the project
Unlikely/
Critical

5 We are not able to get the AI to work.
Unlikely/
Critical

6 One of the group members catches Covid-19
Probable/
Moderate

7 Group member gets critically sick or injured and
will not be able to contribute to the project

Unlikely/
Significant

8 Loss of important data
Unlikely/
Significant

9 Someone beats us to market with a better solution
Highly unlikely/
Minor

Chapter 5: Quality Assurance 13

Table 5.3: Mitigation

Priority Risk Mitigation
High 1 In case of travel restrictions or other problems stopping us

from conducting physical user testing, we can make the
testing phase digital. This can allow us to observe the user
without being physically present.

High 2 We need to cover all important functions with sufficient
unit testing. We should include NINA in the testing phase,
to ensure that the product performs as anticipated.

High 3 We need to uphold deadlines to the best of our ability, and
hold frequent meetings.

High 4 We need to set requirements for NINA, as well as
maintaining good communication and frequent meetings.

High 5 Allocate and prioritize enough workload and members
towards the AI development.

Medium 6 If a member catches covid-19, the member needs to work
from home as long as the member is in good physical
shape.

Medium 7 Hard to mitigate this risk. Good documentation and daily
scrum will aid the others in stepping in for the member
affected.

Medium 8 Backups and online storage of files and project, with
systems like git and overleaf.

Low 9 Hard to mitigate, but very unlikely. We also have a signed
contract with NINA.

Development Plan

6.1 GANTT - Diagram

Figure 6.1: Gantt diagram.

In Figure 6.1, the upper gray bar represents the whole project period. During
this time we will be developing our software solution, and also writing our re-
port. During the last milestone we will be focusing more on thesis writing than
software development. The reason we have chosen to not extend this last period
(particularly the green bar) is to emphasize the increase in the work on writing
over development. By the 3rd of May, we will be completely finished with devel-
opment and only focus on finalizing the written report.

14

Chapter 6: Development Plan 15

6.2 Milestones, Decision Points and Activities

6.2.1 Milestones

1. 31/1: Finish project plan, product backlog, and project agreement.
2. 12/2: Finish sprint 1.
3. 26/2: Finish sprint 2.
4. 12/3: Finish sprint 3.
5. 26/3: Finish sprint 4.
6. 29/3: Easter break.
7. 14/4: Completed user testing in the field.
8. 3/5: Finished with developing the system.
9. 20/5: Bachelor delivered in Inspera.

10. June: Bachelor presentation.

6.2.2 Decision points

The beginning and end of each sprint are the most significant decision points
throughout the project. If we progress faster than planned, we will have to add
more tasks to the current sprint backlog. On the other hand, if we do not manage
to complete all tasks in the current sprint backlog, we will have to prioritize and
choose tasks from the sprint backlog and include them in the next one. Also, the
tasks themselves, and their priority might be changed depending on new require-
ments and problems that might occur.

6.2.3 Activities

There will be three crash courses during the bachelor�s project period. All group
members are obligated to join these.

During sprint planning meeting, we will use planning poker to estimate how much
time each task will take. This will give us a good indication on what to include in
the sprint backlog.

To boost motivation and team morale, we have decided that the team should do
something unrelated to work together, at least once a month. This can include
activities like bowling, field trips etc.

Bibliography

[1] Nina - the norwegian institute of nature research. [Online]. Available: https:
//www.nina.no/english/Home (visited on 01/15/2021).

[2] B. K. Dervo, Salamander. [Online]. Available: https://www.nina.no/
salamander (visited on 01/15/2021).

[3] J. Bakløkken, F. Schoeler, and H. Nørholm, Automated salamander recogni-
tion using deep neural networks and feature extraction, May 2019. [Online].
Available: https://ntnuopen.ntnu.no/ntnu- xmlui/handle/11250/
2617897 (visited on 01/15/2021).

[4] Lov om behandling av personopplysninger (personopplysningsloven), 2018.
[Online]. Available: https://lovdata.no/dokument/NL/lov/2018-06-
15-38 (visited on 01/15/2021).

[5] Artsdatabanken, Norsk rødliste for arter, Mar. 2020. [Online]. Available:
https://artsdatabanken.no/Rodliste (visited on 11/24/2021).

[6] Wikipedia contributors, Lincoln index — Wikipedia, the free encyclopedia,
[Online; accessed 26-January-2021], Nov. 2020. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Lincoln_index&oldid=
991124768 (visited on 01/26/2020).

[7] NPM, React-native - npm, Nov. 2020. [Online]. Available: https://www.
npmjs.com/package/react-native (visited on 01/26/2021).

[8] W. contributors, Agile software development — Wikipedia, the free encyclope-
dia, Jan. 2021. [Online]. Available: https://en.wikipedia.org/w/index.
php?title=Agile_software_development&oldid=999545034 (visited on
01/26/2021).

[9] Wikipedia contributors, Kanban (development) — Wikipedia, the free ency-
clopedia, Jan. 2021. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Kanban_(development)&oldid=1002634912 (visited on
01/26/2021).

[10] M. REHKOPF, Kanban vs. scrum: Which agile are you? [Online]. Available:
https://www.atlassian.com/agile/kanban/kanban-vs-scrum (visited
on 01/26/2021).

[11] M. Gorman, Scrum vs kanban: Weighing their pros and cons. [Online]. Avail-
able: https://www.kovair.com/blog/scrum-vs-kanban-pros-and-
cons/ (visited on 01/26/2021).

16

Bibliography 17

[12] T. Hristovski, Agile methodologies: Kanban vs scrum – advantages and disad-
vantages, Dec. 2017. [Online]. Available: https://iwconnect.com/agile-
methodologies-scrum-vs-kanban-advantages-disadvantages/ (visited
on 01/26/2021).

[13] Wikipedia contributors, Scrum (software development) — Wikipedia, the free
encyclopedia, Jan. 2021. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=Scrum_(software_development)&oldid=999915311
(visited on 01/26/2021).

[14] L. C. Team, What is extreme programming? an overview of xp rules and val-
ues. [Online]. Available: https://www.lucidchart.com/blog/what-is-
extreme-programming (visited on 01/26/2021).

[15] G. van Rossum, B. Warsaw, and N. Coghlan, Pep 8 – style guide for python
code, Aug. 2013. [Online]. Available: https://www.python.org/dev/
peps/pep-0008/ (visited on 01/26/2021).

142

Chapter F: Detailed Work Allocation 143

Appendix F

Detailed Work Allocation

Appendix G

Prototypes

G.1 Simple Prototype

Map

+

Home Camera Profile Home Camera Profile

Register Location

Location name

Radius (meter)

Cancel Confirm

Profile

Camera

Information

Species

Sex

Cancel

Confirm

Take
picture

OK

Hit / Miss

Email

Password

Delete User

Language

Username

Home Camera Profile

Camera

Upload
Image

Take
Picture

Location

Preview Confirm

Confirm

144

Chapter G: Prototypes 145

G.2 Adobe XD Prototype

The digital interactive prototype can be found at https://xd.adobe.com/view/
f0b5d44c-1b8f-41e4-ba80-79c6c41d332d-a5e6/.

https://xd.adobe.com/view/f0b5d44c-1b8f-41e4-ba80-79c6c41d332d-a5e6/
https://xd.adobe.com/view/f0b5d44c-1b8f-41e4-ba80-79c6c41d332d-a5e6/

Appendix H

Final Graphical User Interface

146

Chapter H: Final Graphical User Interface 147

Chapter H: Final Graphical User Interface 148

Appendix I

Testing

I.1 User Test Guide

149

Usability Testing Guide

Scope Testing the salamander application. This test will cover the usability and first
impression of the application.

Purpose Questions:
• Can the user easily register a user?
• Can the user add a new location without problems?
• Is it easy to find the upload image/take picture buttons?
• Is the user able to navigate the application with ease?
• Is the user experiencing any annoyances during periods of waiting?
• Does the interface feel natural/intuitive?
• Does the user feel unnecessarily hindered by security checks?
• Does the user understand the feedback?
• Can the admin accept pending users easily?

Goals:
• Get feedback from the user for development iteration.
• Understanding how the user interacts with the app.
• To find major flaws with the user interface.
• Discover potential overlooked bugs or flaws of any level of concern.
• Uncover security flaws of any level of concern.

Schedule &
Location

Various

Sessions Maximum 1 hour per participant

Equipment Android/iOS phone

Participants Researchers at NINA, regular users

Scenarios • Register User
• Log In
• Add Location
• Edit Location
• Take Picture
• Match Salamander
• Edit Personal Data
• Log Out
• Delete User
• Manage Users
• Manage Salamanders

Metrics Qualitative survey after testing

Quantitative
metrics

Time on task, successful completion rates

Roles Researcher, Non-researcher

Chapter I: Testing 151

I.2 Usability Tests

User Tests

Test: 1

Role Non-Researcher

Place (city) Molde

Date 17.04.2021

Age 55

Name Register User

Successful Task
Completion

Critical errors None

Non-critical errors • small text (phone setting had small text)
• Server wasn’t running and therefore the user couldn’t register. User

didn’t understand what to do when the server wasn’t running.

Time On Task 4 minutes including server restart.

Name Log in

Successful Task
Completion

Critical errors None

Non-critical errors Email input was cap sensitive, and the user didn’t know how to change cap
size to lower case.

Time On Task 2 minutes

Name Add location

Successful Task
Completion

Critical errors None

Non-critical errors Tapped on the map instead of holding the finger on the map. Should have
been given a toast/hint asking if the user would want to add a location.

Navigated to several screens before receiving a hint.

Time On Task 02 minute and 18 seconds

Name Edit Location

Successful Task
Completion

Critical errors None

Non-critical errors None

Time On Task 15 seconds

Name Take Picture

Successful Task
Completion

Critical errors None

Non-critical errors User pressed “confirm” because they thought the app asked if they really
wanted to use that image. Being left with a buffering screen without any
feedback was confusing. Should have said “straighten image” rather than
“confirm”

Time On Task 8 seconds

Name Match Salamander

Successful Task
Completion

Critical errors None

Non-critical errors User was confused with the toast message. When registering a salamander
“No match” could be misunderstood, because to register a new one. This
confusion could have been because the task was to “Match a salamander”
rather than “Register salamander”.

The toast color was orange and the user thought that something wrong had
happened.

Time On Task 1 minute

Name Edit Personal Data

Successful Task
Completion

Critical errors None

Non-critical errors None

Time On Task 10 seconds

Name Log Out

Successful Task
Completion

Critical errors None

Non-critical errors There should be a confirmation that you really want to log out.

Time On Task 3 seconds

Name Manage Users / Pending Users

Successful Task
Completion

Critical errors Why can’t you delete other users.

Non-critical errors Hard to see accept/decline icons. Could have been text rather than icons.
Both icons were light orange, but they could have been different colors
(green/red)

Manage Users were confusing because there were no users in the system.
There could have been a text that states that there are no users.

Annoying to write your password each time. Unnecessary when you have a
session/token.

confusing that there were 3 radial buttons for changing the user permission
and then “reset password” was just a yellow button.

Time On Task 1 min / 1 min

Name Manage Salamanders

Successful Task
Completion

Critical errors None

Non-critical errors It was confusing when a salamander was moved because the user didn’t
understand that a salamander was registered. The fact that the system
started matching was confusing. There should have been a clearer
message rather than “salamander moved”.

Time On Task 1 min

Name Delete User

Successful Task
Completion

Critical errors None

Non-critical errors Because the user was admin it was confusing to understand who you were
deleting.

Time On Task 30

Test: 2

Role Non-Researcher

Place (city) Molde

Date 17.04.2021

Age 57

Name Register User

Successful Task
Completion

Critical errors None

Non-critical errors None

Time On Task 1 minute and 38 seconds

Name Log in

Successful Task
Completion

Critical errors None

Non-critical errors None

Time On Task 1 second

Name Add location

Successful Task
Completion

Critical errors None

Non-critical errors The was not able to add a location without explanation because the user
experience is not self explanatory. There should be some form of instruction
on how to add a location.
The rest was okay.

Time On Task 1 minute and 49 seconds

Name Edit Location

Successful Task
Completion

Critical errors

Non-critical errors None

Time On Task 10 seconds

Name Take Picture

Successful Task
Completion

Critical errors The user thought the “Confirm” button was meant to confirm that the image
was the one they wanted to keep. They didn’t know that it started the
straightening process.

Non-critical errors None

Time On Task

Name Match Salamander

Successful Task
Completion

Critical errors None

Non-critical errors “No match” message confused the user. They thought it meant that the
image they sent in didn’t match a male, northern crested newt. Doesn’t
explain what no match means.

Time On Task 20 seconds

Name Edit Personal Data

Successful Task
Completion

Critical errors None

Non-critical errors None

Time On Task 10 seconds

Name Log Out

Successful Task
Completion

Critical errors None

Non-critical errors None

Time On Task 5 seconds

Name Manage Users

Successful Task
Completion

Critical errors None

Non-critical errors Annoyed that they have to enter their password again.

Time On Task 20 seconds

Name Manage Salamanders

Successful Task
Completion

Critical errors None

Non-critical errors Annoyed that they have to enter their password again.

Time On Task 20 seconds

Name Delete User

Successful Task
Completion

Critical errors None

Non-critical errors Annoyed that they have to enter their password again.

Time On Task 10 seconds

Test: 3

Role Non-Researcher

Place (city) Oslo

Date 18.04.2021

Age 23

Name Register User

Successful Task
Completion

Managed to create a user.

Critical errors None

Non-critical errors Tried to create a user in login.

Time On Task 1 min, 14 sec

Name Log in

Successful Task
Completion

Success

Critical errors none

Non-critical errors none

Time On Task 3 sec

Name Add location

Successful Task
Completion

Understood long press.

Critical errors None

Non-critical errors Took some time after double press to press it again.

Time On Task 40 sec

Name Edit Location

Successful Task
Completion

Success

Critical errors Changed the location name to: :-). This could be an critical error

Non-critical errors None

Time On Task 23

Name Take Picture

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 6 sec

Name Match Salamander

Successful Task
Completion

Success, no match on first salamander. Second salamander was a match.

Critical errors None

Non-critical errors None

Time On Task 58 sec

Name Edit Personal Data

Successful Task
Completion

Success. The helper text helped during the test.

Critical errors None

Non-critical errors Struggled to get the passwords matching.

Time On Task 2 min, 30 sec

Name Log Out

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 1 sec

Name Manage Users

Successful Task
Completion

Success at accepting users. Made uses administrators.

Critical errors None

Non-critical errors None

Time On Task 1 min

Name Manage Salamanders

Successful Task
Completion

Edited weight and length of the salamander.
Indication that there are more images.

Critical errors None

Non-critical errors None

Time On Task 1 min, 16 sec

Name Delete User

Successful Task
Completion

Success, but the tester was an admin so the user could not be deleted.

Critical errors None

Non-critical errors None

Time On Task 14 sec

Test: 4

Role Non-Researcher

Place (city) Oslo

Date 18.04.2021

Age 55

Name Register User

Successful Task
Completion

Success after some failed attempts in login

Critical errors None

Non-critical errors Tried to register a user on the login screen. Found the “dont have a user”
after a little while.

Time On Task 2 min, 37 sec

Name Log in

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 8 sec

Name Add location

Successful Task
Completion

Success

Critical errors None

Non-critical errors Used some time after long press to press the location again.

Time On Task 1 min, 51 sec

Name Edit Location

Successful Task
Completion

Success, chose to delete the location.

Critical errors None

Non-critical errors None

Time On Task 20 sec

Name Take Picture

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 12 sec

Name Match Salamander

Successful Task
Completion

Found camera storage and chose a salamander.

Critical errors None

Non-critical errors Did not select location, let the dropdown stay open. Therefore could not
confirm.

Time On Task 5 min, 30 sec

Name Edit Personal Data

Successful Task
Completion

Changed name, email and password

Critical errors None

Non-critical errors Struggled first attempt to verify password.

Time On Task 2 min

Name Log Out

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 4 sec

Name Manage Users

Successful Task
Completion

Success, managed to accept 2 new users.

Critical errors None

Non-critical errors None

Time On Task 1 min, 51 sec

Name Manage Salamanders

Successful Task
Completion

Success after some time.

Critical errors Choose to upload an salamander image instead of managing it.

Non-critical errors Zoomed in on the salamander image to make it bigger. Maybe thought that
this was about managing it.

Time On Task 4 min, 40 sec

Name Delete User

Successful Task
Completion

Success after clicking through pending and managing.

Critical errors None

Non-critical errors None

Time On Task 1 min, 14 sec

Test: 5

Role Non-Researcher

Place (city) Oslo

Date 18.04.2021

Age 59

Name Register User

Successful Task
Completion

Found dont have a user in the beginning. Success

Critical errors None

Non-critical errors None

Time On Task 50 seconds

Name Log in

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 35 seconds

Name Add location

Successful Task
Completion

Success

Critical errors None

Non-critical errors Started navigating the app. Struggled pressing the location after long press

Time On Task 2 min, 2 seconds

Name Edit Location

Successful Task
Completion

success

Critical errors None

Non-critical errors None

Time On Task 28 seconds

Name Take Picture

Successful Task
Completion

Success.

Critical errors None

Non-critical errors None

Time On Task 6 seconds

Name Match Salamander

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 1 min, 10 seconds

Name Edit Personal Data

Successful Task
Completion

Success, changed name and password.

Critical errors None

Non-critical errors Wrong password on verify.

Time On Task 1 min, 54 seconds

Name Log Out

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 1 seconds

Name Manage Users

Successful Task
Completion

Found pending users after 2 min. Success.

Critical errors None

Non-critical errors Went into managing users instead of pending users.

Time On Task 2 min, 20 seconds

Name Manage Salamanders

Successful Task
Completion

Annoying that edit fields are under the keyboard.

Critical errors None

Non-critical errors None

Time On Task 1 min, 33 sec

Name Delete User

Successful Task
Completion

Success after entering manages users first.

Critical errors None

Non-critical errors None

Time On Task 1 min, 53 seconds

Test: 6

Role Non-Researcher

Place (city) Gjøvik

Date 20.04.2021

Age 30

Name Register User

Successful Task
Completion

Success, used some time to match passwords

Critical errors None

Non-critical errors Wanted email fields to auto lower case

Time On Task 1:32 seconds

Name Log in

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 10 seconds

Name Add location

Successful Task
Completion

Success

Critical errors None

Non-critical errors • Hard to add locationsLitt vanskelig å vite at man skal trykke på
lokasjonen,

• Æøå is missing
• Wants to be able to use special characters

Time On Task 2:18 seconds

Name Edit Location

Successful Task
Completion

Critical errors None

Non-critical errors None

Time On Task 45 seconds

Name Take Picture

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 55 seconds

Name Match Salamander

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 30 seconds

Name Edit Personal Data

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 1:10 seconds

Name Log Out

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 1 seconds

Name Manage Users

Successful Task
Completion

Success

Critical errors None

Non-critical errors • Had somewhat of a hard time to understand pending users

Time On Task 30 seconds

Name Manage Salamanders

Successful Task
Completion

Success

Critical errors None

Non-critical errors • It was hard to go out of the image modal, was not able to use the
android back button

• Wanted to og back to profile screen when using back button on
android, while in manage salamanders. It went back to the
password verification screen.

• Comment: Use ‘choose observation’ instead of ‘choose image’.

Time On Task 5:30 seconds

Name Delete User

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 30 seconds

Test: 7

Role Researcher

Place (city) Gjøvik

Date 20.04.2021

Age 62

Name Register User

Successful Task
Completion

Success after trying to create user in login.

Critical errors None

Non-critical errors Tries to create user in sign in screen

Time On Task 2 min, 32 seconds

Name Log in

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 26 seconds

Name Add location

Successful Task
Completion

Found double press and pressed it again fast. Success.

Critical errors None

Non-critical errors None

Time On Task 1 minute

Name Edit Location

Successful Task
Completion

Success.

Critical errors None

Non-critical errors None

Time On Task 19 seconds

Name Take Picture

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 22 seconds

Name Match Salamander

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 2 min, 21 seconds

Name Edit Personal Data

Successful Task
Completion

Changes name and email.

Critical errors None

Non-critical errors Was unsure why he had to verify the password/confused. Understood it
after 4 minutes.

Time On Task 4 min, 18 seconds

Name Log Out

Successful Task
Completion

Success.

Critical errors None

Non-critical errors None

Time On Task 4 seconds

Name Manage Users

Successful Task
Completion

Choose to make a user administrator and reset users password.

Critical errors None

Non-critical errors None

Time On Task 2 min, 38 seconds

Name Manage Salamanders

Successful Task
Completion

Success after some struggle

Critical errors None

Non-critical errors Clicked done after a location was chosen.
Did not see that you can click on the images.
Not intuitive that it was more salamanders in one id.
Unsure how to navigate after the app died to start up the task again.

Time On Task 5 min, 36 seconds

Name Delete User

Successful Task
Completion

Success after struggling and navigating wrong.

Critical errors None

Non-critical errors Went into managing users and then pending users. Entered a lot of wrong
passwords in all password verifiers. Had to get help to find the delete
account button.

Time On Task 4 min, 1 seconds

Test: 8

Role Non-Researcher

Place (city) Oslo

Date 25.04.2021

Age 27

Name Register User

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 50 seconds

Name Log in

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 9 seconds

Name Add location

Successful Task
Completion

Success, after som time

Critical errors None

Non-critical errors Did not see the add button clearly

Time On Task 47 seconds

Name Edit Location

Successful Task
Completion

Success

Critical errors None

Non-critical errors Did not see the add button clearly

Time On Task 30 seconds

Name Take Picture

Successful Task
Completion

Was able to upload, but not take picture

Critical errors Fikk no access selv om han ga access

Non-critical errors Litt for kort knappe size

Time On Task 1, 30 seconds

Name Match Salamander

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 20 seconds

Name Edit Personal Data

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 50 seconds

Name Log Out

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 1 second

Name Manage Users

Successful Task
Completion

Success

Critical errors None

Non-critical errors • Should have an added confirmation on deny access on pending
users

• Should notify that a user was moved from manage to pending

Time On Task 1,25 seconds

Name Manage Salamanders

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 1,30 seconds

Name Delete User

Successful Task
Completion

Success

Critical errors None

Non-critical errors None

Time On Task 13 sek

Chapter I: Testing 176

I.3 Google Form Answers

Chapter I: Testing 177

Chapter I: Testing 178

Chapter I: Testing 179

I.4 Field Test Guide

Field Test Guide

Scope Testing the salamander application during fieldwork. The aim is to observe how
the researchers use the application while working.

Purpose Questions:
• How do the researchers interact with the application during field work?
• Does lighting have any impact on taking pictures/matching?
• How does the outside environment affect the application?
• Is the user experiencing any annoyances during periods of

waiting/bottlenecks in workflow?
• Does the user understand the feedback?
• How is the mobile cellular coverage affecting the application?
• How is the mobile’s battery life affected?
• How is the workflow if there are several users at the same time?

Goals:
• Get feedback from the user for development iteration.
• Understanding how the user interacts with the app.
• To find major flaws with the user interface.
• Discover potential overlooked bugs or flaws of any level of concern.
• Uncover security flaws of any level of concern.
• Observe how the application is utilized in field work.
• Discover potential bottlenecks in workflow.
• Observe how climate and environment affects the application.

Schedule &
Location

Lier, Norway

Sessions No time limit

Equipment Android phone

Participants Researchers at NINA

Scenarios • Log In
• Add Location
• Take Picture
• Match Salamander
• Manage Salamanders

Quantitative
metrics

Number of successfully processed images vs not successful.
Battery life.
Number of critical mistakes.

Roles Researcher

Chapter I: Testing 181

I.5 Pictures From the Field Test

(a) Manual registration. (b) Notes. (c) Salamander.

Figure I.1: Images from the field test.

(a) Salamander being weighed.

(b) Field work.

Figure I.2: Images from the field test.

Appendix J

Burndowncharts

S
to

ry
 P

oi
nt

Day

-50

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13

Estimated Burndown Actual Burndown

Burndown Chart

Figure J.1: Sprint burndown chart sprint 1

S
to

ry
 P

oi
nt

Day

-50

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13

Estimated Burndown Actual Burndown

Burndown Chart

Figure J.2: Sprint burndown chart sprint 2

182

Appendix K

Regular Expressions

Regular expressions used in the mobile application for input validation.
Email regex:

1 ^[Æ Åæøåa-zA-Z0-9_.+-]+@[Æ Åæøåa-zA-Z0-9-]+\.[Æ Åæøåa-zA-Z0-9-.]+$

Password regex:

1 /^(?=.*\d)(?=.*[a-zA-ZÆ Åæøå]).{9,}$

Measurement regex:

1 ^(\d+(?:[\.\,]\d{1,2})?)$

Integer regex:

1 ^[0-9]*[1-9][0-9]*$

Location name regex:

1 ^[Æ Åæøå\w\-]+$

183

Appendix L

Meeting Logs

L.1 1st meeting

Date: 12.01.2021
Participants: Bachelor group and Marius Pedersen
Agenda: First meeting with supervisor
Place: Gjøvik, Norway
Duration: 11:00 - 12:00

L.2 2nd meeting

Date: 15.01.2021
Participants: Bachelor group and Børre Dervo
Agenda: First meeting with contact person
Place: Gjøvik, Norway
Duration: 10:00 - 11:30

L.3 3rd meeting

Preparation:

• How do we write proper paragraphs? (indentation vs. empty line)
• Where do we find the proper template for the front page?
• How do we measure effect goals?

Date: 19.01.2021
Participants: Bachelor group and Marius Pedersen.
Agenda: Project plan guidance
Place: Gjøvik, Norway
Duration: 11:00 - 12:00

184

Chapter L: Meeting Logs 185

Meeting content:

• Summarize: We summarized our previous work and our meeting with Børre
Dervo.
• Raw image: questioning if raw images are necessary. The application should

not store raw images, but it should be able to receive raw images. Later in
the meeting we reconsidered this topic and concluded that it might not be
all that important after all, but the app might need to tell the user to retake
the photo.
• Tagging: We discussed about the opportunity to give each individual animal

metadata about it such as length, sex, weight, location.
• Tracking: A way to track projects? A specific project the current recording

is connected to.
• Development process: discussing how we should hold group meetings.
• BF matching: should be divided into gender and location.
• User stories: Extract the most essential features the scientists needs in the

program.
• Discussed how the process of taking these images.
• Paragraph: Both indentation and a clear line work but not at the same time.
• Front page template: Free real estate.
• Measure effect goals: Measure the amount of time the process it takes to

do it manually and guesstimate how much faster an application with our
system would make it.

L.4 4th meeting

Preparation:

• Effective goals.
• Raw images.
• How far does a salamander travel.
• How much time does it take to do the process manually.
• How should user-authentication work?
• Hardware (if they can provide a server to run at their office)
• Subject area. How they calculate population. How do they know if some

salamanders are missing.
• Lincon Peterson method?
• When should we have a finished prototype.

Date: 21.01.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place: Gjøvik, Norway
Duration: 14:00 - 15:00
Meeting content:
Effect goals

Chapter L: Meeting Logs 186

• Compared to spending approximately an hour per animal our system save
a lot of time:
• Each session/pond can take around a week depending on the population in

that pond.
• NINA looks at around 10-20 ponds a year.

A salamander:

• A salamander can live around 12 - 18 years.
• Most salamanders in the wild survives around 10 years.
• They are mature after three years and aren’t easily individually recognizable

in their youth.

Location: Børre was very positive to the idea and meant that it would be very
time saving. It would also reduce the chance of mismatching. NOTE! They some-
times bring the animals to a different place to work on. They will therefore need to
be able to manually input the proper salamander location. A salamander doesn’t
often travel further than 500 meters away from their breeding pond. User au-
thentication:

• Børre wanted a user system.
• A way to set a signature on a piece of work

Hardware: They have 2 alternatives for at the time. Google or a server they just
ordered/recieved.
Lincon Peterson method: Discussed the method of estimating population.
Deadline:

• Salamanders wake up around April.
• They end their migration around May the 10Th-15Th.

AI: We need pictures for training a model.

L.5 5th meeting

Preparation:

• Project plan.

Date: 26.01.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place: Gjøvik, Norway
Duration: 11:00 - 12:00
Meeting content:
General notes:

• footnote: include date. additional information which isn’t a reference.
• More than one reference.
• Reference to online articles with "misc".

Chapter L: Meeting Logs 187

• Include page number when using quotes from a book.

Project plan: Chapter1:

• Result goal is what we achieve when we are done.
• Effect goal are the longlasting effects that occur from the usage of a system.
• Effect goals have to be measurable.
• Raw images shouldn’t be a goal. it could be in delimitation.
• Authentication.
• Specify android and iOS versions that will be supported (probably a newer

version).

Chapter2:

• Reference. Lincon Peterson method.
• GDPR as a reference.
• GDPR as an acronym.
• Always reference to pictures in text.

Chapter3: Chapter4:

• Add sources. ’

Chapter5:

• Code standard.
• Discussed deployment.
• Add * to subsection.
• Typo, "meduim"
• Not being able to test the application could be a risk considering the situa-

tion.

Chapter6:

• What we think will be done in that specific sprint.
• We should specify that we will write continuously on the thesis.
• Date for specific draft.
• If people are to read a draft there needs to be time for them to read it and

for us to fix potential problems
• Add presentations and lectures.

L.6 6th meeting

Preparation:

• Do they have specific ponds they track? (related to DB structure discussion).
Present potential problems if we are to automatically sort salamanders by
location (fylke/kommune).
• Distance between tracked ponds. Do they separate by ponds or general lo-

cations?
• Pond registration. Would Børre be able to use such a system?

Chapter L: Meeting Logs 188

Date: 12.01.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place: Gjøvik, Norway
Duration: 10:00 - 11:00
Meeting content:
Geotagging Map system

• Very positive to the idea.
• Some ponds are very small, but it is fine as long as you know the rough

location.
• Salamanders can theoretically wander between ponds.

Wishes from Børre

• To be able to set where the group of pictures are going to be taken/ have
been taken.

Mark. programmed in R. For population calculations.

L.7 7th meeting

Preparation:

• Requirements, use case, misuse case, high-level + low-level?, security, risk
analysis.
• Introduction.
• Subdivide our development chapter (sprinter).
• Should we have color for acronym and glossary? blue vs black.
• Acronyms, full or always acronym with link.
• Ask supervisor if he can read chapters every week going forward.
• What are necessary words to use acronyms and glossary for.

Date: 02.02.2021
Participants: Bachelor group and Marius.
Agenda:
Place: Gjøvik, Norway
Duration: 11:00 - 12:00
Meeting content:
General

• Showing our sprint plan.
• Explaining the current issue concerning missing source code.

Requirements

• (high-level + low-level) Separating use cases in high and low level is good
if it helps with structure and saving time, but it is an investment. It’s not
necessary if you don’t gain on it.

Chapter L: Meeting Logs 189

• requirements are necessary to hone the development towards the end goal.
If it doesn’t do then it’s meaningless.

Sending small drafts Marius was very positive to the idea: "If you are able to do
that I’ll be very impressed". Note! this means that the report is very process based.
It won’t be product based. Which fits the task given from NINA.
Glossary, and acronym: Not so important. Don’t use too many acronyms. link to
acronym in glossary is fine. Are acronyms are always necessary by definition, but
not practically (jpg). Don’t use acronyms if it’s not used enough.
Login discussion: Marius sad: If someone else will be using this application it
should work for them as well without affecting NINAs server. Potentially future
work.

L.8 8th meeting

Preparation:

• Show simple prototype to Børre for feedback.
• Get database information.

Date: 05.02.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place: Gjøvik, Norway
Duration: 11:00-12:00
Meeting content:

Showing prototype:
Database: The server Vegard has setup might be viable. It runs most likely on
linux.
new requirements? Wants to be able to tell the system that the new images aren’t
to be added to the system, but rather just stored?

L.9 9th meeting

Date: 09.02.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: 11:00-12:00
Meeting content:
Deeplabcut: Requirements

• A lot of storage.

Discussing the current difficulties with Deeplabcut, Tensorflow and Python. Thesis

Chapter L: Meeting Logs 190

• Paper or thesis.
• We need to write about individual knowledge. Not necessarily all the sub-

jects, but everything that is deemed important. (image processing, ai, web,
application development)

L.10 10th meeting

Preparation:

• How much time do they want to wait before a request is processed.
• Ask about nina and the people who will use the app for the PACT analysis.
• Show XD prototype.

Date: 12.02.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place:
Duration: 10:00-12:00
Meeting content:
Security

• A session will last between 1-2 hours. 4-5 hours in some cases.

PACT

• They are willing to wait some (??) seconds, but not too many. They usually
have 4G. They are willing to wait a while.
• English version is OK.
• NB! han nevnte 2.
• Smooth Newt etc.
• Storing weight and length for each catch (this requires date to make sense).

each salamander will need an individual table in that case.

Prototype

• Use GPS to create new location.
• Add weight, length to DB (manually).
• Ruler shouldn’t break the AI.

‘goal

• If the app works then they might completely stop pit tagging.

L.11 11th meeting

Preparation:

• Go through Introduction Chapter and Requirements Chapter
• Show prototype
• Past, Present, Future? In regards to writing

Chapter L: Meeting Logs 191

Date: 15.02.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: 11:00 - 12:00
Meeting content:

Questions

• vector graphics is a way to draw something with math. That means that you
never lose "quality" no matter how much you zoom in on the drawing. EMS,
EPS
• how is grade given? They prepare some questions after reading the report.

they ask the after the performance.
• Should we be consistent with time? Keep it consistent in a chapter.

Impression looks good.

• First point on result and effect goal should be swapped maybe?
• why did we pick reducing pit tagging by 50
• have images of salamander to mix it up.
• always use salamander to prevent confusion.
• you didn’t HAVE to use python. It is not a constraint
• Prevent that the referance is on a different page.
• use case: log in, but not log out
• reset password should be under edit personal data
• should internet connection should be a COMMON pre condition

L.12 12th meeting

Date: 19.02.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place:
Duration: 10:00 - 11:00
Meeting content:

Database Meeting with Vegard Bakkestuen and Børre Dervo. Specs

• Graphics card Nvidia Tesla T4
• Lagring = infinite

L.13 13th meeting

Preparation: UTGÅTT

Chapter L: Meeting Logs 192

• cite when there isn’t one author.

Date: 26.02.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 12:00
Meeting content:

L.14 14th meeting

Date: 26.02.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place:
Duration: kl, 10:00 - 11:00
Meeting content:

L.15 15th meeting

Date: 30.03.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 12:00
Meeting content:
Reviewing chapter 4 Discussing why a thin client is necessary.

• Are there any cases where the date isn’t valid? In case they take a picture
and then add them to the system at a later date. Potentially manually add
dates.
• is length and weight optional? yes
• Sequential diagram may be misleading (not null)
• Having a db structure can have more advantages then just reducing the

search time
• Proved to be reliable after testing ourselves. What does that mean?

L.16 16th meeting

Date: 05.03.2021
Participants: Bachelor group and Børre Dervo.
Agenda:

Chapter L: Meeting Logs 193

Place:
Duration: kl, 10:00 - 11:00
Meeting content:

• Button to save the picture is fine as long as it’s not too hard to implement.
• Børre question: Possibility to use this app for other animals.

L.17 17th meeting

Date: 05.03.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 12:00
Meeting content:

• We discussed the possibility of extending our project. There was a though
from the product owner to expand this system to other species, but that is
something we will have to add to future work.

L.18 18th meeting

Date: 12.03.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place:
Duration: kl, 10:00 - 11:00
Meeting content:

• discussing mail about server
• Børre would really like an easy way to delete a salamander.
• some date in april we will try out the system for real.

L.19 19th meeting

Date: 12.03.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 12:00
Meeting content:

• display date for manage salamander.
• should we display how many salamanders that are registrered to a location.
• user has to implement password a lot, but is it too much?

Chapter L: Meeting Logs 194

• for future work possibility to edit image before matching? manually set
points. train a better model.
• overlapping locations.

L.20 20th meeting

Date: 23.03.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 12:00
Meeting content:

• demo of system.

L.21 21st meeting

Date: 26.03.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place:
Duration: kl, 12:00 - 13:00
Meeting content:

• Demo for Børre

L.22 22nd meeting

Date: 06.04.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 09:00 - 10:00
Meeting content:

• Notified that the model had been trained for a million iterations. All the
versions of the model should be mentioned in the report.

• The acronyms and bookmarks(?) are not consistently capitalized.
• 2.3 PACT analysis: explain what PACT is even in the report.
• 2.5 there are only bullet points on this page. Maybe have some text over the

bullet points.
• Is there any place to get the official colors of NINAs web page or did you

just inspect their web page to get the colors.
• Referring to figure 5.3.b before figure 5.3.a.

Chapter L: Meeting Logs 195

• In the section about Visual feedback with toasts use one word to describe
message and response.
• For input sanitation you can mention if input is sanitized.
• Should Figure 6.10 (maybe Figure 6.9 as well) be separated into two fig-

ures?

L.23 23rd meeting

Date: 09.04.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place:
Duration: kl, 10:00 - 11:00
Meeting content:

• Planning the testing. aiming for April the 20th.

L.24 24th meeting

Date: 13.04.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 12:00
Meeting content:

• User interface: In the entire chapter 5 there is a consistent lack of reference
to why we do the things we do. A reference to what you should use in
terms of guidelines from big people. Apples have a guideline. The drop down
option for the salamander rather than a radial button. Find a reference for
this.
• Don’t explain something too late. Or don’t introduce something that needs

explaining too early.
• Chapter 6. Too vauge. page 40: specify things. The fact that this is further

explained in a later chapter should be specified. Specify what resolution,
specify what "The source code was missing crucial functionality, such as
automatically locating"
• Move the group roles from introduction of the group members to 3.1.3

where the first sentence talks about it. PO should be changed to customer/-
client.
• Group leader isn’t related to scrum
• change figure 1.2
• What will you do if you are not able to test the system?
• How to verify that the system is if there is only one tester. More quality

Chapter L: Meeting Logs 196

testing.
• Quantitative testing data can be obtain by testing the system on family mem-

bers. Prepare some paper that with measurable points.
• Why is user interface before development process and implementation?
• Talk about security continuously throughout the thesis and then a specific

section about it in discussion.
• Should we add a screenshot of the Trello board.
• Show what we have learned in a discussion chapter. Results should be shown

before discussion.

L.25 25th meeting

Date: 15.04.2021
Participants: Bachelor group and Børre Dervo.
Agenda:
Place:
Duration: kl, 10:00 - 11:00
Meeting content:

• Snow
• Pond by lahell (lahelldammen). Jan lolann.
• new box
• Børre will include some more participants for the testing.

Meeting with Robert Zahl Dybvad and Vegard Bakkestuen:

• The server is setup on the inside of NINAs servers.
• DMZ is a server for test and development. It is not internally.
• The concluded plan is to seperate the server into the API and a another

server that does the actual estimation.

L.26 26th meeting

Date: 20.04.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 11:20

L.27 27th meeting

Date: 20.04.2021
Participants: Bachelor group and Marius Pedersen.

Chapter L: Meeting Logs 197

Agenda:
Place:
Duration: kl, 11:00 - 12:00
Meeting content:

• 1.1 and 1.2 is good
• Axios why do we use it?
• Why is redux the best option?
• 1.1 vector graphics
• Encryption of user ID (user authentication). Why did you choose to do it

the way you did?
• 1.2.2 There should be an image at the point you talk about the points (even

if it is displayed below).
• What does it mean when "it did not perform well on the test images" (visu-

alize and a graph)
• Explain image augmentation.
• 1.2.3 abandoned implementation "it performed poorly on male/female im-

plementation. What does that mean? How many images in each class?
• Tell how you did the labeling. numbers of each class. How did you ensure

that you labeled on the same way? If you don’t write it means that you
haven’t done it.
• Tell how many iterations you trained yolov3.

L.28 28th meeting

Date: 04.05.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 11:20
Meeting content: Deployment chapter feedback:

• Liked that Expo CLI was explained.
• Maybe there should be an explanation of what Gunicorn does.
• Add what you could have done to prevent the failed deployment in discus-

sion.
• We should have understood that there was a higher level of security and

that we should have looked further into dockers. To think that they were
going to create a VM was a bit too naive and we should have done better
communication with the correct people.

Testing

• How big are the images.
• Why are we testing on such a different dataset than what we trained on.
• Variation in quality. What is a high quality image in our context? Compare

Chapter L: Meeting Logs 198

it to technically good images. That should be clarified.
• Figure 2.1 make it clearer. Add the sum.

Discussion

• How much should we analyze statistical graphs? You have to understand
what the graphs are telling you and explain what they mean, but you shouldn’t
have to analyze too much on it.
• Gantt diagram displaying writing? You should have that in the diagram. The

visual is also okay, but have it displayed on the same line?
• Chapter 4: Should we talk about networking between the components (client

and server)
• Chapter 4: Libraries are mentioned in implementation. Is this redundant?

Move it to implementation? Marius: "this should be moved to development.
These are the methods that we have and we should discuss what/why we
should use them"
• Should we talk about the libraries that we will use in technical design?
• Does file structure fit in chapter 4? yes, rather refer to it in the later chapters.
• Graphical design. interaction design: should this be moved to technical de-

sign? It is a bit weird that the interaction comes at the very end of the chap-
ter.

L.29 29th meeting

Date: 11.05.2021
Participants: Bachelor group and Marius Pedersen.
Agenda:
Place:
Duration: kl, 11:00 - 11:20
Meeting content:

• chapter 04. Talking about saving images. (what type of images)?
• visit dates on footnotes.
• Figure 6.1, but it may be too small. Add some more image description.
• Figure 6.10 is hard to read if you print the pdf. Maybe rotate it?
• chapter 7. why not display the final screens in the thesis rather than in an

appendix? possibly display the main three screens and then referring to the
rest.
• summary and abstract:
• Images from the testing that shows that we’re out doing field tests are good!
• The image of Børre taking notes should be shown in the introduction.
• Second sentence in introduction refers to appendix C.
• acronyms should be used consistent. If you only use it once or twice don’t

acrshort it. Acrfull it once. use acrlong for sdm.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Danielsen, Eirik Martin
Dyrkorn, Herman Andersen
Langlie, Anders Sundstedt
Magnussen, Andrea

Salamander Identification Application

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical
Engineering
Department of Computer Science

Bachelor’s project in Programming
Supervisor: Pedersen, Marius

Ba
ch

el
or

’s
pr

oj
ec

t

	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Subject Area
	Target Audience
	Thesis
	Product

	Group Background
	Academic Background
	Motivations

	Delimitations
	Constraints
	Time Constraints
	Hardware and Software Constraints
	Legal Constraints

	Group Organization
	Thesis Structure

	Requirements
	Project Goals
	Result Goals:
	Effect Goals:

	PACT-Analysis
	People
	Activities
	Context
	Technologies

	Use Case
	Use Case Diagram
	Actors
	High Level Use Case
	Low-level Use Case

	Performance
	Security
	Functional Security Requirements
	Non-functional Security Requirements

	Development Plan
	Software Development Model
	Characteristics of the Project
	Software Development Model
	Usage of Software Development Model
	Plan for Meetings and Decision Points

	Gantt Diagram
	Development Environment
	Technology Choices
	Tool Overview

	Technical Design
	System Architecture
	Networking
	Front End
	Libraries
	Navigation Overview
	File Hierarchy

	Back End
	REST API
	Algorithm

	Data Storage

	Development Process
	Tools
	Planning Poker
	Trello
	Sprint Burndown Chart

	Sprint Overview
	Sprint: Getting Started
	Sprint: Accelerating
	Sprint: Assembling
	Sprint: Ragnarok

	Graphical User Interface
	Prototyping
	Aesthetics
	Colors
	Application Icon
	Main Screens

	GUI-elements
	Navigation Bar
	Buttons
	Radio Buttons and Dropdown Menus
	Use of Modals
	Visual Feedback

	GUI-evolution

	Implementation
	Front End
	Modules
	Components
	Navigation
	Networking
	State Management

	Back End
	REST API
	Algorithm
	Abandoned implementations

	System Flow

	Deployment
	Mobile Application
	Development
	Build

	REST API and Algorithm
	OpenStack
	Future Deployment

	Testing
	Development Testing
	Performance Testing
	First Test
	Second Test
	Discussion

	User Testing
	User Experience Testing
	Field Testing

	Discussion
	Process
	Project Plan
	Technologies
	Scrum
	Communication
	Group Work
	Work Allocation
	Covid-19 Situation
	Critique of Process

	Product
	Revisiting Result Goals
	Consequences of Design Choices
	Ethical and Societal Outcomes
	Critique of Product

	Conclusion
	Summary
	Process
	Product

	Future Work
	Final Words

	Bibliography
	Group Rules
	Project Agreement
	Task Description
	Documentation
	Project Plan
	Detailed Work Allocation
	Prototypes
	Simple Prototype
	Adobe XD Prototype

	Final Graphical User Interface
	Testing
	User Test Guide
	Usability Tests
	Google Form Answers
	Field Test Guide
	Pictures From the Field Test

	Burndowncharts
	Regular Expressions
	Meeting Logs
	1st meeting
	2nd meeting
	3rd meeting
	4th meeting
	5th meeting
	6th meeting
	7th meeting
	8th meeting
	9th meeting
	10th meeting
	11th meeting
	12th meeting
	13th meeting
	14th meeting
	15th meeting
	16th meeting
	17th meeting
	18th meeting
	19th meeting
	20th meeting
	21st meeting
	22nd meeting
	23rd meeting
	24th meeting
	25th meeting
	26th meeting
	27th meeting
	28th meeting
	29th meeting

