
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Vanja Falck
Ludvig Lilleberg
Kristoffer Madsen

Development of Dynamic Difficulty
Adaptation Using Hidden Markov
Models in Learning Games

Bachelor’s project in Programming
Supervisor: Mariusz Nowostawski

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Vanja Falck
Ludvig Lilleberg
Kristoffer Madsen

Development of Dynamic Difficulty
Adaptation Using Hidden Markov
Models in Learning Games

Bachelor’s project in Programming
Supervisor: Mariusz Nowostawski
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

An educational game is successful if the player achieves the accompanied learn-
ing goals. However, to make an educational game that is exciting enough for the
player to keep playing until the learning goals are reached depends on both chal-
lenges in the gameplay and in the subject matter of the learning tasks. The learn-
ing process is perceived as a player being in a proximal zone of development
and flow. One strategy for keeping a game exiting enough while also getting pro-
gress in learning is to keep a load of difficulty that is difficult enough, but not too
difficult. We experiment with Hidden Markov Models to test different ways of im-
plementing dynamic difficulty adaptation in the development of a learning game.
As a proof-of-concept, we propose an outline of a framework for implementing
dynamic difficulty adaptation in learning games.

i

Sammendrag

Et læringsspill er vellykket når spilleren oppnår de medfølgende læringsmålene.
Det å lage et læringsspill som er spennende nok til at spilleren fortsetter å spille
fram til læringsmålene er oppnådd avhenger av både utfordringene i spillet og in-
nholdet av oppgavene. Læringsprosessen blir oppfattet som en spiller som befin-
ner seg i den optimale sonen for utvikling og flyt. En strategi for å holde et
spill underholdende, men samtidig oppnå fremgang i læring, er å opprettholde
et vanskelighetsnivå som er vanskelig nok, men ikke for vanskelig. Vi eksperi-
menterer med Hidden Markov-modeller for å teste ulike måter å implementere
dynamisk vanskelighetstilpasning i utviklingen av et læringsspill. Som konsept-
bevis legger vi frem en skisse av et rammeverk for å implementere dynamisk
vanskelighetstilpasning i læringsspill.

ii

Contents

Abstract . i
Sammendrag . ii
Code Listings . vii
Acronyms . viii
Glossary . ix
Preface . xi
1 Introduction . 1

1.1 Delimitation . 2
1.2 Target Groups . 2
1.3 Report Organisation . 2

2 Background . 4
2.1 Problem Description . 5

3 Methods . 6
3.1 Learning in Games . 6
3.2 Difficulty Adaptation in Learning Games 6
3.3 Approaching Dynamic Difficulty Adaptation 7
3.4 Hidden Markov Models . 7
3.5 Bloom’s Taxonomy . 8
3.6 Set Up . 9

4 Results . 10
5 Research Discussion . 11
6 Research Conclusion . 14
7 Development Process . 15

7.1 Choice of Software Development Model 15
7.2 Usage of the Model . 16
7.3 Documentation . 16

8 Requirements Specification . 17
8.1 Setting . 17
8.2 GUI Interaction . 17
8.3 Avatar Creation . 17
8.4 Player Controls . 18
8.5 Progression Structure . 18
8.6 Pause Menu . 19
8.7 NPC-to-NPC Conversations . 19
8.8 Reporting Functionality . 19

iii

Sammendrag iv

8.9 Result Screen . 20
8.10 Game Scenarios . 21
8.11 Player-to-NPC Conversations . 22
8.12 User Profiles . 22

9 Technical Design . 24
9.1 Choice of Game Engine and Game Style 24
9.2 Choice of Database . 24
9.3 Firestore Integration in Unity . 24
9.4 Firestore Database Structure . 24
9.5 Decision to Use Twine . 26
9.6 Twine Integration in Unity . 26

10 Graphic Design . 27
10.1 Art Style and General Design Decisions 27
10.2 Avatars and the Avatar Creator . 27
10.3 Level Environments . 28
10.4 Social Media Conversations . 29
10.5 Reporting Terminal . 29
10.6 Profile Pages . 30
10.7 Pause Menu, Popup Text Boxes, and Result Screen 30

11 Implementation . 31
11.1 Programming and Implementation Tools 31
11.2 General Implementation Practices . 32
11.3 3D Models and Environments . 32
11.4 GUI Menus and Interaction . 32
11.5 Static Variables . 33
11.6 Game Manager and Pause Menu . 33
11.7 Firebase and Firestore Initialisation 33
11.8 Avatar Creator . 34
11.9 Camera . 35
11.10 Player Movement . 35
11.11 Setting Player and NPC Avatar Appearances 36
11.12 Hidden Markov Model . 36

11.12.1 Hidden Markov Models Equations 36
11.12.2 Implementation of Hidden Markov Models 37
11.12.3 Overview of Mock-ups and HMM 39
11.12.4 Setting up the Hidden Markov Model - an example 39

11.13 Conversation Allocator . 41
11.14 Conversation Objects’ Detection of the Player 42
11.15 NPC-to-NPC Conversations . 43
11.16 Player-to-NPC Conversations . 44
11.17 Reporting Terminal . 45

11.17.1 Reporting a User . 46
11.17.2 Checking Reported Users . 47
11.17.3 Sending Reports and Calculating Score 48

Sammendrag v

11.18 User Profiles . 51
11.18.1 Profile Main Page . 51
11.18.2 Following and Followers Pages 53
11.18.3 Posts Pages . 54
11.18.4 User Settings Pages . 55
11.18.5 All Users Page . 55

11.19 Level Exit and Result Screen . 56
12 Deployment . 58

12.1 Download and Install Unity . 58
12.2 Clone the Repository . 58
12.3 Apply Project and Game Settings . 58
12.4 Set Variables in the Inspector . 59
12.5 Play the Game . 59

13 Development Discussion . 60
13.1 Development Process . 60
13.2 Deployment . 60
13.3 Firestore Database Structure . 60
13.4 Firestore Asynchronous Functions . 61
13.5 Avatar Creator . 61
13.6 Player Controls . 61
13.7 Hidden Markov Model . 62
13.8 Conversation Allocator . 62
13.9 NPC-to-NPC Conversations . 63
13.10 Player-to-NPC Conversations . 63
13.11 Reporting Terminal . 64
13.12 Profile Pages . 64
13.13 Result Screen . 64

14 Development Conclusion . 66
Bibliography . 68
A Group Members and Project Roles . 71

A.1 Group Members’ Backgrounds and Competencies 71
A.2 Project Roles . 72
A.3 Contact Information . 72

Figures

11.1 Hidden Markov Model Taxonomy . 38
11.2 Bayesian network graph model for difficulty adaptation with tax-

onomy and flow as targets. Figure a) starts from player and figure
b) starts from game item. The choice of model depends on purpose
and real life causal dependencies. 39

vi

Code Listings

11.1 Getting collection and document references 31
11.2 Looping through Firestore documents 31
11.3 Smooth movement towards a point . 35
11.4 Smooth rotation towards a point . 35
11.5 Adding list indices to new lists . 41
11.6 Retrieving a random index from the list 42

vii

Acronyms

AI Artificial intelligence. 21, 45

GUI graphical user interface. ix, x, 17, 19, 27, 32, 33, 44, 45, 71, 72

IIK Department of Information Security and Communication Technology. xi, 2

NPC non-player character. 2, 13, 18, 19, 21–23, 25, 26, 33, 36, 37, 41–46, 51–55,
63, 71, 72

NTNU Norwegian University of Science and Technology. xi, 2, 71

UDIR Norwegian Directorate for Education and Training. 2

viii

Glossary

Blender A free and open-source 3D graphics software tool set with features such
as 3D modelling, texturing, and animation[1]. 32, 71

Canvas The area in Unity where all GUI elements should be, with screen space
(overlay or camera) and world space render modes[2]. 32, 45

Firebase A Google platform for creating mobile and web applications[3], provid-
ing products such as databases, authentication, hosting, and machine learn-
ing features[4]. 24, 31, 33, 71

Firestore A NoSQL cloud database used to store and synchronise data, support-
ing hierarchical data structures consisting of documents and document col-
lections, provided by Firebase and Google Cloud[5]. 2, 3, 10, 16, 18–20,
22–26, 31, 33, 34, 36, 41, 43, 44, 46, 48–53, 55, 60, 61, 63, 64, 71, 72

Fungus A Unity extension optimal for making visual novels and interactive fic-
tion[6]. 26

Hierarchy window A window in Unity where all Game Objects in a scene are
displayed in a parent-child hierarchy[7], similar to a scene graph data struc-
ture. 32, 59

Inspector A window in Unity where one can view and edit properties and settings
for elements that are in the Unity editor[8]. 32, 34, 59, 71

Material A Unity asset which describes the appearance of surfaces, and which
can contain colour and texture data[9]. 32, 34, 59

Prefab A Game Object as a reusable asset, acting as a template from which Prefab
instances can be created[10]. 32, 47, 48, 59

ProBuilder A Unity package which allows for the creation of 3D models with
simple geometry, used for level design[11]. 32

ix

Code Listings x

Scroll View A Unity list object which can contain other objects, and which allows
for vertical and horizontal scrolling when the content exceeds the Scroll
View size. 27, 29, 30, 47, 48, 53–57, 59, 64

TextMeshPro A Unity package which can be used as a replacement for Unity’s
native GUI text system, offering visual quality improvements and more[12].
27, 29, 30

Twinery An online tool for making interactive texts[13]. 10, 21, 22, 26, 44, 45,
63, 72

Unity A cross-platform game engine developed by Unity Technologies which can
be used to create 3D, 2D, virtual reality, and augmented reality games, sim-
ulations, and other experiences[14]. x, 2, 3, 13, 22, 24, 26, 27, 30–33, 37,
38, 43, 58, 59, 61, 62, 66, 71, 72

Visual Studio A code editor and compiler owned by Microsoft, the default editor
of Unity. 31

Preface

Our client is Department of Information Security and Communication Technology
(IIK) at NTNU. This task is born from questions about using entertainment as a
means for education, and in particular the idea that challenges in learning and
gameplay can enhance learning and give joy. If the challenge level of learning
games can successfully be set and added to the curriculum, they could potentially
help people to learn in an enjoyable and efficient way.
We chose this task because we learning games is a genuinely interesting topic.

xi

Chapter 1

Introduction

Our bachelor task is focused on the field of educational technology, specifically
educational software. Educational games may provide both theoretical and prac-
tical knowledge due to their sensory and interactive nature, while also providing
an enjoyable experience. The combination of the sensory, interactive, and enter-
taining aspects may be an effective and motivating way for students to learn [15].

Learning games are developed to improve learning beyond what is achieved by
more traditional methods. A successful learning game must help the player reach
learning goals and continue playing until these goals are reached. Challenges
tuned in with the player’s current performance level is believed to enhance learn-
ing [16]. Similar strategies have support in the learning theory of Lev Vygotskij
and his concept of proximal zone of development and in Mihaly Csikszentmihalyi’s
concept of flow [17]. These theories claim that a sufficiently high load of difficulty
gives the student or player the most efficient learning and the experience of ex-
citement [17].

Different approaches to difficulty adaptation in games and learning games have
been proven to be successful [17]. However, getting appropriate knowledge about
a player’s performance levels and using the right techniques to enhance learning
is not at all trivial [15]. How do you start out with a new player? How do you
choose what elements to adjust to ensure learning? Such challenges are linked
to find the components in a game and particularly the components in the learn-
ing parts and method to tweak them. Methods using functions to adjust difficulty
level are called dynamic. Techniques applying support vector machines and neural
nets have proved useful. Even if neural nets can be useful, it is hard to understand
what the nets are doing. Other approaches running better with sparse data and
which are better explainable, like dynamic Bayesian nets. Even when these prob-
abilistic models are less scalable than neural nets, they can prove useful in the
development of dynamic difficulty adaptation in learning games.

1

Chapter 1: Introduction 2

1.1 Delimitation

According to our client, the Department of Information Security and Communic-
ation Technology (IIK) at NTNU; the Norwegian Directorate for Education and
Training (UDIR) has developed a new curriculum in digital citizenship, which ap-
plies to Norwegian students in all stages of primary and secondary education. Our
client wants to develop games which will aid in the education of the digital secur-
ity part of the curriculum.

In agreement with our client, we decided to make a game mock-up in Unity to
investigate how learning sniffing and dynamic difficulty adjustment can be ap-
plied in game development. We demonstrate these ideas and solutions with a
proof-of-concept game, a database solution, and a system of functions for dynamic
difficulty adaptation.

The proof-of-concept game will work for both PC and mobile, and will be playable
with a mouse and a touch screen, respectively. It will contain a simple avatar cre-
ator, and functionality for reading, and being a part of, conversations with NPCs
(non-player characters). Text in NPC-to-NPC conversations, and data for the in-
game users, will be stored in a Firestore database (Section 9.2). This is a solution
which allows the game’s educational content to be changed whenever changes
are made to the curriculum.

1.2 Target Groups

This report will detail the game design ideas and implementation ideas that were
utilised in our proof-of-concept game, which will help our client develop a real
application. Our client is therefore the primary target group of this report.

We limited the target group of our proof-of-concept game to be high school stu-
dents only, which would remove some complexity from the application, and which
would not limit us when it comes to digital security topics and content, due to the
students’ relatively high maturity and knowledge. Our prototype game will show
our client possible game design ideas and how they would work in practice, mean-
ing our client is also a target group for the proof-of-concept game itself.

1.3 Report Organisation

This report is a hybrid combining a first part covering the bachelor thesis research
question and a second part elaborating on the software development of the mock-
up game. Because a mix of the answering of the research question and a detailed
description of the game development would overshadow each other, we decided
to write them separately. Dividing the blocks best ensure that our project owner

Chapter 1: Introduction 3

gets a detailed guide to our Unity mock-up game.

Chapter 1 is a general introduction to both the research part and the game mock-
up. Chapter 2 gives the general outline for the research part, followed up by
methods (Chapter 3), results (Chapter 4), discussion (Chapter 5) and conclusion
(Chapter 6). The last part is in detail describing the development of the game
mock-up (Chapter 7 to 14). Some technical aspects of the dynamic difficulty ad-
aptations and a brief introduction to Hidden Markov Model as implemented is
given, but most of the difficulty adaptation is dealt with in the first part (Chapter
2-6).

Information about the authors is placed in Appendix A. The source code for the
project can be requested using the contact information in Appendix A.3. A gloss-
ary and a list of acronyms are included. All instances of these words and acronyms
are clickable links in the PDF which lead to their explanations. URL links and ref-
erences to chapters and sections are also clickable. Names of elements in scripts,
names of collections, documents, and values in Firestore, and similar names, are
written in the typewriter font. Other notable names and words are emphasised.

Chapter 2

Background

Gamification of learning faces the challenge of making the gameplay engaging
enough for students to keep playing until the learning goals are reached. Edu-
cational games aim at supporting players in achieving learning goals [16]. Dy-
namic difficulty adaptation in learning games consists of methods balancing the
player’s perceived difficulty regarding both gameplay and educational demands
[18] [19] [16] [20]. Difficulty adaptation in games is generally used to keep play-
ers engaged. Adjustments can be added to game elements like content [19], user
interfaces or game mechanics to personalise the experience of difficulty [16][21].
Dynamic adjustment of difficulty in games can also be dealt with by using auto-
mated assistance and feedback systems [22].

Current research focuses mainly on dynamic difficult adaptation with respect to
how the human player perceives the challenges in a game [16][21]. Automated
tracking of difficulty requires measurables and functions that reflect a player’s ac-
tual learning and mastering progress. A mixture of measures for both learning of
the subject matter and mastering of the gameplay are needed, as well as methods
to properly evaluate learning outcomes.

Difficulty adaptation in games has been explored in the context of design, sim-
ulation, and self-learning and self-adapting systems [16]. Machine learning ap-
proaches like support vector machines and neural nets show potential for useful
data driven implementations [23]. However, neural nets run into problems of ex-
plaining what is actually done [24], resulting in additional need of human user
testing to ensure validity. Integrating the player and game world models of dy-
namic adaptations, can theoretically reduce the number of suboptimal situations
during gameplay [16]. Revealing and reducing suboptimal situations regarding
learning and flow in the development phase seems necessary to ensure a high
quality learning game.

4

Chapter 2: Background 5

2.1 Problem Description

Our main focus is not to develop a learning game, but to explore how to imple-
ment dynamic difficulty adaptation in learning games, using Hidden Markov
Models and social media security for youths aged 16 to 19 as a dummy-topic.

We are not underestimating the challenges regarding design when forming learn-
ing games [25][21]. Neither are we underestimating the challenges of evaluating
learning in games. Our proposed game examples are not claimed to actually be
suitable in an educational setting. The theories of learning are also just suggest-
ive, and useful to outline some general understanding of the concept of learning.
Our game examples and learning suggestions are primarily for demonstrating dy-
namic difficulty adaptation and how it can be used in early prototyping of learning
games.

Chapter 3

Methods

3.1 Learning in Games

Successful learning games can be defined as a process driven by the gameplay
leading to anticipated learning goals. Measuring learning processes and goals
however are not trivial. In this context it suffices to define the learning process in
a broad sense by applying Lev Vygotskijs social constructivist concept of proximal
zone of development [26], adding Mihaly Csikszentmihalyi’s concept of float to
describe a process both of learning and excitement that keep the player engaged
enough to reach the learning goals [17]. Several forms of knowledge and skills
can be embraced by these broad models [17]. Flow in a game is according to Chen
(in Streicher and Smeddinck [16]) created by actions:

• Lead to or present clear goals
• Immediate feedback merging with awareness (you will instantly know the

result)
• Trigger concentration on the task (no interruptions)
• Create a sense of power and control
• Make the player lose track of time and place (absorbed)
• Make the player wanting to play (not forced to play)

3.2 Difficulty Adaptation in Learning Games

The two major reasons for exploring dynamic difficulty adaptation in learning
games are to ensure learning goals are met and ensure that the game is engaging
enough for the player to keep playing until reaching the learning goal. But what
then is difficulty and difficulty adaptation in a setting like this? Current research
on difficulty adaptation in games often focus on the balance between the player
(human aspects) and the gameplay (game mechanics) [16]. What is difficult to
the player (learning goals and gameplay), and what challenges or other aspects
in the gameplay are perceived by the player as difficult? In the case of dynamic
difficulty adaptation we should ask how we can measure how the player perceives

6

Chapter 3: Methods 7

difficulties and how game mechanics and content can be manipulated to keep the
player in their proximal zone of development while still remaining in a state of
flow. A successful attempt to quantify the level of difficulty on the player’s hand
is to calculate the probability of the player failing a particular task in the game
[18]. The general idea is then to combine these calculations to design an overall
game logic that keeps the level of difficulty within the limits suggested by proximal
development zone and float.

3.3 Approaching Dynamic Difficulty Adaptation

To improve designing learning games, Gallego-Durán et al. [25] suggests focus-
ing on different characteristics instead of only game elements. These are open de-
cision space, challenge, learning by trial and error, progress assessment, feedback,
randomness, discovery, emotional entailment, playfulness and automation. Four
of these, the challenge, progress assessment, randomness, and automation, are
considered particularly relevant for the learning and difficulty adaptation. Feed-
back, emotional entailment, and playfulness are important for learning and en-
gagement. These two elements could also be automated (Conati and Manske in
Streicher and Smeddinck [16]), [22]. Open decision space, learning by trial and
error, and discovery are more related to the choice of type of game and will not
be dealt with in this project.

Educational content used in a learning game can change over time. Even if a sub-
ject matter like mathematics is relatively stable, the knowledge about didactics
may change. What type of content that teaches different students, depending on
age, gender, mental and physical disabilities, cultural background, and life exper-
iences, might also change [27] [21]. Even if these considerations go beyond what
is strictly relevant for the dynamic difficulty adaptation, they are relevant in dis-
cussions about flexibility in the development and maintenance phases of learning
games used in public schools.

Different methods have been applied to measure player performance and skill-
influencing aspects of the gameplay [16]. In this project the aim is to explore
dynamic difficulty adaptation during the early development and prototyping of
a game. We demonstrate a method for developing components using Hidden
Markov Models to set up the dynamic difficulty adaptation and prepare for testing
and simulation of the implementations.

3.4 Hidden Markov Models

Hidden Markov Models are dynamic Bayesian nets [24]. A Hidden Markov Model
is made up of nodes in a directed acyclic graph. Nodes represent random variables
carrying conditional probabilities given the values on their parents’ nodes. A Hid-

Chapter 3: Methods 8

den Markov Model represents world states as a discrete variable, but the values on
each node could be either discrete or continuous. The dynamic in Bayesian nets
is a time series model, meaning they are useful for a probabilistic understanding
of phenomena changing over time. The main components are a transition model
and a sensor model, which do not change over time. As a consequence, dynamic
Bayesian nets are well suited for near to causal modelling of real life situations in
a more or less stable environment. Stable environment is understood as a context
that does not change the parameters of the stationary transition and sensor mod-
els. Given a well designed model, every causal random variable is taken care of,
and therefore the stationary model handles all transitions in world states well.

Because Hidden Markov Models are well studied and make good causal models,
when well designed, they are useful in testing out dynamic difficulty adaptation
in learning games. The parameters of a Hidden Markov Model can be learnt from
data by i. e. the expectation-maximisation algorithm [24]. Existing data on users
or learning issues can be used to quickly get well tuned models up and running
in game development. Another feature of Hidden Markov Models is that they are
excellent as a driver for simulation. Weighted randomness sampling like Markov
Chain Monte Carlo [24], can be used to simulate highly realistic scenarios to test
how different dynamic difficulty adaptation implementations turn out for differ-
ent player profiles, game or learning components.

3.5 Bloom’s Taxonomy

Bloom’s taxonomy is a systematic overview of learning skills based on cumulative
levels of learning that are supposed to build on each other [28]. There are six
levels. The first is to memorise knowledge, the second to be able to explain it,
and the third to use and adapt knowledge in real life settings. The fourth is to be
able to analyse complex situations using the knowledge. The fifth is to be able to
discuss and criticise knowledge from different points of view. The sixth level is to
be able to use knowledge to create something new. This taxonomy is often used
as a basis in both summative and formative evaluation of learning [29]. Bloom’s
taxonomy differentiates types of learning that can be implemented in learning
games. It is also believed to represent learning progress, and could be regarded
as a scale of difficulty with regard to learning tasks.

To operationalise the concept of learning goals we add the five elements in Bloom’s
taxonomy (in Pierce et al. [19]) to our concept of learning. Bloom’s taxonomy is
often used by domain experts to set up more explicit summative and formative
evaluations of learning outcomes.

Chapter 3: Methods 9

3.6 Set Up

The dynamic difficulty adaptation component is made up of Bayesian networks
as Hidden Markov Models. Our system is built on adding and tweaking Hidden
Markov Models to adjust separate game components like feeding content and
guiding non-player characters’ behaviour based on the player’s actions.

Three types of gameplay scenarios are implemented. The first is a 3D modelled
school yard where different sequences of digital messages between pupils and
external actors are exchanged. The player watches different digital conversations
and should identify various digital threats or bullying. In this scenario, the player’s
ability to identify occurrences, measured by points as rewards, adjusts the level
of difficulty on the upcoming next conversations by picking out a probability ad-
justed level.

In the second scenario, the player engages in interactive digital and live con-
versations with one or more non-player characters. Two mock-up scenarios were
suggested, the first being new at school getting new friends while meeting peers
engaged in live and digital conversations (messages and image exchanges). The
second being a pupil or teacher as an investigator watching other pupils’ digital
conversations to identify potential digital security issues like grooming, fraud
and digital harassment. Dialogues are structured as dialogue-trees, using Hidden
Markov Models to guide an emotion and a difficulty component. The difficulty
adaptation rests on tracking the player’s performance and modulating the non-
player characters’ responses. The emotion component is added both to the player
and non-player characters to guide the automated responses in the dialogue. The
emotion component switches on three levels; angry, sad or friendly. Simulations
based on probability distributed sampling, or a Monte Carlo Markov Chain Gibb’s
sampling [24] can be used offline or online using the Hidden Markov Models
(without any players) can be run for on the dialogue-trees to monitor and evalu-
ate the difficulty adaptation models.

In the third scenario, the player manages a spawned public social media page.
The task is to identify potential issues related to revealing personal information
that could be exploited or could harm themselves in general or in a special case
of job seeking. The difficulty adaptation in this scenario can be linked to domain
experts’ pre-evaluation of vulnerabilities in the game’s construction of a profile.
Based on the defined levels of threat for each component, the adaptation model
can automate the picking of components at the time of spawning based on the
player’s current level. A second approach could be applied while the user makes
up their own social media profile, having an identifier of threat level, done by
domain experts, to monitor profile development and setting up the player’s gain
or loss.

Chapter 4

Results

Three small scale game components, one a quest, the second a mystery, and the
third a socio-quiz like game setting, are equipped with Hidden Markov Models to
do the difficulty adaptation. The mystery game has a game component modulat-
ing emotions using a Hidden Markov Model. Simulation options are implemented
in the mystery game. Simulations can be used by experts’ options for testing mod-
els against i. e. learning outcomes and gameplay.

All difficulty adaptation implementations on game components feed into the player’s
current skill level and vise-versa, responds to gradually better game performance.
When playing the first game you can either start with skill level at zero, or set up
for a random level. No trained prior to i. e. overcome cold start problems for the
player’s performance level is provided.

When setting up the testing environment, we try to make it relatively easy to
change the text sources used in the quest and mystery gameplays. These methods
can be used for the sosio-quiz as well, but the current input here is hard coded.
Two types of setups were used for feeding dialogues, one using Firestore database
importing directly from a google sheet, the other parsing complete dialogue trees
from text outputs from the online dialogue generator Twinery. All dialogues in the
quest and mystery part can therefore be exchanged by experts in the subject mat-
ter of the learning game. A generator to make a random Hidden Markov Model is
set up. Functions for doing basic procedures like filtering, prediction, smoothing
and finding the most likely sequence are provided.

This project delivers a proof-of-concept of a flexible framework, using Bayesian
nets in the form of Hidden Markov Models in game components and the player’s
profile to do component wise prototyping of dynamic difficulty adaptation aimed
at high demands on learning and experience of flow in gameplay. We have Bloom’s
taxonomy to conceptualise different aspects of learning with the aim of further
developing game components that are useful for summative and formative eval-
uations.

10

Chapter 5

Research Discussion

Hidden Markov Models are proving easy to use as modulators for prototyping
dynamic difficulty adaptation on components and players in a learning game.
However, these models are not particularly scalable as the complexity quickly in-
creases when components are combined. For simpler games or in games where
the dynamic adaptation can stay isolated, these models can be applicable also in
production. The advantage of using Hidden Markov Models as a tool in iterative
development of a game, is that the different models’ parameters can be set by us-
ing other methods like neural nets and even recommender systems if information
of the component types or target group player is available. If the parameters in
the Hidden Markov Models are close to a real life or game world life, a simulation
of the game can reveal its potential for learning and intended effects even before
it is tested on real users.

A second advantage of using Hidden Markov Models in prototyping dynamic dif-
ficulty adaptation is that it is easy to port the human understandable models to
better performing machine learning techniques like neural nets or advanced de-
cision networks (Belahbib et al. [21]) in production. By starting out with Hidden
Markov Models, it is easier to keep track of what the neural net is actually doing
without extensive user testing to validate the model [24]. Learning sniffing on
players in all new games has a cold start problem [30]. That is, we do not have a
prior on the skill level of the player. There are several ways to deal with this, and
if the game is applied in a school setting with many users, recommender systems
like collaborative filtering and similarity filtering [30] can be used to probe a prior
on a new player for a particular game item. A learning game with difficulty adapt-
ation must keep and actively use stored players’ performance measures (Belahbib
et al. [21]).

Difficulty as a concept in this context has at least two edges. One is linked to
the learning part, the other to the gameplay. Vygotskij’s and Csikszentmihalyi’s
proximal zone and float graphs are both good illustrations of the ideas behind
designing learning games. However, it is hard to actually translate and measure

11

Chapter 5: Research Discussion 12

these abstract concepts as difficulty. For gameplay, performance as points and time
used until accomplishment can be used as a measure. In a learning game, such
game related performance is also a part of the learning component, although not
exactly the same (Wouters et al. [31]). Is the game performance then synonym-
ous with what is learned? If so, game performance could replace summative or
formative evaluation of players’ skills (Wouters et al. [31]). We would neverthe-
less separate the gameplay from the learning when analyzing a learning game
(Belahbib et al. [21]). However, we suggest that a well designed learning game
should pass a test where player performance qualifies as equal to the result of a
summative or formative evaluation on learning goals (Wouters et al. [31]).

Digital security for youths as a subject matter is diverse and not easily divided
into clear levels of difficulty that could mirror the actually perceived difficulty in
a game. A level based construction of increasing difficulty, if the subject matter
allowed it, would nevertheless only take into account the subject matter (as per-
ceived by the creator), and not the actual competency of the player. Methods tak-
ing into account subject matter, gameplay, and players’ competence are needed
if we want to keep both flow and learning in the proximal zone. Adjusting the
level of difficulty, related to both subject matter and gameplay, according to the
player’s existing and gradually developing skills, using Hidden Markov Models or
other machine learning approaches can help accomplish this [24].

In this proof-of-concept case we let the “experts” set the difficulty level related
to spotting i. e. predator in a chat-dialogue. The expert rates different chats that
are fed into the game, and these rates are used when feeding the player according
to their level of mastering. If the quest for the player is to reveal a predator among
several chats, we have no guarantee that the player and the expert agree on the
level of difficulty to accomplish this task. Using a data oriented approach, we can
search for a difficulty adaptation function taking care of different players’ learn-
ing profiles. Earlier research has mainly relied on user testing, but this approach
is both resource demanding, not easily generalizable, and slow. Using a Hidden
Markov Model to investigate impact on difficulty can also be extended to find the
parameters for Hidden Markov Models that are tuned to different target groups
of youths. This is one way to deal with the cold start problems our approach has.

We have not implemented feedback, non-character tutoring, or other mechan-
isms for directly helping the player in the game. Neither have we put emphasis on
the time component, which could be used to increase difficulty as well as used as
when learning goals consist of some kind of drill. We have avoided the planning
based systems [16] because of their more rigid structure, but also because we are
not experts on the subject matter of digital security in this project. Planning based
difficulty adaptations requires a better area of knowledge than we have. The next
step can be to extend the Bayesian networks with decision networks ([24] p. 528).
A decision network has the same nodes as in a Bayesian network with the addi-

Chapter 5: Research Discussion 13

tion of nodes for action called decision nodes and nodes representing the utility
([24] p. 545). This model can, like Hidden Markov Models, be represented as a
directed acyclic graph. In the Unity game mock-up this can be combined with us-
ing a GOAP (Goal Action Planner) to carry out the actions activated by the utility
functions of a decision network.

Vygotskij’s theory of learning has a strong link to the concept of scaffolding that
was further elaborated by Bruner. In Bruner’s words, scaffolding “. . . refers to the
steps taken to reduce the degrees of freedom in carrying out some task so that
the child can concentrate on the difficult skill she is in the process of acquiring”
(Bruner 1978 in Slussareff et al. [17]). Even if we have not dealt with supporting
NPCs and feedback in the game, games can be designed to support the player even
without such explicit elements. In fact, we agree with Melero (2011 in Slussareff
et al. [17]), that a general approach to dynamic difficulty adaptation in itself can
be treated as a means of scaffolding because this approach actively assists towards
the learning goal.

We implement elements of generative programs ([24] p.520-522), defined by
linking random choices to associated probability models (Hidden Markov Model).
When doing complete simulation over a game structure made up of probability
models, we can get a Gaussian representation of the game that later can be ex-
ploited for further analysis that can help tweaking the difficulty adaptation as to
accomplish the final learning goals. We have only explored the surface of these
possibilities by giving a proof-of-concept on how to use separate clusters of Hidden
Markov Models on game components in a learning game mock-up.

Chapter 6

Research Conclusion

We have set up a mock-up game for teaching digital security using three different
gameplay ideas. Each of the gameplays are equipped with Hidden Markov Models
to guide content generation (quest), emotion, and dynamic difficulty adaptation
on non-players’ responses in interactive dialogues (mystery), and suggestions for
score and penalty sensors input when analysing own and others’ social media pro-
files (socio-quiz).

We suggest graph models for Hidden Markov Models based on Bloom’s five tax-
onomy levels, and starting out with two simple models either choosing players’
skills or game items as a starting point for setting up models. These models can
be generated randomly to make it easier for users not so familiar with Hidden
Markov Models to start experimenting.

Our contribution is only a small demonstration of how Hidden Markov Models can
be used in game mock-ups. There is further need to investigate how to nest game
components together to analyse and develop the complete game. The toolbox of
dynamic Bayesian networks is well equipped to use, and has a great advantage
over other machine learning approaches like neural nets when it comes to explain
what happens. Other researches have explored how advanced machine learning
can actually be used to improve dynamic difficulty adaptation in a production set-
ting.

We used Vygotskij and Bloom’s taxonomy as the basic idea to understand learning,
however, we did not deep dive into the learning aspects. Nevertheless, we can see
the potential in further exploring linking methods for dynamic difficulty adapta-
tion to i. e. Bloom’s taxonomy to expand it first in a direction of treating game
components as tutors in learning games in line with Vygotskij’s scaffolding, and
second, in a direction of making mastering of a learning game equal to traditional
methods of summative and formative evaluations.

14

Chapter 7

Development Process

7.1 Choice of Software Development Model

The open nature of our bachelor task allow us to decide what to focus on and
how the game should work. We understand that priorities and game ideas could
change throughout the project, meaning that a flexible agile development model
is more appropriate than a rigid waterfall model.

We first considered Scrum, which is a relatively structured agile model. It requires
a product backlog, and each sprint has a fixed length. Daily scrum meetings are
held to provide development updates, and a sprint review and a sprint retrospect-
ive are held at the end of each sprint.[32] The existence of the product backlog,
and the fact that each sprint has a fixed length, imply that priorities should be
relatively stable when using the Scrum model. One sprint focuses on one part of
the product backlog, meaning that there is a clear goal, which implies that making
drastic changes during a sprint could cause problems.

The bachelor task does not have a complete list of requirements, so we have to
make them ourselves. We did not have a clear idea about how the game should
work from the beginning, so we decided we would experiment with game ideas
and make requirements throughout development. This means that we do not
have a product backlog. As mentioned, we also know that priorities could change,
which means that the sprint process in Scrum will not be the best option for us.
The fixed length of the sprints also feels limiting to us in the way we want to work,
and our lack of experience makes it difficult to predict how long functionality will
take to develop in a sprint.

We realise that the Kanban model does not have these limitations. Kanban does
not have strict time limits, the lack of sprints will allow us to change our plans
whenever it is appropriate, and the model does not require a backlog of require-
ments. The Kanban board will allow us to come up with ideas at any time during
development, place them on the board, and choose which of the ideas to priorit-

15

Chapter 7: Development Process 16

ise next. We still like the idea of frequent meetings from Scrum, which will allow
us to keep each other updated and discuss development problems. It also add
more structure where Kanban may be somewhat lacking, and it will encourage
our group members to work consistently.

For these reasons, the software development model we ultimately choose is a
modified Kanban model with frequent meetings.

7.2 Usage of the Model

Our group use GitLab’s issue board functionality as a Kanban board. GitLab’s issue
functionality allow users to create text entries which may represent issues such
as tasks, problems, or announcements, which can be categorised by using custom
labels. Active issues are in an open state, while issues that are no longer relev-
ant can be set to the closed state. The issue board functionality features sections
where issues can be placed, including an open section and a closed section, which
change the issue’s open and closed states. Additional label sections can be added,
and placing an issue in one of these sections will give the issue that label. Our
group made an under development label, so that tasks actively being worked on
can be put in the under development section. Pending tasks not being worked on
are in the open section, and finished tasks are put in the closed section.

Our group does not have a strict meeting schedule. Throughout development,
our group members will give one another tasks during meetings, which we will
have to work on until the next meeting. During each meeting we also schedule
the next meeting. The time between each meeting is determined based on how
long we think it would take to make meaningful progress to discuss during the
next meeting, and what will fit our schedules. Our meetings are usually held two
to four days apart.

7.3 Documentation

During development, we comment our code well. The comments help each group
member understand another group member’s code. Comments are our main form
of documentation. Our GitLab repository has a file called README.md which is used
during development to provide more detailed descriptions about, and instructions
for, our individual implementations, when we consider it useful. Our repository
also has some additional instruction documents, one of them being a description
of our Firestore database structure using JSON.

Chapter 8

Requirements Specification

Our task description does not contain a detailed requirements specification, so we
have to make the requirements ourselves. Our group has been using a Kanban-
like development model (Chapter 7), so the requirements are made throughout
the project. This chapter contains the summary of our software requirements, in
order of conception.

8.1 Setting

The game will take place in a three-dimensional representation of a fictional social
media platform. The player controls a user on the platform who tries to help other
users. Helping others is accomplished through reporting malicious or suspicious
users, and talking to and improving relationships with users.

8.2 GUI Interaction

All GUI menu options/buttons and other interactive GUI elements will be clickable
using a mouse on PC, and touchable using a mobile smart phone’s touch screen.
All GUI elements will be in 2D.

8.3 Avatar Creation

All users on the social media platform are visually represented by 3D model avatars.
They will have a human-looking form, and all avatars will wear a sweater, trousers
(called pants in-game), and shoes.

The game will have an avatar creation screen for the player, which will be shown
when the game is first started, and when the player chooses to change their
avatar’s appearance during gameplay, as detailed in Section 8.6 and Section 8.12.
There will be options for changing skin tone, hair/headgear type, hair colour, and
clothing colours. There will be 5 skin tone options representing a diverse range

17

Chapter 8: Requirements Specification 18

of realistic skin tones. There will be 4 hair/headgear types; bald, short hair, long
hair, and hijab. The short hair and long hair options will have 5 hair colour op-
tions; black, grey, brown, red, and blond. There will be colouring options for each
individual clothing item (hijab, sweater, trousers, and shoes), where each colour-
ing option has the same 12 colour palette.

There will be a button which will randomise the player avatar’s appearance using
the aforementioned options when clicked. Finally, there will be a button which
will display a finish avatar creation confirmation text box when clicked. The text
box will contain a back button and a finish button. The back button will close the
text box, and the finish button will complete the avatar creation.

8.4 Player Controls

The player will control their character by clicking or tapping on objects in the
game. The place on the object that is clicked will be marked, and the player char-
acter will smoothly rotate and move towards the point’s X and Z position values.
The game camera will follow the player’s position.

8.5 Progression Structure

The game will consist of several levels. Each level will have a different 3D environ-
ment, and will contain NPC-to-NPC and player-to-NPC conversations. The player
will be able to report malicious or suspicious users at a reporting terminal, and go
through the player’s personal user profile. The player will be able to earn points
in each level, and the player’s score will determine the difficulty of the next level,
as an example of dynamic difficulty adjustment.

The door/exit to the next level is opened up when the player sends all of their
reports by clicking on a button on the terminal main screen. When the player gets
close to the door, a popup text box will appear, asking whether the player wants
to go to the next area. The text box will have a cancel button and a confirm button.
Clicking on the confirm button will make the level feedback screen appear, which
will be detailed in Section 8.9. Clicking on the cancel button will close the text box
and position the player away from the exit so that the player will not be stuck by
constantly getting new exit level confirmation popup messages.

The appearances of the player and NPC avatars in all levels will be saved in
Firestore, so that when the player leaves a level scene and comes back, all avatar
appearances will be the same. The player and all NPCs have their own user doc-
ument in a users collection, which will contain appearance data, in addition to
other data which will be detailed in Section 8.12.

Chapter 8: Requirements Specification 19

8.6 Pause Menu

There will be a pause button on screen at all times in level scenes, which will open
a pause menu window when clicked. The window will have a resume game button,
a button which leads to the avatar creation scene and allows the player to change
their avatar’s appearance, and a quit game button.

8.7 NPC-to-NPC Conversations

There is conversations between NPCs that the player can observe. A conversation
is represented by an object containing two NPC objects facing each other. When
the player is close to the conversation object, a start conversation button will ap-
pear. Clicking on the button will play the conversation. The dialogues from the
NPCs will be represented as GUI text messages, and the player goes from one text
message to another by clicking on the screen. The text messages will be able to
display images.

The conversation text will be stored in Firestore. Each conversation document
will have a value for whether the conversation has appeared before, so that it will
not appear again in another level; a difficulty value, to ensure only conversations
suitable to the current difficulty level will appear; the names of the NPC users in
the conversation and the name of the problematic user, so that the correct user
will be reported; and values for the number of the level the conversation appears
in and the conversation’s number in the level, so that the conversation’s location
data is saved between scenes. Each conversation document will also have a collec-
tion of issues from the problematic user, where each issue document has a points
value that is used when evaluating the player’s score, and a collection containing
the conversation’s text box data.

8.8 Reporting Functionality

The game will feature a reporting terminal object where the player can report ma-
licious or suspicious users. The GUI terminal screen hierarchy consists of a main
screen, user reporting sub screens, and a sub screen detailing the reports on an
individual user. When the player is close to the terminal, a start terminal button
will appear, which opens the main terminal screen. Each terminal sub screen will
have a button which leads back to the main screen. All delete buttons in the ter-
minal screens will lead to a deletion confirmation popup message with a cancel
button and a confirm button.

The main screen will have a section containing buttons with the names of all
NPC users in the current scene that can be reported, and a section containing a
list of reported users. There will be a button which closes the terminal, and a send

Chapter 8: Requirements Specification 20

reports button which will be detailed later in this section. Clicking on one of the
username buttons will start the reporting process for that user.

The first user reporting sub screen will feature the main report issue categories.
Each main category has its own sub category screen. Clicking on a sub category
option in the sub category screen will lead to a screen asking who to report the
issue to. Choosing an option will lead to the final confirmation screen, which con-
tains a summary of the report and a report confirmation button. The summary
includes the name of the user that is being reported, the issue they are reported
for, and who the issue is reported to. Confirming the report will add a user to the
reported users list if they are not already there, and the report will be added to
the user’s list of reports. The user is taken back to the main terminal screen, and
the visual list of reported users on the screen is updated. Each username button
in the list of reported users is accompanied by a button which will delete the user
and all of their reports from the list when clicked.

Clicking on a username in the reported users list leads to the user’s report data
screen, which contains a list of issues the user was reported for and who the is-
sues were reported to. This means that each user can be reported for multiple
issues. Each issue must be reported individually. Each reported issue in the list
is accompanied by a delete button like in the main screen list of reported users,
which will delete the reported issue from the user’s list, and refresh the report
data screen. The report data screen also has a delete button outside of the list,
which serves the same function as the user’s delete button in the main screen list,
in addition to closing the report data screen and showing the main screen.

When clicked, the send reports button on the terminal main screen will calculate
the maximum amount of points that can be earned by reporting malicious or sus-
picious users in the current level, and the amount of points the player has earned.
The button will also add feedback messages to a positive list and a negative list.
The exit to the next level will then be activated, and all terminal screens will close.

All sub category issues are saved as documents in a report issues collection in
Firestore. Each document will contain a collection called who to report to with
documents of all entities the issue can be reported to. Each entity document has
a points value containing the amount of points the player can gain by reporting
the issue to that entity.

8.9 Result Screen

As mentioned in Section 8.5, when the player exits a level, the result screen, fea-
turing the player’s score and feedback messages, will appear. It will display the
number of points the player earned in the level and the level’s maximum number
of obtainable points. A general feedback message is also shown, which is based

Chapter 8: Requirements Specification 21

on the quotient obtained by dividing the player’s earned points by the maximum
number of points. The negative and positive feedback messages mentioned in
Section 8.8 will be displayed in separate lists on the screen. Finally, the feedback
screen has an OK button, which will take the player to the next level.

8.10 Game Scenarios

As mentioned in Section 3.6, there are three different scenarios implemented in
the game. In the first scenario, the player can walk up to any number of the char-
acter pairs in the scene and go through the conversation presented by them. Each
conversation consists of multiple parts that are displayed sequentially as the player
clicks or touches the screen (depending on platform). After going through a con-
versation, the player can go to the terminal to add a report of who they think is a
threat. When the player decides that they have reported everything correctly, they
can go to the terminal and move on to the next level by sending the reports and
passing through the gate that opens.

In the second scenario, which takes place in the Twinery scene, the player will
participate in an interactive conversation with one or more NPCs. The player and
NPCs will take turns picking one of a number of options displayed on screen. To
make the player able to keep up with the progression of the conversation, the
player has to click to progress it both when they and when the AI is choosing. The
MultiSpeechLayout screen displays all the information necessary for the player to
understand what is happening by displaying who is currently picking and what
the last pick of the AI was. The choices of the AI are chosen and affected by the
choices of the play using the Hidden Markov Model.
The player is also able to run the conversation through simulation by activating
the simulation box located on the DialogueController script, in this case all choices
are made by the AI. The player is able to go through and see the choices the AI
made by clicking anywhere on the screen.
Which conversation that is active is manually chosen by dragging an appropriate
.txt file of their choice into the DialogueController script on the MultiSpeechLayout
object in the Canvas object.

In the third scenario (the job scenario), the player will take a look at their own
social media profile. By selecting the profile logo, the player arrives at their profile
page. Here they will have to go through their posts and remove any that might be
damaging to themselves. They will also go through their list of accounts that they
follow, and unfollow problematic accounts.

Chapter 8: Requirements Specification 22

8.11 Player-to-NPC Conversations

The player-to-NPC conversations make use of the external web program Twinery
so domain experts can create dialogues that can be imported and run in the Unity
Twinery scene.

When the conversation starts, one of two different variations will play.
The first operates like the usual multiple choice dialogue in a game where the
player will select one of multiple options and be shown the standard answer to
that option before continuing to traverse the dialogue tree. In the second variation,
the player and the NPC take turns choosing where to lead the dialogue.

8.12 User Profiles

In addition to the pause button that was detailed in Section 8.6, there will be a pro-
file button on the screen at all times in level scenes. The button takes the player
to their in-game profile pages, where other NPC users’ profiles can be accessed
as well. All profile sub pages will have a back button which takes the player up a
level in the page hierarchy (either to the main page or to a page closer to the main
page in the hierarchy). All profile pages that display information from Firestore
will update the information every time the pages are entered.

The player’s user profile is part of the job scenario, which is described in Sec-
tion 8.10. All user profile data will be stored in the users collection in Firestore,
which was mentioned in Section 8.5.

There will be 8 available profile pictures in the game, and each user’s profile pic-
ture will be saved in that user’s document in Firestore. The correct profile picture
for a user will be displayed in all places where profile pictures are shown. NPC
users’ profile pictures will be randomly chosen.

Each user profile main page will show the user’s profile picture and username,
and buttons which lead to the user’s following, followers, and posts pages. There
will also be a back button which closes all profile pages, and an all users button.
On all NPC profile main pages, a follow/unfollow button will be displayed. The
player’s main page will have a user settings button, where the player can change
their own settings.

The all users page will show all users in the users collection, including the player,
in a list. Each user in the list will be clickable, and will lead to that user’s main
profile page.

The followers and following pages will display the users that the player is followed
by or follows, respectively. Each user will have a followers collection and a fol-

Chapter 8: Requirements Specification 23

lowing collection in their Firestore user document, which will save this inform-
ation. All users will have a problematic boolean value in their user document,
and the player will receive negative points to their score (Section 8.9) if they fol-
low a problematic user. The follow/unfollow button on an NPC profile page, as
mentioned earlier in this section, will add or remove that NPC user to or from the
player’s following collection. The followers collection in the NPC’s user docu-
ment will also add or remove the player depending on whether the player follows
the NPC. The users that each user follows or is followed by will vary depending on
which level the player is currently in, so the documents in those collections have
a list of numbers of the levels that they apply to, called level numbers.

The posts page will show all of the user’s posts in the Firestore posts collection
in the user’s document, which belong to the level the player is currently in. NPC
users’ posts will let the player know which users are problematic and should be
unfollowed. The player’s posts page will have additional functionality and will
serve a different purpose. The post documents in the player’s posts collection will
have additional problematic and deleted boolean values. Each of the player’s
posts will have a delete/restore button accompanying it, which will change the
post’s deleted boolean, meaning individual posts can be deleted or restored. The
player’s posts page will also have a restore all deleted posts button. The player will
receive a negative point for each problematic post that is not deleted (Section 8.9).

The player’s user settings page will include three options; change profile picture,
change username, and edit avatar. The edit avatar option will lead the player to
the avatar creation scene, like the option in the pause menu (Section 8.6). The
change profile picture page displays all available profile pictures. Clicking on one
will change the player’s profile picture to that image, and will take the player
to their main page. Finally, the change username page will feature an input field
where the player can type their new username, and a save changes button which
changes the username and takes the player to the main screen.

Chapter 9

Technical Design

9.1 Choice of Game Engine and Game Style

We choose the Unity game engine as a development platform as we all have previ-
ous experience with it, and because it supports many different devices and video
game platforms. We also have decided that the game would be in 3D, as two of
our members are more comfortable with, and more interested in, 3D game devel-
opment.

9.2 Choice of Database

We choose Firebase’s Firestore database service to hold all of the game’s edu-
cational text content. Two of our group members have prior experience with
Firestore, and Firebase is primarily used for mobile and web applications, which
fits with our primary focus on mobile and PC. Firestore’s hierarchical system of
documents and document collections is also intuitive to us because of its resemb-
lance to JSON, and will allow for flexibility with the educational text content.

9.3 Firestore Integration in Unity

To integrate Firestore into Unity, the Unity project must be configured to work
with either Android or iOS. A project needs to be created on the Firebase Console
web site, and the Unity application needs to be registered in the Firebase project.
Firestore is integrated into Unity by installing the Firebase package into the Unity
project and by using the package in the C# scripts. Firebase and Firestore package
API is described in Section 11.1.

9.4 Firestore Database Structure

This section describes our Firestore database structure, but will not explain the
usage of the database elements in the game. Explanations of the usage of the

24

Chapter 9: Technical Design 25

Firestore collections, documents, and document values are in Chapter 11.

Our Firestore database contains three main collections that we use in the game;
conversations, report issues, and users.

The conversations collection contains documents for every conversation that the
player may encounter in the game. There are two conversation types; NPC-to-NPC
conversations and player-to-NPC conversations. The NPC-to-NPC documents have
the naming scheme conversationX, where X is the order number, and the player-
to-NPC documents have the naming scheme player-NPC-conversationX. We use
the player-to-NPC documents to store conversation location data and the name of
the NPC in the conversation, which we use to retrieve the NPC’s avatar appear-
ance data. However, the NPC-to-NPC documents store everything related to their
conversations. Both document types have the following values: already used,
difficulty, level conversation number, and level number. The NPC-to-NPC
documents also have the following values: issue user (problematic user), per-
son 1, and person 2. Additionally, the NPC-to-NPC documents have the issues
and text boxes collections. In the issues collection, the ID of each document is
an issue that exists in the report issues, and each issue document contains a
points value. The text boxes collection contains documents ordered by their ID
numbers, and each document has a name value and a text value.

The report issues collection contains documents for all issues that users can
be reported for. Each document has a who to report to collection, which con-
tains a document for each entity that the issue can be reported to. Each entity
document has a points value.

The users collection contains documents for all users in the game. Each user doc-
ument has the following appearance values: hair colour, hair/headgear, hijab
colour, pants colour, shoe colour, skin tone, and sweater colour. They also
have a problematic value and a profile picture value. Each document has fol-
lowers, following, and posts collections. The followers and following collec-
tions have documents for every user that follows the user with the collection,
or every user that is followed by the current user. Each user document in those
collections has a level numbers list, containing the numbers of all of the levels
where the user follows or is followed by the current users collection document.
The posts collection contains a document for every post that the user has posted.
Each document has a level number value and a text value.

Our project repository contains a document with our database structure repres-
ented in JSON. Access to this document may be granted upon request. Contact
information is in Appendix A.3.

Chapter 9: Technical Design 26

9.5 Decision to Use Twine

When we decided that we wanted to create a couple of different examples to show
our difficulty adjustment model, making a dialogue tree seemed like a pretty lo-
gical decision as our project is mainly focused around dialogue. However, just
forcing through and making one or more dialogue trees from scratch is not really
an option as making normal 1 dimensional dialogues already require more than
enough work. Especially so since one of the focuses for our task is to make the
learning content changeable, finding an external and easily accessible solution
that we can use to construct the dialogue trees is therefore optimal.

We searched for and found a couple of different options like Twinery and Fungus,
both great tools for making interactive dialogue. Fungus has the advantage of be-
ing a Unity extension making it very easy to incorporate into the game. Twinery
on the other hand holds the advantage in accessibility, only requiring internet
connection as opposed to Fungus which requires you to have unity installed. Also
unlike Twinery, Fungus will not have the same ability to just format out the dia-
logue to a text file without us having to make some additional functionality. The
main advantage of Fungus being native to unity is not too great either as we had
found a finished solution for importing Twinery to Unity.

9.6 Twine Integration in Unity

For incorporating Twinery in Unity, we found a guide by Ventures [33]. By con-
verting Twinery to txt files and parsing the Twinery tree directly into Unity, we
have an optional text based database for our dialogues. However, integrating this
text database with our already existing system for NPC-to-NPC conversations in
Firestore has proven to be challenging. One of the issues lies in the functionality of
clicking response buttons in the Twinery implementation. Because Twinery com-
prises of tuples of answer text and response text, it is harder to fully disconnect
them into two separately modulated (by Hidden Markov Models) dialogues. We
have a trade-off by using the simple text database represented by the txt files and
a much more flexible storage in Firestore. Nevertheless, we parsed Twinery into
graph nodes and could have split the tuple by storing in Firestore. We decided not
to do that, but kept both systems separated, mainly to keep the dialogue system
provided by Twinery as close to its original as possible. The reasons for this is that
Twinery has a very good web interface for testing dialogues as you write them.

Another issue that has surfaced a couple of times in the development of the
Twinery scenario is where to store data and what data to store. The solution here
has been to store information that only needs to show up once, like the number
of NPCs, in the tags of the first node. Information that is not the same for each
node, like whether this node is controlled by an NPC or the player, is stored in the
tags of each node.

Chapter 10

Graphic Design

Graphic design has not been a primary focus in our bachelor project, but some
of our graphic design decisions may be helpful to our client’s development of an
educational application.

10.1 Art Style and General Design Decisions

None of our group members are skilled artists, so the graphic design and art style
in our proof-of-concept game is simple. 3D objects and environments have simple
designs and colourful textures, giving the game a cartoon-like appearance. The
game uses Unity’s default lighting and shadows for mobile games, which adds
some realism to the cartoon-like style.

All of the text in our game uses the Liberation Sans font, which is the default
font in the TextMeshPro package. Most of the clickable GUI menu elements use
TextMeshPro’s default button template. All list elements, such as usernames, re-
port issues, posts, and feedback messages, are displayed in a Unity Scroll View, so
that all of the necessary information can fit on one screen, which is particularly
important for devices with small screens. All delete buttons are red to alert the
player that the action may have significant consequences, which conforms with
the common understanding that the colour red often symbolises the words danger,
stop, and warning. A confirmation text box appears whenever the player is about
to delete something, to prevent accidental deletions.

10.2 Avatars and the Avatar Creator

We want the avatars to be inclusive in their design. The user avatars have hu-
manoid designs that are simple enough to appear gender neutral. As opposed to
an advanced character creator for realistic looking human characters, this is a rel-
atively easy solution to make the avatars more inclusive. Our avatar creator allows

27

Chapter 10: Graphic Design 28

for customisation of skin tone 1 , hair type (bald, short, or long), hijab, hair colour
2 , and clothing colours.

The background of the avatar creator features two shades of blue to fit with the
theme colour of our fictional social media platform. Options for skin tone and
hair/headgear are on page 1 of the creator, and options for the sweater, trousers,
and shoes are on page 2. Separating these options makes the interface simpler for
the player, and will prevent the screen from appearing cluttered, which will be a
problem for small devices in particular.

10.3 Level Environments

The game takes place in a three-dimensional representation of a social media
platform. Borders and walls in each level consist of rectangular prisms of various
shapes and sizes, which may represent pixels. This gives the environment a more
"digital" appearance. Level environment objects are coloured in various shades of
blue, which is the theme colour of our social media platform. The environment
background is white, and may represent the background of text messages or the
areas between different windows or containers in a social media graphical lay-
out. These design choices will help the player understand that they are in a social
media platform, which could make the player’s gameplay experience more im-
mersive.

Interactions between users on the social media platform are represented as in-
person interactions between the users’ avatars in the level environment. This
makes relatively impersonal text conversations seem more personal, and may rep-
resent the real, personal effects conversations on the Internet may have on people.
The presence of what appears to be other people also makes the environment feel
more alive and immersive.

Another example of graphic design in the level environments are the level exits.
The exits light up when they are open (Section 11.3), which helps the player un-
derstand that they need to go there. The terminal in each level (Section 8.8) is
represented by a blue 3D model of a computer monitor.

1Skin tones retrieved from: https://www.color-hex.com/color-palette/36175
2Hair colours retrieved from:

https://www.color-hex.com/color-palette/22939
https://www.color-hex.com/color-palette/4614
https://www.color-hex.com/color-palette/85503
https://www.color-hex.com/color-palette/102849
https://www.color-hex.com/color-palette/91001

https://www.color-hex.com/color-palette/36175
https://www.color-hex.com/color-palette/22939
https://www.color-hex.com/color-palette/4614
https://www.color-hex.com/color-palette/85503
https://www.color-hex.com/color-palette/102849
https://www.color-hex.com/color-palette/91001

Chapter 10: Graphic Design 29

10.4 Social Media Conversations

The first scenario is designed to mimic some sort of social media or messaging
service, and the start conversation button is designed to look like a speech bubble.
The MultiSpeechLayout is designed to look like a mobile version of a social media
messaging page. The sending of images reinforces this look.

For the conversation images, we found images in the public domain or with sim-
ilar licences online 3 , and altered them so that the player will not see them clearly,
which makes the images appear to be less appropriate than they really are.

10.5 Reporting Terminal

The start terminal button (Section 8.8) uses a custom image of a white monitor
symbol with an exclamation mark on its screen, which is on a blue background.
The symbol looks like the terminal 3D model (Section 10.3), and the exclamation
mark symbolises that actions can be taken by using the terminal.

The reporting terminal pages use a custom light blue background, which fits with
the blue theme of the social media platform, meaning that the terminal is con-
sidered to be a part of the platform. The main screen shows the names of the
users that can be reported as buttons, and the list of reported users in a Scroll
View (Section 10.1).

When reporting users, the player navigates through the pages by clicking on de-
fault TextMeshPro buttons (Section 10.1). Scroll Views are used on main category
pages that have many sub categories. The report data screen for an individual user
features a Scroll View of the individual reports on the user.

List elements that can be deleted individually, such as the users in the list of repor-
ted users, or the reports on an individual user, have a delete button accompanying
them (Section 8.8). The buttons use a custom delete image featuring a white trash
can symbol on top of a red background, which should make it obvious to the player
what it does.

3Conversation image sources:
https://pixabay.com/no/photos/dame-dans-nattklubb-disco-jente-3492751/
(Pixabay License)
https://stock.adobe.com/no/images/cropped-view-of-sexy-man-taking-off-jeans-while-lying-on-bed/
301208447 (Adobe Stock Standard License)

https://pixabay.com/no/photos/dame-dans-nattklubb-disco-jente-3492751/
https://stock.adobe.com/no/images/cropped-view-of-sexy-man-taking-off-jeans-while-lying-on-bed/301208447
https://stock.adobe.com/no/images/cropped-view-of-sexy-man-taking-off-jeans-while-lying-on-bed/301208447

Chapter 10: Graphic Design 30

10.6 Profile Pages

The button which takes the player to their profile pages (Section 8.12) uses a
"default profile picture" image 4 , which is inspired by default profile pictures in
social media applications. Default profile pictures should be recognisable to most
people, and they would most likely attribute it to a profile.

All profile pages have the same background as the terminal pages (Section 10.5),
and the pages are navigated by using default TextMeshPro buttons (Section 10.1).
All Scroll View list element have a darker blue colour compared to the background
to make them stand out.

The main profile page features the user’s profile picture, which can be one out
of 8 options (Section 8.12). One of the options is the default profile picture, and
the others are simple custom recoloured versions of it. The all users, following, and
followers pages (Section 8.12) all use Scroll Views with username list elements,
each featuring the users’ correct profile pictures. The posts page contains a Scroll
View with post elements. As mentioned in Section 8.12, the post elements on the
player’s posts page have a delete or restore button accompanying them. The delete
button uses the same trash can symbol image as on the terminal’s main page and
user report information page (Section 10.5). The restore button is green and fea-
tures an arrow pointing away from a trash can symbol, the green indicating that it
is a safe action, and the arrow indicating that something is taken out of the trash
can.

10.7 Pause Menu, Popup Text Boxes, and Result Screen

The pause menu and all popup text boxes have a default light grey panel Unity
object as their background. The result screen has a grey background that is a
recolouring of the background we use in the terminal and profile pages. The grey
backgrounds of the popup text boxes make them stand out from the blue social
media theme, which lets the player know that they are important and require
attention. The grey backgrounds of the pause menu, popup text boxes, and result
screen also differentiate them from the theme of the terminal and profile pages,
and lets the player know that they should not be considered as parts of the social
media platform.

4Retrieved from: https://pixabay.com/vectors/blank-profile-picture-mystery-man-973460/
(Pixabay License)

https://pixabay.com/vectors/blank-profile-picture-mystery-man-973460/

Chapter 11

Implementation

This chapter describes everything that our group implemented, which follows the
requirements specification in Chapter 8. The descriptions of the implementations
are quite detailed, as it is primarily meant for our client, so it is not necessary for
the grader of this report to read everything here.

11.1 Programming and Implementation Tools

In our Unity project scripts, we use the C# programming language, which is
Unity’s scripting language1. We use the Visual Studio development environment
to write the scripts. We use the UnityEngine C# package to access Unity specific
APIs. Retrieving, adding, and updating data in Firestore is accomplished by using
the Firebase C# package. Firestore collections and documents are accessed by us-
ing database references and dot notations where e.g. accessing a collection can
be written as demonstrated by the following code listing.

Code listing 11.1: Getting collection and document references

FirebaseFirestore db = FirebaseFirestore.DefaultInstance;
CollectionReference collectionRef =

db.Collection("collection_ID")
.Document("document_ID")
.Collection("collection_ID");

Adding a document is accomplished by using the SetAsync function, and Up-
dateAsync is used to update a document. Looping through documents in a collec-
tion can be accomplished by getting a collection/document snapshot asynchron-
ously, and creating a task which uses the snapshot and runs on the main thread,
as demonstrated in the following code listing.

Code listing 11.2: Looping through Firestore documents

FirebaseFirestore db = FirebaseFirestore.DefaultInstance;
CollectionReference usersRef = db.Collection("users");
usersRef.GetSnapshotAsync().ContinueWithOnMainThread(

1https://unity3d.com/learning-c-sharp-in-unity-for-beginners

31

Chapter 11: Implementation 32

task =>
{

QuerySnapshot snapshot = task.Result;
foreach (DocumentSnapshot document in snapshot.Documents)
{

DocumentReference userRef = usersRef.Document(document.Id);
userRef.UpdateAsync("hair_color", "");

}
}

);

11.2 General Implementation Practices

Almost all variables are set in the scripts, and all functions that are activated by
buttons are set to the button click listeners in scripts, rather than in the Inspector.
This prevents us from having to set all variables and functions in the Inspector
every time we are creating a new level. The only variables that are not set in
scripts are objects that cannot be found in the Hierarchy window, such as Prefabs
(not Prefab instances), Materials, and sprites.

11.3 3D Models and Environments

All of our Unity scenes have default directional light, and each level exit has an
added white point light that is activated when the exit opens (Section 10.3). Level
environments in our game mostly consist of simple three-dimensional geometric
shapes. The simplest and most basic shapes used for the environments are rectan-
gular prisms and two-dimensional planes (in 3D space), which are default Unity
shapes. We used the ProBuilder Unity package to create simple shapes that are
not default shapes in Unity, such as a ramp. More advanced 3D models, such as
the in-game avatars and the reporting terminal, were created in Blender. Avatars
consist of several parts in a hierarchy, which means that each individual part can
have its own properties.

11.4 GUI Menus and Interaction

All GUI elements in each scene in our game are children of a Unity Canvas ob-
ject with the Screen Space - Overlay render mode. The overlay mode places GUI
elements on the screen, rendered on top of the game scene[2], in a completely
two-dimensional space. The draw order of the elements is in the same order as
the objects in the Unity Hierarchy window[2].

GUI menu navigation in our game utilises the draw order, so that elements higher
up in the menu hierarchy are drawn after (on top of) elements lower in the hier-
archy. As an example, this means that when the player is on page 1 and clicks on
a button showing page 2, the button only shows page 2 without needing to hide

Chapter 11: Implementation 33

page 1, and when the player clicks on the back button on page 2, the button only
needs to hide page 2.

All Unity GUI buttons are by default clickable with both a computer mouse and a
touch screen, which complies with the requirement stated in Section 8.2.

11.5 Static Variables

There is a script with a static class called StaticVariables, which applies to all
scenes and holds static variables that are persistent throughout a gameplay ses-
sion. It contains data such as a gameRunning boolean variable, which is true when
the player is in a level scene and the game is not paused, a variable containing
the number of the level that the player is currently in (currentLevelNumber), a
variable containing the current difficulty level (currentDifficultyLevel), and a
variable containing the player’s score percentage from the previous level (last-
PlayerScorePercentage) (Sections 11.13 and 11.19).

11.6 Game Manager and Pause Menu

There is a Game Manager object and script in all scenes in the game. It sets click
listeners for the pause button and the to profile button which are always on the
screen in level scenes, and it handles the pause menu, loading level scenes by call-
ing the script’s LoadLevel function, and game states such as whether the game
is running. The Game Manager handles the game running state by updating the
gameRunning variable in StaticVariables (Section 11.5).

The pause menu has options for resuming the game by setting gameRunning to
true, going to the avatar creation scene (by calling the GoToAvatarCreation func-
tion), and quitting the game.

11.7 Firebase and Firestore Initialisation

There is an object and a script in the avatar creation scene called FirebaseInit,
which only runs at the start of a game session. This object shows an error message
if not all Firebase dependencies could be resolved. It also resets Firestore informa-
tion that is exclusive to one game session, such as the conversations’ already used
value and their location data (Section 11.13), and the avatar appearance data. It
also randomises the profile pictures of all NPC users in the game, by choosing
a random colour string from a selection, and setting it in the user document’s
profile picture value. (Section 11.18).

Chapter 11: Implementation 34

11.8 Avatar Creator

The avatar creation scene’s most important object and script is the Avatar Creation
Controller. This object and script is also in level scenes so that some of its functions
can be accessed there. The script has Material variables for skin tones, hair col-
ours, and clothing colours that are set in the Inspector, which are used to colour
the avatar. The script assigns all avatar parts (Section 11.3) to variables, in part
by using a function called SetObjectsToBeColored which is also used elsewhere
(Section 11.11). The avatar’s hair and headgear objects are in separate variables.
Parts containing skin tones, and parts that make up the sweater, trouser, and shoe
clothing items, are in four separate lists, so that all skin parts get the same skin
tone, and all parts of one clothing item get the same colour.

The avatar creator has buttons for which hair type or headgear the avatar should
have, and clicking on a button will enable the object associated with the button,
and disable all other hair/headgear objects. The creator also has buttons which
change skin tone, hair colour, and clothing colours. Skin, hair, and the four cloth-
ing items including headgear, all have separate sets of colour buttons, which are
added to separate lists. Each tone/colour button in the avatar creation scene has
a name indicating the parts that the button will colour, and which colour the parts
will have. Clicking on a button will then colour the correct parts with the correct
material.

The function which generates random avatars, called CreateRandomAvatar, finds
random colours by generating random indices in the tone/colour arrays, and it
finds a random hair/headgear type by generating an integer between 1 and 4
(there are four hair/headgear options). It then uses the Avatar Creation Control-
ler’s appearance setting functions to create the avatar.

When the player presses the finished creating button, the avatar appearance is
saved in the player’s user document in Firestore, and the first or current level
scene is loaded, depending on when in the play session the player is in the avatar
creation scene. The function for saving avatar appearances, called SaveAvatarAp-
pearance, is also used outside of the avatar creator script (Section 11.11), and it
saves values for skin tone level, hair colour, and clothing colours in Firestore (men-
tioned in Section 8.5). There is also a function which does the inverse and sets the
avatar appearance based on the values in Firestore, by using the Avatar Creation
Controller’s appearance setting functions. This function is called SetAvatarAp-
pearance, and is used exclusively outside of the avatar creation script, which is
described in Section 11.11.

Chapter 11: Implementation 35

11.9 Camera

The in-game camera has a script which updates the camera’s position depending
on the player object’s position, making it follow the player at all times.

11.10 Player Movement

The player object has a script called PlayerController, which, among other things,
controls the player avatar’s movement. The player can click on an object in the
game, and the player avatar will smoothly rotate and move towards the point
on the object that was clicked. It detects both mouse and touch clicks, and both
methods call the movement function and sets the point on the screen that was
clicked as a parameter. The movement function uses the ScreenPointToRay func-
tion, which casts a ray from a point on the screen in the direction the in-game
camera is facing. When the ray hits an object, the point on the object that was
hit is saved in a variable called targetPoint. The point’s X and Z position values
are then used in two MoveTowards function calls, and the final movement vector is
used in the MovePosition function, which smoothly moves the player towards the
point at a constant specified speed. The Y value is not used, so that the player will
not be able to fly. The player movement functionality is shown in the following
code listing.

Code listing 11.3: Smooth movement towards a point

// Move player rigidbody toward the point on the ground
// that is tapped/clicked on, in the X and Z directions
Vector3 movePosition = transform.position;
movePosition.x =

Mathf.MoveTowards(
transform.position.x, targetPoint.x, walkSpeed * Time.deltaTime

);
movePosition.z =

Mathf.MoveTowards(
transform.position.z, targetPoint.z, walkSpeed * Time.deltaTime

);
playerRb.MovePosition(movePosition);

For rotation, the vector between the player’s position and the target position is
found, and the player avatar’s forward direction is gradually rotated towards the
point at a specified speed using the RotateTowards and LookRotation functions,
as shown in the following code listing.

Code listing 11.4: Smooth rotation towards a point

// Get target point with the player’s Y position, so that the player
// always stands vertically when rotating towards the target
Vector3 targetPointAtPlayerY =

new Vector3(targetPoint.x, transform.position.y, targetPoint.z);

// Find direction to the target point from the player’s current position
Vector3 targetDirection = targetPointAtPlayerY - transform.position;

Chapter 11: Implementation 36

// Rotate the player’s forward vector towards the
// target direction by one step per frame
float rotationStep = rotationSpeed * Time.deltaTime;
Vector3 newDirection =

Vector3.RotateTowards(transform.forward, targetDirection, rotationStep, 0.0f);

// Rotate the player one step closer to the target direction per frame
transform.rotation = Quaternion.LookRotation(newDirection);

The point on the object that is clicked is marked by a symbol object called Marker
which has its own script. Its position is always set to the targetPoint variable.

11.11 Setting Player and NPC Avatar Appearances

As in the Avatar Creation Controller, the scripts that set the avatar appearance for
the player avatar and the NPC avatars, PlayerController and SpawnConversa-
tionAvatars respectively, have variables for avatar parts. They both use functions
from the Avatar Creation Controller (Section 11.8). The scripts use the SetOb-
jectsToBeColored function to add avatar parts to their respective lists. In the
Player Controller, the avatar appearance is then set using the SetAvatarAppear-
ance function with the player’s appearance data from Firestore.

The SpawnConversationAvatars script is used for both NPC-to-NPC and player-
to-NPC conversation objects. The user documents which store the avatars’ ap-
pearance data (Section 11.8) are found by using the usernames in the Firestore
conversation document that is allocated to each conversation object by the Con-
versation Allocator (Section 11.13). Each of the two conversation types has its
own appearance setting function. In both functions, if the avatars have appear-
ance data saved in Firestore, the SetAvatarAppearance function is used, other-
wise random avatars are created by using the CreateRandomAvatar function, and
the appearance data is then saved to Firestore with the SaveAvatarAppearance
function.

11.12 Hidden Markov Model

11.12.1 Hidden Markov Models Equations

Operations on a Hidden Markov Model comprise filtering, prediction, smoothing,
most likely explanation and learning [24]. Filtering is the process where a new
evidence is provided and a new estimated prior is calculated. Prediction is based
on previous evidence, but at the moment a prediction is given, no evidence is
provided contrary to filtering. Both filtering and prediction are made by equation
11.1 outlined below [24]. Smoothing provides a posterior distribution over a past
state given all evidence up to present. Smoothing is done by combining equation
11.1 and 11.2, the forward and backward passes [24]. The most likely explan-
ation is the sequence of events that reach the maximum probability. The Viterbi

Chapter 11: Implementation 37

algorithm can be used to find this sequence. The recursive step of the Viterbi al-
gorithm is outlined in equation 11.3. We have used the matrix implementation
of forward and backward explicitly outlined in equation 11.4 and 11.5. They are
equal to 11.1 and 11.2.

Learning of a dynamic Bayesian network as Hidden Markov Model is a by-product
of inference providing estimates of what transitions actually occurred and what
states generated the readings. These estimates can be used to learn the model i.e.
through the expectation-maximisation algorithm [24].

Hidden Markov Equations [24] (14.5,14.9,14.11,14.12,14.13)

P(X t+1|e1:t+1) = αP(et+1|X t+1)Σx t
P(X t+1|x t)P(x t |e1:t) (11.1)

P(ek+1:t |Xk) = Σxk+1
P(ek+1|xk+1)P(ek+2|xk+1)P(xk+1|Xk) (11.2)

m1:t+1 = P(et+1|X t+1)max x t
P(X t+1|x t)max x1:t−1

P(x1:t−1, x t , e1:t) (11.3)

f1:t+1 = αOt+1T T f1:t (11.4)

bk+1:t = TOk+1 bk+2:t (11.5)

We have included online functions building on updating next based on previous
(recursion) that does not depend on inverse matrices. There is a recursive smooth-
ing algorithm, but the online version include inversions, so our implementation
does not fully take advantage of combining forward and backward passes. To find
the best models and train them to get relevant parameters, we suggest using an
external python environment or use Bayesian network software, and then include
found parameters in the Hidden Markov Models in the Unity implementation.

11.12.2 Implementation of Hidden Markov Models

We start with a small Hidden Markov Model class placed on the player and NPCs
and/or game components. We can use Bloom’s taxonomy to operationalise learn-
ing. Bloom’s theory assumes a sequential order from the lowest to the highest
level [28]. This is not necessarily the case in real life learning, as i.e. Vygotskij has
suggested with his scaffolding theories [17]. As a starting point this is not import-
ant, as the Hidden Markov Model should be tweaked to fit game components and
learning goal. The outline for the transition model (row oriented) for the network
in figure 11.1 will look like this:

P(X t |x t−1) =

state reci te combine anal yse cri t ique create sum
reci te 1

combine 1
anal yse 1
cri t ique 1
create 1

Chapter 11: Implementation 38

The columns represent the state at time t. The rows represent the prior state at
time t-1. The conditional variable, the prior, is always summing up to 1. .

Figure 11.1: A Bayesian net representation of Bloom’s taxonomy[34]

The code for making and manipulating Hidden Markov Models is ported from py-
thon development making all functions without any other libraries than Numpy.
Functions are first tested in python and then ported to C-sharp. To handle odd
shaped matrices, simple functions for matrix multiplication and transposing is
provided. This is definitely not a viable long term solution. Unity have an inter-
face for running python 2 code, however, that seemed a bit waste as python 3 now
is the standard for all modern machine learning python libraries. In the future, if
Unity makes python 3 interface available, the users should decide to change to
this. Currently the Hidden Markov Models in the Unity game mock-up can be
randomly generated and run online either with random settings or user defined
parameter settings. This suffice for both running online dynamic difficulty adapt-
ations and for setting up simulations. Currently the dialogue mystery gameplay is
set up to run completely simulated. The mechanism used is probability weighting,
calculated in real time. To run large simulations we suggest doing a pre-sampling
and using this to feed the next actions.

Chapter 11: Implementation 39

(a) (b)

Figure 11.2: Bayesian network graph model for difficulty adaptation with tax-
onomy and flow as targets. Figure a) starts from player and figure b) starts from
game item. The choice of model depends on purpose and real life causal depend-
encies.

11.12.3 Overview of Mock-ups and HMM

Component Quest Mystery Socio-Quiz
Player’s Profile y y y
Content Generation y n y
Emotions n y n
Points y n y
Punishment n n y
Randomness y y y
NPC Manipulations n y n
Simulation n y n

11.12.4 Setting up the Hidden Markov Model - an example

In order to set up a Hidden Markov Model on any game component, you need to
create the model. Three components are needed. A prior, a transition model and a
sensor model. A prior is just your guess that the starting state is at a certain state
or has the possibility of being in a certain state. If you do not know, you can start
out with equal probability on all states. If you have two states, that is 0.5 on each.
If you have 4, 0.25 on each.

Setting up the transition table i.e. for a player´s learning using the taxonomy
you need a 5 by 5 matrix. Either you fill in you data or use the random generation
function.

Chapter 11: Implementation 40

P(X t |x t−1) =

Transition recite combine analyse critique create
recite
combine
analyse
critique
create

The sensor model comprise applicable measures to confirm a particular state or
transition to or from a state. Even if states have to be discrete, the sensor variables
values can be both discrete or continuous. The sensor model i a K by N shaped
matrix where N is number of states (here 5) and K is the number of sensor vari-
ables (flexible).

P(ek+1|xk+1) =

Sensor recite combine analyse critique create
sensor1
sensor2
sensor3
sensor4

Set the prior as a 5 by 1 array, with values either at your choice, random or evenly
distributed. You are now good to go with running your model.

Chapter 11: Implementation 41

11.13 Conversation Allocator

The Conversation Allocator object and script is in all level scenes, and allocates
conversation data from Firestore to conversation objects in the scene. It finds NPC-
to-NPC and player-to-NPC conversation objects in the scene and places them in
two separate lists. All conversation objects and the terminal (Section 11.17) are
set to inactive, and will be activated once all conversations have been allocated.

The script has a boolean variable called levelHasSavedConversations, which
is true if conversation data associated with the current level exists in Firestore.
The script tries to find existing conversations by using a function called FindAn-
dAllocateSavedConversations, which loops through all Firestore conversation
documents, and uses the already used value and the location data in each doc-
ument. If the conversation has been used and the location is in the current level,
levelHasSavedConversations is set to true. The function then checks the conver-
sation type, and for each of the two types, the same function but with different
parameters is called. The function loops through the conversation object list, and
then in the loop checks the Firestore conversation number. If the number matches
with the current index in the list, the conversation data will be allocated to the
object. FindAndAllocateSavedConversations allocates conversation data to all
objects of both types, by assigning the Firestore conversations’ document IDs to
variables in scripts belonging to the conversation objects. The variable will be as-
signed in the SpawnConversationAvatars script for both conversation types (Sec-
tion 11.11), and it will also be assigned in the ConversationController script
belonging to the NPC-to-NPC conversation objects (Section 11.15).

If the levelHasSavedConversations boolean is false, new conversations will be
found and allocated with the FindAndAllocateNewConversations function. The
function creates two lists of eligible conversation documents, one for each con-
versation type. The function calls another function which uses a Hidden Markov
Model (Section 11.12) to determine the difficulty of each new conversation that
will appear in the level, if the player has a score value from the previous level
(Section 11.19). The score value and the current difficulty level are saved in Stat-
icVariables (Section 11.5). The player score is used to determine the difficulty of
each conversation in the next level, as a method of dynamic difficulty adjustment.
The function loops through all Firestore conversation documents, and if the doc-
ument’s already used value is false and its difficulty matches with the current
difficulty level in StaticVariables, the document will be added to the correct list
of eligible conversations. After the loop is done, two lists containing all indices in
each eligible conversations list are created, as shown in the following code
listing.

Code listing 11.5: Adding list indices to new lists

// All indices in the lists of eligible conversations are added to separate
// index lists, used to guarantee different conversation data for all

Chapter 11: Implementation 42

// conversation game objects
List<int> availablePlayerToNPCIndices = new List<int>();
List<int> availableNPCToNPCIndices = new List<int>();
for (int i = 0; i < newEligiblePlayerToNPCConversations.Count; i++)
{

availablePlayerToNPCIndices.Add(i);
}
for (int i = 0; i < newEligibleNPCToNPCConversations.Count; i++)
{

availableNPCToNPCIndices.Add(i);
}

Both conversation object lists are then looped through in two separate calls to
the same function, with different parameters. For NPC-to-NPC conversation ob-
jects, the document ID is also added to their Conversation Controllers as with
FindAndAllocateSavedConversations. In each call to the function, an eligible
conversation is randomly chosen by finding a random index in the correct index
list, removing that index from the list so that it cannot be used again, and using
the index to get the document ID from the correct list of eligible conversations.
This is shown in the following code listing.

Code listing 11.6: Retrieving a random index from the list

// Finds a random index from the list of available indices,
// and then removes it from the list, so that it
// cannot be used again
int uniqueRandEligibleConvIndex =

availableIndicesList[Random.Range(0, availableNPCToNPCIndices.Count)];
availableIndicesList.Remove(uniqueRandEligibleConvIndex);

// Gets the document ID from the eligible
// conversation with the random index
string conversationDocumentID =

eligibleConversations[uniqueRandEligibleConvIndex].Id;

The document ID is then allocated to the conversation object scripts as mentioned.
The conversation document’s already used value is set to true, and the docu-
ment’s level number and conversation number values are set.

11.14 Conversation Objects’ Detection of the Player

The SpawnConversationAvatars script, which is attached to all conversation ob-
jects, also detects the player object and displays the start conversation button,
according to the requirement in Section 8.7. Each conversation object has a start
conversation button associated with it. In SpawnConversationAvatars, the button
is found by using the conversation object’s name, which is a part of the button’s
name. When clicked, if the object is an NPC-to-NPC conversation object, the but-
ton calls the StartConversation function in the object’s Conversation Controller,
which is detailed in Section 11.15. The start conversation button will also appear
when the player is close to the player-to-NPC conversation objects, but at the time
of writing, the player-to-NPC conversations do not start when clicking on the but-

Chapter 11: Implementation 43

ton. An example of a player-to-NPC conversations can be played separately in the
Twinery scene, as mentioned in Section 8.11.

The script’s Update function calls a function called DetectPlayer every frame,
which uses Unity’s Physics.OverlapSphere function. The function detects ob-
jects which enter a sphere with a certain radius around the conversation object’s
position. If the object is the player, a playerDetected boolean is set to true. An
if statement activates the start conversation button if the boolean is true and
the Conversation Controller’s conversationPlaying boolean (Section 11.15) is
false, and disables the button otherwise.

11.15 NPC-to-NPC Conversations

Once the Conversation Allocator allocates the conversation IDs to the conversation
objects, the objects are activated (Section 11.13). The script called Conversation-
Controller is attached to all NPC-to-NPC conversation objects, and handles the
playing and display of the conversation in the object the script is attached to. It
has a GetTextBoxData function, where the conversation ID allocated to the con-
versation object is used to retrieve the conversation’s text box data from Firestore.
The retrieved text box data is saved in a list of TextBox struct objects, where each
object has values for the name of the user who is talking, and the text in the user’s
text box.

To display the conversation in an understandable manner that gives the player
the possibility of looking at more than just one entry at the time, we make use
of three object collections. They are identical in all aspects except their location,
where their y value is different hence the name top, middle and bottom. They each
consist of a background(Image), which is the parent, two texts, a name and con-
tent texts and an image. When a conversation is started you will only see the top
object and the two lower ones are disabled to simulate the visuals of some mes-
saging software. In that box the name of the character speaking will be shown at
the top and either an text or an image will be shown. When the player continues
the dialogue, the middle box will be added next and lastly the bottom box. After
all boxes are shown new content will be shown in the bottom box while the previ-
ous content of the bottom and middle box will be moved up. The operations take
place in a series of if elses in the IEnumerator function PlayConversation. the ifs
check whether or not a given box has been activated or not to determine which
step to do.

The start conversation button, which appears when the player gets close to the
conversation object (Section 11.14), calls the Conversation Controller’s Start-
Conversation function. The function starts a coroutine called PlayConversation.
In the coroutine, the boolean conversationPlaying is set to true, the game is
paused so the player character will not be able to move, and the conversation

Chapter 11: Implementation 44

starts. The coroutine loops through all text boxes in the TextBox list. In each
iteration of the loop, there is a series of if/else statements which display the
correct top, middle, and bottom text box GUI elements, which are updated with
the text from the TextBox struct object with the current index in the loop. After
all of the if/else statements, the coroutine starts another coroutine called Wait-
ForPlayerClick, which waits for the player to click or tap on the screen before
stopping. After the player has clicked on the screen, the loop in PlayConversation
starts the next iteration. Once the loop is done, the game is resumed, the conver-
sationPlaying boolean is set to false, and a conversationPlayed boolean is set
to true for the rest of the game session.

In each if/else statement in the loop in PlayConversation, there is a call to
a function called ShowTextOrImage. The function uses the text in the current
Firestore text box document to determine whether to display the text box text
or an image. Text boxes displaying images complies with the requirement in Sec-
tion 8.7. If the text does not start with the <image> tag, the text is displayed in the
GUI text box. Otherwise, the image’s file name is taken from the text box text, a
list of images from the Profile Controller (Section 11.18) is looped through, and
the correct image is found and set to the text box image’s sprite. The image is then
enabled.

In the ShowTextOrImage function, if the conversation’s conversationPlayed boolean
is false, a function called AddImageToList is called. The function adds the image
that was found in ShowTextOrImage to a list of users and the images they have
sent in the Profile Controller script (Section 11.18). The list consists of UserImages
struct objects, each of which contains the name of the user that sent the images,
and a list of image strings for the images that the user has sent. AddImageToList
checks to see whether the user that sent the image exists in the list, and if not,
creates a new UserImages struct object for the user and adds the image string,
and then adds the struct object to the UserImages list. If the user exists in the
UserImages list, the function checks whether the image from ShowTextOrImage is
in the user’s image list. If not, the image string is added to the user’s list.

11.16 Player-to-NPC Conversations

The player-to-NPC conversations mainly take place in three script files; DialogueO-
bject, DialogueController and DialogueViewer. DialogueObject is practically
a container class. It contains the meta data about the dialogue tree and the dia-
logue tree itself in the form of a dictionary that stores nodes, the class that stores
the data about each individual dialogue step. The class has a constructor where it
takes in a TextAsset, the Twinery dialogue tree, and runs it through a parse func-
tion that extracts all data. The DialogueController is the script that works with
the DialogueObject. It is this script that holds the node pointer that points to
the currently active node and that updates it whenever OnNodeSelected is called.

Chapter 11: Implementation 45

the DialogueController also is where the Hidden Markov Model functionality
for the Twinery scenario is located. Finally, there is the DialogueViewer which
controls when and how things are shown.

Before running the scene, you can choose between two versions, the normal ver-
sion and the simulation version. You can choose this by using the Simulation On
checkbox located on the DialogueController script in MultiSpeechLayout in the
Canvas.

The simulation runs on a different track than the normal player-to-NPC conver-
sation. It does not disable some GUI elements and runs recursively, calling On-
NodeSelectedwhich calls DialogueController’s ChooseResponsewhich calls On-
NodeEntered. This process loops through all the nodes in the path the AI chooses
until an end node is reached, the variable pathLength is incremented each time.

After having finished the recursive run, the update function starts. It checks if the
player has clicked each frame and if so, it goes backwards through the node tree
using DialogueController’s curNode and the pathLength to backtrack through
the path chosen by the AI and to show the path at the player’s tempo. If the Player
has clicked the GUI elements update to show the relevant information.

The normal player-to-NPC conversations operate very similarly to Section 11.15
in the way that the player has to approach the character to enable the StartCon-
versation button and making use of asynchronous functions, though the asyn-
chronous function is not responsible for controlling the GUI elements. Through
the use of the tags ’Player’ or ’NPC’(and a number from 1 through the number of
NPCs) when making the Twinery document, the creator of the document can de-
cide which nodes are controlled by NPCs and which are controlled by the player.
The GUI tells the player whether it is their turn to choose a response, though the
player will also have to click a response even when it is the AI’s turn. When the
player clicks a node during the AI’s turn, the player’s choice does not affect the
choice of the AI; this is purely so that the player controls the progression of the
game.

11.17 Reporting Terminal

Once all conversation IDs have been allocated and all conversation objects have
been activated, the Conversation Allocator activates the terminal object (Sec-
tion 11.13). The object has a script called TerminalController, which controls
terminal menu navigation and functionality, and handles reporting users, finding
information about reported users, calculating the maximum points the player can
get in the game level and the points they have earned in the level, and adding
feedback messages to the player in lists. The Start function assigns the menu ob-
jects to their variables, puts certain buttons in separate lists, and sets click listeners

Chapter 11: Implementation 46

for all buttons. There is a list for the main page username buttons (Section 8.8),
a list for all sub category buttons, and a list of report to buttons. Each button
in one list calls the function associated with the list, using the button’s text as a
parameter. After assigning variables and setting click listeners, Start calls a func-
tion called CalculateMaxLevelPoints, which will be detailed later in this section.

In the script’s Update function, the player is detected when they get close to the
terminal, and the start terminal button is activated, just like with the conversation
objects (Section 11.14). Clicking the button calls the StartTerminal function,
which pauses the game so that the player character will not move, shows the
main terminal screen, and closes all other terminal screens.

11.17.1 Reporting a User

The names of all users in the current level each have their own button on the
terminal main screen. The function FindAndAddAllUsernamesAndClickListen-
ersToButtons in Start sets the buttons’ username text. It finds all NPC-to-NPC
Firestore conversations that belong to the current game level, and adds all user-
names in the conversation documents to a list called allUsernames. The func-
tion then loops through the username buttons and sets the usernames as their
text, and sets their click listeners. Clicking on a username button will call the To-
MainCategoryScreen function, using the username as a parameter. ToMainCat-
egoryScreen saves the username parameter to the tempUsername variable, which
is used in the reporting screen headers and when adding the report to the report
document list (Section 8.8 and later in this section). The function then displays
the main category screen.

The main category screen has four main category buttons, where each button
leads to its own sub category screen. Each sub category screen has sub category
buttons, which, when clicked, call the ToReportToScreen function using the but-
ton’s sub category string as a parameter. ToReportToScreen saves the sub category
parameter to the tempSubCategory variable, which is used when adding the report
to the report list, as with the tempUsername variable. The function has a boolean
variable called alreadyReported, which is found with the CheckAlreadyRepor-
ted function.

CheckAlreadyReported loops through all documents in the report document list
to find the document belonging to the user that is being reported (by using tem-
pUsername), then loops through all of the user’s reports to find the issue that
the user is being reported for (by using tempSubCategory). If the issue is found,
alreadyReported is true. The alreadyReported boolean is then returned.

In ToReportToScreen, if the user already has been reported for this issue (alreadyRe-
ported), a popup message alerting the player appears, and when it is dismissed

Chapter 11: Implementation 47

by the player, the reporting process is cancelled. If the user has not been reported
for this issue, the report to screen is displayed.

The report to screen contains three buttons for each of the entities that issues
can be reported to. Clicking on any of the buttons will call the ToReportCon-
firmationScreen function, using the string for the entity that was chosen as a
parameter. In the function, the parameter is saved in the tempReportedTo vari-
able, which is used when adding the report to the report document list as with
the other two temp variables. The confirmation screen shows a summary text us-
ing all three temp variables, and options for confirming or cancelling the report.
Clicking on the confirmation button calls the AddReportToList function.

The report document list contains ReportDocument struct objects. Each ReportDoc-
ument struct object contains the name of the user that the report document belongs
to, and a list of Report struct objects. Each Report struct object contains a string
for the issue that is reported (issue), and a string for who the issue is reported to
(reportedTo).

The AddReportToList function first checks whether the user exists in the Re-
portDocument list by looping through it and comparing the ReportDocument ob-
jects’ username variable with tempUsername. If the user exists, the userExists
boolean variable is set to true, and a new Report struct object with the tempSub-
Category and tempReportedTo values is created and added to the list of Report
objects in the user’s report document. After the loop, if userExists is false, a
new ReportDocument with the tempUsername value is created, and a new Report
struct object is added to the document’s list of reports. The list of reported users
on the main page (Section 8.8) is then updated, and the main terminal screen is
displayed, completing the reporting process for the user.

11.17.2 Checking Reported Users

The list of reported users on the main page is a Scroll View which is updated by
the UpdateReportDocumentScrollView function. First, the function destroys all
Scroll View list elements, and then it loops through all objects in the ReportDocu-
ment list. For each object, the loop instantiates a new list element Prefab instance
into the Scroll View and sets the ReportDocument username string as the text in
the list element’s username button. It also sets click listeners for the username
button and the delete button in the list element.

The list element delete button calls the ShowDeleteDocumentPopup function using
the loop’s current ReportDocument username as a parameter. In ShowDeleteDocu-
mentPopup, the username parameter is set to tempUsername, and a popup message
asking whether the player wants to confirm the deletion is displayed. Clicking
on no cancels the deletion, while clicking on yes calls the DeleteReportDocu-

Chapter 11: Implementation 48

mentFromList function. DeleteReportDocumentFromList loops through the re-
port documents and deletes the document where the username string is the same
as tempUsername. The Scroll View is then updated with
UpdateReportDocumentScrollView.

The list element username button calls the ToReportDocumentScreen function us-
ing the loop’s current ReportDocument username as a parameter. In ToReportDoc-
umentScreen, the username parameter is set to tempUsername, the report docu-
ment screen’s reports Scroll View is updated by the UpdateReportsScrollView
function, and the report document screen is displayed. The delete button outside
of the Scroll View (Section 8.8) does the same as the delete buttons in the main
page Scroll View.

The report document screen’s report Scroll View shows all of the issues that the
user has been reported for, and who the issues were reported to (Section 8.8). The
UpdateReportsScrollView function deletes all Scroll View elements and adds all
of the reports from the Report object list in the user’s (tempUsername) ReportDoc-
ument object as Prefab instances, similarly to the UpdateReportDocumentScrollView.

The delete button in each Report list element calls the ShowDeleteReportPopup
function using the issue string from the Report object as a parameter. The func-
tion sets the parameter issue string to tempSubCategory, and displays a popup
message similar to the delete report document popup message. Confirming the dele-
tion calls the DeleteReportFromList function, which finds the correct report from
the correct user report document, using tempSubCategory and tempUsername, and
deletes the report. The Report list is then updated with UpdateReportsScrollView.

11.17.3 Sending Reports and Calculating Score

At the start of this section (Section 11.17), a function in Start called CalculateM-
axLevelPoints was mentioned. It adds all possible points the player can get in
the current game level to a list called maxLevelPointsList. The function finds all
conversation documents in Firestore that have been allocated to conversation
objects in the current game level, and that have a problematic user. For each of
these conversations, a loop will go through all documents in the conversation
document’s issues collection. Each issue document has a points value (Sec-
tion 8.7), which is the amount of points the player receives when reporting the
problematic user for that issue. The points value in each issue document, and the
maximum amount of points the player can earn by reporting the issue to the most
ideal entity/entities, are added to maxLevelPointsList. After looping through
all conversation documents, the function loops through all of the player’s post
documents in Firestore (Sections 8.12 and 11.18), and for each player post that
belongs to the current game level and is problematic, 1 point is added to the list.

Chapter 11: Implementation 49

The terminal main page has a send reports button, which calls the SendReports
function when clicked. It adds all of the points from maxLevelPointsList to a
maxLevelPoints variable in TerminalController, creates a new list called play-
erPointsList which contains all of the points the player has earned, and creates
a positive list and a negative list of feedback messages (Section 8.8). It then calls a
function called GetPointsAndFeedbackMessages, activates the level exit by call-
ing ExitLevel’s ActivateExit function (Section 11.19), and closes the terminal.

GetPointsAndFeedbackMessages finds all Firestore conversation documents be-
longing to the current game level, and for each document, four functions related
to the reports and which add points to playerPointsList and messages to the
feedback lists are called. After looping through the conversation documents,
two functions which find points and feedback messages related to player posts
and who the player follows (Section 11.18) respectively are called.

The first of the four functions related to reporting tries to find non-problematic
users who the player has reported. It finds the objects in the ReportDocument list
that belong to the current conversation in the GetPointsAndFeedbackMessages
loop, and if one of the ReportDocument objects is for a non-problematic user, a
negative feedback message is added.

The second of the four functions tries to find problematic users that have not
been reported. The function loops through all usernames in the allUsernames
list mentioned earlier in this section (Section 11.17), and tries to find whether a
user with one of the usernames is a problematic user in the current conversation
in the GetPointsAndFeedbackMessages loop. If so, a boolean variable called is-
sueUserReported is set to false, and the function loops through all objects in the
ReportDocument list. If one of the report documents belongs to the problematic
user, issueUserReported is set to true. After the ReportDocument loop, if is-
sueUserReported is false, a negative feedback message is added.

The third of the four functions tries to find problematic users that have been re-
ported incorrectly. It loops through all ReportDocument list objects, and finds the
document object which belongs to the problematic user in the current conversa-
tion in the GetPointsAndFeedbackMessages loop. Then, all Report objects in the
list of reports in the ReportDocument object that was found are looped through.
In the Report loop, a boolean variable called correctReportIssue is set to false,
and all documents in the current conversation document’s issues collection are
looped through. In the issue document loop, if the current Report object’s issue
variable matches the current issue in the loop, correctReportIssue is set to true.
After the issue document loop, but still in the Report object loop, if correctRe-
portIssue is false, a negative feedback message is added.

The fourth and final of the four functions tries to find correct reports of, and

Chapter 11: Implementation 50

unreported issues from, problematic users. It loops through all documents in the
issues collection in the document for the current conversation in the GetPoint-
sAndFeedbackMessages loop. In each iteration of the issue loop, all objects in
the ReportDocument list are looped through. The ReportDocument loop tries to
find the report document for the problematic user in the current conversation. If
found, an issueReported boolean variable is set to false, and all objects in the
report document’s Report list are looped through. In the Report loop, if the Re-
port object’s issue variable is the same as the current issue in the issue loop,
issueReported is set to true, a positive feedback message is added, the issue
document’s points value is added to playerPointsList, and a function called
FindReportToChoices is called. In the ReportDocument loop, after the Report
loop, if issueReported is false, a negative feedback message is added.

In FindReportToChoices, all documents in the report issues Firestore collec-
tion (Section 8.8) are looped through. The loop tries to find the report issue
document which corresponds to the current issue document in the issue loop
described in the previous paragraph. If the report issue document is found, all
of the documents in the report issue document’s who to report to collection
(Section 8.8) are looped through. The report to loop tries to find a report to
document which corresponds to the reportedTo variable in the current Report
document in the Report loop described in the previous paragraph. If found, the
report to document’s points value (Section 8.8) is added to playerPointsList,
and feedback messages are added depending on the points value. If the points
value is 1 or higher, a positive feedback message is added, and if the points value
is 0, a negative feedback message is added.

The function called in GetPointsAndFeedbackMessages which finds points and
feedback messages related to the player’s posts, tries to find posts that the player
has deleted. It loops through all of the post documents in the player’s posts col-
lection in Firestore, and finds the post documents which belong to the current
game level. If the post document’s problematic value is true and its deleted
value is true (Section 8.12), 1 point is added to playerPointsList and a pos-
itive feedback message is added. If the post is problematic and is not deleted, a
negative feedback message is added. If the post is not problematic but has been
deleted, negative 1 (-1) point is added to playerPointsList, and a negative feed-
back message is added.

In the function called in GetPointsAndFeedbackMessages which finds points and
feedback messages related to who the player follows, all documents in the player’s
following collection (Section 8.12) are looped through. All level numbers val-
ues in each following document (Section 11.18) are looped through. If the num-
ber of the current game level is found in the level numbers list, the user docu-
ment for the user that the player follows (from the player’s following document)
is found in the users collection (Sections 8.5 and 8.12). If the user document’s

Chapter 11: Implementation 51

problematic value is true, it means that the player is following a problematic
user, so negative 1 (-1) point is added to playerPointsList, and a negative feed-
back message is added.

Context for the player posts and who the player follows is provided in Section 11.18.
The lists containing the maximum game level score, the player’s game level score,
the positive feedback messages, and the negative feedback messages, are all used
in the result screen, which is detailed in Section 11.19.

11.18 User Profiles

The Profile Controller handles everything related to user profile pages. A list of
all sprites of images that can be shown in NPC-to-NPC conversations, the list of
UserImages struct objects (Section 11.15), and a list of all profile picture sprites,
are saved in this object and script. The ProfileController script’s Start function
sets variables and button click listeners, and it adds all profile picture buttons in
the change profile picture page, which will be described later in this section, to a
list. It also sets the ProfileController script’s tempUsername variable to be the
string player, as it is the player’s profile main page that is displayed first when
clicking on the to profile button (Section 11.6). The tempUsername variable is
used in a similar way to the tempUsername variable in the Terminal Controller
(Section 11.17), and it determines which profile page is displayed.

11.18.1 Profile Main Page

The Game Manager sets the click listener for the to profile button, making the
button call the ShowProfileMainPage function in the ProfileController script.
ShowProfileMainPage pauses the game, and uses tempUsername to determine
whether to show the player’s main page or an NPC user’s main page. When show-
ing an NPC user’s main page, tempUsername is used as the username text on the
page. Finally, ShowProfileMainPage starts a coroutine called RefreshMainPro-
filePageDelay.

RefreshMainProfilePageDelay delays the display of certain elements in the pro-
file main page by a split second, to allow for the main page’s asynchronous Firestore
data updates to complete before the page is displayed. After the time delay, the
user’s profile picture in their main page is set by the SetProfilePicture function,
the follow/unfollow button is set by the SetFollowUnfollowButtons function if
it is the main page for a non-player user (tempUsername is not player), and the
player’s username text is set by the SetPlayerUsernameText function if it is the
main page for the player (tempUsername is player).

In SetProfilePicture, the Firestore user document (Sections 8.5 and 8.12) for
the current tempUsername user is found, the user document’s profile picture col-

Chapter 11: Implementation 52

our value (Section 8.12) is saved in a tempProfilePicture variable, which is
used to retrieve the correct profile picture sprite from the Profile Controller’s pro-
file picture sprite list using the GetProfilePictureSprite function. The temp-
ProfilePicture variable is also used to set the user’s profile picture in the post
elements on their posts page, which is detailed later in this section. After retrieving
the correct profile picture sprite, the player’s main page object or the NPC’s main
page object is set to the mainPage variable depending on whether tempUsername
is player or not, and the main page’s profile picture object is found and the sprite
that was found is set to the object.

GetProfilePictureSprite is used when setting profile pictures in all places where
they appear in profile pages, so the function is called throughout ProfileControl-
ler. It uses a profile picture colour string, which is what is saved in the profile
picture value in each Firestore user document, as a parameter, and loops through
all sprites in the profile picture sprite list. In each iteration of the loop, the profile
picture sprite’s colour is extracted from the name of the sprite, and if the sprite
name’s colour string matches the profile picture colour parameter, the sprite is set
to a variable that the function returns.

The SetFollowUnfollowButtons function, which is called in the RefreshMain-
ProfilePageDelay coroutine, first disables both the follow button and the unfollow
button. It has a playerFollowsUser boolean variable which is initialised to false,
and it loops through the player’s Firestore following collection (Section 8.12). If
the user in the player’s following collection matches tempUsername (the name
of the user whose profile page is displayed for the player), the following docu-
ment’s level numbers list (Section 8.12) is looped through. If the level number
that matches the number of the current game level is found, playerFollowsUser
is set to true. After the following document loop, if playerFollowsUser is false,
the follow button is enabled and the unfollow button is disabled, otherwise the un-
follow button is enabled and the follow button is disabled.

The SetPlayerUsernameText function, which is called in the RefreshMainPro-
filePageDelay coroutine, finds the player’s user document. The string value for
the player’s custom username (detailed later in this section) in the document is
found and set to the playerUsername variable, which is set to the username text
object in the player’s profile main page. The playerUsername variable is used in
other places in the script.

When the player is on an NPC user’s main profile page, they will either see a
follow button or an unfollow button depending on whether the player’s user fol-
lows the NPC user. When clicked, the follow button calls the FollowUser func-
tion. In FollowUser, the player’s following collection is found. A boolean vari-
able called userExistsInFollowingCollection is initialised to false, and the
following documents are looped through. In each iteration of the loop, if the

Chapter 11: Implementation 53

following document username matches tempUsername (the user that the player
will follow), userExistsInFollowingCollection is set to true. After the follow-
ing document loop, if userExistsInFollowingCollection is true, the number
of the current game level is added to the level numbers list in the tempUsername
document in the player’s following collection, and the number is also added to
the level numbers list in the player document in the tempUsername user’s fol-
lowers collection. If userExistsInFollowingCollection is false, the following
and follower documents mentioned in the previous sentence are created, and the
level numbers lists are initialised with the number of the current game level. At
the end of the FollowUser function, the profile main page is refreshed by calling
the ShowProfileMainPage function.

The unfollow button calls the UnfollowUser function which is similar to Fol-
lowUser, except the number of the current game level is removed from level
numbers in the tempUsername user document in the player’s following collec-
tion, and from level numbers in the player document in the tempUsername user’s
followers collection.

11.18.2 Following and Followers Pages

The functionality in the following and followers pages are identical for the player
user and NPC users. When the pages are displayed, a function called Update-
FollowingFollowersScrollView updates the username list Scroll Views in both
pages. The function has the collection type string (following or followers) as a
parameter, and the correct Firestore collection is found using the parameter and
tempUsername (the name of the user whose profile pages are displayed for the
player). All elements in the page’s Scroll View are destroyed, and all documents
in the following or followers collection are looped through. For each document
in the loop, the document’s level numbers list is looped through. If the number
of the current game level is found in the list, the process of adding the username
list element to the Scroll View starts. In the level numbers loop, the string vari-
able containing the following/follower user’s name is set depending on whether
the user is an NPC user or the player (the player has a custom username, saved
in the playerUsername variable, that is different from the player’s user ID, which
is player). The following/follower user’s document ID is used to find the user’s
document in the users collection. Using the profile picture value in the user
document, the GetProfilePictureSprite function finds the correct profile pic-
ture sprite. The current user list element is instantiated into the Scroll View, and
the profile picture and the username text is set in the element. The click listener for
the element’s Button component is set, so that, when clicked, the button changes
tempUsername to be the document ID of the user in the list element and calls the
ShowProfileMainPage function, which will show that user’s main profile page.

Chapter 11: Implementation 54

11.18.3 Posts Pages

When the posts buttons in the player and NPC users’ main profile pages are clicked,
the ShowPostsPage function is called. The function calls the UpdatePostsScrollView
function, and the correct posts page is displayed, depending on whether tem-
pUsername is player or not.

UpdatePostsScrollView finds the tempUsername user’s posts collection (Section 8.12).
A Scroll View variable is set depending on whether tempUsername is player or not,
as the player user has a different Scroll View than NPC users. All elements in
the posts Scroll View are destroyed, and all post documents in the collection are
looped through. If the post document’s level number variable is the same as the
number of the current game level, the post is added to the Scroll View. The post
is added to the Scroll View differently depending on whether tempUsername is
player or not, either by the AddPlayerPostsToScrollView function or the AddN-
PCPostsToScrollView function. The post elements in the player’s posts page can
be deleted or restored, while the elements in an NPC user’s posts page cannot be
interacted with (Section 8.12).

In AddPlayerPostsToScrollView, if the deleted value in the current post doc-
ument from UpdatePostsScrollView is false, a non-deleted version of the post
list element is instantiated into the player user’s posts Scroll View, and the ele-
ment’s delete button is set to call the DeletePost function. If the deleted value is
true, a deleted version of the post list element is instantiated into the Scroll View,
and the element’s restore button calls the RestoreDeletedPost function. Outside
of the deleted if/else statements, the playerUsername string is set in the user-
name text object in the list element. Then, the profile picture sprite is retrieved
with GetProfilePictureSprite and tempProfilePicture, and is set in the ele-
ment’s profile picture object. Finally, the post text in the current document in the
posts loop in UpdatePostsScrollView is set in the post text object in the element.

In DeletePost, the player post document’s deleted value is set to true, and the
Scroll View is updated by calling UpdatePostsScrollView. RestoreDeletedPost
does the same, but sets deleted to false.

In AddNPCPostsToScrollView, an NPC post list element is instantiated into the
NPC user’s posts Scroll View, tempUsername is set in the element’s username text
object, the profile picture is retrieved by GetProfilePictureSprite and temp-
ProfilePicture and is set in the element’s profile picture object, and the post text
in the current document in the posts loop in UpdatePostsScrollView is set in
the element’s post text object.

The restore all deleted posts button on the player’s posts page (Section 8.12) calls
the RestoreAllDeletedPosts function. The function loops through all documents

Chapter 11: Implementation 55

in the player’s posts collection, and sets the deleted value for each document to
false. After the loop, the Scroll View is updated by calling UpdatePostsScrollView.

11.18.4 User Settings Pages

Clicking on the user settings button on the player’s main profile page opens the
user settings page. The user settings page has two options; profile settings and pri-
vacy settings. Privacy settings functionality was an idea our group had that was not
implemented, but the profile settings option leads to the profile settings page. The
profile settings page has three options; change profile picture, change username, and
edit avatar.

The change profile picture option leads to the change profile picture page. The
page contains 8 profile picture options. Clicking on one calls the SavePlayerPro-
filePictureChanges function, which extracts the colour string from the profile
picture button’s name, and updates the profile picture value in the player’s
document in the users collection with the colour string. The player is then taken
to the main profile page by the ShowProfileMainPage function, where the profile
picture is updated.

The change username option leads to the change username page. The page con-
tains an input field where the player can write their new username. Clicking on
the save changes button on the page calls the SavePlayerUsernameChanges func-
tion, which retrieves the text in the input field and updates the username value in
the player’s user document with it. The player is then taken to the main profile
page by the ShowProfileMainPage function, where the username is updated.

The edit avatar option calls the Game Manager’s GoToAvatarCreation function
(Section 11.6), just like the edit avatar option in the pause menu, which takes the
player to the avatar creation scene.

11.18.5 All Users Page

On the main profile page for both the player and NPC users, there is an all users
button, which takes the player to the all users page. The all users page contains
a Scroll View with all users in the users collection in Firestore. When the player
enters the page, the UpdateAllUsersScrollView function is called.

UpdateAllUsersScrollView finds the users collection, destroys all list elements
in the Scroll View, and loops through all user document. In the users collection
loop, a username variable is set to either the player’s custom username (player-
Username) or an NPC user’s name, depending on whether the current user doc-
ument ID is player or not, and then the user’s profile picture is found by Get-
ProfilePictureSprite with the user document’s profile picture colour value
as a parameter. Then, a user list element is instantiated into the Scroll View, the

Chapter 11: Implementation 56

username and profile picture is set in the element, and the element’s click listener
is set so that when the list element is clicked, the user document ID is set to
tempUsername and ShowProfileMainPage is called, so that the user’s profile main
page is displayed.

11.19 Level Exit and Result Screen

The ExitLevel script is attached to the game level exit plane, and handles the
level feedback/result screen (Section 8.5) and loading the next level. In the script’s
Start function, variables and button click listeners are set, and the number of the
current level is extracted from the name of the current level scene and set in Stat-
icVariables’s currentLevelNumber variable.

When the player sends all of the reports in the report terminal, the exit is activ-
ated with the ActivateExit function (Section 11.17), which sets the exitActive
boolean variable to true and opens the door object in the scene. When the player
object collides with the activated exit plane (exitActive is true), the function
which displays a confirmation popup message is called. Pressing the OK button
in the popup message calls the ShowResultScreen function. Pressing the cancel
button closes the popup message and positions the player away from the exit, to
comply with the requirement in Section 8.5.

ShowResultScreen loops through the Terminal Controller’s playerPointsList
(Section 11.17) and sums all of the points, and if the sum is a negative number,
the player’s score is set to be 0. The score header in the result screen, which in-
cludes the player point sum and the Terminal Controller’s maxLevelPoints value,
is set, and the SetScoreFeedbackText and AddFeedbackMessagesToScrollViews
functions are called. The result screen is then displayed. The screen has a score
header, a score feedback text object, and two Scroll Views; one for positive feed-
back messages and one for negative feedback messages. The screen also has an
OK button, which loads the next level scene.

SetScoreFeedbackText uses the player points sum as a parameter and calculates
the player’s score percentage compared to the maximum score value from Termin-
alController, which is set in StaticVariables’s lastPlayerScorePercentage
variable, which is used in the Conversation Allocator (Section 11.13). Depending
on the percentage score, one of several feedback messages will be set in the score
feedback text object.

AddFeedbackMessagesToScrollViews first loops through the list of positive feed-
back messages from TerminalController (Section 11.17). In each loop iteration,
a feedback list element is instantiated into the positive Scroll View, and the current
feedback message in the list is added to the list element’s text object. The function
then loops through the list of negative feedback messages, and adds list elements

Chapter 11: Implementation 57

to the negative Scroll View in the same way as with the positive messages.

When the player clicks on the OK button on the result screen, the LoadNextLevel
function is called. The function finds the number of the next level by adding 1
to the number of the current level, updates currentLevelNumber in StaticVari-
ables, and calls the Game Manager’s LoadLevel function (Section 11.6), which
loads the next level.

Chapter 12

Deployment

This chapter provides instructions for how to set up and test the proof-of-concept
game, and is primarily meant for our client. At the time of writing, the game
can only be tested in Unity, and not in a game build. Testing the game requires
access to our group’s repository, which may be granted upon request. Contact
information can be found in Appendix A.3.

12.1 Download and Install Unity

Download and install Unity Hub, and use it to install Unity. The Unity version
that is used in the project is 2020.2.2f1, so that may be the safest Unity version
to install, but later versions should also work.

12.2 Clone the Repository

Once access to the repository has been granted, clone the repository by clicking
on the "clone" button on the repository’s main page, and by using Git.

12.3 Apply Project and Game Settings

In the open Unity project, from the menu at the top of the screen, go to File ->
Build Settings. Set the Platform to be Android.

If the Scenes In Build window is empty, go to the following scenes in Assets -
> Scenes in the Project window in Unity: AvatarCreation, Level1, Level2, and
Level3. For each scene you visit, go to the Build Settings page, and click the Add
Open Scenes button.

In the Unity Game window, in the second option from the left, at the top of the
Game window, choose the 16:9 Landscape option.

58

Chapter 12: Deployment 59

12.4 Set Variables in the Inspector

For the game to work, certain variables have to be set in the Unity Inspector.

In all four of the scenes mentioned in Section 12.3, click on the Avatar Creation
Controller object in the Hierarchy window. The Inspector window will show that
object’s properties, including the public arrays in the Avatar Creation Control-
ler. Drag and drop all Materials in the Assets ->Materials -> Avatar -> Skin Tones
folder into the Skin Tone Materials array in the Inspector. Add all of the Materials
in the Assets -> Materials -> Avatar -> Hair Colors folder to the Hair Color Ma-
terials array, and add all of the Materials in the Assets -> Materials -> Avatar ->
Clothing Colors folder to the Clothing Color Materials array.

In every scene with a name starting with level, click on the Profile Controller ob-
ject in the Hierarchy window. For all Scroll View element variables in the object’s
Inspector window, place each Prefab from the Assets -> Prefabs folder with the
same name as a variable in the Inspector, into that variable. Place all images in
the Assets -> Sprites -> Profile Pictures folder into the Profile Picture Sprites array
in the Profile Controller Inspector. Also place all images in the Assets -> Sprites ->
Conversation Images folder into the Conversation Image Sprites array in the Profile
Controller Inspector.

In every scene with a name starting with level, click on the Terminal object in
the Hierarchy window. In both Scroll View element variables in the object’s In-
spector window, place the Prefabs in the Assets -> Prefabs folder with the same
name as a variable in the Inspector, into that variable.

In every scene with a name starting with level, click on the Exit -> Exit Load Plane
object in the Hierarchy window. Place the Choices Scroll View Element Prefab in
the Assets -> Prefabs folder, into the Choices Scroll View Element variable in the
object’s Inspector.

12.5 Play the Game

When in the AvatarCreation scene, press the button with the play symbol, located
in the middle of the horizontal menu bar just below the top menu bar, to start
the game. Certain messages which may be useful to the tester will appear in the
Console window.

Chapter 13

Development Discussion

13.1 Development Process

As mentioned in Chapter 7, we used a Kanban-like development process in the
project, using GitLab’s issue board functionality as a Kanban board. This function-
ality was mostly used at the start of the project, and some of our group members
used it more than others. The somewhat lacking use of the functionality did not
seem to affect our efficiency, so we eventually stopped using it. During develop-
ment, our group members communicated over Discord, and wrote our tasks in a
to-do list section there. In the Kanban board, we only had one under development
section in addition to the open and closed sections (Section 7.2). We realised that
the tasks in our to-do list already implied that the tasks were under development,
which defeated the purpose of our Kanban board.

13.2 Deployment

Having to apply the settings and set the variables specified in Chapter 12 is incon-
venient for the tester. This would not be an issue with a finished game, but it is
necessary with our proof-of-concept game.

13.3 Firestore Database Structure

Our Firestore database structure worked well for us overall. However, documents
in our Firestore database will sometimes contain numbers to order them correctly,
but due to Firestore sorting documents by their IDs completely alphabetically with
no regard for the size of multiple-digit numbers, this is not an ideal solution.
Currently, if documents that are ordered by numbers exceed 9, the document order
will become incorrect, as "document10" will be placed before "document2", etc.
If we are to add new documents, we will exclusively order them with alphabetic
letters to avoid this problem.

60

Chapter 13: Development Discussion 61

13.4 Firestore Asynchronous Functions

Retrieving and updating data from Firestore is done in asynchronous functions,
which means that functionality which uses the data must wait for the asynchron-
ous functions to finish. To make this work, we made certain objects activate other
objects to make sure that they run after the activating object (Section 11.13), and
we added a delay in other cases (Section 11.18). The most notable consequence
of the asynchronous functions may be the fact that the player sometimes must
wait for avatar and conversation data in Firestore to reset before finishing the
avatar creation at the start of a game session. In the Unity project, we added
a console window message which explains to the tester that they must wait for
two other messages before finishing the avatar creation. The data is usually reset
quite quickly, but this is still not an ideal solution. Ideally, there should be loading
screens in such cases, which would let the player know that they have to wait.

13.5 Avatar Creator

As mentioned in Section 11.8, colour and skin tone is set depending on the name
of the button that was clicked, specifically the most recently clicked button. The
solution works well for us, but we do not think this is a common method in charac-
ter creators. It depends on the buttons having the correct names with the correct
format, and we find our button colouring solution to be lacking in structure.

We wanted our avatar creation solution to be inclusive, but there are only five
skin tone options, four hair/headgear types, and five hair colour options to choose
from, which is not fully representative of all humans. The fact that all avatars have
the same sweater, trousers, and shoes, and the fact that there are only 12 cloth-
ing colour options for each piece of clothing, also limit customisation. There is a
large enough number of possible avatar appearances to make them feel somewhat
personalised, but it can be improved by adding more options.

13.6 Player Controls

We thought that the player controls, where the player object smoothly rotates and
moves towards a point on an object that is clicked (Section 11.10), was implemen-
ted well. However, the fact that the camera, and by extension the screen, always
follows the player (Section 11.9), means that the point that is clicked always fol-
lows the player as well, and moves in relation to the objects that are clicked. This
makes it almost impossible to walk in a straight line. In future work, this could
be fixed by finding a point on an invisible, circular plane which always follows
the player, instead of points on objects which do not move with the player, and
finding the angle between the player and the point. The angle could then be used
to find the player’s movement direction. This has not been tested, so we are not

Chapter 13: Development Discussion 62

sure about whether this would work.

13.7 Hidden Markov Model

We have suggested and shown how small independent Hidden Markov Models
can be used on the player and different game components to modulate dynamic
difficulty adaptation. The Hidden Markov Model has also been used to modulate
emotion. Unity has some limitations regarding matrix computations other than
those tuned to motions. Nevertheless, we have applied online recursive Hidden
Markov Models without any major challenges except for having to make some ba-
sic functions to treat C# arrays as matrices. If Unity had support for using python3,
there would have been options for more extensive use of other online functions
like fixed lag smoothing [24] to accomplish more precise adaptation and simula-
tions. Hidden Markov Models have a broad area stochastic modulations for game
components, even if they are not particularly scalable to large models. However,
by using Hidden Markov Models in the development of game logic that can help
improving dynamic difficulty adaptation, much is done to extend the models to
other types of more scalable dynamic Bayesian networks. Using Hidden Markov
Models and Bayesian methods can also help to better understand what is hap-
pening in the game when later applying neural networks to perhaps take over in
production. Another advantage is that Hidden Markov Models are tightly linked to
the Markov Decision Process approaches that can add stochastic decision making
support to the game [24].

13.8 Conversation Allocator

We consider our way of finding random eligible conversations to be implemen-
ted well. Previously, the two conversation type lists in the Conversation Allocator
were looped through separately in two instances, doing largely the same actions.
To prevent redundancy, we made two new functions, each of which combines two
loops into one, looping through the conversation object list that is used as a para-
meter.

For each new conversation that is allocated, if the player has a score value from a
previous level, the Hidden Markov Model is used to find the difficulty of the con-
versation (Section 11.13). We could have only used the model once to determine
one difficulty value for all new conversations, but we wanted the new conversa-
tions to have variable difficulties. This is to increase the overall difficulty more
gradually, as the performance of a player in one level does not necessarily accur-
ately reflect their skill level. We did not make enough test conversations or game
level scenes to demonstrate the use of the Hidden Markov Model well.

Chapter 13: Development Discussion 63

13.9 NPC-to-NPC Conversations

The conversations we have added to Firestore are very simple, and may not be
good examples of how deep and potentially educational the conversations could
be. If a more skilled author were to write the conversations, with assistance from
someone knowledgeable with the digital security curriculum, the conversations
could be much more interesting and educational.

We believe our decision to use coroutines for pausing the game and going through
the NPC-to-NPC conversations (Section 11.15) was good. Coroutines allow for
execution to be suspended or resumed, which works well for functionality which
waits for player input.

Our decision to use an <image> tag to show images in conversations worked
well, and prevented us from having to add an image value to the text box doc-
ument. However, our solution did not allow for showing text in addition to the
image in one text box, which can be implemented in future work.

We believe the decision to make the player able to see the three last entries is
a good choice as it gives the player a better overview of the conversation as well
as providing a look that more closely resembles messaging apps. The way of im-
plementing it with the use of four if/else clauses might not be the most elegant
but is a simple and functional solution.

13.10 Player-to-NPC Conversations

The Twinery tree dialogues we have created so far are essentially just examples to
test if the framework works. With the use of professionals, creating good dialogues
will not be an issue.
While Twinery might not be the best end solution for a task like this due to reasons
described in Section 9.6, it is still a workable solution for demonstrative purposes,
which fits us fine.

The decision to integrate the model from [33] with our existing model created
some friction and it might have worked better to throw away the DialogueViewer
and to base the solution completely on our existing model.

As for our decision on how to structure the Twinery dialogue, there might be
some room for improvement, but there is not a whole lot of space to work with
without making an overly complicated system that destroys the purpose of using
Twinery in the first place.

Chapter 13: Development Discussion 64

13.11 Reporting Terminal

Ideally, the username buttons on the main terminal page should have been re-
placed by another Scroll View with clickable username list objects, so that the
names can be added dynamically as opposed to requiring the buttons to be manu-
ally placed beforehand. This may be changed in the future.
Something similar could have been done with the sub category buttons on the sub
category pages, where the script could have used the names of the main categories
to find sub categories from the report issues collection in Firestore, and then
add them to a Scroll View on the sub category page. This way, only one sub cat-
egory page would be necessary, as at the time of writing, there is one sub category
screen for each main category.

The maximum points and the points that the player has earned are in lists in-
stead of single-value variables with the sum of the points, because the variables
that were originally used did not get updated properly because of the Firestore
asynchronous functions used to calculate the points. This could probably be fixed
with a loading screen which makes sure that the asynchronous functions finish
before new actions are executed, so that the points variables get updated prop-
erly.

13.12 Profile Pages

The coroutine which loads the main profile pages after a delay to ensure Firestore
data is updated has always worked for us, but it is not an ideal solution. In cer-
tain cases, the data may take a long time to update, and the delay may not be
long enough. As with the other issues with the asynchronous functions, a loading
screen could be used to solve this.

The "privacy settings" functionality that was not implemented (Section 11.18) can
be used to teach players about recommended privacy settings. This functionality
can be explored in future work.

The UserImages list in the Profile Controller (Section 11.15) was intended to be
a part of the detective scenario (Section 8.10). The player would look through the
images to determine if any of them break the social media rules. This idea can be
developed further in the future.

13.13 Result Screen

The feedback message which appears below the score (Section 11.19) may not
be necessary, as the player will already know how well they did from the score.
This feedback message may serve as a motivator to improve, but the score alone

Chapter 13: Development Discussion 65

should serve this function. It also does not teach the player anything. For these
reasons, this feedback message may be removed in the future.

The feedback messages on the result screen do not provide reasoning for why
the player’s actions were positive or negative. The player would likely learn more
if the reasoning was there. This can easily be fixed by writing more in the feedback
messages that are added.

Chapter 14

Development Conclusion

Unity does not have out-of-the-box support for using machine learning techniques
like dynamic Bayesian networks and Hidden Markov Models. To run online fil-
tering and prediction on Hidden Markov Models placed to monitor the player or
guide different types of game components, only a few custom matrix functions and
the forward and backwards algorithms can be implemented as a small script. We
avoided the online smoothing algorithm (fixed-lag-smoothing) [24] because they
require inversing matrices. These kinds of refinements of the more plain forward
and backward algorithms implemented, to suit an online smoothing function, is
not even necessary to run the basic explorations of how to implement dynamic
difficulty adaptations on player and game components.

Using Hidden Markov Models to prepare for dynamic difficulty adaptation is a
constructive starting point for preparing more extensive machine learning tech-
niques that in general are less causally explained than the Bayesian stochastic
techniques. More knowledge is needed to explore how the different components
Hidden Markov Models can be orchestrated together to give a broader view and
comprehension of the dynamic difficulty adaptation in a complete learning game.

Future projects aiming at a dynamic difficulty inspired approach to development
are advised to connect to domain experts to clarify common or future measure-
ment of learning within the domain. Even though we had domain experts avail-
able, the subject matter is not clearly defined in terms of learning goals. The do-
main experts were not able to give clear ranking of what youths could perceive as
difficult. Our choice was therefore to let the mock-ups be open for domain experts
to fill difficulty ranked content later. Measuring difficulty both in learning and in
gameplay is not straight forward. Future work should elaborate on this within
and across the expert domains, as this is crucial to succeed with proper dynamic
difficulty adaptation in learning games.

Dialogues in games are particularly challenging to modulate. This was our most
difficult task, as no one had any previous experience with it. Nevertheless, we

66

Chapter 14: Development Conclusion 67

managed to modulate dialogues both by dynamic content management and inside
the dialogue tree. Using more or less ready made tools turned out to be challen-
ging, but less so than making such systems from scratch. Future support systems
for modulating dialogues with the purpose of dynamic difficulty adjustment in
learning games would be helpful.

Our project explored isolated game components. To develop a complete learning
game, we need a way to link the components. We suggest finishing our frame-
work with a Goal Oriented Action Planner (GOAP) that can run both animations
and actions in a coordinated way. The GOAP can later be combined with Markov
Decision Process algorithms [24] that are related to Hidden Markov Models and
dynamic Bayesian networks.

In early learning game development, the lack of knowledge about the players
makes it more challenging to apply dynamic difficulty adaptation in the game.
We have earlier talked about dealing with this as a cold start problem in recom-
mender systems. If the domain of the subject matter have available data, these
can be used to probe both currently unknown players regarding several aspects
of difficulty in learning and gameplay [30].

Our proof-of-concept game provides several suggestions for how a game can teach
players a curriculum in entertaining ways. We have suggested the use of Hidden
Markov Models, and ways of changing the difficulty of the game depending on
the player’s performance. The avatar creator is relatively inclusive, and the avatar
creator and the player’s profile add some personalised elements to the game. The
conversations that the player can observe or take part in have an opportunity
to teach the player important digital citizenship concepts in a way that can be
engaging and immersive. Reporting problematic users may provide a sense of sat-
isfaction in the player, and by reading the feedback messages after each level,
the player may achieve a deeper understanding of the topics. Our work provides
a good starting point for further development, and we believe our findings and
suggestions will be useful for our client in their development of a finished game.

Bibliography

[1] (13th Apr. 2021). ‘Blender (software),’ [Online]. Available: https://en.
wikipedia.org/wiki/Blender_(software) (visited on 14/04/2021).

[2] Unity. (24th Feb. 2021). ‘Canvas,’ [Online]. Available: https://docs.
unity3d.com/2020.1/Documentation/Manual/UICanvas.html (visited
on 03/05/2021).

[3] (7th Apr. 2021). ‘Firebase,’ [Online]. Available: https://en.wikipedia.
org/wiki/Firebase (visited on 13/04/2021).

[4] Firebase. (2021). ‘Accelerate and scale app development without man-
aging infrastructure,’ [Online]. Available: https://firebase.google.
com/products-build (visited on 13/04/2021).

[5] Firebase. (16th Dec. 2020). ‘Cloud Firestore,’ [Online]. Available: https:
//firebase.google.com/docs/firestore (visited on 13/04/2021).

[6] F. Games. (24th Aug. 2020). ‘Fungus,’ [Online]. Available: https://assetstore.
unity.com/packages/tools/game-toolkits/fungus-34184 (visited on
19/05/2021).

[7] Unity. (25th Apr. 2021). ‘The Hierarchy window,’ [Online]. Available: https:
//docs.unity3d.com/Manual/Hierarchy.html (visited on 03/05/2021).

[8] Unity. (11th Apr. 2021). ‘The Inspector window,’ [Online]. Available: https:
//docs.unity3d.com/Manual/UsingTheInspector.html (visited on 13/04/2021).

[9] Unity. (30th Apr. 2021). ‘Materials introduction,’ [Online]. Available: https:
//docs.unity3d.com/Manual/materials-introduction.html (visited on
04/05/2021).

[10] Unity. (25th Apr. 2021). ‘Prefabs,’ [Online]. Available: https://docs.
unity3d.com/Manual/Prefabs.html (visited on 03/05/2021).

[11] Unity. (2021). ‘ProBuilder,’ [Online]. Available: https://unity3d.com/
unity/features/worldbuilding/probuilder (visited on 03/05/2021).

[12] Unity. (25th Apr. 2021). ‘TextMeshPro,’ [Online]. Available: https://docs.
unity3d.com/Manual/com.unity.textmeshpro.html (visited on 27/04/2021).

[13] Twinery. (19th May 2021). ‘Twinery,’ [Online]. Available: https://twinery.
org/ (visited on 19/05/2021).

68

https://en.wikipedia.org/wiki/Blender_(software)
https://en.wikipedia.org/wiki/Blender_(software)
https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html
https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html
https://en.wikipedia.org/wiki/Firebase
https://en.wikipedia.org/wiki/Firebase
https://firebase.google.com/products-build
https://firebase.google.com/products-build
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://assetstore.unity.com/packages/tools/game-toolkits/fungus-34184
https://assetstore.unity.com/packages/tools/game-toolkits/fungus-34184
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/materials-introduction.html
https://docs.unity3d.com/Manual/materials-introduction.html
https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/Prefabs.html
https://unity3d.com/unity/features/worldbuilding/probuilder
https://unity3d.com/unity/features/worldbuilding/probuilder
https://docs.unity3d.com/Manual/com.unity.textmeshpro.html
https://docs.unity3d.com/Manual/com.unity.textmeshpro.html
https://twinery.org/
https://twinery.org/

Bibliography 69

[14] (5th Apr. 2021). ‘Unity (game engine),’ [Online]. Available: https://en.
wikipedia.org/wiki/Unity_(game_engine) (visited on 13/04/2021).

[15] N. Hamdaoui, K. KIdriss and S. Bennani, ‘Modeling learners in educational
games: Relationship between playing and learning styles,’ Simulation and
Gaming, vol. 49, pp. 675–699, 2018. DOI: DOI:10.1177/1046878118783804.

[16] A. Streicher and J. Smeddinck, ‘Personalized and Adaptive Serious Games,’
in Entertainment Computing and Serious Games, R. Dörner, S. Göbel, M.
Kickmeier-Rust, M. Masuch and K. Zweig, Eds. Springer, Cham, 2016, pp. 332–
377. DOI: 10.1007/978-3-319-46152-6_14. [Online]. Available: https:
//doi.org/10.1007/978-3-319-46152-6_14.

[17] M. Slussareff, E. Braad, P. Wilkinson and B. Strååt, Games for Learning,
ser. Entertainment Computing and Serious Games. 2016.

[18] M.-V. Aponte, G. Levieux and S. Natkin, ‘Difficulty in Videogames: An Ex-
perimental Validation of a Formal Definition,’ Paper presented at the ACE,
Lisbon, Portugal, 2011. DOI: 10.1145/2071423.2071484.

[19] N. Pierce, O. Conlan and V. Wade, ‘Adaptive Educational Games: Providing
Non-invasive Personalised Learning Experiences,’ Paper presented at the
Second IEEE International Conference on Digital Game and Intelligent Toy
Enhanced Learning, 2008. DOI: 10.1109/DIGITEL.2008.30.

[20] M. Kickmeier-Rust and D. Albert, ‘Educationally adaptive: Balancing seri-
ous games,’ Int. J. Comput. Sci. Sport, vol. 11, pp. 15–28, 2012.

[21] A. Belahbib, L. El Aachak, M. Bouhorma, O. Yedri, S. Abdelali and E. Fatiha,
‘Serious Games Adaptation According to the Learner’s performances,’ In-
ternational Journal of Electrical and Computer Engineering, vol. 7, no. 1,
pp. 451–459, 2017. DOI: 10.11591/ijece.v7i1.pp451-459.

[22] C. S. González González, A. Mora and P. Toledo, ‘Gamification in Intelligent
Tutoring Systems,’ Paper presented at the Second International Conference
on Technological Ecosystems for Enhancing Multiculturality, Salamanca,
Spain, 2014. DOI: 10.1145/2669711.2669903.

[23] D. Hooshyar, M. Yousefi, M. Wang and H. Lim, ‘A data-driven procedural-
content-generation approach for educational games,’ Journal for Computer
Assisted Learning, vol. 34, pp. 731–739, 2018. DOI: https://doi.org/10.
1111/jcal.12280.

[24] S. Russel and P. Norvig, Artificial Intelligence. A Modern Approach. 4th ed.
Pearson, 2020, ISBN: 0-13-461099-7.

[25] F. Gallego-Durán, C. Villagrá-Arnedo, R. Satorre-Cuerda, P. Compañ-Rosique,
R. Rafael Molina-Carmona and F. Llorens-Largo, ‘A Guide for Game-Design-
Based Gamification,’ Informatics, vol. 6, no. 4, 2019. DOI: 10.3390/informatics6040049.

[26] Conference Paper, 2014. DOI: 10.1145/2669711.2669903. [Online]. Avail-
able: https://dl.acm.org/doi/pdf/10.1145/2669711.2669903.

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://doi.org/DOI: 10.1177/1046878118783804
https://doi.org/10.1007/978-3-319-46152-6_14
https://doi.org/10.1007/978-3-319-46152-6_14
https://doi.org/10.1007/978-3-319-46152-6_14
https://doi.org/10.1145/2071423.2071484
https://doi.org/10.1109/DIGITEL.2008.30
https://doi.org/10.11591/ijece.v7i1.pp451-459
https://doi.org/10.1145/2669711.2669903
https://doi.org/https://doi.org/10.1111/jcal.12280
https://doi.org/https://doi.org/10.1111/jcal.12280
https://doi.org/10.3390/informatics6040049
https://doi.org/10.1145/2669711.2669903
https://dl.acm.org/doi/pdf/10.1145/2669711.2669903

Bibliography 70

[27] D. Hutchison, T. Kanade, J. Kittler, J. Kleinberg, F. Mattern, J. Mitchell,
M. Naor, C. Rangan, B. Steffen, D. Terzopoulos, D. Tygar and G. Weikum,
Entertainment Computing and Serious Games. Cham, Switzerland: Springer
Nature, 2016. DOI: 10.1007/978-3-319-46152-6.

[28] R. C. Pettersen, Oppgaveskrivingens abc. 2nd ed. Oslo: Universitetsforlaget,
2016.

[29] R. C. Pettersen, Problembasert læring for studenter og lærere. Introduksjon
til PBL og studentaktive læringsformer. 3rd ed. Oslo: Universitetsforlaget,
2017.

[30] C. C. Aggarwal, Recommender Systems: The Textbook. London: Springer,
2016. DOI: DOI10.1007/978-3-319-29659-3.

[31] P. Wouters, E. Spek and H. Oostendorp, ‘Measuring learning in serious
games: A case study with structural assessment,’ Education Tech Research
Development, no. 59, pp. 741–763, 2011. DOI: 10.1007/s11423-010-9183-
0.

[32] Scrum.org. (2021). ‘What is Scrum?’ [Online]. Available: https://www.
scrum.org/resources/what-is-scrum (visited on 29/04/2021).

[33] M. Ventures. (17th Apr. 2020). ‘Converting-a-twine-story-to-unity,’ [On-
line]. Available: http://www.mrventures.net/all-tutorials/converting-
a-twine-story-to-unity (visited on 19/05/2021).

[34] W. Wu, H. Hsiao, P. Wu, C. Lin and S. Huang, ‘Investigating the learning-
theory foundations of game-based learning: A meta-analysis,’ Journal of
Computer Assisted Learning, vol. 28, no. 3, pp. 265–279, 2012. DOI: 10.
1111/j.1365-2729.2011.00437.x.

https://doi.org/10.1007/978-3-319-46152-6
https://doi.org/DOI 10.1007/978-3-319-29659-3
https://doi.org/10.1007/s11423-010-9183-0
https://doi.org/10.1007/s11423-010-9183-0
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
http://www.mrventures.net/all-tutorials/converting-a-twine-story-to-unity
http://www.mrventures.net/all-tutorials/converting-a-twine-story-to-unity
https://doi.org/10.1111/j.1365-2729.2011.00437.x
https://doi.org/10.1111/j.1365-2729.2011.00437.x

Appendix A

Group Members and Project
Roles

A.1 Group Members’ Backgrounds and Competencies

Ludvig Lilleberg started using Unity during the autumn 2020 semester at NTNU,
and used it throughout the semester in the Game Programming and Rapid Proto-
typing courses. All four games he developed and co-developed during the semester
explored different game mechanics, giving him experience in various features of
the game engine. Using Unity, he gained experience in C# programming, 3D Unity
animation, Unity physics, player controls, non-player character (NPC) movement
and actions, terrain and game environment creation, graphical user interface (GUI)
elements and functionality, and more. He also learned how to create simple 3D
models and how to animate them in Blender. He also has some experience with
Firebase and Firestore, from the Mobile/Wearable Programming course.
Among the skills Ludvig had to learn during the development of the bachelor game
was how to create mobile games in Unity and how to test them using a mobile
phone, simple mobile touch and computer mouse controls, smooth player move-
ment and rotation towards a point on the screen that is touched or clicked, using
Firebase and Firestore functionality in Unity, using asynchronous functions and
how to make sure they finish before the game needs their results, making sure
functions run in the correct order, the importance of setting variables and button
functions in the script rather than in the Inspector, and GUI menu navigation and
functionality.

Vanja Falck started using Unity during the autumn 2020 semester at NTNU, and
used it throughout the semester in the Game Programming and Rapid Prototyping
courses. Her main focus is on artificial intelligence in games. She has used ML-
agents and reinforcement learning, implemented graph based searches and finite
state machines in Unity3D games. During this project she acquired skills in us-
ing dynamic Bayesian networks (Hidden Markov Models) by first developing the
framework on a python platform and then porting the online part of it to C-Sharp

71

Chapter A: Group Members and Project Roles 72

and the Unity3D game.

Kristoffer Madsen used Unity first in 2017 during a year of folk high school, but
did not spend much time on it during the first couple years of the university. His
main focus has been coordinating the conversations in the game with the GUI
and creating the GUI for the conversations. Has also worked with Twinery and
implementing Twinery into the project. Kristoffer has acquired skills in usage of
asynchronous functions, working with two different code sets, making sure func-
tions run in correct order, setting up GUI and the importance of setting variables
through script.

A.2 Project Roles

During development, Ludvig Lilleberg has been a game designer, programmer,
3D modelling artist, 2D GUI artist, animator, and database modeller. He has been
responsible for 3D models and animation, 3D environments, avatar creation func-
tionality, player controls, 2D menu graphics and functionality, part of the NPC-to-
NPC conversation functionality (Section 11.15), and part of the Firestore database
structure.

During development, Vanja Falck has been responsible for implementing the Hid-
den Markov Model as a tool for dynamic difficulty adaptation and emotion tuning.
She has contributed to the database infrastructure by setting up the google sheet
pipeline and researching dialogue systems finding the online service twinery.org.
She used first a python and later a Unity3D framework set up with a combination
of a GOAP and twinery based dialogues to develop and test the main parts of Hid-
den Markov Models that later was transferred to the Unity3D game mock-up.

During development Kristoffer Madsen has been doing game designer, program-
ming and 2D GUI art. He has the responsibility of contacting and organising meet-
ings with our client and supervisor. He has had responsibility over the Twinery
scenario and conversation to screen.

Our client’s contact person, Espen Torseth, and our supervisor, Mariusz Nowostawski,
have participated in meetings with our group. They have answered our questions
and provided feedback on our ideas. Mariusz has also provided general tips for
writing the bachelor report.

A.3 Contact Information

For any questions about our Unity project or our project repository, our group can
be contacted at: vanja.falck@ntnu.no.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Vanja Falck
Ludvig Lilleberg
Kristoffer Madsen

Development of Dynamic Difficulty
Adaptation Using Hidden Markov
Models in Learning Games

Bachelor’s project in Programming
Supervisor: Mariusz Nowostawski

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

