
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Kristian Kanck

TexTraClus

A Spatio-Textual Sub-Trajectory Clustering
Framework

Masteroppgave i Informatikk
Veileder: Kjetil Nørvåg

Oktober 2020M
as
te
ro
pp

ga
ve

Kristian Kanck

TexTraClus

A Spatio-Textual Sub-Trajectory Clustering Framework

Masteroppgave i Informatikk
Veileder: Kjetil Nørvåg
Oktober 2020

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Problem Description

Original problem description

A spatio-textual trajectory is a trajectory with some text associated with it. As an example, consider
a tweet with retweets from different locations, the locations of the (re-)tweets together with the tweet
text is in this case a spatio-textual trajectory. Given a database of spatio-textual trajectories, various
data mining tasks can be performed in order to find interesting patterns. A simple example is clustering,
which will give tweets that have high textual similarity, and which are retweeted from similar locations.
The aim of this project is to 1) study previous work related to this topic, 2) identify interesting and useful
data mining operations to be performed on the spatio-textual trajectories, 3) develop algorithms/indexes
for efficient execution of one or more of these operations, and 4) evaluate these on a large dataset.

Supervisor: Kjetil Nørv̊ag

1

Abstract
The amount of spatial and textual data generated by modern Big Data platforms is growing rapidly. Un-
derstanding frequent patterns and identifying new trends becomes more important for marketing, politics
and social cohabitation. Challenges are increasing for existing Data Mining methods when attempting
to extract knowledge from large spatio-textual data sets, and combining existing methods is increas-
ingly important to keep up with the current rate of technological evolution. This thesis is supported
by well established academic methods across disciplines within Big Data Mining to efficiently identify
spatio-textual trajectory trends in large data sets.

2

Sammendrag

Mengden romlig og tekstuell data generert av Big Data-platformer vokser stadig raskere. Å forst̊a
bruksmønster og identifisere nye trender blir viktigere for b̊ade markedsføring, politikk og sosialt samhold.
Utfordringene øker for eksisterende datautvinningsmetoder n̊ar en skal ekstrahere kunnskap fra store
rom-tekstlige datasett, og å kombinere eksisterende metoder blir viktig for å effektivt holde tritt med tek-
nologisk utvikling. Dette arbeidet støtter seg p̊a etablerte akademiske metoder p̊a tvers av fagomr̊ader
innen Big Data Mining for å effektivt identifisere rom-tekstlige bane-trender i store datamengder.

3

Acknowledgements
I would like first and foremost to thank my supervisor professor Kjetil Nørv̊ag for supporting me and
offering help in completing this master’s thesis. I also would like to thank Anette Siverstøl for all her
love and support.

4

Table of Contents

Problem Description 1

Abstract 2

Sammendrag 3

Acknowledgements 4

Table of Contents 6

List of Figures 7

List of Algorithms 8

List of Figures 9

1 Introduction 10
1.1 Problem Definition . 10
1.2 Thesis Overview . 11

2 Data Mining 12
2.1 Mining Operations . 12

2.1.1 Trajectory data mining methods . 14

3 Related Work 15
3.1 Methodology . 15
3.2 Review . 15

4 Textual Mining Operations 17
4.1 Introduction . 17
4.2 Textual Similarity . 18

4.2.1 Consine Similarity . 19
4.2.2 Jaccard Similarity Coefficient . 19

4.3 Text Preprocessing . 21
4.3.1 Lexical Analysis . 21
4.3.2 Stopword Elimination . 22

5 Clustering Operations 23
5.1 Partition Based Clustering . 23
5.2 Density Based Clustering . 25
5.3 Hierarchy Based Clustering . 27
5.4 Trajectory Clustering . 29

5.4.1 Subtrajectory Clustering . 30

6 Methodology 37
6.1 Environment . 37
6.2 Datasets . 37

6.2.1 Twitter Dataset . 37
6.2.2 Yelp Dataset . 39
6.2.3 Pre-processing . 40

6.3 Implementation . 43
6.3.1 Distance Functions . 43
6.3.2 Representative terms generation . 44

5

7 Experimental Results 45
7.1 Twitter Dataset . 45
7.2 Yelp Dataset . 47
7.3 Experimental Results . 49

7.3.1 Parameter Estimation . 49
7.3.2 Runtime . 49
7.3.3 Clustering results . 50

8 Discussion 57
8.1 Datasets . 57
8.2 Evaluation of TraClus for spatio-textual data . 59

8.2.1 Runtime . 59
8.2.2 Cluster evaluation . 59

8.3 Future Work . 59

9 Conclusion 61

Bibliography 64

Appendices 65

A Twitter Object Data Format 65

B Yelp Review Object Data Format 74

C Yelp Business Object Data Format 74

D Processed Spatiotextual Trajectory Data Object 76

6

List of Figures
2.1 Data Mining methods . 13
4.1 Yahoo! web portal snapshot from 8th February 1999 . 17
4.2 Intersection of documents describing different domains . 20
5.1 Partition based clustering effect on data with inherent pattern 24
5.2 Exclusion of trajectories . 29
5.3 A line segment Li with end points (pi1, ti1), (pi2, ti2) . 31
5.4 Perpendicular distance between line segments Li and Lj in TraClus algorithm 31
5.5 A line segment Li with end points (pi1, ti1), (pi2, ti2) . 32
5.6 A line segment Li with end points (pi1, ti1), (pi2, ti2) . 33
6.1 Pseudocode creating join table of twitter reply trajectories with 4 or more points in English

language . 40
6.2 Maximum and minimum latitude and longitude coordinate bounding box in Yelp Business

data set . 41
7.1 Twitter dataset trajectories visualized . 46
7.2 Yelp dataset trajectories visualized . 48
7.3 Runtime for Yelp and Twitter datasets at varying data set sizes 49
7.4 Silhouette coefficient for spatio-textual TraClus on a Twitter dataset at permutations of ε

and minLns . 51
7.5 Silhouette coefficient for spatio-textual TraClus on a Yelp dataset at permutations of ε

and minLns . 52
7.6 Silhouette coefficient for spatio-textual TraClus on a Twitter dataset at permutations of α 53
7.7 Silhouette coefficient for spatio-textual TraClus on a Yelp dataset at permutations of α . 54
7.8 Spatio-textual TraClus on a Twitter dataset using ε = 3, minLns = 5 and α = 0.35 . . . 55
7.9 Spatio-textual TraClus on a Yelp dataset using ε = 0.4, minLns = 10 and α = 0.65 56

7

List of Algorithms
5.1 k-means algorithm . 24
5.2 DBSCAN algorithm. 25
5.3 BIRCH algorithm . 28
5.4 TraClus algorithm . 30
5.5 Approximate Trajectory Partitioning . 34
5.6 Line Segment Clustering . 35
5.7 Representative Trajectory Generation . 36
6.1 Spatio-textual TraClus distance function . 44
6.2 spatio-textual TraClus Representative text generation . 44

8

List of Tables
6.1 Memory specifications . 37
6.2 Processor specifications . 37
6.3 Original dataset sizes . 42
6.4 Pre-processed dataset sizes and reduction . 42
6.5 Average text character count in datasets . 42
7.1 Twitter data subsets used in spatio-textual TraClus algorithm evaluation 45
7.2 Yelp data subsets used in spatio-textual TraClus algorithm evaluation 47
7.3 Yelp spatio-textual TraClus run-time for ε = 10,minLines = 51, α = 0.3. 50
7.4 Twitter spatio-textual TraClus run-time for ε = 10,minLines = 51, α = 0.3. 50
7.5 Silhouette coefficient for permutations of ε and minLines for α = 0.5 on Twitter dataset 51
7.6 Silhouette coefficient for permutations of ε and minLines for α = 0.5 on Yelp dataset . . 52
7.7 Silhouette coefficient for permutations of α values for ε = 3, minLines = 5 on Twitter

dataset . 53
7.8 Silhouette coefficient for permutations of α values for ε = 3, minLines = 5 on Yelp dataset 54
8.1 Sample of Yelp dictionary . 57

9

1 Introduction

John Naisbitt famously wrote ”We are drowning in information but starved for knowledge.” in the 1982
book Megtrends: Ten New Directions Transforming Our Lives [1]. This statement still holds true today.
Smart phones capable of GPS tracking have become household items, which allows software and hardware
to record the device’s geo-location at unprecedented accuracy and rate.

Geo-tracking moving objects has been an important aspect of data mining in relations to predicting
and identifying common animal migration patterns for purposes such as hunting and livestocking, or
even predicting hurricane movement patterns. The commercialization of phones and laptops carrying
GPS-trackers affords ordinary people without business or research needs to track their daily movement.
Application and device designers are then able to collect this data to extract interesting behavioral pat-
terns, such as vehicular movement through traffic or the movement of tourists across points of interest.

Most modern humans carry a GPS-tracking device daily and as their movements are tracked —so are
their interactions with the devices themselves. Smartphones and laptops can be used to interact with
friends through social media or to publically publish their thoughts on social networks as they interact
with the world around them. Where the previous generation of data mining tasks focused heavily on how
geo-tracked devices navigated the world around them spatially, the modern big data collecting dichotomy
allows researchers to focus on multiple dimensions of interactions.

In the current age of social networks, applications are capable of tracking spatio-textual interactions
and efficiently storing them in data warehouses. Such data can be used to analyse the opinions, thoughts
and social trends among people. Services such as the Yelp application allow users to publish detailed
restaurant reviews for other users’ benefit. Social network applications such as Twitter allow users to
publically publish their thoughts for users across the world to interact with. Extracting meaning from
these vast collections of data requires specialized Data Mining methods. Identifying misinformation cam-
paigns in social media has become a topic of much interest the last decade. Understanding how political
language spreads geographically across social sub-networks is an important field of research for effectively
combating such online campaigns.

Applying existing methods in the Data Mining field, and effectively developing new methods of locating
spatio-textual behavioral patterns are some of the emerging Megatrends of the 21st century. The goal
of this paper is to combine spatio-textual clustering methods on social network user trajectories to ef-
fectively locate trends in large data sets, where they otherwise would be drowned in noise to the human
eye.

1.1 Problem Definition

In traditional spatial trajectory clustering, only spatial distances between data points are considered. In

spatio-textual trajectory clustering we must also perform clustering based on the textual dimension. We

are interested in finding efficient ways to perform clustering on trajectories in both the spatial and the

textual dimension using existing methods.

Research questions:

• Research Question 1 What approaches exists in context of clustering trajectories?

• Research Question 2 How can these be extended to spatio-textual trajectories?

• Research Question 3 How does a spatio-textual trajectory clustering algorithm
perform on a large dataset?

10

1.2 Thesis Overview

• Chapter 2 Gives a brief introduction to the field of data mining and the particular
research areas relevant to this thesis.

• Chapter 3 Explores related research and work in the field of spatio-textual trajec-
tory data mining and provides an overview of the research.

• Chapter 4 Is a brief introduction to the field of textual analysis, and discusses which
methods are well suited in relation to spatial clustering methods while also exploring
methods of optimization available.

• Chapter 5 Explores the data clustering mining technique and discusses which meth-
ods of clustering might best suit the task of spatio-textual trajectory clustering.

• Chapter 6 Will describe the methods used to formulate an algorithm based on the
methods previously examined to cluster spatio-textual trajectories.

• Chapter 7 Presents the results from applying the algorithm onto two large spatio-
textual datasets.

• Chapter 8 Evaluates the results from the algorithm and compares the datasets’
results.

• Chapter 9 Will conclude the findindings of this thesis.

11

2 Data Mining

In a 1999 article [2], Feyaad described Knowledge Discovery in Databases as ”the non-
trivial process of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data”. In 2016 Witten defined data mining as the automated process of
discovering patterns in large databases, where useful patterns discovered allow the user to
make ”non-trivial predictions on new data” [3]. Data mining can be summarized as the
process of extracting information or knowledge in the absence of a testable hypothesis.

The need to automate the process can be instrumental in the knowledge discovery
aspect of data mining. If the data mining process is approached with a bias, then it
harms the chances of obtaining new knowledge from the data. Witten also describes the
harmful impact of bias when utilizing data mining techniques to discover new knowledge
from data. For data mining to discover knowledge in an unbiased fashion, good data
mining techniques and algorithms must be utilized.

Anand highlighted the importance of domain knowledge when applying data mining
techniques [4]. He acknowledged that the ideal circumstances for knowledge discovery
through data mining techniques is when the discovery process is not biased by the user.
They outlined the role of the human in terms of domain knowledge and bias information.
The paper states about completely unbiased discovery systems that ”such a discovery
system is not a viable option as the amount of knowledge that can be discovered from a
dataset far exceeds the amount of data”.

There exists a balance between useful and harmful bias when utilizing data mining tech-
niques. The mining operations must be focused enough that the amount of data returned
from the knowledge discovery process is not overwhelming, but still contain some bias
so that the knowledge discovered can be useful for future decisions. The user’s domain
knowledge is the important factor in distinguishing between these two outcomes.

2.1 Mining Operations

Data mining operations and techniques can be invaluable for businesses to learn new
trends about their customers for reasons such as expanding their product range, changing
marketing strategies or for making informed decisions based on customer history through
decision trees.

Data mining techniques can be divided into two categories: supervised, and unsuper-
vised. An example of an supervised mining method is classification. In classification,
data entries are ran through some algorithm and assigned to pre-defined output labels.
A set of labels are defined by the user and data entries will be allocated a label based
on their attributes. For a database containing spatio-temporal data on humidity, cloud
density, wind, temperature and sun position one could predict for the user if the weather
will be sunny, rainy, windy or cloudy.

A weakness with this type of data mining operation is that the user must already know
how to categorize these types of weather based on the input parameters. If other weather
types exist, but do not exist as labels in the algorithm, the algorithm will not be able to
classify them correctly. Classification algorithms can be invaluable for businesses such as
credit card companies for predicting potential customers which are most likely to not be

12

able to default on their payments in the future. However, classification methods are not
necessarily well suited for locating new trends in existing data.

Unsupervised data mining techniques are more suited towards identifying unknown trends
in data sets. Assosciation based data mining methods, such as the Apriori algorithm [5]
are designed to predict likely combinations of items based on assosciation rules. A use-
ful example on how to use the apriori algorithm is to analyze shopping transactions and
identifying items that often appear together. By looking at the assosciation relationships
between different types of wares, a grocery store could then have its layout arranged to
both make future shopping trips more efficient for customers and entice shoppers to buy
other closely assosciated wares based on what they originally set out to buy. Figure 2.1
displays the split data mining paradigm and some of the supervised and unsupervised
methods.

Figure 2.1: Data Mining methods

The focus of this thesis will be the unsupervised clustering data mining method. The
goal of clustering methods is to group items based on some distance or similarity. The
clustering method is described as unsupervised because there are no expectations on how
the data will be grouped, as opposed to classification where the data will be assigned to
some label. Most commonly, clustering is performed in a spatial dimension and measures
iteratively how close each item is to other items in the data set. Then, items can be
grouped based on measures such as density or by simply partitioning the data set. This
grouping can be used to identify patterns such as locating traffic congestion for urban
planning projects, identifying areas with high crime rates for re-organizing police patrols
or grouping similar movies based on user input metrics for a recommendation algorithm.
In 2018 a paper was published where the researchers utilized unsupervised clustering
methods to separate ”fake news” articles from other news articles [6] by analyzing the
structure of the language used.

Clustering is a versatile technique that can be applied to many different domains. While
the spatial domain is the most obvious, it can also be done textually. The important princi-
ple is to convert the difference between items into some measurable distance. Teqchniques
such as the Jaccard Similarity Coefficient or Cosine Similarity can be used to measure
the difference between two textual items through set theory or by evaluating the items
as vectors, respectively. Measuring differences between text documents as distances is

13

a widely used technique utilized daily by web search engines. In a web search context,
text documents can be clustered based on similarity to make the storage and retrieval
of documents with high degrees of similarity more efficient. Spatial and textual mining
operations can be combined to cluster based on both spatial distance and textual simi-
larity. This was demonstrated in a 2017 paper suggesting a spatio-textual variant of the
popular k-means clustering method [7]. This paper extended a euclidian distance function
to also take into account the Jaccard Similarity Coefficient in its distance function. This
allowed the researchers to cluster points not only by spatial distance, but also textual
similarity. Textual mining operations and techniques relevant to spatio-textual clustering
will be covered in further detail in Chapter 4.

2.1.1 Trajectory data mining methods

An emerging trend in the data mining field is evaluating and analyzing trajectory data.
Trajectory data mining could be utilized by analyzing trajectory data to recommend tra-
jectories or predict trajectories. The 2007 sub-trajectory clustering algorithm TraClus [8]
used a variation of the DBSCAN clustering algorithm [9] to find common paths among
trajectory data sets and evaluated the algorithm on animal migration and hurricane move-
ment trajectory data to predict common sub-paths.

Analyzing trajectories can have large impacts on business strategies. A 2013 study on hu-
man movement derived from mobile GPS data [10] analyzed the trajectories constructed
from the movement to find common paths. Utilizing such techniques can have large im-
pacts on business strategy, because of the added temporal dimension. Trajectory data
mining techniques differ from non-temporal spatial data mining techniques because they
take into account the histories of each object. Just like in assosciation mining techniques,
the relationships between each spatial element is evaluated. The earlier example of using
clustering techniques to locate traffic congestion can be solved in a much more efficient
way if the method also takes into account where the vehicle came from and where it is
headed. Trajectory mining techniques can allow businesses or bodies of government to
obtain a higher degree of knowledge about behavioral patterns and better structure sys-
tems and services to serve the needs of citizens or their users in a more efficient manner,
potentially reducing costs and improving the users’ satisfaction.

14

3 Related Work

This chapter will present an overview of different papers related to the field of spatio-
textual trajectory clustering. Articles describing approaches to solve the current problem
will be explored as well as other related research.

3.1 Methodology

A preliminary review of the literature was performed before setting out to explore how
to best fulfill the research questions defined for this thesis. Articles reviewed were gath-
ered through online research literature aggregators. As suggested by Oates [11], a set of
concepts were first defined then used as search words in the online aggregators for the re-
view. The concepts defined were ”spatio-textual clustering” and ”trajectory clustering”.
A broad collection of documents were skimmed through for relevance. Afterwards they
were carefully processed to explore how they relate to the field of spatio-textual clustering
and identify the current state of the art.

3.2 Review

Data mining on spatio-textual trajectories is an emerging field within data mining. The
research is sparse, but much work has been done researching data mining operations on
spatio-textual data and trajectories separately. An early paper in the trajectory cluster-
ing field was the 1999 study by Gaffney [12], which suggested utilizing linear regression
as a means to cluster whole trajectories. In 2007 Lee, Han and Wang published a paper
suggesting the TraClus algorithm [8]. TraClus is a density based sub-trajectory cluster-
ing algorithm that groups similar line segments found within trajectories and generates
representative trajectories highlighting the dominant trend within each grouping. Previ-
ously, the field had been primarily focused on clustering whole trajectories, whereas the
TraClus algorithm was designed to cluster common sub-trajectories to identify interesting
patterns which otherwise could have been overlooked in whole trajectory clustering. The
algorithm has since become the standard in density based sub-trajectory clustering and
the focus of researchers has since largely shifted away from trajectory clustering in favor
of sub-trajectory clustering.

Inspired by the TraClus algorithm, a team of researchers developed the MoveMine sys-
tem [13] for detecting periodicity and swarming patterns in sub-trajectories. MoveM-
ine utilizes periodic pattern, swarm patterns and movement interactions to classify fre-
quently appearing sub-trajectories. Unlike TraClus, which performs line segment clus-
tering, MoveMine locates frequently occurring check-in points with high similarity across
trajectories and generates a representative trajectory based on these points. This system
was later revisited by Wu in 2014 and published as MoveMine 2.0 [14] with an extended
focus on pairwise relationship patterns, namely attraction/avoidance relationships and
follower patterns.

In 2017 a chasm in the research had been identified by Choi and Chung [7] who published a
paper extending the k-Means partion based clustering algorithm to process spatio-textual
datasets. The researchers cited a rising need to analyze social media trends more closely

15

as a motivation for the research. The researchers cited other research in the field of spatio-
textual query processing as an inspiration, but noted in the paper that the research on
applying clustering algorithms to spatio-textual data was sparse. The spatio-textual k-
Means algorithm utilized the Jaccard Similarity Coefficient [15] to compare the textual
distance between two nodes and required the user to define a weight α ∈ [0, 1] to in-
versely proportion textual similarity and euclidian distance when calculating the distance
between two nodes.

Nguyen and Shin published in 2017 a paper suggesting the DBSTexC algorithm [16] which
adopts the density based DBSCAN clustering algorithm to evaluate textual content in
tandem with spatial clustering and evaluated it on geospatio-textual Twitter messages.
The algorithm utilized geographical points of interest (POI) mentioned in the textual
body of the twitter message and evaluates whether messages are POI-relevant or irrele-
vant based on the textual content and the geospatial publishing location of the message.
This spatio-textual implementation differs from the 2017 spatio-textual k-Means imple-
mentation in that the distance function of the DBSCAN algorithm is not modified. The
similarity or dissimilarity of the textual contents are not measured as distances and eval-
uated against the geospatial distances between points. Instead, the researchers redefined
the definition of how core points are identified in the DBSCAN algorithm.

To identify which twitter messages are relevant to any particular geospatial point of
interest, DBSTexC introduces a threshold measure for when a point is POI-relevant. This
threshold is manually set by the user through a variable α. To make this algorithm work,
there must already exist some mapping from the POI-names and the geographical loca-
tions they are assosciated with. The researchers solved this by performing a keyword
search of semantic variations of the POI-name through the database.

A hierarchical variation of the TraClus sub-trajectory clustering algorithm was proposed
in 2018 [17]. The researchers stated that ”density-based clustering algorithms such as DB-
SCAN and DENCLUE cannot find hierarchical clusters and they fail to detect clusters
of different densities since they use a global density threshold”. The researchers utilized
HDBSCAN, a hierarchical variation of the DBSCAN algorithm proposed in 2013 [18],
which incrementally clusters at different densities through single-linkage producing a hi-
erarchical tree of clusters. This method was combined with TraClus to cluster trajectories
using trajectory sequences and semantic information to produce context sensitive ”refer-
ence spots”. These reference spots could then be ordered hierarchically to show periodic
patterns occurring in the data.

Although some research has been made on spatio-textual clustering and trajectory clus-
tering, the field of spatio-textual trajectory clustering remains a relatively unexplored
domain. The goal of this thesis will be combine results from previous research and con-
tribute to future research by demonstrating how current spatio-textual clustering tech-
niques can be extended to existing trajectory clustering methods when applied to social
network data.

16

4 Textual Mining Operations

In this chapter we will discuss text operations that are useful in relation to a spatio-textual
clustering algorithm where textual documents are compared in pairs. Starting with basic
text comparison algorithms, their strengths and weaknesses and where and when they are
best applied. Lastly useful textual pre-processing techniques will be presented.

4.1 Introduction

The field of textual analysis is a well researched field. The process of automating the
retrieval of information from textual documents has long been a field of interest for re-
searchers and enterprises alike. The Google search engine was presented in a 1998 pa-
per [19] by Brin and Page who referenced the need to automate the process of retrieving
web documents as a substitude to manually curated web indices such as the Yahoo! web
portal. Figure 4.1 demonstrates how the Yahoo! web portal manually selected indices
for web browsers in 1999.1 The cumbersome and expensive process of maintaining such
indices and the burden of understanding exactly which topics should be curated were
identified as problem areas. By automating this process the situation would improve not
only for the business, but also the user. The user would be served a wider range of topics
in web documents, and the cost of maintaining such indices would be reduced.

Figure 4.1: Yahoo! web portal snapshot from 8th February 1999

1 Yahoo! web portal accessed through internet archive service Wayback Machine: https://web.archive.org/web/

19990208021547/https://www.yahoo.com/ (accessed 29th Oct 2021)

17

At the core of solving these issues is the domain of textual analysis. To retrieve a document
for a user based on a search term, keyword or category, some technique must be able
to distinguish what makes some documents relevant and other documents less relevant.
The process of comparing documents for relevancy can be semantic or agnostic towards
semantics.

When the textual analysis is defined as semantic, the meaning and context of the
words in the documents are important to measuring similarity. Homonyms can lead to
false positives if the similarity measurement does not consider semantic meanings. An
example can be how the word crane describes very different things for bird watchers or
construction workers. A difficult problem when approaching semantic textual similarity
is in the context of slang, or in poetry where words can be metaphors or contain hidden
pop-culture references. If semantic meaning is important to the textual analysis process,
the context of the words used is critical for the data mining process.

In this paper, the textual data mining operations used will not focus on semantic textual
data mining, where typically text is classified to extract intent or meaning. Rather, the
goal will be to discover trends in the language used by locating frequently used keywords
in tandem with spatial clustering methods to find sub-trajectory patterns where certain
keywords are more frequent than others.

4.2 Textual Similarity

Measuring textual similarity has many use cases, from matching search words to docu-
ments in online document databases, to measuring differences between documents such
as when attempting to detect plagiarism. The methods used to detect such similarities
are numerous and versatile, each with their own strengths and weaknesses.

In the context of algorithms designed to measure textual similarity, a textual node is
referred to a document containing a set of words. Equation 1 demonstrates how a textual
document D in a collection of n documents contains a set of words w .

Dn = {w1, w2, . . . , wlenDn
} (1)

One of the most common textual similarity measures in information retrieval is the term
frequency and inverse document frequency, also known as TF-IDF [20]. The ideal use case
for TF-IDF is in document search engines, where short length search phrases are com-
pared against a collection of documents that are much larger in length. Term frequency
is generated by counting the frequency of each term in a document. The idea is that high
frequency terms are important for describing key topics unique for that document. The in-
verse document frequency is used to measure words that are frequent across all documents
in the collection. These words typically occur often in almost every document and offer
little descriptive value to the contents therein. While the TF-IDF measure is a foundation
in the field of information retrieval, extending this method to computationally intensive
processes such as data clustering will lead to significant overheads in each computation.
This method also offers less value when the documents compared are symmetrical in sizes.

For this thesis the textual comparisons will typically be between textual sentences that
are relatively symmetrical in length. The Cosine Similarity and the Jaccard Similarity

18

Coefficient are two well established similarity measures in the academic field of textual
analysis that perform well in such cases.

4.2.1 Consine Similarity

Cosine similarity [21] treats documents as separate vectors and measures the difference
between them as an angular degree. The wider the angle between two documents, the
higher degree of dissimilarity. Likewise, the narrower the angle, the higher degree of
similarity between them. Equation 2 demonstrates the general formula for calculating
the degree difference between two documents.

Sim(Sa, Sb) = cosθ =

−→
Sa ·
−→
Sb

||Sa|| · ||Sb||
(2)

To convert documents into vectors, a vector object must be constructed that represents
all words that can possibly occur across all documents in the collection. The words
represented in the vector object structure is the same for all documents, but for each
document the frequency of the words are counted in its vector. For large collections of
documents the vector object will tend to be very sparsely populated as any word that is not
present in the document will be numerically represented as 0. Equation 3 demonstrates

how a document vector object
−→
Dn in an n-sized collection represents the in-document

frequency of any possible word w for the m unique words existing across all documents
in the collection.

−→
Dn = w1, w2, w3, . . . , wm (3)

The similarity is calculated through the dot product of two vectors over the product of
each vectors euclidian norm. For a vector −→v = {w1, w2, w3, . . . , wm}, the euclidian norm

is calculated as ||−→v || =
√
w2

1 + w2
2 + w2

3 + . . .+ w2
m. The dot product is calculated by

multiplying the frequency of each unique word and summing them so that for two vectors
−→vi and −→vj the dot product for the two will be equal to wi1 ·wj1 +wi2 ·wj2, . . . ,+wim ·wjm.

Cosine similarity is well suited to tasks such as detecting plagiarism as the term fre-
quency have a very high impact on the resulting measurement. A major benefit is also
how missing fields have little to no impact on the resulting measurement. However, to
effectively compute the similarity between items, large data object structures must be
constructed and stored to memory, much of which contain no information at all. For a
large collection of short documents with large variance in textual content, each document
will be assigned extremely long vector objects containing mostly null fields. For commer-
cial off-the-shelf systems, this can impact processing times tremenduously depending on
available memory.

4.2.2 Jaccard Similarity Coefficient

The Jaccard Similarity Coefficient [15] treats documents in a collection as sets and utilizes
the intersection and union set operations to calculate the similarity between any two
documents. A stark contrast to the Cosine Similarity is that each element is counted only
once, as term frequency is ignored. As a consequence Jaccard is rarely used to produce

19

a ranking of documents in relation to a search term, but rather is better suited to quick
comparisons between the contents of two documents.

Figure 4.2 demonstrates how two documents, each describing terms relevant to a gro-
cery store and a pet shop share an intersection of terms.

Figure 4.2: Intersection of documents describing different domains

The similarity between two sets of words is calculated as demonstrated in Equation 4.
The example illustrated in Figure 4.2 would be calculated by dividing the intersection of
the two sets over the union of the two sets. The collection contains 11 words in total with
3 words intersecting, so the jaccard similarity coefficient betwen these two documents in
this specific example would be calculated as 3

11
= 0.27.

J(Sa, Sb) =
|Sa ∩ Sb|
|Sa ∪ Sb|

(4)

The Jaccard Similarity Coefficient is well suited to cases where duplication does not mat-
ter. Jaccard is also slightly less computationally intensive than Cosine Similarity, as it
performs less arithmetic operation for each comparison as well as requiring less storage in
lieu of not requiring specialized data objects to represent the data.

Jaccard performs better when comparisons are made between symmetrical items. For
two documents compared, where all the words from a smaller document D1 are present
in a much larger document D2, the similarity measure will not be very high. This is
because the Jaccard Similarity Coefficient, in contrast to Cosine Similarity, consders neg-
ative matches in its evaluation. This attribute is important to keep in mind when deciding
which textual similarity function to apply to a data mining algorithm.

A feature both methods share is that they are not capable of distinguishing lexical or
semantic similarity between any documents. Matches are semantically agnostic and only
evaluate whether words appear or don’t appear. This can be remedied by utilizing se-
mantic dictionaries where terms are assosciated with other terms of similar meaning, or
by using techniques such as n-grams for measuring textual similarity.

20

4.3 Text Preprocessing

Textual preprocessing is a monumentally important task when analysing natural language.
Language is an evolving form of communication that is hard to decipher for computers.
There exists many textual processing techniques available, such as lexical analysis, stem-
ming, stopword elimination or text enrichment.

Lexical analysis is the process of translating documents into machine processable terms
that can be measured in similarity.

Stemming refers to identifying the stem of each term so that they can be easily com-
pared. In this process word suffixes and prefixes are usually stripped to reveal a shared
word ”stem” with identical semantic meaning.

Stopword removal refers to removing common words that have little functionality in
describing the contents of a single document. These are typically found in overabundance
across most documents and textual similarity measures containing these will usually yield
a high degree of false positives.

Text enrichment refers to identifying the semantic meaning of words in context and
either separating them or linking words together as synonyms. An example is how the
noun ”contest” describes something very different when used as a verb. Text enrichment
will typically attempt to identify the context of a word’s usage and either match them to
words holding similar semantic meaning or negatively impact the similarity measurement
between such words.

While some textual pre-processing techniques are optional depending on the task ob-
jective, the most important technique in its implementation is lexical analysis. Some
techniques such as stemming, stopword removal and text enrichment can be very expen-
sive based on quality demands of the preprocessing required. These techniques can also
be harmful to the textual analysis if performed poorly.

4.3.1 Lexical Analysis

Lexical analysis refers to the process of tokenizing documents for computational process-
ing and facilitating for the textual analysis performed. The first and most important
operation in lexical analysis to execute, for any algorithm that measures textual similar-
ity, is tokenization. Tokenization is the process of splitting the document body into tokens
that can be measured for similarity. In the vast majority of cases, this means splitting
the document body into tokens that end and start whenever any whitespace character,
such as space or line break, occurrs. This allows the program to evaluate the similarity
and dissimilarity of words in pairs or as document vectors.

Capitalization is the an important factor to consider, as most programming languages
evaluate letters in similar cases as being different words. For an algorithm evaluating the
similarity of the words ”Vehicle” and ”vehicle” it is important to understand whether the
casing of the word is taken into account by the String evaluation. Most programming
languages will evaluate these two words as being dissimilar. Lower-casing is typically not
a computationally costly operation and will typically have large impacts in the results
from textual analysis.

Another important aspect of lexical analysis is language. For an application or algo-
rithm that measures the similarity of two documents, it is important to understand which
languages are being utilized. In a textual clustering context, comparing documents con-
taining different languages will lead to very poor results. This is because most word

21

comparisons will result in negative matches, even if their semantic meanings are identical.
For textual analysis algorithms it should be considered whether to only evaluate docu-
ments containing one singular language or whether to split up the document collection so
that documents of different languages can be evaluated separately.

Depending on the context of the textual analysis, it is sometimes important to prune
words from special characters. In internet slang and online social networks text can some-
times be dressed up in special characters to add meaning to words. In some cases, some
pruning can be skipped depending on the objectives of the textual analysis. However,
noise removal should be executed. Consider the term tokens ”however” and ”however,”.
If only tokenization is executed without noise removal, special characters such as punc-
tuation marks and commas will not be removed from the text. If choosing to forego
noise removal these terms will be regarded as two different terms in textual similarity
operations.

4.3.2 Stopword Elimination

Stopword elimination is the process of removing stop words from documents before pro-
cessing to speed up the textual analysis process and increase the accuracy of positive
matches. Most natural language documents will contain vast amounts of words that con-
tain very little discriptive meaning. Examples of stopwords are words such as prepositions
like ”over”, ”on”, ”in” or pronouns such as ”I”, ”you”, ”it”. In considering a Cosine Sim-
ilarity case as an example, removing such words will result in much smaller vector data
objects representing the documents and lead to a lower degree of false positive matches
between documents. For the Jaccard Similarity Coefficient stop words will contribute
to documents similarity measures also resulting in a large amount of false positives. An
option when performing stopword removal is to also remove terms that occur extremely
rarely. This can contribute to filtering out misspelled words, but caution should be taken
so that relevant terms are not filtered out as that will harm the textual analysis.

Stop words can be identified statistically or through textual dictionaries. Statistically
identifying stop words can be done by measuring the term frequency across the document
collection for each word and removing words that occur higher than a set threshold. A
weakness of this method is that it is hard for humans to manually determine exactly
where the threshold should be set. Additionally, it is important to consider how closely
related domain-wise the documents are for the statistics. As an example, if the statistics
are based on a collection of documents all describing a single contextual domain such as
cooking, important terms to the document retrieval might be filtered out if they occur
too often.

It is possible to construct dictionaries containing terms that have a high degree of irrele-
vance regardless of the context they are used in. Prepositions and pronouns are examples
of such words. These can be constructed manually, automatically or through a combina-
tion of both. Constructing such dictionaries manually is a time consuming and expensive
process, but automating the process of building such dictionaries will run into the same
problems when filtering stopwords statistically. The more efficient solution in order to
achieve better results is to use both methods in tandem to exclude false positives. Such
dictionaries should also be built from large amounts of document collections so that the
dictionary isn’t affected by a domain bias.

22

5 Clustering Operations

This section will introduce well known clustering method paradigms, discuss their strengths
and weaknesses and identify algorithms that are well suited for clustering spatio-textual
trajectories.

Clustering algorithms are used to identify or classify unrelated objects into object
groups in order to locate unknown trends and patterns in the data. The book Data
Mining: Concepts and Techniques [21] classifies the currently known clustering methods
five categories: partition based, hierarchy based, density based, grid based and model
based. From reviewing the literature, density based, hierarchy based and partition based
methods are the most frequently used techniques when clustering trajectory data.

5.1 Partition Based Clustering

Partition based clustering methods are the simplest clustering methods. As the name
suggests, the entire data set will be split up into partitions. These methods typically
requires the user to identify the desired number of clusters before processing the data.
A manually set parameter is needed, most often denoted as k where k ≤ n for n data-
points. The result is that the algorithm then will assign each node in the data to one of
the k clusters. The most famous example of the partition based clustering method is the
algorithm k-means [22].

In the k-means algorithm the locations of k data points will be selected as centroids
c and the distance to each other data point will be measured and grouped based on the
shortest point-centroid distance. The centroid will then be shifted to the new group center
and each point will be progressively evaluated again until an iteration is reached where no
centroid will move. The resulting centroids ck and their points respectively will form the
clusters Ck. Algorithm 5.1 will demonstrate the general outline of the k-means algorithm.

A weakness of the k-partition clustering method is that every single data point will be
categorized into some cluster. For some data sets and goals this is undesirable, as data
points that are extreme outliers will also be included in the resulting clusters. Such outliers
are usually referred to as noise. One solution towards reducing noise in partition-based
clustering is to use the density of the points as a filtering mechanism, where points in a
group that are further away than a distance ε.

23

Algorithm 5.1: k-means algorithm

Input : P = {p1, . . . , pn}, points to be clustered
Input : k, number of clusters
Output : K, set of clusters
Parameters: reachedEnd, boolean initialized as false

1 choose k initial centroids C = {c1, . . . , ck};
2 foreach pi ∈ P do
3 l(pi)←− minDistance(pi, cj), j ∈ {1, . . . , k};
4 end
5 repeat
6 foreach pi ∈ P do
7 minDist←− minDistance(pi, cj), j ∈ {1, . . . , k};
8 if minDist 6= l(pi) then
9 l(pi)←− minDist

10 end

11 end
12 if UpdateCentroidsAndUpdateClusters(C,P) = false then
13 reachedEnd←− true;
14 end

15 until reachedEnd = true;

An unfortunate consequence of k-partitioning methods is that the clustering will be tend
towards circular shapes, which might not necessarily accurately represent the inherent
patterns in the data as illustrated in figure 5.1.

Figure 5.1: Partition based clustering effect on data with inherent pattern

In k-partitioning clustering methods such as k-means, the selection of the initial centroid
points will heavily affect the resulting grouping of points. Efforts have been made by
researchers to augment and enhance the process of selecting the initial centroids [23], but
this incurs an extra computational overhead to an otherwise extremely efficient clustering
method. Despite some inherent weaknesses, k-partitioning clustering methods remains
incredibly efficient for quickly sorting data into dissimilar categories and algorithms such
as the k-means clustering method has stood the test of time in its ease of implementation
as well as computational efficiency.

24

5.2 Density Based Clustering

Hierarchical and partition based clustering algorithms have a tendency towards discov-
ering spherical-shaped clusters. The main strategy of density based clustering methods
is to find clusters of arbritrary shapes by clustering regions of high density separated by
regions of low density in order to locate natural clusters occurring in the data. Density
based clustering is one of the most popular clustering methods in data mining for knowl-
edge discovery due to this property as the process of identifying dense areas implicit in
the data set minimizes human bias.

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [9]
implements density based clustering by introducing three states for data point. A point
can either be a core component, an edge or noise in relation to each cluster. It is not
necessary to explicitly specify the desired amounts of resulting clusters, like in partition
based methods. Instead two parameters are required: the minimum neighbouring distance
ε for two points to be clustered, and the minimum amounts of points needed minPts in
a group for it to be clustered.
Density based clustering algorithms are generally much more computationally intensive

Algorithm 5.2: DBSCAN algorithm.

Input : P = {p1, . . . , pn}, points to be clustered
Input : ε, radius
Input : minPts, density threshold
Output : C = {c1, . . . , ck<n}, clusters to be formed

1 foreach pi ∈ P do
2 pi.visited←− true;
3 NeighbourPts←−FindNeighboursWithinEpsilon(pi, eps);
4 if NeighbourPts < minPts then
5 pi.label←− Noise;
6 end
7 else
8 intialize new cluster cm;
9 add pj to cm;

10 foreach pj ∈ NeighbourPts do
11 if pj .visisted = false then
12 pj .visited←− true;
13 NeighbourPts′ ←−FindNeighboursWithinEpsilon(pj , eps);
14 if NeighbourPts′ ≥ minPts then
15 NeighbourPts←− NeighbourPts ∪NeighbourPts′;
16 end

17 end
18 if pj /∈ any other cluster c then
19 add pj to cluster cm;
20 end

21 end

22 end

23 end

than partitioning and hierarchical clustering methods, but are exceptional when the goal
of the clustering process is to identify hidden trends in the data and filter out noisy data
that would otherwise be expensive to manually extract and exclude.

25

A 2015 paper noted the slow computational process of the DBSCAN algorithm [24],
particularly when applied to multiple dimensions and difficulty of choosing appropriate
parameters. The researchers also expressed a need in the density based clustering field
for new efficient algorithms to take its place.

A 2017 paper was published as a rebuttal [25], highlighting techniques for selecting good
paramaters and demonstrating the permanency and industry relevance of the DBSCAN
algorithm despite its age.

26

5.3 Hierarchy Based Clustering

Hierarchical clustering methods differ slightly from density and partition based methods
as they’re often implemented using some tree data structure. Using tree structures the
clustering process will retain the order of cluster grouping, making it possible to evaluate
trends at a micro-level closer to the leaf-nodes, while also at a macro level closer to the
root node. An advantage of hierarchical clustering methods is their efficiency. By utiliz-
ing efficient tree-structures such as a B+-tree, it is possible to iterate efficiently through
datasets and generate clusters while reducing large amounts unnecessary comparisons of
data points.

A popular hierarchical clustering method is the BIRCH algorithm [26] developed in 1996,
which incrementally constructs a hierarchical CF (Clustering Feature)-tree to cluster data
points in multiple phases. The CF-tree is typically a B+-tree where each division in the
tree will contain the CF attribute to describe the underlying data points. The clustering
feature consists of three values, the number of points in each subset, the linear sum of
each dimension in the subset and the square sum of each dimension in the subset. These
attributes are used as statistics to efficiently evaluate the points within each subset of the
tree without having to manually iterate through each of the points contained.

The algorithm will calculate for each leaf node the centroid, radius and diameter of
the cluster. The centroid is the center point of all the data points in the cluster while the
radius is the average distance from any point in the cluster to the centroid. The diameter
is the average point-to-point distance in the cluster, and this measure is used to determine
when a leaf node should be split up.

The biggest strength of the BIRCH algorithm is its multi-layer clustering strategy. The
higher levels of the hierarchy allows flexibility in terms of clustering algorithm used, while
the lower levels of the hierarchy reduces the complexity and increases scalability of the
algorithm. One weakness of the BIRCH algorithm is that its clusters have a tendency
towards spherical shapes due to the radius and diameter measuring of the points in each
subcluster. And while a desired amount of k-clusters aren’t defined like in partitioning
based clustering approaches, fixed leaf node sizes might lead to unexpected pairings of
data points forming clusters.

27

Algorithm 5.3 demonstrates the rough pseudocode outline of the BIRCH algorithm. Im-
portant to note is the simplicity and flexibility of implementation, allowing it to easily be
combined with other clustering methods, or altered to fit unique application needs.

Algorithm 5.3: BIRCH algorithm

Input : Data points P = {p1, . . . , pn}
Input : Branching factor B for maximum amount of children per node
Input : Maximum diameter D of sub-clusters in leaf nodes
Output : Set of clusters C = {c1, . . . , cm}

1 foreach pi ∈ P do
2 Determine correct leaf node for pi insertion
3 if Diameter constraint not violated by pi insertion then
4 Add pi to cluster and update CF triplets
5 else
6 if room to insert pi then
7 Insert pi as single cluster and update CF triplets
8 else
9 Split leaf node, and possibly parents, and redistribute CF triplets

10 end

11 end

12 end

28

5.4 Trajectory Clustering

A trajectory T can be defined as a spatial collection of n points p with a temporal or-
dering of timestamps t so that a trajectory T = {ptk1 , . . . , ptmn }, where k < m. The goal
of clustering trajectories is to find common attributes between different trajectories and
extracting commonalities.

An important distinction between trajectory and single point-data clustering is the tem-
poral dependency between the points in the trajectory. There is always a single direction
between any two points in the trajectory due to the temporal hierarchy. Depending on
the desired results of a trajectory clustering algorithm the vector direction of a line seg-
ment should be taken into account. As an example, if a trajectory clustering algorithm
attempts to predict hurricane movement patterns, it is crucial that the vector direction of
trajectories is taken into account in order to avoid producing misleading results. Figure
5.2 illustrates how algorithms might exclude or include seemingly similar trajectories in
clusters based on direction angle. In this illustration the green trajectories are clustered
together, while the red trajectory is excluded from the cluster.

Figure 5.2: Exclusion of trajectories

Another important distinction, as pointed out in the 1999 paper on using linear regression
to cluster trajectories [12], is that different trajectories in a dataset will often have different
lengths. The paper states that ”one cannot simply convert the trajectories to fixed-
length vectors and apply a clustering technique such as the k-means algorithm in a fixed-
dimensional space”.

Despite this, Yang and Hu [27] published in 2006 a paper suggesting a trajectory
clustering algorithm called TrajPattern. The algorithm is a partition-based clustering
method of pattern-matching trajectories and was intended to be used to mine trajectory
clusters based on mobile gps data signals. Due to limitations in geolocation technology at
the time, the algorithm assumes location by inference rather than exact location tracking
from the mobile devices. The paper explains that ”[the] energy in a mobile device is
very limited, so it is impossible for a mobile object to continuously send out its location
information”.

By assuming mobile devices will announce their locations at set intervals, the algorithm
affords a partition based clustering approach. The algorithm requires the user to specify
a set amount of desired clusters k, much like the k-means algorithm. The algorithm will
then mine k patterns with the most ”normalized match”, where the normalized match
refers to how the algorithm groups subtrajectories into similar-length trajectories before
comparing them. Yang and Hu also admits in the paper that the algorithm responds
poorly to noise, as is typical for partition based clustering approaches.

29

Whole trajectory clustering has remained a difficult problem for researchers, especially as
such automated methods has a tendency to hide apparent common trends at a micro-level
in the trajectories due to a focus of evaluating the trajectories at a macro-level.

5.4.1 Subtrajectory Clustering

Sub-trajectory clustering as a field in data mining emerged as a response to existing
trajectory clustering algorithms that either ignored or performed poorly at identifying
interesting sub-trends. The 2007 paper TraClus: A Partition-and-Group Framework [8],
suggested a sub-trajectory clustering algorithm based on existing density clustering prin-
ciples. The paper states that at the time, the most similar algorithm to the TraClus
algorithm was Gaffney’s trajectory regression clustering algorithm [12].

The TraClus algorithm utilizes three phases to extract and cluster sub-trajectories. First
the trajectories are partitioned into sub-trajectories. Then the algorithm uses a distance
based clustering algorithm to group the subtrajectories based on their distance in terms
of the perpendicular and parallell distance of trajectories as well as their angle. The orig-
inal TraClus adopts the the DBSCAN algorithm for clustering sub-trajectories. Lastly, it
groups the previously partitioned sub-trajectories based on similarity. In addition to clus-
tering sub-trajectories the TraClus algorithm also produces representative trajectories for
each cluster. In this section the pseudocode for the TraClus algorithm will be presented
as it was in the original TraClus paper [8] Algorithm 5.4 will describe the execution of
the algorithm at a higher level, while algorithms 5.5, 5.6 and 5.7 will describe how each
phase is performed at a more detailed level.

Algorithm 5.4: TraClus algorithm

Input : A set of trajectories T = {TR1, . . . , TRn}
Output: A set of clusters C = {c1, . . . , cm}
Output: A set of representative trajectories R

1 foreach TRi ∈ T do
2 Execute Algorithm 5.5: Approximate Trajectory Partitioning as L;
3 Accumulate L into a set C;
4 end
5 Execute Algorithm 5.6: Line Segment Clustering
6 foreach C ∈ O do
7 Execute Algorithm 5.7: Representative Trajectory Generation as R
8 end

To identify common sub-trajectories the TraClus algorithm evaluates each trajectory as
a series of line segments Li between two points pn with a timestamp tk ordering such that
any line segment can be expressed as Li = (pi1, ti1), (pi2, ti2). Figure 5.3 illustrates how
any line segment is composed of two spatio-temporal data points.

30

Figure 5.3: A line segment Li with end points (pi1, ti1), (pi2, ti2)

The TraClus algorithm measures the spatial distances between line segments in three com-
ponents. Line segment perpendicular distance, parallel distance and angle distance. The
TraClus paper suggests calculating the perpendicular distance d⊥ between two line seg-
ments Li and L2 as demonstrated in equation 5. Figure 5.4 demonstrates how the TraClus
paper suggests identifying the spatial coordinates used in calculating the perpendicular
distance by using projection points ps and pe.

d⊥(Li, Lj) =
l⊥1 + l2⊥2
l⊥1 + l⊥2

(5)

Figure 5.4: Perpendicular distance between line segments Li and Lj in TraClus algorithm

31

Measuring the parallel distance between two line segments is done by utilising the same
projection points ps and pe to generate two smaller line segments l||1 and l||2 and selecting
the smaller of the two as demonstrated in equation 6.

d||(Li, Lj) = MIN(l||1, l||2) (6)

Figure 5.5: A line segment Li with end points (pi1, ti1), (pi2, ti2)

32

The angular distance between two line segments Li and Lj is defined in equation 7.
The TraClus paper defines the angle distance where ” ||Lj|| is the length of Lj and θ
(0◦ ≤ θ ≤ 180◦) is the smaller intersecting angle between Li and Lj.

dθ(Li, Lj) =

{
||Lj|| · sin(θ), 0◦ ≤ θ ≤ 90◦

||Lj||, 90◦ ≤ θ ≤ 180◦
(7)

Figure 5.6: A line segment Li with end points (pi1, ti1), (pi2, ti2)

TraClus performs trajectory partitioning as described in Algorithm 5.5 by identifying char-
acteristic points pc in each trajectory T . The characteristic points indicate rapid changes
on the edges within a specific trajectory. At these characteristic points, the trajectory is
partitioned so that any line segments before and after a given characteristic point are split
up into separate trajectory partitions. The paper states that ”the optimal partitioning of
a trajectory should possess two desirable properties: preciseness and conciseness”. The
paper goes on to explain that ”preciseness means that the difference between a trajectory
and a set of its partitions should be as small as possible, while conciseness means that
the number of trajectory partitions should be as small as possible”.

These two principles are conflicting, and finding a good balance between two is a
challenging endeavour. The TraClus algorithm solves this using the minimum descriptive
length (MDL) principle [28]. The algorithm defines the MDL cost as the sum of L(H),
which describes the sum of the length of all trajectory partitions, and L(D|H), the sum
of the difference between a trajectory and a set of its trajectory partitions. The goal is to
iteratively partition trajectories by characteristic points to minimize L(H) + L(D|H) for
any given trajectory. This is a very computationally costly process, as every line segment
subset must be considered for each trajectory.

TraClus implements this through an approximation by incrementally evaluating the
MDL cost of adding more line segments to a candidate partition. If the MDL cost in-
creases by adding another line segment, the previous point is selected as a characteristic
point and all line segments preceding that point are selected as a trajectory partition.

33

Algorithm 5.5: Approximate Trajectory Partitioning

Input : A trajectory TRi = p1, .., pleni

Output: A set CPi of characteristic points

1 Add starting point pi to the set CPi
2 startIndex←− 1;
3 length←− 1;
4 repeat
5 currentIndex←− startIndex+ length;
6 costpar ←−MDLpar(pstartIndex, pcurrentIndex);
7 costnopar ←−MDLnopar(pstartIndex, pcurrentIndex);
8 if costpar > costnopar then
9 Add pcurrentIndex−1 into CPi;

10 startIndex←− currentIndex− 1;
11 length←− 1;
12 else
13 length←− length+ 1;
14 end
15 until startIndex+ length > leni;
16 Add pleni

into CPi;

Line segment clustering in the TraClus algorithm draws inspiration from the DBSCAN
algorithm by identifying dense clusters of trajectory partitions. The algorithm begins by
classifying all line segments as ”unclassified”. Then, the algorithm measures from a line
segment whether another line segment is reachable within a user defined distance of ε.
Just as in the DBSCAN algorithm, if a user defined number of minLines linesegments are
reachable, a cluster is formed. This process continues until all line segments are assigned
to a cluster or classified as noise.

34

Algorithm 5.6: Line Segment Clustering

Input : A set of line segments D = {L1, . . . , Lnum}
Input : Two parameters ε and MinLns
Output: A set of clusters O = {C1, . . . , Cnum}

1 Set clusterId = 0; // initialization
2 Mark all line segments in D as unclassified
3 foreach L ∈ D do
4 if L = unclassified then
5 Compute Nε(L);
6 if |Nε(L)| ≥MinLns then
7 Assign clusterId to ∀X ∈ Nε(L)
8 Insert Nε(L)− {L} into the queue Q;
9 ExpandCluster(Q, clusterId, ε,MinLns);

10 Increase clusterId by 1;
11 else
12 Mark L as noise
13 end
14 end
15 end
16 Allocate ∀L ∈ D to its cluster CclusterId;
17 foreach C ∈ O do
18 if |PTR(C)| < MinLns then
19 Remove C from the set O of clusters;
20 end
21 end

22 ExpandCluster (Q, clusterId, ε,MinLns){
23 while Q 6= ∅ do
24 Let M be the first line segment in Q;
25 Compute Nε(M)
26 if |Nε(M)| ≥MinLns then
27 foreach X ∈ Nε(M) do
28 if X = unclassified ∨ noise then
29 Assign clusterId to X ;
30 end
31 if X = unclassified then
32 Insert X into the queue Q;
33 end
34 end
35 end
36 Remove M from the queue Q;
37 end
38 }

35

The final step of the TraClus algorithm is representative trajectory generation. This gen-
erates a trajectory that attempts to describe the overall movement in each cluster. The
representative trajectory is constructed as a sequence of points RTi = {p1, . . . , pilen} for
1 ≤ i ≤ clustersize. The coordinates of the points in the representative trajectory is
generated by sweeping a vertical line across the longest diameter of the cluster. Each
starting or ending point met along the sweep is counted. If the final count is equal to or
greater than the minLines variable, the average coordinates of those line segment points
in respect to the major axis will be inserted into the representative trajectory. A smooth-
ing parameter is used to ensure that points are not too close in proximity.

Algorithm 5.7: Representative Trajectory Generation

Input : A cluster Ci of line segments
Input : MinLns
Input : A smoothing parameter γ
Output: A representative trajectory RTj for Ci

1 Compute the average direction vector
−→
V ;

2 Let P be the set of the starting and ending points of the line segments in Ci;
3 //X ′-value denotes coordinate of the X ′ axis Sort the points in the set P by their
X ′-values;

4 foreach p ∈ P do
5 //Count nump using a sweep line;
6 Let nump be the number of line segments that contain the X ′-value of the

point p;
7 if nump ≥MinLns then
8 diff := the difference in X ′-values between p and its immediately previous

point;
9 if diff ≥ γ then

10 Compute the average coordinate avg′p;

11 Undo the rotation and get the point avgp;
12 Append avgp to the end of RTi
13 end
14 end
15 end

36

6 Methodology

This section will cover the methods used to develop an algorithm to process TRACLUS-
clustering on spatio-textual data. To begin with the system environment used during
development and evaluation will be described. Afterwards the thesis will go in depth to
describe the dataset used during evaluation and offer optimalizations to make processing
more efficient both processing- and memorywise. Finally the chapter will explain how the
TraClus algorithm was modified to handle clustering spatio-textual data for both textual
and spatial dimensions using longitude and latitude.

6.1 Environment

The environment for evaluating the use of a modified TraClus algorithm on internet based
trajectories was a commercial desktop computer. Evaluation of the modified TraClus algo-
rithm required two steps: pre-processing and execution of the modified TraClus algorithm
itself. For the pre-processing the memory was the limiting factor, while for the algorithm
itself the processor was the limiting factor. Due to the limitations in hardware, both the
yelp-dataset and the twitter-dataset had to be pre-processed to bring run-times down.

Capacity Speed

16 GB 2133 MHz

Table 6.1: Memory specifications

Model Clock speed Cores Threads

Intel Core i5-6500 3.2 GHz 4 4

Table 6.2: Processor specifications

6.2 Datasets

In this this thesis we will develop and evaluate a spatio-textual trajectory clustering al-
gorithm based on the TraClus algorithm using the Jaccard Similarity Coefficient. Two
datasets will be analyzed and their results compared. The first dataset is based on sta-
tus update replies from the Twitter-application and the second dataset is is based on
restaurant reviews from the Yelp-application.

6.2.1 Twitter Dataset

The Twitter dataset used to evaluate the algorithm was a snapshot of spatio-textual
twitter status update replies in NoSQL JSON format as presented in Appendix A. To
understand the dataset, one must not only first understand the Twitter API, but also
how the Twitter application has evolved over its existance.

The Twitter service was originally designed to utilize the SMS protocol [29] which the
official Twitter documentation describes as having, at the time, a 160 character limit. As
such, any Twitter status update could contain no more than that amount of characters.

37

With 20 characters reserved for commands and username mentions, the actual length of
the text portion of a message was 140 characters. This was later extended to 280 char-
acters as Twitter evolved from relying on the SMS protocol into a web service. Modern
Twitter messages are not bound to containing text alone and have the option to display
multimedia content such as images or videos. The method of using Twitter also evolved
as smart-phones emerged. By utilizing the GPS trackers found in modern laptop com-
puters and smart phones, Twitter messages could be geo-tagged at the time of creation.
This could be done either as a precise geographical location in the form of a single point
represented in longitude and latitude or as having been created within a geospatial area
represented as a polygonal bounding box with arbitrarily numbered vertices.

Twitter can be viewed as a social-network, where users interact with each other through
publically available messages. These messages will appear on the user’s profile as what
the official Twitter documentation refers to a ”status update” [30]. A user may block
specific logged-in users from viewing their status updates or allow their status updates to
be available only to a list of approved users. It is possible to create a status update that is
a response to another status update as well as possible for a twitter user to re-broadcast
another status update onto their user profile without adding textual or multimedia con-
tent of their own. The latter action is known as a ”re-tweet” while the former is officially
referred to as a reply. A third Twitter status reply type is the ”quoted status”, which is
a form of reply which contains the content of the original message the quote is replying
to as well as the reply.

There are several ways to exctract spatio-textual trajectories from a dataset based on
twitter status updates. The most intuitive way would be to construct trajectories based
on status updates per user. However, most status update locations are represented by a
bounding box that span large geographical areas. If trajectories were to be constructed
this way, most trajectories would appear spatially stationary as most status updates per
user appear within one geospatial bounding box. To construct interesting trajectories in
the context of clustering we could utilize the geo-tagging of retweets, where the original
status update’s text could be represented as travelling from location to location based on
the timestamp of each re-tweet. However, in this case the text would remain static and
have little value in a spatio-textual clustering context. Status update replies generally
contain textual data and are a better candidate for constructing spatio-textual trajecto-
ries. Using replies, we can construct trajectories by considering each reply a spatio-textual
data point ordered temporally by timestamps and group them by the original status up-
date.

The Twitter data object model has two ways of representing location. The ”geo” data
field and the ”place” data field. The ”geo” data field is represented by a single geospa-
tial point with one latitude coordinate and one longitude coordinate. The ”place” data
field consists of a list of geospatial points that form a bounding box, and states that
the twitter message was published from a device somewhere inside the bounding box. A
status update can contain both of these data fields, either one exclusively or neither. For
status updates containing only the ”place” data field the location will be derived from
calculating the average latitude and longitude values of all the points in the bounding box
as demonstrated in equation 8.

38

loc(lat, lon) =

∑loc num
n=1 loc(latn, lonn)

loc num
(8)

The Twitter dataset used for evaluating spatio-textual TraClus is an arbitrarily selected
subset of the Twitter live enterprise database. A consequence of this is that there is no
guarantee that a status update and all its replies are necessarily contained within. The
original status update for a set of replies can’t be guaranteed to be present in the dataset.
Likewise, there is no guarantee that every reply among all replies to any single status
update is contained either. A fair compromise is to infer trajectories by grouping any
reply by the status update they respond to. For this thesis, spatio-textual trajectories
will be inferred by ordering status update replies chronologically by the ”timestamp” field
and grouping them by the data field ”in reply to status id” from the Twitter data object
API as demonstrated in Appendix A.

6.2.2 Yelp Dataset

The Yelp based dataset used to evaluate the algorithm was a 6 GB snapshot of Yelp
review data in NOSQL json format. Yelp is a service that allows users to submit reviews
of restaurants users have visited, where users are to submit a rating from 1 to 5 and a
written textual review. Yelp allows users to download a subset of its data in NoSQL
JSON-format for academic purposes.2 The datasets of interest for this thesis are the two
datasets containing business-data as described in Appendix C, which specifies the geospa-
tial locations of each business, and the dataset containing review-data from each user as
described in Appendix B. The business dataset contains geospatial locations, while the
review-dataset contains the textual reviews themselves, a user-id and a timestamp. Both
datasets contain the business id, allowing for joining of the two datasets so that spatio-
textual trajectories can be formed based on the user-ids and timestamps.

Constructing spatio-textual trajectories from a Yelp dataset is a much easier task than
in the Twitter case. A trajectory can be constructed for each user where the location
of each point in the trajectory is based on the geolocation of the business each review
corresponds to. The ordering of the points can be based on the temporal timestamps that
denote the time of each review was published to the database. It is important to note
that each review is not necessarily submitted to the yelp database in the same order that
the business was visited. A user might visit a number of businesses in a given time period
and submit the reviews in batch at a later date. Thus, the trajectories of the users might
not necessarily accurately represent the movement of the user.

In stark contrast to the Twitter-data set where 280 characters are the absolute maxi-
mum character count per textual status update, the yelp dataset allows a much larger
character limit for each review. This is likely to encourage users to write as detailed
and accurate reviews as possible. The higher character count in text strings per review
requires much larger memory capacity from the computer, and will potentially become
a bottleneck during both pre-processing and during text similarity comparisons in the
spatio-textual TraClus algorithm, depending on the size of the subset used.

2 Publically available Yelp datasets: https://www.yelp.com/dataset (Accessed: 01 December 2020)

39

6.2.3 Pre-processing

Due to the sheer size of the datasets some processing was helpful before the algorithm
could be applied.

The original geospatial twitter dataset amounts to a total of 162 MB while the yelp
review and business datasets totalled 6.1 GB and 150 MB respectively. Appendix A dis-
plays all possible data fields possible in the Twitter dataset, while appendix C and B
displays all possible data fields present in the Yelp datasets. To prioritize evaluating the
spatio-textual TraClus algorithm on interesting data, only trajectories consisting of four
data points or more were considered. While not all fields are present in every Twitter
data row, each row still consists of large amounts of unnecessary data.

Useful trajectories do not inherently exist in the Twitter data object. Like previously
mentioned, most consecutive status updates from unique twitter users never move spa-
tially as a consequence of a majority of status updates originating from large geospatial
bounding boxes, and users rarely, if ever, publish status updates outside a given bound-
ing box. The trajectories exctracted from the Twitter dataset had to be constructed by
status update replies grouped by the original status update. This was done utilizing SQL
queries to create a temporary table containing any ”status id” with four or more replies.
Then, this table was joined with the original dataset to extract all status updates replies
that were replies to the temporary table of status updates and ordered by timestamp.
The pseudocode in figure 6.1 demonstrates how this process was executed.

To reduce memory load when pre-processing the Yelp dataset, the datasets had to be
sorted by timestamps ascendingly per user so that the dataset could be read as a stream
without requiring intermediate storage in memory.

SELECT

t.in_reply_to_status_id as t_id ,

t.id as re_id ,

t.geo as geo ,

t.place as place ,

t.text as text ,

t.timestamp_ms as timestamp_ms ,

FROM TwitterDB as t

INNER JOIN

(

SELECT in_reply_to_status_id as t_id

FROM twitterDB

WHERE lang = ’en’

GROUP BY t_id

HAVING count(t_id) > 3

) as j

ON t.t_id = j.t_id

WHERE t.lang = ’en’

ORDER BY t.t_id , t.timestamp_ms ASC

Figure 6.1: Pseudocode creating join table of twitter reply trajectories with 4 or more points in English language

40

A problem with the Twitter dataset is that the status updates in the snapshot aren’t
limited to only one language. As this spatio-textual TraClus algorithm utilizes textual
similarity to cluster points, filtering on language was necessary. According to a 2011
study [31] the language most frequently used in the service is English. Thus, for this
thesis only status updates containing English text are evaluated.

The Twitter application uses a language detection algorithm [32] using n-grams to
identify which language was used in each status update. This information is available in
the Twitter data object and could be used to filter the dataset.

In the Yelp dataset, the vast majority of the textual reviews were written in English
as the businesses reviewed were only located in the North American region. Figure 6.2
illustrates the geospatial range of locations for the businesses in the Yelp data set.3 We
can then assume that the overwhelming majority of reviews contained in the dataset were
written in English. Thus, no filtering based on language was deemed necessary for the
Yelp dataset.

Figure 6.2: Maximum and minimum latitude and longitude coordinate bounding box in Yelp Business data set

During pre-processing, all terms in were converted to lower-case to remove false negatives
on identical words in different cases. The Twitter dataset contained many instances of
terms that were capitalized in unexpected places, such as in cases where the entire text
message was capitalized to convey anger or where certain words were unusually capital-
ized as a pop-culture reference or to convey irony. This also occurred in the Yelp dataset,
but not to the same degree mostly because of the more formal nature of the medium.
As the Twitter dataset contained far more use of slang, special characters to dress up
the text and even hyperlinks, a deeper lexical analysis was necessary to make text more
comparable. The most prominent example of this is the inclusion of ”hash-tagged” terms.
These are terms that feature a pound sign (#) pre-fix that users include in their text
messages to allow other users to find similar status updates more easily or to amplify the
own users’ status update in search rankings.

In order to gather meaningful keywords from the textual comparisons, stop words should
be removed from the text. This can be done statistically by utilizing a dictionary and
stripping from each text string words that occurred too rarely or too often, as described
3 Generated with National Geographic MapMaker tool: https://mapmaker.nationalgeographic.org

(Accessed: 16th Feb 2021)

41

in chapter 4.2. For this thesis, each dataset utilized its own respective dictionary to filter
out stop words built from words existing in each dataset. Each dictionary counted the
frequency of each word and the occurrence rate of each word. The occurrence rate was
calculated by dividing the frequency of the word by the total amount of words in the
dataset as shown in equation 9. Words with very low frequencies and words with very
high occurrence rates were eliminated during pre-processing.

occurrence raten =
wordnfrequency

dataset wordcount
(9)

Tables 6.3 and 6.4 describe the byte-sizes of the datasets before and after pre-processing.
Table 6.4 also describes the final trajectory and point counts of the processed datasets.
Table 6.5 displays the difference in textual data character count distribution between the
two data sets.

Dataset Size (bytes)

Twitter 162.7 MB
Yelp Review 6.1 GB

Yelp Business 149.3 MB

Table 6.3: Original dataset sizes

Dataset Size (bytes) % of original Unique points Unique Trajectories Bytes per point

Twitter 49 MB 30.1% 215,350 33,988 227 bytes
Yelp 4.2 GB ≈ 69.0%* 5,848,605 441,586 718 bytes

*size of business dataset not accounted for in calculation

Table 6.4: Pre-processed dataset sizes and reduction

Dataset Average word count Average word count after pro-
cessing

% of original

Yelp 113.43 34.65 30.54%
Twitter 14.098 3.60 25.53%

Table 6.5: Average text character count in datasets

As displayed in Table 6.4, the Yelp dataset had a much higher average bytes per data
point. This is due to the larger textual contents per data point. The final processed
data set was also much larger byte-wise than the Twitter dataset. To make evaluation of
the two datasets when run by the spatio-textual TraClus algorithm directly comparable,
the Yelp dataset had to be shrunk to a comparable size. Both the Yelp and the Twitter
datasets were further shrunk to various sizes to measure differences in runtime based on
dataset size. The shrunk sizes of the datasets will be presented in chapter 7.

After textual pre-processing, the textual contents of the spatio-textual databases shrunk
tremendously. The Yelp dataset contained 113.43 words per review and shrunk down to
34.65 words per review. The Twitter dataset contained a much smaller amount of textual

42

content initially than the Yelp dataset at approximately 14 words per entry, shrinking
down to 3.6 words per entry after processing. As figure 6.5 demonstrates, both data sets
shrunk in textual contents at a very similar rate after textual pre-processing. The textual
portion of the Twitter dataset ended up at 25.5% of its original size, while the textual
portion of the Yelp dataset ended up at 30.5% of its original size.

6.3 Implementation

In 2017 the TraClus algorithm was implemented in Java and published as a repository by
github user loburliu.4 This implementation was adapted for this thesis with modifications
to the TraClus distance function and representative line generation.

The implementation of a spatio-textual TraClus algorithm was inspired by the 2017
spatio-textual k-Means [7] utilizing the Jaccard Similarity Coefficient in tandem with
spatial euclidian distances to cluster in both spatial and textual dimensions.

6.3.1 Distance Functions

The original TraClus paper suggests using euclidian distances for spatial clustering. This
was extended to the spatio-textual implementation and calculated a distance d as pre-
sented in equation 10.

d(long, lat) =
√

(lat2 − lat1)2 + (long2 − long1)2 (10)

However, a spatio-textual implementation of the TraClus algorithm requires modification
of the distance functions between data points such that textual similarity can be expressed
as a distance and compared with the spatial euclidian distance between two points. The
latitude and longitude points for each point had to be scaled within a range [0, 1] to be
compatible with the Jaccard Similarity Coefficient which returns a similarity measure
within a range of [0, 1]. This was done by finding the maximum and minimum latitude
and longitude points present in each respective dataset and scaling each location point p
as shown in equation 11.

pscaled =
p− pmin

pmax − pmin
(11)

To make the spatial trajectories more human readable for visualization and manual eval-
uation, this domain space was increased from [0, 1] to [0, 1000] in both spatial dimensions
as well as the textual dimension.

The spatio-textual k-Means implementation utilized a function to inverse proportionally
weigh the importance of the spatial and the textual dimension. This technique is extended
to the spatio-textual implementation of the TraClus algorithm as shown in equation 12.

d = (α · dspatial) + (1− α) · dtextual (12)

How these two distance functions were combined to create a inversely proportional dis-
tance function is demonstrated in Algorithm 6.1. The method of measuring distances
4 TraClusAlgorithm in Java by loburliu: https://github.com/luborliu/TraClusAlgorithm

(Accessed: 13th March 2020)

43

from one spatial point to another point is utilized in two of the three distance functions
utilized in the TraClus algorithm. Both perpendicular and parallell distances utilize the
following distance function. The only distance function textual distance is not evaluated
in is the TraClus angular distance function described in equation 7.

Algorithm 6.1: Spatio-textual TraClus distance function

Input : Two spatio-textual data points p(x1, y1, t1) and p(x2, y2, t2)
Input : A weight = α
Output : A distance = d

1 Spatial distance ds =
√

(x2 − x1)2 + (y2 − y1)2

2 Textual distance dt = JaccardSim(t1, t2)
3 return (α ∗ dt) + (1− (α ∗ ds))

6.3.2 Representative terms generation

When the TraClus algorithm clusters line segments, a representative trajectory will be
generated to represent each resulting cluster. This method of describing the trends inher-
ent in the datasets should be extended to the textual dimension as well to offer the user
feedback in the textual dimension.

During TraClus spatial clustering, original point coordinates are preserved as is without
manipulation. In the same vein, all textual keywords for each point clustered should
be included in the line segment clusters to preserve the integrity of the spatio-textual
data foundation. It is only during representative trajectory generation that the keywords
should be filtered or transformed as it is also the only place in the algorithm where
spatial data points are generated to generate a model for the clusters. In this thesis, each
representative line will include a selection of the most frequent keywords occurring in the
cluster. Algorithm 6.2 demonstrates how top-N keywords were selected for any given
cluster Ck.

Algorithm 6.2: spatio-textual TraClus Representative text generation

Input : Clusters Ck = {pxyt1 , pxyt2 , . . . , pxytn}
Output : Top N ocurring terms in cluster

1 HashMap(String: word, Integer: count) M ;
2 foreach pxytn ∈ Ck do
3 foreach tk ∈ cxytn do
4 if tk /∈M then
5 M(tk) :←− 1;
6 else
7 M(tk) : M(tk) + 1;
8 end

9 end

10 end
11 sortDesc(M);
12 return top(N) ∈M

44

7 Experimental Results

This section will begin with a brief presentation of the data derived from the Twitter and
Yelp datasets and then present the results of the spatio-textual TraClus algorithm both
by measuring runtime and by visualization.

7.1 Twitter Dataset

For evaluating the Twitter dataset, four tests were ran at progressively reduced sizes
of the dataset. Table 7.1 shows the four different datasets and their respective sizes.
When reducing the datasets to different sizes to measure differences in run time, care was
taken in making sure whole trajectories were preserved and without manipulating their
contents. Thus, the reduction had to be based on the trajectories themselves. However,
the largest factor impacting run time was the point count rather than the trajectory
count. Differences between points in word count after textual pre-processing was also a
large factor.

The processed Twitter dataset contained 33,988 unique trajectories. was then reduced
25% three times by using the SQL ”LIMIT N ” option using a join table 7.1. The table
used was not sorted to reduce bias, so the order of trajectories selected for each data
partition was coincidental.

Unique trajectories % of original count Unique points % of original count Byte size

33,988 100.0% 215,350 100.00% 49.0 MB
25,491 75.0% 160,744 74.64% 36.6 MB
16,994 50.0% 107,729 50.02% 24.4 MB
8,497 25.0% 53,840 25.00% 12.1 MB

Table 7.1: Twitter data subsets used in spatio-textual TraClus algorithm evaluation

Figure 7.1 visualizes the trajectories in the largest Twitter dataset at 215,350 data
points contained in all 33,988 trajectories.

45

Figure 7.1: Twitter dataset trajectories visualized

46

7.2 Yelp Dataset

The processed Yelp dataset was much larger than the processed Twitter dataset as shown
in Table 6.4. To more accurately measure and compare the differences between them
in run time and cluster quality, the Yelp dataset had to be shrunk to a comparable size
without compromising the continuity of the trajectories. As with the Twitter dataset, the
number of points contained was the largest impacting factor in the run time of the spatio-
textual TraClus algorithm. Thus the Yelp dataset had to be reduced to by its trajectories
to thresholds so that they roughly matched the point counts of the evaluated Twitter
datasets. For the selection of the final yelp data subsets, the unique point count of the
twitter subsets were used as references. When reducing these datasets, care was taken not
to compromise the continuity of any trajectory. At 16,000 unique trajectories the dataset
contained 214,571 unique points, which is comparable to the total amount of unique points
in the entire Twitter dataset. This was used as the baseline for benchmarking the Yelp
subsets.

As more data was available in the Yelp dataset than in the Twitter dataset, three
larger data partitions at 150%, 250% and 400% of the baseline were evaluated. These
larger data partitions were only used to measure runtime, as the algorithm would take
exponentially more time to process as the data set increased.

Unique trajectories % of reference count Unique points % of reference count Byte size

64,000 400.0% 844,729 393.68% 612.2 MB
40,000 250.0% 531,503 247.70% 384.7 MB
24,000 150.0% 313,523 146.11% 225.7 MB
16,000 100.0% 214,571 100.00% 154.0 MB
11,700 73.12% 160,777 74.92% 115.9 MB
7,600 47.50% 108,080 50.37% 78.4 MB
3,700 23.12% 54,126 25.22% 39.4 MB

Table 7.2: Yelp data subsets used in spatio-textual TraClus algorithm evaluation

Figure 7.1 visualizes the baseline Yelp dataset with 214,571 data points contained in
16,000 trajectories.

47

Figure 7.2: Yelp dataset trajectories visualized

48

7.3 Experimental Results

The spatio-textual TraClus algorithm was evaluated at different data set partitions to
evaluate run time as it relates to dataset size. Then, the algorithm was evaluated on
one dataset partition from each dataset with different selections in parameters. Selecting
optimal parameters for clustering algorithms can be a difficult task in lack of specialized
domain knowledge. For the run time evaluation, the selection of parameters was auto-
mated through the use of entropy, while the silhouette coefficient was utilized to measure
the quality of the parameters selected for clustering quality evaluation.

7.3.1 Parameter Estimation

The original TraClus paper [8] utilizes the entropy theory [33] for selecting optimal pa-
rameters for ε and minLns. The paper states that ”In information theory, the entropy
relates to the amount of uncertainty about an event associated with a given probability
distribution. If all the outcomes are equally likely, then the entropy should be maximal”.

This method of automating the prediction of parameter selection was utilized on the
smallest partitions of both the Twitter dataset and the parameters selected were used to
evaluate both the Twitter dataset and the Yelp dataset at identical parameter values. For
the smallest Twitter partition containing 8,497 trajectories with 53,840 unique points, the
entropy function suggested ε = 10 and minLns = 51. For the run time evaluation, the
quality of the clustering of lower relevancy.

To evaluate the quality of the clustering algorithm the silhouette-coefficient was used
at different parameterizations to identify parameters that lead to high quality clustering
for the two datasets respectively.

7.3.2 Runtime

The runtime of the spatio-textual TraClus algorithm was evaluated at four different par-
titions of the Twitter dataset, and seven different partitions of the Yelp dataset at similar
sizes with identical parameterization. Three of the seven yelp data set partitions were
larger than the largest available Twitter data set partition.

0 200 400 600 800

0

2,000

4,000

6,000

Dataset size (num points 105)

R
u

n
ti

m
e

(s
ec

on
d

s)

Twitter
Yelp

Figure 7.3: Runtime for Yelp and Twitter datasets at varying data set sizes

49

Unique trajectories Unique points Line segments Run time (seconds) Clustering factor

64,000 844,729 17,230 6885.79 s 0.156
40,000 531,503 11,029 2713.32 s 0.156
24,000 313,523 6,695 1007.18 s 0.155
16,000 214,571 4,602 465.88 s 0.155
11,700 160,777 3,465 250.01 s 0.155
7,600 108,080 2,308 121.59 s 0.153
3,700 54,126 1,194 36.07 s 0.149

Table 7.3: Yelp spatio-textual TraClus run-time for ε = 10,minLines = 51, α = 0.3.

Unique trajectories Unique points Line segments Run time (seconds) Clustering factor

33,988 215,350 17,280 1145.28 s 0.328
25,491 160,744 12,889 591.13 s 0.317
16,994 107,729 8,659 283.83 s 0.300
8,497 53,840 4,317 67.48 s 0.221

Table 7.4: Twitter spatio-textual TraClus run-time for ε = 10,minLines = 51, α = 0.3.

7.3.3 Clustering results

The spatio-textual TraClus algorithm was first ran at several permutations of both the
ε and minLines variables with a static α-weight at 0.5. Then, acceptable measures of ε
and minLines were identified for the Twitter and the Yelp dataset separately through the
usage of the silhouette coefficient (displayed in figure 7.4 and 7.5 respectively), before be-
ing evaluated again at permutations of the α-weight. The silhouette coefficient was again
measured before clustering of the spatio-textual trajectory datasets were visualized.

sc = 1− (
cavg intracluster dist
cavg intercluster dist

) (13)

The silhouette coefficient measures the dissimilarity of clusters by evaluating the average
intracluster distance to the highest average intercluster distance. Intracluster distance
measures the average distance between points within a cluster, while the intercluster
distance measures the average distance from a point in a cluster to all the points in all
the other clusters, respectively. The lowest intercluster distance between the evaluated
cluster and all the other clusters is then evaluated. The silhouette coefficient sc for a
cluster cn is then given by equation 13.

The silhouette coefficient is calculated for every cluster in the cluster set and will result
in a number in the range of [−1, 1]. High values indicate that the selected item is well
matched to its own cluster and is a poor match to the neighbouring clusters. For the
analysis in this thesis, the largest silhouette coefficient returned is selected.

50

0 2 4 6 8 10 12 14 16

0

0.5

1

ε

S
il

h
ou

et
te

co
effi

ci
en

t

minLns = 5, α = 0.5
minLns = 10, α = 0.5
minLns = 15, α = 0.5

Figure 7.4: Silhouette coefficient for spatio-textual TraClus on a Twitter dataset at permutations of ε and minLns

minLns value ε value Silhouette coefficient

5 1 0.356
5 2 0.371
5 3 0.856
5 5 0.213
5 10 0.200
5 15 1.000

10 1 0.633
10 2 0.704
10 3 0.519
10 5 0.519
10 10 1.000
10 15 1.000

15 1 ≈0.000
15 2 0.595
15 3 0.584
15 5 0.639
15 10 1.000
15 15 1.000

Table 7.5: Silhouette coefficient for permutations of ε and minLines for α = 0.5 on Twitter dataset

51

0 0.5 1 1.5 2

0

0.5

1

ε

S
il

h
o
u

et
te

co
effi

ci
en

t

minLns = 5, α = 0.5
minLns = 10, α = 0.5
minLns = 15, α = 0.5

Figure 7.5: Silhouette coefficient for spatio-textual TraClus on a Yelp dataset at permutations of ε and minLns

minLns value ε value Silhouette coefficient

5 0.2 ≈0.000
5 0.4 0.120
5 0.6 0.334
5 0.8 1.000
5 1.0 1.000
5 2.0 1.000

10 0.2 0.650
10 0.4 0.758
10 0.6 0.599
10 0.8 1.000
10 1.0 1.000
10 2.0 1.000

15 0.2 0.149
15 0.4 0.751
15 0.6 0.305
15 0.8 1.000
15 1.0 1.000
15 2.0 1.000

Table 7.6: Silhouette coefficient for permutations of ε and minLines for α = 0.5 on Yelp dataset

52

Interpreting the results for the silhouette coefficent measurements for permutations of
ε and minLns in the Twitter dataset, the highest rated silhouette coefficient occurred
at ε = 3 with minLns = 5. All top silhouette coefficient rankings on the right side of
the graph are misleading because these evaluations only returned a single spatio-textual
sub-trajectory cluster and should not be used as good metrics for clustering. Due to the
sparse nature of the yelp dataset, and the smaller dense regions, smaller values of ε were
selected.

For silhouette coefficient evaluations of both the Yelp and Twitter datasets, values
equal to 1 were discarded, as they were all results of clusterings that constructed only one
singular cluster.

For the twitter dataset the parameter values ε = 3 and minLns = 5 were selected for
measuring the silhouette coefficient permutations of the α-weight. For the Yelp dataset
the parameter values ε = 0.4 and minLns = 10 were selected.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

α

S
il

h
ou

et
te

co
effi

ci
en

t

ε = 3,minLns = 5

Figure 7.6: Silhouette coefficient for spatio-textual TraClus on a Twitter dataset at permutations of α

α value Silhouette coefficient

0.1 0.575
0.35 0.731
0.65 0.801
0.9 1

Table 7.7: Silhouette coefficient for permutations of α values for ε = 3, minLines = 5 on Twitter dataset

53

0 0.2 0.4 0.6 0.8 1

0

0.5

1

α

S
il

h
o
u

et
te

co
effi

ci
en

t

ε = 0.4,minLns = 10

Figure 7.7: Silhouette coefficient for spatio-textual TraClus on a Yelp dataset at permutations of α

α value Silhouette coefficient

0.1 0.837
0.35 0.478
0.65 0.539
0.9 0.042

Table 7.8: Silhouette coefficient for permutations of α values for ε = 3, minLines = 5 on Yelp dataset

54

In the end the parameters ε = 3, minLns = 5 and α = 0.35 were selected for the twitter
dataset, and the parameters ε = 0.4, minLns = 10 and α = 0.65 were selected for the
yelp dataset. Figure 7.8 and 7.9 visualize the results of spatio-textual TraClus for the
Twitter dataset and Yelp dataset, respectively.

Figure 7.8: Spatio-textual TraClus on a Twitter dataset using ε = 3, minLns = 5 and α = 0.35

55

Figure 7.9: Spatio-textual TraClus on a Yelp dataset using ε = 0.4, minLns = 10 and α = 0.65

56

8 Discussion

This section will discuss the impact and quality of the spatio-textual TraClus algorithm
on the Yelp and Twitter datasets, methods and algorithms used in evaluating the use of
the TraClus-algorithm to cluster spatio-textual trajectories in context of scalability and
eligibility.

8.1 Datasets

The stop word filtering of the Twitter and Yelp datasets was executed through dictionary
filtering. For each dataset a dictionary was generated consisting of word count and total
word occurrence for the entire dataset. Filtering was executed by removing words that
occurred extremely rarely or too frequently. As the data sets contain a large amount of
text terms, manually selecting stop words is unrealistic and thresholds were used instead.
The Yelp dataset primarily consisted of reviews of restaurants and bars, and thus its
dictionary was dominated by entries describing food, drinks and the service industry.

A consequence of building a dictionary that is domain dominated to a large degree
is that certain words with high level of interestingness were filtered out due to occur-
ring too frequently. Table 8.1 demonstrates how some content relevant terms occurred
more frequently than certain non-relevant terms. The less descriptive preposition ”be-
fore” occurrs fewer times than the word ”chicken” in the dataset. And although common
prepositions should be removed, there is no trivial way to automate this statistically with-
out also excluding the highly domain relevant word ”chicken”. This effect did not impact
the Twitter dataset’s dictionary, as the conversations held varied widely in subject matter.

Term Count Relative Term Occurrence

than 914465 0.001149

...

chicken 910830 0.001145

...

before 648413 0.000815

Table 8.1: Sample of Yelp dictionary

However, the Twitter dataset suffered greatly from sparsity in its textual data. As men-
tioned in Chapter 6.2.1, the Twitter service has an absolute limit of 240 characters per
textual message. When stop word elimination is executed on the Twitter dataset, an
immense amount of information is removed, as demonstrated in table 6.5. While sim-
ilar rates of textual content was removed from the Yelp dataset, the textual content
remaining in Some points in the trajectories contained no textual content at all after
stop word elimination. This lead to much poorer clustering for higher α weighting the
textual dimension in the spatio-textual distance function as demonstrated by equation 12.

The Yelp dataset suffered from containing sparse spatial data. Figure 7.2 demonstrates
large empty areas in the data model. Without domain knowledge, it is not possible to
confirm the reason for these patterns. One could speculate that these patterns are a result
of vacationing users travelling very long distances by plane and reviewing local businesses
during their stay before travelling elsewhere to review other businesses. The sparsity of

57

the data set and the long line segments makes identifying good parameters very challeng-
ing. If low ε-values are selected local popular routes will be prioritized, but macro-level
travelling routes will be ignored. A compromise would be to utilize select data slices in
the set based on sub-regions, rather than evaluating the dataset as a whole.

Trajectory clustering methods with a focus on semantic regions would be better suited
for clustering a data set of this nature. One such method is the SemTraClus algorithm [34]
suggested in 2019, where the researchers adopted the TraClus algorithm to prioritize
semantic regions. Clustering geospatial data can be done in multiple ways. In this thesis,
individual latitude and longitude coordinates were rescaled such that any coordinate value
p ∈ [0, 1] based on the local minimum and maximum latitude and longitude values present
in the original datasets. This was done to allow geospatial distances to be comparable to
textual distances produced by the Jaccard Similarity Coefficient.

A trend that can be observed in the visualization of the resulting clusters is that the
outline of the visualized trajectories in figure 7.1 and 7.2 tend towards circular shapes.
Projections such as the Mercator Projection could be utilized during pre-processing to
transform coordinates so that the outlier would trend towards rectangular shapes. How-
ever, this would not solve an inherent problem in the data sets. Both data sets are based
on mobile social network data where trajectories are inferred based on timestamp order-
ings. The relative movement between two data consecutive entries can potentially be very
skewed. In the case of the Yelp dataset, a user might travel very long distances between
each entry, or publish reviews in a different order than the establishments were visited.

In the case of the Twitter dataset, a user can reply to a status message instantly from
the other side of the globe. This can cause issues in how the shortest distance between two
points is calculated if an interaction happens at the extremes of two spherical coordinate
limits, such as latitude ∈ [−180, 180]. If a status update from longitude = −175 is
interacted with at longitude = 175 in a naive implementation, the spatial distance between
the two will be calculated to be 150 units, when in reality the real distance between the
two should be 10 units.

The problem of the shortest path between two geospatial locations travelling over the
limits of the spherical coordinate system can potentially be solved by transforming the
geospatial domain into three dimensions as demonstrated by equation 14

φ =
latitude · π

180
,

λ =
longitude · π

180

X = cos(φ) · cos(λ),

Y = cos(φ) · sin(λ),

Z = sin(φ)

(14)

However, this will incur greater computational costs as the DBSCAN algorithm is docu-
mented to perform considerably worse in multi-dimensional spaces [24].

58

8.2 Evaluation of TraClus for spatio-textual data

Evaluation of a clustering algorithm is not a trivial task. There exists multiple methods of
evaluating the quality of a clustering algorithm, from runtime efficiency to graphic visual-
ization. In this thesis, the efficiency of the spatio-textual TraClus algorithm was measured
in run-time for different data sub set sizes. The quality of the clustering was measured
using the silhouette coefficient to identify parameters that lead to better clustering results.

8.2.1 Runtime

Figure 7.3 describes the differences in runtime for the data foundations at subsets of
varying sizes. The spatio-textual TraClus algorithm was evaluated with identical pa-
rameterization across all partitions of the two datasets. Interestingly, the Yelp dataset
performed better than the twitter datasets at similar measures of data points. A large
reason to this is the spatially sparse nature of the Yelp dataset. The Twitter dataset
is much more densely populated and evaluates a much higher amount of line segments
in contrast to the Yelp data set. For 215,350 data points, the Twitter data set took 19
minutes to process compared to the Yelp data set which took less than 8 minutes to pro-
cess at 214,571 data points. At these two runtime evaluations the Yelp dataset evaluated
4,602 line segments in contrast to Twitter dataset which evaluated 17,280 line segments.

The line segments alone do not tell the full story. At 844,729 unique data points, the
yelp data set evaluated 17,230 line segments. This is a comparable number of line segments
to the largest twitter evaluation. However, the Yelp dataset took 114 minutes to process
at this data set partition. A data partition at 168,000 unique trajectories consisting of
2,232,257 unique points was scheduled for evaluation, but was stopped manually after
running continuously for over 24 hours.

8.2.2 Cluster evaluation

The original TraClus paper utilized visualization as a method of evaluation, and the
same principles will be extended to the spatio-textual TraClus algorithm. In addition to
presenting the representative trajectories visually, a top N occuring selection of keywords
from each representative trajectory will be presented in the visualization.

Additionally, the silhouette coefficient [35] was utilized to evaluate the quality of the
clusters generated.

The results of the spatio textual TraClus-algorithm varied heavily based on the selec-
tion of input parameters. Understanding which parameters Methods such as the silhou-
ette coefficient [35] was utilized can be extended to the TraClus evaluate the quality of
clustering performed. The silhouette coefficient is calculated by measuring the

8.3 Future Work

The efficiency of the spatio-textual TraClus algorithm is heavily impacted by textual com-
parisons. The poor scalability negatively impacts the usefulness of the implementation,
as the slow computation will deter enterprises and research projects from using the algo-
rithm in larger scale systems. This can be compensated for by combining research from
a 2017 paper exploring possibilities of parallelizing the DBSCAN algorithm through the
Apache Spark system [36].

Other methods, such as the 2018 Hierarchical adaption of the TraClus algorithm [17]
can potentially be combined with the findings of this thesis to utilize the increased com-

59

putational efficiency afforded by hierarchical methods to further improve the run time of
the density based clustering methods of a spatio-textual TraClus algorithm.

60

9 Conclusion

This thesis has sought out to research methods in the data mining field and apply them
on the problem of clustering spatio-textual trajectories on large datasets.

This thesis demonstrates the viability of performing spatio-textual clustering using Jac-
card Coefficiency Similarity in tandem with the TraClus sub-trajectory clustering method.
This thesis extends concepts implemented in other research [7] to bridge the gap between
textual and spatial similarity.

The validity of the resulting clusters have been confirmed using the Silhouette Coeffi-
cient to identify good parameters for the clustering technique. Methods of visualization
have been applied to the resulting clusters to visually confirm that the algorithm is capable
of identifying good clusters.

The algorithm has been measured in run time efficiency and although the inclusion of
a textual dimension to a spatial clustering technique significantly impacts the efficiency
of the original algorithm, the research shows [36] [17] that other interesting work can be
combined with this thesis’ work to increase its efficiency.

61

References

[1] J. Naisbitt, Megatrends: Ten New Directions Transforming Our Lives. Manhattan,
NY: Warner Books, 1984. pp. 17.

[2] U. M. Feyyad, “Data mining and knowledge discovery: making sense out of data,”
IEEE Expert, vol. 11, no. 5, pp. 20–25, 1996.

[3] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine
Learning Tools and Techniques, vol. 1. Cambridge, MA (US): Morgan Kaufmann,
4 ed., 2016. pp. 6, 33-35.

[4] S. S. Anand, D. A. Bell, and J. G. Hughes, “The role of domain knowledge in data
mining,” in Proceedings of the fourth international conference on Information and
knowledge management, pp. 37–43, 1995.

[5] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association rules,” in Proc.
20th int. conf. very large data bases, VLDB, vol. 1215, pp. 487–499, Citeseer, 1994.

[6] S. Hosseinimotlagh and E. E. Papalexakis, “Unsupervised content-based identifica-
tion of fake news articles with tensor decomposition ensembles,” in Proceedings of the
Workshop on Misinformation and Misbehavior Mining on the Web (MIS2), 2018.

[7] D.-W. Choi and C.-W. Chung, “A k-partitioning algorithm for clustering large-scale
spatio-textual data,” Information Systems, vol. 64, pp. 1–11, 2017.

[8] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: A partition-and-group
framework,” in Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’07, (New York, NY), pp. 593–604, ACM, 2007.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in Proceedings of the Sec-
ond International Conference on Knowledge Discovery and Data Mining, KDD’96,
p. 226–231, AAAI Press, 1996.

[10] C. Renso, M. Baglioni, J. A. F. de Macedo, R. Trasarti, and M. Wachowicz, “How you
move reveals who you are: understanding human behavior by analyzing trajectory
data,” Knowledge and information systems, vol. 37, no. 2, pp. 331–362, 2013.

[11] J. B. Oates, Researching Information Systems and Computing. City Road, London:
SAGE Publications Ltd, 1st ed., 2006. pp. 71-92.

[12] S. Gaffney and P. Smyth, “Trajectory clustering with mixtures of regression models,”
in Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 63–72, 1999.

[13] Z. Li, M. Ji, J.-G. Lee, L.-A. Tang, Y. Yu, J. Han, and R. Kays, “Movemine: Mining
moving object databases,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, (New York, NY, USA), pp. 1203–
1206, ACM, 2010.

[14] F. Wu, T. K. H. Lei, Z. Li, and J. Han, “Movemine 2.0: Mining object relationships
from movement data,” Proc. VLDB Endow., vol. 7, p. 1613–1616, Aug. 2014.

62

[15] P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New phytologist,
vol. 11, no. 2, pp. 37–50, 1912.

[16] M. D. Nguyen and W.-Y. Shin, “Dbstexc: Density-based spatio-textual clustering
on twitter,” in Proceedings of the 2017 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining 2017, ASONAM ’17, (New York, NY,
USA), p. 23–26, Association for Computing Machinery, 2017.

[17] D. Zhang, K. Lee, and I. Lee, “Hierarchical trajectory clustering for spatio-temporal
periodic pattern mining,” Expert Systems with Applications, vol. 92, pp. 1–11, 2018.

[18] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based clustering based on
hierarchical density estimates,” in Advances in Knowledge Discovery and Data Min-
ing (J. Pei, V. S. Tseng, L. Cao, H. Motoda, and G. Xu, eds.), (Berlin, Heidelberg),
pp. 160–172, Springer Berlin Heidelberg, 2013.

[19] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[20] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: the concepts
and technology behind search. Harlow, Essex (UK): Pearson Education Ltd., 2 ed.,
2011. pp. 68-76.

[21] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Burlington
(MA): Elsevier, 3rd ed., 2011. pp. 74-76, 361-403.

[22] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information
theory, vol. 28, no. 2, pp. 129–137, 1982.

[23] M. Yedla, S. R. Pathakota, and T. Srinivasa, “Enhancing k-means clustering algo-
rithm with improved initial center,” International Journal of computer science and
information technologies, vol. 1, no. 2, pp. 121–125, 2010.

[24] J. Gan and Y. Tao, “Dbscan revisited: Mis-claim, un-fixability, and approximation,”
in Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, (New York, NY, USA), p. 519–530, Association for Computing
Machinery, 2015.

[25] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited,
revisited: Why and how you should (still) use dbscan,” ACM Trans. Database Syst.,
vol. 42, July 2017.

[26] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data clustering
method for very large databases,” SIGMOD Rec., vol. 25, p. 103–114, June 1996.

[27] J. Yang and M. Hu, “Trajpattern: Mining sequential patterns from imprecise trajec-
tories of mobile objects,” in Advances in Database Technology - EDBT 2006 (Y. Ioan-
nidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. Boehm, A. Kem-
per, T. Grust, and C. Boehm, eds.), (Berlin, Heidelberg), pp. 664–681, Springer
Publishing Company, Incorporated, 2006.

[28] P. D. Grünwald, I. J. Myung, and M. A. Pitt, Advances in minimum description
length: Theory and applications. MIT press, 2005.

63

[29] “Counting characters: Counting characters when composing tweets,” May 2018.
https://developer.twitter.com/en/docs/counting-characters. [Accessed: 09.
October 2020].

[30] “Data dictionary: Tweet object,” Oct 2018. https://developer.twitter.com/en/
docs/twitter-api/v1/data-dictionary/overview/tweet-object. [Accessed: 09.
October 2020].

[31] L. Hong, G. Convertino, and E. H. Chi, “Language matters in twitter: A large scale
study,” in Fifth international AAAI conference on weblogs and social media, p. 518,
Citeseer, 2011.

[32] @tm, “Evaluating language identification performance,” Nov 2015. https:

//blog.twitter.com/engineering/en_us/a/2015/evaluating-language-

identification-performance.html. [Accessed: 11. February 2021].

[33] C. E. Shannon, “A mathematical theory of communication,” The Bell system tech-
nical journal, vol. 27, no. 3, pp. 379–423, 1948.

[34] A. Nishad and S. Abraham, “Semtraclus: an algorithm for clustering and prioritizing
semantic regions of spatio-temporal trajectories,” International Journal of Computers
and Applications, pp. 1–10, 2019.

[35] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20,
pp. 53–65, 1987.

[36] F. Huang, Q. Zhu, J. Zhou, J. Tao, X. Zhou, D. Jin, X. Tan, and L. Wang, “Research
on the parallelization of the dbscan clustering algorithm for spatial data mining based
on the spark platform,” Remote Sensing, vol. 9, no. 12, p. 1301, 2017.

64

Appendices

A Twitter Object Data Format

0 {
1 "contributors" : String,

2 "coordinates" : {
3 [Double],

4 "type" : String

5 },
6 "created_at" : String,

7 "entities": {
8 "hashtags" : [

9 {
10 "indices" : [Long],

11 "text" : String

12 }
13],

14 "media" : [

15 {
16 "display_url" : String,

17 "extended_url : String,

18 "id" : Long ,

19 "id_str" : String,

20 "indices" : [Long],

21 "media_url" : String,

22 "sizes" : {
23 "large" : {
24 "h" : Long ,

25 "resize" : String,

26 "w" : Long ,

27 },
28 "medium" : {
29 "h" : Long ,

30 "resize" : String,

31 "w" : Long ,

32 },
33 "thumb" : {
34 "h" : Long ,

35 "resize" : String,

36 "w" : Long ,

37 }
38 },
39 "source_status_id" : Long ,

40 "source_status_id_str" : String,

41 "source_user_id" : Long ,

42 "source_user_id_str" : String,

65

43 "type" : String,

44 "url" : String,

45 }
46],

47 "symbols" : [

48 {
49 "indices" : [Long],

50 "text" : String

51 }
52],

53 "urls" : [

54 {
55 "display_url" : String,

56 "expanded_url" : String,

57 "indices" : [Long],

58 "url" : String

59 }
60],

61 "user_mentions" : [

62 {
63 "id" : Long ,

64 "id_str" : String,

65 "indices" : [Long],

66 "name" : String,

67 "screen_name" : String

68 }
69]

70

71 },
72 "extended_entities" : {
73 "media" : [

74 "display_url" : String,

75 "expanded_url" : String,

76 "id" : Long ,

77 "id_str" : String,

78 "indices" : [Long],

79 "media_url" : String,

80 "media_url_https" : String,

81 "sizes" : {
82 "large" : {
83 "h" : Long ,

84 "resize" : String,

85 "w" : Long ,

86 },
87 "medium" : {
88 "h" : Long ,

89 "resize" : String,

90 "w" : Long ,

66

91 },
92 "small" : {
93 "h" : Long ,

94 "resize" : String,

95 "w" : Long ,

96 },
97 "thumb" : {
98 "h" : Long ,

99 "resize" : String,

100 "w" : Long ,

101 }
102 }
103],

104 "source_status_id" : Long ,

105 "source_status_id_str" : String,

106 "source_user_id" : Long ,

107 "source_user_id_str" : String,

108 "url" : String,

109 "video_info" : {
110 "aspect_ratio" : [Long],

111 "duration_millies" : Long ,

112 "variants" : [

113 {
114 "bitrate" : Long ,

115 "content_type" : String,

116 "url" : String

117 }
118]

119 }
120 },
121 "favorite_count" : Long ,

122 "favorited" : Boolean ,

123 "filter_level" : String,

124 "geo" : {
125 "coordinates" : [Double],

126 "Type" : String

127 },
128 "id" : Long ,

129 "id_str" : String,

130 "in_reply_to_screen_name" : String,

131 "in_reply_to_status_id" : Long ,

132 "in_reply_to_status_id_str" : String,

133 "in_reply_to_user_id" : Long ,

134 "in_reply_to_user_id_str" : String,

135 "is_quote_status" : Boolean ,

136 "lang" : String,

137 "place" : {
138 "attributes" : {

67

139 "street_address" : String

140 },
141 "bounding_box" : {
142 "coordinates" : [

143 [

144 [Double]

145]

146],

147 "type" : String

148 },
149 "country" : String,

150 "country_code" : String,

151 "full_name" : String,

152 "id" : String,

153 "name" : String,

154 "place_type" : String,

155 "url" : String,

156 },
157 "possibly_sensitive" : Boolean ,

158 "quoted_status" : {
159 "contributors" : String,

160 "coordinates" : {
161 "coordinates" : [Double],

162 "type" : String

163 },
164 "created_at" : String,

165 "entities" : {
166 "hashtags" : [

167 {
168 "indices" : [Long],

169 "text" : String

170 }
171],

172 "media" : [

173 {
174 "display_url" : String,

175 "expanded_url" : String,

176 "id" : Long ,

177 "id_str" : String,

178 "indices" : [Long],

179 "media_url" : String,

180 "media_url_https" : String,

181 "sizes" : {
182 "large" : {
183 "h" : Long ,

184 "resize" : String,

185 "w" : Long ,

186 },

68

187 "medium" : {
188 "h" : Long ,

189 "resize" : String,

190 "w" : Long ,

191 },
192 "small" : {
193 "h" : Long ,

194 "resize" : String,

195 "w" : Long ,

196 },
197 "thumb" : {
198 "h" : Long ,

199 "resize" : String,

200 "w" : Long ,

201 }
202 },
203 "source_status_id" : Long ,

204 "source_status_id_str" : String,

205 "source_user_id" : Long ,

206 "source_user_id_str" : String,

207 "url" : String

208 }
209],

210 "symbols" : [

211 {
212 "indices" : [Long],

213 "text" : String

214 }
215],

216 "urls" : [

217 {
218 "display_url" : String,

219 "expanded_url" : String

220 "indices" : [Long],

221 "url" : String

222 }
223],

224 "user_mentions" : [

225 {
226 "id" : Long ,

227 "id_str" : String,

228 "indices" : [Long],

229 "name" : String,

230 "screen_name" : String

231 }
232]

233 },
234 "extended_entities" : {

69

235 "media" : [

236 {
237 "display_url" : String,

238 "expanded_url" : String,

239 "id" : Long ,

240 "id_str" : String,

241 "indices" : [Long],

242 "media_url" : String,

243 "media_url_https" : String,

244 "sizes" : {
245 "large" : {
246 "h" : Long ,

247 "resize" : String,

248 "w" : Long ,

249 },
250 "medium" : {
251 "h" : Long ,

252 "resize" : String,

253 "w" : Long ,

254 },
255 "small" : {
256 "h" : Long ,

257 "resize" : String,

258 "w" : Long ,

259 },
260 "thumb" : {
261 "h" : Long ,

262 "resize" : String,

263 "w" : Long ,

264 }
265 },
266 "source_status_id" : Long ,

267 "source_status_id_str" : String,

268 "source_user_id" : Long ,

269 "source_user_id_str" : String,

270 "url" : String,

271 "video_info" : {
272 "aspect_ratio" : [Long]

273 "duration_millis" : Long ,

274 "variants" : [

275 {
276 "bitrate" : Long ,

277 "content_type" : String,

278 "url" : String

279 }
280]

281 }
282 }

70

283]

284 },
285 "favorite_count" : Long ,

286 "favorited" : Boolean ,

287 "filter_level" : String,

288 "geo" : {
289 "coordinates" : [Double],

290 "type" : String

291 },
292 "id" : Long ,

293 "id_str" : String,

294 "in_reply_to_screen_name" : String,

295 "in_reply_to_status_id" : Long ,

296 "in_reply_to_status_id_str" : String,

297 "in_reply_to_user_id" : Long ,

298 "in_reply_to_user_id_str" : String,

299 "is_quote_status" : Boolean ,

300 "lang" : String,

301 "place" : String,

302 "possibly_sensitive" : Boolean ,

303 "quoted_status_id" : Long ,

304 "quoted_status_id_str" : String,

305 "retweet_count" : Long ,

306 "retweeted" : Boolean ,

307 "scopes" : {
308 "followers" : Boolean ,

309 "place_ids" [String]

310 }
311 "source" : String,

312 "text" : String,

313 "truncated" : Boolean ,

314 "user" : {
315 "contributors_enabled" : Boolean ,

316 "created_at" : String,

317 "default_profile" : Boolean ,

318 "default_profile_image" : String,

319 "description" : String,

320 "favorites_count" : Long ,

321 "follow_request_sent" : String,

322 "followers_count" : Long ,

323 "following" : String,

324 "friends_count" : Long ,

325 "geo_enabled" : Boolean ,

326 "id" : Long ,

327 "id_str" : String,

328 "is_translator" : Boolean ,

329 "lang" : String,

330 "listed_count" : Long ,

71

331 "location" : String,

332 "name" : String,

333 "notifications" : String,

334 "profile_background_color" : String,

335 "profile_background_image_url" : String,

336 "profile_background_image_url_https" : String,

337 "profile_background_tile" : Boolean ,

338 "profile_banner_url" : String,

339 "profile_image_url" : String,

340 "profile_image_url_https" : String,

341 "profile_link_color" : String,

342 "profile_sidebar_border_color" : String,

343 "profile_sidebar_fill_color" : String,

344 "profile_text_color" : String,

345 "profile_use_background_image" : Boolean ,

346 "protected" : Boolean ,

347 "screen_name" : String,

348 "statuses_count" : Long ,

349 "time_zone" : String,

350 "url" : String,

351 "utc_offset" : Long ,

352 "verified" : Boolean ,

353 }
354 },
355 "quoted_status_id" : Long ,

356 "quoted_status_id_str" : String,

357 "retweet_count" : Long ,

358 "retweeted" : Boolean ,

359 "scopes" : {
360 "place_ids" : [Long]

361 },
362 "text" : String,

363 "timestamp_ms" : String,

364 "truncated" : Boolean

365 "user" : {
366 "contributors_enabled" : Boolean ,

367 "created_at" : String,

368 "default_profile" : Boolean ,

369 "default_profile_image" : String,

370 "description" : String,

371 "favorites_count" : Long ,

372 "follow_request_sent" : String,

373 "followers_count" : Long ,

374 "following" : String,

375 "friends_count" : Long ,

376 "geo_enabled" : Boolean ,

377 "id" : Long ,

378 "id_str" : String,

72

379 "is_translator" : Boolean ,

380 "lang" : String,

381 "listed_count" : Long ,

382 "location" : String,

383 "name" : String,

384 "notifications" : String,

385 "profile_background_color" : String,

386 "profile_background_image_url" : String,

387 "profile_background_image_url_https" : String,

388 "profile_background_tile" : Boolean ,

389 "profile_banner_url" : String,

390 "profile_image_url" : String,

391 "profile_image_url_https" : String,

392 "profile_link_color" : String,

393 "profile_sidebar_border_color" : String,

394 "profile_sidebar_fill_color" : String,

395 "profile_text_color" : String,

396 "profile_use_background_image" : Boolean ,

397 "protected" : Boolean ,

398 "screen_name" : String,

399 "statuses_count" : Long ,

400 "time_zone" : String,

401 "url" : String,

402 "utc_offset" : Long ,

403 "verified" : Boolean ,

404 }
405 }

73

B Yelp Review Object Data Format

0 {
1 "business_id" : String,

2 "cool" : Long ,

3 "date" : String,

4 "funny" : Long ,

5 "review_id" : String

6 "stars" : Double ,

7 "text" : String,

8 "useful" : Long ,

9 "user_id" : String

10 }

C Yelp Business Object Data Format

0 {
1 "address" : String,

2 "attributes" : {
3 "AcceptsInsurance" : String,

4 "AgesAllowed" : String,

5 "Alcohol" : String,

6 "Ambience" : String,

7 "BYOB" : String,

8 "BYOBCorkage" : String,

9 "BestNights" : String,

10 "BikeParking" : String,

11 "BusinessAcceptsBitcoin" : String,

12 "BusinessAcceptsCreditCards" : String,

13 "BusinessParking" : String,

14 "ByAppointmentOnly" : String,

15 "Caters" : String,

16 "CoatCheck" : String,

17 "Corkage" : String,

18 "DietaryRestrictions" : String,

19 "DogsAllowed" : String,

20 "DriveThru" : String,

21 "GoodForDancing" : String,

22 "GoodForKids" : String,

23 "GoodForMeal" : String,

24 "HairSpecializesIn" : String,

25 "HappyHour" : String,

26 "HasTV" : String,

27 "Music" : String,

28 "NoiseLevel" : String,

29 "Open24Hours" : String,

74

30 "OutdoorSeating" : String,

31 "RestaurantsAttire" : String,

32 "RestaurantsCounterService" : String,

33 "RestaurantsDelivery" : String,

34 "RestaurantsGoodForGroups" : String,

35 "RestaurantsPriceRange2" : String,

36 "RestaurantsReservations" : String,

37 "RestaurantsTableService" : String,

38 "RestaurantsTakeOut" : String,

39 "Smoking" : String,

40 "WheelchairAccessible" : String,

41 "WiFi" : String,

42 },
43 "business_id" : String,

44 "categories" : String,

45 "city" : String,

46 "hours" : {
47 "Friday" : String,

48 "Monday" : String,

49 "Saturday" : String,

50 "Sunday" : String,

51 "Thursday" : String,

52 "Tuesday" : String,

53 "Wednesday" : String,

54 },
55 "is_open" : Long ,

56 "latitude" : Double ,

57 "longitude" : Double ,

58 "name" : String,

59 "postal_code" : String,

60 "review_count" : Long ,

61 "stars" : Double ,

62 "state" : String

63 }

75

D Processed Spatiotextual Trajectory Data
Object

0 {
1 "id" : Int,

2 "numPoints" : Int,

3 "points" : [

4 {
5 "id" : Int,

6 "timestamp" : Long ,

7 "keywords" : [String],

8 "latitude" : Double ,

9 "longitude" : Double ,

10 }
11]

12 }

76

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Kristian Kanck

TexTraClus

A Spatio-Textual Sub-Trajectory Clustering
Framework

Masteroppgave i Informatikk
Veileder: Kjetil Nørvåg

Oktober 2020M
as
te
ro
pp

ga
ve

