
Ba
ch

el
or

’s
 th

es
is Automation Of Digital Scales

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Stian Pedersen
Johan Strand
 Niklas Hatteberg Leivestad

Bachelor’s thesis
2021

Bachelor’s thesis

Automation Of Digital Scales

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Stian Pedersen
Johan Strand
 Niklas Hatteberg Leivestad

Abstract

English

In a competitive breeding industry there is, besides desired genes, a large amount
of data and data management needed to stay ahead. Norsvin is a company that
relies on collecting data on pigs and breed the ones that have desired factors, this
requires compilations of frequent weighing for accurate analysis. With this assign-
ment Norsvin aims to improve their efficiency and accuracy of their compilations
with the use of digital weights. Our solution is made for desktop, developed with
Java and includes support for Bluetooth and RS232 connection, storing recorded
data in a local database, with the added options of exporting and importing en-
tire compilations of such data. The application also has a system-wide hotkey for
fetching weight from the connected scale, and returning it through the computer’s
copy and paste function - making the application compliant with other existing
solutions that lack connection with the scales. In this project we have created
a solution which can be used in the product environment by Norsvin’s farmers.
We have studied transmitting and receiving data from external hardware, and we
have been evaluating their respective Java packages in terms of private and public
use, simplicity and efficiency. We have learned about the Serial Communication
Protocols such as RS232, UART and RFCOMM for Bluetooth. And learned about
different database system, and how to integrate them into applications. Last but
not least, the whole group has become a lot more familiar with and proficient in
the Java programming language.

iii

iv CoPCSE@NTNU: An NTNU Thesis Document Class

Norsk

I en konkurransedyktig avlsindustri er det, i tillegg til ønskede gener, en stor
mengde data- og datahåndtering som trengs for å holde ledelsen. Norsvin er et
selskap som er avhengig av å samle inn data om griser og avle frem svin med de
ønskede kvalitetene. Dette krever samlinger av hyppig veiing for nøyaktig analyse.
Med denne oppgaven ønsker Norsvin å forbedre effektiviteten og nøyaktigheten
av samlingene sine ved bruk av digitale vekter. Løsningen vår er laget for PC, utvik-
let med Java og inkluderer støtte for Bluetooth- og RS232kommunikasjon, lagring
av registrerte data i en lokal database, med tilleggsmuligheter for å eksportere og
importere hele samlinger. Applikasjonen har også en hurtigtast for å hente vekt
fra den tilkoblede vekten og returnerer vekten via PC-ens kopier og lim inn funk-
sjon. Dette gjør applikasjonen kompatibel med andre eksisterende løsninger som
ikke kan kommunisere med vektene. Med dette prosjektet har vi laget en løs-
ning som skal brukes av hos Norsvins bønder. Vi har studert overføring og mottak
av data fra ekstern maskinvare, samt evaluert dems respektive Java-pakker etter
privat og offentlig bruk, enkelhet, og effektivitet. Vi har lært en del om serielle
kommunikasjonsprotokoller som RS232, UART og RFCOMM for Bluetooth. Vi har
også lært om forskjellige database systemer, og hvordan integrere dem inn i ap-
pligajoner. Sist men ikke minst, har hele gruppen blitt mye mer kjent og erfaren i
bruken av Java-programmerings språket.

Contents

Abstract . iii
Contents . v
Figures . vii
Tables . ix
Glossary . xi
1 Introduction . 1

1.1 Project Description . 1
1.2 Background . 2
1.3 About Norsvin . 3
1.4 Goals and scope . 4
1.5 Hardware . 5
1.6 Framework . 5
1.7 User group . 6
1.8 Roles . 6

2 Development process. 9
2.1 Development model . 9
2.2 Project management . 12
2.3 Gradle and CI . 14

3 Requirements specification . 15
3.1 Use-case . 15
3.2 Functional requirements . 19
3.3 Design requirements . 20
3.4 Security requirements . 20
3.5 Operational and non functional requirements 21

4 Technology . 23
4.1 Java . 23
4.2 232Analyzer . 24
4.3 BlueCove . 25
4.4 jSerialComm . 25
4.5 Database - SQLite . 25
4.6 Coding environment . 25

5 Structure and implementation . 27
5.1 Scale Connection . 28
5.2 Database . 30

v

vi CoPCSE@NTNU: An NTNU Thesis Document Class

5.3 CSV export and import . 33
5.4 Internationalizing . 35
5.5 Property file . 36

6 User interface . 37
6.1 Layout . 37
6.2 Connecting To A Scale . 38
6.3 FXML . 39

7 Testing and code quality . 43
7.1 Procedure . 43
7.2 User testing . 44
7.3 Important discoveries . 45
7.4 Code quality . 47

8 Conclusion . 51
8.1 Result . 51
8.2 Alternative options and choices . 51
8.3 Future work . 52
8.4 Evaluation of group work . 52
8.5 Ending . 52

Bibliography . 53
A Project agreement . 57
B Norsvin’s assignment . 61
C Meeting logs . 63
D Pre-project plan . 65

Figures

1.1 Digital weight scale . 3
1.2 Hardware used in the development process. 5

2.1 Highlight of our categorized case names 11
2.2 Snippet of our Kanban board in Git Lab. 12
2.3 Git notification channel. 13
2.4 yml code for generating and publishing the JavaDoc 14

3.1 Use case diagram made in draw.io . 15
3.2 Screenshots of the GUI. 17

4.1 Overview of tools,language and software 23
4.2 Sample comparison between old and new syntax 24
4.3 GUI under development in Scenebuilder 26

5.1 Application structure chart. 27
5.2 Retrieving 1.74kg from the RS232-scale through 232Analyzer . . . 28
5.3 Alert message for Bluetooth . 30
5.4 Code snippet from port communication with the use of jSerialComm 30
5.5 Logical model of the database. 31
5.6 Code extract from database search filter function. 32
5.7 Function that selects how to Import data from selected file. 34
5.8 Function that returns true or false if the parameter fits the pattern

limitations. 34
5.9 Code snippet for loading language bundle and getting Local language 35
5.10 Internationalized strings for English . 36
5.11 Stored settings, which will be loaded on next startup 36

6.1 Graphical user interface . 37
6.2 Alert confirming the deletion . 38
6.3 Progress indicator spinning, indicating that the application is search-

ing . 39
6.4 FXML Structure . 40

7.1 Code review in Git . 44

vii

viii CoPCSE@NTNU: An NTNU Thesis Document Class

7.2 New thread created for searching after Bluetooth devices 46
7.3 What we suspect to be the main culprit for excessive memory usage 47
7.4 Screenshot of multiple remote device scenes and memory usage. . . 47
7.5 SonarQube analysis, before and after refactoring 48
7.6 Before refactoring . 48
7.7 After refactoring for memory leak with use of try-with statement . . 49
7.8 Before refactoring for memory leak . 49
7.9 After refactoring for memory leak . 49

Tables

2.1 Summarized comparison between scrum and kanban [20] 10
2.2 Kanban Column descriptions . 11

3.1 Connecting a scale to the application 18
3.2 Use-case of how to add new entry in the local database 19
3.3 Non functional requirements . 21

ix

Glossary

.csv A Comma Separated Values (CSV) file is a plain text file that contains a list
of data. These files are often used for exchanging data between different
applications. For example, databases and contact managers often support
CSV files [1]. 33

Buffer reader Reads text from a character-input stream. It buffers the characters
in order to enable efficient reading of text data. [2] . 29

CI/CD pipeline CI/CD bridges the gaps between development and operation activ-
ities and teams by enforcing automation in building, testing and deployment
of applications.[3]. 12

Code With Me Code With Me is a collaborative development and pair program-
ming service [4]. 52

Controller A instance of this class is created when the FXML file is loaded. The
FXML controller class binds the graphical user interface components de-
clared within the FXML file together. Making the controller class the medi-
ator [5]. 40

Hashmap A HashMap store items in "key/value" pairs. [6]. 39

i18n Internationalization and localization, where 18 stands for the number of
letters between the first i and the last n in the word internationalization
[7]. 35

JavaDoc JavaDoc is a documentation generator for the Java language that gener-
ates API documentation in HTML format from Java source code. The HTML
format is used for adding the convenience of being able to hyperlink related
documents together [8]. 14, 52

JavaFX JavaFX is a open source software platform for creating and delivering
mobile, desktop applications and embedded systems build on Java [9]. 26

jSerialComm Java Library which gives platform-independent serial port access
[10]. 25, 30

xi

xii CoPCSE@NTNU: An NTNU Thesis Document Class

l10n Localization, where 18 stands for the number of letters between the first L
and the last N in the word Localization [11]. 35

ResourceBundle Resource bundles contain locale-specific objects. When your pro-
gram needs a locale-specific resource, a String for example, your program
can load it from the resource bundle that is appropriate for the current user’s
locale. [12]. 35

RFCOMM RFCOMM emulates RS-232 serial ports.. iii, iv

RFID Radio frequency identification, RFID. Is a method of storing and retrieving
data using small devices call RFID tags [13]. 2, 17, 31, 37

RS232 RS232, Recommended Standard, is a standard protocol used for serial
communication, it is used for connecting computer and its peripheral devices
to allow serial data exchange between them [14]. iii, iv, 5, 28

RXTX An open source java class library that provides serial and parallel port com-
munication [15]. 25

SPP Serial port profile is intended to replace RS-232 cables (or other serial com-
munication interfaces). SPP is for sending and receiving bursts of data/in-
formation between two devices [16]. 29, 39

Tatonumber Unique identification number of the pig. 4, 16, 19, 31, 45, 51

UART Universal asynchronous receiver-transmitter. A computer hardware device
for asynchronous serial communication in which the data format and trans-
mission speeds are configurable [17]. iii, iv, 25

Chapter 1

Introduction

1.1 Project Description

English translation of the official project description

Client:

Norsvin SA, Storhamargata 44, 2317 Hamar

Task:

Application for reading digital scales.
To increase the degree of digitization as well as secure and simplify the process

of weight registration on pigs in pig herds, digital scales have been used in Norsvin
that can communicate with external hardware.

Objectives of the assignment:

In this assignment, it is desired to develop a desktop software for PC, and possibly
a mobile application, that can read from digital scales and transfer this to the
writing cursor, be it a text editor, web application or similar.

Thesis requirements:

In Norsvin, several different weights are used and the reading application must
be able to freely configured to support all of these. The configuration application
must, after configuration, be able to run as a background application or service.
It must be possible to read the weight with a global hotkey (e.g. function key F7).

Which key should act as the hotkey, shall to the extent possible be determined
by the user when configuring the application.

1

2 CoPCSE@NTNU: An NTNU Thesis Document Class

Desired options:

Initially, only weight reading is required, but the application should also have an
option for reading of eg the animal’s ID via an barcode or RFID reader which is
connected to the system running the application. The application should also be
able to add fixed data fields that can be sent when weight is gained read. Examples
of such additional data fields can be: today’s date, time stamp for weight reading.

1.2 Background

Why we chose the assignment

The team had previously agreed that we would prioritize tasks that involved ap-
plication development as its core workload. From the task description, we knew
that it revolved around making an application. We quickly deduced what API’s and
other functionality that was likely to be integral parts of the application, some of
them involving communication with external hardware. After the first meeting
with Norsvin we presented our vision and what we could offer as a solution. The
feedback we received got us moving forward, and we more or less confirmed what
technologies were going to be involved. Norsvin told us that their digital scales
uses both Bluetooth and RS232 as their external communication interfaces, im-
plying that the application has to support communication through both.

There were also a requirement that the application could be used without
access to the internet, as not all farmers has internet connection in their barn.
Thus, data had to be stored locally, and uploaded when the user had access to
the internet. The application was also intended to be used by employees in other
countries, so it had to be internationalized. Based on this, there was a wide range
of different aspects involved to create the application, which made it an interesting
task and gave us free rein on how to develop the interface itself. This gave us the
opportunity to be creative in how we developed the application. This application
will be used frequently and will run over and over again, so the design needs to
fit the usage and be as simple as possible.

Our related backgrounds

We all study Engineering - Computer Science. Stian Pedersen and Johan Strand
have taken the subject Application Development and had some experience in de-
veloping desktop applications. While Niklas Leivestad has taken the subject Er-
gonomics in Digital Media which provides insight into the importance of design.
The client also wanted this to be done in Java, which all group members had some
previous experience with. None of the groups members had any experience com-
municating with external hardware. Which should prove to be somewhat more
difficult than we initially expected. We also had to communicate with and con-
trol/manage the database from our application, which was a new experience for
all of us.

Chapter 1: Introduction 3

1.3 About Norsvin

Norsvin and the assignment

Norsvin is a cooperative (SA) owned by Norwegian pig producers. A breeding
company that conducts breeding work on pigs in Norway. They distribute genet-
ics in the form of semen, to pig producers both nationally and internationally.
Norsvin’s genetics are among the best in the world, and are offered to customers
globally through the company Topigs Norsvin; one of the world’s largest compan-
ies in pig genetics. Norsvin’s headquarters is located in Hamar, with approximately
70 employees [18].

The desire to gather and storing data of each pig in every weighing session
more effectively, is the reason for this assignment. This is why our task is to in-
crease the degree of digitization, to secure and simplify the process around weight
registration on pigs in pig herds. Today’s routines for weighting is to manually
enter the pig’s ID number and weight. Norsvin uses digital scales that can com-
municate with external hardware and therefore wants to utilize this feature. The
scales communicate via Bluetooth and RS232 port.

Figure 1.1: Digital weight scale

Purpose

Norsvin’s purpose is to help secure the finances of Norwegian pig producers by
offering a high quality genetic material. Norsvin’s international investment there-
fore aims to contribute to earnings for research and development work and at the
same time reduce the cost associated with inseminating [18].

Until Norsvin was founded in 1958, the breeding of pigs was run by a few
farms, and the progress that was created was not available to everyone. Due to
this, Norsvin was formed and founded on the following guiding principles:

• The farmer’s right to self-determination.
• Progress for the many.
• The achievements of science.

4 CoPCSE@NTNU: An NTNU Thesis Document Class

These guiding principles are equally valid today, and in short, this means that
Norsvin will base its breeding work on knowledge and modern breeding methods
[18].

Norsvin owners

The owners, who are pig producers/farmers - about 1300 today - will be involved
in deciding important breeding priorities. The members are organized in county
councils, which in turn can be organized in local community groups. Everyone
should be allowed to take part in the progress that breeding work provides [18].

1.4 Goals and scope

Current procedure of recording new weights.

Today the farmers will have to manually check and write down; Tatonumber or
RFID, date and weight - And record them into the central database individually
by hand.

We got to see a demonstration of how the recording process worked, and all of
the data points had to be inserted individually i.e: You first type out the Tatonum-
ber and click on a "Next" button. The website will then load a new page, where
you will have to fill out the date and click on the "Next" button again. All recorded
data will follow this procedure of continuously filling in one piece of data and
moving on to the next page to fill in the next piece of data. This process is both
inefficient and includes a lot of points where human errors can occur.

Our application.

Our solution provides the user with the ability to scan the RFID tag or barcode
on the animal, which will automatically fill in the fields Tatonumber, Race, Sex,
Location and Date. The farmer will then click on the weigh button, which will
fetch the current weight applied on the connected digital scale, and record it to
our application. Now the farmer only has to click on the "Add" button, and a new
weigh instance will be stored in a local database. The farmer can then continue
weighing the rest of the animals. Once the farmer has completed all recordings
for the day, they can then export all new recordings to a .csv file, and import them
into the central database. For convenience, the farmer also has the option of im-
porting new tatonumbers from a .csv file so that they don’t have to manually type
in the tatonumber of new animals by hand. This also reduces the possibility of
submitting tatonumbers with typos in them to the central database. The applic-
ation also supports the use of a global hotkey, which will get the current weight
from the connected scale, insert it into clipboard and paste it. This functionality is
meant for those that has access to internet while weighing the animals, and lets
them skip the extra steps of exporting and importing the recorded data.

Chapter 1: Introduction 5

1.5 Hardware

We were provided with three digital scales, a T-Scale model BWS, two DIGI model
DS-166 scales - one equipped with Bluetooth and one equipped with RS232. We
also got an RFID scanner and 4 RFID chips. See figure: 1.2 for an overview of
hardware. We had the option of getting a barcode reader sent over as well, but
we knew from previous experience that such readers just needs to be plugged
into a computer, and they work just as intended. Needless to say, they require no
additional configuring to make them work. The RFID scanner works in a similar
manner, so we didn’t have to spend any time implementing support for the device.

The model DS-166 has a weight limit of 30kg, and the BWS model has a limit
of 200kg. The BWS model didn’t come with any form of connection so we didn’t
get to use it for testing our software. But the standard transferring protocol should
be compliant with RS232

(a) DIGI model DS-166 scale (b) RFID scanner, RFID chips and RS232
Adapter and connector

Figure 1.2: Hardware used in the development process.

1.6 Framework

Norsvin SA wants a Windows desktop application. The code should be easily con-
verted to android for mobile devices for scalability to mobile devices in the future.

6 CoPCSE@NTNU: An NTNU Thesis Document Class

Delimitation

Operating systems: Mainly supported operating systems are Linux and Windows,
but iOS should be supported by default as it is Unix compatible.

The application should be able to fetch the weight of an object from the
provided digital weights - Either using RS232 cable or Bluetooth.

• The application should be able to export its stored data to an .csv file.
• The application should be able to import data from .csv files.
• The application should have a convenient and efficient way of getting in-

formation about specific animals or groups of animals.
• The application should be compatible for internationalization.

1.7 User group

Users of the application

The main target group for this application is farmers, but also Norsvin’s employ-
ees. They will use the application in everyday work, to make weight reading and
registration of pigs more efficient.
As the largest target group is farmers, the users will have different technological
experiences, which must be taken into account, and the application will be used in
the field where the conditions are not always optimal. Hence the interface must be
designed with self-explanatory and clear design, with big visible buttons as well
as minimize unnecessary information. Simple alerts has to be given when the user
has entered faulty data, or when other unexpected errors occur.
Norsvin also has employees in several other countries with different languages, so
we have therefore internationalized all text strings, and added language support
for Norwegian, English and Dutch.

Readers of the report

The report will first and foremost give the examiner and supervisor an insight into
how we carried out our project from a developer’s perspective. But also for the
client who has their own developers, who may want to develop the application
further in the future.

1.8 Roles

Stian Pedersen as developer. He had main responsibility of the back-end, with
the implementation of the database and csv import/export, and was leading the
agenda in meetings.
Johan Strand as developer. He had main responsibility of the Bluetooth scale and
graph, from implementation to front-end.
Niklas Leivestad as developer. He had main responsibility of the RS232 scale, from

Chapter 1: Introduction 7

implementation to front-end and was the recorder on the meetings.
Tom Røise was supervisor. With meetings with the project group members every
other week on Wednesday or Thursday, this frequency increased to every week
one month from the deadline.
Rune Sagevik was product owner and representative of Norsvin. Rune and Lars
Terje Bogevik expressed Norsvins vision during the project. They both attended
the meetings we had throughout the project.

Chapter 2

Development process.

2.1 Development model

SCRUM Sprint

At the start of the project, we haphazardly and unanimously agreed to follow
the SCRUM Development framework, because it is a very versatile and organized
model that frankly, is very popular among software developers. As we started the
project without actually thinking through what is required for success with this
model, we were a bit ill prepared when starting with the development, because
none of the team members had any previous experience with SCRUM. Thus we
started the project without any preparation for how to set up a functional frame-
work beforehand [19].

This would prove to be a mistake on our end. We did not scale the SCRUM
framework to suit our small team and lacked both the commitment to follow
through with all the formalities, as well as learning the appropriate processes
necessary to uphold an optimal SCRUM framework, such as having a dedicated
scrum master responsible for planning meetings and logging progress as well as
planning the next sprint.

Kanban

Why kanban?

After realizing that our empty shell of a SCRUM framework was falling apart, we
fully committed to switch over to only using Kanban, which was previously only a
supplementary tool for our SCRUM model. We did this decision after researching
a bit, and found that Kanban was a very fitting model for our workflow.

9

10 CoPCSE@NTNU: An NTNU Thesis Document Class

Scrum Kanban
Cadence Regular fixed length

sprints (ie, 2 weeks)
Continuous flow

Release meth-
odology

At the end of each sprint Continuous delivery

Roles Product owner, scrum
master, development
team

No required roles

Key metrics Velocity Lead time, cycle time,
WIP

Change philo-
sophy

Teams should not make
changes during the
sprint.

Change can happen at
any time

Table 2.1: Summarized comparison between scrum and kanban [20]

We had previously established all necessary prerequisites for a fully functional
Kanban framework, which was a Kanban board and close communication with
team members/developers and Norsvin. We used two separate communication
channels, Microsoft Teams and Discord. Microsoft Teams was used to communic-
ate and host meetings with our supervisor and Norsvin, while Discord was used
for communication internally within the development team 2.2.

Transition

After switching to Kanban, we were more proactive in using our issue-board.
Adding issues whenever noticing missing functionality or errors, as well as during
meetings with Norsvin - when they had feedback on things to alter, or new desired
functionality.

The table 2.2 contains the guidelines for putting cases in correct places, which
represents in what state that specific case is in at any given time. The table was
produced to give the team a collective perception of where to put the cases they
were working with [21].

In addition to the guideline table, we also categorized all Kanban cases for
better readability. The categorizations would be stated before the description of
the case, with the intent of making it easier for the developers to filter out the
cases that fit what they want to work on. Figure 2.1 is a snippet of the Kanban
board, containing some examples of the categories. "GUI/DB - Implement distinc-
tion between exported entries and unexported entries - Implement search variable"
This case is assigned the tags GUI/DB because it involves development in both the
GUI and DB.

Chapter 2: Development process. 11

Column Description
Open Cases that has been added because it would be a nice

future but not a necessity.
TODO Anything that has to be addressed at some point.

Such as implementing requested functionality from
Norsvin, bugs and other missing functionality that
has priority of getting implemented.

Started Cases where development has been started.
On halt This tag is used when hitting a roadblock, where

either major changes needs to be done or the de-
veloper is simply stuck and does can not complete
the issue. The group will then assemble and tackle it
together.

Waiting for review When a case has been been implemented, and a
merge request is being made - The request will then
be reviewed by at least one other developer.

Reviewed - OK Case is moved to this column if the reviewing de-
veloper did not find any errors in the code, the re-
viewer will also approve the merge request.

Closed Cases are moved here after it has been implemented
into the master branch.

Table 2.2: Kanban Column descriptions

Figure 2.1: Highlight of our categorized case names

12 CoPCSE@NTNU: An NTNU Thesis Document Class

We did not have any specific priority listings other than "TODO" and "On
halt...", because the assignment specification was inherently very loose and did
not state any requirements other than being able to receive the weight output by
the digital scales. This made us focus more on quality and usability which did not
have any specific priority, as there were only three core requirements to fulfill.

Figure 2.2: Snippet of our Kanban board in Git Lab.

2.2 Project management

Git

We are using NTNU’s GitLab server for our application’s source control. 1

Repository configuration

To prevent the possibility of having conflicts between the group member’s code,
we decided to:

• Make the master branch protected, and restrict all push requests.
• Merge requests must be approved by at least one repository maintainer,

which does not include the developer submitting the merge request.
• Before a branch can be merged with the master branch, it has to pass the

CI/CD pipeline first.

With using these three restrictions combined, we have effectively removed all
easily preventable conflicts and commit mistakes. Our pipeline is mostly just using
the standard configuration for Gradle, which checks imported libraries and tests
if the application builds properly. The only functionality we added to the pipeline
was an automatic JavaDoc generation process. See: [2.3]

1https://git.gvk.idi.ntnu.no/

https://git.gvk.idi.ntnu.no/

Chapter 2: Development process. 13

Discord

We made our own Discord server soon after establishing the project group, be-
cause it is a really convenient tool for communication with a team. Discord allows
its users to make multiple channels within a server, where everyone can share use-
ful resources and discuss specific parts of the development in an orderly manner
(See 2.3).

Communication

Discord has both a desktop and mobile application, which makes communication
with all members available at all times. And has the same communication cap-
abilities as Teams, with the difference of convenience and accessibility [22] . In
addition Discord has support for web-hooks, which can be used to push Git Lab
notifications.

Notifications from Git-Lab

Implementing the Git Lab web-hook was integral for keeping track of changes
on the repository, which is very important when other developers have to read
over the code in the merge request before it can be merged. The use of discord
has helped us immensely with keeping track of the general development of the
application, while simultaneously being our central hub for communication - Both
in chatting and in digital work sessions.

Figure 2.3: Git notification channel.

14 CoPCSE@NTNU: An NTNU Thesis Document Class

2.3 Gradle and CI

Gradle

Gradle is a build automation tool for multi-language software development. It
controls the development process in the tasks of compilation and packaging to
testing, deployment, and publishing. The goal of Gradle is to add functionality to
a project, and is highly customizable [23].

We used Gradle because of its ease of use and support for implementing ex-
ternal libraries. We also had previous experience with using it, so the benefits of
choosing Gradle as our build tool over Maven and ANT, ended up far outweigh-
ing the other options. There is also possibilities to make android applications with
Gradle, which makes the code reusability more available for further development.

Gradle has integrated support for the JavaDoc API , which makes it quite
simple to integrate the generation and publishing of our JavaDoc with the pipeline.

CI/CD pipeline

Our CI will generate new JavaDoc files of our master branch 5 minutes after the
other pipelines has succeeded, and will then copy the generated HTML files to the
web-server for students, hosted by NTNU. Our JavaDoc API is posted here: [24]

As showcased in the snippet of our YAML file [2.4], most of the setup for the
JavaDoc API is for interacting with the web server in a secure way. None of us
had any previous experience with setting up or configure the Git pipeline, which
made implementing our solution quite challenging. The goal for the CI script was
to generate the JavaDoc files, and copy those files to the web-server. By following
these guides provided by GitLab: [25], [26] - We eventually managed to figure
out how to use the GitLab CI variables and how to make the scripts necessary for
secure server interaction.

We have configured the script to only apply to the master branch, and it will
execute 5 minutes after the build and test jobs has passed successfully.

Figure 2.4: yml code for generating and publishing the JavaDoc

Chapter 3

Requirements specification

3.1 Use-case

With the following use-cases and use-case-diagram [3.1], we want to provide an
overview of the application in a simple manner. We have been using use-cases from
earlier projects and know its strengths, such as showing complicated systems in a
simple way. It will give a deeper insight into the different processes the user can
perform, and how they operate. Some of the biggest ’eureka moments’ from this
project were the first connection with the scale and application. Later we finally
got to receive the current weight. Therefore, we have chosen to attach an extended
use case of these functions.

Figure 3.1: Use case diagram made in draw.io

15

16 CoPCSE@NTNU: An NTNU Thesis Document Class

High level use case descriptions

Use case name: Connect to scale
Actor: User
Goal: Connect to a digital scale
Description: The user clicks on settings, and chooses form of connection in the
drop down menu. A pop up box with list of available scales will appear [3.2].
Choose one by clicking it and then click the connect button.

Use case name: Add new entry to local database
Actor: User
Goal: Add a pig’s new weight information to the database
Description: The user fills in either Tatonumber or RFID related to the pig. Click
on weigh. Then click on "Add" to add the new weight into the Currently Registered
table [6.1].

Use case name: Fetch weight from scale
Actor: User
Goal: To get the current weight from the scale
Description: In application: Click the Weigh button. The current weight will be
retrieved from the connected scale, and inserted into the "Weight" text field.
As a background service: Press F4 to put the weight in any chosen text field.

Use case name: Import CSV file
Actor: User
Goal: Importing pigs from Norsvin’s central database.
Description: Click Import. A file explorer will pop up and lets you navigate
through your system files. And you will be able to select the .csv file you want
to import. Only .csv files and folders are displayed in the file explorer.

Use case name: Export CSV file
Actor: User
Goal: Export everything in the Currently Registered table [6.1] into a CSV file.
Description: Click Export. A file explorer will pop up and lets you navigate
through your system folders. And you will be able to write a name for the .csv
file you want to export/create.

Use case name: Delete entry from local database
Actor: User
Goal: Remove an entry from the table
Description: Pick the entry in the Currently Registered table [6.1], or from the
search-result table. Click delete. A confirmation dialog will appear. Click OK to
delete entry.

Chapter 3: Requirements specification 17

Use case name: Search for a specific object
Actor: User
Goal: Find all entries of a specific instances of an object
Description: Below the Searched table [6.1], there are text fields for all descript-
ive fields of an entry. Write part of the RFID, Location or pick the date you want to
list out and click Search. This will fetch all entries matching the constraints given
in the text fields.

Use case name: Adding an entry to the graph
Actor: User
Goal: Looking at the development of an object
Description: By clicking on an instance in the Currently Registered table [6.1] it
will automatically be added to the graph. Click clear graph to start over.

Use case name: Change language
Actor: User
Goal: Changing the language in the application
Description: Click the Settings button. Hover your cursor above Language in the
drop down menu. Click on the language to open the language drop down menu.
Pick your desired language. The settings menu will disappear and the language
has changed.

(a) List of available communication ports and
Bluetooth’s MAC address in the red rectangle selected

(b) Bluetooth scale not in reach

Figure 3.2: Screenshots of the GUI.

18 CoPCSE@NTNU: An NTNU Thesis Document Class

Expanded use-case descriptions

Connecting to scale
Actors: User
Purpose Connect application to scale
Description To configure the scale, go to settings, pick form of con-

nection, and a list of either available Bluetooth scales or
COM(communication ports) will pop up. Pick your scale
and click connect.

Pre-conditions: You will need a computer to run this application, as well
as a scale able to connect through Bluetooth or a RS232
with the cable from the scale into the computer. Make
sure that the scale is turned on.

Basic flow - RS232: 1: Go to settings
2: Pick RS232 as communications form the list of com-
munication ports will appear [3.2].
Each list entry contains information of the system port
name, by clicking on the list entry the addition inform-
ation will emerge. This is in the format "Communication
port(Com1)" and port description on the format "FT232R
USB UART" or "Serial3". You are looking for the one be-
longing the scale, which for this USB to serial UART ad-
apter is FT232R.
3: Pick the port matching your scale.
4: Click connect. You are now connected and ready to
weigh.

Basic flow - Bluetooth: 1: Go to settings.
2: Pick Bluetooth as communications form in the settings
menu and the list of available Bluetooth scales will ap-
pear.
3: Pick the one matching the scales MAC-address [3.2].
4 : Click connect. You are now ready to weigh.

Alternate flow You only need to configure the scale once, next time you
open the application you can start weighing right away.

Exception flows: You connected to the wrong communications port:
If you still have the list up, switch to the correct port and
click connect.
If else you click the RS232 button to retrieve the list and
pick the right one and click connect.

Table 3.1: Connecting a scale to the application

Chapter 3: Requirements specification 19

Add new entry to local database
Actors: User
Purpose Add a pig’s new weight information to the database.
Description The user puts in the relating data of the pig [3.2]. Which

includes Tatonumber, RFID, Date, Race, Sex, Location.
Age will fill in automatically, depending on the date. Add
current weight from scale. Then put this information to
the Current Registered table.

Pre-conditions: You will need a computer with this application installed,
a pig, a scale connected to the application.

Basic flow: 1: fill in the data relating the pig, as given in the descrip-
tion. sex.
2: Click the Weigh button. The new weight will be added
as soon as the scale sends its response.
3: Click the blue Add button. This will update the Cur-
rently Registered table [6.1] with this new entry.

Alternate flow You pull up known data from a pig which have been
weighted before, and therefore is already in the database.
You can search for a pig in the database using either RFID
or the Tatonumber.
Then you get all the entries of the pigs containing those
numbers.
You can also sort your local database on pig enclosures.
When you know you are going to weigh the pigs in en-
closure 1 you can pull up those pigs and easily click on
the pig you are going to weight to fetch its data.
The date will be updated to current day and the only data
you need is weight, this is done by clicking Weigh button.

Exception flows: You wrote the wrong RFID or Tatonumber
1: Click the newly added entry
2: Click delete
3: Start over

Table 3.2: Use-case of how to add new entry in the local database

3.2 Functional requirements

The functional requirements in the Project description 1.1 can be summarized into
the following points:

• Has to be made for desktop.
• Has to be able to read weight off of the scale.
• Has to be able to write the weight to anywhere using a hotkey.
• Requires support for multiple digital scales.

20 CoPCSE@NTNU: An NTNU Thesis Document Class

• Must be configurable
• Option for reading bar-code or RFID.
• Should be able to record timestamps as well as the weight.

As the requirements are very loose and not very extensive, we mostly had free reins
to implement anything. Which is why we had regular meetings with Norsvin, to
air our thoughts and ideas of what to implement next.

The end result of our list of functional requirements:

• Has to be made for desktop.
• Has to Be able to read weight off of both Bluetooth scales and RS232 scales.
• Has to be able to fetch weight from the scales using a global hotkey.
• Has to record timestamp when weighing.
• Global hotkey has to be configurable.
• Has to be able to store recordings locally.
• Has to be internationalized.
• Has to be able to export stored data.
• Has to be able to import external data.

3.3 Design requirements

The application is meant to be utilized out in the barn, where maybe the lighting
and other conditions are not optimal for computer use. To account for those con-
ditions, the application is required to have a minimalist design, paired with large
buttons and large font sizes.

3.4 Security requirements

Our application will primarily be used in conjunction with logging the weight and
date of animals, with no direct interaction with other existing applications/solu-
tions. We had considered implementing a form of login procedure and encrypting
data, but after consideration and discussion with Norsvin, we deemed it to be
unnecessary, and a waste of the team’s time. The reason being that Norsvin did
not categorize the data available in our database as crucial or critical. Because in
isolation, that data is not valuable for anyone, it has to be linked with other data
and analyses, which are stored in Norsvin’s central systems. Since our application
is a separate and independent system, we refrained from adding login procedures
because most users would very likely just use the same username and password
that they already use in other services. Considering our team’s nonexistent exper-
ience in securely managing passwords and other sensitive information, we would
rather not expose our selves to the possibility of being a potential major breach in
password security. Especially when the data behind the login barrier, can also be
found on the computer in the form of exported .csv files 5.3.

Chapter 3: Requirements specification 21

3.5 Operational and non functional requirements

Although Norsvin didn’t specify any operational explicit requirements, an intuit-
ive, responsive and sturdy environment, is still implied for an application made
with the sole purpose of improving existing solutions. With this in mind, we have
gone though several points of consideration, and discussed their relevance with
Norsvin 3.3.

Internationalization Norsvin is an international company, with many cos-
tumers and partners throughout Europe. The applic-
ation thus has to be made compatible with interna-
tionalization standards for easier future expansions.

Capacity/Throughput Because the application is client-side, it will only ad-
minister a single user at once, who will be able to
produce an estimated throughput of maximum 2 an-
imals a minute. By that metric, we concluded that
anything related to capacity and throughput was re-
dundant, as it is influenced entirely by the host device
- which is responsible for only a single user.

Reliability Reliability the most important aspect of the applica-
tion, considering that the only purpose for the exist-
ence of the application, is to make logging weights
more convenient. The application is thus required to
not crash, and prevent the user from inserting data
that produces errors.

Storage All data will be stored until the user chooses to delete
it. And since 4.5 is practically a limitless solution in
both storage and scale-ability, the only limiting factor
would be the storage capacity of the host device. [27]

Windows desktop ap-
plication

The application is required to at least support Win-
dows as an operative system.

Table 3.3: Non functional requirements

Chapter 4

Technology

Figure 4.1: Overview of tools,language and software

This chapter is dedicated to mentioning the technologies used throughout the
project.

4.1 Java

Norsvin expressed their preference for Java as the coding language of choice for
the application, because the in-house developers of Norsvin are familiar with it,
and will be able to continue to support and further develop the application after
we have delivered the proof of concept.

23

24 CoPCSE@NTNU: An NTNU Thesis Document Class

New futures with Java 15 compared to Java 8

With Java 15, they introduced the use of Text Blocks, which are very convenient
when making SQL queries for the database. The coding experience is better in
general because null-pointer errors are more expressive, and thus easier to find
the source of the problem. And the try/catch statements are equipped with a more
robust and easy to use local variable cleanup.

(a) SQL statement with pre Java 15 syntax. (b) SQL statement with new text block syntax.

Figure 4.2: Sample comparison between old and new syntax

Cons of using Java 15 instead of Java 8

The latest official standalone JRE is 8, which means all newer versions of java,
is mostly for developers as only new JDK are released. And to get an executable
file for consumers, the JAR file has to be turned into an executable file with an
embedded JRE version 8. This can be done using jLink tool.

Why we chose to use Java 15 instead of LTS.

The downside of using Java 15 entirely on the fact that the latest official, stan-
dalone JRE is for Java 8. So anything made with a newer version has to be ported
down to a compatible version. While this restraint is quite annoying, developing
apps on a newer version of java is generally a much better experience as they make
the language both more robust and easier to use in every new version, which is
enough of a reason to use it. The figure 4.2 displays one new added difference
in syntax. While using the new syntax, you also gain the benefit of having SQL
syntax support within the text block, this also works with suggestions and auto
complete of tables and columns from the database.

4.2 232Analyzer

Norsvin gave us a tips to start off communication with the scales by using 232Ana-
lyzer [28]. This software is a serial protocol analyzer, that displays information re-
ceived from communication ports on the computer. We used this software for the
initial connection and debugging the connection with the digital scales, because
Norsvin had tested and confirmed that the software worked with the RS232 scale.

Chapter 4: Technology 25

We could then utilize it as a benchmark to determine whether or not we had con-
nected to the scale, and that the data received in our Java application mirrored
the results from 232Analyzer.

4.3 BlueCove

Since the application should be able to communicate with a Bluetooth scale, we
chose to use BlueCove. Which is a Java library for Bluetooth connection (JSR-
82 implementation). BlueCove provides an further developed API of JSR-82, and
can be used in Java Standard Edition (J2SE) 1.1 or newer [29]. BlueCove provides
modules for discovery of nearby Bluetooth devices, identify services provided by
the remote device, and access to information such as Bluetooth address, Bluetooth
device name etc.

4.4 jSerialComm

We used the jSerialComm package for configuring UART communication and to
access the communication ports through Java. This package is a library based on
the old Java Communications API and RXTX, but with added functionality. This
made it possible for us to list out the computer’s available communication ports.
The user is then able to select the port where the RS232 scale is connected.

4.5 Database - SQLite

The goal for the application, was for it to be a "plug and play" type of application.
Where you only need to install the application, and be ready to use it. We chose
to use SQLite, because SQLite is a server-less database and is self-contained. This
is also referred to as an embedded database which means the DB engine runs as
a part of the app. On the other hand, MySQL requires a server to run. MySQL
will require a client and server architecture to interact over a network. With using
SQLite, we minimize the preparation required for the application to be able to
communicate with a database in a seamless "plug and play" manner, this also
eliminates a lot of potential points of failure as well.

4.6 Coding environment

Intellij

Our team has been using Intellij Ultimate as our IDE. Mainly because it was the
IDE we were familiar with, and partly because NTNU provides its students with a
free licence.

26 CoPCSE@NTNU: An NTNU Thesis Document Class

Scenebuilder

Scenebuilder is a tool for making GUI interfaces with JavaFX. Scenebuilder uses
a modulated drag and drop interface. By using Scenebuilder we had a fast and
easy way of building our GUI, this let us focus more on the functionality of the
application instead of the GUI.

Figure 4.3: GUI under development in Scenebuilder

Chapter 5

Structure and implementation

Now we will take a closer look at how we have implemented the different parts
of our system.

Figure 5.1: Application structure chart.

27

28 CoPCSE@NTNU: An NTNU Thesis Document Class

5.1 Scale Connection

Both the Bluetooth and RS232 scales uses the RS232 protocol when transferring
data, effectively transmitting data with the same format on both scales. This let
us implement a uniform way of handling the data, regardless of the source port.
The fact that both scales used the same standard also let us use the 232Analyzer
to check whether or not there actually was a connection between the computer
and the scale, by sending and receiving data.

Figure 5.2: Retrieving 1.74kg from the RS232-scale through 232Analyzer

We had to start a separate thread when sending a request to the digital scales,
because the application would stop functioning until a response from the scale was
received, which would last indefinitely if there was no connection to the scale. 7.3

Bluetooth

Getting connected

Before we started implementing the Bluetooth scale for the application. We had to
test whether the Bluetooth scale was actually possible to communicate with. We
had initially tried connecting with the scale, using three different computers, run-
ning either Windows or Linux, as well as four different phones, testing in Android
and iOS, but to no avail. We could see the scale in the list of available devices, but
connecting to the device was seemingly impossible.

One of our contacts from Norsvin had tried this himself, but was not able to
connect to the scale with a stable connection either. We then decided to send an
email in correspondence between Norsvin and the supplier of the scale(DIGI).

Chapter 5: Structure and implementation 29

Where they informed us about parity, stop bit, bandwidth and which command
to send to the Bluetooth scale to receive a response. Using RS232Analyzer and
changing Bluetooth COM port settings with the correct stop bit and bandwidth
etc., we finally got a response from the scale.

Non-fixed connection to the Bluetooth scale

After a meeting with the client, they told us that they will be developing Bluetooth
communication on a already existing android application that they use for a dif-
ferent purpose on a later stage. When the scale uses a fixed Bluetooth connection,
no one else will be able to use the scale. This will cause problems where the same
scale is used with different devices and applications, then the previously used
device or application must be quit to make it available for others to use. But with
a non-fixed connection, different applications and devices can use the scale at the
same time, without having to quit the application to make the Bluetooth scale
available.

Exceptions handling

Bluetooth connection with a non-fixed connection made exception handling a lot
easier. Instead of having the application constantly pinging the scale to check if the
scale is turned off or not in range. The Buffer reader and Bluetooth connection are
closed after 5 seconds if no response is received. If the buffer reader is NULL, the
user is notified that the weight is out of range and if the buffer reader is initialized
but returns an empty String, the user is notified that the weight is turned off.

Implementation

When implementing the Bluetooth scale, we have focused on the application being
easy to use regarding the user’s technical background. Information about error
situations such as the Bluetooth scale being switched off, not being within reach
should appear visible to the user. When using the application for the first time, the
user will be notified when they press the "weigh button" to configure the scale.
The user will be prompt with a message showcased in figure: 5.3(a) telling them
to choose between Bluetooth scale or RS232 Scale. If the user selects Bluetooth
option it will open up a new window that searches for all paired and non-paired
devices that support SPP, Bluetooth communication.

30 CoPCSE@NTNU: An NTNU Thesis Document Class

(a) Bluetooth no preferred scale selected (b) Bluetooth scale not in reach

Figure 5.3: Alert message for Bluetooth

RS232

As mentioned in section 5.1, the format received from the scales is equal for both
the RS232 scales and Bluetooth ones. The only difference is what port is used for
communication. The farmers using the RS232 scales should be able to use either
a RS232 port or use an RS232 to USB adapter to connect with the RS232 scale.
We got a USB-adapter from Norsvin because RS232 is an older standard that does
not often come with modern PC’s. With jSerialComm we have retrieved a list of
the available serial ports. From here we are able to open, connect and configure
each port. This is used when searching for the scale’s port and when setting the
configuration to be able to communicate through RS232. To establish connection
with the RS232 scale, we first have to change the port’s baud rate, data-, parity-
and stop bit equal to the proprietary settings of the scale before the connection
can be used. [30] The code in figure 5.4 displays what parameters needs to be
sent to the scale in order to connect and communicate with the RS232 scale.

public void connectToDevice(String comport){
sp = SerialPort.getCommPort(comport);
sp.setComPortParameters(9600, 7, 1, 2); // settings given from

DIGI,→

sp.setComPortTimeouts(SerialPort.TIMEOUT_WRITE_BLOCKING, 0, 0);
// block until bytes can be written,→

}

Figure 5.4: Code snippet from port communication with the use of jSerialComm

5.2 Database

Database Structure

As showcased in the logical model [5.5], our database consists of two tables,
where the Identity table contains all the static data and Weighed table contains
data that will change between each individual weighing of an animal. This is done

Chapter 5: Structure and implementation 31

to have an easily accessible unique primary key, while still allowing new data to
be recorded on that specific key.

Figure 5.5: Logical model of the database.

Identity table

All data in this table will contain only information about the identity of the an-
imal, which is information that does not change throughout its lifetime. Storing
only this type of data in one table is beneficial because all animals added to the
list will not need multiple entries, and all animals in the list will stay unique.
Keeping all animals unique in the table, lets us use a single point of reference as a
Primary key. This lets us check the database for a specific animal with using only
the Tatonumber or RFID.

Weighed table

This table contains mostly data that changes with every new entry, with the sole
exception of the Tatonumber, which ties the animals added in weighed table with
the identity table. Here we have used the combination of Tatonumber and the date
as a primary key, which allows for multiple entries of the same Tatonumber and
date, but only a single entry with the same date and Tatonumber. This setup will
restrict accidental weighing of the same animal multiple times on the same date.
We chose to use date as the latter part of the primary key instead of the weight
because the weight is way too unstable/variable, and can not guarantee only a
single weighing on any given day.

32 CoPCSE@NTNU: An NTNU Thesis Document Class

Search Filter

Because the user can use the search table as a convenient way of automatically
filling essential information into the text fields, we had to make a robust search
filter, capable of precisely restricting the search results to fit what the farmer is
looking for. Figure 5.6 is a snippet of our code, displaying all the restricting para-
meters in the filter.

public static boolean search(String[] filter,
ObservableList<ModelTable> list) {,→

...
String sql = """

SELECT identity.*, w.weigh_date, w.weight
FROM identity
LEFT JOIN weighed w on identity.tatonumber = w.tatonumber
WHERE
(identity.tatonumber LIKE ? OR identity.rfid LIKE ?)
AND (identity.location LIKE ?)
AND (identity.race LIKE ?)
AND (identity.sex LIKE ?)
AND (w.weigh_date BETWEEN ? AND ?)
AND (w.weight BETWEEN ? AND ?)
AND (w.exported = ?)
AND (identity.deceased = ?)
""";

try (Connection con = LocalDatabase.connect()) {
PreparedStatement pstmt = con.prepareStatement(sql);
pstmt.setString(1, "%" + filter[0] + "%");
pstmt.setString(2, "%" + filter[0] + "%");
pstmt.setString(3, "%" + filter[1] + "%");
pstmt.setString(4, "%" + filter[2] + "%");
pstmt.setString(5, "%" + filter[3] + "%");
pstmt.setDate(6, Date.valueOf(filter[4]));
pstmt.setDate(7, Date.valueOf(filter[5]));
pstmt.setFloat(8, Float.parseFloat(filter[6]));
pstmt.setFloat(9, Float.parseFloat(filter[7]));
pstmt.setString(10, filter[8]);
pstmt.setString(11, filter[9]);

...

Figure 5.6: Code extract from database search filter function.

Chapter 5: Structure and implementation 33

5.3 CSV export and import

The initial plan was to make the application automatically sync the local database
with Norsvin’s central database, but we didn’t get access to that database in time.
In consideration to 3.4, our team and Norsvin instead agreed to operate though
exporting and importing the local data into .csv files. Norsvin will implement im-
port and export functionality in their central database, that fits our import and
export format. As the export/import functionality of .csv files amended into the
project in the latter part of the development time-frame, we had to refactor a bit
of our data handling processes, from a predefined parameters to lists, which can
contain multiple variations of parameters. The transition to lists was made to sim-
plify the code and remove the necessity for having multiple methods of importing
data, which had to be run depending on the parameters fetched from the impor-
ted file - we now run a single method that checks the amount of parameters in a
list, and adds the imported data to the database in an appropriate manner.

Export

Initially we had no way of distinguishing between newly weighed animals and
the previously weighed ones, which made it impossible to select only the newly
registered animals, and ignoring previously exported ones. Our solution was to
implement a boolean "exported" in the weighed table to signify if it has been
exported previously. The boolean is set to be false at default, making all newly
registered weights "tagged" as not exported, this boolean will then be updated to
true once the export function has been completed successfully.

Import

The import function supports multiple import "formats", in the way that you can
choose to import only the Tatonumber, the whole identity or entire weighing re-
cords. We ended up using the simplest method possible - using a switch, and run
different methods depending on how many parameters are included in each row.
Where 6 parameters will signify the import of all identity data points, 8 parameters
will add entire records while anything else will only import the Tatonumber. While
this method is both simple and effective, it is not particularly robust because it as-
sumes that everything is imported in a specific order, with specific values. Though
this should in theory not pose a problem, as the method is made specifically for
importing .csv files tailored for the application. But prevention from accidentally
trying to import the wrong file is still very important because of how the switch
is set up. To ensure that nothing but real Tatonumbers are inserted into the data-
base, we first have to check if the format of column[0](See 5.7) matches what
real Tatonumbers should look like. Without utilizing such a filter, literally any .csv
file, with any amount of data exempt for those that has 6 and 8 columns would
pass as a valid object, and would get imported.

34 CoPCSE@NTNU: An NTNU Thesis Document Class

public void addToDBFromImportList(List<String[]> list) throws
SQLException {,→

...
switch (s.length) {

case 6 -> attemptInsertIdentity(s[0], s[1], s[2], s[3],
s[4], LocalDate.parse(s[5]));,→

case 8 -> {
attemptInsertIdentity(s[0], s[1], s[2], s[3], s[4],

LocalDate.parse(s[5]));,→

attemptUpdateweighed(s[0], LocalDate.parse(s[6]), s[7]);
}
default -> attemptInsertIdentity(s[0], null, null, null,

null, null);,→

...
}

Figure 5.7: Function that selects how to Import data from selected file.

private static boolean regexPass(String tato) {
Pattern pattern = Pattern.compile("([A-z]{2})(\\d{8})");
Matcher matcher = pattern.matcher(tato);
return matcher.find();

}

Figure 5.8: Function that returns true or false if the parameter fits the pattern
limitations.

Chapter 5: Structure and implementation 35

5.4 Internationalizing

We decided to implement Norwegian, English and Dutch languages as the de-
fault supported languages because Norsvin’s demographic is mostly either Nor-
wegian or Dutch, we decided to add English as well because it is very universal.
The internationalization system has been implemented using the i18n and l10n
standards[31], where language is automatically changed to the user’s selected
OS language at startup. Language can also be changed manually by the user, this
change will be stored in a property file 5.5 that will remember the selected lan-
guage on the next startup. All language options are stored in our ResourceBundle
using the i18n standard for naming the language packs, this makes the language
packs compliant with locations and language returned through Java (See 5.9).
The Locale.getDefault() function returns the user’s OS language for example (en-
US) for English, and selects the correct language property file from the language
bundle. Every button and text is internationalized with the use of a internation-
alized string, that is read from the language property file. (See code snippet: Fig:
5.10)

@Override
public void start(Stage primaryStage) throws IOException {

...
/* The primary stage. */

//Language bundle, i18n. Finds users pref. language
ResourceBundle bundle =

ResourceBundle.getBundle("i18n.Language",
Locale.getDefault());

,→

,→

//Load scene with selected language.
//Loads the FXML GUI files.
FXMLLoader loader = new

FXMLLoader(getClass().getResource("/gui/Main.fxml"),
bundle);

,→

,→

...

Figure 5.9: Code snippet for loading language bundle and getting Local language

36 CoPCSE@NTNU: An NTNU Thesis Document Class

Figure 5.10: Internationalized strings for English

5.5 Property file

As the application should simplify and make the process of weighing pigs faster,
storing configurations such as selected Bluetooth-scale/RS232-scale or preferred
language, will be stored automatically in the application’s configuration file. This
configuration file will be loaded at startup, and will override the standard config-
uration of the application 5.11.

Figure 5.11: Stored settings, which will be loaded on next startup

Chapter 6

User interface

6.1 Layout

The layout of the application has been designed according to the requirements
specified in section: 3.3. Under "Current" in the top left corner of the GUI is where
the user register the pig (See figure: 6.1). Here RFID is read using a RFID scanner,
the date is automatically set to the current system date, and the weight is entered
when the user clicks the "Weigh" button. As Norsvin only has four different races
in which they breed, we have chosen to have a static combo-box, where the user
selects from the drop down list. We have done the same with sex. Both of these
remains the same at the next weighing, as the user most likely only has one type
of race. To make the process of weighing pigs even faster.

Figure 6.1: Graphical user interface

37

38 CoPCSE@NTNU: An NTNU Thesis Document Class

Button layout

The buttons for weight, delete and add have been made large. So that it is easy
to press, even if the user wears gloves, or uses a pc with a small screen. For delete
button we have chosen to use a red color, as red commonly associate with potential
risk. Making the user take a pause before pressing it. [32] But we have also made
sure that if accident happens the user will be prompt with a alert window, to
confirm the deletion. See Fig: 6.2 how this is displayed.

Figure 6.2: Alert confirming the deletion

Tables

"Currently registered" shows an overview of pigs that the user has registered and
not exported yet. We have also added a table where the user can search for pigs
with a search filter 5.2. This will simplify the weighing process for the user, when
they want to weigh from only a certain location, or a specific sex etc. When the
user clicks on one of the objects in either the "Searched" or "Currently Registered"
tables, all static information from that specific object will automatically be trans-
ferred over to the text fields used for adding new entries, leaving them with only
having to click on the weigh button before adding the newly recorded weight.

Graph

We have also implemented a graph window, where the user will receive a line
chart of the selected pig, with age on the X-axis and weight on the Y-axis. Here
the user has the opportunity to compare progress with the other pigs. When "Add
to graph" is clicked (See Fig: 6.1). Every object in the search table is inserted into
the graph window.

6.2 Connecting To A Scale

Usage

We added a progress indicator when searching for devices to let the user be aware
that the program is searching for devices (See Fig: 6.3), because BlueCove will

Chapter 6: User interface 39

usually spend some time searching for devices before returning a list of results.
We created two classes that utilizes features from BlueCove. One of the classes
uses the RemoteDeviceDiscovery package, which fetches devices already paired
with system and all devices in range (Without pair). These devices are then added
to a vector list and returned to ServicesSearch class. Which checks what services
the different Bluetooth devices offers. All devices that offer SPP services is placed
in a Hashmap, together with Bluetooth name and it’s connection URL string that
might look like:

btspp://DC0D300010B3:1;authenticate=false;encrypt=false;master=false

where MAC/Bluetooth address for the device is "DC0D300010B3", "1" is the SPP
services, and the last parameters is related to security and roles. When the search
for available Bluetooth scales is complete, all found devices will be displayed, the
user must then select the device that has a MAC/Bluetooth address or model name
corresponding with what is printed onto the scale. Once the user has selected the
correct scale and connected, the specific choice of Bluetooth or RS232 will be
stored in a property file.

Figure 6.3: Progress indicator spinning, indicating that the application is search-
ing

6.3 FXML

FXML is an XML-based language designed to build the user interface for JavaFX
applications [33]. Where you can use FXML to build an entire Scene, instead of
doing it directly in the source code. This allows separating front-end logic from
back-end logic, and internationalizing 5.4 can be localized as the file is read. [34]

40 CoPCSE@NTNU: An NTNU Thesis Document Class

(See code snippet on how an localized file is read: Fig: 5.9 and how a localized
file for (en_US) looks like. Fig: 5.10).

Front-end structure

Fig: 6.4 shows an overview of controllers that communicate with the individual
GUI scenes.

Figure 6.4: FXML Structure

NorsvinController: Is theController for the main GUI, which controls the
other classes. Since the main controller should be able to control the entire front-
end, and ensure loose coupling and high cohesion. Calculations and other manip-
ulations of the data are done in separated classes.

Main.fxml: Is the main view of the application, and only communicates with
the main controller(NorsvinController).

BluetoothDeviceScene: Controls bluetooth configuration and BluetoothDeviceS-
cene.fxml, and controls all communication between Bluetooth weight and Nors-
vinController.

BluetoothDeviceScene.fxml: Is the actual Bluetooth device search view, and
only communicates with the BluetoothController class.

RS232PortScene: Controls RS232 configuration and RS232DeviceScene.fxml,
and controls all communication between RS232 weight scale and NorsvinControl-
ler.

Chapter 6: User interface 41

RS232DeviceScene.fxml: Is a separate view where device search and connec-
tion is configured, and only communicates with the RS232Controller class.

Controllers

One of the major problems at the start of our project, was the actual layout of
the code. In the beginning we had divided the front of the application into three
controller classes. The first one was the actual framework of the application, where
the second controller class controlled the actual communication to the hardware
and weighing, and the last controller class controlled the tables. The problems
started when we wanted to share information between the controller classes. This
was not as easy as with regular classes. As controller classes had to be passed
between classes at load. After trying out different methods, and spending a good
amount of time on this. We agreed to create the project with one controller class,
which talks to the interfaces and where the actual calculation and communication
with hardware was done in separate classes.

Chapter 7

Testing and code quality

7.1 Procedure

Our team has been using four methods for testing our code while making the
application.

• Basic functionality testing.
• Code review.
• Single-user performance testing.
• Static code analysis.

Basic functionality testing

We have used Basic functionality testing for new code as soon as it is written. Here
we test if the code does what it is supposed to do when correct data is entered.
This testing is done by the developer that made the code, and has been our most
extensively used test because we used many packages that we had no previous
experience with, and continuously testing their basic functionality is a very fast
way of learning how they operate.

Code review

As mentioned in the Project Management 2.2, we implemented rules regarding
code reviews before code could be merged master. While this measure has not
been very effective at catching errors, it has helped us maintain a relatively uni-
form code structure and code quality. 7.1

Single-user performance testing.

We used Single-user performance testing after a module/functionality had suc-
cessfully been implemented ie. the entire module has passed the basic function-
ality test. By using this approach, we could get an overview of the module as a
whole, and have an easier time debugging as well as having a better overview of

43

44 CoPCSE@NTNU: An NTNU Thesis Document Class

Figure 7.1: Code review in Git

potential refactoring. When preforming the Single-user performance test, we try
our best to make the code fail, by putting in wrong data or turning off compon-
ents etc. Our application is also made to only operate for a single user at a time,
which makes the Single-user performance test double as a simulated workload as
an end user. Section 7.3 delves into concrete examples of what the Single-user
performance testing has helped us identify and fix.

Static code analysis.

We have used SonarQube as our static code analyzer, but mainly for code quality.
We didn’t use SonarQube regularly, and instead opted to use it when lots of new
functions had been implemented. Because of this choice, rather than regularly
maintaining the code, we had sessions dedicated to implementing bug fixes and
improving code quality 7.4

7.2 User testing

We wanted to arrange a testing session with one of Norsvin’s farmers, to observe
if what we as developers think of as self explanatory and easy to use, is actually
perceived as such for the end user. But sadly we didn’t get to have any tests with
real workloads due to COVID-19 restrictions. By having an actual end user testing
out the application in a typical work environment, we could get concrete and

Chapter 7: Testing and code quality 45

unbiased feedback on every aspect end users come into contact with. As such,
this kind of testing would be our most rewarding test, regarding usability and
general user experience, and no amount of internal revisions could replace the
value of having an actual end user test the application.

7.3 Important discoveries

Thread lockdown upon no response from scales

While doing the Single-user performance test, we found a bug that crashes the
program when requesting weight from the connected scale. This happens when
you first connect to the scale, and the scale turns off, making it unable to send a
response to the application. The problem stems from the way we initialized the
request, since everything ran on the same thread, the application would just get
stuck waiting for a response. To prevent this kind of error from occurring, we had
to start a new thread[35] where we could send the request to the scale, this lets
the application do other stuff while it is waiting for a response from the scale. And
after utilizing multiple threads, we were also able to set a timer on the tasks, and
eliminate the task if no response is received within a specified time.

In addition to adding multiple threads, we avoided having a fixed connec-
tion to the scale. Instead, the scale is connected when the user presses the weigh
button and closes after response. The application sends a command (005) to the
Bluetooth scale that requests weight. Responses from the scale are then read and
if the result is null, a message is sent to the user of the application that the scale is
not within range Fig:5.3, and if the response message is empty. The user is notified
that the scale must be switched on.

Weighing the same animal multiple times

After first implementing the database and finished our basic functionality test,
we had forgotten that the current version of the database was only a rudiment-
ary database, designed only for testing and learning how the interaction between
SQLite and Java worked. Leaving the database with only a single table to contain
all data. This worked perfectly until we tested more extensively and were not able
to add multiple weights to a given Tatonumber.

46 CoPCSE@NTNU: An NTNU Thesis Document Class

public void discoverBluetoothDevices() {
final int[] intDevicePosition = {0};
ServicesSearch ss = new ServicesSearch();
Thread thread = new Thread(new Runnable() {

@Override
public void run() {

//Starts/visible the progress indicator. To indicate
that search has started.,→

progressIcon.setVisible(true);
//Search for new bluetooth devices.
mapReturnResult = ss.getBluetoothDevices();
for (Map.Entry<String, List<String>> entry :

mapReturnResult.entrySet()) {,→

//Only add device with SPP service to list. As SPP
service will be the 3rd entry.,→

if(entry.getValue().size() > 2){
list.add(entry.getValue().get(0));
//Map result to a hashMap.
mapDevicePosition.put(intDevicePosition[0],

entry.getValue());,→

intDevicePosition[0]++;
}

}
//Sets result from bluetooth search to gui list.
deviceList.setItems(FXCollections.observableList(list));
//Turns of progress indicator, to indicate that search

is over.,→

progressIcon.setVisible(false);
}

});
thread.start();

}

Figure 7.2: New thread created for searching after Bluetooth devices

Excessive memory usage

We noticed this error quite late into the development process, so we didn’t have
enough time to diagnose what the specific cause of the problem is, but we sus-
pect that the problem stems from initializing new instances of objects and classes
multiple times, without removing or reusing the already initialized ones, snippet
of suspicious code 7.3. The showcased code will always initialize new instances
whenever it is being executed, this lets the application start multiple unnecessary
objects, that are also very difficult to manage. Figure 7.4 showcases the result of

Chapter 7: Testing and code quality 47

opening multiple instances of the Bluetooth and RS232 device searching scenes.

...
ResourceBundle bundle = ResourceBundle.getBundle(BASE_LOCATION,

Locale.getDefault());,→

//Load scene with selected language.
// The loader.
FXMLLoader loader = new

FXMLLoader(getClass().getResource("/gui/BluetoothDevices" +
".fxml"), bundle);

,→

,→

Parent root = loader.load();
Scene scene = new Scene(root);
...

Figure 7.3: What we suspect to be the main culprit for excessive memory usage

Figure 7.4: Screenshot of multiple remote device scenes and memory usage.

7.4 Code quality

SonarQube

To ensure better code quality and code security, we used SonarQube on our code-
base. SonarQube is an open-source platform developed by SonarSource. It ana-
lyzes for duplication of code , complexity, bugs and vulnerabilities to ensure a
clean, maintainable and secure code-base [36]. The first weeks of developing,
SonarQube was used to clean up existing code and to detect security vulnerabilit-
ies. But further into development, this was not done continuously, which led to us

48 CoPCSE@NTNU: An NTNU Thesis Document Class

having to make major changes towards the end of the project. This is a screenshot
(Fig 7.5) of one of our SonarQube analysis at first Sprint, when most of the GUI,
controller class and simple features were implemented.

(a) SonarQube analysis in Sprint 1 (b) SonarQube analysis in the last Sprint

Figure 7.5: SonarQube analysis, before and after refactoring

Refactoring

SonarQube helped us find code that was creating memory leak. When opening
up a new BufferedReader, InputStream or any new resource . We had to close
the stream inside a finally clause or with the use of a try-with-resources State-
ment.[37] Instead of closing the resource inside a try catch, where it may happen
that the application gets an exception and that the current resource is not getting
closed. (See code snippet, Fig:(7.8, 7.9) and with the use of try-with-resource
Statement, (See code snippet, Fig: 7.7 7.6

public void exportCsv(String fileNameAndLocation) throws Exception {
//Instantiating the CSVWriter class
CSVWriter writer = new CSVWriter(new

FileWriter(fileNameAndLocation));,→

writer.writeAll(list);
writer.flush();

}

Figure 7.6: Before refactoring

Chapter 7: Testing and code quality 49

public void exportCsv(String fileNameAndLocation) throws Exception {
//Instantiating the CSVWriter class
try(CSVWriter writer = new CSVWriter(new

FileWriter(fileNameAndLocation))) {,→

writer.writeAll(list);
writer.flush();

}catch(Exception e){
logg.log(Level.WARNING,"Export Csv: ", e);

}
}

Figure 7.7: After refactoring for memory leak with use of try-with statement

public List<String[]> importCsv(String fileNameAndLocation) throws
IOException {,→

Reader reader =
Files.newBufferedReader(Paths.get(fileNameAndLocation));,→

CSVReader csvReader = new CSVReader(reader);
csvReader.close();
return csvReader.readAll();

}

Figure 7.8: Before refactoring for memory leak

public List<String[]> importCsv(String fileNameAndLocation) throws
IOException {,→

CSVReader csvReader = null;
try(Reader reader =

Files.newBufferedReader(Paths.get(fileNameAndLocation))){,→

csvReader = new CSVReader(reader);
}catch(Exception e){

logg.log(Level.WARNING,"Import Csv: ", e);
}finally{

assert csvReader != null;
csvReader.close();

}
return csvReader.readAll();

}

Figure 7.9: After refactoring for memory leak

Chapter 8

Conclusion

8.1 Result

Norsvin wanted a desktop application with the ability to operate as a service and
retrieve the weight in a fast and simple manner, for their existing solutions. After a
few meetings with Norsvin we came to the conclusion that the application should
serve as both a background service and be a more feature-rich application con-
taining the functionalities and possibilities to be an alternative to existing solu-
tions. We opted out of the mobile application and instead kept expanding Norsvin’s
wishes for a desktop application in collaboration with them.

With our solution, the user spends less time logging the animals, and will
have the option of spending that time on increasing the animal welfare instead,
by having more time to care for each individual animal being weighed. It will
reduce the manual labour required to write each individual weight, date and cor-
rect Tatonumber. And through this method, make it easier to weigh more animals
each session.

Most wishes in the project description (see section 1.1) have been achieved,
and the represents from Norsvin has shown satisfaction with the final result.

8.2 Alternative options and choices

Alternative solutions may have been to spend more time on the graph. Making our
graph more configurable, where you can view various presets to show statistics
with the added functionality of making that data exportable.

We would also have liked to spend more time on making the global hotkey
configurable. Such as making it possible to edit what key to use, and making the
hotkey able to output more types of data, for example: Date and timestamp.

If we could choose, a closer bond with Norsvin, with physical meetings
with both our contacts and the farmers, would have been more optimal. This had
provided faster clarity in several parts of the thesis.

51

52 CoPCSE@NTNU: An NTNU Thesis Document Class

8.3 Future work

This report in combination with our JavaDoc [24] could serve well as document-
ation for any further development. Norsvin’s development team uses Java and
will be able to familiarize themselves with our solution. It is possible to connect it
more closely with their internal systems, such as Ingris and Tono, similar to how
the web application for weighing works today.

With the technology behind our solution, you can also create a mobile ap-
plication that we opted out of. Using Java and Gradle. Parts of the code can be
reused here.

This is a general application which can be used to weigh and store the ses-
sions for anything, and is not strictly adhered to only support weighing of pigs
and animals.

8.4 Evaluation of group work

The teamwork has worked well. Some of the project members did not know each
other in advance, but this has had little impact. We initially planned to use scrum,
but mainly relied on GitLab’s integrated Kanban tool; the Issue Board. We have had
many internal meetings, both online and physically. We have also had collective
coding sessions, with live coding over Discord, as well as Code With Me in IntelliJ.

For the report, we have used Overleaf, as well as google docs to create check-
lists where everything takes place in real time. Here, too, we have read over each
other’s parts as it fills up.

8.5 Ending

We are pleased to have developed what we consider to be a full-fledged application
that does nearly everything what we wanted, as well as what Norsvin wanted.
Our hope is that they use our solution as a background service or our code to get
the weight more efficiently in the future. As an end note, we would like to thank
Norsvin for a good collaboration and the opportunities they gave us with this task.
And Tom Røyse

Bibliography

[1] C. Hoffman, What is a csv file, and how do i open it? [Online]. Available:
https://www.howtogeek.com/348960/what-is-a-csv-file-and-how-
do-i-open-it/.

[2] Oracle, Bufferreader. [Online]. Available: https://docs.oracle.com/
javase/8/docs/api/java/io/BufferedReader.html.

[3] Wikipedia, Ci/cd. [Online]. Available: https://en.wikipedia.org/wiki/
CI/CD.

[4] JetBrains, Code with me: The ultimate collaborative development service by
jetbrains. [Online]. Available: https://www.jetbrains.com/code-with-
me/.

[5] P. Pedamkar, Introduction to javafx controller. [Online]. Available: https:
//www.educba.com/javafx-controller/.

[6] Oracle, Hashmap. [Online]. Available: https://docs.oracle.com/javase/
8/docs/api/java/util/HashMap.html.

[7] Wikipedia, Internationalization and localization. [Online]. Available: https:
//en.wikipedia.org/wiki/Internationalization_and_localization.

[8] Oracle, Javadoc. [Online]. Available: https://docs.oracle.com/javase/
8/docs/technotes/tools/windows/javadoc.html.

[9] Wikipedia, Javafx. [Online]. Available: https://en.wikipedia.org/wiki/
JavaFX.

[10] W. Hedgecock, What is jserialcomm? [Online]. Available: https://fazecast.
github.io/jSerialComm/.

[11] Wikipedia, Internationalization and localization. [Online]. Available: https:
//en.wikipedia.org/wiki/Internationalization_and_localization.

[12] Oracle, Class bufferedreader. [Online]. Available: https://docs.oracle.
com/javase/8/docs/api/java/io/BufferedReader.html.

[13] Wikipedia, Radiofrekvensidentifikasjon. [Online]. Available: https://no.
wikipedia.org/wiki/Radiofrekvensidentifikasjon.

[14] Wikipedia, Rs232. [Online]. Available: https://en.wikipedia.org/wiki/
RS-232.

53

https://www.howtogeek.com/348960/what-is-a-csv-file-and-how-do-i-open-it/
https://www.howtogeek.com/348960/what-is-a-csv-file-and-how-do-i-open-it/
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://en.wikipedia.org/wiki/CI/CD
https://en.wikipedia.org/wiki/CI/CD
https://www.jetbrains.com/code-with-me/
https://www.jetbrains.com/code-with-me/
https://www.educba.com/javafx-controller/
https://www.educba.com/javafx-controller/
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://en.wikipedia.org/wiki/JavaFX
https://en.wikipedia.org/wiki/JavaFX
https://fazecast.github.io/jSerialComm/
https://fazecast.github.io/jSerialComm/
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://no.wikipedia.org/wiki/Radiofrekvensidentifikasjon
https://no.wikipedia.org/wiki/Radiofrekvensidentifikasjon
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-232

54 CoPCSE@NTNU: An NTNU Thesis Document Class

[15] Nightowl, Java uses rxtx for serial port communication. [Online]. Available:
https://programmer.ink/think/java-uses-rxtx-for-serial-port-
communication.html.

[16] Serialio, What’s the difference between bluetooth le and bluetooth spp (ble
vs spp)? [Online]. Available: https://www.serialio.com/faqs/whats-
difference-between-bluetooth-le-and-bluetooth-spp-ble-vs-spp.

[17] Wikipedia, Universal asynchronous receiver-transmitter. [Online]. Available:
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-
transmitter.

[18] Norsvin, Om oss. [Online]. Available: https://norsvin.no/om-oss/.

[19] C. Drumond, What is scrum? [Online]. Available: https://www.atlassian.
com/agile/scrum.

[20] M. Rehkopf, Kanban vs. scrum: Which agile are you? [Online]. Available:
https://www.atlassian.com/agile/kanban/kanban-vs-scrum.

[21] D. Radigan, Using workflows for fun & profit. [Online]. Available: https:
//www.atlassian.com/agile/project-management/workflow.

[22] Discord, What makes discord different? [Online]. Available: https://discord.
com/why-discord-is-different.

[23] I. Gaba, What is gradle and why do we use gradle? [Online]. Available:
https://www.simplilearn.com/tutorials/gradle-tutorial/what-
is-gradle.

[24] S. Pedersen, J. Strand and N. Leivestad, Javadoc. [Online]. Available: https:
//folk.ntnu.no/stiapede/bachelor/.

[25] M. Amirault, Using ssh keys with gitlab ci/cd. [Online]. Available: https:
//docs.gitlab.com/ee/ci/ssh_keys/.

[26] T. Watson, Gitlab ci/cd variables. [Online]. Available: https://docs.gitlab.
com/ee/ci/variables/README.html.

[27] SQLite, Limits in sqlite. [Online]. Available: https://www.sqlite.org/
limits.html.

[28] CommFront, Advanced serial protocol analyzer. [Online]. Available: https:
//www.232analyzer.com/.

[29] Bluecove documentation. [Online]. Available: http://www.bluecove.org/.

[30] I. Fazecast, What is jserialcomm? [Online]. Available: https://fazecast.
github.io/jSerialComm/.

[31] Wikipedia, Internationalization and localization. [Online]. Available: https:
//en.wikipedia.org/wiki/Internationalization_and_localization.

[32] N. Babich, Using red and green in ui design. [Online]. Available: https:
//uxplanet.org/using-red-and-green-in-ui-design-66b39e13de91.

https://programmer.ink/think/java-uses-rxtx-for-serial-port-communication.html
https://programmer.ink/think/java-uses-rxtx-for-serial-port-communication.html
https://www.serialio.com/faqs/whats-difference-between-bluetooth-le-and-bluetooth-spp-ble-vs-spp
https://www.serialio.com/faqs/whats-difference-between-bluetooth-le-and-bluetooth-spp-ble-vs-spp
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://norsvin.no/om-oss/
https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.atlassian.com/agile/project-management/workflow
https://www.atlassian.com/agile/project-management/workflow
https://discord.com/why-discord-is-different
https://discord.com/why-discord-is-different
https://www.simplilearn.com/tutorials/gradle-tutorial/what-is-gradle
https://www.simplilearn.com/tutorials/gradle-tutorial/what-is-gradle
https://folk.ntnu.no/stiapede/bachelor/
https://folk.ntnu.no/stiapede/bachelor/
https://docs.gitlab.com/ee/ci/ssh_keys/
https://docs.gitlab.com/ee/ci/ssh_keys/
https://docs.gitlab.com/ee/ci/variables/README.html
https://docs.gitlab.com/ee/ci/variables/README.html
https://www.sqlite.org/limits.html
https://www.sqlite.org/limits.html
https://www.232analyzer.com/
https://www.232analyzer.com/
http://www.bluecove.org/
https://fazecast.github.io/jSerialComm/
https://fazecast.github.io/jSerialComm/
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://uxplanet.org/using-red-and-green-in-ui-design-66b39e13de91
https://uxplanet.org/using-red-and-green-in-ui-design-66b39e13de91

Bibliography 55

[33] A. Pomarolli, Javafx fxml controller example. [Online]. Available: https:
//examples.javacodegeeks.com/desktop-java/javafx/fxml/javafx-
fxml-controller-example/.

[34] Oracle, Why use fxml. [Online]. Available: https://docs.oracle.com/
javase/8/javafx/fxml-tutorial/why_use_fxml.htm#CHDIEGBB.

[35] S. Harding, What is a cpu thread? a basic definition. [Online]. Available:
https://www.tomshardware.com/reviews/cpu- computing- thread-
definition,5765.html.

[36] SonarQube, Sonarqube. [Online]. Available: https://www.sonarqube.
org/.

[37] Oracle, The try-with-resources statement. [Online]. Available: https : / /
docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.
html.

https://examples.javacodegeeks.com/desktop-java/javafx/fxml/javafx-fxml-controller-example/
https://examples.javacodegeeks.com/desktop-java/javafx/fxml/javafx-fxml-controller-example/
https://examples.javacodegeeks.com/desktop-java/javafx/fxml/javafx-fxml-controller-example/
https://docs.oracle.com/javase/8/javafx/fxml-tutorial/why_use_fxml.htm#CHDIEGBB
https://docs.oracle.com/javase/8/javafx/fxml-tutorial/why_use_fxml.htm#CHDIEGBB
https://www.tomshardware.com/reviews/cpu-computing-thread-definition,5765.html
https://www.tomshardware.com/reviews/cpu-computing-thread-definition,5765.html
https://www.sonarqube.org/
https://www.sonarqube.org/
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

Appendix A

Project agreement

57

1 av 3

Norges teknisk-naturvitenskapelige universitet

Vår dato

Vår referanse

Prosjektavtale

mellom NTNU Fakultet for informasjonsteknologi og elektroteknikk (IE) på Gjøvik (utdanningsinstitusjon), og

Norsvin SA

(oppdragsgiver), og

Stian Pedersen, Johan Strand og Niklas Leivestad (studenter).

Avtalen angir avtalepartenes plikter vedrørende gjennomføring av prosjektet og rettigheter til anvendelse av de

resultater som prosjektet frembringer:

1. Studentene skal gjennomføre prosjektet i perioden fra 11.01 2021 til 31.05.2021 .

Studentene skal i denne perioden følge en oppsatt fremdriftsplan der NTNU IE på Gjøvik yter veiledning.

Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til rådighet kunnskap og

materiale som er nødvendig for å få gjennomført prosjektet. Det forutsettes at de gitte problemstillinger det

arbeides med er aktuelle og på et nivå tilpasset studentenes faglige kunnskaper. Oppdragsgiver plikter på

forespørsel fra NTNU å gi en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomføringen av prosjektet dekkes på følgende måte:

 Oppdragsgiver dekker selv gjennomføring av prosjektet når det gjelder f.eks. materiell, telefon,

reiser og nødvendig overnatting på steder langt fra NTNU i Gjøvik. Studentene dekker utgifter for

ferdigstillelse av prosjektmateriell.

 Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som

er brukt til prototypen. Dersom det er nødvendig med større og/eller spesielle investeringer for å få

gjennomført prosjektet, må det gjøres en egen avtale mellom partene om eventuell

kostnadsfordeling og eiendomsrett.

3. NTNU IE på Gjøvik står ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei

heller at prosjektet blir fullført. Prosjektet må anses som en eksamensrelatert oppgave som blir bedømt av intern og

ekstern sensor. Likevel er det en forpliktelse for utøverne av prosjektet å fullføre dette til avtalte spesifikasjoner,

funksjonsnivå og tider.

4. Alle beståtte bacheloroppgaver som ikke er klausulert og hvor forfatteren(e) har gitt sitt samtykke til

publisering, kan gjøres tilgjengelig via NTNUs institusjonelle arkiv NTNU Open.

2 av 3

Norges teknisk-naturvitenskapelige universitet

Vår dato

Vår referanse

Tilgjengeliggjøring i det åpne arkivet forutsetter avtale om delvis overdragelse av opphavsrett, se «avtale om

publisering» (jfr Lov om opphavsrett). Oppdragsgiver og veileder godtar slik offentliggjøring når de signerer denne

prosjektavtalen, og må evt. gi skriftlig melding til studenter og instituttleder/fagenhetsleder om de i løpet av

prosjektet endrer syn på slik offentliggjøring.

Den totale besvarelsen med tegninger, modeller og apparatur så vel som programlisting, kildekode mv. som

inngår som del av eller vedlegg til besvarelsen, kan vederlagsfritt benyttes til undervisnings- og forskningsformål.

Besvarelsen, eller vedlegg til den, må ikke nyttes av NTNU til andre formål, og ikke overlates til utenforstående

uten etter avtale med de øvrige parter i denne avtalen. Dette gjelder også firmaer hvor ansatte ved NTNU og/eller

studenter har interesser.

5. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjør studenten(e) i

sin besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom oppdragsgiver og

student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

6. Ut over den offentliggjøring som er nevnt i punkt 4 har studenten(e) ikke rett til å publisere sin besvarelse,

det være seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende samtykke

må foreligge i forholdet mellom student(er) og faglærer/veileder for det materialet som faglærer/veileder stiller til

disposisjon.

7. Studentene leverer oppgavebesvarelsen med vedlegg (pdf) i NTNUs elektroniske eksamenssystem. I tillegg

leveres ett eksemplar til oppdragsgiver.

8. Denne avtalen utferdiges med ett eksemplar til hver av partene. På vegne av NTNU, IE er det

instituttleder/faggruppeleder som godkjenner avtalen.

9. I det enkelte tilfelle kan det inngås egen avtale mellom oppdragsgiver, studenter og NTNU som regulerer

nærmere forhold vedrørende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og økonomisk

utnyttelse av resultatene. Dersom oppdragsgiver og student(er) ønsker en videre eller ny avtale med oppdragsgiver,

skjer dette uten NTNU som partner.

10. Når NTNU også opptrer som oppdragsgiver, trer NTNU inn i kontrakten både som utdanningsinstitusjon og

som oppdragsgiver.

11. Eventuell uenighet vedrørende forståelse av denne avtale løses ved forhandlinger avtalepartene imellom.

Dersom det ikke oppnås enighet, er partene enige om at tvisten løses av voldgift, etter bestemmelsene i

tvistemålsloven av 13.8.1915 nr. 6, kapittel 32.

3 av 3

Norges teknisk-naturvitenskapelige universitet

Vår dato

Vår referanse

12. Deltakende personer ved prosjektgjennomføringen:

NTNUs veileder (navn): Tom Røise

Oppdragsgivers kontaktperson (navn): Rune Sagevik

Student(er) (signatur): ___ dato 21.01.2021

 ___ dato 21.01.2021

___ dato 21.01.2021

Oppdragsgiver (signatur):___ dato ____________

Signert avtale leveres digitalt i Blackboard, rom for bacheloroppgaven.

Godkjennes digitalt av instituttleder/faggruppeleder.

Om papirversjon med signatur er ønskelig, må papirversjon leveres til instituttet i tillegg.

Plass for evt sign:

Instituttleder/faggruppeleder (signatur): ____________________________________ dato ____________

29.01.2021

Appendix B

Norsvin’s assignment

61

Oppdragsgiver :
Norsvin SA, Storhamargata 44, 2317 Hamar

Oppgave:
Applikasjon for avlesing av digital vekt.

For å øke graden av digitalisering og sikre og forenkle prosessen rundt vektregistrering på gris i
grisebesetninger er det i Norsvin tatt i bruk digitale vekter som kan kommunisere med ekstern
maskinvare.

Oppgavens mål:

I denne oppgaven ønskes utviklet en desktop programvare for pc (og ev. app for Android og/eller
iOS basert mobil/tablet) som kan lese av vekt og formidle denne til skrivemarkøren i den til en hver
tid aktive applikasjonen som kjøres (det være seg en teksteditor, webapplikasjon eller liknende).

Oppgavens krav:

Det blir i Norsvin benyttet flere forskjellige vekter og avlesningsapplikasjonen må fritt kunne
konfigureres til å støtte alle disse. Avlesningsapplikasjonen skal, etter konfigurering, kunne kjøres
som en bakgrunnsapplikasjon eller service. Avlesing av vekt skal kunne aktiveres med en, for
systemet, global hurtigtast (f.eks funksjonstast F7). Hvilken tast som skal fungere som hurtigtast
skal, i så stor grad som det lar seg gjøre, kunne bestemmes av bruker ved konfigurasjon av
applikasjonen.

Ønskede opsjoner:

I første omgang ønskes bare innlesing av vekt, men applikasjonen bør også ha opsjon for innlesing
av f.eks dyrets id via strekkode eller RFID-leser som er tilkoblet systemet som kjører applikasjonen.
Applikasjonen bør også ha mulighet for å legge til faste datafelter som kan sendes når vekt blir
avlest. Eksempel på slike ekstra datafelter kan være: dagens dato, tidsstempel for vektavlesing.

Appendix C

Meeting logs

63

Andre møtet med oppdragsgiver Norsvin 15.02

Deltakere
Alle prosjektmedlemmer
Fra Norsvin:

-Rune Sagevik
-Lars Terje Bogevik

Mål
Øke klarheten i kravene.

Agenda
Møteleder oppdaterer oppdragsgiver om status og visjonen fremover.
Avklare om det skal være innlogging.
Avklare hvilket felt som skal være i databasen.
Purre på levering av vekter.

Innlogging
Nei, eventuelt få en pretestfil hvor man skal sjekke opp brukernavn/passord.

Databasen
Tatonummer, RFID før grisen er 21 dager gammel, dato, vekt, rase, kjønn, binge.

Vekter
Kommer til helga.

Veiledning med Tom Røise 26.03

Deltagere
Tom Røise
Alle prosjektmedlemmer

Mål
Komme i gang med rapportskriving.

Agenda
Kan man ta i bruk alt fra forprosjektet
Hvordan unngå gjentakinger.
Requirement specs?

Forprosjektet
Bruk det i første kapittel og utdyp.

Gjentakinger
Vise enkelt hvordan løsninger fungerer før man senere går dypere inn.

Requirement specs
Her går man dypere inn i det man har forklart overfladisk.

Levering av utkast torsdag etter påska, med møte på fredag.

Appendix D

Pre-project plan

65

Prosjektplan

1 Mål

1.1 Bakgrunn
Norsvin SA er et samvirkeforetak eid av 1500 svineprodusenter. Under avlsarbeidet ønsker
de å øke graden av digitalisering og sikre og forenkle prosessen rundt vektregistrering på
gris i grisebesetninger. Dagens rutiner på vekting er å manuelt skrive inn svinets ID-nummer
og vekt. Norsvin tar i bruk digitale vekter som kan kommunisere med ekstern maskinvare og
ønsker derfor å utnytte denne egenskapen. Vektene kommuniserer over Bluetooth og
RS232 port. Her ønsker Norvin å få utviklet desktop programvare for pc og mobil
applikasjon. Disse skal kunne lese av vekt og formidle denne til clipboard i den til enhver tid
aktive applikasjonen som kjøres.

1.2 Prosjektmål
Resultatmål
Målet er å ferdigstille desktop programvare for pc og en mobil applikasjon for Android som
kan brukes med ulike vekter tatt i bruk av Norsvin uten store modifikasjoner. Applikasjonene
skal kunne benytte seg av Bluetooth og skannere som registrerer data automatisk.
Applikasjonen skal også inneholde og bruke en intern database som er mindre og lettere å
bruke for individuelle bønder.

Effektmål
Målet er å effektivisere den daglige vektregistreringen på gris i grisebesetninger, samt
forenkle prosessen ved å kunne velge mellom pc og mobil.

Læringsmål
Lære å innhente informasjon fra hardware via Bluetooth, RFID/NFC og RS232.
Hvordan utvikle Android applikasjoner som benytter seg av bluetooth og RFID/NFC scanner.
Bruke SCRUM-metodikk i et reelt prosjekt.
Lære oss bruk av testing og kvalitetskontroll

– Bruke unittester på viktige komponenter.
– Bruke kvalitetssikringsverktøy som øker kvaliteten på koden.
– Gjennomføre og se nytten av brukertester.

Lære oss hvordan vi kan lage intuitive grafiske brukergrensesnitt.
Utvikle en rapport som dokumenterer fremgangen og sluttprodukt fra Norsvins oppdrag.

2 Omfang

2.1 Fagområde
Vekting av gris er en daglig aktivitet hos bøndene i Norsvin. Grisen går fra nyfødt til 90 kg de
første 100 dagene i livsløpet. Tett oppfølging er viktig for å følge med på utviklingen av hver
gris. Å fjerne penn og papir eller manuell utfylling av data fra vektingen vil frigi tid for både
gris om bonde.

2.2 Avgrensning

- Desktop app
- Intern database
- Android app
- Bluetooth overføring

2.3 Oppgavebeskrivelse
Vi skal utvikle en desktop- og Androidapplikasjon som Norsvins bønder kan bruke under
fødsels- og treukersveiing av gris i svinebestand med digitale vekter fra Digisystem.
Applikasjonene skal ha følgende funksjonalitet:

Brukeren må logge inn også kan man velge fødsels- eller treukersveiing og hvilken vekt man
tar i bruk.
- Brukernavn må ligge i databasen for å få tilgang.
Finne en gitt gris ved søk på tatonummer, som er et unikt nummer hver gris i Norsvin får ved
fødsel. (Skal det stå her?)
Legge til RFID på grisen under treukersveiing. Begrunnelse? Dette nummeret får grisen når
den er mellom 17 og 25 dager. Kilde?
Les av digitalvekt og legg til ny entry i databasen.
Få opp graf av griser på treukersveiing som har hatt fødselsveiing.? det blir topunktsgraf:p

Det som er hovedfokuset i oppdraget fra Norsvin er avlesing av vekt og formidle videre til
clipboard som de vil implementere i sine nåværende systemer.

2.4 Ressursbehov:
Hardware eksemplar av digital vekt og eventuelle kabler.
API til eksisterende database, for innsending av loggført data.
Tilgang til Norsvin sine systemer.
Direktekontakt med systemansvarlige/IT-avdeling.

3 Prosjektorganisering

3.1 Ansvarsforhold
Produkteier - Rune Sagevik
- Vår hovedkontaktperson i Norsvin SA og vil være tilstede på alle sprint review-møter.

Scrum master (Stian Pedersen)
- Sørge for at produkteier forstår sin rolle.
- Være bindeledd mellom utviklere og produkteier.
- Sørge for at utviklingen går i riktig retning og tempo ved å iverksette tiltak hvis nødvendig.
- Innkalle til nødvendige møter og lede disse.

Utviklere (Niklas Leivestad og Johan Strand)
Følge utviklingsrutiner ref. punkt 5.

NTNU - gi tilgang til veileder gjennom hele semesteret.

3.1 Regler og rutiner i gruppen
Grupperegler
Hvert gruppemedlem skal ha som mål å jobbe minimum 25 timer per uke.
Gruppemedlemmene skal minst ha 2 møter i løpet av en uke.
Timene skal loggføres og legges frem for gruppen på prosjektmøter.
Det skrives referat etter alle prosjekt- og statusmøter. Niklas er satt som referent og Stian
skal påse at det er gjort.

3.2 Deltakere
Oppdragsgiver: Norsvin
Studenter: Niklas, Stian, Johan
Veileder: Tom Røise, NTNU Gjøvik

4 Planlegging

4.1 Fremdriftsplan:
Utviklingsmetoden har vi valgt å gå for Scrum Sprint. Da hensikten med sprint planleggingen
er å definere hva som kan leveres i sprinten og hvordan det arbeidet skal oppnås. Vi vil ha
en samtale på slutten av hver scrum med oppdragsgiver, der vi stiller spørsmål og gjør
eventuelle endringer på arbeidet. Dette vil gi oss en bedre oversikt over hva som må gjøres
og gir en jevnlig kvalitet kontroll av arbeidet. Hver andre uke vil vi ha et møte med
sprintplanlegging som gjøres i samarbeid med hele gruppen.

Sprint 1 :
Her vil vi sette oss inn i hvilket programmeringsspråk, valg av database og verktøy
som passer til vårt prosjekt. Opplæring av android utvikling.
Vi vil også ha et møte med Norsvin for å få ordnet tilganger til deres systemer. Her vil
også prosjektplanen og prosjektavtale skrives.

Sprint backlog:
- Internasjonalisering av applikasjonen, ønsket språk er Nederlandsk, Engelsk

og Norsk.
- Lese om vekt standarder, android kit.
- Tilbakemeldinger fra oppdragsgiver
- Innlesning av data fra vekt, via bluetooth og usb.
- Innlogging til norsvin sine systemer og opplasting av data.
- Opprette lokal database ved bruk av sqlite.
- Unit test for database
- Hente data fra Tonor database

5 Kvalitetssikring:

Gitlab:
Bruk av branches/grener. Slik at all ny kode blir gjennomgått av andre på gruppen før den
blir sammenslått med master/hovedkoden. Det blir også brukt issue board i gitlab, hvor vi
planlegger for hver sprint de enkelte funksjonene som må gjøres.

SonarQube: Vi vil ta i bruk SonarQube som er en åpen kildekode-plattform utviklet av
SonarSource for kontinuerlig inspeksjon av kodekvalitet. Dette verktøyet vil gi oss en bedre
kodekvalitet for å unngå for kompleks kode, potensielle bugs, struktur, og duplisering av
kode.

Unit Testing:
Vi vil opprette unit testing på både database, grensesnitt, avlesning av RFID og vekt. Som vil
gi oss en god kvalitetssikring.

Utviklingsrutiner - videreutvikle rutinene til å gjenspeile arbeidet fremover.

Definer hvordan vi bruker branching.
All ny kode skal kommenteres lett forståelig og informativ før den commits.
Navngivingen til klasser, funksjoner og variabler skal være informative.

6 Plan for gjennomføring

Figur 1: Tekstversjon av gannt-skjema.

Figur 2: Flytdiagram av applikasjon - Basert på initiell tolkning av oppgaven.

Figur 3: Prosessdiagram av applikasjon

Oppgaven

Oppdragsgiver : Norsvin SA, Storhamargata 44, 2317 Hamar
Oppgave: Applikasjon for avlesing av digital vekt. For å øke graden av digitalisering og sikre
og forenkle prosessen rundt vektregistrering på gris i grisebesetninger er det i Norsvin tatt i
bruk digitale vekter som kan kommunisere med ekstern maskinvare.

Oppgavens mål: I denne oppgaven ønskes utviklet en desktop programvare for pc (og ev.
app for Android og/eller iOS basert mobil/tablet) som kan lese av vekt og formidle denne til
skrivemarkøren i den til enhver tid aktive applikasjonen som kjøres (det være seg en
teksteditor, webapplikasjon eller liknende).

Oppgavens krav: Det blir i Norsvin benyttet flere forskjellige vekter og avlesning
applikasjonen må fritt kunne konfigureres til å støtte alle disse. Avlesning Applikasjonen skal,
etter konfigurering, kunne kjøres som en bakgrunns applikasjon eller service. Avlesing av
vekt skal kunne aktiveres med en, for systemet, global hurtigtast (f.eks funksjonstast F7).
Hvilken tast som skal fungere som hurtigtast skal, i så stor grad som det lar seg gjøre, kunne
bestemmes av bruker ved konfigurasjon av applikasjonen.

Ønskede opsjoner: I første omgang ønskes bare innlesing av vekt, men applikasjonen bør
også ha opsjon for innlesing av f.eks dyrets id via strekkode eller RFID-leser som er tilkoblet
systemet som kjører applikasjonen. Applikasjonen bør også ha mulighet for å legge til faste
datafelter som kan sendes når vekt blir avlest. Eksempel på slike ekstra datafelter kan være:
dagens dato, tidsstempel for vektavlesning.

Internasjonalisering: Oppdragsgiver ønsker at applikasjonen skal ha mulighet til å støtte
både norsk, engelsk og nederlandsk.

