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Abstract

This thesis documents our process of getting a machine learning model to un-
derstand financial documents and parse them to JSON. We created a dataset and
evaluated multiple models, but ended up with YoloV3 to locate the fields. The
final model finds the correct fields 57.56% of times on our test set.
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Sammendrag

Denne oppgaven dokumenterer prosessen vår med å få en maskinlæringsmodell til
å forstå finansielle dokumenter og tolke dem til JSON. Vi opprettet et datasett og
evaluerte flere modeller, men endte opp med YoloV3 modellen for å finne feltene.
Den endelige modellen finner riktige felter 57.56% ganger på testsettet vårt.
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Chapter 1

Introduction

1.1 Background and motivation

The task Finexa gave us was to read PDFs and pictures of Invoice (Faktura) and
Payment Voucher (Bankbilag) to extract structured data from various fields that
are given on the document.

An application that can extract info from invoices and bank documents has a
lot of valuable applications. To name some:

• Integration with accounting systems where Finexa does not get invoice data,
but only Portable document formats (PDFs).

• Validate data about an invoice to make sure the data received is correct. In
other words an extra step of validation.

• Automatically process information of a given document, and use that in a
user application for automatic pipelines by providing a general .

Our report documents the process of creating FinanceDoc2JSON, which is able
to parse different finance related documents to a machine readable format. It is
important that this information is reliable so and that there is no false information
that gets imported, as the information will be acted upon and is used to send
payment reminders. We will focus on getting a high accuracy on different invoice
layouts, as seen in Figure 1.2, and we additionally validate the info our machine
learning model outputs. This means that part of the task includes finding different
ways of validating the fields that are on the invoice. See more in section 2.1.

We use EasyOCR to run Optical Character Recognition (OCR) on the image
and get the locations of all the text, and one can believe the task is solved by this.
But we have not identified the critical fields, such as invoice number, customer
name, invoice amount, and the Norwegian Kundeidentifikasjonsnummer (KID).
This is elaborated on in subsection 2.1.1. In chapter 5, we use a computer vision
model to find the location of these fields, and extract the text from the location to
find the value. In section 2.1 we talk about the validation and cleaning we do on
the extracted text, so our system does not output incorrect data.

In chapter 3, we will put extra weight on the Software 2.0 paradigm, and how

1



Chapter 1: Introduction 2

we have used it to create a dataset consisting of 30 000 invoices. Finexa already
has the json) data linked to each invoice PDF, and we use this data in section 4.5
to create a weakly supervised dataset.

In chapter 5 we go into choosing a machine learning model. We evaluate 5
different models, and end up using YoloV3, and continue in section 5.3 how we
integrated the model into the rest of our application.

1.2 Finexa

Finexa is a invoice follow-up and debt collection agency, which helps their cus-
tomers to get their Accounts Receivable paid on time1. Finexa’s data is sourced by
their partner Iizy Integrations, which retrieves the PDFs and corresponding JSON
from the customer’s accounting systems.

Finexa also gets payment vouchers from different banks. These files are PDFs
that document a payment of an invoice. These also usually comes with structured
data, but sometimes not.

The invoice and payment data is used in their Accounts Receivable Man-
agement (Fakturaoppfølging) service. If Finexa receives PDFs without structured
data, their employees have to manually enter the information about the invoice
into their system, which is a labor-intensive and error-prone process. Finance-
Doc2JSON will help them with these issues.

1.3 Why is this a challenging task?

There are multiple challenges with finding key info in a document. challenges:

• Our solution should work on as many as possible file types.
• The PDFs specification is very long and difficult, and a PDFs can contain lots

of different types of information. some of the things that are included in a
PDFs are:

◦ characters, words, lines, blocks
◦ images
◦ multiple pages
◦ fonts
◦ different color spaces
◦ metadata
◦ embedding arbitrary files
◦ JavaScript scripts
◦ may be scanned

Because of the complexities in the PDFs specification, there are not many solu-
tions which support editing PDFs, and some are even paid to use this feature, like
Adobe Acrobat Reader. The best python supported open source implementation

1https://finexa.no/

https://finexa.no/


Chapter 1: Introduction 3

that supports editing, rendering, text extraction, image extraction, rendering and
converting to image we found is PyMuPDF[1]. A lot of the complexities of the
PDFs specification has been removed by using this library and has enabled us to
work programmatically with PDFs files.

Figure 1.1: The lower image
vaguely shows the text which is
hidden on black background, which
can still be selected and searched
for. Rasterizing the image would
yield a loss of information.

A PDFs file may be searchable. To simplify this matter, this is achieved by
adding a text layer above the vector graphics. We illustrate this in Figure 1.1,
where there is black text on black background. Using most PDF-viewers, like adobe
acrobat or chrome’s built-in text viewer, we can select this text and copy it to the
clipboard, even if it is not visible. This is because of the text layer behind the
graphics. This also means we can add text to the text layer which is not visible in
the PDF. Because of this complexity, it is hard to find specific information which is
in the document, for example the invoice number. There are 2 solutions to this, we
can extract all of the text which is in the PDFs to a text file, and find the info in this
text file. The other solution is to convert the page into an image and analyze this
image with computer vision techniques. When converting from PDFs to image,
we lose the information about what text is at the location in the PDF. We ended
up using both of these techniques in FinanceDoc2JSON.

1.4 Project boundary and scope

We will focus on making the system stable for invoice, payment voucher, and
add validation and approval of the data, but we will also discuss ways of adding
support for other types of documents, such as receipts.

Because OCR in general is looked at as a solved problem, we will focus on
creating a model that is able to locate the relevant fields in a good way. In other
words our model should output a mask so we can extract only the relevant field
and give the image mask to an OCR model and have it extract the text.
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Figure 1.2: Examples of invoice templates in our dataset



Chapter 2

Fundamentals

2.1 Field validation

The data in financial documents are connected to the real world and is governed
by many different properties:

• Tax laws and other laws about what info is required to be on an invoice such
as supplier inf and information about how to pay the invoice. We can make
the following assertions: Gross amount, net amount, Tax amount, invoice
line sums and a number of units should be formatted as numbers. They
should also always have currency specified.

• The sum of the invoices lines should always sum to the total amount on the
invoice.

• Dates should be valid dates and Invoice date field is chronologically before
the payment date field.

• KIDs, organization numbers, social security numbers, and bank account
numbers have built in validation by adding a check digit to the end, which
is usually calculated using some form of the Luhn algorithm1, using either
modulus 10 or 11. The control digit is added to prevent human errors when
manually entering numbers when transferring payments. This works by cal-
culating a weighted sum of every number, but the last modulus 10 or 11. If
the weighted sum equals the control digit, the number is valid. 2 1

• If the recipient is a company, the organization number, company name, and
company address must exist in Brønnøysundregistrene3, and these values
can be cross-validated between each other.

• There are only 4 different VAT-rates in Norway.

This is not an exhaustive list, and there are many implicit things that invoices
do. With enough data, a machine learning model should learn some of these,
instead of explicitly coding each feature.

1https://en.wikipedia.org/wiki/Luhn_algorithm
2http://www.lefdal.cc/div/mod11-sjekk.php
3https://www.brreg.no/

5

https://en.wikipedia.org/wiki/Luhn_algorithm
http://www.lefdal.cc/div/mod11-sjekk.php
https://www.brreg.no/
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1 class Modulus:
2 def __init__(self, modulus: int, weights: List[int], operation:

Operations = None) -> None:,→

3 self.modulus = modulus
4 self.weights = weights
5 self.operation = operation
6

7 def calculate_check_digit(self, str_without_check_digit: str) ->
int:,→

8 str_without_check_digit_list: List[int] = list(map(int,
list(str_without_check_digit))),→

9 self.weights += len(str_without_check_digit) //
len(self.weights) * self.weights,→

10 self.weights = self.weights[: len(str_without_check_digit)]
11 zipped = zip(self.weights, str_without_check_digit_list)
12

13 operation = lambda x: x
14 if self.operation == Operations.SUM:
15 operation = lambda x: sum(list(map(int, list(str(x)))))
16 weighted = sum([operation(x * y) for x, y in

reversed(list(zipped))]),→

17

18 remainder = weighted % self.modulus
19 if remainder == 0:
20 return 0
21 return self.modulus - remainder

Listing 1: Modulus class

2.1.1 Ambiguous fields

Most fields are ambiguous and can not be fully validated based only on the value.
Most invoices have a date and due date field, but some may also have a registration
and delivery date. There is no direct way to know if a date is an invoice date,
payment due date, registration date, or delivery date. The same is true for supplier
name, buyer name and addresses of both. This is usually pretty apparent from the
invoice layout and the position of the text, but there is no real way for us to
validate these fields only based on the output text value.

There is also fields you can indirectly validate like the invoice amount. By
applying the rule that the invoice line amounts should sum to the invoice total, and
can therefore be cross-validated by summing up the invoice lines, and rejecting
the value if it is far off. This is not currently implemented, but is an idea for further
improving the output of the application.

Extracting Structured Data from Templatic Documents extended this idea by

https://ai.googleblog.com/2020/06/extracting-structured-data-from.html


Chapter 2: Fundamentals 7

using a binary classifier to score the candidates based on how likely it is that the
value corresponds to its field. They also used information about nearby fields, and
the candidates position.

Even when a machine learning model uses information about layout and design,
there might still be ambiguity, as our final model mainly looks at the actual value
to determine if the field is correct. The best way to solve for this is to train the
model on a great variance of data. Which is what we tried to do in chapter 5.

2.2 Machine learning

We assume the reader already knows the basics of machine learning, and the
key concepts behind how it works. We will give a short introduction, but if the
reader knows the basics of deep learning and that they are universal function
approximate trained with gradient decent they can skip this section. If the reader
wants to learn more they should look at [2][3][4].

2.2.1 The basics of a neural network

The building blocks of machine learning is linear algebra and a bit of calculus. By
applying matrices with matrix multiplication and an error function (also called
loss function) with an optimizer you have a basic neural network. The matrices
store what is commonly called the weights, which we can say is analogous to
many switchers, but is often portrayed as neurons. When many of these switches
are combined, you can achieve very complex behavior.

When you try to train a basic neural network, you will run matrix multi-
plications against the layers in a "feed forward" fashion. To normalize the input
between the layers one usually apply an activation function (which is just an non-
linear function) on the results of each layer. This is done to prevent the results
from having numeric overflows. Sigmoid4 was a popular activation function, but
nowadays most people use ReLu5. You start with running matrix multiplication
on the input and the first layer, then the results of that against gets put into an
activation function and matrix multiplication is run against the next layer, this
is done for all remaining layers. Then you apply the error function against the
output and expected output. Then the weights are updated based on how much
they contributed to the final error, by backpropagating the error[5]. This can all
be seen in 2. Layers, error functions, and optimizers all vary but most build upon
the concept described above.

2.2.2 CNN

Convolution neural nets (CNN) are neural nets that contain largely convolution
layers. Which are layers that perform a set of convolution operations on the input

4 1
1+exp−x

5max(0, x)
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1 import numpy as np
2 features = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
3 labels = np.array([[0,1,1,0]]).T
4

5 initialize_weights = lambda x, y: 2 * np.random.random((x,y)) - 1
6 weights_0 = initialize_weights(3,4)
7 weights_1 = initialize_weights(4,1)
8 activation = lambda x, derv=False: x*(1-x) if derv else 1/(1 +

np.exp(-x)),→

9 for _ in range(60000):
10 output_layer_1 = activation(np.dot(features, weights_0))
11 output_layer_2 = activation(np.dot(output_layer_1, weights_1))
12 layer_2_delta = (labels - output_layer_2) *

activation(output_layer_2, derv=True),→

13 layer_1_delta = layer_2_delta.dot(weights_1.T) *
activation(output_layer_1, derv=True),→

14 weights_1 += output_layer_1.T.dot(layer_2_delta)
15 weights_0 += features.T.dot(layer_1_delta)a

Listing 2: How a basic neural network can be made based off code from [6]

with a filter. This is visualized in Figure 2.1. The filter is applied to the input
data, and the sum is then stored as an output feature. The filter is other words
analogous to the weights in a standard neural network. In other words, the filter
is parameters that are optimized.

What is interesting is that the filter is able to learn filters that previously has
been handcrafted by humans as we will discuss in section 3.1.

There is also a Polling layer that will downsample the input, max pooling will
for instance output the max value inside a window as illustrated by Figure 2.2.

We advice the reader to look at CS231n Convolutional Neural Networks for
Visual Recognition [7]

Figure 2.1: Example of convolution layer, a figure from [8]
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Figure 2.2: Example of max pooling layer, a figure from [9]



Chapter 3

Software 2.0 - Data-driven
programming

Software 2.0 is a term for a new software paradigm where the program is learned
by a lot of data. The term was popularized by Andrej Karpathy in [10], most fam-
ous for leading the development of the Tesla Autopilot system[11]. The paradigm
involves letting optimization algorithms define the program “code” by looking
at a lot of data. Most of the development is also centered around helping these
learned functions perform as good as possible by giving them a variety of input
and continually finding edge cases to improve on.

Why should we use data to learn a function instead of going with a rule-based
system? For this, we have to look at some machine learning history. For a long time
all features were handcrafted around different rules. In computer vision, Scale-
invariant feature transform (SIFT) and Hough transform were heavily used 12.
There are many reasons for why this was the case for so long:

• Compute used to be hard to find. Today compute is available, and it’s cheaper
than ever. Big neural networks are possible to run on a gaming GPU, or just
rent it on AWS 3.

• Previously there was no good common libraries. Nowadays, many of the
biggest companies have published their own open source machine learning
library 4 5.

• Many had also lost faith in deep learning 6.
1https://image-net.org/static_files/files/ILSVRC2010_NEC-UIUC.pdf
2https://image-net.org/challenges/LSVRC/2010/
3https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html
4https://github.com/pytorch/pytorch
5https://github.com/tensorflow/tensorflow
6https://en.wikipedia.org/wiki/AI_winter section "Developments post-AI winter"

10

https://image-net.org/static_files/files/ILSVRC2010_NEC-UIUC.pdf
https://image-net.org/challenges/LSVRC/2010/
https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html
https://github.com/pytorch/pytorch
https://github.com/tensorflow/tensorflow
https://en.wikipedia.org/wiki/AI_winter
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3.1 Why AlexNet was a breakthrough

Classifying an image is no easy task for computers. The computer does not have
eyes as we do, so we have to describe the image with numbers in a matrix. To
compress the image down and make it more “readable” for the computer, we use
feature extractors to only get out the relevant information. The question now is,
what are good features and relevant information? That is not an easy question
to answer. For a long time, computer vision practitioners looked at edge filters,
image gradients, different image scales, etc. But these features are not enough to
carry all of the information in an image.

The way most deep learning architectures works is to learn the feature ex-
tractors. There has been a lot of research on what features these models pick up
on 78 9. The original AlexNet paper[12] even included a visualisation of the first
convolution layer as seen in Figure 3.1. Interestingly, the first layer chooses many
filters humans commonly have handcrafted, like edge detection. The big break-
through here is the fact that feature engineering has now become obsolete, since
the model is clearly able to learn the filters previously handcrafted and it beat all
other models.

Figure 3.1: First convolution layer of AlexNet[12], figure from
[12]

3.2 The definition of a chair

If we look at a standard chair, it usually has a back and four legs. Using that as
a heuristic and handcrafted feature, you would not be able to classify a barstool
as a chair. You can continue to add new heuristics for the barstool, but then what
about a bean bag ? That can also can be used as a chair. You can continue to do
this, but there will always be some part of the specifications of a chair missing.
Instead, defining a chair as what a neural network says a chair is after seeing
many thousands of rich variants of chairs. You will get a much better definition.

7https://distill.pub/2017/feature-visualization/
8https://distill.pub/2021/multimodal-neurons/
9https://arxiv.org/abs/1904.08939

https://distill.pub/2017/feature-visualization/
https://distill.pub/2021/multimodal-neurons/
https://arxiv.org/abs/1904.08939
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By not restricting the system to human definitions of what a char looks like, one
can see much greater creativity emerge from the model. There have been quite
a few results in recent years showing that by not restricting the algorithms to
expert knowledge, they will surprise us with new ideas and creativity. A more
recent example of this is Alpha GO playing move 37 and 78 against Lee Sedol10.

3.2.1 The long tail

Because of the many invoice design templates as can be seen Figure 1.2, how
would one be able to know what an invoice number look like? In the software
2.0 paradigm, the definition of an invoice number is what the neural network
tells us an invoice number looks like. Given that the neural network will see the
representation of many thousands of invoice numbers with location and other
fields close by, it will be able to generate a much better definition of how an invoice
number than we can Figure 3.2.

3.3 Labeling is iterative

The dataset is never finished. Which is now how most academic research sees it.
In academic research, you are usally given a dataset like MNIST11 or Image-Net 12

and the task is to create the best model. The dataset does not change much here.
Our task is different, the dataset will change over time. New accounting system

will be created and the invoice templates will change. The model should therefore
continually be trained on new data and especially new harder samples.

By integrating the model with a user interface, the model could also automat-
ically get the new labels from having a human in the loop. If it a field wrong,
the user will correct the mistake, and the model becomes better by automatically
adding the new label to the dataset and shipping a new model at night.

It is also worth noting that we noticed new templates had been added from
when we started the project, and when we were closed to finish. Having good
integration for this helps boost performance.

3.4 In software 2.0 the dataset is the code

The machine learning model is a function approximator. It learns to map an input
to a given output, the basis of a machine learning problem. To do this well, the
dataset has to be divorces, ideally big, and “clean”. The dataset is what defines
the boundaries of the system and also the behaviors. Karpathy’s analogy is that
instead of compiling source code files into a binary, a neural network will compile
the dataset into a binary.

10https://www.quora.com/What-was-the-significance-of-move-37-and-move-78-in-Go-AlphaGo-versus-Lee-Sedol
11http://yann.lecun.com/exdb/mnist/
12https://www.image-net.org/

https://www.quora.com/What-was-the-significance-of-move-37-and-move-78-in-Go-AlphaGo-versus-Lee-Sedol
http://yann.lecun.com/exdb/mnist/
https://www.image-net.org/
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As discussed in his talk Building the Software 2 0 Stack (Andrej Karpathy)[13]
the software 2.0 IDE is not here yet. We therefore had to create tools ourselves
to combat some of the problems for visualization and finding edge cases sec-
tion 3.5subsection 4.4.2.

Figure 3.2: Karpathys Tweet saying that a Software 2.0 solution
is better than your handcrafted features a

ahttps://twitter.com/karpathy/status/893576281375219712

3.5 How we used the software 2.0 paradigm?

3.5.1 Fetching more hard samples

One thing we used a lot was looking at the validation loss to find images that
was hard and or easy. This is a common thing to do to make sure the model and
dataset behave correctly. Figure 3.2

Karpathy also discussed the “Tesla data engine”[14] as visualized in Figure 3.3.
We also built upon this idea with the combination of validation loss. By having
code for “continuous improvement” which would get more data from a source
if it’s has a high loss. By fetching more samples when we find a hard sample
Figure 3.4 we would make the model more robust to hard samples.

Figure 3.3: The ”Tesla data engine” presented by
Karpathy [14]

https://twitter.com/karpathy/status/893576281375219712
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Figure 3.4: Our “data engine”

3.5.2 Build upon other models

We have also built upon other models. For instance, a lot of the dataset comes from
one cluster as discussed in subsection 4.4.2. We used a k-means model to make it
possible to optimize our primary model further. The k-means models were used
to preprocess the dataset. For instance, it was used to generate the weights for the
weighted dataloader as mentioned in section 5.2.

3.5.3 Machine learning is primarily an infrastructure problem

If one looks at the algorithms used today, most of the core algorithms are over a
decade old. The core building blocks of AlexNet was algorithms that were over a
decade old [15] and [5]. These algorithms are also the once used in the models
we used. There are of course been some upgrades of the building blocks and intro-
duction of new like [16] and [17], but even the architecture of common machine
learning models [18] and [19] builds upon the CNN architecture idea that was in-
troduced in [15]. There are of course, some tweaks, for instance with Resnet they
have added the ability to skip connections between layers. However, the layers
are still primarily CNN.

One can also see this with a common image shared by Karpathy Figure 3.7.
Even though most people unfamiliar with machine learning thinks that most of
the time is spent playing with the model. If you plan to solve a problem, then
infrastructure is what needs to be solved first. Most of the performance gain is
not in tweaking the model, but in creating a solid dataset. This is also said by
Googles director of research Peter Norvig ”We don’t have better algorithms than
anyone else. We just have more data.” 13 and “Instead of trying to be cleaver with
an new algorithm if you gather more data the worst published algorithm will beat

13https://youtu.be/ql623nyCdKE?t=341

https://youtu.be/ql623nyCdKE?t=341
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the best”14. However to be able to fetch more data, handle incoming data and
integrate new data, one needs good infrastructure.

Figure 3.7: Karpathy on model architecture in real life, figure from [13]

So what is meant by machine learning being an infrastructure problem? To
train a model which solves a problem it’s a lot about the Long tail subsection 3.2.1.
The main problem to solve is the many edge cases. To do that, one needs the
infrastructure to find the hard samples, fetch more hard samples, automatically
label that, and then be able to release a new model. Many of these are ideas are

14https://youtu.be/yvDCzhbjYWs?t=1031

https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet/issues/24
https://youtu.be/yvDCzhbjYWs?t=1031
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also discussed in the talk by Karpathy at “Tesla Autonomy Day”[14].

Figure 3.8: Figure from[20] for how most people view machine learning, and
how it should not be solved.



Chapter 4

Finexa dataset

The dataset which Finexa provided contained 1.2 million(Appendix C) PDFs of
invoices with corresponding structured JavaScript Object Notations (JSONs) file
with the different invoice properties, like invoice number, kid, debtor and creditor
names and addresses, etc. This data ranged over multiple years, and contains
various invoice layouts. This gives us a rich dataset with high variance.

4.1 Invoices with properties

The JSON file looks very similar to what we try to produce 3. Keys for describing
different properties of the document, and values for those properties. One can
also see that invoices come in different shapes and forms in Figure 4.1

1 {
2 "kid": null,
3 "date": "2020-12-28",
4 "due_date": "2021-01-07",
5 "principal_amount": "6272,00",
6 "customer_number": "1149248",
7 "invoice_account_number": "15062160508",
8 "invoice_number": "10004"
9 }

Listing 3: Example JSON for Figure 4.1

4.2 Payment vouchers

The dataset also had PDFs of payments vouchers with a few different layouts, as
can be seen Figure 4.2. These did not have a corresponding JSON file so they had

17
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Figure 4.1: Examples of synthetic invoice based on a real invoice template.

to be labeled manually. The dataset we ended up using is therefore smaller, but
demonstrates that our model is able to learn to extract key fields here as well.

4.3 Real life data and our dataset

A large proportion of the PDFs in the dataset are digitally created, and are there-
fore of high quality. However we cannot assume that the input we get into Fin-
anceDoc2JSON to be of such high quality, and might be scanned, taken image
of and be degraded. We will in the section 5.2 discuss how we further make the
model be able to accurately handle degraded and badly captured invoices.

4.4 Data distribution

4.4.1 Uncommon data

There are, however some critical values that are uncommon in the dataset. Most
of the invoices are created issued in Norway, and use NOK as the currency. This
means we will not be able to handle different languages and currencies such as
EUR or USD. To overcome these shortcomings in the dataset, the ideal solution
would be to generate PDF with custom values and layouts, such as has been done
in Attivissimo et al. [21]. Because of the PDF internal structure of PDFs this is a
bit hard1, and is not a task we had time to look at deeply.

There is also some structure that is uncommon in the data. That can be seen
Figure 4.3, we found only one template with this kind of structure. So for the

1https://github.com/pymupdf/PyMuPDF/issues/257

https://github.com/pymupdf/PyMuPDF/issues/257
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Figure 4.2: Example of synthetic payment voucher based on payment voucher
template.

(a) Small percentage of the data has the fields
value being below the field descriptor

(b) Most of the field descriptors and value goes
horizontally

Figure 4.3: Uncommon and common field locations

model to be able to deal with this we had to apply some techniques as described
in section 5.2, but there is still a way to go Figure 6.4.

4.4.2 Uneven distributions

There was a large part of the dataset that was based on the same invoice template.
This can be seen by the Figure 4.4 and Figure 4.5. Because of this, we added
weights to the dataset, so the model does not think most invoices are like the
most common template in the dataset. This reduces overfitting and model bias.

While there is no clear elbow here like there are with some other data distribu-
tions, one can see that the curves start to have an elbow like shape near a cluster
size of "35"(when looking at the results, this was very reasonable). When we tried
to cluster based on that, we got the following dataset distribution Figure 4.5. As
one can see some templates are much more used in the dataset. If we sort the
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Figure 4.4: Elbow method results. Y-axis is distance between cluster center (in-
ertia), X-axis is cluster size.

Figure 4.5: Distributions of invoices templates with a cluster size of 35. Axis is
most visible in a PDF reader. Y-axis is percentage and X-axis is cluster number.

cluster size of each invoice template and sum the value of a chunk of size 5, we
can clearly see that 5 invoice templates account for more than 50% of the dataset,
as can be seen Table 4.1.

4.5 Automatically labelling with weak supervision

Because we knew the values of the properties of the invoices, we could create a
script to find them and thereby label the dataset automatically.

By first locating the keywords for a property and then searching for the value
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Chunk Size (%)
0 0.01
1 0.02
2 0.03
3 0.08
4 0.11
5 0.22
6 0.53

Table 4.1: How much a five sorted cluster togehter contribute to the dataset. One
can see that 5 classes contribute to over 50% of the dataset.

close to the keyword, we automatically labeled a large part of the dataset. Some
PDFs had no actual text, but had an image inside the PDF so we first had to run
OCR on the input. Some rules did not work well with certain invoice templates.
We therefore also added custom rules for some designs. One can view this as an
uncompressed way of finding the different invoices fields in a template. When
the model trains on this it will compress this down to a weight and generalize
it even more like discussed in section 3.4. It is also important to remember that
this “hardcoded labeler” could not be used in production as the only reason it
works is because we know the value we are searching for (because of the JSON
file provided). This automatically labeling is close to what was done in [22].

4.6 Payment vouchers

The payment voucher data was not labeled, so we had to label it our self. We used
coco-annotator for this 2, and created a bounding box for the fields we ended up
using.

4.7 The final dataset

The final dataset we trained on had 30 000 invoices and 500 payment vouchers.
The fields we tried to predict where the once you can see in Table 4.2. We trained
on an image size of 1030x1030 for the best quality.

Since we trained on a small subset (3% of the entire dataset), one could get
even better performance by training on more data. However, since one epoch took
around 15 minutes, and we wanted to train for ideally one 100 it took almost one
day of training time to achieve 100 epochs. Therefore we could not have a much
bigger dataset. The reason for the payment voucher dataset being so small was
that we had to hand label the dataset ourselves, and labeling took some time if
one wanted to be precise.

2https://github.com/jsbroks/coco-annotator

https://github.com/jsbroks/coco-annotator
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Field Invoice Payment voucher
Principal amount Ø Ø
Date Ø Ø
Due date Ø
Customer number Ø
KID Ø
Invoice account number Ø
From account number Ø
To account number Ø
Payer Ø
Creditor Ø

Table 4.2: Field for different documents
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Methods and implementation

5.1 The model

The model is at heart of this application. However as discussed in chapter 3 we
believed a better model could always be changed later. Therefore we decided to
try a few models, but not hold on too long to them if they did not work.

We looked at several segmentation models and object detection models before
ending up with using Yolov3. By first selecting some popular segmentation models
12 and some popular object detection models 3 we began to evaluate them.

5.1.1 One model to locate and one model to read

Because OCR is looked at as a solved problem for computer generated text with
many open source programs 45, we wanted to spend most of our time on making
a model that is good at locating the relevant fields. We therefore created our own
model for locating the field, and used EasyOCR on the field once it was located to
extract the text.

5.1.2 How we evaluated the models

In the beginning, we evaluated the models by looking at how well both models
worked togehter, which means the output of our model + EasyOCR. This is a
valid metric, but since our model could output a perfect bounding box and then
EasyOCR could misread a character, the metric had some flaws since our model
cannot optimize for the output of EasyOCR. We therefore later looked at the F1
score for the bounding boxes, when training and testing. Then we ran a separate
evaluation pipeline to test both models together.

1https://neptune.ai/blog/image-segmentation-in-2020
2https://medium.com/intel-student-ambassadors/segmentation-using-generative-adversarial-networks-80a161cf33c0
3https://arxiv.org/pdf/1807.05511.pdf
4https://github.com/tesseract-ocr/tesseract
5https://github.com/JaidedAI/EasyOCR
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5.1.3 U-net

U-net[23] was designed for dealing with biomedical images and is very popular
for image segmentation 67. We therefore decided to try it for our task.

We built upon an implementation by Aman Arora 8. Going for an autoencoder
architecture. There was also mentioned an GAN architecture design in the paper,
but we did not try this.

The model worked fairly well when training to predict a mask for a single field
reaching an accuracy9 of 83.3% at it’s best. However the results when down when
we scaled up the model to predict new fields, staying below 50% accuracy.

When we investigated why, we could see that the U-net mask became less
clear as more fields were added, as shown in Figure 5.1a. Applying some post-
processing would probably help, but we did not try this because we would like
to do the least amount of postprocessing of the mask. So we tried to see if there
were other models we could try who did not have this problem and would return
to U-net if nothing else was found.

5.1.4 Yolov3

Yolov31011 was an incremental improvment over the original implementation, but
with less controversy 12. We built upon a version13 with a smaller codebase this
time to make it easier to debug.

As with the other models, we had to do modifications to make the model
trainable with our dataset, but we quickly got accuracy curves that looked like
this Figure 5.2 as one can see the accuracy is pointing in the right direction.

5.1.5 Other models

Pix2Pix

Pix2Pix[24] is a generative model for producing image to image translation. Since
this is a GAN, it would require quite a bit more compute than the other models
we would be testing, but since they had demonstrated good results in the paper,
it can be seen Figure 5.3, we wanted to take a look. If the extra compute could
translate into good results. That did not happen. While the loss went down, the
results were rubbish with an accuracy of 0%. Since an epoch would take close to
an hour, we decided to pull the plug after 20 epochs. Note that this was tested

6https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
7https://scholar.google.de/scholar?oi=bibs&hl=en&cites=10845403114495995712&as_

sdt=5
8https://amaarora.github.io/2020/09/13/unet.html
9Accuracy is here defined as the final output of both models combined, and all other usage of

the word accuracy references to this. Unless otherwise specified.
10https://github.com/eriklindernoren/PyTorch-YOLOv3
11https://arxiv.org/abs/1804.02767
12https://blog.roboflow.com/yolov4-versus-yolov5/
13https://github.com/eriklindernoren/PyTorch-YOLOv3

https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
https://scholar.google.de/scholar?oi=bibs&hl=en&cites=10845403114495995712&as_sdt=5
https://scholar.google.de/scholar?oi=bibs&hl=en&cites=10845403114495995712&as_sdt=5
https://amaarora.github.io/2020/09/13/unet.html
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://arxiv.org/abs/1804.02767
https://blog.roboflow.com/yolov4-versus-yolov5/
https://github.com/eriklindernoren/PyTorch-YOLOv3
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(a) U net output (b) Expected output

Figure 5.1: U-net with many fields

before upgrading the GPU as discussed in subsection 8.8.3, so it might be worth
investigating with a powerful enough GPU.

Mask R-CNN

Mask R-CNN14 is a model published a few years back, and that then did well for
several benchmarks tasks.

We had some problems with this model and was not able to produce any good
results. We build upon a prebuild pytorch model 15. Getting a lot of out of memory
problems with high resolution images and not good results on image scaled down.
This was before we upgraded to a new GPU as mentioned in subsection 8.8.3, so
these problems might have been resolved with the new GPU.

It was mentioned in “Invoice 2 Vec: Creating AI to Read Documents - Mark

14https://arxiv.org/pdf/1703.06870.pdf
15https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html

https://www.youtube.com/watch?v=18Pxvs50G-0
https://www.youtube.com/watch?v=18Pxvs50G-0
https://arxiv.org/pdf/1703.06870.pdf
https://www.youtube.com/watch?v=18Pxvs50G-0
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://www.youtube.com/watch?v=18Pxvs50G-0
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Figure 5.2: Accuracy of the first time running Yolov3

Figure 5.3: Example output of Pix2Pix, figure from [24]

Landry - H2O AI World London 2018” that they had gotten promising results with
this model. So it might be worth investigating further by anyone willing to take a
look.

Yolov5

Yolov5 16 is the latest and best model built upon [25]. While we tested this model,
we could see the loss going down, but this model did not seem to learn anything
Figure 5.5.

We spent some time trying to debug why, trying to overfit on single examples
and only one field, turning off augmentation, and turning off some of the weights
with the pretrained model. None of it helped, and we decided to instead try a
version with a smaller codebase and ended up with subsection 5.1.4.

5.2 The evolution of Yolov3

There were added some tweaks to the model to make it perform better. First of
all, we applied a weighed dataloader that builds upon the process we discussed

16https://github.com/ultralytics/yolov5

https://www.youtube.com/watch?v=18Pxvs50G-0
https://www.youtube.com/watch?v=18Pxvs50G-0
https://www.youtube.com/watch?v=18Pxvs50G-0
https://github.com/ultralytics/yolov5
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Figure 5.4: Loss of the bounding box for Yolov5

Figure 5.5: Flat recall curve for Yolov5

in subsection 4.4.2. We ran k-means on a invoice from each creditor, then based
on the cluster we could see how much each invoice template contributed to the
entire dataset. Then we could weight the dataset such that each invoice template
is seen almost equally often, this reduced overfitting as can bee seen in Figure 5.6.

We also imaug17 to run augmentation on the dataset. By applying Gaussian
noise, shear, and rotation, we can get even more diverse data.

We also tried to fetch more of the more challenging samples, and uncommon
invoices designs subsection 4.4.1, and they were weighted more in favor by the
dataloader.

5.3 The application on top of the model

There needs to be some sort of extra software on top of the model to deal with
input to the model, output of the model, cleaning up the model’s output, running
the Graphql api, etc.

17https://imgaug.readthedocs.io/en/latest/
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Figure 5.6: Average F1 score of all the fields. The first Yolov3 model vs the latest.
Glamorous-shape-20 is name of the latest model.

This software is something we wrote our self and it makes no assumption
about how the underlying model works. We expect only an input string. Therefore
the model can be changed at any time.

This software is also what is in changer of validating the output of the model so
it has built in account number and kid validation. As mentioned in subsection 2.1.1
some fields cannot be directly validated. So for instance the invoice number field
and the customer number field we extract the number from the input.

5.4 Model output pipeline

The following describes what happens when an input is giving to the program.

5.4.1 Processing the image

First we preprocess the image. If it’s a PDF it gets converted into an image. Cur-
rently only the first page is converted, but adding support for multiple pages
should be quite straightforward.

After the image is converted it will be padded so that the image size is a square
shape. This makes it a bit easier to work with the Yolo format.

5.4.2 Yolo bounding box prediction

Then we give the preprocessed image to the Yolo model to get the bounding box
for each field. Yolo will then output a the bounding box location, class predictions
and the confidence of each prediction.

5.4.3 Postprocessing of bounding box

Given an bounding box we will cut out the parts of the input image inside the
bounding box.
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1 from abc import ABC, abstractmethod
2 from typing import List
3

4

5 class TextResolver(ABC):
6 @abstractmethod
7 def find_in_text(self, text: str) -> List[str]:
8 """Resolves a field in a text"""
9

10 @abstractmethod
11 def find_in_file(self, path: str) -> List[str]:
12 """Resolves a field in a file"""

Figure 5.7: Resolver

5.4.4 EasyOCR for extracting the text

Based on the postprocessed bounding box image EasyOCR will extract the text.

5.4.5 Field revolvers

Borrowing a term from Graphql18, field revolvers are classes we have made to be
able to extract the field value from the OCR input and validate the value.

They all build upon the same abstract class shown in Figure 5.7 which makes it
so we interact with all the resolves in the same way. The resolver are what decides
how to extract the field value from an input string.

Some resolver will therefore be strict (like principal amount which will make
the value invalid if it contains any non numeric value or missing a comma.

Other revolvers we don’t need to be as strict because we can directly validate
the value based on a validation schema Figure 5.8. Like the one for the account
number. Here we prepossess the input a bit, then run the validate on the entire
input and return the valid account numbers.

5.5 Testing

The main applications has unit tests for all the field revolvers. One can then easily
add new rules for the resolver to make it stricter, and have tests to verify nothing
broke.

It is not really feasible to run traditional unit tests on a machine learning
model. That’s what the validation set is for. We also used wandb a lot as men-
tioned in subsection 5.5.1. Tracking the model metrics made us sure we did not

18https://graphql.org/learn/execution/

https://graphql.org/learn/execution/
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1 from .modulus import Modulus
2 from .validator import Validator
3

4

5 class AccountNumberValidator(Validator):
6 def __init__(self) -> None:
7 self.modulus_10 = Modulus(10, [5, 4, 3, 2, 7, 6, 5, 4, 3,

2]),→

8 self.modulus_11 = Modulus(11, [5, 4, 3, 2, 7, 6, 5, 4, 3,
2]),→

9

10 def validate(self, input_str: str) -> bool:
11 account_number = input_str.strip()
12 has_correct_length = len(account_number) == 11
13 has_correct_check_digit =

self._has_correct_check_digit(account_number),→

14 return has_correct_length and has_correct_check_digit
15

16 def _has_correct_check_digit(self, account_number: str) -> bool:
17 check_digit = int(account_number[-1])
18 account_number_without_check_digit = account_number[:-1]
19 calculated_check_digit_11 =

self.modulus_11.calculate_check_digit(account_number_without_check_digit),→

20 return check_digit == calculated_check_digit_11

Figure 5.8: Account number validator
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(a) F1 of account number field (b) F1 of date field

(c) F1 of kid field (d) F1 of principal amount field

Figure 5.9: Example of the plots we generated with wandb

accidentally break the model. This could be further improved by having an addi-
tional dataset the model has to pass before becoming out in production.

5.5.1 Model health tracking

We also used Weights and Biases19 to track the model during training and to view
historical performance against the newest model. For instance, we could this way
detect that a bug had slipped in when we trained a new model because the F1
suddenly dropped more than expected as seen in Figure 5.10. We could also detect
that we need to focus more on the date field, because it did not perform as well
as the other fields Figure 5.9b.

5.6 Interacting with the model

We created a GraphQL API for interacting with the model. This way one can easily
query the model. An example of the communication can be seen in Figure 5.11.
This is for the file Figure 6.2.

The payment voucher model and the invoice model is trained separately. The
reason for this is because of the difference in dataset size, and it makes it easier
to debug things when we got unexpected results (because we know what data

19https://wandb.ai/

https://wandb.ai/
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Figure 5.10: Sudden drop in F1, looks like a bug has slipped
in...

can have affected the model). There is therefore two separate mutations “Upload-
BankVoucher” and ‘ UploadInvoice”

5.7 The importance of a good frontend

The data outputed form the model still has to be validated. Even Tripletex does
not automatically import the invoice it has parsed, so having a good frontend
is crucial to make the application work nicely for the usecase. Google even has a
option called “human in the loop”20 where humans can correct the machine before
the output is used. This is to prevent damage in critical business applications. Our
plan is to use a good frontend so the user can validate in real time, and in a way
such that any corrections can be used to further improve the model as prototyped
in Figure 5.13. This way the frontend will both be a way to validate the model,
and to automatically label any problems (which will be done any time the output
value of the model is changed by the human). The human can correct the model
by moving the bounding box for the field were the bounding box is off. Then the
application will automatically read in the new value. This way the user does not
need to type in anything,which can be error-prune and they also automatically
label the dataset.

20https://cloud.google.com/document-ai/hitl

https://cloud.google.com/document-ai/hitl
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mutation UploadInvoce($file
:Upload!) {

UploadInvoice(file:$file)
{

bankDocument{
invoiceNumber{
value

}
invoiceAccountNumber{
value

}
kid{
value

}
date{
value

}
dueDate{
value

}
}

}
}

Code listing (5.1) Request

{
"data": {
"UploadInvoice": {
"bankDocument": [
{
"invoiceNumber": {
"value": "37484"

},
"invoiceAccountNumber":

{
"value": "97753925280"

},
"kid": {
"value":

"0011616037484003"
},
"date": {
"value": "2020-12-29"

},
"dueDate": {
"value": null

}
}

]
}

}
}

Code listing (5.2) Response

Figure 5.11: Example of api request and response
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Figure 5.12: Our application frontend where the
user can upload PDFs (Work in progress)

Figure 5.13: The page a user will be redirected to when having uploaded a docu-
ment. The fields in the form to the right will be filled in by our machine learning
model, through the GraphQL API. (Design prototype)
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Implementation and results

6.1 Invoices

As discussed in the subsection 4.4.2 we could cluster the invoice template into 35
cluster. If we ran the application on one from each cluster we got the following
results Table 6.1. We will now show 5 examples of a input to the model, and the
output so the numbers below makes more sense, and one can better understand
what the model is able to do and not.

We also added the average edit distance, which is how "wrong" the output
was. Low edit distance usually means error from the OCR. Th numerator is the
total edit distance, and the denominator is how many files there was found an
value, but has a mismatch with output.

The total accuracy was then 57.56%. 10% of the error is based on 3 chars
edit errors of the output, which means a lot more accuracy can be gained with an
better OCR model.

If one look at subsection 6.1.4 one can see that the f −1 bounding box is much
higher for some fields (like KID) and does not match with Table 6.1. Which can
indicate bugs we have not found in both the post processing, and or the OCR.

35
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Field Correctly Classified Missing/Incorrect Edit distance

Kid 19 14 44
6

Date 20 15 21
7

Due Date 19 16 23
11

Principal amount 16 11 25
11

Customer number 20 15 48
14

Invoice account number 20 15 2
1

Invoice number 27 8 32
8

Table 6.1: Results on all the different invoice templates. Tested and validated by
a human for all the 35 different templates.
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6.1.1 Result of the latest model on a synthetic dataset

We created a synthetic dataset to preserve the privacy of the debtor and creditor
of the original invoice. The template s based on a real invoice.

Example - 1

This is quite a basic invoice, and the template is quite common. As one can see
from Figure 6.3 the model did all right. One can see in Table 6.2 the reason for the
two misclassifications were not on our model, but from the OCR text extraction.

Field Correct bounding box detected Text extracted Comment
Kid Ø Ø
Date Ø Ø

Due date Ø 7
Got out invalid
date. See Fig-
ure 6.1a

Principal amount Ø 7

Read out
decimal
wrongly. See
Figure 6.1b

Customer number Ø Ø
Invoice account number Ø Ø
Invoice number Ø Ø

Table 6.2: Result matrix of Figure 6.2

(a) Due date OCR input (b) Due date principal amount OCR input

Figure 6.1: Error from example 1
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(a) Input

1 [
2 {
3 "kid": "0011616037484003",
4 "date": "2020-12-29",
5 "due_date": null,
6 "principal_amount": "34 654,90",
7 "customer_number": "11616",
8 "invoice_account_number": "97753925280",
9 "invoice_number": "37484"

10 }
11 ]

(b) Output

Figure 6.2: Results of example 1
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Example - 2

This is a bit more complicated invoice. As mentioned in the subsection 4.4.2 this
invoice design does not come up very often. Even many of the existing solutions
had problems with this one as discussed in chapter 7, as did our solution Fig-
ure 6.3. One can see the results in Table 6.3 and Figure 6.4.

Field Correct bounding box detected Text extracted Comment
Kid 7 7 It’s the account number
Date 7 7

Due date 7 7 It’s the date

Principal amount Ø 7

EasyOCR added
a backslash as
part of the out-
put which cut
part of the input
off

Customer number 7 7
This is actually
misread organ-
ization number

Invoice account number 7 7

The bounding
box is bit off,
but almost well
placed.

Invoice number 7 7

Table 6.3: Result matrix of Figure 6.4

(a) Principal amount OCR input (b) Invoice account number OCR input

Figure 6.3: Error from example 2
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(a) Input

1 {
2 "invoiceNumber": "17",
3 "invoiceAccountNumber": null,
4 "kid": "97753546107",
5 "dueDate": "2020-01-13",
6 "date": null,
7 "customerNumber": "991990946",
8 "principalAmount": "910,00"
9 }

(b) Output

Figure 6.4: Results of example 2



Chapter 6: Implementation and results 41

Example - 3

This invoice is also a bit complicated since the customer number is not very easy
to see. The model has also problems finding that, and the due date, but does
otherwise well. In both cases the problem is our model does not find the correct
bounding box. Figure 6.5

Field Correct bounding box detected Text extracted Comment
Kid Ø Ø
Date 7 7

Due date Ø Ø
Principal amount Ø Ø
Customer number 7 7

Invoice account number Ø Ø
Invoice number Ø Ø

Table 6.4: Result matrix of Figure 6.5
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(a) Input

1 {
2 "invoiceNumber": "152150",
3 "invoiceAccountNumber": "97754775878",
4 "kid": "00011521509",
5 "dueDate": "2019-05-06",
6 "date": null,
7 "customerNumber": null,
8 "principalAmount": "11 123,26"
9 }

(b) Output

Figure 6.5: Results of example 3
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6.1.2 Result of the latest model on a out of sample dataset

Since we all have some invoices laying around, we decided to test the model on
some invoice templates it had never seen before.

NTNU invoice

Field Correct bounding box detected Text extracted Comment
Kid Ø Ø

Date 7 7

Thought is was
the term field.
Therby failing
validation

Due date 7 7 Is the date.
Principal amount Ø Ø

Customer number Ø Ø

There was no
customer num-
ber here. So
“null” is correct.

Invoice account number Ø Ø

Invoice number Ø 7
Misclassified a 3
as 9. Position 5.

Table 6.5: Result matrix of Figure 6.6
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(a) Input

1 {
2 "kid": "521342011063845",
3 "date": null,
4 "due_date": "2021-04-29",
5 "principal_amount": "0,00",
6 "customer_number": null,
7 "invoice_account_number": "76940517431",
8 "invoice_number": "1106984"
9 }

(b) Output

Figure 6.6: Results of NTNU invoice
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Telenor Invoice

This is also an invoice design the model has never seen before. It is also quite
unique and does not look like most of the invoices in the dataset. In addition
to that is this a scanned input image. The model is actually able to find the most
obvious fields, but misclassified the customer number, and did not find the account
number.

Field Correct bounding box detected Text extracted Comment
Kid Ø Ø

Date 7 7
It’s below the
customer num-
ber

Due date Ø Ø
Principal amount Ø Ø
Customer number 7 7

Invoice account number 7 7

Invoice number 7 7

Not as appar-
ent as other in-
voices, but it is
present at the
top right.

Table 6.6: Result matrix of Figure 6.7
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(a) Input

1 {
2 "invoiceNumber": null,
3 "invoiceAccountNumber": null,
4 "kid": "55119721340091",
5 "dueDate": "2021-04-27",
6 "date": null,
7 "customerNumber": "27",
8 "principalAmount": "2131,86"
9 }

(b) Output

Figure 6.7: Results of the Telenor invoice
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Komplett invoice

The following is technically an receipts, but has all the fields an invoice would
have. So we decided to test it. The model does not as well here.

Field Correct bounding box detected Text extracted Comment
Kid 7 7

Date 7 7

Due date and
date is the
same, but here
the model does
not output a
value for the
date, but it is
defined on the
invoice.

Due date Ø Ø
Principal amount Ø Ø
Customer number 7 7

Invoice account number 7 7

Invoice number 7 7

Table 6.7: Result matrix of Figure 6.8



Chapter 6: Implementation and results 48

(a) Input

1 {
2 "invoiceNumber": "28",
3 "invoiceAccountNumber": null,
4 "kid": null,
5 "dueDate": "2015-12-28",
6 "date": null,
7 "customerNumber": "07",
8 "principalAmount": "2796,00"
9 }

(b) Output

Figure 6.8: Results of the Komplett invoice
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6.1.3 How much augmentation can the model handle ?

Because we know the input to the model could become quite noisy because of
the input coming from scanners, or bad photo images. It’s worth checking out
how much augmentation the model can handle. By applying some augmentation
Figure 6.9 on a image not in the traning set and giving it to the model we got the
following results.

Kid and due date stayed the same through all the augmentation. Which was
the same results as in Figure 6.6.

Customer number was misclassified as ’0’ when the rotation was applied, but
was correct with the other augmentations.

Principal amount was correct with rotation, but was set to “480” when shear-
ing was applied, and failed validation when the scanning augmentation was ap-
plied as the OCR returned “U,000c”.

Invoice number was correct with shear and rotation, but not the scanning
augmentation. Date was null on all, like we got with Figure 6.6.
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(a) Shear augmentation (b) Rotation augmentation

(c) Scanning augmentation (rotation, shear, blurring and gaussian noise)

Figure 6.9: Augmentation
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6.1.4 F1-score of our model on bounding box matching on invoices

(a) F1 custoemr number field (b) F1 date field

(c) F1 due date field (d) F1 kid field

(e) F1 account number field (f) F1 of principal amount field

Figure 6.10: wandb logs from our last invoice model
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6.2 Payment vouchers

Since payment vouchers will always come directly from the bank we can here
assume the quality of the input to be much higher. We did however also here
apply things like augmentation to try to achieve the best quality. We can however
see from Figure 6.15 that there are cases the application has problems with.

6.3 Result of the latest model on a synthetic dataset

6.3.1 Example 1

This payment voucher was parsed without any problems. One can however see
that the model gives a bounding box that is a bit big, so one could add some more
post processing for the fields message, payer and creditor. However the output is
correct.

1 [
2 {
3 "fromAccountNumber": "97753925280",
4 "toAccountNumber": "97754775878",
5 "message": "BELOPET GJELOER:\nF3122931/KN3124766\n\f",
6 "creditor": "BETALER:\nFinexa AS\nTorggata 72\n2317 Hamar\n\f",
7 "payer": "BErALEen,\nFinexa AS\nTorggata 72\n2317 Hamar\n\f",
8 "principalAmount": "3418,00",
9 "date": "2020-09-25"

10 },
11 {
12 "fromAccountNumber": "97753546107",
13 "toAccountNumber": "97754775878",
14 "message": "BELOPET GJELOER:\nKundenr. 18534\n\f",
15 "creditor": "\f",
16 "payer": "BETALER:\n\nNTNU GJOVIK\nTEKNOLOGIVEGEN 22\n2815

Gjovik\n\f",,→

17 "principalAmount": "1749,00",
18 "date": "2020-09-25"
19 }
20 ]

(a) Output

Figure 6.11: Results of basic/medium payment voucher
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(a) Input
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6.3.2 Example 2

This payment voucher was parsed without any problems.

1 {
2 "data": {
3 "UploadBankVoucher": {
4 "bankDocument": [
5 {
6 "fromAccountNumber": {
7 "value": "97753925280"
8 },
9 "toAccountNumber": {

10 "value": "97754775878"
11 },
12 "message": null,
13 "creditor": {
14 "value": "SIGURD AS\n\f"
15 },
16 "payer": {
17 "value": "BRAGE\nTEKNOLOGIVEGEN 22\n\f"
18 },
19 "principalAmount": {
20 "value": "217,24"
21 },
22 "date": {
23 "value": "2020-09-23"
24 }
25 }
26 ]
27 }
28 }
29 }

(a) Output

Figure 6.13: Results of basic payment voucher
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(a) Input
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6.3.3 Example 3

This payment voucher with multiple entries gave an unexpected results as can be
seen Figure 6.15. The reason the JSON response is so weird, seems to not be the
model, but the software on top. We did not have time to debug this, but add it to
show the software has some problems with parsing payment vouchers as well.

1 [
2 {
3 "fromAccountNumber": {
4 "value": "97753925280"
5 },
6 "toAccountNumber": null,
7 "message": null,
8 "creditor": {
9 "value": "BRAGEITAS\nTEKNOLOGIVEGEN 22\n2815 GIOVIK\n\f"

10 },
11 "payer": {
12 "value": "NTNU GIOVIK\nTEKNOLOGIVEGEN 22\n2815 GJOVIK\n\f"
13 },
14 "principalAmount": {
15 "value": "71484,40"
16 },
17 "date": {
18 "value": "2020-09-16"
19 }
20 },
21 {
22 "message": {
23 "value": "iaiciiihedamabl\n\f"
24 },
25 "creditor": {
26 "value": "BRAGE IT AS\n\f"
27 },
28 "payer": null,
29 "principalAmount": null,
30 "date": {
31 "value": "2020-09-16"
32 }
33 },
34 ...

(a) Output part 1
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1 ...
2 {
3 "fromAccountNumber": {
4 "value": "97753546107"
5 },
6 "toAccountNumber": null,
7 "message": null,
8 "creditor": {
9 "value": "| BRAGEIT AS\nTEKNOLOGIVVEGEN 22\n2815 GIOVIK\n\f"

10 },
11 "payer": {
12 "value": "7 SIUURY UU BRAVE SIDE DARREN\n0 0125 OSLO\n7\n\f"
13 },
14 "principalAmount": {
15 "value": "150000,00"
16 },
17 "date": {
18 "value": "2020-09-16"
19 }
20 },
21 {
22 "fromAccountNumber": {
23 "value": "97753925280"
24 },
25 "toAccountNumber": null,
26 "message": null,
27 "creditor": {
28 "value": "BRAGE IT AS\n\f"
29 },
30 "payer": {
31 "value": "/ BRAGE FINANS\nPOSTBOKS 100\n| 2317 HAMAR\n\f"
32 },
33 "principalAmount": {
34 "value": "150000,00"
35 },
36 "date": {
37 "value": "2020-09-16"
38 }
39 }
40 ]

(b) Output part2

Figure 6.15: Results of hard payment voucher
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(a) Input
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6.3.4 F1-score of our model on payment vouchers

We cannot do the same quantitative analysis of the accuracy like we did sec-
tion 6.1, because we do not have the same JSON file.

Because this dataset is so small, we applied smoothing to f1-score and got the
following results. As one can see the model is on the right direction. This f1-score
is based on the bounding box, and not the final output as mentioned above. This
can be seen in Figure 6.17.
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(a) F1 smoothed to date field (b) F1 smoothed to entry box field

(c) F1 smoothed to account number field (d) F1 smoothed from account number field

(e) F1 smoothed creditor field (f) F1 smoothed payer field

(g) F1 smoothed principal amount field

Figure 6.17: wandb results from the latest bankvoucher model
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Overview of existing solutions

There already some existing solution, they are however not usually tailored to-
wards getting a clean JSON-like file out from the system, or they are paid or closed
source. Common with all these solutions is that they did not correctly identify the
date in the invoice in Figure 6.4, which tells us that this is an uncommon invoice
layout.

7.1 DocParser

DocParser is an online solution to parse and extract info from PDF’s. A user can
upload PDF’s and choose from a selection of already available templates to extract
information. DocParser has different rules for extracting text. The rules work by
either specifying the location of the field inside the document and extract the
text in this position, or by converting the document to text and using simple text
editing and conversion rules to locate a value. Pros: simple solution that non-
developers can use to extract fields. cons: the rules have to be specified manually,
and we would have to create a ruleset for every different invoice layout. This
does not scale well, because most people receive invoices with different formats
and layouts. The solution can easily be recreated in a programming environment
using regex, and does not need machine learning. This might be viable to use
when parsing bank vouchers, as there are only a small amount of layouts, and it
is viable to create a custom document parser for each of these layouts.

7.2 TripleTex

TripleTex is a Norwegian accounting system, which has a module for analyzing in-
voices. This solution allows for extracting relevant fields from invoices. It is how-
ever closed sourced and only works on invoices, and not other financial document
types like Payment Vouchers or receipts.
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7.2.1 Accuracy

We have tested TripleTex’ fakturatolk manually with 17 different invoice layouts,
where every invoice infers 5 different fields which means we read 85 different
values. Out of these 85 values, 4 of them were present on the invoice but could not
be found, and there were 3 fields were fakturatolk suggested false values, which
means their accuracy is 91.7%. Fakturatolk did however also have challenges with
parsing Figure 6.4, and did not parse that correctly.

Tripletex does not read the invoice lines, does not set the supplier if it does not
already exists in the database, and it does not read the KID and account number.

7.3 Nanonets

Nanonets is a service which provides computer vision models, to extract key in-
formation. The service is commercial and closed-source and can be queried through
an API. It has a free tier where we can analyze documents using their pre-trained
models for invoices and receipts, and gives us the bounding box and value of
many relevant fields on the invoice. It includes an annotation pipeline where we
can edit the output and correctly label the fields it has missed. The paid tier lets
us train models and add new fields to the output, and we are able to retrain the
model. FinanceDoc2JSON most likely uses similar methods like the ones used in
Nanonets, but this is hard to say, as their solution is closed-source.

We have tested Nanonets manually with 18 different invoice layouts, and the
model returns 15 different fields for every invoice, which means a maximum of
270 values. Not every invoice we tested with included every field, and the total
fields that were included in the invoices was 206 fields. Out of these 206 fields, it
did not identify or incorrectly identified 66 fields, which means it has an accuracy
of 67.9%. It also had problems with the Figure 6.4.

https://nanonets.com/blog/extract-data-from-pdf/
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Discussion

8.1 Development method and process

In hindsight going for a full extreme programming approach might not have been
the best choice. Usually the sprints had to be moved around some, and usually we
would come up with new things we had to prioritize during the sprints. Therefore
they would never be get fully settled.

However using an kanban board for dividing what to focus on was very helpful
and made it very easy to know the state of the things.

We used the following boards.

• New issues
• Icebox (for issues put on hold)
• In progress
• Closed

All issues started as new issues, moved to icebox if it turned out not to be import-
ant. When a new sprint started we moved it to in progress, and then to closed
when it was done.

Figure 8.1: Our Gantt chart at the end of the project. The screenshot is from our
project management framework called ZenHub [26], which is integrated with
GitHub’s issues.
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8.2 Deviation from original project plan

We originally agreed to have weekly meetings. Because there not always was much
to discuss after only a week, we decided instead to have meetings after bigger fea-
tures has been implemented or to conduct Pull request (PR) reviews. This worked
quite well.

As mentioned in section 8.1 we had also planned to do extreme programming
and did that for some weeks, until we saw it was more beneficial to not have to
big focus on the sprints. We still used planning pokers with our Kanban board, but
still had a big focus on many on the coding standards side.

We also ended up spending not as many hours as planned on this project as
seen in Appendix B. We believe we were working smart, and was still able to do
a lot with the time we spent. However, because both of us are have full time jobs
and are full time students there are not always that many hours left at the end of
the day.

8.3 Other research

There has also been written multiple research papers on problems close to the one
we are dealing with. For instance Attivissimo et al. [21] classifies the document
as one of a set of known layouts, and extracts fields from identity documents.
Their solution addresses the localisation of the document inside the image. We do
not address this issue, because in most cases, the document is scanned and not
being taken a picture of. Then OCR is performed on the document, and the text is
extracted using a single-line text recognition model. This is possible because the
layout of the document class they are dealing with do not change.

An approach we did not try is to use Natural language processing (NLP) to
analyze the document. An approach like this would be to convert the documents to
text, and then label our desired fields in the text using a Named Entity Recognizer
(NER). We did not do this, as this required us to create a NLP dataset where we
have labelled the invoice fields. We focused on the You only look once (YOLO)
computer vision model instead.

LayoutLM by Xu et al. [27] uses both the words, the image of the word and
the position of the word to classify each word. DocBank by Li et al. [22] is a large
dataset of documents which can be used as training data in LayoutLM. DocBank
was generated using Latex source files from arXiv to generate a large dataset of
documents where every word is labeled into one of multiple categories such as
abstract, authors, title, body and figures.

8.4 Improvements

There are a few things that are worth investigating further to make a even better
model.
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1. Add a word embedding layer like done in LayoutLM. This way the model
could be able to better distinguish fields by looking at text close to the value.

2. Look at other backbones. Applying some attention mechanism would also
be able to improve the performance.

3. Replace EasyOCR with a fully integrated solution. Running EasyOCR on top
of our model has had some problems. Making the model fully integrated
would make the model more stable as one could also optimize the actual
output and not just the bounding box. Then one can train fully end to end.

4. Expand dataset with a synthetic dataset. Since some fields have a very un-
common value, there should be generated a synthetic dataset with a greater
variation of currency and voucher types.

5. Complete the frontend or add option to write results to a database.
6. Combine the payment voucher and invoice model. Currently they are trained

separately and use different configs, but combining them / using a shared
backbone could improve the results for both models.

7. Both MOD10 and MOD11 can be used to validate kid and account numbers.
There should be added an option to specify which to be used.

8.5 Comparison to other solutions

Creating an invoice understanding algorithm is hard and time consuming, and for
a company which is restricted on time and resources such as Finexa, we would
recommend to use services such as Nanonets[28], Google document ai [29] or
Microsoft Form Recognizer [30] for higher accuracy. All of these have more ex-
perience with invoice understanding than us and have bigger infrastructure. Our
model does better in some scenarios because our solution has support for the Nor-
wegian’s standard for KID and account numbers (which did not work with Nan-
oNets and Google document ai when we tested them), but if these heavyweights,
like Google or Microsoft wanted, they could easily remove the few advantages we
have. There are some unique advantages with our solution by that it can be self
hosted. Which could be an attractive reason for making sure no data is leaked.
One could also much easier integrate fixes for the model, if it keeps classifying
something wrongly. Having done this project gave us a greater understanding for
how these solutions work.

8.5.1 Using Python as the language of the application

The Python language is very popular, and very flexible. However it is not strongly
typed, we tried to combat this by using type checking software mypy, testing and
linters to reduce the amount of bugs. However the strong typing software is not
always the best either. On many lines we had to disable specific tests, because
the linter did not pickup what we wanted to do. This added some noise to the
codebase. We don’t believe this affected us to much, but if the software is extended
one should think about these things.
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8.6 Stealing peoples job?

There was a big focus when working on this project to not steal other peoples jobs,
but to supplement them. All outputs of the model should be verified by an human
as discussed in section 5.7. The frontend that was started on for this projects build
upon this idea. Creating an interface for making it easy to validate the model
output is crucial both to improve the model, and to make sure the output are
correct.

8.7 Authors relation to Finexa

Both authors are employed in Finexa’s Corporate group, BA Group. Because of
this, we have had to take extra care to discern when we represent Finexa and
when we represent NTNU. We have not been paid or given any other type of
reward to work on this project.

8.8 Toolchain / Software tools used

The we used GIT for tracking code changes, and integrated versioning and revision
of the dataset and model using DVC1. This way, we could track changes in our
dataset alongside changes in our code base, and at the same time, keep large files
out of the GIT repository.

The main software we used for machine learning was sklearn, numpy and
pytorch.

To ensure code quality we used unit tests, pylint, mypy, and black code format-
ter.

We used Github as our issue tracker, with additional project management fea-
tures, like epics, Gantt charts using Zenhub, which is free for academic purposes.

8.8.1 PyMuPDF

PyMuPDF[1] is a python package that has helped us at extracting PDFs inform-
ation, such as words, text, bounding boxes, metadata and images. In theory, one
could use this to “handcode” a program for extracting the relevant fields. However
that probably not scale well and not be a general solution.

8.8.2 EasyOCR

By using EasyOCR, which is an open-source OCR engine, we can easily obtain the
text in the image as well as their bounding boxes. EasyOCR works mostly with
image files.

1https://dvc.org/doc/start

https://dvc.org/doc/start
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8.8.3 Hardware used

We wanted to use an “Nvidia 3080 GTX” for this project, but because of the great
GPU market shortage23 we had to start with a basic GPU. We started with an
“Nvidia GTX 780 3GB”. However, as we scaled up the model we needed a better
GPU and upgraded to a better “Nvidia GTX 1080 Ti Armor OC 11 GB” at the end
of March. The final hardware can be seen in Table 8.1.

CPU AMD Ryzen 7 3700X
RAM DDR4 16GB 2933MHz
GPU GTX 1080 Ti Armor OC 11 GB

Table 8.1: Hardware used

2https://www.theverge.com/2021/4/15/22385261/nvidia-gpu-shortage-rtx-3080-warning-comments-2021
3https://www.tek.no/nyheter/nyhet/i/weR1k4/ingen-bedring-i-sikte-for-nvidia-eller-amds-grafikkort

https://www.theverge.com/2021/4/15/22385261/nvidia-gpu-shortage-rtx-3080-warning-comments-2021
https://www.tek.no/nyheter/nyhet/i/weR1k4/ingen-bedring-i-sikte-for-nvidia-eller-amds-grafikkort
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Conclusion

9.1 Result

Finexa wanted an OCR module that was able to parse different finance documents
namely invoices, payment vouchers and receipts. Our solution is able to handle
both invoices and payment vouchers, and correctly finds the fields on the invoice
57.96% of times. There is still room for improvement as discussed in section 8.4,
but our solution is a good proof of concept.

68



Bibliography

[1] J. McKie, PyMuPDF: Python bindings for the PDF toolkit and renderer MuPDF.
[Online]. Available: https://github.com/pymupdf/PyMuPDF (visited on
16/05/2021).

[2] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, 2016th ed. MIT
Press. [Online]. Available: https://www.deeplearningbook.org/ (visited
on 15/05/2021).

[3] M. A. Nielsen, ‘Neural Networks and Deep Learning,’ en, 2015, Publisher:
Determination Press. [Online]. Available: http://neuralnetworksanddeeplearning.
com (visited on 15/05/2021).

[4] S. J. Russell and P. Norvig, Artificial Intelligence: a modern approach, 3rd ed.
Pearson, 2009.

[5] D. E. Rumelhart, G. E. Hinton and R. J. Williams, ‘Learning representations
by back-propagating errors,’ en, Nature, vol. 323, no. 6088, pp. 533–536,
Oct. 1986, Number: 6088 Publisher: Nature Publishing Group, ISSN: 1476-
4687. DOI: 10.1038/323533a0. [Online]. Available: https://www.nature.
com/articles/323533a0 (visited on 13/05/2021).

[6] A Neural Network in 11 lines of Python (Part 1) - i am trask. [Online].
Available: http://iamtrask.github.io/2015/07/12/basic-python-
network/ (visited on 15/05/2021).

[7] CS231n Convolutional Neural Networks for Visual Recognition. [Online].
Available: https://cs231n.github.io/convolutional-networks/ (vis-
ited on 19/05/2021).

[8] 4. Major Architectures of Deep Networks - Deep Learning [Book], en. [On-
line]. Available: https://www.oreilly.com/library/view/deep-learning/
9781491924570/ch04.html (visited on 15/05/2021).

[9] M. S. Mudaragadda, Max Pooling in Convolutional Neural Network and Its
Features, en-US, Mar. 2020. [Online]. Available: https://analyticsindiamag.
com/max-pooling-in-convolutional-neural-network-and-its-features/
(visited on 18/05/2021).

[10] A. Karpathy, Software 2.0, en, Mar. 2021. [Online]. Available: https://
karpathy.medium.com/software-2-0-a64152b37c35 (visited on 12/05/2021).

69

https://github.com/pymupdf/PyMuPDF
https://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
http://iamtrask.github.io/2015/07/12/basic-python-network/
http://iamtrask.github.io/2015/07/12/basic-python-network/
https://cs231n.github.io/convolutional-networks/
https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html
https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html
https://analyticsindiamag.com/max-pooling-in-convolutional-neural-network-and-its-features/
https://analyticsindiamag.com/max-pooling-in-convolutional-neural-network-and-its-features/
https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35


Bibliography 70

[11] Tesla hires deep learning expert Andrej Karpathy to lead Autopilot vision |
TechCrunch. [Online]. Available: https://techcrunch.com/2017/06/
20/tesla-hires-deep-learning-expert-andrej-karpathy-to-lead-
autopilot-vision/ (visited on 15/05/2021).

[12] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘ImageNet classification with
deep convolutional neural networks,’ en, Communications of the ACM, vol. 60,
no. 6, pp. 84–90, May 2017, ISSN: 0001-0782, 1557-7317. DOI: 10.1145/
3065386. [Online]. Available: https://dl.acm.org/doi/10.1145/3065386
(visited on 15/05/2021).

[13] Databricks, Building the Software 2 0 Stack (Andrej Karpathy), Aug. 2018.
[Online]. Available: https://www.youtube.com/watch?v=y57wwucbXR8
(visited on 18/05/2021).

[14] Tesla, Tesla Autonomy Day, Apr. 2019. [Online]. Available: https://www.
youtube.com/watch?v=Ucp0TTmvqOE&t=7714s (visited on 18/05/2021).

[15] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning ap-
plied to document recognition,’ Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, Conference Name: Proceedings of the IEEE,
ISSN: 1558-2256. DOI: 10.1109/5.726791.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
‘Dropout: A Simple Way to Prevent Neural Networks from Overfitting,’
Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958,
2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.
html.

[17] S. Ioffe and C. Szegedy, ‘Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,’ arXiv:1502.03167 [cs], Mar.
2015, arXiv: 1502.03167. [Online]. Available: http://arxiv.org/abs/
1502.03167 (visited on 13/05/2021).

[18] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep Residual Learning for Image Re-
cognition,’ arXiv:1512.03385 [cs], Dec. 2015, arXiv: 1512.03385. [Online].
Available: http://arxiv.org/abs/1512.03385 (visited on 13/05/2021).

[19] K. Simonyan and A. Zisserman, ‘Very Deep Convolutional Networks for
Large-Scale Image Recognition,’ arXiv:1409.1556 [cs], Apr. 2015, arXiv:
1409.1556. [Online]. Available: http://arxiv.org/abs/1409.1556 (vis-
ited on 13/05/2021).

[20] R. Munroe, Machine Learning. [Online]. Available: https://xkcd.com/
1838/ (visited on 18/05/2021).

[21] F. Attivissimo, N. Giaquinto, M. Scarpetta and M. Spadavecchia, ‘An Auto-
matic Reader of Identity Documents,’ en, in 2019 IEEE International Con-
ference on Systems, Man and Cybernetics (SMC), Bari, Italy: IEEE, Oct. 2019,
pp. 3525–3530, ISBN: 978-1-72814-569-3. DOI: 10.1109/SMC.2019.8914438.

https://techcrunch.com/2017/06/20/tesla-hires-deep-learning-expert-andrej-karpathy-to-lead-autopilot-vision/
https://techcrunch.com/2017/06/20/tesla-hires-deep-learning-expert-andrej-karpathy-to-lead-autopilot-vision/
https://techcrunch.com/2017/06/20/tesla-hires-deep-learning-expert-andrej-karpathy-to-lead-autopilot-vision/
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://www.youtube.com/watch?v=y57wwucbXR8
https://www.youtube.com/watch?v=Ucp0TTmvqOE&t=7714s
https://www.youtube.com/watch?v=Ucp0TTmvqOE&t=7714s
https://doi.org/10.1109/5.726791
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1409.1556
https://xkcd.com/1838/
https://xkcd.com/1838/
https://doi.org/10.1109/SMC.2019.8914438


Bibliography 71

[Online]. Available: https://ieeexplore.ieee.org/document/8914438/
(visited on 12/05/2021).

[22] M. Li, Y. Xu, L. Cui, S. Huang, F. Wei, Z. Li and M. Zhou, ‘DocBank: A
Benchmark Dataset for Document Layout Analysis,’ arXiv:2006.01038 [cs],
Nov. 2020, arXiv: 2006.01038. [Online]. Available: http://arxiv.org/
abs/2006.01038 (visited on 13/05/2021).

[23] O. Ronneberger, P. Fischer and T. Brox, ‘U-Net: Convolutional Networks for
Biomedical Image Segmentation,’ arXiv:1505.04597 [cs], May 2015, arXiv:
1505.04597. [Online]. Available: http://arxiv.org/abs/1505.04597
(visited on 09/02/2021).

[24] P. Isola, J.-Y. Zhu, T. Zhou and A. A. Efros, ‘Image-to-Image Translation
with Conditional Adversarial Networks,’ arXiv:1611.07004 [cs], Nov. 2018.
[Online]. Available: http :/ / arxiv. org/ abs /1611 . 07004 (visited on
16/05/2021).

[25] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ‘You Only Look Once:
Unified, Real-Time Object Detection,’ arXiv:1506.02640 [cs], May 2016,
arXiv: 1506.02640. [Online]. Available: http://arxiv.org/abs/1506.
02640 (visited on 13/02/2021).

[26] ZenHub, ZenHub - Agile Project Management for GitHub, en, 2021. [Online].
Available: https://www.zenhub.com/ (visited on 10/05/2021).

[27] Y. Xu, Y. Xu, T. Lv, L. Cui, F. Wei, G. Wang, Y. Lu, D. Florencio, C. Zhang,
W. Che, M. Zhang and L. Zhou, ‘LayoutLMv2: Multi-modal Pre-training
for Visually-Rich Document Understanding,’ arXiv:2012.14740 [cs], Dec.
2020, arXiv: 2012.14740. [Online]. Available: http://arxiv.org/abs/
2012.14740 (visited on 02/05/2021).

[28] Intelligent document processing with AI, en. [Online]. Available: https://
nanonets.com (visited on 19/05/2021).

[29] Document AI Solution, en. [Online]. Available: https://cloud.google.
com/document-ai (visited on 19/05/2021).

[30] Microsoft, Invoices - Form Recognizer - Azure Cognitive Services, en-us. [On-
line]. Available: https://docs.microsoft.com/en-us/azure/cognitive-
services/form-recognizer/concept-invoices (visited on 19/05/2021).

https://ieeexplore.ieee.org/document/8914438/
http://arxiv.org/abs/2006.01038
http://arxiv.org/abs/2006.01038
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://www.zenhub.com/
http://arxiv.org/abs/2012.14740
http://arxiv.org/abs/2012.14740
https://nanonets.com
https://nanonets.com
https://cloud.google.com/document-ai
https://cloud.google.com/document-ai
https://docs.microsoft.com/en-us/azure/cognitive-services/form-recognizer/concept-invoices
https://docs.microsoft.com/en-us/azure/cognitive-services/form-recognizer/concept-invoices


Glossary

Accounts Receivable Management (Fakturaoppfølging) Also called Invoice follow-
up. Ensures customers pay their money on time and reduces the risk of any
bad debts, by reminding customers and collecting the money on time. Ad-
ditionally identifying the reasons for delays and finding solutions to related
issues.1. 2

Invoice (Faktura) An official document relating to a transaction between a buyer
and a seller, which documents how much is owed.2. 1

long tail From statistics. The long tail is the part of the distribution having many
occurrences that are far away from the mean3. 15

Payment Voucher (Bankbilag) A document generated by the bank, which tells
how much money was transferred for an invoice.. 1, 61

1https://cleartax.in/s/accounts-receivable-management
2https://en.wikipedia.org/wiki/Invoice
3https://venturebeat.com/2020/08/14/how-to-improve-ai-economics-by-taming-the-long-tail-of-data/
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Acronyms

JSON JavaScript Object Notation. 17

KID Kundeidentifikasjonsnummer. 1, 62

NER Named Entity Recognizer. 64

NLP Natural language processing. 64

OCR Optical Character Recognition. 1, 3, 64, 66

PDF Portable document format. 1–3, 66

PR Pull request. 64

wandb Weights & Biases. x, 31, 51, 60

YOLO You only look once. 64
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Appendix A

Meeting logs

Some short summary of the meetings taken place each month with some of the
big milestones.

11.01.2021

Kick-start meeting with Finexa. Got access to dataset and some dicussion about
the problem in general.

A.0.1 15.01.2021

First meeting with Tom. We had some questioned regarding the project plan, but
there was also some general talk about the project.

Tom advised us to research NTNU open for similar projects. He also had some
feedback regarding the group rules and advised us to enforce some stricter rules.

23.01.2021

First real meeting between Sigurd and Brage regarding the code and architecture
choices.

Agreed on

• One model for finding the fields.
• One model for reading out the text.

03.02.2021

Second meeting with Tom, got feedback regarding project plan. Before the meet-
ing we sent over our project plan draft and the agenda for the meeting was to get
some feedback. We got some good feedback to further improve the project plan.

07.02.2021

Discussed the following pull request and did some pair programming.
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22.02.2021

Agreed to instead of having meetings to send each other short updates on discord
at the end of each sprint.

A.0.2 08.03.2021

Short status meeting. Agreed on some frontend design and the idea of implement-
ing batch validation by for instance making sure there is no jump in the invoice
numbers.

A.0.3 06.04.2021

Longer status meeting. Discussion of the status of the frontend and the backend.

29.04.2021 - 02.05.2021

Daily meetings to complete a draft of the report. Creating a agenda to be able to
get through the last month. We agreed to put all the time into the report the next
week, and use the remaining time to do some last experiments (looking especially
at ways for making the tesseract output more stable).

A.0.4 06.05.2021

Meeting with Tom to discuss report draft. We could constructive feedback that we
will implement into the report to make it very nice.



Appendix B

Timesheet

B.1 Short summary for each month

Info January February March April May

What we did

We had kick
off meeting
with Finexa
and Tom. Wrote
the group
guidelines and
started on the
project plan.
Did a small
amount of cod-
ing by writing
the first valid-
ation class for
KID.

Updated the
project plan
based on feed-
back. Started
to investigate
other mod-
els, and other
research.

Worked a lot
on the dataset,
analyzing it and
started to train
a Yolo model on
it.

Added support
for bankvouch-
ers, and scripts
for fetching
more data with
high loss. Star-
ted to work on
report.

Report, report,
and report.
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Figure B.1: A summary of hours worked per month combined for all group mem-
bers

B.2 Division of time between tasks

Meetings
4%

Project plan

7%

Research

16%Report

31%

Development

42%

B.3 Github activity

As one can see we had weekly commits to our repositories.
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(a) Commits over time for our main repository. Some commits are missing because of the way
Github assigns a commit to an author based on email.

(b) Commits over time for our model-zoo / research repository

Figure B.2: The GIT commit activity
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Side 1 
 

Automatisert bilagsgjenkjenning 
 

Om Finexa 
Finexa Norge AS er leverer tjenester innen fakturaoppfølging og inkasso, men leverer også en god del 

egenutviklede løsninger som skal gjøre regnskaps-relaterte oppgaver lettere for våre oppdragsgivere. 

Finexa har ikke gjennomført bacheloroppgaver tidligere, men totalt har konsernet ansatt 3 studenter fra 

NTNU i Gjøvik. Finexa har hovedkontor i Drammensveien 20, 3300 Hokksund, men IT avdelingen holder 

til i Torggata 72, 2317 Hamar. 

Problemstilling 
Finexa har integrasjoner med de fleste regnskapssystemer som er i bruk i Norge i dag. I forbindelse med 

arbeidet i Finexa oppstår ofte behovet for å kunne gjenkjenne data i PDF fakturaer og kunne levere disse 

på en strukturert måte (JSON). I noen tilfeller fungerer ikke integrasjonen mellom regnskapssystemet 

godt nok av ulike årsaker. Enkelte regnskapssystemer har innebygd funksjonalitet for automatisk 

gjenkjenning av fakturaer mens en god del av de eldre systemene ikke har det. Ved å utvikle denne typen 

funksjonalitet kan vi tilby våre kunder en automatisert bilagsflyt selv om regnskapssystemet ikke støtter 

dette som standardfunksjonalitet. 

 

Vi ønsker en fleksibel OCR modul som kan lese følgende og automatisk skille mellom følgende typer 

bilag: 

• PDF Faktura 

o En PDF fil som er produsert av et regnskapsprogram. Denne er vanligvis direkte 

produsert, men i enkelte tilfeller vil den også kunne være printet og scannet igjen slik at 

det vil være en del støy i dataene. 

• Betalingsbilag fra banken 

o Dette er informasjon om innbetalinger som kommer fra bankene. Vi har integrasjon med 

mange forskjellige banker som har forskjellig layout på disse bilagene. Disse vil alltid 

komme som produsert PDF filer (ingen støy). 

• Kvittering 

o Dette kan være produserte PDF bilag men er som oftest scannede bilder av kvitteringer. 

Her vil det vanligvis være en god del støy med i dataene. 

Det er ønskelig å kunne lese ut mest mulig komplett informasjon fra disse dokumentene slik som: 

• Beløp 

• Fakturadato 

• Forfallsdato 

• Kundenummer 

• Fakturanummer 

• KID 



 

Side 2 
 

• Kreditor (den som fakturaer og skal motta betaling) 

o Navn 

o Adresse 

o Orgnr. hvis det er et foretak. 

• Debitor (den som skal betale fakturaen)  

o Navn 

o Adresse 

o Orgnr. hvis det er et foretak. 

• Kontonummer 

Det er ønskelig at løsningen struktureres slik at det er mulig å kallen den via et HTTP api hvor bilaget 

sendes inn via en HTTP POST metode (enten som PDF eller bildefil) og den strukturerte informasjonen 

kommer i retur som JSON. Studentene står helt fritt til å velge den fremgangsmåten, 

programmeringsspråkene og utviklingsverktøyene som de selv synes er hensiktsmessige. Studentene står 

fritt til å legge vekt på de områdene innenfor oppgaven som de anser som relevant. 

Utfordringen med denne oppgaven er naturligvis at fakturaer ofte har veldig forskjellig utseende og 

oppsett. Det som er interessant å vite er hvor høy treffprosent som er mulig å oppnå og hvor pålitelig og 

tolerant mot støy og endringer i layout, en slik OCR-løsning vil være. 

Datasett 
Finexa Norge AS har i dag følgende datagrunnlag som kan brukes for å teste og optimere gjenkjenningen: 

• 1,2 millioner PDF fakturaer 

• Over 50 000 bankbilag 

Da dette er reelle fakturaer er Finexa Norge AS nødt til å ta forbehold om at konkret kundeinformasjon 

som er inneholdt i fakturaene behandles konfidensielt av studentene. Resultater og tekniske detaljer 

trenger derimot ikke å behandles konfidensielt. 

 

Vi tenker at oppgaven passer best for studiet BIDAT Bachelor i Ingeniørfag- data.  

Finexa Norge AS | Org. Nr.: 921 229 216 

Kontaktperson: 

Felix Schoeler 

E-post: felix@finexa.no 

Tlf: +47 984 61 290 
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1 Introduction

This document is an outline about our bachelor project. It describes ideas for
how we are going to approach the task and how we envision the process will
be. This document includes the goal, scope of the project, how we plan to
implement things and how we have considered things like positional costs.

1.1 The task

The research question in our project will be finding out how to identify and
extract key facts from scanned finance/bank related documents. The task was
given to us by Finexa AS1 and they were interested in extracting data from
invoices, receipts and other vouchers. Our solution should be able to accurately
return the data in a machine readable format, ideally in a key/value format (like
JSON), to make it easy to query the data.

1.2 Goals

Our main goal is to be able to create a solution that is able to extract key facts
facts from both documents that are digitally created and transmitted, scanned
and photographed documents. In other words the source of the input should
not matter.

We also wants want to take on a challenge and make the solution universal.
Therefore it should be able to work with multiple different types of documents
like invoices, receipts and vouchers. It should also be general enough that it will
work with all the different types of formats that exists for these documents.

It’s also important for us that the information that is returned from our
system is accurate. We have multiple ideas for making sure this goal is reached
See section 7 and section 6.

1Organization number 921229216
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2 Scope

Because OCR in general is looked at as a solved problem, our main job is to
come up with a way to map the different keys to the values based on a image
input.

Therefore we will probably leverage a “pretrained” OCR model with our
own model in the beginning. The main job of our model is to be able to detect
where the different keys and values are, then the OCR model extracts the text.
If we have time, we will also use our own custom OCR model for optimizing
everything. This is further discussed in 2.3.

Because we will probably have some problems with reading the invoice lines
and having different properties match up correctly. We will probably have to
move to our own OCR model after some of the first challenges are solved. By
having our own fully end to end model we will probably get higher accuracy.

2.1 Functionality

2.2 Code

Most of the code will be logic for validating the different invoice fields, retrieving
the PDF/JPEG and code for interacting with the model and getting out the
results. There should also be created some basic GUI.

For instance there has to be logic for handling bad input to the model. One
example of a bad input is a blurry image. There should be logic for sharpening
all images. It also have to handles cases when the model is not sure what to do
(low confidence). Then our code has to report back to the user that the results
might be incorrect.

We also need scripts for creating the dataset used to train the model that
has to do image augmentation and creating bounding boxes for training the
model.

In appendix C we have attached sequence and UML diagrams for how we
expect the project to evolve. It includes the main classes and their relation.

2.3 Machine learning model

By looking at the problem as an object detection / segmentation problem, we
should be able to leverage a the same model architecture used for these problems
in our model.

The input to the model is a rasterized image of an invoice or receipt. Then
the model should find the location of the field inside the image.

The idea is that the model should output a mask so we can extract only the
relevant field and give that to an OCR model. Something like in 2, the model
is queried to extract the KID and will remove everything that is not related to
the kid.

Most segmentation models are nowadays some form of autoencoder, instead
of reinventing the wheel we would probably build upon the U-Net[1] architecture
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which is a segmentation model that has gotten high accuracy on segmentation
tasks. YOLO[2] is also an architecture which is popular for object detection.
Both of these architecture are worth investigating to see if could be applied to
our problem.

3 Implementation

3.1 Milestones

To break down the creation of our solution, we have split the project into mul-
tiple Epics, where every epic marks the finish of a feature. The epics are further
split up into weekly sprints with a milestone at the end of every sprint.

Because there is a lot of uncertainty in how our solution will be implemented,
it is hard to break down the epics into concrete issues before we have researched
how we are going to implement the solution. We have identified a cycle for
creating Epics, which approximately break down into the following:

1. Research how similar problems have been solved as inspiration and write
project plan based on this.

2. Implement our solution based on the research in the previous epic

3. Evaluate our current method.

4. Research other solutions.

The idea is to break each problem into that cycle.
For every time we go through this cycle, we will have to research and fine-

tune our solution, and we will end up with multiple possible solutions, of which
the best one will be used. We will also keep logs of all our experiments, the code
and dataset state. W&B for logging experiments and DVC + GIT for dataset
and code state. We have also identified a few of the epics we have to overcome to
get our solution, but the project has one big moving part, the machine learning
model. In addition to the existing epics, we will gradually improve this model
and create many sub issues for the model. For instance one of the first epic is
for the model to learn where the KID is.

1. Create the first version of the dataset and version control it with DVC.

2. Transform the dataset with the different bounding boxes and map these
to values. This is crucial for getting started with the implementation of
the machine learning model and is something we have to do early.

3. Write code for doing KID validation, this could be used to aim the model.

4. Write a model that learns to map bounding boxes to a invoice field (KID,
due date, account number, etc)
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5. Being able to read the first kid. There are many fields our model has to
be able to find, however our first milestone is to be able to read the KID.
The reason we choose KID is because it does not have a standard location
and it can easily be verified by the check digits.

6. Being able to read the first invoice number. Same reason as the KID, it
has check digits which makes it a bit easier to find.

7. Write code for doing image augmentation to prevent over-fitting and to
generalize the solution.

8. Research other new solutions and implement them to progressively be able
to read new fields

3.2 Evaluation

Given that OCR is mostly a solved problem. We can leverage commoditized
technology to kick-start the project, and helps us so we don’t have to reinvent
the wheel. A lot of invoice data has error detection codes, and we can leverage
these to know if the model has failed to read the data. If our solution detects
these bad cases, it should not give out wrong info, or at least notify the user
that there is something wrong or give alternative suggestions.

4 Planning and reporting

4.1 Development model

We will use a development model that builds upon ideas from “Agile” and “Ex-
treme Programming”. We will also use Zenhub as the project management tool
which is a tool for making working with Agile easier and it integrates directly
with GitHub.
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Principle / Concept Description How we will use it

The backlog List of work to be done

This contains the require-
ments for the final release,
what we work on each week
will be based on the backlog
and will change with time.

User stories

Stories describes what the end
user want. Finexa has given
us an description of how they
expect the solution to work.
These will be added as stories.

We will implement stories as
issues, since we won’t have so
much talk to the end user the
stories will mostly describes
things we have to imple-
ment and follow the SMART
acronym.

Sprints
Taking stories out of backlog
and working on them

We will have one week sprints,
they might be extended if the
tasks from the previous week
took longer to implement. We
will take the most important
items out of the backlong and
work on them.

Product manager role

In Agile and XP the product
manager is the one who con-
trolls the backlog and sprints.

Sigurd is the project manager,
and has the responsibiliy to
have a high-level overview of
the progress of the project

Daily stands up
In Agile it’s normal to have
daily discussion about the sta-
tus of the sprint.

We will give each other a sta-
tus update on discord each
time something big happens.
We will also have at least one
or two weekly meetings.

Test driven development

Create tests first. Tests
should run fast (less than 1
min). Refactor after a feature
has been finished.

We will implement tests and
run these on every push.

Continuous integration
Continuous help with main-
tain a healthy code-base and
is especially popular in XP

We will have a CI that runs
linters, unit tests and code
formatters to ensure that all
code changes can be released.
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Code refactoring
Afer the code is written it has
to be refactored to be clean
code.

We will use mypy to enforce
types to make refactorign easy
and unit tests to make sure no
refactoring break the exsisting
code.

Releases
Small and frequent releases in
contrast to big updates

We will also aim for many
small releases, the idea is that
the code in master should al-
ways work and could be sent
over to Finexa at anytime if
they wanted to test the cur-
rent state of the project.

4.2 Status meetings

We will have weekly status meetings where the main goal is to reflect on what
has been done the previous week, and plan for the next week and beyond. We
will also go through maintenance tasks that has to be attended to continually,
like maintaining project structure, code quality assessment and reviewing issues
and pull requests. Given that we are in a pandemic most status meetings will
be held digitally.

5 Project organization

5.1 Responsibilities

Role Name
Client Finexa AS

AI Scientist Brage
Project Manager Sigurd

Supervisor Tom Røise

All the members have the responsibility to contribute towards the progress of
the project, and should feel responsible for the product they create. Other
obligations are outlined in

5.1.1 Brage

Researching and training the machine learning model.

5.1.2 Sigurd

Project management, status, reporting, logging, organizing meetings.

7



6 Risk assessment

Risk probability Consequence Description Countermeasures

Too little time Medium High

We might underestimate the
time we have to finish the
project, and might run out
of time before the solution is
properly finished and refined.

Proper project management
and plan epics and milestones
ahead of time

Uncertain Complexity Medium Medium

There is a big cone in uncer-
tainty in how technically diffi-
cult the final solution will be,
and we do not know exactly
how the solution will look.

We will start the project with
an evaluation of other similar
solutions and will look at if
these solutions could be used
directly in our solution, or if
we could take ideas from these
other solution.

Requirement changes Small Medium

The requirements of the solu-
tion have been given in writ-
ten form and the requirements
give us a large amount of free-
dom as for how the solution
should look, as long as the
output is correct.

None

Poor Quality Code High Medium

We acknowledge that there is
a risk of ending up with code
that has poor quality, and is
cluttered with lots of bugs.

We will use CI pipeline (lin-
ters, test and formatters) to
ensure that code is being de-
veloped with a high quality
the first time, and that it
is being tested and reviewed
properly.

6.1 Critical areas that defines success

To be able to have a successful project we need to be able to be able to create
a model that can link keys and values. Then we also need to be able to extract
the values correctly.

Given that OCR is mostly a solved problem. We can leverage commoditized
technology to kick-start the project, and helps us so we don’t have to reinvent
the wheel. A lot of invoice data has error detection codes, and we can leverage
these to know if the model has failed to read the data. If our solution detects
these bad cases, it should not give out wrong info, or at least notify the user
that there is something wrong or give alternative suggestions.
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Figure 1: The Gantt diagram which is based on the issues at the beginning of
the project

7 Quality assurance

Given the nature of this problem it’s easy to quantify how well our solution is
performing (by utilizing a test dataset and measure the accuracy).

We also want the system to work as well with scanned documents as the once
generated by a computer. By creating a dataset which includes both types, we
should be able to create a solution with high quality.

8 Resources

To keep the project under control we have added some constraints to make sure
we have equal effort and that no unpredictable cost appears.

8.1 Time

Both are expected to work around 25 hours each week. This will be enforced by
using Clockify, issues and GIT activity for tracking all changes. This way it’s
easy to see if someone is behind on the time-sheet. This is also enforced in the
group guidelines and will be reviewed each week.

We will also use milestones in the issue tracker. This way we can plan for
weeks were we have to put in extra effort if we are behind a milestone. We
assume this will happen as the project evolves.

8.2 Schedule

The gantt chart is based on the issues we have created in our github repository
and is used to track our ongoing efforts and will be updated as we work on the
project.
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8.3 Cost and budget

There is some other services that should be considered, for instance:
Service Use-case Price Total (max) price

GPU usage
To be able to train our models
quickly.

250$, see Appendix A for details 250$

wandb Logging of experiments 0$ for a shared account, 35$
for teams account

140$

Github team pro
Gives us some more features
for making it easier control
the git repository.

8$ each month 36$

PDF manipulation software

By using a software like
Adobe acrobat pro we will be
able to remove metadata and
edit the content of the PDF.
This is useful to anonymous
real invoices.

20$ each month. libraries like
pymupdfa and by doing this
not having any costs. We have
not finalized this decision yet.

ahttps://pymupdf.readthedocs.io/en/latest/

80$

Cloud storage

Storage of dataset and mod-
els. We also need storage
space for DVC which will
track both of theses.

Both Azure[3] and S3[4] has
a gigabyte price of around
0.23$. We would probably
never need more than 100 GB
(the current dataset has a size
of 2.3 GB). Resulting in 23$
each month.

92$

Sum 598$

10



A GPU budget

To test our machine learning models we can use free services like Kaggle /
Google Colab (which have more than 30 hours of free GPU time each week)
and see if an idea or experiment is going well by looking at the loss function.
Because of limitations in these free services, we will have to use paid services
when we have to train the model for longer time intervals and/or on a larger
dataset.

There are a few free services we could use for kick starting the project. Both
Kaggle and Colab offers free GPU usage, but to scale our GPU usage, we could
use a renting service like Vast.ai or Lambda GPU Cloud, were we pay on-demand
pricing for renting a GPU. Here we pay around 1.4$ for each teraflop,

The GPU will most likely be what haves the highest cost of the project. We
believe we are likely to spend around 300$ on this.
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B Input and output of segmentation model

Below is an example of a model input and model output. Input is an invoice
and the model is asked to extract the kid. The model outputs only the kid field.
Then a OCR model will pickup the output to retrive the field value.

(a) Iinput image (b) Output from model

Figure 2: Input and output from model
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C Sequence and UML diagram

As can be seen in Figure 3 we will use abstract classes a lot. This makes it
easier to tests the code and makes sure objects that look a like (receipts and
invoices) has a common interface.

This can also be seen in the sequence diagram. Since the application will
try to resolve each field both by looking at the text content directly off the pdf
and what the models ”sees” from the image. The same is true for validating
the fields, all fields will have a validate method and it will be called when a
document is retrieved.

More methods will probably be added, but we think the general structure
will look like the UML diagram.
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1 Bachelor: Group guidelines

1.1 Strive for clean code

Read ”Clean code” by Robert C. Martin, and use the principles described in
this book to create clean code. Don’t be doctrinaire.

1.2 Minimize knowledge gap

m If someone knows more than the other, or has specialized in a field, knowledge
should be actively exchanged. This is faster than researching yourself, and gets
all the members on the same page.

1.3 Document getting started

Write documentation for how to clone, install, set up, configure the project, run
the tests, run the top-level code and deploy the code base.

1.4 Be ahead of schedule

Use GitHub issue tracker actively to track how well deadlines are met.

1.5 Equal effort

All members should end with roughly the same amount of effort, time and
contribution towards the project.

1.6 Use English

Write code and reports in English.

Sigurd Schoeler:

Brage Arnkværn:

Date: 13. January 2021
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