
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

U
m

braško, Lew
andow

ski, D
ahl

Artūrs Umbraško, Kacper Lewandowski, Daniel
Dahl

OS Runner

Educative multiplayer rogue-like deck-building
gaming experience in Cybersecurity

Bachelor’s project in Programming
Supervisor: Aland Mendoza
Co-supervisor: Marius Pedersen

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Artūrs Umbraško, Kacper Lewandowski, Daniel Dahl

OS Runner

Educative multiplayer rogue-like deck-building
gaming experience in Cybersecurity

Bachelor’s project in Programming
Supervisor: Aland Mendoza
Co-supervisor: Marius Pedersen
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

OS Runner
Educative multiplayer rogue-like deck-building gaming experience

in Cybersecurity

Kacper Lewandowski Artūrs Umbraško Daniel Dahl

CC-BY May 20, 2021

Abstract

Summary of Bachelor thesis

Title: OS Runner
Date: May 20, 2021
Authors: Artūrs Umbraško, Kacper Lewandowski, Daniel Dahl
Supervisor: Aland Mendoza
Employer: Danny Lopez Murillo
Pages: 71
Attachments: 5
Availability: Open
Summary:
Games can be used as a very effective education medium. However, the mar-

ket of educational cybersecurity games has a very small and limited supply. Danny
Lopez Murillo, a cybersecurity specialist, has come forward to us with a proposi-
tion to develop a new game to help and change this stance, as well as to be among
the first innovators in this field.

This is a relatively niche market, and still, some of the games focusing on the
cybersecurity are already there. However, most of them fail to combine the fun
game aspect with the education aspect, and end up being undiscovered, with only
a few being relatively successful. OS Runner tries to fill the gap, and be serious
about learning while having advanced and immersive game elements.

During this bachelor, the development of OS Runner was kick-started. What
was produced is not a complete game, but a proof of a perspective concept that
can be developed further.

Our game combines both the fun and the educative elements. It can be used as
an education tool for high school students and undergraduates during lectures,
lessons, seminars and other events. Even with only limited prior knowledge of
cybersecurity in general, this game can be an interesting and captivating expe-
rience, making sure that players will learn the basic principles of cybersecurity,
cyberattack and -defense mechanisms that are used in real life.

The game was developed by us, using Scrumban methodology, in tight con-
tinuous cooperation with our employer.

iii

Utdrag

Sammendrag av Bacheloroppgave

Tittel: OS Runner
Dato: May 20, 2021
Deltakere: Artūrs Umbraško, Kacper Lewandowski, Daniel Dahl
Veileder: Aland Mendoza
Oppdragsgiver: Danny Lopez Murillo
Antall sider: 71
Antall vedlegg: 5
Tilgjengelighet: Åpen
Sammendrag:
Spill kan bli brukt som et veldig effektivt læremiddel. Imidlertid er markedet

for pedagogiske spill med fokus på cybersikkerhet lite og meget begrenset. Danny
Lopes Murillo, en cybersikkerhet spesialist, tilnærmet oss med et forslag om å
utvikle et nytt spill for å hjelpe med å endre på denne holdningen, i tillegg til å
være noen av de første innovatørene innenfor dette feltet.

Dette er et relativt nisje marked, men det finnes fremdeles noen spill med et
fokus på cybersikkerhet. Imidlertid, feiler mange av dem på å kombinere moro
med læring og ender opp med å være uoppdaget, med kun noen få som er relativt
vellykkede. OS Runner prøver å fylle dette hullet og å være seriøs i å videreformi-
dle kunnskap, i tillegg til å ha avansert og innlevende spill elementer.

I løpet av dette bachelor prosjektet så ble utviklingen av OS Runner satt i
gang. Det som er produsert er ikke et komplett spill, men et bevis på et konsept
på noe som er tilrettelagt for videre arbeid. Spillet vårt kombinerer både mor-
somme og lærerike elementer. Det kan bli brukt som et læremiddel for elever på
videregående, studenter på universitet/høyskole, seminarer osv. Selv med bare be-
grenset forkunnskap om cybersikkerhet generelt, så vil dette spillet være en høyst
interessent og fengende opplevelse, som forsikrer at spillere vil lære de grunn-
leggende prinsippene om cybersikkerhet, cyber angrep og forsvarsmekanismer
som brukes i det virkelige liv.

Spillet er utviklet av oss, ved bruk av Scrumban metodikken, i tett kontinuerlig
samarbeid med vår oppdragsgiver.

v

Preface

We want to thank Danny Lopez Murillo for his task proposal and giving us
the opportunity to work on this very nice task. His continuous motivation and
willingness to cooperate with us allowed us to reach a prototype we can be proud
of and gave us an enjoyable experience when working on a larger project for the
first time. Discussing the game with him also helped us to widen our knowledge
of cybersecurity.

We would also like to thank our supervisor Aland Mendoza, who, even while
being in a different part of the world, continued to provide us with advice and
cheerful spirit. The material he provided for us also helped us immensely while
writing this thesis.

Last but not least, we want thank Marius Pedersen for valuable feedback dur-
ing writing of the thesis and guiding us on how it can be improved.

vii

Contents

Abstract . iii
Utdrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1 The topic . 1
2 The task . 1
3 The inspirations . 3
4 The audience . 3
5 The team . 4
6 The goals . 4
7 The thesis . 5

2 Requirements . 7
1 Initial requirements development . 7

1.1 Planning the requirements . 7
1.2 Scope . 7
1.3 Gameplay flowchart designs . 8
1.4 MoSCoW . 8

2 Continuous requirements development 12
2.1 Weekly meetings . 12
2.2 User stories . 12

3 Implementation . 15
1 Introduction . 15
2 Development process . 15

2.1 Scrumban development model 15
2.2 Mapping the requirements . 16

3 Initial technical and graphical choices 18
3.1 Game Engine choice . 18
3.2 Version Control . 18

ix

x Umbraško, Lewandowski, Dahl: OS Runner

3.3 System design . 19
3.4 Coding practices . 19
3.5 File structure . 19
3.6 Graphical design . 20

4 Server . 21
4.1 Functionality . 21
4.2 Basis . 21
4.3 Structure and flow . 22

5 Cards . 23
5.1 Introduction . 23
5.2 Card base . 24
5.3 Design . 26
5.4 Technical implementation . 27
5.5 Effects . 28
5.6 Card manager . 30
5.7 Deck . 32
5.8 Pile display . 35

6 Battle Manager . 35
6.1 Design . 36
6.2 Player . 40
6.3 Cards . 40
6.4 Effects in battle . 42
6.5 Bugs during development . 46

7 Map Topology . 46
7.1 Shop . 48

8 Card Encyclopedia . 49
9 Music Manager . 52
10 Customization . 52

10.1 Settings . 52
10.2 Profile . 55

4 Discussion . 57
1 Reflections . 57

1.1 The good . 57
1.2 The bad . 59
1.3 Other games . 61
1.4 Fulfilling requirements . 62
1.5 The employer’s opinion . 65

2 Critique of the original task . 66
3 Evaluation of group work . 67

3.1 Group organization . 67
3.2 Work organization . 68

5 Further work . 73
1 Single-player . 73
2 Use in education institutions . 73

Contents xi

3 Digital distribution platforms . 74
4 Going Open Source . 74
5 Cybersecurity wiki . 74
6 Colorblind accessibility . 75

6 Conclusion . 77
Bibliography . 79
A User Stories . 81
B Gameplay flow multiplayer . 103
C Gameplay flow singleplayer . 117
D Project plan . 123
E Contract . 135

Figures

2.1 Initial flowchart of menu navigation 9
2.2 A layout of a typical user story . 14
2.3 A layout of a typical task . 14

3.1 Flowchart of user stories . 17
3.2 Initial design of the cards . 26
3.3 How a card currently looks like in the game 27
3.4 Inheritance from deck_base . 33
3.5 Relation between the deck and piles 34
3.6 PileDisplay in the shop . 35
3.7 Original design of battle screen . 37
3.8 Current design of the BattleManager 38
3.9 Battle screen with the background bug 38
3.10 How battle screen could look like in future 39
3.11 Revealing of enemy’s cards . 42
3.12 Flow of using cards . 45
3.13 Representation of different states of player’s health 45
3.14 Map at start of game . 47
3.15 Map when conquering assets . 47
3.16 Shop window in game . 49
3.17 Card encyclopedia on cards tab . 50
3.18 Card encyclopedia on filter tab . 50
3.19 Options menu . 53
3.20 Profile menu . 55

4.1 Revised Gantt chart . 71

xiii

Tables

3.1 All properties for cards. 25
3.2 All effects for cards. 29

xv

Code Listings

3.1 Checking what mode the server is set to 22
3.2 Server completes the action on its own and notifies other players . 22
3.3 Client asks the server to complete an action 23
3.4 Server completes the requested action, and notifies players of it . . 23
3.5 Updating of the card . 28
3.6 Adding effects to effects container . 29
3.7 Example of card stored in JSON file . 30
3.8 Adding a card to the game . 31
3.9 A unique effect with more than power and name 32
3.10 Displaying of cards . 41
3.11 Using a card . 43
3.12 Receiving a card . 44
3.13 Bomb effect . 45
3.14 Implementation of mergesort algorithm used in card encyclopedia . 51
3.15 Merge function used in implemented mergesort algorithm 51
3.16 Function for writing settings data as JSON to file 54
3.17 Settings.cfg example . 54
3.18 Function for reading settings JSON data from settings.cfg 54
3.19 Example of profile data file . 56

xvii

Acronyms

API Application Programming Interface. 3

GUI Graphical User Interface. 2, 27, 53

HP Health Points. 36

JSON JavaScript Object Notation. 30

LMB Left Mouse Button. 41

PC Personal Computer. 2

SFX Sound effects. 53

UI User Interface. 67

UX User Experience. 8

xix

Glossary

asset A gameplay element representing a network asset that is represented by an
interactive object in the topology map. 2

Bitcoin Bitcoin is the in-game currency used for all things shop related. It can be
acquired by playing cards which gives bitcoin. 2, 47, 48

BPROG Study code: Bachelor in Programming. 4

buff A positive effect given to the player. 60

codebase Codebase is a collection of source code used to build a particular soft-
ware system, application, or software component. 2

deck-building game A game in which the player starts with a basic cards and
through the game he acquires stronger cards. 3

development velocity development velocity is a metric for work done and is of-
ten used in agile software development. 16

discard pile Discard pile contains all of the cards that the player has already
played. 32

draw pile Draw pile contains all of the cards that the player will draw if he plays
his current available cards. 32

game mechanics Rules that dictate player’s possible actions and game’s responses
to those actions. 3, 7

game settings A set of rules that change the technical behavior of the game. 8

gamification The process of adding games or gamelike elements to something
(such as a task) so as to encourage participation. 1

GDScript GDScript is a high-level, dynamically typed programming language and
its goal is to be optimized for and tightly integrated with Godot Engine. 51

xxi

xxii Umbraško, Lewandowski, Dahl: OS Runner

instance Adding a scene into already existing scene is called instancing. A scene
that you play to add into main scene is called instance. If a scene already
exists, it will be overwritten instead.. 30

network topology map A set of interconnected assets in the game that the player
can interact with. 20

Neutral Asset Conquering One of the main stages (phases) of the gameplay,
consisting of the players conquering neutral assets, preceding the enemy
asset conquering phase. 60

nickname A nickname is a pseudonym that players can choose in the game. 36,
55

node A "building block" in the Godot engine. A node can be made a child of a
different node. A single node can have multiple children. 30, 35

phase One of three main multiplayer game stages, explained in detail in appendix
B. 60

player profile A customize set of data portraying the player. 8

playerbase Population of active players of a video game. 58

playtest Process of testing the game for bugs and flaws by playing it. 16

roguelike A subgenre of games which feature procedurally generated levels and
permanent death of the player character. 4

scene A tree of nodes is called a scene. 18, 27, 53, 54

state machine It is a behavior model which consists of finite amount of states.
The state machine must be in a state at all times.. 60

status effect Status effects are either beneficial or harmful effects that can be
inflicted on a player. They usually last multiple turns, affecting the player
on the start of each one. 36

unobtainable cards Cards that can not be purchased in the shop. These cards
are received through other cards. 32

Chapter 1

Introduction

1 The topic

Currently, the market for educational cybersecurity games is quite shallow.
Out of the not so many games that exist in this field, even fewer are combining
the educational aspect with being actually fun to play. This project is an attempt to
change that, to improve and accelerate the cybersecurity education by introducing
a way for students to engage in tangential learning.

Based on a different card game - Intrusion Attempt - also in development by our
employer for three years now, the game correlates real-life cybersecurity practices
and concepts with common video game and card game mechanics and concepts.
This way, by engaging in the gameplay, the students will also increase their un-
derstanding of the real underlying topics.

The gamification of the learning process with the goal of improving high school
and undergraduate students’ understanding of the cybersecurity topic are consid-
ered by us to be the main benefits of this project. The gamified tangential learning
experience can also mean an easier introduction into the topic for those previ-
ously not at all familiar with it. This can in turn lead to improved performance in
cybersecurity-related classes, greater interest in cybersecurity-related studies, as
well as many other positive education effects and applications.

2 The task

The game will be based on a card game project by the employer. The main me-
chanics will be revolving around a deck-building and card battle gameplay. The

1

2 Umbraško, Lewandowski, Dahl: OS Runner

cards will be based off of the MITRE ATT&CK framework [1]. As it is stated on
MITRE website: "ATT&CK is a knowledge base of cyber adversary behavior and
taxonomy for adversarial actions across their lifecycle." It is being constantly up-
dated and it describes how to prevent cyberthreats, as well as detailed description
of different tactics and techniques in cybersecurity. However, we will be working
on the technical details of the game, and the cards are supposed to be supplied
by the employer.

Initially, we have considered developing both the single-player and multi-
player aspects, but during the requirements design phase, the single-player aspect
was cancelled by us limiting the scope of the project.

Cybersecurity will be the main theme of the game. The cards will be based on
different methods and techniques used by malicious thread actors and suitable for
teaching courses at university level related to penetration testing and red teaming.

The game will teach players some basic aspects and ideas of data security,
as well as in general raise data security awareness and interest in high school
students, undergraduates and graduates.

The gameplay will consist of two main parts: a map, that will resemble a net-
work topology where players will be able to roam and compete for in-game re-
source - Bitcoin - and assets, and a card battle screen, where the actual card battles
will take place.

Initially, we have planned to develop for the Android platform. However, after
discussing this further between each other, and with the employer, we have con-
cluded that we will primarily focus on the Windows platform, and then port the
game to Android. This was done for several reasons.

First of all, our team has a much bigger expertise on desktop platforms, such as
Windows and Linux. Therefore, we could expect the final product to be of higher
quality. We wouldn’t have to spend much time researching the intricacies of the
platform, but instead we could exploit more in-depth features, and have a clearer
vision of the development process from the start, which helps to avoid refactoring
and remaking of the codebase during the development.

We also considered the Windows platform to be more suitable for our project
and the resources that we have. Desktop platforms are more convenient for class
and lecture environments, than mobile platforms. According to some studies [2],
PCs have some advantages as a learning medium. First of all, mobile platforms
have smaller screen sizes, which is a disadvantage in our text- and GUI-heavy
game. Also, a desktop computer is more suitable for a game, since it provides a
more immersive game experience, which will improve the quality of the gameplay.

Finally, the desktop platform has a better support of networking features that

Chapter 1: Introduction 3

we could utilise. We don’t have resources to host our own servers, but we can use
such frameworks as the Steam API to give players access to multiplayer features
without having them to be on the same network.

3 The inspirations

Since we are gamers, we have had the experience with deckbuilders before.
Consequently, the OS Runner also takes some inspirations from notable games
already on the market.

The idea of the game is greatly inspired by a game called Slay the Spire [3].
Slay the Spire is also a deck-building game, featuring card battles. Some aspects
of our battle and card mechanics were inspired by the analogous game mechanics
in Slay the Spire. We have considered the way the player battles enemies using
cards as a "weapon" something that would work really well with the player-versus-
player card battle element in our game.

Slay the Spire was not the only inspiration. Another great example of a deck-
builder is a game called Monster Train [4]. The inspirations came in form of the
visual design for the game. We believe that the game has a very clear and concise
look and user interface, and we have drawn some ideas about how our visuals
should look like from it.

4 The audience

Report
This report is written for the examiner, fellow game programming students and
the product owner.

Product
The product is created for the product owner, Danny Lopez Murillo.

End-user
As briefly mentioned in Section 1 and Section 2, the end-users will be high school
students, undergraduates and graduates. We can therefore safely assume they
are mostly young with a basic knowledge of computers and an innate sense of
intuitiveness in regards to games.

4 Umbraško, Lewandowski, Dahl: OS Runner

5 The team

We all are students from the Bachelor in Programming (BPROG) course at
the Norwegian University of Science and Technology. We specialize in software
development and have worked with projects like a ticket finding and music API,
a deck-building roguelike action game, some smaller mobile apps. Since we all
study the same thing our expertise is virtually the same.

All three of us are interested in programming and games. This is one of the
main reasons as to why we chose to take this task: it seemed like a perfect fit con-
sidering our interests in various games, but also our knowledge in programming
and game design. The genre of rogue-like deck-builders is also not new to us,
and we have played such notable examples of it as: Slay the Spire, Monster Train,
Ascension and Poker Quest RPG. During our previous courses we have already
worked on a deck-building game, and that is some additional experience that we
could use for this task.

Our employer is Danny Lopez Murillo, a former NTNU educator, with a master
degree in Cybersecurity, specializing in Ethical Hacking. Currently, he is involved
in digital forensics. However, previously he was a teacher at the Norwegian Uni-
versity of Science and Technology for the Ethical Hacking course [5], as well as a
teachers assistant for the Network Security course. He admits that he has a great
passion for gamification in cybersecurity. He wants the game to be used by stu-
dents and undergraduates during their courses as an educational tool, as well as
make it serve as a knowledge base with links and references to further materials
about the topics.

6 The goals

The goal of OS Runner is to have a fun strategical deck-building card game try-
ing to facilitate and stimulate cybersecurity education through tangential learning
and associations. The game is intended to create an engaging gameplay experi-
ence that will also widen the players’ understanding of real-life hacking, penetra-
tion and red teaming scenarios.

As a group our goal during the project is to learn more about cybersecurity
as well as game design. Considering we’ve also made a game during the "Game
Programming" course [6] and also during the "Graphics Programming" course [7].
We also want to know what it’s like working in a multidisciplinary team on a bigger
project. Improving our game programming, design knowledge and skills is also a
very beneficial and interesting experience for us.

Chapter 1: Introduction 5

We also have no previous experience with making multiplayer. This could be
helpful in future projects as well, considering that adding multiplayer to a game
opens up a plethora of possibilities in regards to gameplay. Having experience
with making multiplayer games will also be professionally useful.

7 The thesis

In this thesis we will be discussing the following:

• Introduction
In this part we will describe the project, the goal, the tasks and the team.
• Requirements

In this part we will discuss the requirements for this project, and how we
designed them.
• Implementation

In this part we will discuss how we approached the technical and graphical
implementation and design of the game.
• Discussion

In this part we will discuss how much has been accomplished, as well as give
the project, the team, and the working process some praise and critique.
• Further work

In this part we are going to discuss how the project can be used and im-
proved after the thesis is over.
• Conclusion

Chapter 2

Requirements

1 Initial requirements development

1.1 Planning the requirements

Initially, the task description did not feature too many actual requirements.
The employer explained to us what kind of game he had envisioned, what ele-
ments he wanted to include, which of these elements were to be stressed out, and
what we should avoid. He also gave us a lot of liberty in regards to the develop-
ment process and the resulting product. In terms of technical details we had the
full control: we were free to choose any platforms and frameworks that suited us.
In terms of gameplay and UX the employer had a lot of ideas and designs, but
was still interested in discussing them and cooperating with us to ensure the most
engaging and educative gaming experience.

The absolute majority of the requirements that we have designed was derived
from discussions with the employer. We have actually spent a significant portion
of time in the beginning of the project to develop a common vision of the game,
and consequently develop documented requirements.

1.2 Scope

Since the beginning of the project, we aimed to have a fully functional game
with the core gameplay features implemented and a server for multiplayer. Since
none of the members specialize in creating game art, our team had primarily fo-
cused on creating code for the game mechanics with the visuals being a lesser
focus.

7

8 Umbraško, Lewandowski, Dahl: OS Runner

1.3 Gameplay flowchart designs

At the end of our planning phase, we have developed design documents that
contained a detailed description of how the gameplay had to look like. We then
used these documents as a basis for more detailed requirement specifications, such
as user stories and tasks.

One of the first designed flowcharts was the main menu flowchart, that ex-
plained how the players would navigate the main menu to play the game, change
game settingss and edit their player profile. This flowchart can be found on the
figure 2.1.

The design document, developed by us, that describes in detail the gameplay
flow of a multiplayer game of OS Runner, can be found in appendix B.

1.4 MoSCoW

We have also used the MoSCoW method[8] to classify the most important
features that have to be implemented for the game to fully function. MoSCoW
method is a requirement prioritization method to classify the requirements by how
important it is to include them in the current delivery. According to the method,
we have selected a collection of broad, general requirements for our project, and
classified them into four groups.

Must haves

This group includes the core game requirements. They were absolutely crucial,
and the game could not function without them. As such, they were prioritized first.
We mostly worked on developing them in the first iterations of the development
cycle.

This category included such base elements as the platform support, the multi-
player, as well as some of the main gameplay aspects, such as cards, the map, and
the battles.

Should haves

This group consisted mostly of elements that added the most additional game-
play and educative value, as well as some important UX components. It is impor-
tant to note that some of the requirements had qualitative description, specifically
the visual and sound design requirements, as well as the network performance

Chapter 2: Requirements 9

Figure 2.1: Initial flowchart of menu navigation

10 Umbraško, Lewandowski, Dahl: OS Runner

requirement. Since these descriptions are qualitative, they are not especially de-
scriptive by themselves, but the qualitative descriptors will be more useful when
compared to respective requirements in the Won’t have group. These descriptions
help to put emphasis on how much work should be put into the specific element,
and not how exactly the element should function.

The listed requirements were such mechanics as the in-game shop and the
encyclopedia, support for player-added cards, the persistent player profile, options
and more platform supports.

This group was still considered very important, but unlike the Must haves, the
elements in this group had to be build atop of the already existing core elements.
Therefore, they couldn’t be prioritized from the get-go, so they were moved into
this section.

Could haves

This group consisted mostly of more complex gameplay elements that were
proposed by and discussed with the employer, but were from the very beginning
considered less important at this moment. Employer was aware of that and agreed
with us.

They were moved to this group because they required extensive game base
to be built upon, which meant that they will probably be out of scope for the
time frame of this project, but if there are no other features to work on, the team
members could implement them.

Won’t haves

This group consisted of requirements that were not to be expected by the end
of this project. They were added to the list in order to help the team to focus on
the more important features.

It mostly consists of qualitative descriptions of visual and sound design. None
of the team members specialize in those, so that was not the focus of the project.

The requirements list

Below is the complete list of requirements classified using the MoSCoW method.
In Chapter 4, we will go through the list again, and take a look at what progress
we’ve achieved.

Chapter 2: Requirements 11

Must have:

• We must have a card base
• We must have multiple card types
• We must have card battles
• We must have functionality to add cards to the deck
• We must have Local Network multiplayer
• We must have map topology
• We must have map navigation
• We must have a main menu
• We must have Windows support

Should have:

• We should have a persistent player profile
• We should have good network performance
• We should have working single-player mode
• We should have working Bitcoin shop
• We should have options menu
• We should have all of the card types
• We should have in-game card encyclopedia
• We should have nice visuals in the game
• We should have nice audio design in the game
• We should have functionality to easily add new cards into the game
• We should have Linux and Android support

Could have:

• We could have majority of the cards
• We could have a more complex scoring system
• We could have a team-up functionality
• We could have a reputation system
• We could have specializations
• We could have assisting of other players in multiplayer
• We could have working high score menu
• We could have iOS support

Won’t have (this time):

• We will not have ALL of the cards
• We will not have a story
• We will not have good visuals in the game
• We will not have good audio design in the game

12 Umbraško, Lewandowski, Dahl: OS Runner

2 Continuous requirements development

2.1 Weekly meetings

During the initial planning phases, we decided that for our development man-
agement methodology we will be using Scrumban[9]. One of the benefits of this
agile methodology was that it allowed us to continuously change and generate
requirements. The methodology will be discussed in more detail in Chapter 3.

Employer meetings

Every working week we followed a schedule that enabled us to quickly react
to issues and design decision that came up. Every Friday during the development
we met up with the employer and discussed the progress. During these meetings
we would show him the latest prototype of the game, talk about what was added
and changed, and listen to his feedback. We would also discuss the direction in
which the game is heading, the aspects where our visions of the game disagree,
and, most importantly, on what elements we should focus at that moment.

Whenever we and the employer had any disagreeing views, we would have a
discussion, during which we would find the best solution together.

Team meetings

On the following Monday, we would then have a closed team discussion. One
of the main topics in these team meetings would be generating new user stories,
which we would incorporate into our Scrumban board and focus on in the follow-
ing week.

2.2 User stories

Some of the user stories were developed immediately after creating the game-
play flow design. But most of them we have developed later on, during the course
of development and during the weekly meetings. We have kept the user stories
short and atomic, so that they are easier for us as developers to work on. We have
also used acceptance criteria parameter to define when a user story should be
considered finished. The user stories document can be found in appendix A.

Chapter 2: Requirements 13

A typical user story

A typical user story used in our documentation can be seen on the figure 2.2,
and it consisted of multiple elements.

Each issue had an internal number for easier conversion into GitHub issues.
The number just continuously increased with each new issue, and was prefixed at
the beginning when a corresponding issue was created.

Each user story also had a description, that functioned as a name. This de-
scription always followed the same formula: it described the actor, and what kind
of action that actor wants to perform. This description field was used together
with the internal ID in GitHub issues for easy reference.

The final field is the acceptance criteria. It describes the issue in a greater
detail by adding specific sub-requirements, that have to be fulfilled in order for
the issue to be considered finished. This helped us unify our understanding and
vision of every user story, without adding too much complexity, which could have
resulted in having to break down many issues into smaller tasks.

Designing user stories

The layout and fields that we chose, as well as the way we wrote the issues
was not arbitrary. We spent quite a bit of time in the beginning of the project
discussing and researching different methods of efficient writing and use of user
stories.

Many of the user story guidelines that we have followed were inspired by a
user story guideline, published by the Agile community of the Government of the
United Kingdom[10].

What we found most appealing with these guidelines, is that they allow us
to be specific about what kind of problem we are solving, because they offer a
detailed overview of it, while also helping to make sure that it is the right prob-
lem, since the user - the player in the absolute majority of cases - is a part of that
user story and is always considered. We also found the acceptance criteria very
appealing, because they help us make sure that every team member sees the prob-
lem the same way, which minimizes the risk of diverging visions and incompatible
solutions.

14 Umbraško, Lewandowski, Dahl: OS Runner

Figure 2.2: A layout of a typical user story

Tasks

Even though we have tried to make the user stories short and concise, some of
them still required to be broken down into smaller components: tasks. These tasks
focused more on small technical elements that had to be implemented in order to
finish a larger user story, as well as to specify the amount of technical that had to
be put into a user story, in order to make them more granular and smooth. They
also followed a specific structure: they had a number, which was assigned based
on the related area of development, such as GUI, multiplayer or map topology;
they also had a field for specifying the connected user story for easy reference;
and they had a small description, which specified an atomic technical detail to be
implemented. A typical task can be seen on figure 2.3.

Tasks were also added as GitHub issues, prefixed with a letter ’T’, task number
and connected user story number.

Figure 2.3: A layout of a typical task

Chapter 3

Implementation

1 Introduction

This Chapter will explain different sides regarding the implementation of our
end-product. We will start with the development process and explain how we used
Scrumban methodology when developing. Furthermore, we will talk about the
technical and graphical design as well as coding practices to ensure quality code.
Thereafter, we will take a deep dive into the crucial parts about our product.

2 Development process

2.1 Scrumban development model

During the planning stage, we spent quite some time arguing and discussing
what kind of model to use. The two options, that we could not decide between,
were Scrum and Kanban. The Scrum approach offers better time management and
control. It is more decisive and strict and implements more internal deadlines.
Kanban on the other hand offers more flexibility, and the tasks can be selected
by each member personally; which allows for easy task distribution. Kanban also
offers us to plan continuously, which is definitely going to be helpful in our project,
since we expected the plans to change relatively often.

We have then decided to read and research more about development method-
ology, and found a model that combines both advantages - the Scrumban[9]model.
The main elements of our model were the iterations and the project board.

We had initially divided the project timeline into multiple week-long itera-

15

16 Umbraško, Lewandowski, Dahl: OS Runner

tions. At the start of each iteration we would discuss and choose a development
focus for that iteration, then we would collect user stories, and use them to pop-
ulate the project board, with issues. The project board consisted of five columns:
"To do", "In progress", "To review", "Blocked" and "Done". Initially, all issues were
moved to "To do", and any team member was free to choose any issue and move
it to "In progress", and start working on it. One member could only have one task
in the "In progress" column, in order to avoid losing focus. After completing their
task, the team members would move them to the "To review" column. Tasks, that
could not be completed due to some unfulfilled requirements, were to be moved
to "Blocked". This ensures that essential tasks could be prioritized.

During our team meetings every Monday we would go through the "To review"
column. We would test and discuss implementations, and moved the issues into
"Done" if they have passed our playtests. Otherwise, they would be sent back to
"To do", with necessary changes discussed.

We also had two additional project boards, one for bugfixing, and one for tests.
If a feature had bugs, or if a bug was found, new issues would be added to the
former board. If a feature required more testing, then we would add issues to the
latter board. We would go through these boards on our Monday meetings as well.

Initially, we have planned to have week-long iterations. However, after assess-
ing our development velocity, we have switched to two-week iterations, with the
very first iteration being a whole three weeks. The reason behind this was that we
found out, that one week is too little for an effective development focus. And to
lay the base of the game took so much time, that even a two-week iteration was
not sufficient. Still, since we used the Scrumban model, our development was
dynamic, and we assessed our progress on a weekly basis anyway, adding new
bugs, testing, and discussing our progress and feature implementations between
ourselves and the employer.

2.2 Mapping the requirements

At the start of the development cycle, we went through our list of user stories
at that moment, and put them onto a flowchart to make it easier to monitor the
development cycle, as well as to see the extent of the current iteration.

Chapter 3: Implementation 17

Figure 3.1: Flowchart of user stories

18 Umbraško, Lewandowski, Dahl: OS Runner

3 Initial technical and graphical choices

3.1 Game Engine choice

Considering there were no requirements as to which technologies we had to
use and that learning how to efficiently use a game engine takes a lot of time
and practice, we decided to use the Godot[11] game engine as we already had
experience with it from the "Game Programming" course[6]. Other reasons for
using the Godot game engine were also the following:

• It is open source
• It is lightweight, executable is around 70MB and requires no installation
• Has a dedicated scripting language with high readability, better editor inte-

gration and more straightforward optimizations for speed
• It is cross platform and exports to multiple platforms
• Good and extensive documentation
• Version control friendly, scenes are stored as text in friendly and human

readable format

3.2 Version Control

As our version control tool we have used git together with GitHub [12]. We
have created a private repository, and worked on the code there.

Branches

For various aspects of the game, that we were working on, we have created
special branches, to make sure that the team members can work independently
on a stable version without having to deal with merge conflicts too often. The
branches included such aspects of the game as the GUI, the multiplayer server,
the cards, special branches for the release and others. Anyone could be working
on any branch, depending on what that specific team member was working on,
however, after some time into the development, some branches were used more
often by specific team members, than others.

Kanban Bot

To make it easier to follow the schedule, keep track of the overall progress and
the progress of individual team members and individual aspects of the game, a

Chapter 3: Implementation 19

webhook-based bot was developed by us. The bot monitored any changes to issues
in the repository, as well as any changes to the Scrumban board, and notified about
them in our team Discord server. This also helped us to quickly react to any issues
the team members had during the development.

3.3 System design

We have decided to build our product from the ground up using the Godot
engine. We have not used external libraries or frameworks in our development.

This allows us to avoid relying on third party maintenance and support, so
our product is much easier to work on in the future. It also means that the user
will have an easier time running our project, since they don’t have to install any
third-party software.

It also is beneficial for us as programmers, since we can experience building
our software completely y ourselves, which widens our expertise in different fields,
such as networking, file management, and others.

3.4 Coding practices

To ensure good code quality and project organization, we decided it would
be very beneficial to agree on a set of rules regarding the code and file system
structure at the beginning phase of the development. Since Godot has no restric-
tions on project or file system usage, we decided to follow the suggested workflow
in the official Godot documentation [13]. In regards to coding this involves the
following:

• snake_case for file, folder, functions and all variables except variables con-
taining nodes

◦ If a function or variable is private, an underscore will be prepended

• PascalCase for node names as well as class names and variables containing
nodes

3.5 File structure

For the folder structure we decided on having a source folder and an assets
folder. Everything that needs to be compiled into the game goes into the source
folder and can be further sorted into their own subfolders. All assets on the other
hand, are placed inside of the assets folder and furthermore sorted inside their

20 Umbraško, Lewandowski, Dahl: OS Runner

own subfolders. An example of how the file structure looks like would be the
following:

OS-Runner

assets

avatars

menus

card_encyclopedia

main_menu

source

characters

enemy

player

menus

main_menu

3.6 Graphical design

In terms of graphical design, we have decided to go forward with a relatively
simplistic, clean user interface. The game should look elegant, but minimalistic.

At the same time, it should be easily viewable on mobile deices, not only on
desktop platforms. This is especially important in text-heavy parts of the game,
such as the encyclopedia. Therefore, in the main menu and the encyclopedia we
have decided to go with big buttons bright buttons and a big font. For the font
choice, we have decided to us the Ubuntu font. It is a clean, modern font, that is
easy to read and fits the hacking theme perfectly.

When designing cards, card battles, and the network topology map, we de-
cided to invest into the hacking theme heavily. Still, even though as a result we
went with a darker palette with more contrasting elements, we still tried to keep
everything clean and relatively simple. This way, the new players will have an
easier time learning the game, its elements and mechanics.

Also, when designing gameplay elements, we have decided to go with more
dynamic elements. This creates a more engaging gameplay, that will draw players
attention to the game more easily.

Chapter 3: Implementation 21

4 Server

4.1 Functionality

The server is, arguably, the main element of the code. It is used to connect the
players together, allowing them to engage in a multiplayer game. It also transfers
all the game data between players, making sure that everyone has the same game
state at all times.

A more complete list of what the server is responsible for includes:

• Store data about the current game phase, and update this information for
clients
• Store information about players, their profiles, teams, whether they are

available for battle and such
• Stores and manipulates voting data during the voting phase
• Manages the shop timer
• Stores the map and asset data

4.2 Basis

The game server is built using the Godot built-in high-level networking API.
This feature of the engine helped us a lot, since we could avoid having to build
our own networking from ground up. The server is a scene, consisting of Server.gd
and its child, BattleServer.gd. As soon as the player tries to join or host a game,
the scene is created. The scene is created regardless of whether the player is the
host or a client, despite what the scene name might suggest. The reason for this is
how Godot API works: nodes between different players can only interact, if their
names and paths are the same.

The players’ local server nodes communicate between each other by using
remote procedure calls. Some of the function in the server node can be executed
only by the master (host) on puppets (clients), some can only be executed by
puppets on master, and some can be executed by everyone on anyone. This means
that we can write the same code for everyone, regardless of whether they are a
server or a client. However, it also adds extra complexity, because often the node
has to execute an action differently, based on whether it is a server or a client.

22 Umbraško, Lewandowski, Dahl: OS Runner

4.3 Structure and flow

The server follows the principle of client-server model, but with some Godot-
specific intricacies. When a player hosts a game, their local server node is instan-
tiated. It creates all the necessary data structures, that are needed for gameplay,
such as the players dictionary. It also immediately registers the hosting player to
that list.

When a player wants to join a game, the node is also created. It tries to con-
nect to a server on the specified IP address. In case of a successful connection,
it executes a remote procedure call to register the player on a server. From this
point, most of the client-server relations follow a specific pattern.

Client-server communication

Whenever a player initiates almost any action, such as switching the team,
attacking an asset, or toggling ready state[reference required], it is completed in
four steps:

1. The server node checks whether it was initiated as the server or the
client
The server node has a mode variable, that stores information about this.

Code listing 3.1: Checking what mode the server is set to

if mode == BootMode.SERVER:
I am the server, I can do stuff myself

else:
I am the client, I have to ask the server to do stuff for me

2. If the node is instantiated in server mode, it completes the action and
notifies clients about it

Code listing 3.2: Server completes the action on its own and notifies other players

func switch_team():
if mode == BootMode.SERVER:

_switch_player_team(get_own_id())

print("The␣host␣switched␣teams,␣sending␣an␣updated␣players␣list")
rpc("update_player_list", players)

else:
This is done by the clients

Chapter 3: Implementation 23

3. If the node is instantiated in client mode, it asks the server to complete
the action in its stead

Code listing 3.3: Client asks the server to complete an action

func switch_team():
if mode == BootMode.SERVER:

This is done by the server
else:

Do a remote procedure call to server and ask
him to switch the team for me
rpc_id(SERVER_ID, "request_team_switch")

4. If one of the clients asked the server to complete an action, it will do
so

Code listing 3.4: Server completes the requested action, and notifies players of
it

Switch player team
master func request_team_switch():

var sender_id = get_tree().get_rpc_sender_id()
print ("Received␣team␣switch␣call␣from:␣" + str(sender_id))

_switch_player_team(sender_id)

print ("Team␣switched,␣sending␣updated␣player␣list")
rpc("update_player_list", players)

This approach allows us to use one and the same node as both the server and
the client, without having to write any additional code. It also helps us to keep the
hierarchy and make the server responsible for completing actions and notifying
the players instead of having the clients notify each other. This prevents the data
from being desynchronized, since only the server has the authority to execute
most of the logic.

This approach, however, has one notable shortcoming. It forces us to repeat
most of the code twice: once in the if statement for the server and once in the
remote procedure call.

5 Cards

5.1 Introduction

As explained earlier in Section 2 of Chapter I, the main mechanics revolve
around card battle gameplay and deck-building as well as red teaming and pen-
etration testing being the main theme of the game. The cards are therefore the

24 Umbraško, Lewandowski, Dahl: OS Runner

cornerstone of OS Runners gameplay, but also the educational aspect of OS Run-
ner. The cards are based off of tactics and techniques from the Mitre ATT&CK
framework [1], but their functionality have been simplified to make for easier
learning.

The player starts the game with a default deck and throughout the game they
are able to change it however they like. Changes to the starting deck can occur in
the form of buying new cards or removing cards already in the deck (see Section
7.1). This forces the player to themselves evaluate the strengths and weaknesses
of the different cards and figure out what works best with the cards they currently
have. After having read and understood the card, the player should also have an
underlying idea of the what the card is based on in real life.

5.2 Card base

Every card in the game has the same common attributes. Those attributes are
presented in table 3.1:

Categories and subcategories are based on a list provided by our employer.
He used cybersecurity frameworks to classify different techniques and therefore
cards. Here is the full list of categories and subcategories that we have:

• Attack

◦ Web
◦ Networking
◦ Wireless
◦ System
◦ Social Engineering
◦ Physical

• Malware

◦ Trojan
◦ Backdoor
◦ Ransomware
◦ Adware
◦ Cryptominers
◦ Exploit-kit
◦ Worm
◦ Virus
◦ Spyware
◦ Scareware
◦ Rootkit
◦ Logic Bomb

Chapter 3: Implementation 25

Property Description

ID the id of the card. This is only used internally, as all the current
game cards are stored in a hash map with the ID being the
primary attribute

Name name of the card. In our case the card names will be the equiv-
alent of the real life hacking and tricking techniques

Description a very short text telling the user slightly more about the tech-
nique. This attribute isn’t strictly necessary for the cards, but
we believed it might add flavor to the game and make players
more interested the techniques themselves. This description is
shown on the cards themselves, so the player will always be
able to read them

Long description detailed descriptions of the real life techniques. This descrip-
tion will only be shown in the encyclopedia (see Section 8). It
is supposed to educate players on how the techniques work in
real life and redirect to sites with even more information

Card rarity used to estimate the power of a card. The rarer the card, the
more powerful it is supposed to be. Rarity also dictates how
frequently a card will be displayed in the shop

Price decides how much the card will cost in the shop. More about
the shop in Section 7.1

Category determines from what field this card originates from. If the card
for example generates money for the player, it could be placed
in the social engineering category, while other more harmful
cards could be placed in the malware category

Subcategory a more specific type of a category. Malware is too general term
since there are very many types of malware. If the category is
malware, the subcategory could for example be trojan

Image a visual representation that will help players easily identify the
card and give a better idea of how the technique of the card is
performed

Effect card will do in the game. Effects will be more discussed in the
subsection 5.5

Table 3.1: All properties for cards.

26 Umbraško, Lewandowski, Dahl: OS Runner

• Defense

◦ Defense

5.3 Design

Old design

During the development we had two major designs for how the cards should
look like. Figure 3.2 is our first design of the card. This design was very simple
but after some play testing we realized that it didn’t display what the card actually
does. Even though the first design was lacking, it helped a lot in getting a feel of
how the displaying and dragging of the cards will work later in the development.
This design was expanded and improved upon later in the development.

Figure 3.2: Initial design of the cards

Description of the figure 3.2:

1. Category of the card
2. Image of the card

Chapter 3: Implementation 27

3. Name of the card
4. Description of the card

Current design

Our current design focuses more on how the card looks like visually. We added
the border to the cards to make them more visually appealing. This design also
includes what effects the card contains, more about effects in Section 5.5. We
wanted the effects to be separated from the rest of the text with a white back-
ground to highlight the most important part of the card. Figure 3.3 shows the
result.

Figure 3.3: How a card currently looks like in the game

5.4 Technical implementation

Card is a scene which contains all of the GUI elements of the card. To make
the text look clean we use a VBoxContainer that equally separates text from each
other making the text easy to read.

The card’s most important role is to make sure that the correct data is being
displayed at all times. Every time a card is being played, placed, displayed or

28 Umbraško, Lewandowski, Dahl: OS Runner

changed, the card will update its visual data. The card also include several borders
which change based on the category of the card. Listing 3.5 displays the updating
of the cards.

Code listing 3.5: Updating of the card

func update_card_gui():
name_label.text = card_name
type_label.text = category
subcategorylabel.text = subcategory

match category:
"Attack":

$Background.texture =
preload("res://assets/card/background_attack.png")

"Malware":
$Background.texture =
preload("res://assets/card/background_attack.png")

"Defence":
$Background.texture =
preload("res://assets/card/background_defence.png")

"Normal":
$Background.texture =
preload("res://assets/card/background_normal.png")

description_label.text = card_description
card_image.texture = saved_texture
var effects_string: String = ""
for effect in effect_container.get_children():

effects_string += effect.effect_name + "␣:␣" +
str(effect.power) + ’\n’

$VBoxContainer/VBoxContainer/CardEffects/
MarginContainer/CardEffectsLabel.text = effects_string
show_on_top = true

5.5 Effects

Each card in the game can deal damage, apply status or heal the player. We
have decided to call every ability of a card an effect. There are no two effects that
are the same.

All cards have a node called effect_container. Every effect of a card will be a
child of this node. If a card is supposed to have an effect that deals damage to the
enemy player, the effect_container would have one child called damage_effect.

Chapter 3: Implementation 29

Code listing 3.6: Adding effects to effects container

func add_effect(effect_name : String, effect_power : int,
effect_parameters: Dictionary, new_effect_texture: Texture):
var effect = load("res://source/cards/effects/" + effect_name + ".tscn")
effect = effect.instance() as BaseEffect

effect.effect_texture = new_effect_texture

if effect_power:
effect.set_power(effect_power)

if effect_parameters.size():
effect.add_additional_parameters(effect_parameters)

effect_container.add_child(effect)

update_card_gui()

Each effect in the game inherits from the abstract class base_effect. This ab-
stract class has three variables: power, type and name.

• Name dictates what will be shown on the card itself in the effects field.
• Power dictates how powerful an effect will be. Damage dealing effect with

power five will deal five damage to the opponent.
• Type dictates whether the effect will be positive or negative. Effects of type

offensive will hurt the enemy and effects of type supportive will benefit the
player.

The effects exist as classes. When adding a new effect to the card, it must be
a predefined effect. There is currently no way for the player to change or create
new effects in the game. All of the effects are described in table 3.2.

Effect Description

Deal damage Deals damage to the opponent
Bomb Deals damage after some amount of turns to the oppo-

nent
Heal Heals the player

Add bitcoin Adds bitcoin to player’s account
Poison Deals damage every turn

Protection Protects you from specified type of cards
Spam Gives the opponent player cards that do nothing

Corruption Replaces some of the opponents cards with cards that do
nothing. Once played the card returns to its original state

Reveal Shows some of the cards in the opponents deck

Table 3.2: All effects for cards.

30 Umbraško, Lewandowski, Dahl: OS Runner

5.6 Card manager

Card manager is an essential node which enables the game to have playable
cards. The primary role of this node is to store all of the cards in the game, dis-
tribute it between players and shop. Another important role is to keep track of the
cards the player has. More about this in Section 6.2.

Reading cards from JSON

During planning phase, the employer put emphasis on importance of easily
adding, removing and changing cards without needing any coding experience.
To fulfill this requirement, we decided to place all of the cards in the game in a
JSON file. This way we can easily add, remove and change cards from the game.
As mentioned earlier, players can only add already existing effects to the cards
through the JSON file. An example of a card in the JSON file is shown in listing
3.7.

Code listing 3.7: Example of card stored in JSON file

{
"name": "Power outage",
"description": "Just plug your competitor’s computer out of the outlet",
"card_rarity": 3,
"effects": [{

"name": "damage_effect",
"power": 25

}],
"price": 1000,
"category": "Attack",
"subcategory": "Physical Attack",
"image": "no_power.png"
"long_description": "Historically, the most efficient way of hacking."

}

When creating a new card, we first instance a new empty card scene. Basic
information like name and rarity is copied directly into the card. Fields that require
more attention are image and effects fields. Listing 3.8 shows how effects and
image are being added to a card. Adding of the basic information is not included
in the listing.

Chapter 3: Implementation 31

Code listing 3.8: Adding a card to the game

var base_card = preload("res://source/cards/card_base/card_base.tscn")
base_card = base_card.instance()
add_child(base_card)

var texture = load("res://assets/card/" + card["image"])
base_card.saved_texture = texture

var effect_parameters = {}

for effect in card["effects"]:

var effect_name = effect["name"]
var effect_power

effect.erase("name")

if effect.has("power"):
effect_power = effect["power"]

effect.erase("power")

base_card.add_effect(effect_name, effect_power, effect, texture)

base_card.update_card_gui()

all_game_cards[base_card.id] = base_card
total_amount_of_cards += 1
remove_child(base_card)

In listing 3.8 it is important that we are first adding the card as a child to the
main root scene. To apply any changes to properties of an object in Godot, we
need to add them to the scene tree first. Trying to interact with a texture of a
node, while this node was not yet added to a scene tree, will result in an error,
because the texture will be null. When we read the textures for an image of the
card, we assume that the image is already included in the files and can be easily
accessed.

We add the effects to the cards through JSON. Looking back at code listing
3.7, we can see field called "effects". This field is an array because a card can have
more than one effect. First we write the name of the effect and follow it with the
power of the effect. There are effects that require more than just name and power
to function properly. Listing 3.9 shows how an effect with more than power would
be parsed into the JSON file. The only difference in this example is the duration
field. Other specialized effects might swap duration field with for another keyword
more fitting for the effect.

32 Umbraško, Lewandowski, Dahl: OS Runner

Code listing 3.9: A unique effect with more than power and name

"effects": [{
"name": "bomb_effect",
"power": 40,
"duration": 3

}],

Cardmanager has a dictionary called all_game_cards. As the cards are being
read from the JSON file, they are being added to this container. It will store all the
original cards in the game, including the unobtainable cards. None of the cards
in this dictionary should be changed throughout the entirety of the playthrough.
Changing them will affect all of the future cards of the same type in the game.

5.7 Deck

This section will focus on the deck nodes and their purpose of handling the flow
of cards between each other. These nodes include: deck, hand, drawPile, discardPile
and deck base, with the latter being an abstract class for the others. The deck class
acts as a controller and handles the interactions between the draw pile, discard
pile and hand, as well as keeping track of the cards in the player’s deck.

Deck_base

As mentioned earlier, the classes for draw pile, discard pile, hand and deck in-
herits from the abstract deck_base class. This is because they share the same func-
tionality for adding cards, removing cards, returning cards, resetting and shuffling
of the current_cards array. This array keeps track of cards in deck or the piles. In
figure 3.4 we visualized the inheritance of the abstract class.

The deck class

To better understand the reason for our implementation, we need to explain
how playing cards works in the game. When the battle starts, the player will re-
ceive cards from the deck into their hand. The player will then play cards from
their hand. When a card is being played, it is removed from the hand pile and is
being sent into the discard pile. The player immediately draws a card from the
draw pile to their hand pile. This process continues until the player’s draw pile is
empty and they can no longer draw any cards. When that happens, the cards from
the discard pile are being shuffled back into the players draw pile and the player
draws a card from the draw pile.

Chapter 3: Implementation 33

DeckBase

var current_cards[]

remove_card(number)

remove_card_by_id(new_id)

add_card(card)

return_front_card(card)

return_card(number)

return_full_card(number)

reset_cards()

shuffle_cards()

corrupt_card(new_card)

has_uncorrupted_cards()

DrawPile

is_empty()

DiscardPile

Deck

return_piles()

apply_piles(decks)

reset_piles()

return_hand_deck()

corrupt_cards(amount, new_card)

use_card(number)

discard_hand_from_effect(power)

_all_cards_to_draw_pile()

_draw_cards_to_hand()

_discard_cards_to_draw()

Hand

var hand_size = 5

hand_full()

Figure 3.4: Inheritance from deck_base

34 Umbraško, Lewandowski, Dahl: OS Runner

With the description of how the card flow looks like, we can now go into
more detail what each component does, starting with the deck. The deck has two
primary roles, the first one being a manager for the flow of the cards. To manage
the flow of the cards between piles, the piles must be children of the deck. When
player uses a card, the hand sends the played card to the deck, and the deck then
sends the card to the discard pile. Figure 3.5 shows how the deck and the piles
are related

Deck

DrawPile Discard
Pile Hand

Figure 3.5: Relation between the deck and piles

The second primary role of the deck is to keep track of the cards that the
player currently has in the game. At the start of the game, the player starts with
basic cards and is supposed to add and remove cards from their deck to make
them stronger. Every time a battle starts, the cards from the deck will be sent to
the piles and the player will be able to use them. When the battle ends, cards in
the piles will be removed. This means that any changes to the cards in the deck
applied between the battles will apply to player’s next combat.

Another feature for the deck is the ability to return and apply custom piles.
This is is primarily used to show opponent’s deck during a battle when a revealing
effect has been played. More about it in Section 6.2.

Pile classes

As previously mentioned, there are three piles in the game, each has it’s own
role. The draw piles primary role is to constantly check if it’s empty. If it is empty,
it will request the deck node to give cards from the discard pile. The discard pile
in itself has no extra functions. It is just supposed to store all of the cards that the
player has used. The hand pile’s special attribute is the maximum amount of cards
in the container. Having more available cards to play gives for more opportunities
to win against the opponent.

Chapter 3: Implementation 35

5.8 Pile display

During the game, it is important to preview all of the cards that the player has
in their deck. For this reason we have decided to create a new node and called it
PileDisplay. Its role is to display all of the cards in a current deck class node.

At first we had no idea what its design should be, we therefore decided to look
to other sources. Most of the team members have played Monster Train (Shiny
Shoe, 2020) [4], which is also a rogue like deck building game. We believed the
deck preview they have created is simple yet intuitive and decided to take inspi-
ration from it. Figure 3.6 illustrates how PileDisplay looks like currently in the
game.

During the process of creating pile display, the shop has been worked upon at
the same time, and we stumbled upon the problem: "How do we display the cards
that we want to remove from our deck in the shop?". This is when we returned
to Monster Train and noticed that they are using the same display for removing
cards in the shop as when displaying cards in a pile. This led us to the conclusion
that PileDisplay should display any deck class pile in the game.

Figure 3.6: PileDisplay in the shop

6 Battle Manager

The battle manager is a node that is the most essential part of the battles
between players. It controls the cards the player can use during a combat, how
much health points each player has during combat and most importantly, who is

36 Umbraško, Lewandowski, Dahl: OS Runner

going to win the game. Battle manager also has the important role of showing the
user all the essential information about the battle itself.

In this section, we will be talking about how it evolved design and implemen-
tation wise, describe all the things it does by itself and with combination of other
nodes.

6.1 Design

Throughout the planning phase, battle manager went through many iterations
of visual designs. While creating the design, we were focusing on what the player
actually has to see in order to properly understand the battle situation. A player
must be able to see the following:

• Player’s current amount of HP
• Enemy’s current amount of HP
• Enemy’s nickname
• Player’s cards
• Player’s draw pile
• Player’s discard pile
• Enemy’s cards
• Enemy’s draw pile
• Enemy’s discard pile
• status effect
• Protection effects

These properties have to be displayed to the player during a combat, and yet
it can not be cluttered. We wanted to make it intuitive for the player where every-
thing is placed and how to read what is shown on the screen. During our brain-
storming sessions we came up with a design that we believed would fit all of the
criteria (see figure 3.7).

1. Discard pile of the enemy
2. Draw pile of the enemy
3. The cards of the enemy
4. Powers of the enemy
5. Avatar and health of the enemy

In this design, the GUI for the player is mirrored with the GUI of the enemy,
that means the the player’s cards, piles and health is at the bottom of the screen.

Chapter 3: Implementation 37

Figure 3.7: Original design of battle screen

Current design

As simple as this visual design is, we struggled to recreate it and during the
development, some visuals have changed too. The result was figure 3.8. We made
everything much bigger. We kept the positions of most elements intact. A huge
change was the card frames in the middle of the screen. From those card frames
you could see the latest card the player and his enemy has played.

Another difference is the lack of proper power implementation. The powers
were supposed to play an important role in making the player stronger, but the
design of them was never fully discussed. The game currently features protections
against certain types of attacks. Initially they were supposed to be placed in the
same field as powers, but due lack of time the visual representation is just a small
texture of the card image placed at the top left of the screen.

Minor bug

During the development of map topology (more in Section 7), we have added
background to make the game feel more interesting. It was supposed to stay only
within the map topology screen, but due to some error it wasn’t removed properly.
This caused the background to be visible during battle as well. We have decided
to let it stay this way as it was more interesting than a blank screen. Figure 3.9
shows the result.

38 Umbraško, Lewandowski, Dahl: OS Runner

Figure 3.8: Current design of the BattleManager

Figure 3.9: Battle screen with the background bug

Chapter 3: Implementation 39

Future designs

There is still a lot of possible improvements for how the battle screen could
look like, and we are constantly coming with more ideas. The latest design pro-
posed by our employer showed in figure 3.10 is how the game could potentially
look in the future. It builds on top of the current design and improves it without
altering it too much.

Figure 3.10: How battle screen could look like in future

The immediate visible changes are the sizes of most elements. The cards are
much smaller. The health bars of players are smaller too and player’s health bar is
now placed at the top left instead of bottom left. At the middle of the screen there
is a clean looking background indicating where the player is supposed to place
cards.

A new feature included in this design is a new preview of the cards. Instead
of hovering over the card and enlarging it to make it readable, we place a bigger
version of the cards on the left side of the screen. This way the player always
knows where to look if he wants to read a card and its properties.

In this design there is also a field for powers. There are arrows pointing from
player’s powers to the opponent’s, this is not indicative of how it will look like,
rather it’s a sketch on how the powers could interact with each other in the future.
Same applies to having multiple of the same powers.

40 Umbraško, Lewandowski, Dahl: OS Runner

6.2 Player

Our battle manager contains a node called Player that was originally supposed
to store all the information like cards in player’s deck and his health points. We
quickly noticed that while in the map screen, we would remove the battle man-
ager node from the main tree scene because it was unnecessary. This caused the
player’s deck to be constantly deleted, removing the deck building part of the
game. To counteract this, we have decided to put the player’s deck inside of the
card manager in the node called Deck, more about deck in Section 5.7.

Currently, the Player node keeps track of player’s status effects, protections
and most importantly health. Whenever the opponent plays a card, they will di-
rectly affect that node. This node also decides how powerful the poison should
be. Whenever the player has a protection against some type of card, this node will
stop its effects.

Battle manager contains a node called Enemy. Initially in the development
every card played by the player would affect this node and then overwrite the
information in the opponent’s Player node. During further discussion, we came
to the conclusion that it’s not good because this allows for cheating to occur. If
player would edit the cards before the game started, they could instantly win all
the battles without the opposing player knowing what just happened. Therefore
we have switched to a new method that will be described in Section 6.4.

6.3 Cards

Displaying cards

During the development, to make the cards look clean, we wanted to separate
them using a HBoxContainer. This didn’t work well because HBoxContainer auto-
matically resizes itself to the smallest possible size. Children of that node could
move only within the boundaries of its parent, thus limiting the amount of space
where the cards could be dragged. We circumvented this by creating an empty
node called _hand_pile_GUI which was of the size of whole screen. This way we
could drag the children across the whole screen. This method also gives us the
freedom of choosing the exact position where the cards should be placed and
how much space there should be between each card. Potential problem with this
approach is the difficulty of changing how many cards can be displayed at the
same time. Currently it is meant to display five cards at any time. Showing six or
more cards could make some of the buttons unclickable.

Because the cards can be displayed in multiple places, we had to find a solution
for when the cards are supposed to have certain properties. The most important

Chapter 3: Implementation 41

one for displaying the cards in the battle manager was the enlarging. When player
hovers over a card, the card is supposed to be enlarged so that the player can read
it. When we add the cards to _hand_pile_GUI, we set a boolean called enlarging
and specify its original position. When player hovers over a card with enlarging
property, it will scale up to double the size. When the cursor leaves the cards, it
will go back to its original size and position. Code listing 3.10 shows the entire
process of showing a card in battle manager.

Code listing 3.10: Displaying of cards

func display_cards():
var i = 0
for card in hand:

card = card.duplicate()
card.enlarging = true
card.dragable = true

var additional_space = i * 170

var screen_size = Vector2(1920, 1080)

card.set_position(Vector2(screen_size.x * 0.3
+ additional_space, screen_size.y * 0.7))

card.initial_position = Vector2(card.get_position())
card.set_scale(Vector2(0.5, 0.5))
card.initial_scale = card.get_scale()
card.connect("card_dragged_to_play",
self, "_on_card_dragged_to_play")

_hand_pile_GUI.add_child(card)
card.update_card_gui()

i += 1

The enemy also has cards that are playable. During the planning we knew that
there will be some cards in the game that will enable player to look at the cards of
the enemy. We have decided to just insert textures for the enemy’s card. While the
cards are not revealed, the player will see backside of the cards. When a reveal
card has been played, it will reveal a card that the enemy has in their hand. Figure
3.11c shows how it is visualized in the game.

Dragging cards

Like with previous approach, dragging cards works similarly to the enlarging
of cards. We have a boolean called dragable which decides whether the player
should be able to drag a card or not. This has been used only in battle manager.

When the player presses and holds LMB, he will be able to drag the cards.
The card will be centered on the middle of the mouse. The player can freely move

42 Umbraško, Lewandowski, Dahl: OS Runner

(a) Before the cards are revealed (b) Enemy’s current cards at hand

(c) Enemy’s cards revealed for the player

Figure 3.11: Revealing of enemy’s cards

the card across the whole screen. Upon releasing LMB, the card will return to its
original position, unless the card is higher than the middle of the screen. If the
card is placed somewhere above the middle of the screen, the card will be played.

6.4 Effects in battle

Battle server

Before talking about how the effects are applied to player, it is important to
talk about the communication between two clients. Battle server is the connector
between the players battling each other. Its primary role is to make sure that the
data is being updated for both players. Battle server makes sure that it is the
correct persons turn, sends the id’s of the cards that are being played and ends
the battles when one of the players is inflicted lethal damage.

Using of the cards

This part went through two major iterations. The first iteration as mentioned
earlier in Section 6.2 was supposed to make changes to the enemy node within
the battle manager. That means every effect in the game would affect that node
and all the data about the enemy node would be sent and applied to the other
player’s player node. We found it more secure to simply send the cards themselves
through the battle server to the other player and make that change directly on the
other client. This would also make cheating through editing cards impossible. If
the player would do that, the edited cards would work against them.

The next two listings and paragraphs will try to explain in detail the process
behind using cards.

Chapter 3: Implementation 43

Code listing 3.11: Using a card

func use_card(number : int):

if !_BattleServer.my_turn:
return

var received_id = CardManager.Deck.use_card(number)
var card = CardManager.return_card(received_id)

_PlayerCardFrame.put_card(card)

var supportive_effects = card.return_supportive_effects()

for effect in supportive_effects:
effect.run(_player)}]

_BattleServer.send_health(_player.health)
_BattleServer.send_card_id(received_id) # Important

update_health_bars()
display_cards()
_display_enemy_cards()

var players_deck = _return_piles()
_BattleServer.get_decks(players_deck)
_BattleServer.switch_turn()
_TurnLabel.toggle_state()

At first we check if it’s players turn. If it is, we get the id of a card and the
card itself. Then we display the image of a card in the appropriate card frame. As
mentioned earlier in Section 5.5, every effect has a type accompanied by it. If the
effects are of the supportive type, they will not be trigger for the enemy, they will
only trigger for the player using that card. Next is when the networking happens.
We send the HP of the player to the enemy so in case he used any healing cards,
those changes will be visible for the other player too. The line with important as
a comment will be described in more detail soon. When the effect is used and the
card ID sent, the battle manager will update all of the GUI elements on the screen
and send player’s cards to the enemy’s battle manager. The turn will switch so the
enemy can make his own turn.

44 Umbraško, Lewandowski, Dahl: OS Runner

Code listing 3.12: Receiving a card

func _on_card_id_received(card_id):

var card: CardBase = CardManager.return_card(card_id)

if card.category == "Defence":
card.flip()

_EnemyCardFrame.put_card(card)

if _player.PManager.has_active_by_name(card.category):
return

if _player.PManager.has_active_by_name(card.category + "␣Protection"):
return

var offensive_effects = card.return_offensive_effects()

for effect in offensive_effects:
effect.run(_player)

update_health_bars()
_BattleServer.send_health(_player.health)
display_cards()

if _player.is_dead():
_BattleServer.lose_battle()
_EndBattlePanel.battle_won = false
_end_battle()

The line with important in listing 3.11 triggers this code for the enemy’s battle
manger. Important to note that we are sending just the ID of the card and not the
entire object. This is because Godot doesn’t allow to send objects through network.
At first we get the real card from the ID we got. If the card is supposed to give
protection to the original player, the card will be hidden from the opponent. We
place the card that was sent to its right card frame to show the card enemy has
played. After that we check for protections against a certain type of attack. If the
enemy player is not protected then we will run all of the effects power.

To make implementation of effects easier, we have decided to let every effect
run by itself rather than let battle manager have access to all of the effects. Each
effect when ran triggers method in another class. Listing 3.13 shows how this
process will approximately look like for most of the effects.

Chapter 3: Implementation 45

Code listing 3.13: Bomb effect

This runs in effect
func run(player: Player):

player.plant_bomb(duration, power)

This runs in player
func plant_bomb(duration, power):
_logic_bombs.append([duration, power])

The entire process of playing cards can be summarized in figure 3.12.

Figure 3.12: Flow of using cards

GUI

Every time a player plays a card, there is some change in the battle, and those
changes must be visible to the player himself. The most obvious change is to
player’s hp. Whenever a player takes damage his health bar is updated accord-
ingly.

(a) Player’s health bar when
he is healthy

(b) Player’s health bar when
he is damaged

(c) Player’s health bar when
he is in critical state

Figure 3.13: Representation of different states of player’s health

46 Umbraško, Lewandowski, Dahl: OS Runner

6.5 Bugs during development

Creating battle manager required a lot of effort and learning. There were many
things we didn’t know when we first made it. One such situation would be how
we have to handle the transactions of cards.

Overwriting cards

The corruption effect in the game is supposed to replace the card in the en-
emy’s deck with a useless one that the enemy has to play to get his original card
back. When we first started working on it, we didn’t duplicate the cards properly.
When one of the players used that effect, the changes were applied to the card in
the opponents deck and to the cards in the card manager. That means all of the
cards in card manager were replaced with copies of useless cards rendering the
game unplayable.

7 Map Topology

Where the player starts and which assets they can conquer is all dependent on
the map topology. The idea behind the map topology was to have it resemble a
network which consists of a number of assets that are connected to each other. A
subset of assets are what we consider as starting assets and they are valid starting
points at the beginning of the game. The map topology is also where the players
will work together as a team and strategically choose and conquer their desired
assets.

Currently OS Runner features one map which can be seen in figure 3.14. In
the map there are a total of 14 assets which needs to be conquered entirely by
one team in order to win. The current map has a total of six starting assets which
are placed on the edges. As mentioned earlier, some of the assets are connected to
each other. The connection between assets is represented by a blue line which is
animated with binary numbers which move from one asset to another connected
asset.

After starting assets has been decided and the two teams begin conquering
assets (as seen in figure 3.15), the conquered assets will be painted with the team’s
color and assets in the process of being conquered will be painted with both teams
colors and have an animation to further signify this. Neutral assets on the other
hand will remain uncolored.

When looking at the map topology, in the bottom left, all players can see which

Chapter 3: Implementation 47

Figure 3.14: Map at start of game

Figure 3.15: Map when conquering assets

player(s) that are still making a move during the current turn. At the top left
however, all players are able to see their name and which team they are on. They
can also see if it is their turn as well as which phase the game is in, their current
amount of Bitcoin and the shop timer which prevents the players from denying
other players the ability to update their decks in the shop by disallowing them to
attack each other for some period of time.

48 Umbraško, Lewandowski, Dahl: OS Runner

Controller

The Controller node is there to make the map actually function correctly and
respond to actions made by the player, or to new information about the game state
sent by the server, and display them on the map.

The main idea behind this node is to ease the process of creating new maps.
Instead of programming the logic in the map node itself, we instead decided to
move it into a separate node. This way, if one more map was to be created, the
developer wouldn’t have to program all the interactions with the server again, but
instead would just add this node.

This node is responsible for such aspects of the map as responding to player
clicks, keeping track of what team is controlling each asset, hiding or updating
the map when necessary, and managing the game over and error screens by re-
sponding to signals. The node also manages some visual aspects, such as the lines
between assets and the moving numbers on them.

7.1 Shop

Currently the only way of acquiring new cards is through the shop when out of
battle and in the map. When in the shop, the player also has the option of removing
cards from deck and restocking the shop (see figure 3.16). All of these options cost
Bitcoin and can only be done if the player possesses a sufficient amount of Bitcoin.
However, the player is restricted to only be able to buy a new card or remove a
card once per turn.

When entering the shop, by clicking the money bag in map, the player will be
presented with three cards. These cards are randomly chosen based on their rarity.
Beneath the card itself is the price of the card in Bitcoin. To buy a card the player
has to select the card they want to buy, by clicking it, and press the Buy a new
card button in the shop. The player will thereafter be charged Bitcoin equal to
the price of the card and the card is removed from shop and added to the player’s
deck.

To remove a card from their deck, the player has to press the Remove a card
button in the shop menu. After the button has been pressed, the player will see
their own deck on screen. To remove a card, the player simply has to click on the
card they want to remove. The chosen card is then removed, Bitcoin is charged
and the price for removing cards is increased.

Restocking of the shop, allows the player to spend Bitcoin in order to view a
new set of cards in the shop. These new cards are also randomly chosen based on
rarity and they are not guaranteed to be different than the previous set of cards

Chapter 3: Implementation 49

Figure 3.16: Shop window in game

in the shop. The player can restock as many times as they want, this includes per
turn as well, but the price also increases each time.

8 Card Encyclopedia

A natural part of all card games is being able to discover and explore the dif-
ferent cards available. The idea of having an in-game encyclopedia was therefore
quite enticing as it further improves on the educational aspect by allowing us to
further describe the cards. It allows for full exploration of all cards in the game,
even those that are unobtainable, and the ability of filtering based on rarity, sort
by price or simply searching. The in-game encyclopedia also includes a longer
more in-depth description of the card and it’s effect in the real world.

The in-game card encyclopedia can be accessed from the main menu through
the "card encyclopedia" button. When entering the card encyclopedia, the user
will be greeted with what can be seen in figure 3.17.

To the right in the card encyclopedia, the currently chosen card is displayed
(defaults to first in list) exactly like it is whilst in battle. In the middle, the name
of the card along with it’s longer description is shown. The purpose of the longer
description is to give a more in-depth explanation as to what the card is derived
and based on in real life and educate the user.

To the left in figure 3.17 is a scrollable list which contains all cards based on

50 Umbraško, Lewandowski, Dahl: OS Runner

Figure 3.17: Card encyclopedia on cards tab

Figure 3.18: Card encyclopedia on filter tab

current filters. Above the scrollable list there is a search field for ease of access to
a specific card in mind. For access to filters the user has to click on the "filter" tab
which leads them to what can be seen in figure 3.18.

In figure 3.18 we can to the left, where the scrollable list was, see the available
filters. These filters lets the user as mentioned earlier only have cards of chosen
rarity shown as well as sorting them either ascending or descending based on
price which is done using the mergesort[14] algorithm (see code listing 3.14 and

Chapter 3: Implementation 51

3.15). If no rarity filter is set, all cards will be shown and if neither ascending
or descending is checked, they will be sorted alphabetically using GDScript’s own
sort method[15] for arrays.

Code listing 3.14: Implementation of mergesort algorithm used in card encyclo-
pedia

Performs mergesort based on price
func _mergesort_price(array):

if array.size() == 1:
return array

var a = array.slice(0, array.size()/2-1)
var b = array.slice(array.size()/2, array.size())

a = _mergesort_price(a)
b = _mergesort_price(b)

return _merge(a, b)

Code listing 3.15: Merge function used in implemented mergesort algorithm

Merges arrays "a" and "b" based on price
and returns the merged resulting array
func _merge(a, b):

var c = []

while not a.empty() and not b.empty():
if CardManager.return_card_by_name(a.front()).price <

CardManager.return_card_by_name(b.front()).price:
c.append(b.pop_front())

else:
c.append(a.pop_front())

while not a.empty():
c.append(a.pop_front())

while not b.empty():
c.append(b.pop_front())

return c

The reasoning behind the choice for implementing mergesort[14]was to have
an efficient, consistently fast and stable sorting algorithm. The only drawback be-
ing the high use of n memory. Considering it uses the divide and conquer concept,
it is highly capable of parallelism and has the potential for further optimization
in terms of compute speed. In terms of optimizing the memory usage, the imple-
mentation can be changed to instead of using an external sort method to have an
in-place sort method.

52 Umbraško, Lewandowski, Dahl: OS Runner

9 Music Manager

The music manager is a node, that runs as soon as the game starts. This node
controls the music that plays during the gameplay. It uses Godot’s built-in audio
system to play the tracks.

A special element of our Music Manager is the activity system. Tracks, that
the Music Manager will be playing, are listed in a JSON file, where they also are
divided into activities. Currently, there are three of them:

• Menu music
These tracks are supposed to be played in menus
• Map music

These tracks are supposed to be played in the map topology
• Battle music

These tracks are supposed to be played in a battle

By using the switch_activity() function, the activity can be changed. The Music
Manager will then automatically choose a random track belonging to that activity,
and play it. When the track ends, it automatically restarts.

10 Customization

Customization in a game is about altering features in an attempt to let players
personalize the experience and bring themselves into the game. In OS Runner this
is done through the profile, where the player can themselves personalize their in-
game appearance. OS Runner also lets the player change their settings to their
preference in regards to display and audio.

10.1 Settings

Options menu

The ability of being able to change settings is always of a great convenience
and it was something we deemed as a "should have" in the MoSCoW presented in
Section 1.4. The currently implemented settings that can be changed are: window
type, window resolution as well as audio volumes. To change these settings, the
user has to access the options menu from either the main menu or the pause menu.
When entering the options menu, the user will be greeted with what can be seen
in figure 3.19.

Chapter 3: Implementation 53

Figure 3.19: Options menu

The implemented window types are fullscreen, borderless fullscreen and win-
dowed mode. If window type is set to either fullscreen or borderless fullscreen,
the window will cover the entire screen and the ability to change resolution will
be disabled. However if window type is set to windowed, the user has the possi-
bility to change resolution from a predefined list of most common resolutions in
16:9, 4:3 or 16:10 aspect ratio.

The audio volume is split into three different categories which are: master,
music and SFX volume. Master volume controls the overall volume of all audio,
whilst music volume only controls the music and SFX volume only controls the
sound effects. This gives the player more control over which part of the audio they
want to adjust to their liking.

Settings

As mentioned earlier the options menu can be accessed either from the main
menu or the pause menu. With the pause menu only being accessible whilst in-
game. However, the options menu only acts as the visual interface for the player
to change the settings. The changes themselves are being updated by the Settings
scene which is a singleton[16]. Having the Settings scene as a singleton allows
for abstracting the code that stores and applies changes to settings as well as
differentiating it from the GUI, which the player sees and interacts with in the
options menu.

54 Umbraško, Lewandowski, Dahl: OS Runner

Persistent storage of settings

In the Settings scene the settings data is being stored in a GDScript dictio-
nary. Upon exiting the options menu, the settings scene writes the settings data
dictionary as JSON to a file called "settings.cfg" (see code listing 3.16 and 3.17).
The settings data is read from file at game launch and applied accordingly (see
code listing 3.18). The reasoning behind this was to have the settings be stored
persistently, so the player does not have to re-apply the desired settings each time
after launching the game.

Code listing 3.16: Function for writing settings data as JSON to file

Writes settings_data dictionary to file in JSON format
func write_settings_to_file():

var file = File.new()
if file.open(_SETTINGS_FILE_PATH, File.WRITE) != 0:

print("Error␣opening␣file:␣settings.cfg")
return

file.store_line(to_json(settings_data))
file.close()

Code listing 3.17: Settings.cfg example
{"master_volume":100,"music_volume":80,"resolution":"1366x768","sfx_volume":40,"window_type":2}

Code listing 3.18: Function for reading settings JSON data from settings.cfg

Reads settings from file and updates settings_data dictionary accordingly
If file is missing or unable to open, default settings are set instead
func read_settings_from_file():

var file = File.new()

if file.open(_SETTINGS_FILE_PATH, File.READ) != OK:
print("Unable␣to␣find␣file␣settings.cfg")

Setting default settings if file isn’t found
settings_data["window_type"] = 0
settings_data["resolution"] = "1366x768"
settings_data["master_volume"] = 100
settings_data["music_volume"] = 70
settings_data["sfx_volume"] = 30

update_settings()

MusicManager.switch_activity(MusicManager.Activity.MAIN_MENU)
return

settings_data = parse_json(file.get_line())
print(settings_data)

update_settings()
MusicManager.switch_activity(MusicManager.Activity.MAIN_MENU)

Chapter 3: Implementation 55

10.2 Profile

To make it easier to differentiate between players, having a profile is very
convenient as it allows them to customize their in-game appearance. Currently
each player is free to change their nickname and avatar, although nickname has
a max length of twelve characters. Regarding avatar, players are able to change it
to their liking between a predefined set of avatars.

Profile menu

In OS Runner, the profile menu can be accessed from the main menu by click-
ing on the avatar with nickname underneath at the top right of the screen. The
player will then be greeted with what can be seen in figure 3.20.

Figure 3.20: Profile menu

In the profile menu there is a text field where the player can freely change
their nickname. Besides the character limit, players are free to enter whatever
they want. This obviously also implies that we are not checking for any profanity
or obscenities. Such a check was something we chose not to implement because
of our limited time on this project.

To change the avatar, the player has to select a different one from the drop-
down list located beneath the nickname field. The player can see the avatar in the
profile menu after it has been selected. Currently there are a total of three avatars
to choose from. The reason for avatars being predefined is to ensure that they are
of proper size, but also to avoid the problem of them being changed to something

56 Umbraško, Lewandowski, Dahl: OS Runner

inappropriate or of such nature. But, also to make sure other players also have
that avatar, to avoid crashes and or bugs related to missing texture.

Profile persistence

In order to avoid having the user change their profile after each time they
launch the game, functionality for storing the profile data to a file has been im-
plemented. This is done by writing the information to a data file in JSON format.
In code listing 3.19 we can see an example of how the profile data file looks like
stored as JSON in file. We can see the path to the selected avatar as well as the
chosen nickname.

Code listing 3.19: Example of profile data file

{"avatar":"res://assets/avatars/jimmy.png","nickname":"CoolGuyJeff"}

Chapter 4

Discussion

1 Reflections

Now that we have discussed the implementation details of our project, we
want to have a look at the finished product, and talk about it.

At first we are going to talk about the good and the bad about our end product
and the development process. Additionally, we will go though the requirements
from Chapter 2, and see how well we have fulfilled them. We will also look into
where our game stands in relation to other similar games, as well as the employer’s
opinion of our achievements. After that, we will be critiquing our original task,
and talk some more about our work process and work organization.

1.1 The good

During the development, we worked hard to ensure that at the end of every
iteration, we had a working version of the game. Currently, the game features a
lot of what we were aiming for.

The game has a working multiplayer mode, where players can participate in
battles against each other, compete for assets and Bitcoin on a network topology
map, manage their decks, buy and remove cards, and make use of various effects
to attack opponents in a battle, or defend themselves against such attacks. The in-
game shop makes sure that everyone’s deck will be different, and they will have
to use the resources and cards available to them in the best way they can come
up with.

57

58 Umbraško, Lewandowski, Dahl: OS Runner

User interface

Although we have never focused our development on graphics of the game,
we have tried to make the game look somewhat adequately good. We spent some
time developing the graphical assets to be more fitting to the theme of the game.
We have put effort into creating and organizing a clean and understandable UI.

Dynamic visual elements

In the earlier versions of the game, it appeared to look more like a presen-
tation, because it was too static. We have addressed this issue, by adding more
dynamic elements, which drastically improved the visual look. We also have tried
to make the visuals and the visual theme appeal to the target audience - IT stu-
dents. However, the game is also still lightweight, and will run even on older or
less powerful devices.

Audio

The game also features a dynamic music system, that changes tracks automat-
ically, depending on which activity the player is doing. We have chosen more calm
and slow tracks for the menus and map interactions, and more fast and intense
tracks for the battles. Adding music had also a huge impact on the user experience
and game immersiveness, as we have concluded after doing our playtesting.

Card encyclopedia

While designing the card encyclopedia, we have aimed to make the learning
material as easily accessible to the players, as possible. This would help to join
the experience of playing the game and learning together. Encyclopedia would
contain more information about every card, as well as explain how the cards relate
to real-world concepts. Atop of that, by making each card represent a real world
cybersecurity technique, we aim to stimulate the players to learn about the cards
that they are playing with.

Card update system

The easy system for adding cards into the game means that players and the
playerbase, as well as the teaching staff, can easily add new cards to the game,
making sure that its easy to keep the game up-to-date with newest cybersecurity

Chapter 4: Discussion 59

techniques that appear in the professional cybersecurity world for the players to
learn about. We will discuss more in Chapter 5 about how this system can be
improved and automatized even more.

Code standards

The modularity of the system that we have designed will help future develop-
ers to easily maintain and update the game, while our coding practices will help
them to easily understand the code.

1.2 The bad

However, our product is not perfect. It’s only an alpha version, so there is still
so much to work on.

Playtesting

During the development, we have only conducted gross playtesting on our
product. This means we have primarily played through the game to find bugs and
unexpected behavior in the game. We did not look for feedback whether the game
is actually fun to play or not. We didn’t focus on wider playtests since the employer
wanted the project to be as closed as possible. During our weekly meetings with
the employer, we would also do live playtests, in order to showcase the progress.

Cards

Currently, we consider this one of the biggest issues in the current iteration of
the game. Right now, the game only includes about a dozen of cards. The main
reason for this is that we have not received a full list of cards that can be used
in the game from the employer. We as the developers team are not responsible
for creating the cards themselves, that was not our task. It was initially agreed in
the project planning phase that the employer will provide us with a list of cards.
However, it turned out to be much more difficult to generate such a list. One of
the main issues with this, as the employer explained, was to correlate the in-game
effects to real cybersecurity techniques. Another important issue had to do with
applying MITRE ATT&CK framework to in-game card categories.

Therefore, the cards that are currently in the game were created by us, and
they serve more as a placeholder, visualizing all the available properties and uses

60 Umbraško, Lewandowski, Dahl: OS Runner

of a card, and all the different effects that are in the game.

Battle Manager

Battle manager can be quite difficult to navigate through if you don’t under-
stand the order in which the functions are running in. Currently every function
in the battle manager is running independently from each other. This makes the
entire battle manager hard to monitor and get a good grasp of. To make the battle
manager more concise, it would be wise to implement a state machine that would
keep track of what’s going on through the entire process of a battle from start
to end. This would ensure that if someone was to take the project from us, they
would have easier time interpreting the code and understand the programmatic
flow of battling.

Graphical design

While we tried to make the visuals clean, simple and on par with game theme,
we are not really content with how they actually turned out. Since none of the
team members specialize in creating and using art, we considered it of a lesser
importance. In the end, we consider the graphics to look somewhat cheap and
bland. Even though dynamic elements enhance the look, we still would have to
make use of more complex and powerful shading and lighting effects, as well as
in general improve the quality of the art. The game has to look better, to compete
with modern indie games on the market.

Neutral Asset Conquering phase

Neutral asset conquering, the gameplay phase that comes after the initial vot-
ing but before the players can battle each other, turned out to be problematic.
Initially, this part of gameplay was supposed to add a strategic element into the
game. The players would choose which assets they would conquer, potentially hav-
ing to pay for this action, or would be forced to choose between different types of
assets that would provide the owners with different buffs, and adapt their game
strategy accordingly. However, due to time limitations and the amount of work
that had to be put into other game elements, we have neither fully designed nor
implemented this part of the game. As a result, this part turned out to be boring,
with virtually no decision making available to the player.

In the future iterations, we would overhaul this system by adding more el-
ements to it, that would transform it from barely a repetitive buffer before the

Chapter 4: Discussion 61

actual gameplay, into a complete gameplay phase. This was discussed with the
employer previously, and possible solutions could be adding different types of as-
sets or adding a cost to conquering assets.

1.3 Other games

Our game is not the only game about education in the cybersecurity. It’s a
small and niche market, but there still are other games out there. However, we
still think that our game has a place in it, and that our game bring some novel
elements as well.

Let us examine some other games and see what our game tries to be more
successful at, compared to them.

A notable game on the market would Maelstrom Defcon24 [17]. The main me-
chanic of the game includes an attacker, that tries to compromise a server while the
defender tries to protect it. The players use cards to progress on a physical board.
Each card has a certain amount of moves that the player will progress with. We
consider this an unsuccessful design, that fails at providing an interesting game-
play, since the game does not provide many additional mechanics. Additionally, it
also fails to provide an educative gaming experience, since the game does not go
in-depth into technical aspects of the cards.

Maelstrom Defcon24 is only one example, but there are other similar games,
like Backdoors & Breaches [18] or Control-Alt-Hack [19], however, these games
are board games, which limits their use and distribution to physical copies, so they
are in a slightly different category from our game.

Another, this time digital game, that is there on the market is called Cyber
Threat Defender [20]. This game looks much more like our game, having card
battles, where cards are used as the direct means to attack the enemy player.
However, the big difference that our game, unlike Cyber Threat Defender, support
multiplayer. We consider this a very important aspect, that adds a lot of gameplay
value.

One more game that we as a team consider a very notable example is Threat
Gen[21]. It is a quality digital game, investing heavily into the cybersecurity theme,
and even supporting multiplayer. However, this investment also brings a down-
side - the game is very information-heavy and therefore difficult to get into and
learn. This might also explain the reason for the low popularity of the game on
Steam[22]. Our game, on the other hand, tries to be simple and easy to start play-
ing even for those, who know little about computer games or cybersecurity. Also
unlike our game, Threat Gen does not aim to use MITRE ATT&CK as a basis.

62 Umbraško, Lewandowski, Dahl: OS Runner

1.4 Fulfilling requirements

We put a lot of emphasis on making sure that the requirements that we ini-
tially set were fulfilled as much as possible, especially the ones that we consid-
ered the most important. If you remember from Chapter 2, we had drafted a list
of requirements using the MoSCoW method. We have used that list to work our
way bottom-up through the requirements, making sure that the Must haves and
Should haves are prioritized the most. Let’s have a look at the list again, and see
which of the requirements have been fulfilled, and to what extent.

Different groups of requirements, as per MoSCoW method, had different levels
of completion at the end of the project

Since the Must have requirements were so important, they have been effec-
tively fully completed. The Should have group turned out a bit more complicated
than initially assessed. Many of these requirements were complete, but others
were either only partially done, or moved out of scope. This will be discussed
more below, when we get to the actual list. The prognosis that the Could have re-
quirements would be left out of scope turned out to be true, and effectively none
of those features were implemented in the end. Finally, the Won’t have group was
there to not be implemented at all.

Must have:

• We must have a card base
Fully implemented. Card base is the base element upon each card is gener-
ated.
• We must have multiple card types

Fully implemented. Even though the concept of card types underwent mul-
tiple redesigns, cards are categorized with each type having its own me-
chanics.
• We must have card battles

Fully implemented. Players use cards to battle for assets on the map.
• We must have functionality to add cards to the deck

Fully implemented. Players can add cards to their decks and opponents’
decks using various mechanics.
• We must have Local Network multiplayer

Fully implemented. The game is multiplayer-based and players can host and
join servers on Local Network as well as over the Internet.
• We must have map topology

Fully implemented. This is one of the main gameplay mechanics, and lets
the players battle for control of network assets on the map topology.
• We must have map navigation

Fully implemented. Players can navigate on the map through an intercon-

Chapter 4: Discussion 63

nected network of assets.
• We must have a main menu

Fully implemented. A main menu hosts ways to change game settings, edit
player profile, access the Encyclopedia, and start or join a game.
• We must have Windows support

Fully implemented. The game supports 64-bit Microsoft Windows releases
with at least OpenGL 2.0 support.

Should have:

• We should have a persistent player profile
Fully implemented. The players can edit their picture and nickname, which
is saved to a file and displayed during battles.
• We should have good network performance

Fully implemented. During playtests, no performance issues were discov-
ered.
• We should have working single-player mode

Not implemented. While this feature was initially planned and described,
and even a full design documentation was written, this feature was quickly
moved out of scope of this project, because implementing the multiplayer
gameplay took more time than initially assessed.
• We should have working Bitcoin shop

Fully implemented. Players can buy and remove cards using the in-game
currency.
• We should have options menu

Fully implemented. Persistent music and screen mode settings are imple-
mented.
• We should have all of the card types

Partially implemented. Initially it was discussed with the employer that he
will provide us with a list of cards, that should be added to the game, with all
the necessary parameters, such as the type. However, the existing card de-
signs turned out to be incomplete and ill-suited, so after multiple redesigns,
it was decided during discussions with the employer, that some of the cards
and card types will be implemented, and some will be left for future.
• We should have in-game card encyclopedia

Fully implemented. The game hosts an in-game Encyclopedia, where the
player can find all the in-game cards, along with a more detailed description
of their real-life analogues.
• We should have nice visuals in the game

Implemented. While the visuals were not the focus of the game, we spent
considerate amount of time working on them, with many of the graphical
assets being crafted by the team. We have also worked on making the game
look intuitive and easy to pick up for improved user experience.
• We should have nice audio design in the game

64 Umbraško, Lewandowski, Dahl: OS Runner

Implemented. Also not the focus, but the game still has royalty- and copyright-
free soundtrack, that dynamically changes, based on what the player is do-
ing.
• We should have functionality to easily add new cards into the game

Implemented. The users can easily added their own cards into the game
by simply editing a JSON file. While new card effects can only be added
by editing the code, all of the other properties of a card, including use of
already existing effects, can be added into the game without touching the
code and requiring only basic understanding of the structure of a JSON file.
• We should have Linux and Android support

Partially implemented. 64-bit Linux distributions with at least OpenGL [23]
2.0 support are supported, Android version turned out to be more difficult
to finish. The game is exported and runs on Android, but some UI elements
have to be changed for the game to be playable on this platform.

Could have:

• We could have majority of the cards
Not implemented. The previously mentioned issues with card designs pro-
vided by the employer prevented us from implementing them.
• We could have a more complex scoring system

Not implemented. Left out of scope. No specific designs were discussed.
• We could have a team-up functionality

Fully implemented. The game supports two teams of 1, 2 or 3 players in
each.
• We could have a reputation system

Not implemented. Left out of scope. No specific designs were discussed.
• We could have specializations

Not implemented. Left out of scope. No specific designs were discussed.
• We could have assisting of other players in multiplayer

Not implemented. Left out of scope. No specific designs were discussed.
• We could have working high score menu

Not implemented. Left out of scope. No specific designs were discussed.
• We could have iOS support

Partially implemented. The iOS version is in the same state as the Android
version, plus distribution difficulties imposed by the platform: an app can
only be distributed on their own app catalog [24], and to get it there it must
be approved.

Won’t have (this time):

• We will not have ALL of the cards
Not implemented.

Chapter 4: Discussion 65

• We will not have a story
Not implemented.
• We will not have good visuals in the game

Not implemented.
• We will not have good audio design in the game

Not implemented.

By the end of the project, we have a working product, that can be played by
multiple players at once, with functioning battle and map systems, and multiple
cards and effects. There is still a lot more to do, which we will discuss in Chapter
5, but in general, we have made a good progress.

1.5 The employer’s opinion

We have worked in close cooperation with the employer, and he was constantly
monitoring our progress. The employer called the our final product, as well as the
development process in general, an interesting experience. He is glad to finally
see his ideas come to manifest in a physical product, as well as he is content with
the way that we have approached the development and realized the game.

Further development

The employer is quite interested in proceeding with the development of the
game. He wants to work on it further, make it into a fully-fledged game, and use
it in his own scientific research. He has, however, admitted that the process of
designing and developing a game is not easy, and that in the future he wants to
change the course that the game is taking. He would like the game to focus more
on realism, and add more elements to better represent the real world cybersecu-
rity.

Many more features

Our employer always had a lot of ideas in mind. We were constantly discussing
them during our meetings, and considering which ones we could add. However,
often we had to explain to the employer that many of these features are beyond
the scope. So, the employer had told us that he has a list of new features that he
would like to add in further iterations of the game.

66 Umbraško, Lewandowski, Dahl: OS Runner

Improved graphics

None of the team members specialize in graphics and art. Therefore, we have
not focused too much on that, even though we tried to keep the graphics at least
somewhat adequate. Nonetheless, the employer had expressed interest in finding
people who specialize in this to improve the looks of the game.

2 Critique of the original task

The task itself was lackluster in regards to actual requirements as mentioned
earlier in Chapter 2 subsection 1.1. As such, the employer gave us a lot freedom
in designing and developing the game and its mechanics. In the end of the de-
velopment, we have discussed the results with our employer, and even though he
was happy with how the game looks like, we have noticed that the experience
that we have created is actually somewhat different from the experience that the
employer was expecting.

We have then discussed, that if the game was developed further, we would like
to consider changing the direction of the development. There were many aspects
in the cybersecurity world that weren’t properly introduced to us, therefore we
can’t precisely pinpoint the direction in which the game is supposed to go in in
terms of the educational aspect. Since the game is very tightly connected to cy-
bersecurity, this problem accelerated the difference between what the employer
expected, and what the game turned out to be like.

It is important to note, that all of this was not due to unfulfilled requirements
or a lack of communication. During the initial design phase and discussions, we
have discovered, that our employer does not have a very specific vision of the
game, its elements and mechanics. Therefore, even though we have thoroughly
gone through the ideas and propositions, documented the designs and the require-
ments, it was really difficult for us to deliver the experience that the employer
really wanted. The employer, as the team had concluded, himself did not really
have a clear understanding of the experience that he wanted.

It is also worth mentioning that our employer was quite open minded and
enjoyed sparring different suggestions about gameplay and gameplay mechanics
as well as card ideas. Additionally the original task mentioned creating a mobile
game, however after a meeting with our employer we were told that it was okay
to focus on the platform we felt most comfortable developing for.

Chapter 4: Discussion 67

3 Evaluation of group work

We started the bachelor project by creating a project plan (see appendix D)
where we discussed and disclosed the organization of the project and the schedule.
This entailed creating and assigning of roles, choosing of development method-
ology, creating group rules and prioritization of features. This section is therefore
dedicated to in retrospect evaluate and reflect over the decisions made in regards
to the initial project plan.

3.1 Group organization

Roles

In the project plan, we agreed on a set of roles for each individual on the group.
These roles were: communications manager, secretary and lead designer in addi-
tion to the developer role which everyone were given. The role of communications
manager remained unchanged throughout the project, the same goes for the sec-
retary role. Last, but not least there was the role of lead designer, which ended up
becoming more of a lesser role since everyone aimed at creating a pleasant and
meaningful design.

As mentioned, everyone had the role of developer and worked on the games
code. However, as a group, we agreed to go for a divide and conquer approach
in regards to developing features. As a result we decided that every member of
our group should specialize in different areas of the game. The areas we decided
on were: "everything related to cards", "everything related to UI" and "all things
related to networking and map topology".

Group rules

In total, we decided on 5 rules which can be seen in the project plan. These
rules were created to establish a proper working routine as well as a procedure
in case a problem occurred. All group members upheld the rules regarding the
working hours and if not a notice was issued to let the rest of the group know.
When a problem arose, members of the group engaged in the following discussion
to resolve the problem at hand.

68 Umbraško, Lewandowski, Dahl: OS Runner

Evaluation

All in all, this group setup and the general workflow of us as a group we
consider a success. We have almost never had any communication issues, we made
sure that all the members work hard and work consistently. All the rules and
roles that we have applied and used, turned out to be healthy and useful for our
progress.

As a team, we are proud of the time we have spent on working on the project,
and we are proud of the final product.

Considering the lack of requirements, as mentioned in Section 2, we spent a lot
of time in the planning phase. However as a group this is not something we regret
as everyone agrees on it being necessary in terms of forging the path to fulfilling
the goal of a proof of concept. We had to spend all this time on planning, to make
sure that the final product will be something well thought-out and something
we can be proud of. It would have been more beneficial to us if the task was
formulated and described more precisely by our employer from the beginning.

3.2 Work organization

MoSCoW and prioritization

Since the bachelor task was about creating a proof of concept of the game built
from the ground up in a game engine of our choice, we decided in the planning
phase that it would be in our best interest to create an overview over the features
based on the priority set by us. Which is why we decided on using the MoSCoW
method[8]. We found this to be very beneficial and of great convenience as it was
very clear to us, our employer and our supervisor as to which features we were
going to focus all of our attention on to implement into OS Runner. The MoSCoW
list helped us to focus on the areas that required the most attention, and to avoid
getting distracted by less important side features. It also aided us by creating a set
of informal milestones for the development.

Development methodology

As mentioned in the project plan in appendix D, we spent a decent amount
of time discussing the different development methodologies. We had a productive
discussion and ended up with a combination of two methodologies we deemed as
the most effective and viable for this project. The final decision therefore ended
up being the Scrumban methodology.

Chapter 4: Discussion 69

In hindsight using Scrumban seems to have been the correct choice for a mul-
titude of reasons.

First of all, the prioritization of tasks ended up having a helpful symbiotic re-
lationship with the MoSCoW prioritization technique we chose to utilize. Creating
new user stories to complete the requirements prioritized in MoSCoW was a sim-
ple process because we knew precisely what we had to work on and deemed the
most crucial.

Additionally we were working in short iterations, which was of great conve-
nience in terms of always being able to showcase our progress during our weekly
meetings with our employer. The adaptability these iterations gave us was also
key if there was a requested feature or change from our employer. The progress
from our iterations were also neatly kept track of as a result of using a Scrumban
board.

One more very useful aspect of Scrumban that we came to utilize the most
is the board. GitHub, that we have used as the version control system, has a
built-in board system, that we used as our Scrumban board. This board helped
us immensely in organizing the workflow, adding user stories and tasks, as well
as bugs, and letting the team members choose the ones they want to work on. As
well as the entries in the board being issues, we could easily reference them in
our commits and associate them with the feature they contributed to.

Gantt chart

When creating the project plan, we made a Gantt chart for planning our activ-
ities and getting an overview of how much work could be done during our limited
time span of this bachelor project. The Gantt chart we made can be seen in ap-
pendix D and it consists of a planning phase in the beginning and followed by a
total of twelve iterations. We also decided that only the first iteration should be
two weeks long.

During the initial first iteration, we noticed that the two week time frame to
create a backbone for the project was to little and instead spent three weeks. Dur-
ing our future iterations, we couldn’t quite decide on the length of each iteration,
and we took an unanimous vote of having an iteration last two weeks. But even
though the duration of our iterations increased, we still had weekly meetings with
our employer where we showcased our new progress.

In general, the initial Gantt chart was more to guide us through the timeline.
We did not expect nor try to adhere to it too much, instead we have decided to
focus more on the progress itself, on the Scrumban board, and the discussions
with the employer. The employer himself also did not require any hard deadlines

70 Umbraško, Lewandowski, Dahl: OS Runner

or timeframes for features, so the strongly sticking to Gantt made little sense. The
revised Gantt chart can be seen in figure 4.1

Chapter 4: Discussion 71

Figure 4.1: Revised Gantt chart

Chapter 5

Further work

1 Single-player

Single-player mode of the game was only seriously discussed in the beginning.
It was mentioned in the task proposal, as well as the employer made us aware
that he is interested in developing a single-player as well as multiplayer. He was,
however, also clear that the latter is of much higher importance.

When we were writing the initial project plan, we had included the single-
player as a Should have requirement in our MoSCoW list, but very soon this
proved to be an impossible task. The effort required to develop the multiplayer
mode, as well as all of the game foundations around it, turned out to be way too
big. Consequently, the single-player mode was moved out of the project scope very
early in the development, as to avoid losing focus on the rest of the game and on
more important crucial multiplayer gameplay features. We as a team, together
with the employer, have decided that we would much rather put as much effort
as possible into the multiplayer and have it as fleshed out as possible.

Nonetheless, the design for a single-player mode, that would have similar
game mechanics, as the multiplayer mode, in addition to a story revolving around
a whistle-blower, was documented in a big design document, available in the ap-
pendix C.

2 Use in education institutions

As we have mentioned before, our employer is a former teacher with a huge
passion for gamifying of learning in cybersecurity. Consequently, one of the most

73

74 Umbraško, Lewandowski, Dahl: OS Runner

important applications for our game is the use as an education tool in educational
institutions.

In the current iteration, the game is not yet ready to be used as an educational
tool, because of all the shortcomings, that we have mentioned in Chapter 4. How-
ever, the proof of concept is there, and in future iterations the game can be used
in tangential learning.

As proposed by our employer, the game would not be used as a substitute to
conventional learning methods and materials, but as an extracurricular element,
such as organizing a game evening for the students.

During the following iterations of the game, when it will be deemed ready for
big scale player review, it is planned that multiple universities worldwide would
be reached out to with a proposition to include the game into their curricula.

3 Digital distribution platforms

When the development process finishes and we will be satisfied with the prod-
uct we have completed, we might consider the possibility of distributing the game
onto other platforms like Steam or itch.io [25]. Steam could also enable us to host
the servers for the players, enabling for centralized server. This way the players
wouldn’t have to worry about network or port forwarding issues when hosting a
game. This, however, would only be done when the game went through extensive
improvements, and is deemed ready for the consumer.

4 Going Open Source

Another option that we have discussed and considered with the employer is
making the game be sponsored through crowdfunding, and making the code open
source. This way, we could get the financial resources to finish and improve the,
while also making an educational game free for the consumers. The team mem-
bers all agree that education should be free, so we consider this an option worth
considering as well.

5 Cybersecurity wiki

The developer had discussed with us the creation of an open-source cyberse-
curity wiki. This wiki will be updated by the community, so it would always be

Chapter 5: Further work 75

up-to-date and everyone would have a chance to communicate. The current JSON
system of adding cards will be then substituted with a system that will automati-
cally update add new cards from the wiki to the game.

6 Colorblind accessibility

As mentioned in Chapter 1 Section 6, the goal of OS Runner is to stimulate cy-
bersecurity education through tangential learning and associations. It is therefore
important to ensure the accessibility to colorblind players considering the preva-
lence of 5%-8% in males and 0,5%-1% in females[26]. The higher prevalence in
males is especially important considering the high amount of men in IT studies.
As of 2016, only 19% of computer science bachelor’s degrees were awarded to
women [27], although this statistic does not accurately represent the number of
women or men enrolled in IT studies, it should still give an estimate.

The most common way of colorblind accessibility in video games, has been to
include a whole-screen filter for the different types of colorblindness[28]. Exam-
ples of games where this is the case would be: Call of Duty: Ghosts, Call of Duty:
Advanced Warfare and DOOM. However, in these games the filter does not alter
the problematic colors, but instead tends to oversaturate the color palette, which
results in a mix of undesirable colors. Which can in turn ruin the games immersive
feeling and aesthetic.

Considering the less optimal way of handling colorblind accessibility using a
whole-screen filter, a more optimal way of handling it would be to let the player
themselves customize the colors for vital information. This would ensure that the
player, regardless of colorblind type, can choose the colors they deem as most
suitable. Another important design decision to further ensure accessibility to col-
orblind would be to avoid relying on color alone. Ergo, represent things by adding
different icons/symbols.

This would help the colorblind players that are having trouble differentiat-
ing some of the elements in OS Runner. Currently these elements would include
the information displaying which team has conquered which asset, health bars
and card borders. The settings for changing the colors to these elements can be
implemented into the options menu mentioned in Chapter 3 Section 10.1.

Chapter 6

Conclusion

We have made a proof of concept of a game which intention was to com-
bine the aspect of cybersecurity and fun. When planning the process for creating
the game, we started with carefully planning what to do and organized what we
wanted to accomplished throughout our limited time for this project. We started
from scratch and developed what we think is a functional prototype with such
gameplay mechanics as contesting the network map and battles for assets on the
network map using our implemented card system. All this is made possible with a
client-server system that binds players together making the entire game possible
to be played by multiple players together.

We as a team also consider that, even though what we have now is only a alpha
version of the game, it has a lot of perspective given more time and resources.
Our team is proud of what we have developed, and we hope for the opportunity
to work more on it in the future.

The game is not the first of its kind, but nevertheless it brings novel elements to
the field of educative cybersecurity games, already now having a solid foundation
to provide both a fun and engaging gameplay and a useful learning experience.

Our employer is content with the end result as well. He also sees the potential
in the game, and will be working on it further, seeking to distribute the game to
numerous universities to test its effectiveness in teaching, as well as to use it in his
own scientific research. We also believe that OS Runner could in the future be used
for various research into gamification of cybersecurity by abstracting cybersecurity
tactics and techniques into playable cards used to battle other players.

77

Bibliography

[1] Mitre att&ck. [Online]. Available: https://attack.mitre.org/, (Last vis-
ited 19.05.2021).

[2] Computers in the classroom: Desktop vs. laptop vs. tablet. [Online]. Avail-
able: https://www.stonegroup.co.uk/insights/computers-in-the-
classroom/, (Last visited 13.05.2021).

[3] MegaCrit, Slay the spire. [Online]. Available: https://store.steampowered.
com/app/646570/Slay_the_Spire/, (Last visited 19.05.2021).

[4] S. Shoe, Monster train, 2020. [Online]. Available: https://store.steampowered.
com/app/1102190/Monster_Train/, (Last visited 19.05.2021).

[5] Imt3004 incident response, ethical hacking and forensics. [Online]. Avail-
able: https://www.ntnu.edu/studies/courses/IMT3004#tab=omEmnet,
(Last visited 19.5.2021).

[6] Imt3601 game programming. [Online]. Available: https://www.ntnu.edu/
studies/courses/IMT3601/2020#tab=omEmnet, (Last visited 10.5.2021).

[7] Imt2531 graphics programming. [Online]. Available: https://www.ntnu.
edu/studies/courses/IMT2531/2019#tab=omEmnet, (Last visited 19.5.2021).

[8] Moscow method. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=MoSCoW_method&oldid=1005313791, (Last visited 26.4.2021).

[9] Scrumban – a hybrid agile framework with long-term planning. [Online].
Available: https://teamhood.com/agile/scrumban-a-hybrid-agile-
framework-with-long-term-planning/, (Last visited 29.4.2021).

[10] Writing user stories. [Online]. Available: https://www.gov.uk/service-
manual/agile-delivery/writing-user-stories, (Last visited 29.4.2021).

[11] Godot game engine. [Online]. Available: https://godotengine.org/, (Last
visited 10.5.2021).

[12] Github. [Online]. Available: https://github.com/, (Last visited 19.05.2021).

[13] Godot project organization documentation. [Online]. Available: https://
docs.godotengine.org/en/stable/getting_started/workflow/project_
setup/project_organization.html, (Last visited 3.5.2021).

79

https://attack.mitre.org/
https://www.stonegroup.co.uk/insights/computers-in-the-classroom/
https://www.stonegroup.co.uk/insights/computers-in-the-classroom/
https://store.steampowered.com/app/646570/Slay_the_Spire/
https://store.steampowered.com/app/646570/Slay_the_Spire/
https://store.steampowered.com/app/1102190/Monster_Train/
https://store.steampowered.com/app/1102190/Monster_Train/
https://www.ntnu.edu/studies/courses/IMT3004#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT3601/2020#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT3601/2020#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT2531/2019#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT2531/2019#tab=omEmnet
https://en.wikipedia.org/w/index.php?title=MoSCoW_method&oldid=1005313791
https://en.wikipedia.org/w/index.php?title=MoSCoW_method&oldid=1005313791
https://teamhood.com/agile/scrumban-a-hybrid-agile-framework-with-long-term-planning/
https://teamhood.com/agile/scrumban-a-hybrid-agile-framework-with-long-term-planning/
https://www.gov.uk/service-manual/agile-delivery/writing-user-stories
https://www.gov.uk/service-manual/agile-delivery/writing-user-stories
https://godotengine.org/
https://github.com/
https://docs.godotengine.org/en/stable/getting_started/workflow/project_setup/project_organization.html
https://docs.godotengine.org/en/stable/getting_started/workflow/project_setup/project_organization.html
https://docs.godotengine.org/en/stable/getting_started/workflow/project_setup/project_organization.html

80 Umbraško, Lewandowski, Dahl: OS Runner

[14] Mergesort algorithm. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Merge_sort&oldid=1020266621, (Last visited 28.4.2021).

[15] Gdscript’s array sort method. [Online]. Available: https://docs.godotengine.
org/en/stable/classes/class_array.html#class- array- method-
sort, (Last visited 27.4.2021).

[16] Godot singletons (autoload) documentation. [Online]. Available: https://
docs.godotengine.org/en/stable/getting_started/step_by_step/
singletons_autoload.html, (Last visited 29.4.2021).

[17] Maelstrom defcon24. [Online]. Available: https://media.defcon.org/
DEF%5C%20CON%5C%2024/DEF%5C%20CON%5C%2024%5C%20presentations/
DEF%5C%20CON%5C%2024%5C%20- %5C%20Shane- Steiger- Maelstrom-
Rules-V10.pdf, (Last visited 19.05.2021).

[18] B. H. I. Security, Backdoors and breaches. [Online]. Available: https://
www.blackhillsinfosec.com/projects/backdoorsandbreaches/, (Last
visited 19.05.2021).

[19] U. of Washington, Control-alt-hack. [Online]. Available: http://www.controlalthack.
com/index.php, (Last visited 19.05.2021).

[20] Cyber threat defender. [Online]. Available: https://cias.utsa.edu/ctd_
cards.php, (Last visited 19.5.2021).

[21] Threatgen: Red vs. blue. [Online]. Available: https://store.steampowered.
com/app/994670/ThreatGEN_Red_vs_Blue, (Last visited 20.5.2021).

[22] Steam. [Online]. Available: https://store.steampowered.com/, (Last
visited 20.5.2021).

[23] Opengl. [Online]. Available: https : / / www . opengl . org/, (Last visited
20.5.2021).

[24] App store. [Online]. Available: https://www.apple.com/app-store/, (Last
visited 20.5.2021).

[25] Itch.io. [Online]. Available: https://itch.io/, (Last visited 20.5.2021).

[26] Color blindness prevalence. [Online]. Available: https://www.news-medical.
net/health/Color-Blindness-Prevalence.aspx, (Last visited 18.05.2021).

[27] Women, minorities, and persons with disabilities in science and engineering.
[Online]. Available: https://ncses.nsf.gov/pubs/nsf19304/digest/
field-of-degree-women#computer-sciences, (Last visited 19.05.2021).

[28] B. Hardin. (2016). “Colorblind accessibility in video games – is the indus-
try heading in the right direction?” [Online]. Available: https://www.
gamersexperience.com/colorblind-accessibility-in-video-games-
is- the- industry- heading- in- the- right- direction/. (Last visited
19.05.2021).

https://en.wikipedia.org/w/index.php?title=Merge_sort&oldid=1020266621
https://en.wikipedia.org/w/index.php?title=Merge_sort&oldid=1020266621
https://docs.godotengine.org/en/stable/classes/class_array.html#class-array-method-sort
https://docs.godotengine.org/en/stable/classes/class_array.html#class-array-method-sort
https://docs.godotengine.org/en/stable/classes/class_array.html#class-array-method-sort
https://docs.godotengine.org/en/stable/getting_started/step_by_step/singletons_autoload.html
https://docs.godotengine.org/en/stable/getting_started/step_by_step/singletons_autoload.html
https://docs.godotengine.org/en/stable/getting_started/step_by_step/singletons_autoload.html
https://media.defcon.org/DEF%5C%20CON%5C%2024/DEF%5C%20CON%5C%2024%5C%20presentations/DEF%5C%20CON%5C%2024%5C%20-%5C%20Shane-Steiger-Maelstrom-Rules-V10.pdf
https://media.defcon.org/DEF%5C%20CON%5C%2024/DEF%5C%20CON%5C%2024%5C%20presentations/DEF%5C%20CON%5C%2024%5C%20-%5C%20Shane-Steiger-Maelstrom-Rules-V10.pdf
https://media.defcon.org/DEF%5C%20CON%5C%2024/DEF%5C%20CON%5C%2024%5C%20presentations/DEF%5C%20CON%5C%2024%5C%20-%5C%20Shane-Steiger-Maelstrom-Rules-V10.pdf
https://media.defcon.org/DEF%5C%20CON%5C%2024/DEF%5C%20CON%5C%2024%5C%20presentations/DEF%5C%20CON%5C%2024%5C%20-%5C%20Shane-Steiger-Maelstrom-Rules-V10.pdf
https://www.blackhillsinfosec.com/projects/backdoorsandbreaches/
https://www.blackhillsinfosec.com/projects/backdoorsandbreaches/
http://www.controlalthack.com/index.php
http://www.controlalthack.com/index.php
https://cias.utsa.edu/ctd_cards.php
https://cias.utsa.edu/ctd_cards.php
https://store.steampowered.com/app/994670/ThreatGEN_Red_vs_Blue
https://store.steampowered.com/app/994670/ThreatGEN_Red_vs_Blue
https://store.steampowered.com/
https://www.opengl.org/
https://www.apple.com/app-store/
https://itch.io/
https://www.news-medical.net/health/Color-Blindness-Prevalence.aspx
https://www.news-medical.net/health/Color-Blindness-Prevalence.aspx
https://ncses.nsf.gov/pubs/nsf19304/digest/field-of-degree-women#computer-sciences
https://ncses.nsf.gov/pubs/nsf19304/digest/field-of-degree-women#computer-sciences
https://www.gamersexperience.com/colorblind-accessibility-in-video-games-is-the-industry-heading-in-the-right-direction/
https://www.gamersexperience.com/colorblind-accessibility-in-video-games-is-the-industry-heading-in-the-right-direction/
https://www.gamersexperience.com/colorblind-accessibility-in-video-games-is-the-industry-heading-in-the-right-direction/

Appendix A

User Stories

81

Menu oriented user stories:
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 15 - 16 - 17 - 18 - 23

Server oriented user stories:
12 - 13 - 14 - 15 - 16

Cards oriented user stories:
19 - 20 - 21 - 22

Gameplay oriented user stories:

Battle related user stories:
40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 53

Scrapped user stories: 14 - 24

User Story number 1

Description As a player, I want to be able to access the
main menu when I boot up the game, so
that I can choose what to do next

Acceptance criteria I. It’s done, when the main menu
shows up at the start of the game

User Story number 2

Description As a player, I want to be able to access the
single player starting screen from the main
menu

Acceptance criteria I. It’s done when the main menu has a
Single Player Mode button that
moves the player to single player
screen when clicked

II. It’s done, when the player can go
back to the previous screen after
accessing the singleplayer

User Story number 3

Description As a player, I want to be able to access
multiplayer starting screen from the main
menu

Acceptance criteria I. It’s done when the main menus has
a Multiplayer button which leads to
multiplayer menu screen when
clicked

II. It’s done, when the player can go
back to the previous screen after
accessing the multiplayer screen

User Story number 4

Description As a player, I want to be able to access the
options screen from the main menu

Acceptance criteria I. It’s done when the main menu has a
button that moves the player to
options screen when clicked

II. It’s done, when the player can go
back to the previous screen after
accessing the options

User Story number 5

Description As a player, I want an “exit game” button in
the main menu so that I can exit the game
via the main menu

Acceptance criteria I. It’s done when the main menu has
an “exit game” button that closes the
game when pressed

User Story number 6

Description As a player, i want to be able to control the
sound volume from the options screen

Acceptance criteria I. It’s done, when the options screen
makes it possible to change the
volume

II. It’s done, when the player can
change the music volume, the
sound volume and the master
volume separately

III. It’s done, when the changes are
saved

IV. It’s done, when the user does not
have to make them again on the

next startup

User Story number 7

Description As a player, I want to be able to access the
card encyclopedia from the main menu

Acceptance criteria I. It’s done, when there is a way to go
to the card encyclopedia that leads
the player to the card encyclopedia
screen

II. It’s done, when the player can go
back to the previous screen after
accessing the encyclopedia

User Story number 8

Description As a player, I want to be able to view all
cards in the game in the card encyclopedia

Acceptance criteria I. It’s done when the player can view
all the cards in the card
encyclopedia

II. It’s done, when new cards added to
the game are automatically shown in
the encyclopedia

User Story number 9

Description As a player, I want to have my own profile in
the game

Acceptance criteria I. It’s done, when the player can
access the profile from the main
menu

II. It’s done, when the profile is
persistent

III. It’s done, when all the profile data is
displayed in the profile menu

IV. It’s done, when the player can go
back to the previous screen after
accessing the profile

User Story number 10

Description As a player, I want to be able to reset my
profile, so that I can start the game over

Acceptance criteria I. It’s done, when the reset option asks
the user again to prompt the action

II. It’s done when the user can easily
find this button

III. It’s done, when all user
achievements are reset by doing
this

User Story number 11

Description As a player, I want to be able to create a
new multiplayer game

Acceptance criteria I. It’s done, when the player can
create a room to invite other players

II. It’s done when the player can share
some unique identifier with other
players, which they can use to join

User Story number 12

Description As a player, I want to be able to join an
already created game

Acceptance criteria I. It’s done, when the user can
connect to other players’ rooms by
using an unique identifier

User Story number 13

Description As a player, after joining a game, I want to
be able to choose a team, so that I can play
on the same team with the people I want

Acceptance criteria I. It’s done, when the player can easily
switch teams before the game starts

II. It’s done, when the game can only
start if team sizes are as equal as
possible

User Story number 14

Description As a player, after pressing the start button,
the game starts.

Acceptance criteria I. It’s done, when everybody else is
ready in lobby

User Story number 15

Description As a joined player, I want to be able to
notify the host that I am ready to play

Acceptance criteria I. It’s done, when the joined player can
easily toggle readiness

II. It’s done when the host player can
immediately see the readiness
changes for all players

User Story number 16

Description As a host player of a multiplayer lobby, I
should be able to start the multiplayer game

Acceptance criteria I. It’s done when the host player can
start the multiplayer game by
pressing a start game button in the
multiplayer lobby

II. It’s done when the host can only
start the game when all the players
are ready

User Story number 17

Description As a player, I want to be able to change my
profile name

Acceptance criteria I. It’s done when the nickname is
persistent

User Story number 18

Description As a player, I want to be able to change my
profile picture

Acceptance criteria I. It’s done when the player can
change profile picture to another

profile picture from a predefined list
of profile pictures

II. It’s done when the chosen profile
picture is persistent

User Story number 19

Description As a modder, I want to be able to easily add
new cards to the game, so that new stuff
can be added to game not just by the
developers

Acceptance criteria I. It’s done when new cards can be
added without having to recompile
the game

II. It’s done when the new cards can be
added by users without extensive
programming skills

User Story number 20

Description As a player, I want to be able to see all
information about a single card in the card
encyclopedia

Acceptance criteria I. It’s done when the player can
inspect a card in the encyclopedia
and see as much information about
that card as possible

User Story number 21

Description As a player, I want to be able to see all
information about different categories of
cards

Acceptance criteria I. It’s done, when the player can do
this in the card encyclopedia

User Story number 22

Description As a player, I want to be able to see all

information about different subcategories of
cards

Acceptance criteria I. It’s done, when the player can do
this in the card encyclopedia

User Story number 23

Description As a player, I want to be able to leave the
lobby before the game starts

Acceptance criteria I. It’s done when upon leaving the
lobby, the player is returned to the
previous screen

II. It’s done when upon the host player
leaving the game, the lobby is
destroyed

III. It’s done, when upon the lobby
destruction all the remaining players
are returned to the previous screen

IV. It’s done, when the player can not
leave the lobby after the host player
starts the game

User Story number 24

Description As a player, I want to be able to join teams
with other players

Acceptance criteria I. It is done, when teams can consist
of 1, 2 or 3 members

II. It is done, when teams are chosen
during in the game lobby

III. It is done, when there can only be 2
teams

User Story number 25

Description As a player, I want to be able to see a
topology map when the game starts

Acceptance criteria I. It is done, when players see this first
immediately when the game starts

User Story number 26

Description As a player, I want to be able to vote for the
initial starting position with my team
members

Acceptance criteria I. It is done when all the team
members can vote

II. It is done when players can choose
a predefined node as the starting
position

III. It is done when a draw in votes
results in a coin flip

IV. It is done, when a node with most
votes wins

User Story number 27

Description As a player, I want to be able to attack
neutral assets around the network

Acceptance criteria I. It is done, when attacking a neutral
asset instantly makes it “contested”

II. It is done, when attacking a neutral
asset costs Bitcoins

III. It is done, when a neutral asset can
only be attacked by one player at a
time

IV. It is done when attacking a neutral
asset is only possible when there
are still neutral assets

User Story number 28

Description As a player, I want the turn to end when all
team players have chosen an asset to
attack on the network topology screen

Acceptance criteria I. It is done when ending a turn is
automatic

II. It is done when ending a turn makes
all “contested” nodes conquered

User Story number 29

Description As a player, I want to be able to attack other
players’ nodes

Acceptance criteria I. It is done, when attacking other
player’s node initiates battle combat

II. It is done when a player can only be
attacked by one player at once

III. It is done, when players can only be
attacked when there are no neutral
nodes

User Story number 30

Description As a player, I want to be able to battle other
players

Acceptance criteria I. It is done when after attacking
another player’s node, battle
between the attacking player and a
random defending player from the
opponents team commences

II. It is done when the winning player’s
team, gets control of the relevant
node

User Story number 31

Description As a player, I want a card battle to result in
a victory or a defeat

Acceptance criteria I. It is done, when one player’s victory
means a defeat for the other player

II. It is done, when a player, that lowers
opponent’s health points to zero is
victorious

User Story number 32

Description As a player, I want to be able to earn Bitcoin
every turn

Acceptance criteria I. It is done, when each turn on the
topology map the player receives a
set amount of Bitcoin

User Story number 33

Description As a team, I want to be able to receive a set
amount of Bitcoin at the start of the game

Acceptance criteria I. It’s done, when at the beginning of
the game each team receives
enough Bitcoins to conquer the
neutral assets

User Story number 34

Description As a player, I want to be able to spend
money in the shop

Acceptance criteria I. It is done when the player can buy
cards in the shop

II. It is done, when the player can only
buy a card once

III. It is done when the player can
remove cards in the shop

IV. It is done, when the player can only
remove a card once

V. It is done when the player can
refresh the stock in the shop

User Story number 35

Description As a player, I want to be able to enter a
shop

Acceptance criteria I. It is done when there is a GUI they
can access from the topology.

II. It is done when this button will show
a shop screen upon pressing.

User Story number 36

Description As a player, I want to be able to leave the
shop

Acceptance criteria I. It is done when there is a GUI button
within the window button.

II. It is done when the shop window
closes upon pressing the button.

User Story number 37

Description As a player, I want to have time to make

decisions in the shop.

Acceptance criteria I. It is done when a timer is created
when user enters a store

A. It is done when the timer
starts when the opponent
attacks the you while in the
shop

B. It is done when the player
must leave the store after
certain amount of time

II.

User Story number 40

Description As a player, I want to be able to use cards
during combat

Acceptance criteria I. It is done when the player can drag
his cards.

II. It is done when the cards have an
effect.

III. It is done when a visual effect plays
after playing a card

User Story number 41

Description As a player, I want to see how much HP
battle participants have

Acceptance criteria I. It is done when there is a GUI
displaying current health points

II. It is done when the GUI updates
after a card has been used.

User Story number 42

Description As a player, I want to be able to view my
hand of cards during battle

Acceptance criteria I. It is done when there is a GUI
displaying current hand of cards

II. It is done when the GUI updates
after a card has been drawn or used

User Story number 43

Description As a player, I want to display the statistics
of my cards

Acceptance criteria I. It is done when you hover over the
cards (PC)

II. It is done when you hold your finger
on the card (Phone)

III. It is done when the card is big
enough to read it

User Story number 44

Description As a player, I want to be able to view my
own discard pile during battle

Acceptance criteria I. It is done when there is a GUI that
can be clicked to view player’s cards
in the discard pile

User Story number 45

Description As a player I want to be able to view my
draw pile during battle

Acceptance criteria I. It is done when there is a GUI that
can be clicked to view player’s cards
in the draw pile

User Story number 46

Description As a player, I want to see what cards have
been used in the past five turns.

Acceptance criteria I. It is done when there is a GUI
displaying what cards have been
played.

II. It is done when there is a GUI
displaying what effects have
activated.

User Story number 47

Description As a player, I want to be able to view active

power cards during battle

Acceptance criteria I. It is done when there is a GUI during
battle that displays the active power
cards for player and opponent

II. It is done when on PC, player can
hover mouse over active power
cards to view its effect

III. It is done when on mobile, player
can hold finger over active power
card to view its effect

User Story number 48

Description As a player, I want to be able to skip a turn

Acceptance criteria I. It is done when there is a GUI with
text “end turn”.

II. It is done when you press the
button, the player's opponent gains
a turn and.

User Story number 49

Description As a player, I want to be able to go to
options during a battle

Acceptance criteria I. It is done when there is a GUI button
that looks like a cog.

II. It is done when you press on that
button and a pop-up shows with
options.

User Story number 50

Description As a player I want to be able to view my
deck, as it was before entering battle,
during battle

Acceptance criteria I. It is done when there is a GUI button
during battle, which when clicked
will display the deck as it was before
entering the current battle

User Story number 51

Description As a player I want to be able to view map
during a battle

Acceptance criteria I. It is done when there is GUI in the
battle screen.

II. It is done when you press on the
button and it displays the current
state of the map.

User Story number 52

Description As a player, I want to lose when I reach
zero health points.

Acceptance criteria I. It is done when health points are
updated after a card is played

II. It is done when the player is notified
he lost a battle.

III. It is done when the player can not
play any more cards

IV. It is done when the player is send to
the map topology (Multiplayer)

User Story number 53

Description As a player, I want to win when my
opponent reaches zero health points

Acceptance criteria I. It is done when health points are
updated after a card is played

II. It is done when the player is notified
he won a battle.

III. It is done when the player can not
play any more cards

IV. It is done when the player is send to
the map topology (Multiplayer)

User Story number 54

Description As a player, I want to be able to view my
current amount of bitcoin

Acceptance criteria I. It is done when the current amount
of bitcoin is displayed in the GUI

II. It is done when the amount of
bitcoin displayed is being updated to
always display current amount of
bitcoin

User Story number 55

Description As a player, I want to be able to have a
deck

Acceptance criteria I. It is done when I can add cards to
the deck.

II. It is done when I can remove cards
from the deck.

III. It is done when I can view my deck.

User Story number 56

Description As a player, I want to hear music in the
main menu

Acceptance criteria I. It is done, when the music volume
can be controlled from options

User Story number 57

Description As a player, I want to be able to enter a
battle screen when I contest an enemy
network asset

Acceptance criteria I. It is done, when attacking an enemy
network asset starts a battle screen

II. It is done, when the battle screen
displays:

A. Both players’ health
B. Both players’ hands
C. Both players’ powers
D. Both players’ avatars

User Story number 58

Description As a player, I want to have my player

represented in the battle

Acceptance criteria I. It is done, when the player
representation has health points

II. It is done, when the player
representation has a card of hands

III. It is done, when the player
representation has a deck of cards

IV. It is done, when the player
representation has powers

V. It is done, when the player
representation has an avatar

User Story number 59

Description As a player, I want to to be able to see my
own avatar in the combat

Acceptance criteria I. It is done when there is a GUI
displaying players avatar

II. It is done when

User Story number 60

Description As a player, I want to have an avatar

Acceptance criteria I. It is done when the player can
choose an avatar

II. It is done when the avatar chosen is
saved.

User Story number 61

Description As a player, I want the multiplayer topology
map to have multiple nodes

Acceptance criteria I. It is done, when the nodes are
conquered on click, when they are
neutral

II. It is done, when the nodes send the
player to a battle screen on click,
when they belong to an enemy

User Story number 62

Description As a modder, I want the multiplayer network
topology to be loaded from a text file

Acceptance criteria I. It is done, when a new multiplayer
map can be added without editing
the code

User Story number 63

Description As a player, I want to make moves in a
team-based but still player-independent
manner

Acceptance criteria I. It is done, when during the voting
phase, players move in teams

II. It is done, when during the NAC
phase, players move in teams

III. It is done, when during the EAC
phase, players still move in teams,
but the order might change freely
depending on which player is not in
a battle

User Story number 64

Description As a player, I want to be able to access the
shop

Acceptance criteria I. It is done when there is a button in
the topology map that redirects you
to a screen with a shop

User Story number 65

Description As a player, I want to be able to buy cards
from the shop

Acceptance criteria I. It is done when there is GUI in the
shop allowing the player to buy a
card

II. It is done when the cost of the card

is displayed
III. It is done when the card is added to

the players deck
IV. It is done when the exact amount of

bitcoins is removed from the players
inventory

User Story number 66

Description As a player, I want to be able to remove
cards from the deck via shop

Acceptance criteria I. It is done when there is GUI in the
shop allowing the player to remove
cards

II. It is done when the price of
removing a card is displayed

III. It is done when the price increases
with each removal

IV. It is done when the exact amount of
bitcoins is removed from the players
inventory

User Story number 67

Description As a player, I want to be able to restock the
store with new cards

Acceptance criteria I. It is done when there is GUI in the
shop allowing for restocking of the
store.

II. It is when there are new cards in the
store with new prices.

III. It is done when the exact amount of
bitcoins is removed from the players
inventory

User Story number 68

Description As a player, I want to have an in-game
currency called “Bitcoin”

Acceptance criteria I. It is done when you can see the
amount of bitcoin you possess
(User story 54)

II. It is done when you can spend the
bitcoin
(User stories 64-66)

III. It is done when you can earn Bitcoin
(User stories 32-33)

Appendix B

Gameplay flow multiplayer

103

Main concepts

Gameplay flow

Multiplayer
Game starts when all players have toogled “Ŗeady” and the host has started the

game. See “Main Menu flowchart” for more details.

Topology map
Upon the initial game start, both teams are presented with a map, resembling a

network topology. This is a schematic example of how it might look like:

The circles depict the assets ‒ the nodes ‒ that the players may conquer. The lines
between them depict connections, and only two nodes that are interconnected can be
traversed normally. This might have some exceptions, exempli gratia players can use special

cards or abilities to traverse to nodes that are not connected.

From node A, only nodes B and C can be travelled to. From node E, only nodes D and F can
be travelled to, and so on. From node A, nodes D, E, F and the rest of the unnamed nodes
can not be travelled to.

Initial node selection
At first, the first team (out of 2) to make a turn will be decided by a coin flip.
The members of the winning team will then choose, which asset will be their starting

node. They can choose a starting node from a list of predefined starting nodes. The node
with most votes from team members will be selected. If multiple nodes have the same

amount of votes, a random one of them will be chosen.

When this is done, a starting node is chosen by the other team. After the starting
nodes have been chosen, one of the possible layouts might look like this:

Neutral asset conquering (NAC) phase
After the starting nodes have been decided, the neutral asset conquering phase of

the game begins. The team that won the coin flip in the previous round makes the first move.
In our case, let’s imagine the red team won the coin flip. Each member of the red team will
now choose an asset to attack. Players can only choose to attack nodes that are connected
to already conquered nodes, in this case it’s the starting node only. One asset can only be
attacked by one player, that is, two members can not choose the same node, and each
consecutive player has to choose a node from all the connected nodes that are not being

attacked.

In this graph, only one red node is considered as “conquered”, and thus only that one node
can be used by players as a starting point. That means that regardless of which node player
1 chose, player 2 can still only attack nodes adjacent to the starting node. Orange nodes on
the graph are the ones that are considered “under attack”. When all the members of the red
team have made their choices, the nodes that they attacked become conquered, and the
other team, the blue in our case, gets to make a turn and repeats the same sequence of
actions. This phase goes on as long as there are neutral nodes on the map.

While there are neutral nodes on the map, the players can not attack other players’
nodes. Players also can not interact with already conquered nodes.

Enemy asset conquering (EAC) phase
When there are no longer any neutral nodes left and thus the neutral asset

conquering phase is over, the players must attack each other’s nodes. Let’s imagine this

hypothetical case:

As we can see, there are no longer any neutral assets to attack, and therefore the only
option to gain more nodes is to attack the other team. We can also notice that the red team
was more aggressive, and conquered more nodes.

Now, the red team was the last team to conquer a neutral node, and therefore the blue team
is now going to choose which asset to conquer. The rules for choosing a node to attack are
the same as in the previous phase: players can only attack nodes that are connected to

already conquered nodes, and only one player can attack only one node.

Since it’s now the blue team’s turn, the first blue player can now choose either A or B, since
these are the only nodes connected to the blue network. The first blue player chooses a
node to attack, and a battle between him and a random red team member starts. The

second blue player can only choose the other node.

Before we talk about card battles themselves, we need to talk about one more aspect of the
game: manipulating the card deck.

Bitcoins and deck management
The in-game currency is called Bitcoin.
At the beginning of the game, after the teams have chosen their starting nodes, both

teams receive an equal amount of currency. During the neutral asset conquering phase,
each player spends a share of their team’s money to conquer an asset. This represents
real-life spending money and resources to penetrate the security measures and gain access
to the asset, and will be explained this way to the player. Gameplay-wise, this allows for
team communication and cooperation, as well as different playstyles and strategies. One
team could either spend more Bitcoin and conquer more assets in the initial NAC phase, or
adopt a less aggressive, but also less expensive approach. Still, since each turn the players
must attack an asset, at the end of the NAC phase both teams will be left with approximately
the same amount of money, which helps us to avoid imbalanced techniques, for instance,
where players amass too big amounts of money.

When the EAC phase begins, what’s left of the team budget is split evenly between
all team’s members. The players now gain access to the main Bitcoin spending venue: the
shop. During the NAC phase the player can not access the shop and any of its
functionalities. The shop has three main functionalities:

● Purchasing cards. The players may purchase new cards. There is a small set of
about three semi-random cards that the players might purchase, and each turn the
cards on sale are changed. Cards vary in price based on their rarity and other
parameters. The stock is not shared between players, and is generated separately
for each player. Players might only buy one card per turn.

● Removing cards from the deck. The players may use the shop to remove any card
from their deck. Players might only remove one card per turn.

● Refreshing the stock. The players may pay Bitcoin to immediately get a new set of
cards for sale, without having to take a turn. This can be done as many times as the
player wishes, as long as he has enough Bitcoin. With each consecutive stock
refresh, the cost of this action increases.This increased refresh cost is not shared
between players.

During NAC, the players will not have any ways to earn money. During EAC though,
each asset owned by the team earns them a set amount of money, and before a player
makes their turn, each player receives amount of Bitcoin.𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑎𝑚 𝑖𝑛𝑐𝑜𝑚𝑒

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑡𝑒𝑎𝑚

If the players are idle in the shop for a set amount of time, they are kicked out. This is
to prevent players from staying in the shop and avoiding battles. This will be explained in
more details below.

Card battles
When, during EAC, a player attacks an enemy asset, they become the attacker.

Then, a random player from the opposing team joins the battle as the defender.
Each player must use the cards in their deck to defeat the opponent. Main card types

are the attack cards, that directly deal damage to the opponent’s health points, and the
defence cards, that provide defence against some types of attacks. Each player has six
cards in their hand at all times, they can only use 1 card each turn, and after a card is used,
its effects are applied and it is moved into the discard pile. The player then takes a new card
from the draw pile. If the draw pile is empty, the discard pile is shuffled and all cards from the
discard pile are moved back into the draw pile. Players may choose to end their turn without
using a card.

The defender makes the first move. Each player’s goal is to lower the opponent's
health point to 0 or less. If a player is idle for a set amount of time, his turn is ended
automatically without using any cards. Should the player be idle for 3 consecutive turns, he
automatically loses the battle.

Enemy asset conquering phase, continued
Whenever a card battle between two players ends, there is always a winner and a

loser. If the attacker wins and the defender loses, the node that the teams were fighting for
becomes owned by the attacking team. If the attacker loses and the defender wins, then the
node does not change ownership.

EAC phase is also the phase where the players become more independent of each
other, even in their own teams. It is inevitable that, as long as the total number of players is
more than two (it must also always be an even number), some pairs of players will finish
their battles earlier than others, and thus turns will no longer be synchronised between

players. Let’s take a look at this scenario, where the neutral asset conquering phase just
ended, and both players from the blue team attack red team’s assets:

At some point, one of the player pairs will finish their round, and the other team will most
likely still be in a battle. This is where the turns for players become separate.

For PlayerUno, it is still technically his turn, even though he is currently in a battle and that
plays no role for him for now. For PlayerDos though, who just finished a battle with
PlayerOne, the turn is over, and now PlayerOne will choose an asset to attack1. Even though
both players can access the shop right now, only PlayerOne can attack. All of this just
means that starting with the EAC phase, turns are more player-based than team-based.

If PlayerOne attacks an asset, while PlayerDos is still in the shop, he will have to wait
for his opponent to leave the shop. Otherwise players may prevent their opponents from
managing their deck by starting a battle too quickly. At the same time, a player may not stay
in the shop for too long to prevent players from avoiding battles this way.

Victory conditions
When the EAC phase starts and the teams start competing with each other, they

have two main ways to win the game:
I. Conquer most enemy assets. If one team controls less assets than there are players

in that team, it loses.

1 In this case, he does not have much choice in what to attack though. The only asset he might attack
is the same PlayerDos had just conquered. But this is only a problem on this simple example map,
and will not be the case in the game, since the maps will be bigger and more interconnected.

In this situation, let’s assume that both blue players are attacking. If any of the
red players lose their battle, their team loses and the blue team wins. A more obvious
victory condition would be to make a team conquer all enemy assets, but that is not
possible to do. The reason is that if, for example, PlayerTwo loses, then at some
point PlayerDos might have to make a move and the only asset he can attack at that
point will be an asset that is already being fought for by PlayerUno and PlayerOne.

II. If the game goes on for too long, it will end even if both teams still own nodes. In this
case, the players will receive a notification if the game will end soon (for example, 8
minutes before the end of the game), and when it ends, a score will be counted for
both teams based on nodes owned and Bitcoin in posessment. This victory condition
prevents the games from being too long and taking too much time.

Appendix C

Gameplay flow singleplayer

117

Gameplay flow

Single-player
After pressing the single player button, the player is being presented with an act

choice menu.

Game setting
In single-player, the player is going to be playing as a whistleblower, trying to collect

revealing information about shady dealings of big corporations, corrupt government officials
and institutions, as well as criminal organisations hidden in the Web, in order to expose
them. Every country, institution, person et cetera in the game will be fictional.

Acts
The game will be divided into sections, which we will call acts. The acts will be

represented as network topology maps, consisting of regular nodes, which will represent
network assets, and special nodes. One special node that is alway going to be present is the
boss node. In order to complete an act, the player will have to some amount of network
assets – nodes – on the map. The player only gets access to the boss node after conquering
the required amount of assets. There will be two types of acts:

● A regular act. The player will have to complete a set amount of such acts to proceed
in the game. These acts will represent penetrating security measures of various
organisations, as explained in the setting paragraph, in order to expose their
wrongdoings.

● The Final Act. After the player has completed a set amount of regular acts, the Final
Act will be unlocked. If the player completes this act, he will win the game.

Above is the representation of what an act might look like. Notice the big diamond in the
middle. It represents the boss node.

There will be a predefined starting node in each act. The player will start the act
there, and then will move along the lines connecting the nodes to conquer other assets.

Different acts will have different difficulty setting, and it will change the size of the act
and the difficulty of battles.

Act choice menu
The act choice menu will be one of the main aspects of the single-player mode. As it

has been described previously, in order to progress in the game, the player will have to
complete acts.

Each time the player enters this menu, the player will be able to choose between four
different options. The three first options will be regular acts. The fourth option will be the
Final Act. In the beginning, the Final Act option will be locked, as the player has to complete
a set amount of regular acts to unlock it.

The player has to choose an act to start it. Each act gives you a varying
amount of score points with the top option giving you the least score and the bottom one
giving you the most score. The bigger the amount of score gained from act is, the higher is
the act’s difficulty setting.

The score points belong to three different categories:
● Corporations
● Governments

● Criminal organisations
Each act may give a score in one or multiple categories.

This score can be used to unlock debuffs for enemies or buffs for the player. This
means that the player may risk it for the biscuit and choose more difficult acts that will be
beneficial in the long run, or choose easier acts but potentially sacrifice being able to
purchase buffs and debuffs.

Combat
When an act is chosen, the player finally enters the topology of an act. The player is

then able to conquer the nodes in that act. Whenever the player chooses to attack an
unconquered node, a card battle combat with an AI opponent starts. This is more closely
described in the combat document.

Winning a game
After defeating a boss node in an act, the act will be counted as finished, and the

score in the act choice menu will be updated. After completing a set amount of acts, the
option to start the Final Act will become available in the act choice menu and the regular acts
will be locked. The Final Act will be considerably more difficult than the regular acts. If the
player finishes the Final Act, he is considered to have completed the game.

Should the player lose a battle during any of the acts they will receive a temporary
debuff until the end of the act, as well as they will have to fight for the node attack. If the
player loses a battle a set amount of times, they lose the game permanently and have to
start from scratch

When the player defeats an enemy, he gains Bitcoins.

● This can not be finished currently. Something is missing.
● This is a design choice that was not planned/not discussed
● This is the same but of slightly more importance
● This is wording/phrasing problem
● This is a problem of wording, a substitute word that is more descriptive should be

used
● This is stuff that is no precisely discussed/conceptualised, and thus is suggested for

removal to keep this document as precise as possible

Appendix D

Project plan

123

OS Runner

Kacper Lewandowski, Artūrs Umbraško, Daniel Dahl

January 2021

I Goals and limitations

I.I Background

Currently, the market for educational cybersecurity games is quite shal-
low. Out of the not so many games that exist in this field, even fewer are
combining the educational aspect with being actually fun to play. The project
is an attempt to change that, to improve and accelerate the cybersecurity
education by introducing a way for students to engage in tangential learning.

Based on a different card game - Intrusion Attempt - also in development
by our employer for three years now, the game correlates real-life cyberse-
curity practises and concepts with common video game and card game me-
chanics and concepts. This way, by engaging in the gameplay, the students
will also increase their understanding of the real underlying topics.

Gamification of the learning process with the goal of improving high
school and undergraduate students’ understanding of the cybersecurity topic
are considered by us to be the main benefits of this project. The gamified
tangential learning experience can also also mean an easier introduction into
the topic for those previously not at all familiar with it. This can in turn lead
to improved performance in cybersecurity-related classes, greater interest in
cybersecurity-related studies, as well as many other positive education effects
and applications.

Our employer is a former NTNU educator himself, and the game is going
to be used as an educational tool as well. It shall also serve as a knowledge
base with links and references to further materials about the topics.

All three of us are interested in programming and games, which is why we
chose to study game programming at NTNU in Gjøvik. This is also why we

1

chose to do this task as it seemed like a perfect fit considering our interests
in various games, but also our knowledge in programming and game design.
We also have some experience with the genre and are familiar with it, since
we have played games like: Slay the Spire, Ascension and Poker Quest RPG,
and during our studies we have already made a 2D deck-bulding roguelike
game.

I.II Goals

The goal of OS Runner is to have a fun strategical deck-building card
game trying to facilitate and stimulate cybersecurity education through tan-
gential learning and associations. The game is intended to create an engaging
gameplay experience that will also widen the players’ understanding of real-
life hacking, penetration and red teaming scenarios.

As a group our goal during the project is to learn more about cyberse-
curity as well as game design. Considering we’ve also made a game during a
previous course, we also want to know what it’s like working in a multidis-
ciplinary team on a bigger project. Improving our game programming and
design knowledge and skills is too a very beneficial and interesting experience
for us.

We also have no previous experience with making multiplayer or mobile
games. This could be helpful in future projects as well, considering that
adding multiplayer to a game opens up a plethora of possibilities in regards
to gameplay. Having experience with making mobile games will also be
professionally useful.

I.III Limitations

While we have worked on Android software development previously, not
all team members have experience with developing games on Android before.
We consider learning new technology to be valuable experience.

We will be developing the game for the latest Android, but we will do
our best to ensure a good level of backwards compatibility as well, if the
opportunity arises. The game is supposed to have multiplayer support, and
we have never worked with multiplayer games before, especially on mobile
devices.

2

II Description and scope

II.I Description

The game will be based on a card game project by the employer. The main
mechanics will be revolving around a deck-building and card battle gameplay.
We are going to develop both single-player and multiplayer aspects.

Cybersecurity will be the main theme of the game. The cards will be
based on different methods and techniques used by malicious thread actors
and suitable for teaching penetration testing and red teaming

The game will teach players some basic aspects and ideas of data security,
as well as in general raise data security awareness and interest in high school
students, undergraduates and graduates.

Two main screens will be included: a map, that will resemble a network
topology where players will be able to roam and compete for score points,
and a card battle screen, where the actual card battles will take place.

The development will be first and foremost done for mobile devices, and
thus the mechanics and controls will be optimised accordingly. The game
could potentially be ported to PC as well.

II.II Scope

At the end of the project, we aim to have a fully functional game with the
core gameplay features implemented and a server for multiplayer. None of the
members have experience in creating game art, thus our team will primarily
focus on creating code for the game mechanics and with the visuals will be
a lesser focus.

We also have to consider the limited time we have been given for the
project. We will be working with new technologies and have to take into
consideration the time needed to learn them. We have previously learned
how to create games on PC and never made a game for Android.

3

II.III MoSCoW

We have also used the MoSCoW method to classify the most important
features that have to be implemented for the game to fully function. Here is
the MoSCoW:
Must have:

• We must have a card base

• We must have multiple card types

• We must have card battles

• We must have functionality to add cards to the deck

• We must have Local Network multiplayer

• We must have map topology

• We must have map navigation

• We must have a main menu

• We must have Windows support

Should have:

• We should have a persistent player profile

• We should have good network performance

• We should have working single-player mode

• We should have working Bitcoin shop

• We should have options menu

• We should have all of the card types

• We should have in-game card encyclopedia

• We should have nice visuals in the game

• We should have nice audio design in the game

4

• We should have functionality to easily add new cards into the game

• We should have Linux and Android support

Could have:

• We could have majority of the cards

• We could have a more complex scoring system

• We could have a team-up functionality

• We could have a reputation system

• We could have specialisations

• We could have assisting of other players in multiplayer

• We could have working high score menu

• We could have iOS support

Won’t have:

• We will not have ALL of the cards

• We will not have a story

• We will not have good visuals in the game

• We will not have good audio design in the game

III Organisation

III.I Roles

Artūrs Umbraško: Communications Manager, Developer
Kacper Lewandowski: Secretary, Developer
Daniel Dahl: Lead Designer, Developer

5

III.II Responsibilities

Each of us will also have special tasks and specialisation, but, since for
every member of the team this is a programming student, everyone will
be also working on creating the code. The Communications Manager is
responsible for team communications, weekly meetings, as well as contacting
the supervisor and the employer.

The Secretary will be responsible for taking notes and making transcripts
of all meetings, both simply between team members, as well as between team
members and the supervisor and the employer.

The Lead Designer will be, in addition to programming tasks, responsible
for the artistic choices made during the development, such as graphical and
audial design.

III.III Group rules

After some discussion, we decided on the following rules:

• Work time will be from 08:00 to 15:00 Oslo time during the weekdays.

• Every week we will have a meeting with the product owner and the
supervisor.

• If a problem arises, a discussion with all group members will commence
to resolve conflict.

• If the problem can not be resolved by the group members, the group
will contact the supervisor to discuss the problem at hand.

• The group must be present at the decided timestamp, if not a notice
must be issued.

IV Development model and strategies

IV.I Model

During the planning stage, we spent quite some time arguing and dis-
cussing what kind of model to use. The two final picks, that we could not
decide between, were Scrum and Kanban. The Scrum approach offers better

6

time management and control. It is more decisive and strict and implements
more internal deadlines. Kanban on the other hand offers more flexibility,
and the tasks can be selected by each member personally; which allows for
easy task distribution. Kanban also offers us to plan continuously, which is
definitely going to be helpful in our project, since we expect the plans to
change relatively often.

After some research and some more discussions, we decided to combine
both advantages and use the Scrumban model. We will have week-long it-
erations, during which we will use a Kanban board and a Work-In-Progress
limit to complete tasks and implement features. The very first iteration will
be two weeks long, since the initial prototype will need a bit more time to
develop. At the beginning of every week we will be having a meeting to
create User Stories for features that will be added to the Scrumban board.
First couple of iterations will be used to determine the team velocity. We
also aim to have a working high fidelity prototype to show to the employer
at the end of each iteration.

V Quality assurance

The Scrumban Work-In-Progress and Scrumban board allows for flexibil-
ity when choosing what task you want to work on. This makes changing,
reworking or adding features to the game according to the owners vision a
much easier task. Each member of the group can only work on one task at a
time. This helps to assures that each member knows what they are working
on and also helps organise a steady workflow. The steady workflow helps us
in estimating the number of tasks that can be done during each iteration.
All in all this ensures a higher quality product and prototype.

V.I Weekly checks

Every finished iteration, we will send the prototype to the employer to
discuss the results and the general progress. The progress will also be dis-
cussed with our supervisor. With him we will also be discussing how effective
our strategies are.

7

V.II Documentation and syntax/standard use

To ensure our code is readable, we will be using common practices and
style guides. We will comment what is necessary parts of the code to make
it easily understandable for everyone on the group, the employer and the
supervisor. We will also include a documentation and readme files in our
repository to make it easy for the employer or the future maintainers to use
and work with the product.

V.III Version control

Our team will use git version control to make the development easier,
to make the collaboration more efficient, to make it simple to deploy and
present the software for the employer, as well as for security reasons. Version
control will also allow us to make mistakes without the consequences for the
rest of the team, and make it easier to work on multiple things at once.

The other reason for version control is due to its simplicity. We will be
able to seamlessly share our code with each other with very little effort. This
will allow us to work without worrying about the technical aspect of sharing
the code with each other.

8

VI Gantt

9

Appendix E

Contract

135

ffilчт,lчL]
jýorwegian lJnit ersity of

__ýЦепсе аrП Ъсt поtс,gу

PROJECT AGREEMlENT

between NTNU FacLrltY of Iпfоrmаtiоп Technology ancl Еlесtгiсаl Епgiпееriпg (IE) at Gjovik
(eclucation institution), апd

(еmрlоуег),

(student(s))

The аgгееmепt specifies obligations of the сопtгасtiпg parties сопсеrпiпg the completion of the
рrо.jесt and the rights to use the rеsults that the project ргоduсеs:

co.mplete the рrоjесt in the period frоm

The students shal| in this реriоd fo|iow а set schedule whеге NTNU gives academic supervision.
The еmрlоуеr сопtгiЬutеs with project assistance as agreed upon at set times. The еmрlоуеr
puts knowledge and materials at disposal necessary to complete the рrоjесt. lt is assumed that
given problems in the project аrе adapted to а suitable |evel fоr the students' academic
knowledge, lt is the еmрlоуег's duty to evaluate the project fоr free оп епquirу frоrп NTN u,

2. The costs of completion of the project аге сочеrесl as follows:
- Еmрlоуеr соVеrs completion of the project such as mаtегiаlS, рhопе/fах, trачеlliпg and
necessarY accommodation оП places fаr from NTNU, Students соVеГ the expenses for printing
апd completion of the written assignment of the project.
- The right of ownership to potential prototypes falls to those who have paid the components
and mаtеriаIs and so оп used to make the ргоtоtуре, |f it is necessary with lаrgеr оr specific
investmentsto complete the project, it hasto lэе made ап оWп аgгее,mепt between parties
about potential cost allocation and right of оwпеrshiр.

1.

Nonvegian University of Science and Technoiogy

Faculty of lп{огmаtiоп Teohnology апd Е|есtriса|

аJ,

л

5.

6.

NTNu is по guаrапtоr that what еmрlоуеr has оrdеrеd wоrl(s аftег intentions, пог that the

projectwiIl Ье completed, The рrоjесt mUSt Ье cons|dereci а5 an eХam related assignment

that will Ье evaluated Ьу lесturег/suреrvisог and ехаmiпеr, Nevertheless it is ап ob|igation

fог the регfоrmег of the рrоjесt to complete it ассоrdiпg to specifications, function level and

times as аgrееd uроп.

ДIl passed assignments will Ье гegistered and published in NTNU Ореп, which is NTNUs ореп

аrсh ive.

This depends оп that the students sign а separate аgгееmепt whеrе they give the liЬrаrу

rights to mal<e thеir mаiп project available both оп ргiпt апd оп lпtеrпеt (ck, The Соругight

Дсt). ЕmрlОуеr and supervisor accept this kind of disclosure whеп they sign this рrоjесt

аgrееmепt, апd they must possibly give а written message to students апd head of

Department if they duriпg the ргоjесt реriоd change view оп this l<ind of disclosure,

The total assignment with сlrаwiпgs, models and apparatus as well as рrоgrаm listing, sоurсе

codes and so оп included as а part of ог as ап appendix to the assignment, is handed оvег аý

а сорУ to NTNU who frее of сhаrgе сап use it in lessons and iп геsеагсh purpose. The

assignment оr аррепdiх саппоt Ье used Ьу NTNu fоr оthеr рurроsеs, апd will not lэe handed

очеr to an оutsidеГ without ап аgrееmепt with the геst of the parties iп this agreement. This

applies as well to companies whеrе employees at NTNu апd/оr students have inteгests.

The assignment's specifications апd results сап Ье used bythe еmрlоуег's оwп wогI<. lf the

stuclent(s) iп its assignment оr while wогkiпg with it, makes а patentable invention, rеlаtiопs

between еmрlоуеr and student{s) applies as descгibed iп Act геsресtiпg the гight to

emptoyees'inventions of 17th of Аргil 1970, ýý 4-10.

Веуопd the publishing mentioned in item 4, the student(s) have по right to publish

hislhersltheirs assignment, fully ог partly оr as а раrt of апоthег wогl<, without с,опýепsus

frоm the еmрlоуег. Equivalent consent must Ье made between student(s) and

lесturеr/suреrчisоr rеgаrdiпg the mаtегiаl placed at disposa| Ьу the lесtuгеr/suреrvisоr.

The students shall hand in the asslgnmentwith attachments еlесtrопiс (РDF) in NTNU's

digital ехаm system. ln addition the students shall hand iп а сору to the еmрlоуеr.

This аgгееmепt is dгаwп up with опе сору to еасh party, оп behalf of NTNu it is the head of

the Dераrtmепt/Gгоuр that аррrочеs the аgrееmепt.

lп each case it is possibleto епtегsераrаtе аgгееmепt between еmрlоуег, student(s) and

NTNu who сlоsеr regulate conclitions rеgаrdiпg issues such as ownership, furthеr use,

conficlentiality, cost соvеrаgе, and economic utilization of the results,

б.

о

Nonvegian Uпiчеrsitу of Sсiепсе ancl Тесhпоlоgу
Fасult5l of lпfоrmаtiоп Technology апd Еlесtгiсаl Епgiпеегiilg (lE)

.;i,

lf еmрlоуеr and stucient(s) wish ап aclditional оr пеw аgrееrпепt, this will оссur without

NTNU as а раrtпег,

].0. When NTNU also act as еmрIоуег, NTNU accede to the аgrееmепt both as education

institution and as еmрlоуеr,

11. possible disagreements сопсеrпiпg Lrndeгstanding of this agreement аге solved ЬУ

negotiations between the parties. lf consensus is поt achieved, the parties agree that the

disagreement is solved Ьу агьitrаtiоп, according to ргоvisiоп in civil Рrосеdurе Act of 13th of

August 191-5, по 6, сhарtег З2,

12. Participants Ьу project implementation:

NTNUs supervisor (паmе):

Еmрlоуегs contact регsоп (паmе); |)аппу |",,{)чt::7.

Student(s) (signatu ге) : }{с/ }{

}п,rлu,(j2l.ir.L aateiL'|,(')'{,)_1

date

Епrрlоуег (si gnatu rе) :

**'п*1}.}rr,;, fu.,t*

f,2|g 27-t)1 7О21

The praject Аgгееmепt is to Ье hапdеd itэ iп digitol чеrsiоп iп Blackboard, Digi|al approval Ьу head af the

Dераrtmепt/Grочр,

lf а рqреr чеrsiоп of the дgrееmепt is needed, is must Ье hапdеd iп at the Dераrtmепt iп additioпal,

Head of Dерагtmепt/Grоuр (signature):

Vцчх?,,!_*i--ьлrrлm,lLэ)^a _ алt*1,| O"l ?1

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

U
m

braško, Lew
andow

ski, D
ahl

Artūrs Umbraško, Kacper Lewandowski, Daniel
Dahl

OS Runner

Educative multiplayer rogue-like deck-building
gaming experience in Cybersecurity

Bachelor’s project in Programming
Supervisor: Aland Mendoza
Co-supervisor: Marius Pedersen

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Abstract
	Utdrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	The topic
	The task
	The inspirations
	The audience
	The team
	The goals
	The thesis

	Requirements
	Initial requirements development
	Planning the requirements
	Scope
	Gameplay flowchart designs
	MoSCoW

	Continuous requirements development
	Weekly meetings
	User stories

	Implementation
	Introduction
	Development process
	Scrumban development model
	Mapping the requirements

	Initial technical and graphical choices
	Game Engine choice
	Version Control
	System design
	Coding practices
	File structure
	Graphical design

	Server
	Functionality
	Basis
	Structure and flow

	Cards
	Introduction
	Card base
	Design
	Technical implementation
	Effects
	Card manager
	Deck
	Pile display

	Battle Manager
	Design
	Player
	Cards
	Effects in battle
	Bugs during development

	Map Topology
	Shop

	Card Encyclopedia
	Music Manager
	Customization
	Settings
	Profile

	Discussion
	Reflections
	The good
	The bad
	Other games
	Fulfilling requirements
	The employer's opinion

	Critique of the original task
	Evaluation of group work
	Group organization
	Work organization

	Further work
	Single-player
	Use in education institutions
	Digital distribution platforms
	Going Open Source
	Cybersecurity wiki
	Colorblind accessibility

	Conclusion
	Bibliography
	User Stories
	Gameplay flow multiplayer
	Gameplay flow singleplayer
	Project plan
	Contract

