
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Inventory M
anagem

ent System

Casper Fabian Gulbrandsen
Sander Låstad Olsen
Kristian Jegerud
Marthin Gunerius Klækken

Inventory Management System for
Cryopreserved Biological Material

Bachelor’s project in Department of Computer Science
Supervisor: Tom Røise

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Casper Fabian Gulbrandsen
Sander Låstad Olsen
Kristian Jegerud
Marthin Gunerius Klækken

Inventory Management System for
Cryopreserved Biological Material

Bachelor’s project in Department of Computer Science
Supervisor: Tom Røise
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Cryogenetics is a growing company in storing and the preservation of aquatic
genes, and they wanted a solution that could store their data in a database with
an associated web application. The solution was a website where you can see an
overview of all the containers and a map over the content in each of them. You
can also see which excel-spreadsheets are saved as a backup in the database, and
which are ready for approval. In essence, they wanted an inventory management
system.

Our solution contained a back end API written in .NET 5. The web application
was customized for both PC, tablets and mobile phones. Cryogenetics requested a
product that could easily be developed further, and we therefore facilitated for
this. We had focus on working professional during the project with tools like
GitHub, Scrumban and Confluence.

iii

Sammendrag

Cryogenetics er en bedrift i vekst innen lagring og bevaring av akvatiske gener, og
de fremmet et ønske om en løsning som kunne lagre dataen deres i en database
med en tilhørende webapplikasjon. Løsningen var en nettside hvor man kan se
en oversikt over alle beholderne og et kart over innholdet i hver av dem. Man
kan også se hvilke excel-regneark som ligger lagret som en backup i databasen og
hvilke som ligger klar for godkjenning. Kort fortalt, de ønsket et lagerstyringssys-
tem.

Løsningen bestod også av et backend API skrevet i .NET 5. Webapplikasjonen
er tilpasset både for PC, nettbrett og mobiltelefoner. Cryogenetics ønsket et pro-
dukt som lett vil kunne videreutvikles, og det er i vårt prosjekt derfor lagt godt
til rette for dette. Vi har hatt fokus på å arbeide profesjonelt med arbeidsverktøy
som GitHub, Scrumban og Confluence.

v

Preface

This bachelor thesis is written by Sander Låstad Olsen, Marthin Gunerius Klækken,
Casper Fabian Gulbrandsen and Kristian Jegerud at the Department of Computer
Science at NTNU in Gjøvik.

We would like to acknowledge those that helped us along the way in the pro-
cess of developing the product and writing this thesis. A special thank you to
Steffen Wolla and Cryogenetics AS for giving us the task and helping us with an-
swering any questions we would have. We would also like to thank our advisor
Tom Røise for his help in writing this report. Finally we would like to thank our
friends and family for the support provided to us.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Code Listings . xiii
Acronyms . xv
Glossary . xvii
1 Introduction . 1

1.1 Background . 1
1.2 Project Group . 4
1.3 The Report . 5

2 Development Process . 7
2.1 Development Methods . 7
2.2 Scrumban . 8
2.3 Execution . 9
2.4 Summary of Work and Meetings . 11

3 Requirement Specification . 15
3.1 Use Cases . 15
3.2 High-level Description . 16
3.3 Expanded Description . 17
3.4 Operational Requirements . 18
3.5 Security Requirements . 19
3.6 High Level Misuse Cases . 20

4 Technologies . 23
4.1 Cloud . 23
4.2 React . 25
4.3 TypeScript . 27
4.4 Docker . 28
4.5 Git . 28
4.6 CSS Grid . 28
4.7 RESTful API . 29
4.8 .NET 5 & C# . 29
4.9 Technical Memo . 31

ix

x Inventory Management System

5 Design . 33
5.1 Structure . 33
5.2 Front End Structure . 34
5.3 Database design . 37

6 Implementation . 41
6.1 Front End Web Interface . 41
6.2 Routing . 43
6.3 The Navigation Bar . 47
6.4 The Storage Tanks . 49
6.5 User profile page . 60
6.6 The Authentication Process . 61
6.7 Back end . 66
6.8 Back End Security . 69
6.9 Production setting . 72

7 User Interface . 73
7.1 Fluent UI . 73
7.2 Layout . 73
7.3 UI Examples . 75
7.4 Responsive User Interface . 79
7.5 User Interface Iterations . 81
7.6 Web Content Accessibility Guidelines 82

8 Development Environment . 85
8.1 Front End . 85
8.2 Back End . 88

9 Quality Assurance . 89
9.1 Front end . 89
9.2 Back end . 93
9.3 Testing . 94
9.4 Automated Test . 95

10 Conclusion . 97
Bibliography . 103
A Scrumban tasks . 105
B Project Agreement . 109
C Project Plan . 115
D GUI-workshop . 129
E Rough initial recurring price estimate . 135
F Initial SQL draft . 139
G Swagger UI, and authorization configuration 143
H Managed identity . 147
I Toggl Track Summary Report . 151

Figures

2.1 Scrumban Board 3/5-21 . 9
2.2 Quick overview of the development process. 11

3.1 Use case diagram (created in Draw.io) 15
3.2 Primary misuse cases (created in Draw.io) 19

5.1 Current overall architecture . 33
5.2 Our Front End Folder Structure (created in draw.io) 36
5.3 Example schema for instances of fish, tank and client documents . . 39

6.1 Front end basic layout and areas . 42
6.2 File structure - front end (made in draw.io) 43
6.3 Front End Routing Structure . 44
6.4 500 Liter Tank . 53
6.5 Tank table . 56
6.6 Application registration on portal.azure.com 62
6.7 A user tries to log in with an email that is not listed in the app’s

Azure AD . 63
6.8 Screenshot from Microsoft docs. [11] 66

7.1 Front end layout (Laptop screen) . 74
7.2 Color palette . 75
7.3 Dashboard landing page . 75
7.4 Dropdown . 76
7.5 User profile page . 76
7.6 Filtering the list by the date uploaded 77
7.7 47 Liter tank . 78
7.8 500 Liter tank . 78
7.9 Front end layout (Tablet screen) . 79
7.10 Account page before and after clicking on the hamburger menu in

mobile view . 80
7.11 Mobile layout . 81
7.12 Mobile layout . 82
7.13 Mobile layout . 82
7.14 Mobile layout . 83

xi

xii Inventory Management System

8.1 Git branch structure example . 87
8.2 Endpoint to get all fish in a specific tank with parameters 88

9.1 Testing the responsive design on an iPhone display 94

D.1 Wireframe designs . 131
D.2 Design iterations of the approve files list 132
D.3 From suggestion to implementation 133

E.1 Rough initial recurring price estimate 137

F.1 Rough initial EER diagram design . 141

G.1 Swagger UI showing some endpoints, and link to specification . . . 145
G.2 Authentication on Swagger development site as configured through

the Azure Portal. 146

H.1 Managed identity enabled on App Service 149
H.2 Access policy of keyvault with managed identity 150

Code Listings

6.1 Using Fluent UI components . 42
6.2 Main Routing . 45
6.3 Using Protected Routes . 45
6.4 Protected Routes Component . 46
6.5 Side Menu Code Example . 47
6.6 Adding properties to custom components 48
6.7 Infitite Scroll . 50
6.8 Fetching all tanks . 51
6.9 Redirecting to new page . 52
6.10 Display a tile in 500L tank . 53
6.11 Fetching map data from API . 54
6.12 Handling of tile click . 55
6.13 Constructing fish location in tank . 57
6.14 Function used to fetch from API . 58
6.15 Using the FetchFromAPI function . 60
6.16 Checking and retrieving access token for Microsoft Graph API 60
6.17 fetch a user’s job title from Microsoft Graph API 61
6.18 Get access token code . 64
6.19 Instantiating authorization system with graph api and test scopes. . 65
6.20 Example class deriving DynamicObject 68
6.21 Fetching parameterized data using raw Structured Query Language

(SQL) - Pseudocode . 69
6.22 Fetching parameterized data using Language integrated query (LINQ)

to SQL - Pseudocode . 69
6.23 Pseudocode JObject for safe SQL generation 69
6.24 Enabling CORS in Azure APIM . 72
8.1 Dockerfile . 85
8.2 docker-compose.yml . 86
9.1 Before refactoring . 90
9.2 After refactoring . 91
9.3 Before Prettier is run . 92
9.4 After Prettier is run . 93

xiii

Acronyms

CORS Cross-Origin Resource Sharing. 71, 72

CSP Cloud Service Provider. 24, 25

CSS Cascading Style Sheets. 79

DoS Denial of Service. 34, 71

LINQ Language integrated query. xiii, 69, 70

MVC Model-View-Controller. 35

MVVM Model-View-ViewModel. 34

NPM Node Package Manager. 71, 92

NTNU Norwegian University of Science and Technology. 1

PaaS Platform as a Service. 23

RDBMS Relational Database Management System. 37, 38

SaaS Software as a Service. 23

SPA Single page application. 33

SQL Structured Query Language. xiii, 69

UI User Interface. 34

VM Virtual Machines. 28

xv

Glossary

Azure AD Azure Active Directory, identity management service. Access control
for users and objects.. 25, 70, 71

code coverage a measurement of how much of the code are executed while the
automated tests are running. 96

component based development an approach to software development that fo-
cuses on the design and development of reusable components.. 4

front end In development refers to the practice of converting data to a graphical
interface for example through the use of HTML and CSS. 8, 27, 34

kanban A workflow management method to help visualize your work and maxi-
mize efficiency.. 8

media queries A popular technique introduced in CSS3 to deliver different style
sheet to different devices or screen sizes. It works as a condition that has to
be met for the CSS to be read by the browser like for example the screen
width or the screen format. 79

milt is the semen from fish, molluscs and certain other aquatic animals that re-
produces by spraying this fluid, which contains the sperm cells, on eggs. It
may also refer to the testicles or the sperm sacs that contains the semen. 2

react hook hooks allows you to use state and other React features without writ-
ing a class. 47

refactoring a technique for gradually improving the quality of program code.
The purpose is to restructure code to make it easier to read, and easier to
maintain and further develop.. 90

rem A relative unit of measurement in CSS. Rem are defined by the font size of
the root element, with 1rem being equal to the base font size of 16 pixels..
79

xvii

xviii Inventory Management System

scrum is an agile development methodology used in the development of Software
based on an iterative and incremental processes. Scrum is adaptable, fast,
flexible and effective agile framework that is designed to deliver value to
the customer throughout the development of the project.. 8

suspicious constructs constructs that may not represent what the programmer
intended to do. E.g. expressions without side effects used in a context where
side effects are expected.. 92

test driven development a software development methodology which consists
of short iterations where new tests covering the desired improvements or
new functionality are written first, then the production code needed to make
the tests pass flawlessly is implemented.. 96

upsert Either updates or sets if the document already exists, in Cosmos DB in an
atomic fashion.. 37

web components A set of web APIs that allow you to create new custom, reusable
and HTML tags to use in web pages.. 26

Web Content Accessibility Guidelines A number of guidelines for how web pages
and user interfaces are designed ensuring that information on the Internet
is easily accessible to everyone, regardless of functional ability. 82

workfolder A special folder in Cryogenetic’s SharePoint, containing finished work-
sheets ready for approval.. 17

worksheet Worksheet is an excel document that records work in progress or work
that is done. xviii

Chapter 1

Introduction

This thesis is written by four students for their bachelor’s degree in Computer
Science at the Norwegian University of Science and Technology (NTNU) during
the spring semester of 2021.

1.1 Background

Cryogenetics is a Norwegian company that specialize in cryopreservation of milt
from several different aquatic and marine species as well as provision of technolo-
gies and services for improved reproduction.

The company has locations worldwide with headquarters based in Hamar,
Norway. The technology makes it possible to freeze sperm (otherwise known as
milt) from male fish, to then later thaw to use in reproduction when needed, al-
lowing for more efficient food production with less use of medicines.

Conservation and Cryopreservation

Cryopreservation is the process of freezing biological material at extreme tem-
peratures, causing all biological activity to stop, including reactions that would
otherwise lead to cell death.1 Cryogenetics have developed protocols for many
different species to provide the best preservation of the desired genes. They also
provides qualified knowledge to help clients get the most out of their fish and
valuable genetic material.

Their workflow for storing their data is today based on data handled in Excel
spreadsheets stored in a work folder in SharePoint2. When these spreadsheets are
finished and approved by an employee they are then stored in a different folder
containing other approved documents.

1https://www.cryogenetics.com/products-and-services/
2https://www.microsoft.com/nb-no/microsoft-365/sharepoint/collaboration

1

https://www.cryogenetics.com/products-and-services/
https://www.microsoft.com/nb-no/microsoft-365/sharepoint/collaboration

2 Inventory Management System

Task

As Cryogenetics continues to grow as a world-leading company in cryopreserva-
tion of milt, their need of effective overview of documents as well as to automate
certain activities quickly becomes a necessity.

The process of having to look up all the documents in the SharePoint work
folder, to then review and approve the documents by manually moving them to
the database demands a lot of time.

Therefore, our task is to create a web user interface for Cryogenetics’ staff
which aim to reduce the time and labor needed to review, approve and move the
documents to the work folder. We will not reinvent the wheel and replace Excel
with a separate service, but rather create a service that automates the process of
reviewing and approving the excel documents, as requested by Cryogenetics.

Project Description

We will deliver a robust web user interface for Cryogenetics’ staff. Even though it
is primarily made for PC usage, the interface is made with careful breakpoints in
order to scale well with other common devices, such as tablets and phones.

The web user interface will have the following functionality:

• The user will be able to log in with their Microsoft account.

- The staff will already have their own Microsoft accounts which they
use for the company’s SharePoint work folder. The staff will therefore
not need to create a brand new account just for this web application.

• A dashboard which shows relevant information that may be helpful such as:

- How many files are awaiting approval
- How many files are currently stored as backups
- How many fish are currently stored in tanks
- How many tanks are currently operational

• A list of files waiting to be approved with:

- Approve functionality for each file
- The ability to filter the files based on file types and dates

• A list of files stored as backups with:

- Download functionality for each file
- The ability to filter the files based on file types and dates

• A list of all tanks where:

- The user should be able to filter the files based on tank sizes (11, 47
and 500 Liter capacities)

- The user should be able to register a new tank
- Each tank consists of cylinders where the milt is stored, and the staff

will be able to click on each tank in order to get a good visual overview

Chapter 1: Introduction 3

of each cylinder.

• A user profile page that retrieves relevant information from the user’s Mi-
crosoft account.

• A search bar which allows the staff to look up specific details in the database.

The project will also consist of an Azure database that will store the approved
excel documents. This means that once the admin approves the file, it will be
transferred to this database. We convert the excel documents that are transferred
to the database into JSON-format. This allows us to use SQL queries for when the
staff uses the search bar on the front end to look up specific details.

Delimitation

The product we will create for Cryogenetics must be able to be used as a tool in
everyday work, and we will therefore focus on creating a robust service that has
functioning features, and that are easy to maintain and develop further. Cryoge-
netics are closely integrated with the existing Microsoft products, and we there-
fore want to take advantage of the fact that all Cryogenetics employees have a
Microsoft account. This means that we do not have to take responsibility of cre-
ating new users and storing account information securely.

The report will focus mainly on the development process, choice of technolo-
gies and the reasoning behind our choices. We will also discuss our development
process, what we learned from this project, and what we would have done differ-
ently.

Target Group

When we develop the services, we will always have the staff in focus. They are
the ones who will use the product, and it is therefore important that we make the
product for them.

The target group of our report is parties involved in the project, such as our
client, our supervisor and our department at NTNU. The report will also be rel-
evant for developers who may further develop the product, our fellow students
and future employers.

Why We Chose This Task

When this group came together we all wanted to choose a task where the focus
was on developing a product, rather than a research based and more theoretical
task. All four members in our group had preferences on technologies we wanted to
use and wanted to learn, so this was something we had in mind when we decided
which task to choose.

We had an early meeting with Cryogenetics represented by Steffen Wolla. Here
we clarified ambiguities in the task, and we as a group gave some input and Cryo-

4 Inventory Management System

genetics was able to present several ideas. After this meeting we as a group got a
very good impression of the the task, the company and the contact person.

Since the task was to create a product that Cryogenetics wanted to use in their
workflow, combined with great freedom when choosing technologies and services;
we decided to put this task at the top of the list of desired tasks.

1.2 Project Group

All four members on the group study Bachelor in Computer Science at NTNU
Gjøvik, and with the exception of 5th semester electives we all have the same
foundation. In addition to the standard topics in the course, Sander and Marthin
have taken the IMT3501 Software Security course. This was useful when creat-
ing a secure product that contains confidential information. Kristian and Casper
have both taken the courses IDG1362 Introduction to user-centered design and
PROG2053 WWW-technologies. This was useful when creating a web-service with
good usability that follows given standards for, among other things, WCAG 2.0
(See section 7.6).

The WWW-technologies course has also given us particularly good experience
in developing an organized and efficient web-service, which means that we have
experience of what to do and what not to do. Casper has also taken the course
IMT3281 Application Development, which will be a benefit as he has experience
with development of complex applications.

Throughout the course the group have gained competence in fields such as
database development, software security, algorithmic methods (fast and efficient
coding), Software Engineering (planning, implementations, development meth-
ods, etc. . .), and web development (HTML5, CSS, JavaScript, component based
development).

We therefore believed that we had a good basis to complete this project in a
satisfactory way, and to develop a robust product for Cryogenetics.

Roles

During the planning phase we decided roles and responsibilities for the project.
It was not intended that these should be binding, but the roles fell so naturally
that we stayed with them throughout the project period. Many of the tasks on the
website are developed through collaboration and pair programming between two
group members.

The roles were as follows:

• Sander: Project manager and back end developer. Responsible for managing
the group, ensuring communication with the product owner, and responsi-
ble for organizing and convening meetings.

• Marthin: Project Security Manager and front end developer. Responsibility
to ensure that the development follows approved and secure development
standards. He also assisted on the back end when he had time to spare.

Chapter 1: Introduction 5

• Casper: Project Development Manager, and front end / UX developer. Re-
sponsible for setting up workable development environments, and making
sure the team follows the chosen development model and is using the same
code standard. Also responsible for maintaining the GitHub repository and
making sure the team follows agreed upon Git standards.

• Kristian: Project documentation manager and front end developer. Respon-
sible for making sure that as much as possible of the development and ad-
ministration is documented and made easily available to the team. Also
responsible for taking notes during meetings and ensuring that the team
members log their hours accurately.

1.3 The Report

The source code is attached as a ZIP-file in the submission of the thesis. The report
has the following structure:

1. Introduction. Briefly about the client, the project assignment, clarifications,
target group and the project group.

2. Development Model. Choice of development model and why we chose as
we did. How we worked and briefly about the progress.

3. Requirement Analysis. Use case diagrams. The operational and security re-
quirements we concluded with.

4. Technologies. Review of the technologies we have used in the project and
why we have used them.

5. Design. How we have structured our application, which pattern we took
inspiration from and design of database.

6. Implementation. How we implemented our application. Deeper dive into
the code, with some examples of how we used the technologies we chose
to use.

7. User Interface. The result of our website, with examples of final UI design.
Some UI tests regarding WCAG.

8. Development Environment. Which tools we have used during the develop-
ment.

9. Quality Assurance. How we made sure that we produced high quality code.
10. Conclusion. What we have learned from the project, what we did right and

what we could have done different.

Chapter 2

Development Process

In this chapter will go into more detail on the argumentation of our develop-
ment methods, and how we actually carried out the project work. We will describe
which tools out of the toolbox we decided to use, and why we thought these tools
would help us achieve the best systematic process from a mere idea, to an actual
working product.

2.1 Development Methods

In short, a development method is a structured set of activities required to develop
a software system [1].
There are many ways to organize the process of developing a software product.
However, the common factor that all of these methods are designed to describe,
is to help the team to determine a set of norms that says "this is how we are going
to work, and this how we are going to communicate with each other". 1.

Even though these methods are designed with many common factors, they are
still meant to be applied to different types of projects. We discussed early on the
various ways we wanted to work on this development project, and we all agreed
that an agile development process was the best suited method.
So why did we decide this?

• Cryogenetics did not have a hard-determined set of requirements, but rather
wanted to be actively involved in the development process.

- If we were going to use the waterfall method, it would usually be a
good idea for the customer to have a pre-determined set of require-
ments and to not interfere much with the work process after the re-
quirements have been documented. In essence, it is not a flexible de-
velopment process.

- Agile methods creates room for change during the development pro-
cess, and sudden features and changes is something Cryogenetics told

1https://www.agilealliance.org/what-is-scrumban/

7

https://www.agilealliance.org/what-is-scrumban/

8 Inventory Management System

us early on that could occur. It is a flexible development process.

• Our roles were flexible

- Aside from the fact that we had pre-determined who works on the back
end and who works on the front-end, there was still a lot of flexibility in
terms of who can do what. Therefore, a kanban [2] board is something
that we knew early on would fit us well in the project development.

• The project had a relatively short timeline.

- When the requirements are vague and the timeline is limited it is highly
important for us to be flexible in terms of what software components
are to be prioritized.
Therefore, being able to have a continuous workflow with the simple
use of a scrumban board, where the components of higher priorities
are developed first was very important for us. We could then let com-
ponents of lower priorities wait until we have time to spare.

Due to the flexibility required, an agile method was required. We landed on
the combined method of using both scrum and kanban, a method which quite
remarkably is called Scrumban.

2.2 Scrumban

Scrum and Kanban are what’s usually considered the fundamental flavors of Agile.
Scrumban uses short iterations which should not exceed two weeks 2. After the
iteration is finished, the team reflect over the work that has been done, and along
with the product owner plan for the next iteration. Our iterations fluctuated in
length and sometimes were longer than recommended which is why it is important
to add that we did not follow the text-book definition of Scrumban. How we used
Scrumban began with the Scrumban Board.

Scrumban Board

Because we used GitHub as our source control manager, we also decided to use
their integrated project boards [3] for our work management tool (See figure 2.1),
and all of our stories(tasks) were added into our to do column.

Tasks are by default added to the To Do column, and when a group member
starts a task, it is transferred to the In progress column, and the task would be
assigned to that group member. Once the task has been completed and the com-
ponent is working, it is transferred to the Done column. We think this gave us a
good overview over the front end work flow. It made it easy to see which tasks
remained and what the other group members worked on. A selection of tasks from
the Scrumban board can be found in appendix appendix A.

2https://ora.pm/blog/scrum-vs-kanban-vs-scrumban/

https://ora.pm/blog/scrum-vs-kanban-vs-scrumban/

Chapter 2: Development Process 9

Planning in Scrumban is based on the demand for it. This means that when
the to do column was empty, a planning meeting was held to add new issues, and
to also discuss which we should prioritize.

Figure 2.1: Scrumban Board 3/5-21

2.3 Execution

Because of having three developers work on the front end whilst mainly one de-
veloper work on the back end, it was only the front end group who took the
Scrumban methodology into use.

On the back end, cards and to do lists was not in use. In retrospect, this was a
mistake. A continuous backup system was used for the source code. Continuous
integration was provided from the main branch to an Azure App Service, so that
when code was pushed, it was compiled and set into production. This had the
effect that only code that was secure could be pushed to the repository, which
meant fewer and larger commits. Instead, a separate production branch should
have been set up, where the continuous integration was set up. Or committing to
a development branch, and only merging production ready code to master.

Meetings with Product Owner

The representative from Cryogenetics was Production Manager and Business De-
veloper Steffen Wolla. We started early on in January to have meetings with the
product owner, but the agreement of weekly meetings did not start until the end
of the preliminary project (1. February). Here, we agreed to have a weekly meet-
ing every Monday at 12PM, where we updated him on the progress we had made
since the last meeting. Here, Wolla also supplied more ideas that we could imple-
ment, or improve on what we already had implemented.

Because of the Coronavirus pandemic, all but one of the meetings were dig-
ital via Microsoft Teams. We think meetings through Teams have worked well,

10 Inventory Management System

although there is little doubt that we would have preferred more physical meet-
ings than we have had. This is because meeting physically makes it easier to have
a natural conversation around the product, and we could also have run user tests
together with Cryogenetics. Despite of this the meetings were vital for us to un-
derstand exactly how Cryogenetics worked on a day to day basis and also to brain-
storm further ideas along with the product owner.

We had one physical meeting in January at their offices, where Wolla gave us
a tour of their building and a closer look at how they worked. We got to see their
cryopreservation tank storage and also see how they would organize the contents
within the tanks. This gave us an insight into their everyday work and the tools
they use, which was beneficial when developing the services later on. After the
tour we sat down all together to discuss various use cases for the project and also
give Cryogenetics a presentation of some design ideas we had prepared before the
meeting.

Front End Meetings

On the front-end we had daily morning meetings every weekday, where we dis-
cussed what we had worked on since the day before, and what we were going to
work on that day. Here we also discussed the status of the Scrumban board and
what we needed to prioritize going forward. This kept us on the same page and
helped us preserve a good communication together throughout the development
process. Another effect of these meetings is that we became considerably better at
allocating the necessary work components to the correct developers, as we all had
different experiences in different fields. Because of the Coronavirus pandemic, the
vast majority of these meetings were held on Microsoft Teams.

Group Meetings

We had group meetings every Thursday where the back end developer would also
join to update the front end on his work, and vice versa. Here, we analyzed the
changes that had been made since the last meeting and how the new back end
and front end changes could be integrated together in order to create a working
component.

We tried to keep these meetings physical whenever we could, but variation
in the recommendations around the pandemic made it difficult to make this a
regular routine. We felt that physical meetings provided a better atmosphere of
dialogue, and that it generally builds more trust and stronger bonds between the
developers. So this was something we agreed early on was important as a group
to try to achieve.

Meetings with the Supervisor

We were quite unlucky when it came to supervisors. Because of different compli-
cations with the first two supervisors we had, we did not have a proper guidance

Chapter 2: Development Process 11

before we got our third supervisor. At this point, we were already well into the
month of April, but Tom Røise stepped in as our third supervisor in time to guide
us through our thesis writing.

We had our first meeting with Tom Røise on 30. April. Here he gave us feedback
on what we had written so far in our report, and we agreed to meet again over
Microsoft Teams every Friday until the project’s deadline. The main focus of these
meetings in general was to give us a feedback on what we had written since the
last meeting, as well as to discuss the future structure of the report itself.

2.4 Summary of Work and Meetings

Figure 2.2: Quick overview of the development process.

We mentioned above (in section 2.2) that we chose the flexible management
methodology of Scrumban, and we agree that this has been the right choice for
this project. We followed our determined version of Scrumban throughout the
entire project, and Scrumban have shown to be an immense help throughout the

12 Inventory Management System

entire development process. This is especially thanks to the to do list that was con-
tinuously updated to supply us with prioritized tasks, and of course the Scrumban
board in general which helped us all stay updated on what components were being
worked on.

As we also mentioned in section 2.2, we replaced our sprints with a continued
workflow, so instead of a summary of weekly sprints we have a brief summary
every 15 days.

1. February — 15. February
Our preliminary project was now delivered and it was time to focus on the main
project. Repositories were set up on GitHub, (read more about our use of Git in sec-
tion 4.5). The repositories were set up with a foundational structure within MVVM
(section 5.2), and the use of React (section 4.2) and TypeScript (section 4.2) as
the main framework and programming language were chosen for the front end
department.

15. February — 1. March
Docker (section 4.4) is setup on the front end. Azure authentication for Microsoft
login/logout functionality is implemented. The web user interface (chapter 7)
have also seen great improvements by the implementation of the login page and
file listing views.

1. March — 15. March
On the front end we have implemented a web user interface view that is also
compatible with both tables and mobile devices. The search bar is now working
to find fish throughout the entire database as the product owner first and fore-
most wanted, but global search is also requested. The user profile page have also
been implemented in terms of design, but fetching data from the user’s Microsoft
account is yet to be implemented.

15. March — 1. April
Functionality for making GET-requests against protected Microsoft account data
and display the data on the user profile page was implemented. This was done
with Microsoft Graph access tokens.

1. April — 15. April
The tank map is now a working component. Azure authentication now uses redi-
rect instead of a popup.

15. April — 1. May
Protected routes [4] was implemented. "404 not found page" was made, in case
a user tries to navigate to a file path in the URL which do not exists. Refresh to-
kens [5] also became a working functionality. Bug-fixing, refactoring and redesign
became a bigger focus on the front end, and the main functionality of the web user

Chapter 2: Development Process 13

interface is finished. Report writing now became the bigger focus.

1. May — 20. May
Report writing is the main focus. We also had a presentation of the product to
Cryogenetics, as well as some user tests on the web user interface. Read more
about the user tests in chapter 9.

Chapter 3

Requirement Specification

Requirement Specification is where we specify all requirements that are to be
imposed on the design and verification of the system. This describes what the
software will do and how it will be expected to perform, as well as what it should
do and shouldn’t do.

3.1 Use Cases

Figure 3.1: Use case diagram (created in Draw.io)

15

16 Inventory Management System

Being able to locate and view data quickly, along with automating adding the
worksheets to a robust database were the most important use cases. It is how we
chose the use cases to use for our high-level descriptions, and our expanded use
cases. See section 3.2 and section 3.3.

3.2 High-level Description

Use Case: View fish
Actor: User & Admin
Purpose: View data from a fish-centric perspective
Description: A user should be able to view all data regarding a specific fish

individual, including all locations the individual is stored in.

Use Case: Search data
Actor: User & Admin
Purpose: Find a specific resource that is stored in the database
Description: A user can search all data stored using a search bar, including

all tanks and fishes, from a single location. The user can also
use basic filtering, such as searching for a specific fish species.

Use Case: View tank
Actor: User & Admin
Purpose: To see information about what is stored in the tank
Description: The user can find and click on the unique tank based on tank ID

in the provided list of tanks. The user will then get an overview
over the different fish that is stored in the tank that was se-
lected. This includes an overview over fish type and species, as
well as the name of the client that is the owner of that fish. It
should also provide an overview of where in the tank the fish
is stored.

Use Case: Update database with worksheet
Actor: Back end
Purpose: Use the worksheets to update the database.
Description: Uses approved worksheets containing updates to the data, and

adds them to a transaction log. The transaction log is used to
update the database.

Use Case: Create new tank
Actor: Admin
Purpose: To register a new fish tank in the database
Description: From the tanks-route, an admin can click on the "New tank"

button. Here, a popup will appear which prompts the admin to
fill in the tank credentials, such as the tank serial number, the
tank location and the tank type.

Chapter 3: Requirement Specification 17

3.3 Expanded Description

Use Case: Approve documents
Actor: Admin
Purpose: Queue ready documents to update database
Description: A worker queues a worksheet in a special folder on SharePoint. An ad-

ministrator can the read and approve the document when ready. Approv-
ing the document should queue it for modifying the database.

Pre-condition 1: The worker must have internet connection
Pre-condition 2: A valid document must exist in the SharePoint workfolder.
Post-condition: The document is converted into JSON-format and is loaded into the

database
Detailed course of action:

1. Worker navigates to the approve-files list.
2. Worker locates the file they wishes to approve.
3. Worker clicks on the "approve"-button besides the file.
4. The file is copied into the backup-files list.
5. The file is converted from Excel into structured JSON-format.
6. The structured JSON document is then used by the back end to

update the database with it’s content.
7. The file is removed from the SharePoint workfolder.
8. The file is removed from the approve-files list.

Alternative scenarios: Variants: Error situations:

1. The website fails to establish connection to the SharePoint work-
folder.

2. There are no files in the approve-files list.
3. The file can’t be loaded into the backup-files list.
4. Invalid document type (f.ex. .docx) prevents the file from being to

converted into JSON.

18 Inventory Management System

Use Case: View tank map
Actor: User & Admin
Purpose: Give quick overview over tank, and all stored fish.
Description: The user can find and click on the unique tank based on the tank ID

in a provided list of tanks. The user will then get an overview over the
different fish that is stored in the various compartments of the tank that
was selected. This includes an overview over fish type and species, as
well as the name of the client that is the owner of that fish. It should
also provide an overview of where in the tank the fish is stored.

Pre-condition 1: The user must be on the list of tanks route.
Pre-condition 2: The tank type must be in a list of pre-approved types.
Post-condition: The map of a selected tank is shown.
Detailed course of action:

1. Worker locates a tank from the tank list.
2. Worker clicks on the tank.
3. Data about the tank is fetched from back end API.
4. Worker is navigated to the tank map route.
5. Worker sees a map of the tank.

Alternative scenarios: Variants: Error situations:

1. The API fails to load the tank map.
2. Internet connection is lost.

3.4 Operational Requirements

Throughout the project period we have through internal discussion and frequent
dialogue with the product owner, come up with operational requirements that
should ensure that the system scales well and remains available and operational.

• The database must be able to store at least 10 GB of data (2 orders of
magnitude more than current storage).

• The database must not have data loss. (< 12 nines)

- The capacity of their current database is in the order of magnitude
of about 50MB, but since Cryogenetics is a company that is currently
experiencing fast growth it is important to have a database that scales
well in the future.

• The user interface language must be in English, and optionally in Norwe-
gian.

• Constant uptime is important, but not exceedingly so, due to work still being
performed in excel spreadsheets. An uptime of no less than 99.9% (3 nines)
is required.

Chapter 3: Requirement Specification 19

3.5 Security Requirements

Figure 3.2: Primary misuse cases (created in Draw.io)

Cryogenetics explicitly expressed that the security and confidentiality of all
production and customer data was of vital importance. No more specific security
requirements were made.

This meant that all the Excel spreadsheets that are stored in the SharePoint
work folder must never be disclosed or made available to anyone except for Cryo-
genetics’ staff.

Apart from this there has not been a lot of input from Cryogenetics regarding
the security, so we had some internal group discussions and individual reflections

20 Inventory Management System

on the listed requirements that we believed to be important for this system:

• Access tokens must have a limited life time. Limiting the lifetime of the
access token limits the amount of time a potential attacker can use a stolen
token.

- This does of course quickly create another problem by rendering a pro-
tected resource inaccessible for the user after the access token has ex-
pired. To solve this problem, OAuth 2.0 introduced an artifact called
a refresh token. We implemented the refresh token into our system,
which allows an application to obtain a new access token without
prompting the user.

• Only emails listed in Cryogenetics’ SharePoint Active Directory should be
listed on the website’s Azure application.

- If a user is logged in with an email that is not listed in Cryogenetics’
SharePoint Active Directory, it means that the user will not be able to
see any of the files in that directory. This is another reason why we
chose to use Azure Authentication as the login method for our system.

• Worksheets and customer information must never be displayed directly in
the web page, but must be loaded in from SharePoint.

◦ Worksheets and customer information can only be accessed in Cryo-
genetics’ SharePoint Active Directory. This directory will of course be
accessible through our web page, but the directory information itself
will never be directly displayed on our web page.

• HTTPS communication encryption through Transport Layer Protocol (TLS)
is to be used.

◦ This is not something we were able to implement before the project
deadline.

Explanations for these security requirements are addressed throughout the
report, but the topics regarding application security and authentication can espe-
cially be found in section 6.6.

3.6 High Level Misuse Cases

For the misusecase diagram, see figure 3.2.

Chapter 3: Requirement Specification 21

Misuse Case: Network DoS
Actor: Saboteur
Purpose: Sabotage use of website and database
Attack: There are two main variants:

1. Low level DoS (OSI 3 and down) Flood the server with
more traffic than it can handle, preventing valid requests
from going through.

2. Mid/High level DoS (OSI 4 and up) Send specially
crafted requests, that exploit a weakness in the appli-
cation, slowing down or preventing service.

Mitigation:
1. Low level DoS (OSI 3 and down) Use a DoS mitigation

service, such as Cloudflare, Azure Front Door (which has
Azure DDoS Protection Basic), Azure DDoS Protection
Standard, or other.

2. Mid/High level DoS (OSI 4 and up)

a. Avoid unauthenticated access, and rate-limit
requests (especially computationally expensive
ones).

b. Log utilization of endpoints per client, monitor for
suspicious use and revoke access tokens. (Although
for this project in specific, we would want this au-
tomated, as no dedicated IT department exists in
Cryogenetics)

c. Take care when allocating resources that may per-
sist beyond a request (such as caches).

Misuse Case: Data deletion
Actor: Insider & Saboteur
Purpose: Deny access to critical resources
Attack: Delete critical resource(s) denying access to them, potentially

permanently.
Mitigation: Use append-only storage, or soft-delete. Soft-delete requires

a set waiting period before resources are actually deleted, al-
lowing resources to be restored.

22 Inventory Management System

Misuse Case: Corrupt data
Actor: Insider & Saboteur
Purpose: Deny access to critical resources
Attack: Corrupt critical resource(s) denying access to them, poten-

tially permanently. Corrupted data is different from delete, in
the sense that the invalid data may propagate throughout the
system. It may also be more difficult to detect, as there may be
no easy way to detect if the data is valid or not.

Mitigation:
• High level: Use a transaction system with a transaction

log as the only way of modifying the database. In the
case someone does input invalid/corrupt data, it is al-
ways possible to go back and remove bad transactions,
then to rebuild the database.
This however does not mitigate the issue of an employee
intentionally inputting invalid/bad data instead of the
business data they were supposed to. This could be as
simple as a human error, writing down the wrong tank
number or fish id for example.

• Low level: Store data in a system where multiple redun-
dant copies are kept, and that has integrity checking and
prevents data degradation.

Chapter 4

Technologies

In this chapter we will discuss what kind of tools we decided to utilize in order to
create our application, as well as why we chose to use those tools as opposed to
other possible tools.

4.1 Cloud

Why Cloud?

We decided to use Microsoft Azure1 as our main platform of choice, instead of
hosting locally at Cryogenetics, or hosting co-location in a data centre. Cryogenet-
ics as a company is not specifically focused on IT, and does not have a significant
IT department, opting to instead outsource most of it’s operations to 3rd parties.
Hosting locally, or co-location may require significantly more maintenance than
using Platform as a Service (PaaS) or Software as a Service (SaaS), as more things
need to be managed by you2. Platforms such as Azure are generally more expen-
sive than either local hosting, or co-location; assuming you have a IT department
capable of maintaining the software and hardware stacks, or you need significant
raw compute power. This project has neither.

Additionally, public cloud providers provide significantly more flexibility in
terms of compute. And are a great fit for tasks with spiky loads. As such, this
project was an excellent fit for using a cloud service provider with SaaS and PaaS
options.

Vendor Lock-In Concerns

Using PaaS presents a concern with vendor lock in. That is, code being to tied in
with a specific vendors systems. If the vendor for some reason becomes unsuitable

1https://azure.microsoft.com/nb-no/
2https://docs.microsoft.com/en-us/azure/security/fundamentals/shared-

responsibility#division-of-responsibility

23

24 Inventory Management System

to use (no longer available, increases prices, etc.), porting code to a new vendor’s
system would be a significant hurdle.

Specifically with regards to Microsoft under previous management, their past
concerning strategies like "Embrace, extend, extinguish"[6] culminating in a anti-
trust case with the U.S government3 is not to be ignored.

Under recent management Microsoft has open sourced some of their code
portfolio4, and licensed them under permissive licenses. This includes the native
SQL adapter used for Cosmos DB (used by the project, under a MIT license5), and
Kudu (used for deployment of the back end, under an Apache-2.0 license6).

In a worst case scenario, due to the permissive licenses, modifying the adapter
API’s, and emulating past services would be possible. Although it would be prefer-
able to build our systems with an additional layer of abstraction, creating a sim-
pler and unified API surface of what we use, and have it utilize our Cloud Service
Provider (CSP)’s API’s.

Security Concerns

With regards to security, both public cloud platforms and co-location generally
provide physical security. With local-hosting, this is something Cryogenetics would
have to manage themselves.

Public cloud providers do come with some specific security concerns, espe-
cially around insider threats, and leaking information on shared hardware.

Spectre and to a lesser degree Meltdown, pose a threat when software from
multiple tenants run on the same hardware. These threats are mitigated by either
using dedicated managed hardware (hardware which serves a single tenant only),
or running on processors with architectural mitigations in place, such as AMD
Epyc CPUs with Secure Encrypted Virtualization7 [7]. Noting that the SEV ability
to prevent the hypervisor from snooping guest memory is not a significant factor
in our threat assessment, as we already assume trust of Azure by using Azure
Cosmos to store our data. But it does prevent guests from other tenants from
reading sensitive data. Although that does not mean it is foolproof.

Another mitigation would be to use something like Open Enclave8 and run in
a Trusted Execution Engine, using f.ex Intel’s Software Guard Extensions. It would
likely be significantly more difficult to implement and maintain, and requires pro-
cessors to have a TEE. AMD’s Secure Memory Encryption also does require specific
processors, but does not require changes in how code is written and run. It would
also probably be quite interesting to try one day.

3https://en.wikipedia.org/wiki/United_States_v._Microsoft_Corp.
4https://opensource.microsoft.com/projects/
5https://github.com/Azure/azure-cosmos-dotnet-v3
6https://github.com/projectkudu/kudu
7https://www.amd.com/system/files/documents/cloud-security-epyc-hardware-memory-

encryption.pdf
8https://github.com/openenclave/openenclave

Chapter 4: Technologies 25

We concluded the security advantages from using SaaS and PaaS on a trusted
cloud provider far outweigh the downsides for this specific deployment.

Which CSP

We then identified the most prominent players in the field, which at the time of
writing was AWS (Amazon Web Services9), Azure (Microsoft Azure10), and GCP
(Google Cloud Platform11). Part of our team had previous experience using Azure,
and SharePoint12 and Azure AD (Azure Active Directory)13.

Cryogenetics were already using SharePoint and Active Directory, so some
amount of the application would likely need to be integrated with Azure regard-
less of the choice of CSP. The pricing for the modules we thought we would need
were not too far off what competitors offered, based on a rough estimate of about
5000 nok/month in recurring costs (see figure E.1, and about 4000 NOK as a one
time license payment for IronXL (the excel parser used).

Azure also has (but is not the only one with) excellent support for C# (as both
are maintained by Microsoft), which we wanted to use for the language on our
back end.

The factors above: previous experience, SharePoint and active directory al-
ready being used, and excellent support of C# within an acceptable budget made
us land on Azure to host our project.

4.2 React

Choice of JavaScript Framework

JavaScript, HTML and CSS are the three fundamental technologies in modern
web development. HTML is responsible for the structure and semantics for the
website, while CSS is handling the setup, colors and other styles. If we want a
website with more advanced features and interactions we need to use JavaScript.
In recent years, WebAssembly14 has come to the forefront as a popular addition to
JavaScript. WebAssembly is ideal for heavy duty tasks such as game development,
AR/VR live applications, platform emulation and image recognition. Since there
were no features in our web application that required the performance of We-
bAssembly, and that none of us have any experience with this before, this became
something we chose not to use in the project.

Developing complex websites with standard JavaScript (popularly called Vanil-
laJS15) is possible, and was for a long period the most common way of developing

9https://aws.amazon.com/
10https://azure.microsoft.com/nb-no/
11https://cloud.google.com/
12https://www.microsoft.com/nb-no/microsoft-365/sharepoint/collaboration
13https://azure.microsoft.com/nb-no/services/active-directory/
14https://developer.mozilla.org/en-US/docs/WebAssembly
15http://vanilla-js.com/

https://developer.mozilla.org/en-US/docs/WebAssembly
http://vanilla-js.com/

26 Inventory Management System

websites. However, since 2010 the use of JavaScript frameworks has exploded.
The number of frameworks are huge, but they all have in common that they sim-
plify the JavaScript code at the same time as they bring new and powerful func-
tions for the developer to use. No one agrees on which framework is the best to
use, so choosing the optimal framework can be hard.

When we did the research in connection with the choice of framework for
our website, we emphasized using a framework that was easy to learn, well doc-
umented and a framework we really wanted to learn. From before, two of us
had experience with LitElement16, since this was used in the WWW-Technologies
course in our 5th semester. We found this framework inconvenient and inefficient
to use, and wanted therefore to try another and more popular framework. Our
choice was therefore between the three of the most known and used frameworks
Vue.js17, Angular18 and React19. At StackOverflow, in 2020 they had a survey
among their readers that showed that React is the second most used framefork
behind jQuery, whereas Angular is number 3 and Vue.js is number 7. When it
comes to demanded skills, Geek4Geeks did a study20 on which frameworks are
most in demand in working life, and concluded that React is the most demanded
skill. This may also indicate that developers don’t want to work with React, and
that the jobs demanding Angular and Vue.js skills is taken immediately, but since
the StackOverflow survey shows high popularity for React we conclude that this
is not the case.

The choice ultimately fell on React as they have a large user base that provides
many solutions online to problems we ended up in, good documentation that
makes it easy to learn, and good support for extensions that we can use in our
web service.

About React

React was created by Jordan Walke, a software engineer at Facebook in 2011,
and is today maintained as a Open Source21 by Facebook and a community of
different developers and companies. The framework makes it easy to create web
components, which can include and use JavaScript functions and variables. This
allows you to call on the components in the same way as you uses the familiar
html tags <div>, <p> and <h1>, which easily can and should be reused.

The most important core functions of React for us are:

• Easy to create components, making it easy for us to scale our website
• Passing JavaScript expressions as properties between components, which is

important for us when using the Model-View-ViewModel pattern.

16https://lit-element.polymer-project.org/guide
17https://vuejs.org/
18https://angular.io/
19https://reactjs.org/
20https://www.geeksforgeeks.org/angular-vs-reactjs-which-one-is-most-in-demand-f

rontend-development-framework-in-2019/
21https://opensource.org/about

https://lit-element.polymer-project.org/guide
https://vuejs.org/
https://angular.io/
https://reactjs.org/
https://www.geeksforgeeks.org/angular-vs-reactjs-which-one-is-most-in-demand-frontend-development-framework-in-2019/
https://www.geeksforgeeks.org/angular-vs-reactjs-which-one-is-most-in-demand-frontend-development-framework-in-2019/
https://opensource.org/about

Chapter 4: Technologies 27

• Single-Way data flow, keeping our architecture simple
• Powerful State handling, keeping data away from cookies and therefore

making our website faster.
• Large number of libraries that can be used
• Easy integration with TypeScript, as we decided to use TypeScript with our

website.

React is covered by the MIT License22. More on how we have used React in chap-
ter 6.

4.3 TypeScript

About TypeScript

TypeScript is an open-source programming language designed and released by
Microsoft in 2012. It is a superset of JavaScript and provides optional static typ-
ing, classes, and interfaces. Since Typescript cannot be run or understood in any
browser, it is transcompiled23 to JavaScript. It can be used as a language on both
client-side and server-side when developing applications.

TypeScript has over the past few years become very popular among front end
developers. That is because it:

• Provides optional static typing
• Makes it easy to spot bugs early as the compiler will complain if something

does not match the typing
• Provides increased predictability and readability
• Provides fast refactoring

Why TypeScript?

Whereas JavaScript is a dynamically typed language, where types are checked
and datatype errors are spotted only at the runtime, TypeScript introduces op-
tional strong static typing. This means that once a variable is declared, it doesn’t
change its type and can take only certain values. Checking the type at runtime
may not be a disadvantage, because it offers more flexibility and enabling pro-
gram component changes dynamically. We considered our program quite large,
and we therefore wanted more control over the debugging. TypeScript’s static typ-
ing leads to the compiler alerting developers to type-related mistakes, preventing
bugs from hitting the production phase. Using TypeScript in projects also speeds
up refactoring and debugging, and because of the strong static typing it gives the
code more structure and makes it more readable. These are qualities we consider
important in our relatively large project. TypeScript also works well with React,
so using it in our project actually became a no-brainer.

22https://en.wikipedia.org/wiki/MIT_License
23https://www.codemotion.com/magazine/Glossary/source-to-source-compiler/

https://en.wikipedia.org/wiki/MIT_License
https://www.codemotion.com/magazine/Glossary/source-to-source-compiler/

28 Inventory Management System

4.4 Docker

Docker is an open source containerization platform, which allows developers to
package applications into containers24. A container is a standardized executable
component that combines application source code with OS libraries and depen-
decies, which makes the source code possible to run in any environment. In short,
Docker is a tool that enables developers to build, deploy, run, update and stop
containers using simple commands. For us, using Docker is very important. That
is because we use different operating systems (Windows and Linux), and using
Docker to containerize a website gives us more predictability as Docker makes
our website run the same on all operating systems.

The containers used by Docker offers similar benefits to Virtual Machines
(VM)s, which includes e.g. isolation of application (although not to the same de-
gree) and cost-effective scalability. But it also have some advantages over VM’s:

• Containers are far more lightweight than VMs, as they only include OS pro-
cesses and dependecies what is needed to run the code.

• Containers have a greater resource efficiency than VMs, which means that
we could run our website much easier on our hardware.

• Containers are, compared to VMs, faster and easier to deploy and restart,
which means that we could save some time when developing our website.

More on how we used Docker when developing our website in section 8.1.

4.5 Git

One of the most used version control system in the world today is Git25, originally
developed in 2005 by the famous creator of Linux, Linus Torvalds26. All members
of this bachelor thesis had an experience in using Git from previous projects, so
we did not even entertain the idea of using another system since we all were very
familiar with the development process.

One of the biggest advantages of Git, which we used extensively in this project,
is the branching capabilities it provides. The front end project was from the start
divided into two branches stored in a repository on GitHub27 and several locally
stored branches. You can read more about how we used Git and Git branches in
section 8.1.

4.6 CSS Grid

While HTML is used to define the structure and semantics of the website’s con-
tent, CSS on the other hand is used to style and lay it out in whatever way the

24https://www.ibm.com/cloud/learn/docker
25https://www.trustradius.com/version-control
26https://www.atlassian.com/git/tutorials/what-is-git
27https://github.com/

https://www.ibm.com/cloud/learn/docker
https://www.trustradius.com/version-control
https://www.atlassian.com/git/tutorials/what-is-git
https://github.com/

Chapter 4: Technologies 29

developer wants28. One can use CSS to alter the font, color, size, margins, add an-
imations and much more that makes the website more aesthetically pleasing for
the user. CSS can also be used to control the web page’s layout, where some pop-
ular methods are using tables, the box model, and CSS flex box. In recent years,
CSS Grid29 has become more and more popular, a method that two of the group’s
members have been introduced to in the course PROG2053 WWW-Technologies.
CSS Grid divides a page into major regions or defines the relationship between
HTML classes in terms of size, position, and layer.

We chose to use CSS grid as we thought it was a more clear tool to use than
for example Bootstrap. We considered CSS Grid as a more suitable tool to use to
create responsive websites that also work on tablets and phones. Another impor-
tant factor for us when we decided to use CSS Grid was the fact that we wanted
to improve our abilities, as CSS Grid is considered by many to be the future of
web development30.

4.7 RESTful API

For our API technology, we had two major contendors: RESTful and GraphQL.
REST (Representational state transfer) is an API pattern that makes CRUD

(Create, Read, Update, Delete) operations very easy. It is simple to implement,
and uses the GET (Read), PUT (Update), POST (Create) and DELETE (Delete) http
methods representing the CRUD operations.

GraphQL is a more powerful API query language than REST, but with added
power also comes greater complexity to implement.

One main differentiator between REST and GraphQL, is that GraphQL allows
you to pick specific fields to fetch, whilst RESTful API’s do not have to allow this.
Although REST API’s can be expanded to allow this, by for example following the
OData standard31.

We elected to use a simple RESTful api, as our documents are not so large
that being able to select specific fields are important. And the added complexity
of implementing GraphQL is something we decided was not worth it. We also
added ordering, and planned to add filtering (based loosely on OData), as both
add value to the the API consumers (especially the front end).

4.8 .NET 5 & C#

.NET 5

.NET 5 had excellent support for creating web-API’s through ASP.NET Core, as
well as being fully supported by most major cloud providers. It is portable and

28https://developer.mozilla.org/en-US/docs/Learn/CSS
29https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
30https://www.zionandzion.com/css-grid-the-future-of-web-development/
31https://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://www.zionandzion.com/css-grid-the-future-of-web-development/

30 Inventory Management System

cross-platform, and is fast enough for the requirements of this project. We also
had some prior experience using .NET 5, and earlier versions of the framework.

Please note that .NET 5 is the successor to .NET Core 3.1, not .NET Framework.
See 32

Language Features

C# was chosen primarily due to past experience with the language, as well as a
good ecosystem for developing websites and web-API’s (ASP.NET Core). C# is a
high-level, statically typed and jit’ed language, compiled to CIL (Common Inter-
mediate Language).

C# is cross platform, allowing it to run on newer ARM server processors
such as Ampere Altra33, and AWS’s Graviton34. Although the performance re-
quirements of this specific project does not require the capability to run on high-
performance ARM processors3536, this does not mean that the usually higher effi-
ciency of these cpu’s can reduce cost. But as the overall recurring costs for hosting
this project are estimated to be reasonably low, this is not a significant factor in
this case.

C# also features automatic memory management (specifically, garbage collec-
tion) preventing a plethora of potential issues, like accessing reallocated memory,
and buffer overflows. Starting from C# 8, there is also support for what is known
as "nullable reference types", which essentially means that the compiler enforces
initialization of values. As a consequence, null checks are not needed, as refer-
ence types cannot be null, unless specifically tagged as a nullable value (in which
case the program author is responsible for checking if a non-null value has been
assigned).

32https://docs.microsoft.com/en-us/dotnet/core/dotnet-five
33https://amperecomputing.com/altra/
34https://aws.amazon.com/ec2/graviton/
35https://www.servethehome.com/ampere-altra-wiwynn-mt-jade-server-review-the-most-

significant-arm-server/
36https://www.phoronix.com/scan.php?page=article&item=ampere-altra-q80&num=1

Chapter 4: Technologies 31

4.9 Technical Memo

Factors
Should we develop a separate iPad application or focus more on
in making the website more compatible with tablets and mobile devices?

Discussion

Starting Point:
- None of us were familiar with Swift or had any experience in
developing for iPad and iOS.
- We would have to spend a lot of time learning a new platform
- None had prior access to the right tool to develop for iOS (Mac).
- At least 2 of the developers had prior experience in developing responsive websites

Design:
- Since we decided beforehand in following the Microsoft Fluent UI guidelines,
combining that with
Apple’s guidelines in app development would create unnecessary more
work in the design phase.

Performance:
- A native iPad application would perform better than a website

Other:
- Another expenditure from Cryogenetics to pay for
a developer account at the App Store
- It would be less complex to keep everything in one web application
- We estimated we would not be able to create a well functioning website
if our resources were split.

Solution

- Based on the discussion above, the group decided to not develop
a separate application for iPad, but instead focus more
on creating the website more compatible with mobile devices.
- Cryogenetics agreed with this as they would mostly be using
laptops to navigate our system.

Chapter 5

Design

In this chapter we will take a closer look at how we have structured the project.
This means that we explain the choice of patterns on the front end, how we have
chosen to design the database, and what adjustments have been made for our
project.

5.1 Structure

Figure 5.1: Current overall architecture

The current architecture consists of two main modules; a front end (a static
Single page application (SPA) webpage), and a back end (hosted as an Azure app
service).

They communicate with each other through a simple REST API, where the
front end handles displaying data and user interaction. The back end handles
abstracting away the complexities of the back end database, and presenting the

33

34 Inventory Management System

data as a simple REST API.
The back end uses the Microsoft Identity platform to validate the access tokens

provided. Cosmos DB provides data storage in the form of a document database,
and the key-vault provides safe storage of sensitive keys (specifically, the cosmos
db connection string, and Azure app registration secrets).

Azure APIM or a simiar service such as Azure Front Door is recommended as
an entrypoint for the back end API, to handle potential Denial of Service (DoS)
attacks. The front end SPA webpage can be hosted on any service capable of static
file serving.

5.2 Front End Structure

Model-View-ViewModel

At the beginning of the project, we decided to use a Model-View-ViewModel[8]
for our web application. This software design pattern was chosen because Model-
View-ViewModel (MVVM):

• Makes it flexible to work on both User Interface (UI) design and front end
logic near-simultaneously, which was crucial for us as we were often several
who worked on the modules of the code.

• Makes it easy to write and test both units and modules. (See section 9.4)
• Provides an easy organization of our components, because we expected to

end up with many components.
• Allows you to refactor parts of the code without affecting other parts of the

code (See section 9.1)

Figure 5.2 shows how we chose to structure our front end application direc-
tory. In the root folder we find in addition to the src/ folder, all the configuration
files. These are configuration files for React, Docker, ESLint and Git. We also find
the package.json and package-lock.json, which contains information about the
NPM packages we have used. We set up the project after the MVVM pattern as we
have structured as follows:

• Model contains all the model files for the web page. Each model file stores
all the data for its modules.

• Pages contains the pages files for the web page, where each page file works
as an entry for the module.

• View contains all view files, style sheets and view components.
• ViewModel contains all the ViewModel files. These files contains the logic,

the communication with the database and provides communication between
View and Model.

• Interfaces contains the files with the interfaces of the various modules. Each
file contains the interfaces of its module, for example: TankListInterfaces.tsx
contains all the interfaces of the TankList module.

We have tried as long as possible to follow the MVVM the pattern, by storing

Chapter 5: Design 35

data in the model, all functions (both communication to API and View logic) in
the ViewModel and keeping the View as free as possible for anything other than
presentation logic. But there are several places in our code we did not find this
natural. An example of this is for the map of the tanks, where there is a map for
11 Liters, a map for 47 Liters and one for 500 Liters. As described in section 6.4
the three tanks are all using the same Model, View and ViewModel file, which
the only difference between the them is the map component itself. The 500 Liter
tank differs quite strongly from the other two tanks in terms of how we have
built up the component, which means that there are some functionalities needed
to show this tank that is not needed for the other two tanks. We have therefore
chosen to put the functions and data that explicitly belong to 500 Liter tanks in
the component file.

Another place we have done this is in the list of tanks. As explained more in
detail in section 6.4, the Tanklist module is built up of TankListView.tsx working
as the container for the page. This uses the TankView.tsx component to render
each Tank with its properties as card component1. As described in section 3.1 it
should be possible to edit some of the tank properties. We tried to place the logic
behind these functionalities in the ViewModel, but we found this inconvenient as
it included unnecessary use of additional arrays and functions. We therefore chose
to place the logic in TankView.tsx.

Usually when using MVVM in a project, the View is the entry point in the
application, as opposed to MVC where it is the controller that is the entry point2.
When we started developing our website, we were not aware that it was common
in an MVVM pattern to use View as an entry point to the application. We therefore
started developing with ViewModel as the entry point that initialized the Model
and sent the data to View. We think this worked well, and chose to use the same
structure of the modules further.

When we became aware that it is common MVVM to use View as an entry
point, we thought it was too late to rewrite our code so that the View became the
entry point. Such a rewrite would take a lot of time, and be risky considering that
there could be some functionalities that would not work. We thought it was not
worth spending a lot of time on fixing a system that already worked well just to be
able to say afterwards that we followed the pattern to the letter. It can therefore
be said that our website also has similarities with a Model-View-Controller (MVC)
pattern, as it is the Controller that is the entry point in MVC.

Modules

Our application mainly consists of 8 modules, where 5 of the modules at least each
have their own Model / Provider, a ViewModel and a View. The eight modules are:

• Authentication and login page. This is the module that differs greatly from

1https://www.nngroup.com/articles/cards-component/
2https://www.guru99.com/mvc-vs-mvvm.html

https://www.nngroup.com/articles/cards-component/
https://www.guru99.com/mvc-vs-mvvm.html

36 Inventory Management System

Figure 5.2: Our Front End Folder Structure (created in draw.io)

the others in terms of structure, which is basically due to a lot of communi-
cation and authentication with Microsoft.

• Account page. Does not have a ViewModel, but does have a model and a
view.

• Backups. Should fetch all the backups from the database, display them as a
list for the user and give them the opportunity to download them as an excel
document. Everything is implemented on the front end, but lacks endpoints
in the back end.

• Pending files. Fetches files that are ready for approval in the SharePoint
folder and displays them as a list for the user. Should give the user the
opportunity to approve these, but it lacks an endpoint in the back end for
this.

• The global search. Should give the user the opportunity to search the entire
database, and then show the result of this search. Roughly finished in front
end, but missing endpoints in the back end to do a search.

• The homepage. Its the homepage for our website, and thus the page you
get to after logging in. Works as a simple dashboard, with some key figures
around files, tanks and clients, as well as the clock for the various places
Cryogenetics has offices.

• List of tanks. Fetches all the tanks in the database and displays them as a list.
For each tank it is possible to change the location, availability and owner
properties.

• The map / list of the contents in a tank. Fetches all the fishes in the chosen
tank, and presents it as a map of the contents of each tank, as well as what
is in the cylinder / slot that the user has clicked on. The content can also be
presented as a table. Consists of multiple components for each type of tank,
with both TypeScript and CSS files.

Chapter 5: Design 37

5.3 Database design

Initially we had thought to use a SQL RDBMS for our backened database, which we
created a rough draft schema for, see F.1. Although after further communication
with Cryogenetics, it became clear they wanted further flexibility that originally
anticipated.

The data from existing spreadsheets did have a loose schema attached to it,
but finding primary keys, and what were valid values and datatypes proved to be
challenging.

To allow for the flexibility required, using SQL, we saw two main options:

1. Dynamically add columns to existing tables as they were required, poten-
tially leaving the table sparse. Another augmentation to this would be to
have a main data table with existing data, and create a new table for dy-
namic data. The new data table could have it’s columns altered as needed.
Then a simple join would be performed on the item id.

2. Create a new "additional data" table, where any additional data is stored as
"id, key, value". Essentially a key value pair table.

Neither option seemed preferable, so instead we went for a native flexible
document database. Using a document database does have inherent issues with
our requirements as well, but they can be mitigated.

Issues:

1. Race conditions: Documents are atomic structures, which means that docu-
ments will never partially be updated. But an issue presents itself if a doc-
ument is read by two parties, A and B. A and B’s documents are then mod-
ified in disparate ways, and they are both then pushed to the database. As
upserting a document overwrites the entire previous document, either the
modifications made by A or B is lost.

2. Consistency level: The issue with race conditions are exacerbated by using
consistence levels other than "strong"3 (which is not the default consistency
level as of writing). The "strong" consistency level guarantees linearity, that
is: any read is guaranteed to read the latest commit-ed write. Other consis-
tency levels do not necessarily guarantee this (at least not across multiple
regions).

The first mentioned above can be mitigated, by using a transaction log. Instead
of updating the database directly, create a transaction log of all updates. Then have
a single instance go through transactions and mutate the database accordingly.

This does solve the issue of concurrent changes being lost. It however does
create a new issue with regards to performance, but as per the operational re-
quirements, this was not considered to be an issue.

With the added flexibility required, we switched from a Relational Database
Management System (RDBMS), to a document database. Specifically Azure Cos-

3https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels#strong-consistency

38 Inventory Management System

mos DB. The call was made that creating a transaction system (which would have
been necessary with RDBMS anyways) was less work than adopting a RDBMS to
work with semi-structured data.

For an example scheme of a specific instance of data, see figure 5.3. The
scheme is for a specific document of a fish, tank and client. The database con-
tains many of these documents. As the data is semi-structured, the documents do
not necessarily have the same properties, but the general structure is currently
the same across all documents of a type.

Chapter 5: Design 39

Figure 5.3: Example schema for instances of fish, tank and client documents

Chapter 6

Implementation

Our web application consists of many modules and components, so we therefore
choose not to go into detail on all of them. We have chosen to take a closer look at
the most essential modules such as routing, navigation bar, map of the content in a
tank, login and authentication. We will also take a closer look on implementation
of the back end, and the security concerns round this.

6.1 Front End Web Interface

Of the products we have developed during the project period, it’s the website
that the employees at Cryogenetics see and use directly. This was made with the
framework React, which we justified in section 4.2. Our website is inspired by
Microsoft’s Office Online programs, where Word Online is the website we have
taken most inspiration from. In any case, we have tried to keep the website as
simple as possible, and it then consists mainly of the modules:

• Navigation bar (see section 6.3) - No matter where the application is, you
will always find it at the top of the screen. Contains functionalities for nav-
igating around our website.

• Content area - The area of the screen that displays the content the user
wants to be displayed.

On larger screens, there will be margins on each side of the content area. Since
we have created a responsive web page (see section 7.4), these will be adjusted
automatically based on the screen size, and thus ensure that the web page layout
is intact. See figure 6.1 for an overview over layout.

Components

You can easily create a working and good website by just using React, but by
using a UX Framework you can save a lot of time while getting a better result.
A UX framework is a framework that offers stylesheets and control components,

41

42 Inventory Management System

Figure 6.1: Front end basic layout and areas

which can easily be imported into the project and used on an equal footing with
our own components.

As described in section 7.1, we chose to use the UX framework Fluent UI[9]
when we developed our website. Fluent UI made it easier for us to design our
program according to Microsoft’s recommendations. This is because in Fluent UI
there are different styles that we can use, such as standardized colors, icons and
typography. Fluent UI also has different controller components we used, where we
used basic inputs as buttons, links and dropdowns. We also used progress indica-
tors and spinners for when content is loading, dialog for getting confirmation from
user and menu items like the pivot controls and overflow set. In code listing 6.1
we see how we used the pivot control component from Fluent UI. By importing
them to the current file, we used them in the same way as the regular HTML tags
in addition to sending the correct properties to the component.

1 import { IPivotStyles, PivotItem, Pivot }
2 from "office-ui-fabric-react/lib/Pivot";
3 ...
4 <Pivot
5 aria-label="Pivot Controls"
6 selectedKey={props.selectedTab}
7 onLinkClick={props.handleTabClick}
8 headersOnly={true}
9 getTabId={getTabId}

10 styles={pivotStyles}
11 >
12 <PivotItem headerText="All" itemKey="all" />
13 <PivotItem headerText="My Recent" itemKey="myrecent" />
14 </Pivot>

Chapter 6: Implementation 43

Code listing 6.1: Using Fluent UI components

Structure

You can from figure 6.2 see how our front end application is structured.

• index.html - the page template. Created automatically by React when setting
up the project, and contains imports of stylesheets and a div which works
as the entry point for the index.js.

• index.js - the JavaScript entry point. Created automatically by React when
setting up the project. Gets the root div from index.html and renders App.tsx.

• App.tsx - The component that controls our entire application. Here is the
router and protected routes (section 6.2), and authentication (section 6.6).
Ensures that navigation bar is rendered everywhere in the application.

• AuthenticationProvider.tsx - Responsible for authenticating the user trying
to log in, and making sure to properly log out. Also responsible for fetching
new OAuth and UserOAuth keys when these expire (see section 6.6).

• Main modules - the blue rectangles in figure 6.2. The modules responsible
for providing the content on the website (what each module is responsible
for is described in section 5.2).

Figure 6.2: File structure - front end (made in draw.io)

6.2 Routing

Routing is the capacity to show different pages to the user. To move between
different parts of the website with the URL bar or by clicking on an element1, like
the ones we have added in the navigation bar. Rather infamously, React comes

1https://www.freecodecamp.org/news/a-complete-beginners-guide-to-react-router-i
nclude-router-hooks/#what-is-routing

https://www.freecodecamp.org/news/a-complete-beginners-guide-to-react-router-include-router-hooks/#what-is-routing
https://www.freecodecamp.org/news/a-complete-beginners-guide-to-react-router-include-router-hooks/#what-is-routing

44 Inventory Management System

without routing pre-installed, so we decided to use a library called react-router,
which is currently the most popular routing solution in React development2.

React router is a tool that allows you to handle routes in a web app, using
dynamic routing3 which means that routing takes place as the app is rendering.
Dynamic routing is the way to trigger the contents of the application to render on
screen. The opposite would be static routing which is when you declare routes as
part of the app’s initialization before any rendering takes place.

We researched alternatives to react-router as well, like for example Wouter4

which is a more minimal version of react-router. In the end we decided to use the
most popular one because of increased access to documentation.

Figure 6.3: Front End Routing Structure

Routing Structure

Figure 6.3 displays in a flowchart how the web page routing structure is designed.
With this design in mind, we wanted to provide a structure that had little to no
dead ends in the sense that the user should not have to go back a page to navi-
gate to another. Every main page can be accessed from each other, except for the
individual tanks, which can only be accessed from the tank list.

2https://reactrouter.com/
3https://www.educative.io/edpresso/what-is-a-react-router
4https://blog.bitsrc.io/wouter-a-minimalist-alternative-to-react-router-2756690

c2b77

https://reactrouter.com/
https://www.educative.io/edpresso/what-is-a-react-router
https://blog.bitsrc.io/wouter-a-minimalist-alternative-to-react-router-2756690c2b77
https://blog.bitsrc.io/wouter-a-minimalist-alternative-to-react-router-2756690c2b77

Chapter 6: Implementation 45

Route vs Protected Routes

The user can switch between the various routes (e.g. /home or /approvable) by
using the navigation bar (see section 6.3) or by changing the URL in the browser.
The routing of our application is twofold. The first part deals with which URL the
user has entered, where it either sends the user to the login page, to a 404 page,
or to the ContentContainer. This router part is shown in code listing 6.2, where
we can see how it handles the different cases.

• If the path after the URL prefix is ’/’, the code is rendering the
LoginContainer.

• If the path matches one of the keywords on line 4 and 5 in code listing 6.2,
the ContentContainer with the protected routing is rendered.

• If the path does not match any of the keywords, the component NotFound
will be rendered.

1 <Switch>
2 <Route exact path="/" component={LoginContainer} />
3 <Route path=
4 "/(home|approvable|backups|file|account|tankmap|tanks
5 |account/about|account/business)(/?.*)"
6 component={ContentContainer}
7 />
8 <Route path="/notfound" component={NotFound}/>
9 <Route component={NotFoundHandler} />

10 </Switch>

Code listing 6.2: Main Routing

If the user has a valid URL, part two of the routing is rendered. From code
listing 6.3 we can see an excerpt of the code, where we can see that it uses
ProtectedContainerRoute components rather than the Route.

1 <Switch>
2 <ProtectedContainerRoute exact path="/home" component={() =>
3 <Home name={currentUser
4 ? currentUser.name
5 : "USERNAME"}
6 />
7 }/>
8 ...
9 <ProtectedContainerRoute

10 exact path="/backups" component={Backups}
11 />
12 ...
13 <Route component={NotFoundHandler} />
14 </Switch>

46 Inventory Management System

Code listing 6.3: Using Protected Routes

ProtectedContainerRoute is a self-written component that will take the user
back to the login page if they are not authorized. If the user is logged in, it will
render the correct component. From code listing 6.4 we can see this component.
For the function to work as intended, it needs to import Route and Redirect
from React-Router-Dom, and AzureAuthenticationContext from our Authenti-
cationProvider. As we can see from code listing 6.3, the component takes three
parameters:

• component is the component that will be rendered if the user is authorized.
• exact is a boolean that says if the path should match the URL exactly.
• path the string that stores the path used by Route, in the same way as de-

scribed in code listing 6.2.

Our component returns a Route, just as we did on part 1 of the routing (See
code listing 6.3. On line 11 we say (...rest), which means that we send all prop-
erties except the Component. In our case that means exact and path. What sets this
route apart from previous example, is that we use render instead of Component.
Using render allows us to use convenient inline rendering and wrapping with-
out explaining the undesired remounting before using it. This means that we can
check against AzureAuthenticationContext whether the user is actually logged
in, and therefore choose what to render based on this. If the user is logged in, the
component sent to the function is rendered with its properties. If the user is not
logged in, it is redirected back to the login page on URL ’/’.

1 import { Route, Redirect } from "react-router-dom";
2 import {
3 AzureAuthenticationContext
4 } from "../../Model/AuthenticationProvider";
5

6 export const ProtectedContainerRoute =
7 ({ component: Component, ...rest }:
8 { component: any, exact: boolean, path: string }) => {
9 return (

10 <Route
11 {...rest}
12 render={props => {
13 if (AzureAuthenticationContext.Singleton.
14 isLoggedIn()) {
15 return <Component {...props} />;
16 } else {
17 return (
18 <Redirect
19 to={{

Chapter 6: Implementation 47

20 pathname: "/",
21 state: {
22 from: props.location
23 }
24 }}
25 />

Code listing 6.4: Protected Routes Component

6.3 The Navigation Bar

A staple in modern user interfaces, the navigation bar was the very first compo-
nent we created for the web application. It was intended to be the main form
of navigation on the website since it is ever present at the top no matter which
page the user is currently on. In section 7.2 we talk more about how it affects the
user interface and navigation, while here we will take a deeper dive in how it was
implemented.

The Navbar component’s HTML is fairly straightforward with an encasing
<nav> tag surrounding the entire component, with five <Link>-tags which makes
up the links that the user can click on to navigate the website. One of the <Link>-
tags are represented by the company’s logo and will always take the user back to
the front page.

The other 4 links are all defined by their className nav-item which is the
way you organize the various HTML-tags so you can define a common style in
the style sheet later with CSS. nav-item routes the user to the various pages (see
section 6.2). Next to the 4 links we implemented the navigation bar to dynamically
display the current user’s name. This looks similar to the other links, but it acts
differently when the user interacts with it. Clicking on the username, the page
will render another component which is the Dropdown. This contains a link for the
user to log out, and also a route to the user’s account page. Using a drop down
menu for this was decided because adding more than 5 links on the navigation
bar would make it look very crowded, without sacrificing visibility by making the
font-size smaller. The drop down menu also made it easy to add more links should
it be necessary.

The graceful part of the navigation bar appears when the user access the web-
site on a mobile device or resizes the window. It will automatically move the links
to a side menu which is accessed by pressing the hamburger menu button that ap-
pears in their stead (see figure 7.9 and figure 7.11). This was implemented with
CSS media queries and the react hook useState.

1 const [isSideMenu, setSideMenu] = useState(false);
2 const handleMenuClick = () => setSideMenu(!isSideMenu);
3 ...
4 <div

48 Inventory Management System

5 className="menu-icon"
6 onClick={() => {
7 handleMenuClick();
8 setDropDown(false);
9 closeOverlay();

10 }}
11 >
12 ...
13 <ul className={isSideMenu ? "nav-menu active" : "nav-menu"}>
14 ...
15

Code listing 6.5: Side Menu Code Example

The way we implemented the side menu was by using the boolean const we
called
isSideMenu, which decides what the class name of the unordered list tag
will be, as seen on line 13 in code listing 6.5. By having different class names
in different boolean states, allowed us to use different styles in the CSS while it
being true as opposed to it being false. The way the state changes is by clicking on
the div menu-icon, which is only rendered when the window reaches below 1367
pixels as per the media queries in the CSS style sheet, thus changing the view to
the so called tablet version.

We also added a check for each time something is clicked if the side menu or
the drop down menu is open or not, adding some quality of life effects to using
the navigation bar. Clicking a link in the side menu for instance will route you to
your desired page and also close the side menu for you, so the user does not have
to add more clicks to get where they want. An issue arose for this check with the
custom Dropdown component we made, in that it did not initially have a native
"onClick" property. This was solved by adding a custom property to the component
(see code listing 6.6 on line 1 and line 9) so the <dropDown> component would
share the same properties as a <button> tag.

1 function Dropdown({ ...buttonProperties }) {
2 ...
3 return (
4 <>
5 <ul
6 onClick={handleClick}
7 className={isDropDownMenu ?
8 "dropdown-menu clicked" : "dropdown-menu"}
9 {...buttonProperties}

10 >
11 ...
12);
13 }

Chapter 6: Implementation 49

14 // (Navbar.tsx) //
15 {isDropdown && (
16 <Dropdown
17 onClick={() => {
18 dropDownClick();
19 sideMenuCheck();
20 }}
21 />
22)}
23

Code listing 6.6: Adding properties to custom components

6.4 The Storage Tanks

Cryogenetics store the aquatic milt in large storage tanks. They wanted us to de-
velop a way for them to view the contents of their tanks in a quick and easy way.
Since they already used a map of the tanks for their work, we decided with them
to replicate this process on the website with a similar interactive map and later a
simple table view of the tank’s contents.

The list of tanks, the list of backups and the list of the pending documents
are very similar, where it is mostly just the actual information card and somewhat
different functionalities over the actual list that separates them. We will therefore
only go into one of them, as it would be very similar. We have chosen to take a
closer look at TankList, as we think this makes sense because we also go further
into detail on TankMap and TankTable. Another important reason is because it
has some functionalities that are not found in the two other lists.

Tanks List

Each time the list of tanks is loaded, the LoadData function in TankListViewModel
fetches the first 20 tanks from back end. As we can see in code listing 6.7, the
map is wrapped inside a InfiniteScroll component. Infinite scroll is a technique
where more content automatically loads as the user scrolls down the page, which
eliminates the user’s need to click to the next page. As there exists multiple third
party packages which works with React, and we do not see the need to spend time
needlessly developing our own version, we decided to use a component called
React Infinite Scroll Component5. Worth noting in this snippet is the line 3, where
we send our LoadData as a property, which means that every time we reach the
bottom of the page, LoadData fetches another 20 tanks and appends them to the
array of tanks. On line 12 to 14 we can see how the code maps through the array of
tanks, and send its data to the TankView component. This component then creates
a card of the tank data and displays this on the screen.

5https://www.npmjs.com/package/react-infinite-scroll-component

https://www.npmjs.com/package/react-infinite-scroll-component

50 Inventory Management System

1 <InfiniteScroll
2 dataLength={tanks.length}
3 next={props.LoadData}
4 hasMore={true}
5 loader={<ProgressIndicator .../>}
6 endMessage={
7 <p style={{ textAlign: "center" }}>
8 All tanks loaded
9 </p>

10 }
11 >
12 {tanks.map((item: any, i: number) => (
13 <TankView .../>
14))}
15 </InfiniteScroll>

Code listing 6.7: Infitite Scroll

An excerpt of the LoadData function is shown in code listing 6.8. The func-
tion is asynchronous (see section 6.4 for further explanation on async functions),
and as fetching from the API is somewhat slow, we must therefore wait for the
function to finish (which we do using the await operator). The function contains
a nested function getData, which is called on line 30. As the getData function is
also asynchronous, the main function waits for getData to finish before it moves
on.

Inside getData the first thing that is done, is to construct the current URL.
This is done because we used a paging system in the back end, and we therefore
needed to update our endpoint URL for each fetch to use the next page token.
We also specified in this URL that we want to fetch 20 tanks at the time, sorted
by Tank ID ascending after request by Cryogenetics. Furthermore, the tanks from
the back end are fetched with our API function (see section 6.4), which is stored
in the const ids. We then map through this array, to distinguish the objects that
contain invalid data that would not be able to be displayed in the list. From the
fetch is the next page token included, and this is stored in state and ready to be
used next time LoadData is called.

When we fetch the tanks from back end, we get properties of that tank includ-
ing the id of the client who owns that tank. For the employees at Cryogenetics,
it is not very informative to see what ID the clients have in the back end, so they
wanted the name of the client to be displayed. This is done by mapping through
the array ids, where the raw tank data is stored. The map is made asynchronous,
as we need to fetch data for each loop. For each loop we also need to construct a
URL, as this contains the client id from the first fetch. As we can see on line 17 and
18, we take into account that some of the data does not have a valid client id (e.g.
zero) and we therefore replaces this with the id for ’no owner’. After the URL is

Chapter 6: Implementation 51

constructed, we fetch the client’s name from the API. As the result from this map
function is stored in an array named data, we can return the data as an object for
each loop which is then stored in the array. This means that we can format the
data from back end at the front end as we wish, e.g. naming the properties as we
want.

After the getData function is finished, the data is concatenated to the list of
tanks. tanksLoading is also set to false, which signals to the View that the loading
of new data is complete and ready to be displayed.

1 const LoadData = async () => {
2 async function getData() {
3 const endpoint = '?PageToken=' + nextPageToken
4 + '&MaxItems=' + Number(maxItems)
5 + '&Sort=ASC%28Properties.Tank%20ID%29';
6 const ids: any =
7 await FetchFromAPI('tanks', 'GET', endpoint);
8 ids.items.map((item: any, i: number) => {
9 if (!ids.items[i].Properties) {

10 ids.items.splice(i, i);
11 }
12 })
13 setNextPageToken(ids.nextPageToken);
14 const data = Promise.all(
15 ids.items.map(async (i: any) => {
16 const clientsEndpoint = '/'
17 + (i.Properties['Owner'] !== 0
18 ? .Properties['Owner']
19 : 'eefd4dee-db90-4ac8-a08c-d6f7ed76e7fc');
20 const owner: any =
21 await FetchFromAPI('clients',
22 'GET',
23 clientsEndpoint);
24 return {
25 "tid": i.Properties['Tank ID'],
26 ...
27 "owner": owner.Properties.Client,
28 ...
29 }
30 }))
31 return data
32 }
33 getData()
34 .then((data: any) => {
35 setTanks([...tanks.concat(data)]);
36 setTanksLoading(false);

52 Inventory Management System

37 })
38 }

Code listing 6.8: Fetching all tanks

When a user clicks on a tank in the list, it is forwarded to a new page where
you can see the contents of this particular tank (see section 7.3). The way this is
done is by using the react hook useHistory from react-router-dom. This gives
us access to the history stack6, which we use to navigate on our page. We can
therefore use our history object and its function push(), to route to a new specific
URL. This contains a parameter tid, which is the id for the selected tank in the
back end. Code listing 6.9 shows how this is done, where id is the id of the tank.

Code listing 6.9: Redirecting to new page

history.push("/tankmap?tid=" + id);

The page for a particular tank consists of three components. One component
that shows the properties of that particular tank, one component that shows the
content of the cylinder/spot clicked on by the user in the map, and one component
that shows the content in the tank.

The contents of the tank can be seen in two different ways, a view where the
content is:

• represented as a map that mimics the tanks (see section 6.4)
• represented as a vertically scrolling table (see figure 6.5)

Tank Map

Once the page of a given tank is loaded, the first thing that happens is that the
properties of this tank is fetched from the API using our function described in
section 6.4. These are the same properties that the user can see in the list of
tanks. When these properties are fetched, the loading boolean is set to false and
the data in this component is displayed. Then, all the fish in the selected tank are
fetched from the API. We have three different types of tanks, but the 47 Liters and
11 Liters are pretty much the same, which means that we can act on whether the
tank is a 500 Liter or not. The implementation of the three tanks are relatively
similar and we therefore choose not to go into each of them carefully. Since the
500 Liter tank is the most advanced, we have chosen to take a closer look at this.

The map has a darker color in the spot if there are fish in it (see code list-
ing 6.10). When the user click on a spot in the map, information about which fish
and some of its properties should be shown on the screen. We therefore came to
the conclusion that there were two ways this could be done:

1. Construct four three-dimensional arrays that is directly sent to each section
in the map component. X would then be the level, Y would then be the spot
in section and Z would have been any more instances in that spot. When

6https://reactrouter.com/web/api/history

https://reactrouter.com/web/api/history

Chapter 6: Implementation 53

clicking on a spot, the information from these arrays would be displayed.
This is considered to be the most effective.

2. Load all the fish data in the tank, and use this to construct a boolean array
which contains the status of whether each spot has content or not. When
clicking on a spot the original array will be copied before it is filtered, so that
only the fish located in the given spot are left. This array is then displayed.
This is considered to be the easiest to implement.

Figure 6.4: 500 Liter Tank

We chose to go with option number
2, as we did not have unlimited time,
and we reckoned that the time saved
could be used for better purposes.

As option 2 describes, the first
thing to do was to fetch all the fish
in the data and store it in the state
(see line 1 to 3 in code listing 6.10).
Further we need to construct a one-
dimensional boolean array, where we
use a 4 digit index system to say where
the tank has content or not. The first
digit in the index represents the level
(1 or 2), the second digit represents
the section (1 to 5 where 5 is center)
and the two last digits is the spot in
the section (1 to 29). When we map
through the array of fishes (line 9), we
take its level, section and spot and add these together as a string and then convert
this string to a number. This number is the index in the array for this fish, and on
line 12 to 14 we set the position in the location array to true.

1 const endpointFish = '/' + tid + '/fish?MaxItems=100';
2 const fishRes: any = await FetchFromAPI('tanks',
3 'GET',
4 endpointFish);
5 fishRes.items.map((item: any) => {
6 if (type !== '500 Liter') {
7 ...
8 } else {
9 item.Properties.stores[0].Locations.map((i: any) => {

10 objarray.push({...});
11 const level = (i.Level === 'a' ? 1 : 2);
12 loc[Number(String(level) +
13 String(i.Color.charCodeAt(0) - 64) +
14 String(i.Box))] = true;
15 })

54 Inventory Management System

16 }
17 })
18 setLocationInfo(loc)
19 return objarray;

Code listing 6.10: Display a tile in 500L tank

When the whole array is mapped through, the location array is sent to the
component that displays a section on the map. This component is called four times
each with its own CSS class, which ensures that the layout is as it is. A small
excerpt from this component is shown in code listing 6.11. Here we can see that
we map 29 times, and for each iteration we calculate the index for this tile (a
spot on the 500 Liter tank). We then return the HTML for this tile, where the style
property decides whether the tile has content or not. The constructed location
array is then used to check if there is content in this tile. If it is, then we use the
function getActiveButtonStyle() to get the right color for our tile. If it is empty,
we use the getInactiveButtonStyle() function to get color for our tile.

1 {[...Array(n)].map((item, i) => {
2 const tileID = Number(String(props.level === 'a' ? 1 : 2)
3 + String(i + 1)
4 + String(props.section));
5 return (
6 <div className={'tile500 a' + Number(i+1)}
7 style={props.locationInfo[tileID]
8 ? getActiveButtonStyle(props.color)
9 : getInactiveButtonStyle(props.color)}

10 key={i}
11 onClick={()
12 => props.handleTileClick(i+1,
13 props.level,
14 props.section)}
15 >
16 {i+1}{props.level}
17 </div>
18)}
19)}

Code listing 6.11: Fetching map data from API

When a tile is clicked on, we use a self-written function to filter out the data
that should be displayed. As we can see from code listing 6.12, the function takes
the area, level and section of the tile that is clicked. The first thing that is done,
is to set the selected tab in the information box to 0. This means that every time a
new tile is clicked, page 1 in the information box will always be displayed. Then
we convert the section from number to characters because the section is stored
as a character in the back end. We can now map through and filter the array

Chapter 6: Implementation 55

with tank content, and remove every fish item from the array that does not match
with the selected tile. After this is done, the filtered array is displayed by using
setSectionProperties.

1 const handleTileClick = (area: number,
2 level: string,
3 section: number): void => {
4 setSelectedTab(0);
5 let charsection = '';
6 switch (section) {
7 case 1: charsection = 'A'; break;
8 ...
9 }

10 const list: any = locations.filter((item: {
11 color: string | string[],
12 box: string | string[],
13 level: string | string[] }) =>
14 item.color.includes(charsection) &&
15 item.box.includes(area.toString()) &&
16 item.level.includes(level)
17).map((filteredItem: any) => (filteredItem));
18 const obj = [...list];
19 setSectionProperties([...obj]);
20 }

Code listing 6.12: Handling of tile click

Tank Table

In addition to the map, Cryogenetics also expressed late in the development pro-
cess an interest in also including a simple table of the tank’s content. As mentioned
it was towards the end of the development so us making our own table component
could prove difficult in regards to time restrictions. We decided it was possible to
implement after finding a ready made library called react-data-table-component7,
which fit perfectly to Cryogenetics’ wishes and proved easy to use.

There are multiple React table libraries available, but we discovered that many
of them required a lot of customization. They were also missing some key features
like for example built in sorting and filtering. The library we chose was extremely
easy to use along with our API since it only has to read JSON formatted data. All
we had to do was attach the correct JSON identifier to the correct column in the
table. An example of how this component turned out is displayed in figure 6.5.
The data itself has been blurred due to our NDA, but the figure gives an idea of
how it turned out.

7https://www.npmjs.com/package/react-data-table-component

https://www.npmjs.com/package/react-data-table-component

56 Inventory Management System

Figure 6.5: Tank table

Cryogenetics also asked for
a way for them to quickly
print out the table itself, which
might be handy if the employ-
ees have to bring the content
with them in a place where it
is inconvenient to bring a PC or
tablet. This was a major reason
we chose the react-data-table-
component, because there exists
an extension library for it called
react-data-table-component-
extensions8. This allowed us to
easily add a print functionality,
which used the browsers internal print function, and formatted the table into a
readable document. As a bonus, the extension library included a way for the user
to save the table as an excel document or CSV file. It also has a text field for
filtering the table.

Location Designation

For a 500 Liter tank, Cryogenetics has a standardized designation of how the fish
are positioned. If a fish is located in spots 1, 2, 3 and 4 at level a in section A, this
fish will have a location designation A1a - A4a. Cryogenetics wanted to have this
designation in the table view, as they are familiar with this. Each 500 Liter tank
has 258 spots, and by showing one row in the table for each spot, the table would
become very large and not very useful. As the fish often is located over multiple
spots, the designation used by Cryogenetics will therefore reduce the number of
rows in the table.

When fetching the tank data from the back end, we get a tank centric array
in return. This means that the array says which fish is located in each spot, and
not in which spots each fish are. We therefore created a function that takes this
array and converts into a fish centric view, with a location property that uses
the Cryogenetics designation. We would here like to clarify that if a fish of same
species has locations that is not coherent, this species will appear in several rows
in the table.

An excerpt of the function that does this operation is shown in code list-
ing 6.13, and takes the array of the tank content as a parameter. The first thing
that is done is to sort the array first by the property box, then by color and
then by level. This is done so that we can afterwards split the arrays up, first
by level and then by section (property color). The array is split up by level by
using the JavaScript array function filter()9, and put in separate arrays. When

8https://www.npmjs.com/package/react-data-table-component-extensions
9https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objec

https://www.npmjs.com/package/react-data-table-component-extensions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Chapter 6: Implementation 57

splitting the array by section, we send each of the arrays to a self-written function
splitByColor. This function maps through each fish in the received array, and
pushes the fish to the correct index in a two-dimensional array based on its sec-
tion. Since the section property color is a capital letter, we use the unicode of this
letter to get it’s index (A is 0, B is 1 etc.). The two two-dimensional arrays (one
for each level) is then returned and stored in a temporary three-dimensional ar-
ray newArray. This array is then, on line 26, flattened to a two-dimensional array
using the array function .flat(). We have now an array where each row contains
one specific species. We can use this to construct the Cryogenetics designation by
using the first element (from) and last element (to) in each row. On line 30 to
44 we map through this array row by row. For each row we construct the loca-
tion from and location to, before we take all the properties of the fish, as well as
adds the final designation as the property location. This new fish object is then
pushed to the array returnedArray, which is returned when each row is mapped
through.

1 const sortAndFilter = async (array: any) => {
2 const returnedArray: any[] = [];
3 const splitByColor = (arr: any[]) => {
4 const newArr: any = [[], []];
5 arr.map((item: any) => {
6 newArr[item.color.charCodeAt(0) - 65].push(item);
7 })
8 return newArr
9 }

10

11 array.sort((a: any, b: any) => a.Box > b.Box);
12 array.sort((a: any, b: any) => a.color > b.color);
13 array.sort((a: any, b: any) => a.level > b.level);
14 const newArray: any = [[[], []], [[], []]];
15

16 newArray[0] = array.filter((item: any) =>
17 item.level.toString().toLowerCase() === 'a'
18).map((filteredItem: any) => (filteredItem));
19 newArray[1] = array.filter((item: any) =>
20 item.level.toString().toLowerCase() === 'b'
21).map((filteredItem: any) => (filteredItem));
22 newArray[0] = splitByColor([...newArray[0]]);
23 newArray[1] = splitByColor([...newArray[1]]);
24

25 const filteredArray: any =
26 newArray.flat().filter((element: any) => {
27 return element.length !== 0;

ts/Array/filter

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

58 Inventory Management System

28 });
29

30 filteredArray.map((item: any, i: number) => {
31 const locationFrom: string =
32 item[0].color.toString()
33 + item[0].box.toString()
34 + item[0].level.toString();
35 const locationTo: string =
36 item[item.length - 1].color.toString()
37 + item[item.length - 1].box.toString()
38 + item[item.length - 1].level.toString();
39 const obj = {
40 iid: item[0].iid,
41 ...
42 location: locationFrom + " - " + locationTo,
43 }
44 returnedArray.push(obj);
45 })
46 return returnedArray;
47 }

Code listing 6.13: Constructing fish location in tank

Fetching from API

We decided early in the project period that we wanted to create a standardized
function that we could use for both GET requests from the API, while also for PUT,
POST and DELETE to the back end API. We wanted to create this as a function we
could import in the ViewModel files, and it was therefore placed in the components
folder inside the ViewModel folder. In code listing 6.14 we can see the function
which was made.

For the function to work, we needed to do two imports. The first import was
the url prefix from App.tsx, which is the first part of the url where the API is run-
ning on. The second import we had to do was the AzureAuthenticationContext
from the AuthContextProvider. This is used for getting the OAuth key from
Azure, which is discussed more in section 6.6.

1 import { urlPrefix } from '../../App';
2 import
3 AzureAuthenticationContext
4 from "../../Model/AuthenticationProvider";
5

6 export async function FetchFromAPI(
7 category: string,
8 method: string,

Chapter 6: Implementation 59

9 epoint: string,
10 obj?: any)
11 {
12 const url = urlPrefix + category + epoint;
13 const ids = await (
14 await AzureAuthenticationContext.Singleton.
15 fetchAuthorized(url, {
16 method: method,
17 mode: 'cors',
18 headers: {
19 'Content-Type': 'application/json',
20 'Origin': 'http://localhost:3000'
21 },
22 body: JSON.stringify(obj),
23 })
24)
25 return (method !== 'DELETE' ? ids.json() : ids);
26 }

Code listing 6.14: Function used to fetch from API

As we can see from line 6 in the code listing, our API function is asynchronous10.
This means that it does not block script execution, and things like UI updates can
happen in the background. If we call our function as shown in code listing 6.15
we can put await in front of our function call, allowing us to wait asynchronously
for the function to finish executing. For longer executing functions, this let’s us
keep the site responsive, as we do not block the primary thread for an extended
period of time.

The required parameters that we must send to the function each time it is run
are:

• Category - Which endpoint category it should be fetched from. As in code
listing 6.15 we are fetching from tanks, where we are getting all the fish in
one tank.

• Method - HTTP method (GET, POST, PUT or DELETE).
• Epoint - The final endpoint, where it can be specified whether to sort, re-

trieve something with a given ID and which page you are on. In code list-
ing 6.15 the endpoint is defined as endpointFish, where we get the fish
from tank with the id tid. We also specify that we want a maximum of 100
items from the request.

As we can see from line 10 in the code listing, we can also send a JSON object to the
function. The question mark after obj indicates that this is a optional parameter,
because it is only used to POST and PUT, and it therefore doesn’t make any sense

10https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/a
sync_function

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

60 Inventory Management System

to send an empty JSON object every time we are doing a GET request.

Code listing 6.15: Using the FetchFromAPI function

const endpointFish = ’/’ + tid + ’/fish?MaxItems=100’;
const fishRes: any = await FetchFromAPI(’tanks’, ’GET’, endpointFish);

Further in the function is the urlprefix, category, and endpoint put together to
the final url, which is then sent to the fetchAuthorized function from
AuthContextProvider.

At the end of the function the data retrieved from the fetch is returned. If the
method is not DELETE, the data from the fetch is a JSON object and therefore
needs to be parsed before it is returned. If the method is DELETE the data from
the fetch can be returned as it is.

6.5 User profile page

The user profile page (also called account page) is a page that Cryogenetics wanted
us to develop as a way to get a quick and simple overview over the user’s Azure
account information. It is not intended as a main component of the site but is
rather meant to be a shortcut to user information, so that the user does not have
to navigate themselves to Azure to get an overview of their account.

Fetching from Microsoft Graph API

Microsoft Graph API is a RESTful web API that enables us to access Microsoft
Cloud service resources. [10]

1 const retrieveValue = async (Url: string): Promise<any> => {
2

3 const result = await AzureAuthenticationContext
4 .Singleton.fetchAuthorized(Url, {
5 method: 'GET'
6 });
7

8 if (result.status == 401) {
9 const testAccounts = testPublicApp.getAllAccounts();

10

11 testPublicApp.setActiveAccount(testAccounts[0]);
12

13 const request = { scopes: ["user.read"] };
14 testPublicApp.acquireTokenSilent(request).then(x => {
15 console.log("GOT REFRESH TOKEN: ", x);
16 });
17 }
18 else {

Chapter 6: Implementation 61

19 const data = await result.json();
20

21 return data;
22 }
23 }

Code listing 6.16: Checking and retrieving access token for Microsoft Graph API

The above code checks the status code of result and will in this case either return
a 401 (forbidden) or a 200 (OK) status code. If the 401 status code is returned then
we retrieve a new access code based on the request, which in this case carries the
scope "user.read". The Microsoft Graph permission reference "user.read" is what
grants permission to read the profile of the signed-in user.

1 const userUrl = 'https://graph.microsoft.com/beta/me'
2

3 const getJobTitle = async (): Promise<any> => {
4 const fetchDetails = (await retrieveValue(userUrl)).jobTitle;
5 return fetchDetails;
6 };

Code listing 6.17: fetch a user’s job title from Microsoft Graph API

The above code displays a simple example of how we fetch the user’s job title with
the endpoint userUrl as the parameter to the retrieveValue function from the
code listing 6.16.

6.6 The Authentication Process

Azure Portal Application Setup

We chose to use Azure Active Directory Authentication (Azure AD), which is Mi-
crosoft’s cloud-based identity and access management service. This begins with
the registration of our Single Page Application (SPA) on Azure Portal. Azure AD
provides a very simple user access security, as upon the application registration
there is an option to choose who can use the application and access the API:

62 Inventory Management System

Figure 6.6: Application registration on portal.azure.com

On the option of "Who can use this application or access this API?" we selected
"Accounts in this organizational directory only (Standardmappe only - Single ten-
ant)". This means that in order for a user to gain access to this API, the user’s email
must be listed in our Azure Active Directory (Standardmappe).

If a user tries to login to our application with an unlisted email, they will be
met by this:

Chapter 6: Implementation 63

Figure 6.7: A user tries to log in with an email that is not listed in the app’s Azure
AD

This naturally solves an otherwise great barrier in the quest of keeping the
application accessible only for those users that are meant to have access to it.

Azure AD also offer simple built-in roles that restrict or allow users to different
types of permissions. Cryogenetics did for example have a wish of allowing only a
couple of staff members to have read-permissions of the application’s user-profiles.
This was easily implemented by grouping the staff into different roles, which we
called "admins" and "users".

After we clicked "Registrer", we were assigned an Application ID (also called
Client ID). This value is what uniquely identifies our application in the Microsoft
identity platform, which we’ll talk about in the next subsection.

Microsoft Identity Platform

We registered our application on Azure portal, but it is not enough to just create
an application on a website. We also need to do quite a bit of coding, and this is
where Microsoft Identity Provider (MIP) comes into great assistance.

To put it in simple terms, MIP is what essentially connects the user to our reg-
istered application, and it is what helps us build our application (code-wise). It is
what allow users to be able to sign in to our application using their Microsoft iden-
tities, by providing authentication and authorized access to our API or Microsoft
Graph.

There are several components that are offered by the Microsoft identity plat-
form. This includes, but are not limited to:

• OAuth 2.0 and OpenID Connect standard-compliant authentication service,

64 Inventory Management System

enabling us to authenticate Microsoft accounts.
• Open-source Microsoft Authentication Libraries (MSAL). These libraries pro-

vide features such as acquiring access tokens, getting and setting user ac-
counts, and more helpful resources that are important for us as developers
to create this application.

(Read more about OAuth and MSAL in section 6.6)

Access and Refresh Tokens

Access tokens are a fundamental part of the authentication process as the access
token is the key that is used by the APIs to perform authentication and authoriza-
tion. It is also what allows the users of our application to securely call protected
resources.

• We use access tokens in the format of JSON Web Tokens (JWTs), which we
acquire from the Microsoft identity platform.

• We use two different types of access tokens. One for the Microsoft Graph
API, and one for our own API.

Upon login, the access and refresh tokens are set by acknowledging the application
ID, as well as the OAuth 2.0 authorization code, which is a code obtained by the
Microsoft identity platform upon user authentication.

When an access token expires, a new access token must be aqcuired by using a
refresh token (which have a longer lifetime than the access token), and reauthen-
ticate the user without interactive prompting. This keeps the user from having to
manually log in every day.

Handling Endpoints and Access Tokens

If the access token expires, the new access token is fetched by the following code:

1 public async getAccessToken(endpoint: string): Promise<string> {
2 const hostname = new URL(endpoint).hostname;
3

4 if (AzureAuthenticationContext.Tokens == null)
5 AzureAuthenticationContext.Tokens = new Map<string,
6 AuthenticationResult>();
7

8 if (AzureAuthenticationContext.Tokens.get(hostname) != null) {
9 const now = new Date(Date.now() + 60);

10 const expiry = AzureAuthenticationContext.Tokens
11 .get(hostname).expiresOn;
12

13 if (now >= expiry) {
14 await this.refreshAccessToken(endpoint);
15 }

Chapter 6: Implementation 65

16 }
17 else {
18 const accounts = this.myMSALObj.getAllAccounts();
19

20 if (accounts.length > 0) {
21 this.myMSALObj.setActiveAccount(accounts[0]);
22 await this.refreshAccessToken(endpoint);
23 }
24 else {
25 handleUrl();
26 // User is not logged in, need to log them in.
27 }
28 }
29

30 return "Bearer " + AzureAuthenticationContext.Tokens
31 .get(hostname).accessToken;
32 }

Code listing 6.18: Get access token code

Due to us having to handle multiple access tokens, we created a custom system
to manage them for us. This system allows us to call
AzureAuthenticationContext.Singleton.fetchAuthorized(...).
fetchAuthorized is essentially a wrapper around the built in fetch API 11 that
handles setting and refreshing access tokens.

Internally two maps for the different endpoints are maintained. One for scopes,
and one for tokens. The function getAccessToken is responsible for handling
which tokens correspond to which endpoint, and to refresh them if necessary.
See code listing 6.18.

The reason it is necessary to have multiple access tokens (one for each end-
point), is that the Microsoft Identity Platform disallows multiple audiences per
token for security reasons (as otherwise the back end could get access to read
user data through scopes not intended for it). In our application, our back end
would be one audience, and the Microsoft Graph API would be another.

Code listing 6.19: Instantiating authorization system with graph api and test
scopes.

const endpointScopeMap: Map<string, string[]> = new Map<string, string[]>();
endpointScopeMap.set((new URL("https://<URL␣of␣backend␣service>")).hostname, ["

,→api://fd197b0d-c07c-41c6-9f97-0bcf9c37954a/test.test"]);
endpointScopeMap.set((new URL("https://graph.microsoft.com/beta/me")).hostname,

,→ ["user.read"]);

const authenticationModule: AzureAuthenticationContext = new
,→AzureAuthenticationContext(endpointScopeMap);

AzureAuthenticationContext.Singleton = authenticationModule;

11https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

66 Inventory Management System

At a high level, the authentication flow from the front end to the Microsoft
Identity service looks like this (from the microsoft documentation, see [11]):

Figure 6.8: Screenshot from Microsoft docs. [11]

6.7 Back end

Paging

To prevent unreasonably sized requests, a paging system was implemented. The
way the paging system works is by providing consumers of the API with two to-
kens, Next Page Token and Previous Page Token. They can then provide the token to
endpoints implementing the system, which will return them a new page of results.
The token should be treated as an opaque string as the consumer (they should not
attempt to parse, or modify it. As the format may change without warning).

Cosmos DB does implement a paging system for querying the database in the
Cosmos DB .NET SDK, but only offers continuations of existing queries in the
forward direction.

The paging system works by first ordering all results by _ts and then by id.
_ts is the timestamp the document was last modified specified in unix time in
seconds. As _ts only has a precision of whole seconds, we also order by id which
is unique per object.

Using id is the only field required to get a well defined output, as it is unique.
But _ts was included for the convenience of always having results ordered by

Chapter 6: Implementation 67

time.
Continuation tokes are stateless on the server side, and work by encoding the

id, and _ts properties of an object, and if the query is going backwards (previous
page token). The next page token is encoded from the last object returned, and
the previous page token is encoded from the first object returned.

Predicate⇒
_ts ≥ token._ts ∧ (_ts 6= token._ts ∨ (id ≥ token.id ∧ (id 6= token.id ∨⊥)))

(6.1)

Shortened to:

Predicate⇒ _ts ≥ token._ts ∧ (_ts 6= token._ts ∨ id > token.id) (6.2)

The query is generated by appending the predicate in equation (6.2), and then
ordering by _ts and id as discussed above.

Quer y(x , inner)⇒ x ≥ token.x ∧ (x 6= token.x ∨ inner)

Quer yP ⇒Quer y(Pn,Quer y(Pn−1,Quer y(...,Quer y(P0,⊥))))
(6.3)

The predicate in equation (6.2) was created by following the scheme in equa-
tion (6.3), and passing in _ts and id as parameters. Quer y(x , inner) filters for
a specific property, where x is the property and inner is an inner condition (ei-
ther more Query calls, or false if it’s the last property in the chain). x represents
the property of a document in the database, whilst token.x represents the stored
value of the property x in the continuation token.

Quer ybackward(x , inner)⇒ x ≤ token.x ∧ (x 6= token.x ∨ inner) (6.4)

For the previous page token, we simply change the greater or equal than to a
less than or equal, see equation (6.4).

We did a prototype implementation of allowing arbitrary ordering, which in
it self works, but is missing some details to function with the page tokens. Specif-
ically, the continuation tokens need to include the values of the fields which are
ordered by, and the predicate generation needs to also query by the additional
properties following equation (6.3).

Dynamic Object

To facilitate working with semi-structured objects, a special Dynamic Object base
class was made. This is to solve the issues arising from not knowing up-front the
exact structure of the data we are working with.

68 Inventory Management System

Our custom class implements the IDictionary interface, which is specially treated
in the Newtonsoft.JSON library12.

If a class implements the IDictionary interface, the classes properties will not
be directly serialized. Instead the contents of the dictionary will be serialized re-
cursively.

We have an instance of the JObject class as a member. In our implementation
of IDictionary we directly pass all parameters to our instance of the JObject.

We cannot inherit from JObject directly, as it has special treatment i Newton-
soft.JSON due to it being a descendant of JToken which is used for serialization.
If we do, we will be unable to deserialize to our class. This is why we keep the
JObject as a member, and do not inherit from it.

We then created five special methods for fetching data from the internal JOb-
ject.

• Get Attempts to fetch the value of a given key and type. If the key does not
exist or a cast to the type fails (wrong type), null is returned.

• Require Fetches a value of a given key with a given type. This method will
throw an exception if either no value is found, or the value is of the wrong
type.

• GetArray Equal to Get, but is used for arrays.
• RequireArray Equal to Require, but is used for arrays.
• Set Sets a given key to a specified value.

Code listing 6.20: Example class deriving DynamicObject

public class DynamicUniqueObject : DynamicObject
{

public DynamicUniqueObject()
{

Id = Guid.NewGuid();
}

public DynamicUniqueObject(JObject other) : base(other)
{

Id = Guid.NewGuid();
}

public static readonly string IdProperty = "id";
public Guid Id
{

get => Require<Guid>(IdProperty);
set => Set(IdProperty, value);

}
}

}

An example of a class deriving from DynamicObject would be DynamicUniqueOb-
ject, which is the base class for all objects requiring an unique id. The constructor
taking a JObject parameter can be used to set the root JObject of the class. It is

12https://github.com/JamesNK/Newtonsoft.Json/blob/f7e7bd05d9280f17993500085202ff
4ea150564a/Src/Newtonsoft.Json/Serialization/JsonDictionaryContract.cs#L121

https://github.com/JamesNK/Newtonsoft.Json/blob/f7e7bd05d9280f17993500085202ff4ea150564a/Src/Newtonsoft.Json/Serialization/JsonDictionaryContract.cs#L121
https://github.com/JamesNK/Newtonsoft.Json/blob/f7e7bd05d9280f17993500085202ff4ea150564a/Src/Newtonsoft.Json/Serialization/JsonDictionaryContract.cs#L121

Chapter 6: Implementation 69

also possible to nest objects inside each other, which is what is done for the Dy-
namicFish object, which contains DynamicLocation data according to figure 5.3.

6.8 Back End Security

We will be referring to vulnerability names from OWASP’s top 10 from 2017, see
source [12].

A1:2017-Injection

We base this paragraph with trust in the Azure Cosmos DB C# adapter v3.17.013.
To mitigate the risk of SQL injection, we use LINQ (Language-Integrated Query)

to SQL generation where possible. LINQ is an extension library found in the core
.NET libraries, that opens up a set of extension method to be used on enumerable
objects (lists, arrays, etc.). These methods reproduce much of what you would
expect from SQL, but in a manner which is checked by the compiler.

Code listing 6.21: Fetching parameterized data using raw SQL - Pseudocode

int value = 13;
var queryDefinition = new QueryDefiniton("SELECT␣f.foo␣FROM␣f␣WHERE␣f.foo␣>␣@value");
queryDefinition.WithParameter("@value", value);
var result = database.query...(queryDefinition);

Code listing 6.22: Fetching parameterized data using LINQ to SQL - Pseudocode

int value = 13;
var result = database.GetItemLinqQueryable<int>().Where(x => x > value)...query();

Using LINQ to SQL allows us to disuse plain text SQL for most queries (with
one exception in our codebase). Abstracting away the plaintext SQL also does
mean that porting from a SQL back end to another type of database should be eas-
ier, being less SQL to translate. However, there is a downside. Dynamic properties
(properties we do not know of ahead of time) are more difficult to get working
with LINQ to SQL. We attempted to create a dummy class, one that we could use
the lookup operator on in C# (which is supported by LINQ to SQL), and to chain
those together to allow unknown properties to be accessed (code listing 6.23).
This failed due to the LINQ to SQL translating layer not understanding how to
cast from the type of object you wanted, to the "Dummy" type.

In retrospect, this might be solvable by using "JObject14"as the target type.

Code listing 6.23: Pseudocode JObject for safe SQL generation

using Newtonsoft.Json.Linq; // For JObject

var result = database.GetItemLinqQueryable<JObject>()
.Where(x => x["dynamicProperty"] > value)...query();

13https://github.com/Azure/azure-cosmos-dotnet-v3/tree/releases/3.17.0
14https://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_Linq_JObject.htm

70 Inventory Management System

The one notable exception to use LINQ to SQL in our back end codebase is
in the paging system. Due to the issue described above with dynamic properties,
especially with regard to sorting, raw SQL is used.

As raw SQL is used, it’s considered a critical section. We constructed two
classes, "OrderBy" and "EscapedOrderBy". The "OrderBy" class takes in the raw
user-provided values. The unescaped and insecure "OrderBy" value can then be
converted to a secure and escaped "EscapedOrderBy" class by simply passing it
in the constructor. All user provided values are escaped in the constructor of "Es-
capedOrderBy", which then can be added to a query to allow user defined arbitrary
sorting.

How the escape mechanism works, is that every character in the raw and in-
secure user provided input is compared to a vocabulary of known safe characters:

abcdefghjiklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890._

If the character is in the vocabulary, it is appended to the end of a known safe
escaped string. If it does not match, an exception is thrown. You can only add a set
of "EscapedOrderBy" to a query, not a set of "OrderBy", and the only way to create
a "EscapedOrderBy" is to go through the constructor, which takes an unescaped
"OrderBy".

OWASP A1:2017-Injection specifies the following mitigations against injection
attacks15:

1. The preferred option is to use a safe API, which avoids the use of the in-
terpreter entirely or provides a parameterized interface, or migrate to use
Object Relational Mapping Tools (ORMs).
Note: Even when parameterized, stored procedures can still introduce SQL
injection if PL/SQL or T-SQL concatenates queries and data, or executes
hostile data with EXECUTE IMMEDIATE or exec().

This is followed where possible by using LINQ to SQL. The note is not currently
relevant, as no stored procedures are used.

1. Use positive or “whitelist” server-side input validation. This is not a complete
defense as many applications require special characters, such as text areas
or APIs for mobile applications.

2. For any residual dynamic queries, escape special characters using the spe-
cific escape syntax for that interpreter.
Note: SQL structure such as table names, column names, and so on cannot
be escaped, and thus user-supplied structure names are dangerous. This is
a common issue in report-writing software.

A max length for property names should be set, but currently is not.

A2:2017-Broken Authentication

We base this paragraph with trust in the Azure AD (Active Directory) C# adapter.

15https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

Chapter 6: Implementation 71

For authentication we use Azure AD, which we trust to follow the best pro-
cedures regarding authentication. We therefore do not handle passwords in our
application directly.

A3:2017-Sensitive Data Exposure

We base this paragraph with trust in the Azure AD (Active Directory) C# adapter.
Data stored in the back end database, Azure Cosmos DB is encrypted at rest by

default. We use encryption keys managed by Azure instead of customer managed
keys (managed by Cryogenetics), due to the ease of maintenance.

For front end to back end communication, the plan was to host the front end
as a static website, with HSTS16 enabled, and CSP (CSP in this section refers to
Content Security Policy17, not Cloud Service Provider) set to only allow first party
resources and scripts.

Communication with the back end API is required to use HTTPS. Allowed
TLS versions follow that of the host operating system, where 1.2/1.3 or greater is
preferred.

Using CSP is also a mitigation against supply chain security issues with respect
to Node Package Manager (NPM)18, react-scripts and it’s many transient packages
(checked19 2021-05-06: 1469!) from disparate authors. (Please also note depen-
dency confusion, although not relevant to our codebase due to a lack of internal
packages20). Setting CSP to run with only origin + whitelisted api’s will prevent
generic information leakage (as they can’t easily send web requests to C&C sites).
It however, does not prevent against DoS attacks. Nor does it protect the develop-
ers machines from being infected, and leak information. It is therefore not enough
on it’s own to prevent supply chain attacks, but does limit the damage from certain
types of attacks.

Cross-Origin Resource Sharing (CORS) is enabled on the back end API server,
to allow the frontend to connect.

A5:2017-Broken Access Control

We base this paragraph with trust in the Azure AD (Active Directory) C# adapter.
Access control on the back end is handled in a deny by default fashion, with

the Asp.Net Core "RequiredScope" attribute selectively exposing scopes (although
roles would likely be a better fit, due to individuals at Cryogenetics having dis-
tinct roles). Using authorization attributes is the natively supported way to do
authorization in ASP.NET Core21.

16https://developer.mozilla.org/en-US/docs/Glossary/HSTS
17https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
18https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
19Checked with (just dependencies, not development dependencies nor peer dependencies): ht

tps://npmgraph.js.org/?q=react-scripts
20https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
21https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies?view=aspnetcore-

5.0

https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://npmgraph.js.org/?q=react-scripts
https://npmgraph.js.org/?q=react-scripts

72 Inventory Management System

6.9 Production setting

Azure APIM CORS

We had some issues configuring CORS with Azure APIM for testing, so please note
that methods and headers must be provided. You can simply use "*" (star) to allow
all methods and headers for testing. Otherwise CORS may not work. Although to
minimize attack surface area when running in production, methods and headers
need to be explicitly designated.

Code listing 6.24: Enabling CORS in Azure APIM

<cors>
<allowed-origins>

<origin>http://localhost:3000/</origin>
</allowed-origins>
<allowed-methods>

<method>*</method>
</allowed-methods>
<allowed-headers>

<header>*</header>
</allowed-headers>

</cors>

Back End Configuration

Configuration is done using the Microsoft.Extensions.Configuration library.
The three main configuration providers used are file (appsettings.json), envi-
ronment variables ("configuration" under app service in the Azure portal), and
key-value store.

Default configuration is stored in the appsettings.json file in the repository,
which is cloned to instances of the back end. Environment variables are used for
configuration options which do not require special treatment, like the configura-
tion option for enabling swagger useSwaggerInProd (see section 8.2).

Connection strings are stored in a key-vault22, which is specifically made to
store sensitive information in a secure way (such as connection strings).

For connecting to the key vault, the app services are configured with managed
identity. This essentially allows us to treat the app service as a user in our active
directory, and to give it permissions like access to the key vault. No passwords
or secret keys are required by us. This does of course require both resources to
be hosted on Azure. We then simply set which key vault we want to use in our
appsettings.json file.

22https://azure.microsoft.com/en-us/services/key-vault/

Chapter 7

User Interface

The employees at Cryogenetics are the only ones who will have access to the
website. This means that we placed the usability and functionalities accordingly.
Our goal with the web application was that employees should easily recognize
similarities from other Office applications, and thus make it easy to understand
where to find the information or functionality they are looking for.

7.1 Fluent UI

It was a natural choice for us to decide to use Microsoft’s Fluent UI[9] since we
wanted the web application to feel familiar for the Cryogenetics employees. It is
a collection of UX frameworks for creating cross-platform applications that can
share code, design, and behavior. Fluent UI has GitHub libraries for React (web),
Android, iOS and macOS, which provides the basis for Microsoft 365 apps and
services. Fluent UI also has a React Native library which makes it easy to create
cross platform mobile application in JavaScript.

We decided to use Fluent UI because it would save us some time, since we
would not have to design all the components ourselves. At the same time it would
lead to a more consistent design. We also thought that it made sense to use Fluent
UI since the employees at Cryogenetics are used to Excel and SharePoint from
before, and that a continuation of this design would fit in well with Cryogenetics.
We therefore decided to find inspiration in Microsoft’s products, where especially
Word Online was a web application we found a lot of inspiration in.

7.2 Layout

The main elements in our website as shown in figure 7.1 is the navigation bar at
the top and the content area below this.

73

74 Inventory Management System

Figure 7.1: Front end layout (Laptop screen)

Navigation Bar

The navigation bar is the black, horizontal bar at the top of our website. It contains
links to the various pages of our application, and in addition to a drop down menu
located where the name of the employee is. The drop down menu contains two
menu options; one to log out of the system and one to take you to the account
page. You can read more on how it was implemented in section 6.3.

Content Area

The content area is the space on the page that changes based on where you are
on the website. If the user were to view this on a laptop or a desktop computer,
it would make sure the margins around the content area stays consistent across
the different pages on the website. It keeps the content centered so it is more
comfortable to view and navigate on larger screens.

Color Palette

We wanted the color palette to reflect the aquatic work Cryogenetics does and
originally tried to replicate their own websites’ colors (see appendix D, figure D.2a
for the first design’s colors). The palette we chose evolved over the course of the
different design iterations and we landed on a palette that is both easy to read and
fits well with the aquatic theme that we wanted. We established a color palette
(figure 7.2) that would be used across the web application.

Chapter 7: User Interface 75

Figure 7.2: Color palette

The "Bright Navy Blue" color being the accent color used in hover effects,
dashboard numbers and the logo itself. While the two darker colors reflect the
look of the navigation bar and the side menu, with the intention of creating a
small contrast between the two to somewhat separate them.

Finally the "Cultured" color is also used to create a contrast between the site’s
white background and the content area. This color was chosen because it features
in the Fluent UI guidelines and will be familiar to Microsoft products users.

7.3 UI Examples

Dashboard

After logging in to the web application the user is welcomed by a message which
depending on the time of day is different. Below the welcome message we have
implemented a quick overview of the different information that could be useful for
the user. Here the user can quickly identify how many files are ready for approval,
the current number of clients with stored fish milt, and also a view of the different
time zones Cryogenetics’ offices are located in.

Figure 7.3: Dashboard landing page

76 Inventory Management System

User profile

The user profile page (or account page), can be accessed through the dropdown
menu on the navigation bar, which appears if the user clicks on their name, which
is illustrated in figure 7.4.

Figure 7.4: Dropdown

The user profile page is made with
an intent to have as much "breath-
ing" space as possible, meaning that it
should not overwhelm the user with
information. All we have is a centered
table which fetches and displays re-
sources from a user’s Microsoft iden-
tity. There are two categories on the
left-side menu-bar which each displays
a table of information relating to their
areas. The "About" category displays
private user information like name and
account creation date, while the "Business" category displays more work-related
information such as company name, department name, job title, business phone
etc.

There is also a horizontal, blue bar which displays the first name as well as
the avatar of the user.

Figure 7.5: User profile page

Read more about the user profile page for mobile view in section 7.4

A List of Files

As mentioned in section 6.4, the different list pages are similar in user interface,
with somewhat different functionalities between them. What they have in com-

Chapter 7: User Interface 77

mon is the same list design with the file icon, the name, the time it was created
and updated, and also the author of the file. Cryogenetics would in most cases
only upload excel documents, but the list component is also able to display any
other Microsoft document icon as well if that should be necessary.

The user is able to filter the list by typing characters in the filter bar at the top,
or they can click the two arrows next to it to open the filter menu where they can
filter by file type or set a start and end date (figure 7.6). It is also possible to sort
the list either alphabetically ascending or descending by clicking on the column
titles.

Figure 7.6: Filtering the list by the date uploaded

Global Search Bar

Cryogenetics asked for a feature that would allow them to search for individual
species and receive the corresponding information belonging to that species. This
feature was requested somewhat late in the development cycle and was therefore
not prioritized over other features that needed to be finished. Despite this, the
front end team was just about able to make some preparations for future search
functionality. This meant adding the actual user interface of a search bar, but with-
out any actual search capabilities in the database.

The search bar is accessed by pressing the search button in the navigation bar,
and the search menu will drop down from the top of the screen as an overlay. With
a content area which will display the search results. For instance, if a user would
search for a specific species, all the tanks containing that specific species would
be displayed as a list. Each element in that list would work as a routing link to the
tank map.

78 Inventory Management System

The Tanks

The user is able to view each individual tank, and depending on the tank’s volume
is shown a different map of the contents. This is because the different tank volumes
have a distinct structure inside. By clicking on each of the sections, the user will be
able to see different data about the contents of the exact location within the tank.
This will be displayed in the information area on the left hand side as shown in
figure 7.7 and figure 7.8. If the user does not need to see the map at that moment,
and would prefer to see the contents in a table format. They are then able to click
the "view table" link and the map will be swapped out by a table which is also
possible to print out, as mentioned in section 6.4.

Figure 7.7: 47 Liter tank

Figure 7.8: 500 Liter tank

Chapter 7: User Interface 79

7.4 Responsive User Interface

Designing a web application with a responsive user interface in mind is to create
content that adjusts to fit as the window size changes1. Therefore it is important
to keep in mind relative Cascading Style Sheets (CSS) units like rem and to apply
media queries so the design automatically adapts to the browser window and to
ensure consistency across multiple devices with various display sizes and formats.

Larger Screens

The employees at Cryogenetics work mostly from the office where they have ex-
ternal monitors. We assumed that they have 27 inches 16:9 ratio monitors, and
our website is therefore adapted to look good on this screen size. The most impor-
tant adjustment was to make the margins bigger, where we increased them from
12.5rem to 22rem. We believed this was the best solution as the content would
be displayed in the center of the screen, so the user does not have to strain their
eyes to look at the content.

Tablet Devices

Figure 7.9: Front end layout (Tablet screen)

1https://www.interaction-design.org/literature/topics/responsive-design

https://www.interaction-design.org/literature/topics/responsive-design

80 Inventory Management System

When we adapted the website for tablets, there were two important adjust-
ments we made. The first change was to resize the margins on each side of the
content. As we can see in figure 7.9 we removed them completely so that the con-
tent extends all the way out to the edge. The second adjustment was to introduce
the side bar.

Side Bar

On smaller screens such as tablets and mobile screens, the links in the navigation
bar were not adequate. We therefore had to make changes here, and then followed
a small guide from Justinmind2 for this. Here, among other things, there was a tip
about putting the links in a hamburger menu on the page, which for example is
done by GitHub on their page. We therefore chose to do this, where the 5 links are
placed in a side menu. The side menu appears from the right side of the screen by
clicking on the hamburger menu at the top right. The Hamburger menu and side
menu are default on screens smaller than 1367 pixels, which in practice means
tablets and smaller devices.

The same has been done on the user profile page, as we also implemented
a different side bar specifically for this page. Upon the breakpoint, this side bar
is transformed into a hamburger menu, and will appear again by clicking on the
hamburger icon on the left. This side bar will then appear with a z-index that
makes it appear above everything else on the page. The menu can then be closed
again by either clicking on one of the categories, clicking on the "X" in the top left
corner, or just by clicking outside of the side bar area.

(a) Hamburger menu (b) Side bar menu

Figure 7.10: Account page before and after clicking on the hamburger menu in
mobile view

2https://www.justinmind.com/blog/hamburger-menu/

https://www.justinmind.com/blog/hamburger-menu/

Chapter 7: User Interface 81

Mobile Devices

Figure 7.11: Mobile layout

It is important for Cryogenetics that
they have access to the website when
they are out of the office. Sometimes
the only devices they have access to
might be their mobiles phones, and our
website should therefore be possible to
use on touch screens in mobile phone
sizes.

In order to adapt the design to best
fit mobile screens, we first had to think
different about the design. Because
mobile phones are usually held in a
vertical direction, the screen therefore
becomes quite narrow. As shown in fig-
ure 7.11, we have chosen to put ele-
ments such as search bar, pivot tabs3

and the list of files under each other.
The same is done for properties for the
file, such as file name, author, last edited and edit time.

As for the links in the navigation bar, we have done the same for the mobile
phones as we did for the tablets (see section 7.4), which is to enter these as menu
options in a sidebar that appears when you press the hamburger icon at the top
right.

7.5 User Interface Iterations

To find the best possible UX, the design needs to go through various iterations
before a final design can be decided upon. How many iterations varies from project
to project, but the purpose of creating multiple iterations is that the next iteration
is an improvement of the last. This is based on a review process along with the
user and the designer. The designs were created with Figma4 so that we easily
could display the design of the components we later were to recreate with CSS.

In the physical meeting at Cryogenetics’ offices, we showed the product owner
our first iteration and together we came up with various improvements, both in
terms of it looking better and making it easier to navigate according to Cryoge-
netics. You can view the iteration process in appendix D.

3https://developer.microsoft.com/en-us/fluentui#/controls/web/pivot
4https://www.figma.com/

https://developer.microsoft.com/en-us/fluentui#/controls/web/pivot
https://www.figma.com/

82 Inventory Management System

7.6 Web Content Accessibility Guidelines

Web Content Accessibility Guidelines 2.05 is a set of wide range of recommenda-
tions, with the purpose of making Web content more accessible. Websites may be
difficult for people with disabilities like low vision, deafness, limited movement
and photo sensitivity to perceive and use. By following these guidelines we would
make our website easier to use for these. WCAG has three levels which tells how
much we fulfilled the requirements[13]:

• Level A: The easiest requirement to meet with only 25 criterias. At this level
we are for example not allowed to identify something only by color, like
"press the red button to go back".

• Level AA: Requires a bit more commitment as the are 38 criterias. At this
level we need to make sure that all the text meets color contrast require-
ments, and it is also based on the text size as well.

• Level AAA: The level that is hardest to accommodate, with 48 criterias. At
this level the requirements is strict with the color contrast requirement for
the text, where you for example can only use very dark colors on a very light
background and vice versa.

We have in this section chosen to show three of the contrast checks, were we
used the online tool WCAG Contrast Checker6.

Homepage

Figure 7.12: Mobile layout

The first test was done on the homepage,
where we tested if the contrast between
the white background and the blue numbers
showing e.g. number of files to be approved
was large enough. As we can see from fig-
ure 7.12 this component passes the test for
AAA requirements, which is not very surpris-
ing as it is a relatively dark blue text on a
white background.

Navigation bar

Figure 7.13: Mobile layout

The second test was done on the navigation
bar(see section 7.2). Here we tested whether
the white text on the black background met
the requirements of WCAG 2.0. Although we
have black and white elements, it is not cer-
tain that these always meet the criteria, as
white text on a black background can often

5https://www.w3.org/TR/WCAG20/
6https://contrastchecker.com/

https://www.w3.org/TR/WCAG20/
https://contrastchecker.com/

Chapter 7: User Interface 83

be problematic to see. Therefore, it is impor-
tant that the contrast between the text and the background is high enough for our
navigation bar to meet the criteria. As we can see from figure 7.13 this component
also passes the requirements for AAA. For the navigation bar we want to point out
that logos are not covered by the WCAG requirements, and we have therefore not
done a test for the Cryogenetics logo.

Links

Figure 7.14: Mobile layout

The third and last test we have done, was
on the links on each file and tank (see fig-
ure 7.1). Here we tested whether the blue
color of the links and the white background
have a large enough contrast. Blue text on a
white background and vice versa often cause
problems in connection with the AAA re-
quirements7. As we can see from figure 7.14
our test fails on the AAA requirements for text size under 18pt. The font size on
our links are 1 rem which is the same as 12 pt on our site, which means that this
test only meet the AA requirements.

We reckon that our website mostly meets the requirements for AA and not
AAA, as this blue color together with white and black is repeated in most places
on our website. In addition, the text size is mostly below 18pt on our page, so we
won’t meet the requirements due to our text being to small.

7https://uxmovement.com/buttons/the-myths-of-color-contrast-accessibility/

https://uxmovement.com/buttons/the-myths-of-color-contrast-accessibility/

Chapter 8

Development Environment

In this chapter we will take a closer look at our development environments. We
wanted to learn how a professional development team worked on a project, and
emulate the workflow with efficient and professional development environments
and tools. A few of these programs were unfamiliar to us so we learned a lot in
using them over the course of this project.

8.1 Front End

Docker

Docker is, as described in section 4.4, a tool that allows developers to package ap-
plications into containers, which makes the application run in every environment.

To use Docker in a project, you must create a dockerfile. A dockerfile is a text
file with a set of instructions Docker uses when it builds images automatically.
Code listing 8.1 shows our dockerfile. It starts with the instructions of pulling the
official base image for React, before it sets the working directory to be /app. It then
adds the /app/node_modules/.bin to path, before it installs the dependencies.
Because we are using TypeScript, that means we also need to install the NPM
package for TypeScript and @types/React. After these are installed, it copies the
application from our host to the image, before it defines what commands Docker
should do when docker run is done.

Code listing 8.1: Dockerfile

FROM node:13.12.0-alpine

WORKDIR /app

ENV PATH /app/node_modules/.bin:$PATH

COPY package.json ./
COPY package-lock.json ./

RUN npm install --silent
RUN npm install -g typescript

85

86 Inventory Management System

RUN npm install --save-dev @types/react -g --silent

COPY . ./

CMD ["npm", "start"]

If we were to use only a dockerfile we would have to run it with a long and
complicated command in the terminal or in the command prompt. For those who
want to run both the server and the client side, Docker has a feature called Docker
Compose1. That is a tool for defining and running multi-container applications
in Docker, and with a single command creating and starting all these services.
Compose consists basically of three steps:

1. Defining the applications environment in the Dockerfile
2. Defining the the service the application consists of in the docker-compose.yml,

which make them run together in a isolated environment
3. Running the service using the command docker-compose up

code listing 8.2 shows our compose file. It gives name to the container which
we have called cryorepo as well as defining which Dockerfile and volumes to use.
It also set which port Docker should use and it enables hot reloading by setting
CHOKIDAR_USEPOLLING to true. That means that the server will detect if we make
a change in our code, and then reload the website.

Code listing 8.2: docker-compose.yml

version: ’3.7’

services:
sample:
container_name: cryorepo
build:
context: .
dockerfile: Dockerfile

volumes:
- ’.:/app’
- ’/app/node_modules’

ports:
- 3000:3000

environment:
- CHOKIDAR_USEPOLLING=true

With this setup it was easy for us to start the website running on localhost:3000
with a single and easy-to-remember command:

docker-compose up -d

For us on the front end team we only had the client side to run, so it was not
really necessary to use to Compose for running our website. However, it would
make it easier for us every time we run services, as we would not have to remem-
ber the command and possibly have to paste it from a note every time.

1https://docs.docker.com/compose/

https://docs.docker.com/compose/

Chapter 8: Development Environment 87

Git

As mentioned in section 4.5, Git was the chosen version control system because of
our common experience with it. We all had used both GitHub and Git in several
other projects prior to this one, and saw no reason to spend time needlessly to
learn and use one we were not as familiar with. During development we loosely
based our branching structure from a blog post called "A Successful Git Branching
Model" by Vincent Driessen2. The model consists of several branches, namely:

• The main-branch
• The develop-branch
• The feature-branches

Figure 8.1: Git branch structure example

We considered main to be the branch where the source code should always be
of a high quality state.

Next to the main branch is the develop branch, which contained source code
that contained the latest features and changes ready for the next merge with main.
When the code in the develop branch were stable enough, all changes would be
merged into main. This process was handled during morning meetings when we
felt enough implementations had been reached and the code was of a satisfying
quality.

The act of merging itself was handled using GitHub’s pull request feature
where the developers could get an extensive overview of the differences between
the branches and also if there were any unnoticed conflicts. When the team was
satisfied, the merge would be conducted. We had no pre-determined style in our
commit messages other than a short description in what changes was made.

2https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

88 Inventory Management System

Figure 8.2: Endpoint to get all fish in a specific tank with parameters

Lastly, the feature branches differs from the other two branches in that they
were not stored in GitHub, but instead exists locally on the respective developer’s
computer. These branches were used to develop new features without having to
worry about breaking the stability of the program itself. The feature branch exist
only as long as the feature is being developed, but will in time be merged into
develop. After the merge process, the branch is deleted and the developer creates
a new feature-branch when it was time to start development of a new feature.

8.2 Back End

Swagger

A separate API server was set up as a App Service on Azure, with Swagger UI
exposed. This allows consumers of the API to test out the API with different pa-
rameters, and to experiment with how it functions. It also shows how to han-
dle authorization tokens. See figure 8.2. The website had access control enabled
through Azure App Service’s built in access control mechanism, configured to only
allow users within our test tenant to view the page (which would be transferred
to Cryogenetics). See appendix G

Chapter 9

Quality Assurance

We have throughout the project focused on good code quality where we want the
code to be easy to read and as efficient as possible. During the project period,
we came across a number of techniques and methods that we implemented in
the work. Since we cooperated with a company, we therefore wanted to work as
professionally as possible and deliver good code.

9.1 Front end

Code Reviews

One of the techniques we used to write high quality code on front end was by doing
a code review with at least one other team member, preferably more. We had no
fixed day of the week or month, but we had reviews when we felt it was necessary.
The way this was done was that the person who wrote the code showed his work
and explained what the code does, so that the other group members understood
what the code does and what the point is. This provided a basis for the other team
members to understand the code, so that they could provide input and ideas on
what could have been done different and maybe more efficient. If the other group
members did not have any feedback, the code was pushed to the develop branch
and basically seen as finished. An important principle for us when we worked on
the code was that we had low threshold to change and give feedback on other’s
code, also after code reviews.

Code Review 25. march

In this review Kristian, who originally wrote the code behind the view to the map
of the tanks, felt that there was too much duplication of code and that this could
clearly and should have been done better. He and Casper decided therefore to
do a code review, to see if it was possible to do this in a better way. Here they

89

90 Inventory Management System

found that the JavaScript method Map1 was ideal for this problem, and therefore
halved the number of lines of code. In code listing 9.1 and 9.2 we can see excerpts
of the code showing how the map of a large tank for non-mobile screens was im-
plemented. After the refactoring this bit of function was reduced from 48 lines of
code to 24 lines of code.

1 export const TankmapTable500: React.FunctionComponent<Props> =
2 props => {
3 if (!props.mobile) {
4 return (
5 <div className="table-500-container">
6 <div className="sectionA">
7 <TankmapSection500
8 section={1}
9 level={props.level}

10 color={"white"}
11 handleTileClick={props.handleTileClick}
12 />
13 </div>
14 <div className="sectionB">
15 <TankmapSection500
16 section={2}
17 level={props.level}
18 color={"red"}
19 handleTileClick={props.handleTileClick}
20 />
21 </div>
22 <div className="sectionC">
23 <TankmapSection500
24 section={3}
25 level={props.level}
26 color={"blue"}
27 handleTileClick={props.handleTileClick}
28 />
29 </div>
30 <div className="sectionD">
31 <TankmapSection500
32 section={4}
33 level={props.level}
34 color={"yellow"}
35 handleTileClick={props.handleTileClick}
36 />

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objec
ts/Array/map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Chapter 9: Quality Assurance 91

37 </div>
38 <div className="free">
39 <TankmapSection500
40 section={5}
41 level={props.level}
42 color={"green"}
43 handleTileClick={props.handleTileClick}
44 />
45 </div>
46 </div>
47)
48 } else {

Code listing 9.1: Before refactoring

1 export const TankmapTable500: React.FunctionComponent<ITankMapTable>
2 = props => {
3 const colorsList = ['white', 'red', 'blue', 'yellow', 'green'];
4 const classList =
5 ['sectionA', 'sectionB', 'sectionC', 'sectionD', 'free'];
6 const selectedList = ['A', 'B', 'C', 'D', 'E'];
7

8 if (!props.mobile) {
9 return (

10 <div className="table-500-container">
11 {[...Array(5)].map((item, i) =>
12 <div className={classList[i]}>
13 <TankmapSection500
14 section={i+1}
15 level={props.level}
16 locationInfo={props.locationInfo}
17 color={colorsList[i]}
18 handleTileClick={props.handleTileClick}
19 />
20 </div>
21)}
22 </div>
23)
24 } else {

Code listing 9.2: After refactoring

92 Inventory Management System

Static Code Analysis

ESLint
Lint2, also called linter, is a tool used to point out errors in the code, potential
errors, stylistic errors and suspicious constructs in the code. When writing code in
dynamically typed languages such as Python and JavaScript you should use tools
like Linter ([14]). This is because compilers for such languages do not run with
strict rules, tools like Lint can help find potential bugs in the code. The tool used
specifically for JavaScript is ESLint3, and is installed using NPM. By using Linter
together with TypeScript, we got rid of quite a few bugs and potential errors in
the code. This is because we received warnings and small tips for improvements
in syntax from both Linter and the TypeScript compiler. For example, this led to
us being consistent in the use of const instead of let and var where it can and
should be used.

We started using ESLint late in the project, as we were not aware that such
tools existed and because we trusted that the IDEs we used would notify us of the
most important errors. This meant that when we first started to use it, we received
a bunch of error messages and warnings. This led to a lot of time being spent on
correcting these errors. It is very likely that using ESLint from the beginning would
have saved us some time when debugging the code.

Prettier
When several group members write code, it is almost impossible to get the same
layout over the entire code. Therefore, we decided to use tools that format the
code so that it is clear and similar. The choice therefore fell on the extension
Prettier4, which is a tool that comes as an extension to both VS Code and NPM.
Prettier ensures a consistent code style throughout the code base. It disregards
original styling by deforming the code, before rewriting it with its own rules by
for example wrapping the code if it reaches a certain number of characters on
each line.

1 useEffect(() => {
2 const fetchData = async () => {
3 Promise.all([getNrOfApprovableFiles(), getNrOfBackups(),
4 getNrOfClients(), getNrOfFishes(), getNrOfTanks(), getPlaceholder()]
5);
6 }
7 setGreeting(getTimeGreeting() + ', ' + props.name);
8 fetchData().then(() => { setLoading(false); })
9 }, [cookie])

listings/prettierCodeBefore.tsx

2https://en.wikipedia.org/wiki/Lint_(software)
3https://eslint.org/
4https://prettier.io/docs/en/index.html

https://en.wikipedia.org/wiki/Lint_(software)
https://eslint.org/
https://prettier.io/docs/en/index.html

Chapter 9: Quality Assurance 93

1 useEffect(() => {
2 const fetchData = async () => {
3 Promise.all([
4 getNrOfApprovableFiles(),
5 getNrOfBackups(),
6 getNrOfClients(),
7 getNrOfFishes(),
8 getNrOfTanks(),
9 getPlaceholder()

10]);
11 }
12 setGreeting(getTimeGreeting() + ', ' + props.name);
13 fetchData()
14 .then(() => {
15 setLoading(false);
16 })
17 }, [cookie])

listings/prettierCodeAfter.tsx

As we can see from code listing 9.3, this code is wrapping the document and is
quite hard to read. In code listing 9.4 we have used the Prettier plugin, and even
though the code became 9 lines longer we thought this was the best solution for
our code as we found it easier to read.

9.2 Back end

For the back end which used a statically typed language, the compiler checks
that type mismatches are not made. Additionally, the feature of C# 8, nullable
reference types (see section 4.8) prevents certain types of errors.

Code quality regarding security aspects (specifically authorization/authenti-
cation) were kept strict (through reviewing the code, and following the documen-
tation), due to the confidential nature of the data being worked with.

Quickly iterating prototypes allowed pitfalls of the technologies used to be
learned, before significant amounts of code needed to be replaced. An example
was how indexes in Cosmos DB works very differently to those of most RDBMS’s,
in that it requires indexes to be built for any query with consecutive orders.

Outside of that, the implementation were intended as a prototype, later to be
replaced with a production quality version. This did not happen due to a lack of
time.

94 Inventory Management System

9.3 Testing

Manual testing

For the front end team Firefox Developer Tools was used to manually examine,
edit, and debug the website5. The Page Inspector tool proved useful, and helped
in identifying bugs and issues with especially the CSS Grid elements on the page.
It made it possible to highlight the components and give a visual feedback on the
size and position of the grid.

We also used the Responsive Design Mode tool which made it possible for us
to test the website on other screen sizes and formats with our own laptop (see
figure 9.1).

Figure 9.1: Testing the responsive design on an iPhone display

For the back end, manual testing of the RESTful API was performed by using
the Swagger UI (see section 8.2). Input values were manually entered, and results
were verified to be as expected.

User Testing

Our goal was to have multiple user tests together with the product owner. Because
of Covid 19 this proved difficult to achieve, due to rules such as requirement for
a home office and restrictions on the number of visitors. This meant that we had
to re-arrange our plans and therefore think again.

Since we did not meet the product owner physically for user tests, we therefore
had to test the working functionalities ourselves. Where possible, we therefore
chose group members to test functionality that the others in the group created.
We thought this gave a slightly more realistic picture of the testing, as those who
tested did not know about any risks of bugs.

5https://developer.mozilla.org/en-US/docs/Tools

https://developer.mozilla.org/en-US/docs/Tools

Chapter 9: Quality Assurance 95

There are some functionality on the front end that does not have an endpoint
to the back end, which means that there is functionality that we have not tested in
use. The best example of this is the global search function, where what is missing
is an endpoint in the API to filter the search results. This is something we have
not tested in use, but we have tested that the results from the search will be
presented in a clear way. This was done by generating a mock result using existing
endpoints from clients, tanks and fishes, retrieving a random number from each
of the endpoints and then shuffling the results in a random order. This mock result
was then displayed as it was intended the search results should be displayed.

Mock RESTful API

Throughout the development process, the front end was often further forward
than the back end in the development process. This meant that the front end
team lacked endpoints on the API to test how fetching from current data from the
API and processing of this data worked. Therefore, in order to test certain features
in the website, a mock API was created by using Mocki6. Mock APIs imitates a real
API server by providing realistic API responses to requests, which can hosted both
locally or on the public Internet.

Mocki offers a free API editor, where it is possible to create GET endpoints.
We used this to create an API which we could test our website on while waiting
for our actual API. We first and foremost tested whether the data was presented
correctly. When a mock API endpoint in Mocki was created, we were provided
with a link we could fetch from. When fetching from this url a JSON object with
the mock data was then returned, which we displayed as test data on our website.

We chose not to create a mock API where it was possible to POST or PUT
data, as we did not want to pay for such a solution. We also did not consider it
as necessary, because at that time the API endpoints for our website was closer to
being able to be used for testing.

9.4 Automated Test

Front End

Throughout the project, we have tested our website manually, as described in sec-
tion 9.3. It worked well, but there is no doubt that it took some time. We there-
fore had a desire to write automated tests for the most basic functionalities on our
website. This was unfortunately deprioritized during the project period. The main
reason was the lack of knowledge about automated testing among the group mem-
bers, which made the threshold for making the tests too high. Therefore, tasks that
included development and report writing became easier to prioritize over testing,
especially when the manual tests worked as well as they did. In retrospect, we
see that this is something we should put more time into, especially in the research

6https://mocki.io/#features

https://mocki.io/#features

96 Inventory Management System

phase. This would have meant that we had entered the development phase with
knowledge of automated tests, so that the code we wrote along the way would
have been easier to write tests for.

We made a small attempt to write some UI and device tests towards the end of
the project period. We did some more research for testing utilities, and found out
that testing our application using Jest and Enzyme7 would suit the project best.
Jest is a JavaScript library for creating, running, and structuring tests, whereas
Enzyme is a tool for making it easier to assert, manipulate and traverse the out-
put of our React Components. We succeeded creating some simple tests for our
website, but this was quickly considered unnecessary as these tests would have a
very small code coverage.

We also found out during this experiment that we lacked too much basic
knowledge about testing, and that this was reflected in how we wrote the code.
Our code became very difficult to test, because our components were often a little
too large and too complex. The components depended too much on each other. In
addition, much of our code also depended on communication with the API, which
made it even more difficult because our limited knowledge of testing.

If we where to do the project again with the desired knowledge of testing,
we wouldn’t go for a test driven development, but we would definitely write tests
along the way to make sure that our code would do the same even if modifications
and refactoring had been done.

Back End

Initially, property based testing using FsCheck8 (Based on Haskel’s QuickCheck9)
was attempted, and was intended to be a large part of building a well developed
back end. It however proved difficult to use for complex classes, and combined
with frequent rewrites, did not see much use in practice. Due to frequent rewrites,
basic unit tests were not utilized as well, being intended to be used for the final
implementation. Preferably, unit tests would have been performed before allowing
continuous integration to push code to the App Service.

7https://javascript.plainenglish.io/are-you-not-testing-your-react-app-instantl
y-test-with-jest-enzyme-a-reactjs-2020-tutorial-e9ce0182d66d

8https://github.com/fscheck/FsCheck
9https://hackage.haskell.org/package/QuickCheck

https://javascript.plainenglish.io/are-you-not-testing-your-react-app-instantly-test-with-jest-enzyme-a-reactjs-2020-tutorial-e9ce0182d66d
https://javascript.plainenglish.io/are-you-not-testing-your-react-app-instantly-test-with-jest-enzyme-a-reactjs-2020-tutorial-e9ce0182d66d

Chapter 10

Conclusion

Cryogenetics wanted an inventory management system with an associated database
that would augment their current system of keeping inventory. We believe we have
at least partially achieved this by building the foundations of a better system. This
makes it easier for them to find what data they are looking for and to keep track
of their inventory, and is more robust and automated. Although the project as a
whole is not finished, nor featured complete to the degree we would have wanted
(specifically with regards to back ups, automating ingestion of worksheets, and
the transaction system).

With this system, Cryogenetics would be able to save time and resources they
can allocate elsewhere as well as being able to scale their inventory and log it more
efficiently than before. Because of reasons like overestimating our time combined
with underestimating the scale of some use cases, we were not able to implement
everything we initially wanted before the deadline of this report. We did however,
lay the ground work for this to be implemented in the future, which Cryogenetics
offered us to do as a summer job.

Learning Experience

The last few months has been extremely educational for us, and has given us
valuable experience in the software development process. We learned a lot about
working with a company and a product owner in both understanding their re-
quirements for the project, and for us to accurately communicate our suggestions
in how we would solve it.

We also learned a lot about working together as a team with solving problems
together, planning meetings, the importance of tracking progress and detecting
deviations early, and finding an agreement despite our different opinions on cer-
tain topics. This also means the importance of allocating resources better, so that
we do not have a skewed distribution of labor in development. Combined with
poor communication between front end and back end at certain times, this led to
us not discovering that we would not be finished with everything we wanted.

We have also experienced that it is important to have openness in the group

97

98 Inventory Management System

and each group member shows self-insight. One of the reasons the back end de-
velopment delayed is that it was not expressed earlier that the workload became
too large. We would also like to add, as mentioned earlier, that this could and
should have been avoided through closer cooperation between the back end and
the front end team.

We also feel that we have become much better at the technologies we have
used. The three members on the front end have built on the foundation from pre-
vious topics and developed further to have become more skilled in React and Type-
Script. New skills have also been acquired from the world of web technologies,
where the skills to use various UX frameworks and other 3rd party components
have been improved.

On the back end, we improved our abilities with API design (especially REST-
ful API’s). We also gained useful experience in creating a paging system, and allow-
ing sorting in an arbitrary manner (which needs indexes handled), and exploring
the different standards, such as OData and OAuth.

We all agreed that the project made us better developers, gave us much needed
experience and opportunity to improve our understanding of both familiar and
unfamiliar technologies and procedures. At the same time we now have had time
to reflect over what we were not so happy with, and could have improved if we
were to redo the project from the start.

What Could We Have Done Better/Differently?

In retrospect, there is little doubt that the group should have had much better
collaboration between back end team and front end team throughout the project
period. We should have included back end team in the morning meetings. At the
same time we should have made a greater attempt to meet physically, even though
it has been a pandemic period. This would have meant that we would more likely
have discovered the overload of work on the back end, and we could therefore
have provided more resources there and thus also finished with the core function-
alities.

Regarding the development model, we should have used more columns in the
Scrumban Board including the three we had to give us an even better overlook of
the process. For example a review column with issues that had been implemented,
but were primed for a review session within the group.

We also should have had more formal meetings physically with a prepared
agenda. The meetings we did have physically as a group together, turned out to
be more of a work session. These meetings should have focused more on sharing
knowledge, in case one of the group members should for any reason be prevented
to continue his work. This is something we should been much better at.

We see in retrospect that there are two major potentials for technical improve-
ments. The first and probably the most important point is the testing of the appli-
cation. As mentioned in section 9.4 we have no automated tests on the front nor
back end, which has led to all the testing being performed manually. This has in

Chapter 10: Conclusion 99

all probability led to a loss of time, and even if writing tests takes time, we would
have saved much time from these tests that it could have paid off. The tests would
also mean that bugs and errors had been detected earlier and it would have been
easier to correct them. There is little doubt that if we could go back in time, we
would have written tests for our application in parallel with the development. This
would further lead to our application consisting of smaller and more components,
as these are easier to write tests for than the larger components the application
consists of now.

The second technical potential would be to improve the lack of comments
in our source code, as it can be difficult for new developers to understand. It
quickly became a terrible habit to not comment our code, and made the task too
demanding to document every function at the end of the project.

Bad habits like these during development has shown us throughout this project
exactly why they are called bad habits, and we had to deal with the problems that
became apparent because of it.

Further Work

The system we developed turned out reasonably large and unwieldy, as such doc-
umentation is imperative for new developers to understand the system. If this
project were to be handed off to new developers in it’s current state, it would
pose a challenge for the new developers to understand the system as a whole.
Focusing on documenting the system, both in code, but also as a whole should
have received more attention from the start.

Cryogenetics’ further work will largely be about completing the core function-
alities of the back end. Of these functionalities, it is to complete parsing of excel
documents, the transaction system and functionality for approving excel docu-
ments, and creating endpoints for searching in back end that must be completed.
These are the functionalities that we expect to be in place before Cryogenetics’
employees can start using the system in practice.

On the front end, there is a lot of functionality for the user that as of today is
missing, but as the code is structured, these can easily be added as soon as there is
functionality in the back end. During the project period, the focus has been on the
fact that the functionalities that have been implemented are of good quality and
thus can be used in everyday work. We therefore assume that further work on the
front end will therefore largely be about new functions desired by Cryogenetics.

Evaluation of the Group’s Work

The collaboration in the whole group has been a bit varied, with a lot of good
things and some things that should have been done differently. The front end team
had a morning meeting every day of the week, where we briefly went through the
day’s plan, what was done the last 24 hours and questions were discussed. This
led to us having good control over the progress in the front end, what the others
did and it became easy to solve the problems that arose together.

100 Inventory Management System

On the front end team, the collaboration between the three members has
worked very well. Due to distances between some of the group members and
the fact that the corona pandemic has put an end to several physical meetings be-
tween the members, we have cooperated well through Teams. It was also helpful
that two of the members met physically and worked together as a pair.

A requirements specification was never established between us as a group and
Cryogenetics. In the first weeks, a draft requirements specification from Cryoge-
netics was provided, which contained some information about the data. This did
not contain any specifications for database requirements, and also no requests for
front end features. Further, this led to many new functionalities being desired by
Cryogenetics throughout the project, where some of the wishes also changed over
time. Converting their data to a standardized format proved difficult due to this
as well.

This led us to a dilemma:

• We could have adhered to the original agreement where we had established
an early requirements specification which we developed according to. Here
we would with great certainty have finished what was decided, but the fully
developed product would not quite fit the customer as they would have
found more desired features after the deadline of the requirements specifi-
cation.

• We could agree to a very smooth development process, where many wishes
came along during the development. This would lead to less overview of
the project and an increased probability that we would not be finished, but
the product we developed would be more in line with the customer’s final
wishes.

We elected the second alternative, to give the customer the features they re-
quested. This meant that we accepted a floating requirements specification, and
this was also one of the reasons why we chose a flexible development model. In
our opinion, the original draft requirements specification was full of shortcomings
and Cryogenetics had some, but few desired functionalities early in the project
which made it difficult for us to create a long term specification. There were few
requirements for the front end in the original specification. It has therefore been
a process where the product owner continuously supplies feature requests, which
we fulfill and show to the product owner for further input. From the point of
view of development, this worked very well, and the indications from the product
owner indicates that they have also found this to be a good solution.

From the project’s point of view as a whole, this led to us not completing all
use cases. This is something we are not very happy with, as we would like to see
that we were completely finished with the intended functionalities.

Organization and distribution of Work

We decided early in the project period that three group members would immerse
themselves in front end development, and then work on this in the project. The

Chapter 10: Conclusion 101

last group member expressed that he could take responsibility for the back end
alone, as he had great knowledge of this from earlier projects. We thought then
this seemed like a good plan. As said earlier in this chapter we found out too late
that the back end was much further behind the schedule than we wanted, and
that it was therefore too late to reallocate resources so that we would finish the
project.

If we did the project again, we definitely would have distributed the resources
in the group differently than we did. We would then have had two main front
end developers who had worked closely together and made sure that the front
end kept to the schedule. We would have had one main back end developer who
had been in charge of database and API, who had made sure that the back end
kept the schedule. The last group member would have been a flexible developer,
with knowledge on both front end and back end technologies. This member would
probably have worked mostly on the back end with creating endpoints and other
easier tasks that the back end team needed to complete.

We believe this would have meant that the back end would have made enough
progress to have finished the core functionalities. This could have led to us deliv-
ering a product that may have worked in practice.

Final Thoughts

Throughout the project we feel that we have learned a lot, both in terms of skills
in the chosen technologies and not least of all how we work best as a team

When we look back on our project now it is clear that the front end is further
ahead than the back end. We believe that by distributing the resources evenly
between back end and front end, we would have come further overall. This could
have lead to us being able to supply a working product to Cryogenetics before the
release of this report.

We believe that Cryogenetics has received a solid foundation, for the system
being able to be used in practice.

Finally, we would like to thank Cryogenetics and especially Steffen, for what
we perceived as a very good collaboration, and the experience we have received
from the task they gave us.

Bibliography

[1] I. Sommerville, Software Engineering, 10th. Pearson, 2018.

[2] What Is Kanban? Explained in 10 Minutes | Kanbanize, [Online; accessed 3.
May 2021], May 2021. [Online]. Available: https://kanbanize.com/kan
ban-resources/getting-started/what-is-kanban.

[3] What Are Project Boards? [Online; accessed 5. May 2021], 2021. [Online].
Available: https://docs.github.com/en/github/managing-your-work-
on-github/about-project-boards.

[4] What Is Protected Routes? [Online; accessed 5. May 2021], Jan. 2021. [On-
line]. Available: https://dev.to/mychal/protected-routes-with-reac
t-function-components-dh.

[5] What Are Refresh Tokens? [Online; accessed 5. May 2021], Feb. 2020. [On-
line]. Available: https://auth0.com/blog/refresh-tokens-what-are-t
hey-and-when-to-use-them/.

[6] Microsoft Engaged In A Predatory Campaign To Crush The Browser Threat To
Its Operating System Monopoly, [Online; accessed 5. May 2021], Jun. 2006.
[Online]. Available: https://www.justice.gov/sites/default/files/a
tr/legacy/2006/06/01/V-A.pdf.

[7] Enhance your Cloud Security with AMD EPYC™ Hardware Memory Encryp-
tion, [Online; accessed 5. May 2021], Apr. 2016. [Online]. Available: http
s://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encry
ption_Whitepaper_v7-Public.pdf.

[8] Model-View-ViewModel (MVVM) Explained, Online; accessed 10. May 2021,
Apr. 2014. [Online]. Available: https://www.wintellect.com/model-vie
w-viewmodel-mvvm-explained/.

[9] FluentUI, Online; accessed 12. May 2021, May 2021. [Online]. Available:
https://developer.microsoft.com/en-us/fluentui#/.

[10] What is the Microsoft Graph API? Online; last accessed 19. May 2021, Apr.
2021. [Online]. Available: https://docs.microsoft.com/en-us/graph/o
verview.

[11] Authentication Flow, Online; accessed 13. May 2021, Mar. 2021. [Online].
Available: https://docs.microsoft.com/en-us/azure/active-directo
ry/develop/v2-oauth2-auth-code-flow#protocol-diagram.

103

https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://docs.github.com/en/github/managing-your-work-on-github/about-project-boards
https://docs.github.com/en/github/managing-your-work-on-github/about-project-boards
https://dev.to/mychal/protected-routes-with-react-function-components-dh
https://dev.to/mychal/protected-routes-with-react-function-components-dh
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://www.justice.gov/sites/default/files/atr/legacy/2006/06/01/V-A.pdf
https://www.justice.gov/sites/default/files/atr/legacy/2006/06/01/V-A.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.wintellect.com/model-view-viewmodel-mvvm-explained/
https://www.wintellect.com/model-view-viewmodel-mvvm-explained/
https://developer.microsoft.com/en-us/fluentui#/
https://docs.microsoft.com/en-us/graph/overview
https://docs.microsoft.com/en-us/graph/overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow#protocol-diagram
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow#protocol-diagram

104 Inventory Management System

[12] OWASP Top 10 -2017, [Online; accessed 5. May 2021], 2017. [Online].
Available: https://raw.githubusercontent.com/OWASP/Top10/master
/2017/OWASP%5C%20Top%5C%2010-2017%5C%20(en).pdf.

[13] WCAG Levels: level A, AA and AAA compliance, [Online; accessed 5. May
2021], 2021. [Online]. Available: https://myaccessible.website/blog
/wcaglevels/wcag-levels-a-aa-aaa-difference.

[14] What is a linter and why your should use it, Online; last accessed 18. May
2021, Jul. 2020. [Online]. Available: https://sourcelevel.io/blog/wha
t-is-a-linter-and-why-your-team-should-use-it.

https://raw.githubusercontent.com/OWASP/Top10/master/2017/OWASP%5C%20Top%5C%2010-2017%5C%20(en).pdf
https://raw.githubusercontent.com/OWASP/Top10/master/2017/OWASP%5C%20Top%5C%2010-2017%5C%20(en).pdf
https://myaccessible.website/blog/wcaglevels/wcag-levels-a-aa-aaa-difference
https://myaccessible.website/blog/wcaglevels/wcag-levels-a-aa-aaa-difference
https://sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it
https://sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it

Appendix A

Scrumban tasks

105

Chapter A: Scrumban tasks 107

Table A.1: Front End Scrumban Done

Fix refresh tokens Implement ContextAPI to each View
Option to print TableView of tank Configure log out
Redirect non-logged in users to login-page Implement ContextAPI
Endre sortering fra logikk på frontend til å bruke
API sorterting (approvable og tanklist)

Implement Navigation Bar

Implement location from - location to in table view List over files to be approved
Add table-view to tanks Fix dropdown bug
I hovedkomponentene (TankMap, Backups, osv...);’
sørge for at all logikk ligger i ViewModel,
data lagrer i Provider/Model og view ligger i View

Implement authentication security

Sette opp API bibliotek Fix double scrollbar (in Home.tsx)
Refactor whole TankList system, putting all logic in VM,
data in Provider and just View in the View-files

Mobile view for approvable

Rewrite CSS to use rem instead of pixels Logic/functionality in FilesList
Fix layout on iPad view Backup files
Convert TankLists to continous
scrollable list (infinite scrolling or virtual list)

Search, Sort and Filter in Backupfiles

Update TankList with features to change the tank properties Add scaled view for phones
Feature to delete tanks Fix memory leaks and redirects
Put all interfaces in one file Robust and rich in functionality search filter
Implement Account view Implement Homepage Dashboard
TankMap Mobile view for backups
Change login style to redirect Remove double scrollbars from page

Table A.2: Front End Scrumban Todo

Update Owner in Tank to use the new API endpoint
Kategorisere backups filer, pivottabs
med production og repacking

Change Types (Interfaces + Variables)
from any to the specific type where that’s possible

AdminPage, user rights

By clicking on fish in TableView, info about
that fish (and some transactions comes up)

Sort backups default by filename

Handle if SquarePack or Straw Possible to remove content in tank if client is changed
Endpoint from API which says if the 47L
tank has 6 or 10 cylinders

Feature to share (mail) approvable files and backups

Fix layout on bigger displays than 1080p Testing av komponenter og logikk i ViewModel
FileSorting in Approvable to use more async functions Transaction log page
Find a better solution for FileSorting in approvable, where it
is NOT using two arrays of content (ViewFiles and Files)

Implement global search page

Confirmation Dialog to be styled as FluentUI Fix layout on mobile view (using Firefox responsive design mode)

Appendix B

Project Agreement

109

Appendix C

Project Plan

115

Bachelor - Forprosjektrapport

Marthin G. Klækken,
Casper Fabian Gulbrandsen,

Kristian Jegerud,
Sander L. Olsen

January 2021

1 Background and Goals

1.1 Background

Our bachelor project has been assigned to Cryogenetics, a company specializing
in cryopreservation of aqueous genetic material.

The goal has been made to automate process logging systems, which cur-
rently is manually done using large excel spreadsheets. The current workflow
should be maintained, which means that excel files will be continued to be used
to input data.

1.2 Project goals

Table 1: High-level project goals

High-level goal

HG001 Automate the current manual processing of excel sheets.

HG002 Provide a user-friendly view of the stored data.

HG003 The system should be easily maintainable.
Cryogenetics is not a software company, and does not have a
large IT staff. The system will likely be maintained by a 3rd
party, and as such, good documentation of the systems is im-
portant.

1

HG004 Ensure appropriate confidentiality, integrity and availability.
The data is considered confidential.
The data is business critical, and is used for production, in-
tegrity is also critical.
Certain steps of the production process is held to tight dead-
lines, as such availability is also important. However as the
data is input with excel spreadsheets, short outages may not be
disastrous. Still, availability is likely important. Further con-
sultations with the company is required to decide a MTD and
RTO1.

HG005 Ensure non-reputability.

HG006 Provide a flexible, fish-centric2 view of the data.

Learning goals

During this project we want to learn more about and become better at working
in groups. We will therefore focus on:

• Organizing and conducting digital meetings due to the corona virus situ-
ation.

• Using a formal management technique, such as Scrum-ban to manage a
larger scale project.

• Using React to create a responsive and maintainable web application.

• Use CosmosDB to create a flexible database for storing the excel docu-
ments to store in a secure place.

1.3 Frameworks

• The web interface should work on all browsers supporting HTML5 and
Javascript (ES5)

• The web interface should be scalable so that the website looks good for
handheld devices

• Servers will be set up in Azure so that it can be delivered as a finished
product to Cryogenetics

1Maximum tolerable downtime, recovery time objective
2Instead of the data being viewed for each slot in the tanks, instead view the data as

per-fish, with the tank location as a column. Essentially a transpose of the view

2

2 Scope

2.1 Subject field

Cryogenetics is a fast growing company and it is clear that their system using
only Sharepoint and Excel documents is not a sustainable solution. In short,
this process involves the manual creation of excel documents from predefined
templates, where these are stored in folders in a common Sharepoint solution.
These documents are manually updated and reviewed, where approved excel
documents are manually placed in a folder of approved documents.

Our task will then be to automate parts of this process, make their data more
secure and store this data in a safer place than in these sharepoint folders. It
should still be possible for Cryogenetics to continue to use Excel and Sharepoint
in their work process as this has great benefits for proper use. Therefore, we
will design a database that makes it possible to upload excel documents with
different structure and create an administrator page and approval system for
these in the form of a website.

Our task is therefore not to manage the customer data. Nor should we create
a user interface for entering data into the database, as the data should be parsed
from excel documents allowing them to retain their current workflow.

The thesis will therefore cover many different technologies within our field:

• Responsive web applications using HTML, CSS and React

• RESTful API developed in .NET

• Design of database and data modelling

• iPad application developed using React Native

• Setting up servers in Azure

• Internationalization of both Web and iPad application

• Facilitate for people with disabilities

3

3 Organization

3.1 Organization chart

Figure 1:

4

3.2 Roles and responsibility

Product Owner: Steffen Wolla
Steffen Wolla represents Cryogenetics’ interests and will act as the product
owner of the project. His responsibilities in the development are to have a clear
vision of what Cryogenetics wishes to be developed and convey this vision to
us. He will be available to answer any questions about Cryogenetics’ production
routines and be present at our weekly meetings.

Project Manager: Sander L. Olsen
Sander L. Olsen will act as the Project Manager. He will be the link between
the product owner (Steffen Wolla) and us. His responsibilities as the project
manager will be to organize meetings on behalf of the team with Cryogenetics
and/or the bachelor thesis advisor.

Project Security Manager: Marthin G. Klækken
Marthin G. Klækken will act as the Project Security Manager. His respon-
sibilities will be to ensure that the development follows approved and secure
development standards. He will implement security policies, regulations and
rules to make definite sure that the team develops a product that satisfies the
security standards Cryogenetics expects.

Project Development Manager: Casper F. Gulbrandsen
Casper F. Gulbrandsen is the development manager and will be responsible for
setting up workable development environments. He will also ensure that the
team follows the chosen development model and are using the same code stan-
dard. Gulbrandsen will maintain the GitHub repository and make sure that the
team follows agreed upon Git standards.

Project Documentation Manager: Kristian Jegerud
Kristian Jegerud will be the Documentation Manager of the project. He will
make sure that as much as possible of the development and administration is
documented and made easily available to the team. He will take notes during
meetings and ensure that team members log their hours accurately.

Additional Roles:
In addition to the above roles every team member will serve as developers, with
Sander L. Olsen as the main back-end and database developer, with Marthin G.
Klækken as additional assistance. Marthin G. Klækken, Casper F. Gulbrand-
sen and Kristian Jegerud as the main web-application developers and front-end
work as shown in figure 1. Casper F. Gulbrandsen and Kristian Jegerud will
also oversee the design of the website.

5

4 Organization of quality assurance

4.1 Documentation, standard use and source code

We want to deliver a product to Cryogenetics that is stable and solidly made,
and it is therefore important that we take the time to establish good routines.
This then means that we must document the project well, ensure well-written
code and do what we can to secure our code in the best possible way.

Storing of documents

• All source code is stored in GitHub

• Report is written in LaTeX with Overleaf

• The LaTeX report is synchronized with GitHub as a backup

• Meeting notes and other important documents is uploaded to our Teams
channel

Internationalization

The client has expressed a desire for internationalization of the service, as they
have laboratories in the USA and Chile, among other places. We will therefore
follow the standards for internationalization when we develop the service.

4.2 Development routines

We have agreed to use Scrumban as our development routine. Scrumban is a
flexible agile method for continuous development, offering a smooth workflow
which fits well for a smaller group who have different components of a larger
system to create.

Combining a kanban board with the scrum development method gives us
a prioritization-on-demand, which provide us with the more important compo-
nents to work on next. Scrumban also offers us the prescriptive agile nature
of scrum while also being able to use the process improvement of kanban to
allow the team to continually improve the work process of various components.
This is important for us as we have been given several different components of
various priorities to develop.

We are also divided into two different small groups developing different com-
ponents of the same system. We feel like this makes simple team collaboration
a better alternative than having a scrum master for each team.

We are having weekly meetings with the product owner to give updates,
receive updates, and to let each other know about further developments and
planning. We also have frequent internal team meetings both physical and
on Microsoft Teams, while also actively asking the advisor Aland for develop-
ing/architecture advice.

6

4.3 Tools

Name Type Area of use

Overleaf Online LaTeX editor and
compilator

Project report

GitHub Provider of Internet host-
ing for software develop-
ment and version control
using Git

Version control

Visual Studio Official IDE for develop-
ment of .NET applications

Back-end development

Visual Studio Code Free source-code editor Front-end and back-end
development

Docker Software containerization
platform

Containerization of appli-
cation

Microsoft Azure, various
IaaS, PaaS & SaaS

Cloud provider Hosting of back-end
servers and services

Toggl Track Online time tracking and
reporting services

Time registration

GitHub Project Board Online Kanban tool for or-
ganizing and prioritizing
the work

Project management

Expo Platform for making uni-
versal native apps for An-
droid, iOS and Web

iPad application

Microsoft Teams Communication platform Workspace chat, video-
conferencing, files and
notes storage, and task-
management

7

4.4 Risk analysis

Nr Event Probability Consequence Action

1 Inadequate documentation Likely Problematic Yes

2 Project not finished in time Likely Critical Yes

3 Development costs go over bud-
get

Unlikely Problematic Yes

4 Web service is not well enough
developed and will not be used

Unlikely Critical Yes

5 Source code leakage Unlikely Unproblematic No

6 Important persons in team be-
comes ill or absent for other rea-
sons

Unlikely Problematic Yes

7 Loss of source code Unlikely Critical Yes

8 Cryogenetics ends project Unlikely Critical No

9 Issues arising communicating
with the Sharepoint service, or
the Sharepoint service going
down

Unlikely Problematic No
(out of
scope)

10 Miscommunication / underspec-
ification, end up building some-
thing the customer does not
want.

Likely Critical Yes

11 Feature-creep, new features and
changes keep being added, pre-
venting progress on the project.

Likely Critical Yes

8

4.5 Risk Management

Nr Solution

1 If we see that we are on the verge of ending up with inadequate
documentation, we have to make a quick assessment of whether
the documentation should be prioritized before other and less im-
portant parts of the project. This is because we will hand over a
product that we will not continue to operate, and the company
must then have good documentation of the product that they can
use further.

2 If we see that we will not finish the entire project within the time
frames we have decided, we will have to talk with client and find
a solution. This will then involve a solution to remove parts of
what is left of the project and give the client a way forward after
our project is finished.

3 Go over the costs that have been set up and look at solutions
where we can cut down on the budget. This might be more flexible
uptime for servers or less space on the servers. Another relevant
solution would be to discuss the budget with the client, and find
out whether it would be relevant to expand the budget.

4 Do a thorough job in the research phase while at the same time
constantly work closely with the client so that the quality of the
product meets the requirements. Beyond that, it is our responsi-
bility to do good enough research and learn the technology well
that the product is as good as possible.

6 Since we do not have the opportunity to bring in a replacement,
we must therefore exchange expertise and share information with
each other so that if someone should go missing, someone else has
the necessary expertise needed.

7 The source code is stored in Github, a well-known version-control
system owned by Microsoft, which makes us consider it a safe place
to store the source code. We will also make sure to have important
parts of the code stored as backups, preferably on physical hard
drives at home.

10 Have frequent meetings with the customer, and use a agile devel-
opment methodology, allowing for changes to be made underways
to suit the customers needs.

11 Prioritize what the customer wants, and make sure the client is
aware of what is possible, and what is not. Freeze the architecture

9

5 Plan for implementation

5.1 Gantt diagram

Se figure 5.1.

10

Q
2 2021

February
M
arch

A
pril

M
ay

June
11

18
25

1
8

15
22

1
8

15
22

29
5

12
19

26
3

10
17

24
31

7
14

Introductory period

Planlegging / Research

Arkitektur klar
Arkitektur klar
Arkitektur klar

Im
plem

entering / Program
m

ering

Skriving av rapport

Transition period / O
verlevering av produkt

Introductory period

Planlegging / Research

Arkitektur klar

Im
plem

entering / Program
m

ering

Skriving av rapport

Transition period / O
verlevering av…

11

Appendix D

GUI-workshop

129

Chapter D: GUI-workshop 131

(a) UI design wire frame of the list of files

(b) UI design wire frame of the tank map

(c) UI design wire frame of the dashboard/homepage

Figure D.1: Wireframe designs

132 Inventory Management System

(a) First iteration

(b) Second iteration

(c) The final design

Figure D.2: Design iterations of the approve files list

Chapter D: GUI-workshop 133

(a) Product Owner suggestion of tank map design

(b) Implementation of PO’s suggestion

Figure D.3: From suggestion to implementation

Appendix E

Rough initial recurring price
estimate

135

Figure E.1: Rough initial recurring price estimate

Appendix F

Initial SQL draft

139

Chapter F: Initial SQL draft 141

Figure F.1: Rough initial EER diagram design

Appendix G

Swagger UI, and authorization
configuration

143

Chapter G: Swagger UI, and authorization configuration 145

Figure G.1: Swagger UI showing some endpoints, and link to specification

146 Inventory Management System

Figure G.2: Authentication on Swagger development site as configured through
the Azure Portal.

Appendix H

Managed identity

147

Chapter H: Managed identity 149

Figure H.1: Managed identity enabled on App Service

150 Inventory Management System

Figure H.2: Access policy of keyvault with managed identity

Appendix I

Toggl Track Summary Report

151

Summary Report
01/01/2021 – 05/20/2021

TOTAL HOURS: 1750:15:39

191:40:00

153:20:00

115:00:00

76:40:00

38:20:00

0:00:00

5
2

:5
8

:0
7

4
8

:5
9

:5
6

4
7

:3
3

:4
6

8
8

:4
4

:2
2

9
5

:1
2

:1
5

9
0

:0
6

:2
2

1
0

0
:4

2
:5

9

9
4

:2
0

:1
4

1
3

3
:0

2
:5

8

6
7

:1
7

:0
3

1
0

1
:5

5
:0

0

1
2

6
:2

8
:2

2

1
1

7
:5

3
:3

3

1
4

5
:3

7
:0

3

1
5

3
:2

0
:0

0

1
9

2
:3

3
:3

9

9
3

:3
0

:0
0

1/1 -

1/3

1/11 -

1/17

1/25 -

1/31

2/8 -

2/14

2/22 -

2/28

3/8 -

3/14

3/22 -

3/28

4/5 -

4/11

4/19 -

4/25

5/3 -

5/9

5/17 -

5/23

USER DURATION

SA Sanderlo 486:02:17

MA Marthigk 431:50:00

KJ Kristian Jegerud 420:15:00

CA Casperfg 412:08:22

TIME ENTRY DURATION

Without description 857:39:06

Thesis writing 123:00:00

Account page development 93:20:00

Tankmap 43:25:00

Review 29:35:00

Refresh token development 27:30:00

Morgenmøte 24:09:12

Material-UI/Account View research 24:00:00

Tanklist 21:25:00

Login page development 21:00:00

Protected Routes development 21:00:00

Implementation 19:30:00

Other time entries 444:42:21

Page 1/9Bacheloroppgave

CA Casperfg 412:08:22

Design Pattern 1:23:16

Design prototype 3:35:00

Docker setup 1:00:00

Fiks av headerbar 0:00:16

Gruppemøte 3:44:00

Jira setup 1:40:00

Mandagsmøte 0:46:00

Morgenmøte 13:54:12

MVVM 1:17:00

Møte med Cryogenetics 5:33:00

Prototyping 5:12:24

Without description 374:03:14

KJ Kristian Jegerud 420:15:00

Abstract 1:30:00

Administrativt møte 0:15:00

API Meeting 2:00:00

Page 2/9

USER - TIME ENTRY DURATION

Bacheloroppgave

API og Frontend 10:55:00

Backup view 2:05:00

Bugfixing 13:00:00

Bugfixing, Authentication 0:45:00

Bugfixing, Docker 1:35:00

Bugfixing, Search 1:15:00

Checkboxes on file list 2:40:00

Code Quality 5:00:00

Conclussion 11:00:00

ContextAPI 2:30:00

Design 6:05:00

Design enhancements 1:00:00

Design fixes 1:30:00

Development Environment 4:45:00

Dialogs on files 1:30:00

Docker problemløsing 0:15:00

Etterarbeid av møte 0:30:00

Page 3/9

USER - TIME ENTRY DURATION

Bacheloroppgave

FilesListView 6:15:00

FilesListView, not finished 3:45:00

Filter, minDate og maxDate 3:00:00

Fixed commented by others 1:45:00

Forberedelse til møte 1:00:00

Gjennomgang av rapport 1:30:00

GlobalSearch 14:45:00

Good practices and tips for React/Typescript 1:30:00

Gruppemøte 3:25:00

Homepage 1:15:00

Håndtering av OAuth key (cookies) 0:30:00

Implementation 19:30:00

Improving Code Quality 5:30:00

Introduction 6:10:00

Mandagsmøte 1:00:00

Morgenmøte 10:15:00

MVVM in React 4:15:00

Page 4/9

USER - TIME ENTRY DURATION

Bacheloroppgave

Møte med Cryogenetics 2:05:00

Møte med veileder 3:45:00

New design for FilesList 4:15:00

Physical meeting with Cryogenetics 3:00:00

Preparations 1:00:00

Presentation API 0:30:00

Propertiesbar & Backup view 1:55:00

React & FluentUI 12:15:00

React and CSS 1:00:00

React, FluentUI 5:15:00

Refactoring 16:45:00

Refactoring in FileSorting 1:30:00

Repository and Kanban organization 3:15:00

Requirements Analysis 0:35:00

Research API Fetching 1:00:00

Research ContextAPI 3:00:00

Research for thesisreport 4:45:00

Page 5/9

USER - TIME ENTRY DURATION

Bacheloroppgave

Research Implemented MVVM 3:45:00

Research Mobx architecture 10:00:00

Research Redux & ContextAPI 2:50:00

Research, Spreadsheets in React/TS 11:45:00

Research/Impltementation MVVM 6:30:00

Review 29:35:00

Search and Filter in backups 2:00:00

Search filter 6:20:00

Sorting & searching 3:00:00

Sorting of files 6:15:00

Tanklist 21:25:00

Tankmap 43:25:00

Tanktable 4:00:00

Technologies 5:00:00

Temp Dashboard 1:50:00

Testing 11:00:00

Torsdagsmøte 0:15:00

Page 6/9

USER - TIME ENTRY DURATION

Bacheloroppgave

User Interface 10:40:00

Various 1:00:00

Weekly meeting with Cryogenetics 1:00:00

Working on project plan 5:45:00

Workshop med Cryogenetics 0:45:00

Writing Scope, Risk analysis 3:00:00

Without description 7:55:00

MA Marthigk 431:50:00

401 error research on account page 6:00:00

Account information view development 5:00:00

Account page development 93:20:00

Azure authentication research 12:00:00

Backend research 2:00:00

Cookies/storage research 8:00:00

discussion about UI setup 4:00:00

Forprosjektrapport-skriving 4:00:00

Login page developement and merging 4:00:00

Page 7/9

USER - TIME ENTRY DURATION

Bacheloroppgave

Login page development 21:00:00

Login page redirect development 16:00:00

Login page redirect research 4:00:00

Login page research 2:00:00

Logout functionality development 11:00:00

Material-UI/Account View research 24:00:00

Microsoft Graph API useEffect research 8:00:00

Protected Routes development 21:00:00

Protected Routes research 6:00:00

React research 1:00:00

Refresh token development 27:30:00

Refresh token research 9:00:00

Researched storage/state/useeffect 7:00:00

Researching conversion of excel to Json 2:00:00

Researching react-redux 1:00:00

Thesis writing 123:00:00

UseEffect/Localstorage research 10:00:00

Page 8/9

USER - TIME ENTRY DURATION

Bacheloroppgave

SA Sanderlo 486:02:17

Backend 8:00:00

Project plan 2:21:25

Without description 475:40:52

Created with toggl.com Page 9/9

USER - TIME ENTRY DURATION

Bacheloroppgave

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Inventory M
anagem

ent System

Casper Fabian Gulbrandsen
Sander Låstad Olsen
Kristian Jegerud
Marthin Gunerius Klækken

Inventory Management System for
Cryopreserved Biological Material

Bachelor’s project in Department of Computer Science
Supervisor: Tom Røise

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Project Group
	The Report

	Development Process
	Development Methods
	Scrumban
	Execution
	Summary of Work and Meetings

	Requirement Specification
	Use Cases
	High-level Description
	Expanded Description
	Operational Requirements
	Security Requirements
	High Level Misuse Cases

	Technologies
	Cloud
	React
	TypeScript
	Docker
	Git
	CSS Grid
	RESTful API
	.NET 5 & C#
	Technical Memo

	Design
	Structure
	Front End Structure
	Database design

	Implementation
	Front End Web Interface
	Routing
	The Navigation Bar
	The Storage Tanks
	User profile page
	The Authentication Process
	Back end
	Back End Security
	Production setting

	User Interface
	Fluent UI
	Layout
	UI Examples
	Responsive User Interface
	User Interface Iterations
	Web Content Accessibility Guidelines

	Development Environment
	Front End
	Back End

	Quality Assurance
	Front end
	Back end
	Testing
	Automated Test

	Conclusion
	Bibliography
	Scrumban tasks
	Project Agreement
	Project Plan
	GUI-workshop
	Rough initial recurring price estimate
	Initial SQL draft
	Swagger UI, and authorization configuration
	Managed identity
	Toggl Track Summary Report

