
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Lasse Agentoft Eggen

Towards Efficiently Utilizing Coarse-
Grained Reconfigurable Accelerators

Master’s thesis in Computer Science

Supervisor: Magnus Jahre

October 2020





Lasse Agentoft Eggen

Towards Efficiently Utilizing Coarse-
Grained Reconfigurable Accelerators

Master’s thesis in Computer Science
Supervisor: Magnus Jahre
October 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Problem Description

The end of Dennard scaling and the imminent end of Moore’s law is causing dis-
ruptive changes to the way computers are designed. An attractive option is to
create specialized hardware units – called accelerators – that are able to execute
performance-critical code regions (much) more efficiently than a general-purpose
processor. Unfortunately, designing accelerators is costly which limits their appli-
cability to high-volume domains such as graphics or machine-learning. Another
option is to add tightly coupled reconfigurable fabrics to general-purpose proces-
sors and combine this with efficient approaches for generating application-specific
accelerators.

In this thesis, the student should work towards enabling such systems by inves-
tigating how programs represented as dataflow graphs can be efficiently mapped
onto a Coarse-Grained Reconfigurable Array (CGRA). Mapping computations onto
CGRAs is challenging because they expose limited reconfigurability to retain ef-
ficiency. Further, prior work has shown that mapping dataflow graphs to small
CGRAs can be particularly challenging because naive mapping can cause exten-
sive serialization. The student should first try to address this issue with static
approaches. If time permits, software-hardware cooperative approaches can be
explored.
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Abstract

The end of Dennard scaling and the imminent end of Moore’s law is causing dis-
ruptive changes to the way computers are designed. There is agreement in the
computer-architecture community that we probably need specialized hardware
to further improve performance and increase power and energy efficiency. The
industry standard is domain-specific accelerators that accelerate a common set of
applications, at the cost of generality. An alternative is reconfigurable architectures
which can accelerate multiple domains and thereby achieve better utilization. In
this thesis, we focus on Coarse-Grained Reconfigurable Architectures (CGRAs),
as they have higher theoretical performance than fine-grain alternatives, such as
Field-Programmable Gate Arrays (FPGAs).

We studied CGRA accelerators in the context of state-of-the-art Stream-Dataflow
Architecture (SDA), and the Reconfigurable Vector Lanes (REVEL) accelerator.
First, we model a set of different CGRA sizes to explore performance-scaling op-
portunities. Then, by varying the ratio of static-to-dynamic scheduling we assess
the performance impact of a dynamic-dataflow region and to what extent the
mapping algorithm is able to exploit it. Finally, we explore how performance can
be improved by factoring in an active developer.

We find that attaining high performance requires that the program formula-
tion, the mapping and scheduling algorithms, and the Coarse-Grained Reconfig-
urable Array (CGRA) accelerator architecture all align favorably. Due to the high
complexity in the mapping and scheduling problem, we are not able to gain ef-
ficiency when we try to express more parallelism than the original REVEL work-
loads. We have shown empirically that increasing the CGRA size alone does not
contribute to execution scalability, neither does introducing dynamic dataflow in
isolation. Software-hardware cooperation is hence key to maximize the perfor-
mance of CGRA accelerators. Unfortunately, we were not able to qualitatively
evaluate such approaches with the constraints of a master thesis due to limita-
tions with our chosen compiler and simulator framework (even if it is the current
state-of-the-art).
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Chapter 1

Introduction

1.1 Motivation

From the early beginnings of computing, improvements in technology has allowed
almost free scaling of performance with similar architecture designs, as illustrated
in Figure 1.1. Then conventional computer architecture was hit hard by laws of
physics that dictate attainable performance with factors such as voltage, feature
size and frequency. Until mid 1990s power budgets in chips was not a major de-
sign constraint for microarchitectures, when it started to be widely recognized
that power budgets in computer circuits had to be addressed at a higher level of
abstraction to allow for further improvements [2].

This realization is commonly referred to as the power wall, and is a direct
consequence of the end of Dennard voltage scaling [3], which boils down to the
fact that technology-node improvements directly influenced the ability to increase
frequency and being able to offset the power dissipation by decreasing the volt-
age supply. This automatic performance improvement drove microarchitecture de-
signs, which was essentially just distributing more of the same logic on the same
die area, and increasing clock frequency.

Today we are no longer able to decrease the threshold voltage as this expo-
nentially increases leakage currents, making it a significant contributor to power
dissipation [4]. Without the possibility to offset increasing clock frequencies with
lower voltage, CMOS-based chips are subject to overheating. The result of this is
dark silicon. Dark silicon is circuitry that can not switch at full frequency due to
power limitations and/or high thermal density. When this is the case, only parts
of the processor will be active at any given time.

Recent studies has shown that multicore scaling will also suffer from increased
amounts of dark silicon, just as the case was for single-core scaling [5]. Increas-
ing the amount of parallelism has become the most important factor in increasing
performance and energy efficiency for general programs in recent years. Instead
of building a single core with more transistors and higher clock rate to increase
single-core performance, the industry’s answer has been to partition the area into
multiple processor cores. These cores run at lower clock rates than e.g. Intel Pen-
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Figure 1.1: 48 Years of Microprocessor Trend Data [1].

tium 4, but since there are more cores, more work can be done at the same time.

1.2 Reconfigurable Accelerator Overview

The most promising approach to the dark silicon problem is hardware specializa-
tion. Specializing hardware has given high efficiency and high performance for
a multitude of applications, and the more specialized the hardware is, the more
efficient it becomes. Domain-Specific Accelerators (DSAs) that aim to accelerate
a specific domain of problems deliver both of these, at the cost of low usability of
the hardware outside its domain. They are also expensive to design and produce,
making sense mostly when they can be mass produced.

An alternative is reconfigurable accelerators. The classic Field-Programmable
Gate Array (FPGA) is very flexible and can be programmed to host mostly any
class of program. The flexibility comes from reprogrammability at the bit-level,
which turns out to be its least attractive attribute. According to Taylor [6], CGRAs
are more promising than FPGAs to realize the dim horseman, due to expectations
of high energy efficiency. The layout of the architecture is broadly speaking opti-
mized for word-level operations that require a relatively short and small amount
of interconnects, and contains highly optimized computational hardware. Data
travels naturally through this network of computation, while minimizing multi-
plexing, which helps gain high performance per watt and area.

A CGRA will be more efficient and able to exploit more parallelism from ap-
plications than Central Processing Units (CPUs) and Graphics Processing Units



Chapter 1: Introduction 3

(GPUs). A CPU will not be able to exploit parallelism well, it turns out that con-
current programming is hard [7], and efficiency is sacrificed for generality [8].
A GPU, on the other hand, will be able to match CGRA performance for some
applications, but is far less power and energy efficient [9].

1.3 Assignment Interpretation

My interpretation of the assignment text in Problem Description is to pursue a
specific programming model, specifically Dataflow Graph (DFG)-based program
kernel representations, and their potential for mapping to a CGRA. More specifi-
cally, I interpret the assignment text to contain the following tasks:

T1 How effective are purely static (systolic array) approaches?
T2 How can dynamic dataflow overcome this limitation?
T3 How does things change if the developer (or compiler) takes an active role

(i.e., a software-hardware cooperative approach)?

These tasks are not sufficiently narrowly defined to be fully addressed within a
master thesis. Hence, I further narrow the scope to focus on what makes a specific
representation able to efficiently map to a varying number of substrate configura-
tions.

There is primarily two execution models that I devote my attention, fully static
and fully dynamic scheduling. These models are on both ends of the execution-
model spectrum and I have previous knowledge from the fall-semester project
handling a hybrid architecture, namely the REVEL architecture [10]. The project
found that the temporal region extensively serialized DFGs that did not fit the
dedicated region. In contrast, this work will focus on the effectiveness of purely
dedicated configurations, then on what dynamic dataflow contributes, and what
effects a software-hardware cooperative approach can enable in terms of perfor-
mance scaling.

1.4 Contributions

In this thesis, we respond to the three key tasks provided in the assignment text.
Hence, the key contributions of this thesis are:

C1 We found that a pure static approach to scheduling is not scalable. More
specifically, we find that attaining high performance requires that the pro-
gram formulation, the mapping and scheduling algorithms, and the CGRA
accelerator architecture all align favorably. This solution responds to T1.

C2 Dynamic (hardware) scheduling simplifies mapping applications onto the
CGRA accelerator. While this enables mapping applications that would not
map to a static CGRA accelerator, it comes at the cost of increased hardware
overhead. This solution responds to T2.
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C3 Software-hardware cooperation enables scaling of computation on statically
scheduled regions and hence has the potential for overcoming the aforemen-
tioned limitations. However, this requires substantial manual effort, and we
find that the current state-of-the-art tool, notably the PolyArch framework
[11–13], struggle with efficiently mapping DFGs to larger CGRAs. This so-
lution responds to T3.

1.5 Outline

In Chapter 2, we describe traits of typically acceleratable programs and introduce
a series of existing programmable, and reconfigurable accelerator approaches.
Then, in Chapter 3 we describe systolic array, static dataflow, and dynamic dataflow.
In Chapter 4, we introduce the REVEL architecture we will simulate and collect
data from, and show how a DFG can map to a CGRA, with simple improvement
strategies. Then, in Chapter 5 we show how we have configured the architecture
and the simulator setup. We show results in Chapter 6, analyzing program per-
formance against CGRA size, and temporal-region size. Then, in Chapter 7 we list
the key lessons we learned, namely that performance scaling is not automatic.
Finally, we conclude in Chapter 8.



Chapter 2

Background

From fixed-function processing elements in GPPs to per-cycle reconfigurable pro-
cessing elements in CGRAs, there are a wide variety in methods for transforming
data as efficiently as possible in terms of chip area, time, power and energy. In
Figure 2.1 we illustrate the programming generality of a set of processor archi-
tectures. The more general an architecture is, the less specialized it is, conversely
the opposite is also true.

GPPs interpret a sequence of instructions and are software-driven. This makes
them easy to program and highly flexible and general, at the cost of efficiency.
Typically, the more flexible and easy to program a processor is, the less efficient
it is in terms of area, power and energy. On the other extreme, we have DSAs,
processors that trade off flexibility and programmability to achieve high efficiency.

2.1 Accelerating Applications

Amdahl’s law is useful to understand what we want to focus our attention on
when analyzing programs as candidates for acceleration [14]. In this work we will
explore parallelism in a program that can be exploited to obtain good speedup of
the program. We will also follow the corollary that the fraction of a program we
want to improve has to be relatively large, if not we will not obtain significant
speedup.

As an example, imagine a program which execution time is dominated by
sequential code and we can only identify 5% of the code’s runtime to be acceler-
atable. If all else remains equal, we can only achieve a speedup of 1.05x , and with
marginal gains every 2x speedup of the fractional part we are able to improve on.

2.1.1 Characteristics of Accelerator-Friendly Applications

Nowatzki et al. [15] [11] argue that a set of characteristics found in acceleratable
programs are those that can be found in applications that target DSAs. We too find
these interesting, as we can relate to the idea that DSAs have been co-designed
with digital-design algorithms. The characteristics are as follows:

5
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DSA GPU FPGACGRA GPP

Most general

ASIC

Most specalized

Figure 2.1: General and special architectures. The most specialized architectures,
Application-Specific Integrated Circuit (ASIC), and DSA, are the least general.
The least specialized architecture, General Purpose Processor (GPP), is the most
general.

1. Inhibit significant thread-level or data-level parallelism.
2. High computational intensity with long phases.
3. Units of work are coarse grained, and simple control flow.
4. Straight-forward memory access and reuse patterns.

Exploitable parallelism is key to achieve higher performance. Without par-
allelism we can not expect to speedup an application much. Typical applications
that have high levels of parallelism are those that have a high amount of inde-
pendent computations, such as vector and matrix operations. These applications
usually inhibit high computational intensity with long phases. High computa-
tional intensity refers to how many operations we perform per byte of data we
transfer from memory. The more operations an algorithm perform per byte, the
more efficient the accelerator can operate.

Further, coarse-grained units of work in this context refers to a contiguous
chain of operations that easily can be pipelined. Typically inner loops, that also
can be unrolled, ultimately vectorized in hardware. Control flow often means
resolving branches or limiting the amount of parallelism we can extract from an
application, which interferes with our goal of accelerating the application.

Memory access should be regular to allow streaming data from memory.
Irregular memory access will likely reduce computational intensity as we might
have to transfer more bytes than we will use. Reuse patterns are desirable to keep
data either in the accelerator fabric or very close, such as in a scratchpad. Not all
applications are designed with these characteristics in mind, so it is possible to
discover or impose these traits in applications that at first sight does not appear
to inhibit them. This is true for many DSAs [15].

What ultimately makes an accelerator worthwhile is that it exposes the ability
to specialize hardware to gain efficiency while opening possibilities for speedup
through parallelism. Most applications that lend themselves to acceleration in
terms of speedup through parallelization eventually hit a memory wall, i.e. there
is abundant computational resources, but the memory system is unable to deliver
the data to the accelerator fast enough.

2.1.2 Example Kernels

We have listed three program kernels in Code listing 2.1, Code listing 2.2 and
Code listing 2.3 that we will use throughout this thesis to show how we can ex-
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Code listing 2.1: Vector addition

1 void vector_add(double* a, double* b, double* c) {
2 #pragma ss config
3 {
4 #pragma ss stream
5 #pragma ss dfg dedicated unroll(4)
6 for (int i = 0; i < N; ++i) {
7 c[i] = a[i] + b[i];
8 }
9 }

10 }

Code listing 2.2: Vector dot product

1 double dot_product(double* a, double* b) {
2 double dot;
3 #pragma ss config
4 {
5 double acc = 0.0;
6 #pragma ss stream
7 #pragma ss dfg dedicated unroll(4)
8 for (int i = 0; i < N; ++i) {
9 acc += a[i] * b[i];

10 }
11 dot = acc;
12 }
13 return dot
14 }

Code listing 2.3: Inductive dependency. Inner-loop’s induction variable, j, de-
pends on outer-loop’s induction variable, i.

1 double inductive_dependency(double* a, double* b, double* c) {
2 #pragma ss config
3 {
4 #pragma ss stream
5 for (int i = 0; i < N; ++i) {
6 #pragma ss temporal
7 {
8 double x = sqrt(a[i] + b[i]);
9 }

10 #pragma ss dedicated unroll(4)
11 for (int j = i+1; j < N; ++j) {
12 c[i] += a[j] * b[i] + x;
13 }
14 }
15 }
16 }
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tract parallelism and gain efficiency on different architectures. Vector addition is
a trivial example when we can stream data to the architecture, while dot product
requires some thought to compute efficiently.

In Code listing 2.1, vectors a and b are added and the result is stored in c.
This program lends itself to trivial pipelining and unrolling. I.e. all N additions
can, in theory, be unrolled and calculated in parallel (i.e., spatial parallelism),
and all operations in the loop can be done in a pipelined manner (i.e., temporal
parallelism). As there is only one operation per loop iteration, an addition, there
is no need to pipeline anything, but for the sake of argument this pipeline has
a length of one. The kernel has low computational intensity, one operation per
element of data, and will most likely be memory bound.

Typically we need to annotate code to mark blocks as candidates for parallel
execution, such as CUDA [16], OpenMP [17], and OpenCL [18]. Often annotation
is done by inserting #pragma directives. We are focusing on CGRA programming
and have used #pragma directives from REVEL [12] (see Chapter 4 for more de-
tail). Lines 2, 4 and 5 are pragmas that are introduced by the REVEL compiler
toolchain. Line 2 dictates that the following block is a candidate to create an ac-
celerator that is ultimately offloaded to a reconfigurable substrate, line 4 initial-
izes a memory stream for the following loop, and line 5 marks the same loop as a
parallelization candidate.

The kernel in Code listing 2.2 calculates the dot product of two vectors. It is
less straight forward to accelerate efficiently as it requires reduction of partial re-
sults if unrolled to extract parallelism, and some way to store the running state of
the accumulator. In the dot_product() function an accumulator is used to store a
running state of the program and is returned at the end. One might wonder why
this program has two variables that ultimately holds the same dot product value,
the reason is that the DFG generator and REVEL compiler toolchain allocates acc
in the accelerator and uses accumulation logic to store the running sum and re-
leases the final dot product from the CGRA to the function’s dot variable. The
kernel inhibits quite low computational intensity and will most likely be memory
bound.

In Code listing 2.3 we show a sample kernel that has data dependencies and
a dependency on an induction variable. In the outer loop we calculate the square
root of the sum of two elements. This result is reused N− j times in the inner loop,
unlike the regular patterns we see in the other kernels. The inner loop’s induction
variable, j, is dependent on the outer loop’s induction variable, i. When these
patterns are present, the inner loop’s amount of work varies with the outer loop’s
counter variable, resembling a triangular shape.
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2.2 Programmable Accelerators

2.2.1 Graphics Processing Units

What started out as DSAs to accelerate graphics, GPUs, has in the last few decades
proven effective at accelerating a host of problems, from machine learning [19]
with examples such as ImageNet [20] to blockchain [21]. Since everyone had a
GPU, or easily could acquire one, they quickly became popular to accelerate many
applications. Acceleration of these problems has long been favorable, even though
the energy efficiency of GPUs are poor.

A GPU excel at multi-threading, it is a high-throughput processor that can per-
form hundreds of independent computations every cycle. Requesting data from
memory is a high-latency operation, and being able to compute hundreds of op-
erations per cycle is irrelevant if no data is available. The GPU hides memory
latency by rapid, essentially free, context switches. To reach maximum utilization
of a GPU we want to saturate the memory bus and a very high amount of threads.

Simplifying a bit, the GPUs executes threads in warps. A warp is a collection
of 32 threads that simultaneously execute the same instruction. This implies that
GPUs suffer from control and memory divergence [22]. All threads execute the
same program and when they reach a branch, all threads have different contexts
and resolve the branch independently. When a number of the threads diverge from
the others, a partition of the threads are masked out of execution. High divergence
leads to low utilization, while still consuming the same amount of power.

Considering our example kernel, the vector addition in Code listing 2.1, we
can quickly see that this is a good candidate to target a GPU. It independently cal-
culates data from contiguous locations of memory and writes results to predictable
locations. These independent calculations can all be distributed to a large collec-
tion of concurrent threads without dependencies. It is also free of control flow
and there is no chance of control divergence. We expect that we can accelerate
this kernel easily on a GPU.

2.2.2 Domain-Specific Accelerators

The introduction of DSAs is a reaction to the lack of progress in performance
improvements in GPPs. The key idea is that more efficient computing is possible by
relaxing the one-size-fits-all approach of GPPs. For DSAs this is done by restricting
generality in the programming interface which enables less complex hardware
resulting in increased efficiency. Performance gain is achieved through extensive
parallelization.

We highlight five major techniques to increase efficiency and performance in
DSAs based on Dally [23] and Nowatzki et al. [24]:

1. Specialized data types and operations: Increases performance by a factor
of 10x to 100x by consolidating memory layout and execution units. This
can by achieved by specializing Functional Units (FUs), to reduce power
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and increase performance by reducing total work.

2. Massive parallelism: In conjunction with improving memory locality this
effect may increase performance by 1000x.

3. Optimized memory: Specialized memory designed to be energy efficient
when transmitting specific data structures and specific target operations in
mind.

4. Reduced overhead: The overhead can be reduced both on a sequential ba-
sis or amortized over a batch of actions or operations.

5. Algorithm-architecture co-design: To reach maximum performance and
energy efficiency, the algorithm most likely has to be rewritten to release it
from the shackles of instruction-based computing in GPPs. If it is designed
with the four previous techniques in mind, the accelerator will attain high
performance.

Bleeding-edge iphones house 40+ accelerators, and is an example of how im-
portant specialization has become when designs are limited by power and energy
[25]. Since domains and applications vary in organization, the number of DSA
units needed to accelerate different problems will claim a lot of chip real estate.
How to decide on a mix of DSAs can be relatively easy for simple embedded sys-
tems, but integrating the accelerators alongside a GPP might not be possible.

A full-custom DSA is the best option when considering area, performance,
power and energy. They can be fine-tuned to a specific application. The major
drawbacks are the costs of development, validation and time, in addition to the
possibility of the units being made obsolete by new or improved algorithms. To
produce ASICs there normally has to be a benefit in terms of economy. Mass pro-
ducing ASIC chips is generally the only way to amortize the engineering costs, the
target domain needs to be so large that the demand is in the order of million chips.
Post-production they are masters of their task, but irregardless of the high-volume
requirement, researchers have proposed DSAs for a number of domains.

In recent years, Google’s Tensor Processing Unit (TPU) [26] is a state-of-the-
art example of an industrial-level DSA. The processor optimizes Deep Neural Net-
work (DNN) inference, and achieves a 50x improvement per watt compared to
conventional architectures. They have achieved a 50x performance improvement
over general-purpose supercomputers for training DNNs as well [27].

These feats are a result of optimizing an architecture for a specific domain. A
TPU operates on narrower words, and gets rid of caches and branch predictors,
which better suits the requirements of its domain. The computation is done in a
small number of large cores, consisting of a large number of individual FUs. This
computation substrate, the heart of the TPU, is rooted in an architecture class
called systolic arrays [28].

Systolic arrays consists of a grid of FUs that are interconnected by an inter-
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nal network that can be fixed or programmable. Both FUs and interconnect are
physically lightweight and fairly composable making them ideal building blocks
for specialized accelerators. The execution model is simple; all FUs have their
fixed operation, and whenever all its operands are ready it computes a result and
dispatches it to the next node. This means that all parts of the array, from the ini-
tial inputs to the final outputs are pulsing with data. The findings in the late 70s
and early 80s made it clear that this architecture made it possible to efficiently
compute many basic matrix computations. In other words it is an ideal target for
matrix-heavy applications such as DNNs.

Machine-learning DSAs has seen a surge in popularity in recent years, with
efforts such as DC-CNN [29], and PuDianNao [30]. Research has targeted other
domains as well; such as databases with the database processing units Q100 [31]
and Widx [32], and graph processing with architectures such as the Graphicionado
[33] and GraphPulse [34].

2.3 Reconfigurable Accelerators

Since its birth in 1960 [35], reconfigurable architectures has been used to spe-
cialize hardware to maximize efficiency for a particular program. This hardware
is programmable and a change in a program is realized in hardware. Compared
to ASICs and DSAs, they consist of reprogrammable logic at varying granularity,
ranging from FPGAs that are reprogrammable at the bit-level to CGRAs that are
reconfigurable at word-level. Another benefit is that reconfiguration enables us to
repurpose chip area when we switch applications.

2.3.1 Field-Programmable Gate Array

The most flexible kind of reconfigurable architecture is the FPGA. Flexible in this
context means that it can be programmed to perform any task, from regular com-
putation to simulating complete processor cores fully asynchronously. They are
ultimately programmed by specifying the circuit in Register-Transfer Level (RTL),
which means that the programmer has complete control of the architecture at the
bit-level.

Since this fabric is programmed with RTL it is not accessible to everyone, they
are hard to program [36]. Recent efforts raising the programming level has re-
sulted in High-Level Synthesis (HLS), an abstraction level that enables the pro-
grammer to write application code in C-like or C++-like languages that ultimately
target an FPGA [37], such as Vivado HLS [38]. The main benefit of HLS is that it
makes development easier and saves time when prototyping designs. For fitting
problems HLS can be sufficient to achieve high performance, if carefully crafted.
Producing production-grade FPGA configurations requires hardware knowledge
and a substantial engineering effort.

In terms of efficiency, the main selling point of a FPGA is that it is cost efficient,
compared to an ASIC realization. For certain applications that need a specially
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designed circuit, such as real-time applications, it is hard to beat an FPGA, where
the alternative might be producing a small batch of ASICs. Compared to a DSA,
already deployed FPGAs can be reprogrammed whenever there is a new algorithm
or bug in the design [39]. Using an FPGA to prototype ASIC designs is also a major
use case no other fabric is able to do well — simulating hardware in hardware.

The three main challenges when using FPGAs as accelerators are that (i) they
run on comparatively low clock frequencies, (ii) reconfiguration is slow, and (iii)
require high synthesis time.

FPGAs run on a very low frequency, low hundreds of MHz, depending on
their current configuration, which means that they struggle to gain performance
compared to other hardware architectures. The area overheads are also quite sub-
stantial, as there are a lot of interconnects, and the need for large amounts of
multiplexing logic to enable reconfigurability of the network.

Reconfiguration is slow, currently requiring tens or hundreds of ms [40]. Par-
tial reconfiguration is possible, requiring less configuration time to load configura-
tions on parts of the FPGA. The programmer has to take care not to make programs
that consists of multiple passes that uses multiple different configurations to pro-
duce results, as that will add substantial reconfiguration overhead. An alternative
to reconfiguration is to acquire a larger FPGA.

The act of synthesizing the RTL design to a FPGA configuration, is time con-
suming, often requiring hours and days to complete. This rules out the possibility
of an FPGA to adapt to runtime information, such as new acceleratable program
regions or new applications. Whenever there is a possibility to dynamically extract
parallelism in an already running application, the FPGA will remain idle. It is not
well suited as a dynamically adapting accelerator target in its current form.

2.3.2 Coarse-Grain Reconfigurable Architecture

We have seen that systolic arrays have the possibility of reprogramming the in-
ternal network connecting FUs. A CGRA substitutes the fixed-function FUs with
polyfunctional PEs, making the whole fabric reconfigurable. The effect is that the
CGRA is reconfigurable in the spatial dimension, unlike the systolic fabric of the
TPU.

A CGRA retains a lot of the flexibility we see in the FPGA, but sacrifices bit-
level programmability to improve on all the drawbacks of the FPGA. These are also
the key points that makes CGRAs attractive to pursue as an accelerator backend.
Compared to the FPGA the CGRA can (i) run on higher clock frequencies, (ii)
reconfigure in almost negligible amount of time, and (iii) require low synthesis
time.

Attainable frequency of a CGRA is in the order of GHz, compared to a few hun-
dred MHz in the FPGA. This directly equates to higher performance and promises
of better speedups. If we assume that the power consumption is the same, this
contributes to significant improvements in energy efficiency.

Reconfiguring the whole fabric is completed in 10-20 cycles. The low recon-
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figuration time overhead means that it is possible to reconfigure the fabric multiple
times during a program’s execution with negligible effects on runtime, effectively
meaning little energy overhead. The effect is that more programs are tractable
sources for targeting this kind of architecture. It even means that this architec-
ture is truly reconfigurable in two dimensions, both the spatial dimension and the
temporal dimension, compared to FPGAs that are really only reconfigurable in the
spatial dimension due to its relatively high configuration overhead.

Fitting a program to statically scheduled CGRA consist of two major compiler
steps: mapping and scheduling. This is analogous to the synthesis step for FPGAs,
however comparably much simpler. Mapping is the action of distributing opera-
tions to PEs on the CGRA that support the functionality, that is decide a specific
FU for a PE. If all operations in the DFG can be mapped, we can continue to decide
a schedule. A static schedule is a configuration of the network on the CGRA that
determines how operands flow between the mapped FUs. When operands travel
through the fabric it is imperative that they match latencies and arrive at FUs at
the same time, if not we will quickly reach a state of contention and halt acceler-
ation execution. We can delay operands by e.g. inserting FIFO queues on the PE’s
input ports or send them on round-trips through the network.

The relevant search space for mapping and scheduling operations is relatively
small compared to a comparably sized FPGA. While a CGRA that house 100 PEs
require seconds to map and schedule most programs, an FPGA synthesis would
require hours, if not days, to complete. This opens up arenas such as just-in-time
compilation of schedules for some classes of programs [41].

PEs range from fully reconfigurable at every cycle, the operation it executes is
decided when the data arrives, to reconfiguration of the substrate, or parts of the
substrate. Drawing a parallel to CPUs this shares some characteristics with what
we call dynamically scheduled and statically scheduled. In the case where a PE is
dynamically scheduled, the operation is decided based on e.g. a tag that invokes
the correct FU to operate on the operands that arrives at the inputs along with the
tag. On the other hand, a statically scheduled PE does not have the circuitry to
decide what operation is to be performed on its input operands, and will do the
same operation on whatever inputs are served. A dynamically scheduled PE has
area and power overhead compared to the lightweight statically scheduled PE.

A drawback to the flexibility CGRAs gain over systolic arrays is that each PE has
to house multiple FUs in order to be reconfigurable, which incurs area overhead.
This area overhead is not necessarily a problem, as we are seeing dark silicon all
over the place and might even benefit from distributing the thermal budget over
a larger area [6].

A disadvantage of CGRAs is that the communication network dictates the word
width. This means that operating on anything more narrow than this wastes re-
configurable area. E.g. operating on single bits will result in terrible efficiency,
wasting area and power. To some extent it is possible to pack operands into words
and use the wide operations, but this is not feasible for all problems. Some archi-
tectures house FU variants that accepts subwords, so that two inputs of 64 bits
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can translate into e.g. 4 byte-operations or 2 2-byte operations, as with an adder
that does 4 adds at the same time, consuming 8 bytes as input and produces 4
bytes as output [12]. This is essentially vectorization disguised in a single word.



Chapter 3

Architecting CGRA-based
Accelerators

In this chapter we will introduce a set of architectures that is preliminary to the
CGRA architecture we will use for experiments in Chapter 6. We start off by in-
troducing systolic arrays, that enjoy high performance and high efficiency, trading
off programmability. Then we describe static dataflow, which is very much like a
programmable systolic array, at a marginal cost of efficiency. Finally we describe
dynamic dataflow, that is dynamically scheduled, but less efficient than the former
architectures.

To program these architectures we define a program and extract a DFG based
on a set of operations that produce results. These operations have to be mapped
to the PEs of the fabric. For systolic arrays, Figure 3.1a, this mapping is etched
into silicon and can not be changed, we refer to a specific configuration of a PE
as an FU. For the dataflow processors we can decide which FU (operation) a spe-
cific PE should assume; statically for static dataflow, see Figure 3.1b, and dynam-
ically for dynamic dataflow, see Figure 3.1c. Systolic arrays and static dataflow
has a strict schedule that perfectly match operand latencies, while the dynamic
dataflow match operands dynamically and execute when two matching operands
enter the PE. For systolic arrays this schedule is often etched in silicon and is not
programmable.

3.1 Systolic Arrays

The preliminary architecture idea towards building CGRAs stems from systolic
arrays, the invention by Kung and Leiserson, that enabled high-throughput accel-
eration by using parallel-performance geared network and processing structures
[28]. It excelled in matrix-operation throughput, which has recently become im-
portant in speeding up DNN learning and inference. Especially so through Google’s
TPU. More recent Amazon started offering high-performance inference instances
running on their in-house AWS Inferentia architecture, utilizing systolic arrays to

15



16 L. A. Eggen: Towards Efficiently Utilizing Coarse-Grained Reconfigurable Accelerators

FU FU FU

FU FU FU

FU FU FU

(a) Systolic array

PE PE PE

PE PE PE

PE PE PE

(b) Static dataflow

PE PE PE

PE PE PE

PE PE PE

Issue
Logic

Issue
Logic

Issue
Logic

Issue
Logic

Issue
Logic

Issue
Logic

Issue
Logic

Issue
Logic

Issue
Logic

(c) Dynamic dataflow

Figure 3.1: Grades of configurability from systolic array to dynamic dataflow. An
FU houses a specific operation, a PE houses multiple FUs that can be configured
statically for static dataflow, and dynamically for dynamic dataflow.

gain energy efficiency and higher performance [42].
A systolic array consists of FUs that have fixed functionality and operate in lock

step. Each of these units can receive operands, compute a result, and emit a result
each cycle. The specifics will vary between implementations, but the general idea
is that data flows into the fabric and pulses through the array of FUs.

Kung and Leiserson mention that they reach optimal performance for matrix-
multiplication with hexagonically shaped FUs. For matrix-vector operations mul-
tiplication they found that rectangular FUs fared better. This means that a sin-
gle fabric will not be able to optimally accelerate every kind of application, even
though one of the inputs are the same.

This also requires some changes to the internal network as well. Fully con-
nected meshes will differ by the number of inputs and outputs. E.g. six connec-
tions for each FU when they are hexagonal and four connections when they are
rectangular.

Even though the inherently fixed nature of systolic arrays makes them very in-
flexible, there exist non-pure systolic arrays, such as WARP [43] and its ancestors.
These efforts introduced programmable networks to make the substrates more
flexible and enabled them to be targets for multiple applications and domains.

The two main problems with systolic arrays are availability and usability. To
our knowledge there are only two commercially available architectures, and these
are just very recently become available to the public and are cloud-based instances
offered by Google Cloud and AWS. As for programmability they have been hard
to program in the general case, as the specific acceleration source has to be specif-
ically optimized for the specific target systolic array.

We believe that the architectural idea of spatial computing is a candidate to
reach further than matrix-operation acceleration. As both Google and Amazon
have invested significant resources in development and large-scale development
of machine-learning processors, this field in computing might get some needed
traction outside of these domains as well.
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3.2 Static Dataflow

Dataflow computers were extensively researched in 1970-1980, starting with static
dataflow computers [44] [45]. They are programmed with data-flow languages
that makes it possible to represent programs as graphs which are executed in a
data-driven manner. This means that an operation fires when all input operands
are ready, producing an output that is consumed by subsequent operations in the
graph.

These DFGs are built as directed graphs that start with inputs and end with
outputs. The nodes of a graph are operations, such as addition, multiplication and
division. An example DFG is shown in Figure 4.3a. This graph has two inputs, a
and b, that is the input for the addition operation, and c is the output of the graph.
The graph is the program the dataflow computer executes. When inputs a and b
are ready, they have values, they are sent to the adder and the sum is finally output
from the program.

The mapping of this function to the dataflow substrate is in principle arbitrary.
Any PE can compute the addition and will do so when two operands with a match-
ing tag is ready. As an example, assume there is only one PE, then we can map
the addition to that PE and feed it with data and expect outputs to be produced.

The supporting hardware requires scheduling of operations to be done stati-
cally, when compiling the program. The static dataflow computers does not have
structures that support internal flow of control. This sounds a lot like the classic
systolic array. We do sacrifice some efficiency and area to gain massive improve-
ments in flexibility and ability to reuse the area for multiple types of applications.
In Figure 3.1b we see that the area is small and we gladly accept the flexibility.
Specifically, the modern DFG languages can be used to program both a systolic
array and a static dataflow computer, but we can not reprogram the systolic array
when it is already produced.

When we migrate this terminology, programming model and execution model
to the CGRA domain, we will refer to this fully reconfigurable systolic array as a
systolic CGRA. A systolic CGRA has no control capabilities in the PEs for maximum
efficiency, and rely fully on a more complex network to route data as dictated by a
statically determined schedule. Flexibility in the network can be achieved by e.g.
lightweight switches between all PEs.

Scheduling of static dataflow is NP-hard and requires extensive use of heuris-
tics [46]. When we have a DFG we need to map it to the available PEs, route data
between them and ensure that we time the values to arrive at PEs at the same
time. If the fabric does not house enough PEs required by our DFG, we can not
map the program. If we can map the program, but not transmit the data between
the PEs, we can not route the program. If we can route, but not make operands
arrive at PEs at the same time, we can not schedule efficiently and will quickly
have to deal with network contention.
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3.3 Dynamic Dataflow

We can enjoy very high efficiency and very high performance on static dataflow
for amenable workloads. We can not, however, expect to run anything more exotic
on a static dataflow computer than we can on a systolic array. A natural evolu-
tion of the static dataflow computer was adding dynamic scheduling capabilities
to achieve more general parallel-compute fabrics, see Figure 3.1c. This led to dy-
namic dataflow computers, such as the Manchester Dataflow Computer [47].

Another important aspect of dynamic over static dataflow computers was that
they could handle multiple execution contexts in the form of reentrant code as
they could tag operands and differentiate between owning processes, meaning
that multiple programs could use the dataflow unit with the same configuration
at the same time without interfering with each other.

The execution process of a real tagged-dataflow architecture is quite involved
and the MIT tagged-token architecture is thoroughly explained in [48]. Here we
give a brief overview of a basic dynamic dataflow computer. A network con-
nects PEs to facilitate communication between the nodes. A common approach
to achieve the dynamic aspect is to attribute input data with a tag. This tag is
used to match operands, i.e. when an operand enters a PE it waits for another
operand with a matching tag before the operation they are attached to executes.
The tag also matches an operation, which decides the operation to be executed
on the operands.

On its own it sounds like dynamic dataflow only contributes hardware com-
plexity on top of static dataflow. However, with dynamic dataflow we are now
able to accelerate code that inhibits parallelism, but does not have regular mem-
ory accesses or data-dependent loop-counter variables. An example is Code list-
ing 2.3, This is not possible to compute efficiently, or sometimes at all, in pure
static dataflow as we do not have information about i before we compile the pro-
gram and can not infer j to efficiently decide on a good vectorizing scheme to
account for the triangular stream pattern. With dynamic dataflow we also get
dynamic scheduling which lets us compute these workloads.

More support in the hardware makes it easier to schedule applications, at
the cost of area and increased hardware complexity. This hurts the efficiency of
programs that do not need this capability. In the next chapter we look into a state-
of-the-art CGRA-based accelerator and how it balances this tradeoff.



Chapter 4

REVEL: A CGRA Accelerator Case
Study

The REVEL architecture aims to replace multiple ASICs that target the IoT and
5G workloads [12]. The architecture combines both static dataflow and dynamic
dataflow, specifically a tagged dataflow. This hybrid CGRA has coined the terms
dedicated region for the reconfigurable static-dataflow region and temporal region
for the dynamic-dataflow region. A combined architecture that can house highly-
optimized vectorized code in the dedicated region and keep non-critical code run-
ning in the temporal region.

We define non-critical code as code that is not on the critical path, i.e. not
important for overall throughput of parallel execution. Two examples are high-
latency operations and high-latency sequences of code in the outer loop, such as
the square root operation in the outer loop of Code listing 2.3. The outer loop
can be scheduled entirely to the temporal region to execute concurrently, while
the inner loop can be vectorized and be scheduled to the dedicated region for
maximum throughput and efficiency.

4.1 Stream-Dataflow Architecture

Stream-Dataflow Architecture (SDA) is an architecture designed from the ground
up [11], based on the common efficiency features of state-of-the-art DSAs [15],
we introduced in Section 2.2.2; concurrency, computation, communication, data
reuse and coordination. This architecture is the base of Softbrain, an implemen-
tation that uses a CGRA as its reconfigurable substrate. The CGRA is an entirely
dedicated region.

The novelty of SDA is that the architecture combines a programmable stream
interface with a reconfigurable computation substrate. To execute programs, it
uses a light-weight control core to interpret a program that dispatches commands
to streaming units. The streaming units are responsible for moving data between
memory units and the CGRA. The memory units are the memory system, an

19
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Figure 4.1: REVEL compiler toolchain. A C++ w/pragmas program and a CGRA
configuration is the input to the compiler. The compiler produce a binary the
control core executes, and a schedule to configure the CGRA. The simulator loads
the CGRA configuration and executes the binary, which loads required schedules
on demand.

architecture-local scratchpad, and a recurrence stream that feeds data from the
CGRA outputs to its inputs.

The word width is 64 bits, and the network and all PEs are optimized to read
64 bits every cycle. There is a vector-port interface surrounding the CGRA. It ac-
cepts multiple memory widths, allowing us to communicate up to 512 bits per
vector port, in a granularity of up to 8. This means we can vectorize memory
access and read 8 64-bit operands.

Compared to DSAs the SDA is more general in that it has a reconfigurable
datapath and reconfigurable memory streams. While a DSA is the target for a
single domain, the SDA can in principle be a target for multiple domains. We see
the SDA as a generalized DSA.

The SDA achieves concurrency by spatially distributing work, e.g. by unrolling
multiple inner-loop pipelines. The CGRA houses specialized FUs inside the PEs
to compute more efficiently. Communication inside the CGRA is efficient, and
streaming data to and from memory overlaps IO and computation, transforming
them to concurrent actions. Recurrence streams enables immediate data reuse,
and a scratchpad eliminates most off-chip memory accesses related to data reuse
with a larger reuse distance. Finally, coordination is specialized by having a static
schedule when computing on the CGRA.

4.2 Reconfigurable Vector Lanes (REVEL)

The REVEL architecture builds on SDA, and introduces a programming model and
execution model that combines two types of PEs on the same fabric, as illustrated
in Figure 4.2. The figure illustrates the complete concept, with multiple lanes of
execution. We consider only on lane in this work, and we refer to Vector Lane
1 in the figure as the CGRA. Hence, there is no shared scratchpad or XFER ele-
ments that would otherwise act as lane-to-lane communication facilitators, and
the vector-stream control core produce commands for only Vector Lane 1.

Pink nodes in the DFGs are targeting the dedicated region, the pink area in the
CGRA. Complementary the purple DFG nodes represent nodes that target the tem-
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Figure 4.2: The REVEL architecture. The figure is reproduced from [12].

poral region, the purple region in the CGRA. In Figure 4.2, 1. Inductive Dataflow
Model shows how a multi-DFG configuration can be modeled. Here, for each el-
ement the temporal region produce, the dedicated region will consume that ele-
ment n− i times.

In 2. Hybrid Systolic-Dataflow Arch. we observe that the dedicated region is
statically mapped with one FU per PE. Since the CGRA is small and house only
one temporal PE, all of the temporal operations are mapped to a single PE that
dynamically schedules its execution. 3. Vector-Stream Control is not relevant, as
we do not vectorize streams across lanes. The architecture do vectorize streams
for each CGRA, so we still benefit from vectorized streams.

The idea is that more programs can be accelerated efficiently on a hybrid ar-
chitecture than on purely dedicated CGRA. The REVEL architecture lends itself to
distributing work to multiple, similar CGRAs. In this work we will not explore this
ability, we are only interested in single-fabric mapping and scheduling.

The major benefit from adding a temporal region is that the mapping is easier,
the critical paths in the computation can be mapped to the highly efficient dedi-
cated region of the CGRA, while we can map the non-critical parts to the temporal
region. An example is a long-running (chain of) code in the outer loop, such as
for the benchmark qr_q_D that has multiple divisions and square root operations
in the outer loop. This benchmark also has the inductive dependency property,
where the induction variable of the inner loop is dependent on the outer loop’s
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Instruction Bitwidth #Operands #Outputs Latency Throughput

Add8 8 2 1 1 1

Add16 16 2 1 1 1
Mul16 16 2 1 1 1

Add32 32 2 1 1 1
Mul32 32 2 1 1 1

Add64 64 2 1 1 1
Mul64 64 2 1 1 1

Add16x4 64 2 1 1 1
Mul16x4 64 2 1 1 1

Add32x2 64 2 1 1 1
Mul32x2 64 2 1 1 1

Table 4.1: A sample of operations that can be allocated to a PE in REVEL’s recon-
figurable substrate

induction variable, see Code listing 2.3 for an example.
The programs we run on REVEL are compiled by the steps shown in Figure 4.1.

The compiler toolchain takes two inputs, the source code of the program we want
to accelerate and a CGRA configuration. As noted in Section 2.1.2, we program in
C++with #pragma directives to annotate where we want streams and generation
of an offloadable accelerator (schedule) and a binary that the control core will
execute. Currently all execution is simulator based.

As an example we briefly describe the #pragma directives, and process of
compiling the dot-vector function in Code listing 2.2. #pragma ss config on line
3, dictates that the following block is offloadable. #pragma ss stream on line 6,
is a directive to allocate a memory stream based on the following loop header.
#pragma ss dfg dedicated unroll(4) on line 7, asks the compiler to analyze
the following loop for dependencies and build a DFG of the contents, if possible,
and makes sure to unroll the pipeline four times. The compiler then generates a
mapping and schedule of the DFG, given the CGRA configuration.

REVEL’s reconfigurable substrate is coarse. The narrowest data element is 8
bits and widest is 64 bits. The memory interface and the internal network is op-
timized for communicating and computing on 64-bit operands. A high grade of
utilization is reached when the width of both the network and currently config-
ured FU is saturated by data traveling through the substrate.

Most operations that can be allocated to a PE is capable of operating on mul-
tiple 8-bit, 16-bit and 32-bit operands at the same time. All communication from
PE to PE is 64-bit wide, meaning that consolidating multiple smaller operands in
one package results in better utilization of the internal network. A non-exhaustive
list in Table 4.1 illustrates a few combinations.
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(b) Unrolled Dataflow Graph.

Figure 4.3: Difference between a single pipeline and unrolling the vector addition
loop by a factor of four.

Add8 is the simplest function and adds two 8-bit operands. This operation is
not very efficient, as it only operates on 1/8 of the available internal-network
bandwidth. Allocating an Add8 to a PE should be done only when necessary.
Add16 and Mul16 takes two 16-bit operands and is slightly more efficient than
its 8-bit counterpart. Then comes 32-bit versions and lastly 64-bit versions. 64-bit
versions are always most efficient in terms of communication.

To overcome inefficiencies when computing with narrow operands, there exist
operations that can consolidate computation of multiple narrow operands at the
same time. Add16x4 and Mul16x4 can calculate four 16-bit operations at the same
time, in the same PE. This results in complete utilization of the network to and
from that PE. The same goes for Add32x2 and Mul32x2, computing two 32-bit
operations. The last four operations has two 64-bit inputs, that is distributed to
multiple binary operations operating on two 16-bit or 32-bit operands. The out-
puts are 64-bit wide, keeping the order of the incoming operands. This resembles
operation vectorization, albeit implicit.

We illustrate the DFG of the vector addition function from Code listing 2.1 in
Figure 4.3. In Figure 4.3a we have a single pipeline, which means we have no
explicit parallelism. To express parallelism we unroll the pipeline four times and
end up with Figure 4.3b. We see that we can easily extract parallelism from vector
addition by arbitrary unrolling.

4.3 Putting it All Together: Accelerating a Dot Product
Kernel

In this example we will show steps on how to map the dot product function in Code
listing 2.2 to the dedicated region of a sample REVEL instance. First we show the
naive mapping of a single iteration. Then we expand the DFG by unrolling the
computation to increase performance. To increase efficiency we add reduction of
partial sums to the DFG, before we finish with vectorized data streams.

Without the loss of generality, We assume that the REVEL instance is organized
as a grid with a total of 9 PEs that can be configured to any form of FU. Accounting
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Figure 4.4: Naive vector dot product. Targeting a 9-element CGRA.
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Figure 4.5: Unrolled vector dot product. Targeting a 9-element CGRA. Unrolling
factor is 4 to fill the CGRA.
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Figure 4.6: Unrolled and reduced vector dot product. Targeting a 9-element
CGRA.
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Figure 4.7: Unrolled, reduced and memory-interface vectorized vector dot prod-
uct.

for limitation in what can be mapped to a PE makes mapping more complicated in
practice, but does not change the underlying principle. The PEs can receive data
from any direction, but can only deliver data down to the right (south-east).

Naive mapping: Figure 4.4b shows the naive mapping of the DFG in Fig-
ure 4.4a. There are no surprises here, we stream input data to the input ports,
calculate a partial sum and accumulate the result before releasing the result when
the input stream is exhausted. To successfully compute the dot product we need to
invoke a CGRA instance as many times we read input data from memory, totaling
N times.

Unrolling: Figure 4.4b illustrates that the naive approach poorly utilizes the
available resources on the CGRA. With unlimited resources we could unroll this
DFG indefinitely. We are limited to a unrolling the loop by a factor of 4, since the
CGRA has only 9 PEs. The resulting DFG and mapping is showed in Figure 4.5b
and Figure 4.5a, respectively. By unrolling we improve performance of the dot
product computation by 4x, reducing computation time and number of invoca-
tions to N/4 compared to the naive approach.

Reduction: We observe that the results of the unrolled computations are writ-
ten to memory, and that summing these partial results have to be done in the CPU,
or in another CGRA instance that handles reduction only. In any case we have to
communicate the results to the memory system, but we can do better. By intro-
ducing reduction in the DFG, Figure 4.6a we can retain the state of the partial
sums and total accumulation inside the CGRA, Figure 4.6b. This means we read
N ∗ 2 input operands, N from a and N from b, and write to the memory system
only once, the value of dot, when the complete dot product is produced. We gain
efficiency by moving computation nodes from the CPU to the DFG.

Vectorization: To squeeze even more efficiency from the system we turn our
attention to the memory interface. Until now we have read data one operand
at a time for each of the input ports. To do this predictably we had to partition
the memory reads over, possibly, non-contiguous memory. Considering access pat-
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terns that can affect the memory system efficiency and performance, we can not
guarantee efficiency without vectorizing memory access. The underlying memory
system, cache-block size, eviction policy, memory banks, etc. is out of our control
and we can not rely on the memory system to handle memory efficiently [49].

Therefore we choose to consolidate memory accesses by streaming all input
data contiguously to two vector input ports that will handle distribution of the
operands to the correct FUs — for this example this means that the contiguous
memory for both vectors a and b are streamed to wide-vector input ports of the
CGRA. The resulting DFG, Figure 4.7a, shows a single entry point for each of the
inputs a and b. The output is not vectorized, because acc is only one data element.
We see that the compute units are mapped exactly as before, so the only difference
is that inputs are delivered from two 4-operand-wide input ports instead of eight
single-operand ports, as shown in Figure 4.7b.



Chapter 5

Experimental Setup

5.1 Simulator

We use a modified gem5 [51] provided by the PolyArch Research Group at UCLA,
[12], that is available at [13]. All configuration sizes, NxN, are modeled with a
0x0, 1x1, ..., nxn temporal region located at the bottom right of the configuration.
From now on we will refer to a CGRA size as the letter c followed by a number, e.g.
c5 will refer to a CGRA of size 5x5. We abbreviate temporal regions in the same
way, with the letter t, e.g. t3 represents a temporal region of size 3x3. Combining
the two we get e.g. s8-t2, meaning a CGRA of size 8x8 housing a temporal region
of size 2x2. In Table 5.2 we have listed the number of PEs for all configuration
sizes. All variants of the configuration size, i.e. different temporal-region size, has
the same spatial distribution of PEs.

We model multiple CGRA configurations, ranging from size 5x5 up to 10x10.
All configurations are quadratic and an increase in the size appends PEs at the
right edge to the right, and PEs on the bottom edge downwards, as illustrated
in Figure 5.1. s5-t2 in Figure 5.1a is a CGRA of size 5 with a temporal region
of size 2, and Figure 5.1b shows the s6-t2 configuration, with arrows to show

Parameter(s) Value(s)

Vector ports
Width 2x512, 2x256, 1x128, 1x64 bit
Depth 4-entry FIFO

Scratchpad
Size 8 kB
Bandwidth 512 bits/cycle

Number of lanes 1

Control core
RISCV [50], 5-stage, single-issue 16kb d$,
modified w/stream-command instructions

System cache L2 cache 2048 kB

Table 5.1: Simulator Setup

27
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Configuration #Add #Mul #sqrt/div

s5 10 12 3
s6 14 19 3
s7 21 25 3
s8 27 34 3
s9 36 42 3
s10 44 53 3

Table 5.2: Number of PEs per CGRA configuration
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(a) CGRA configuration s5-t2, blue
PEs are dedicated and brown are
temporal. +: add, *: multiply, S:
sqrt/div.

(b) CGRA configuration s6-t2, blue PEs are ded-
icated and brown are temporal. The grey area
illustrates the expansion over s5-t2. +: add, *:
multiply, S: sqrt/div.

Figure 5.1: CGRA configurations and how they grow. They grow to the right and
downwards, replicating the add and multiply PEs. The sqrt/div PEs are always
situated bottom-right.
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PolyBench MachSuite DsP

2mm crs fft
3mm ellpack qr_r
atax gemm qr_q

gemm md mm
gemver stencil-2d

gesummv stencil-3d
mvt

Table 5.3: Benchmarks

direction of replication, while the gray area shows the difference between the two
configurations. Note that the three sqrt/div PEs stick to the bottom-right corner of
the configuration. To enable consistent scaling to larger CGRA sizes we designed
a basis layout in s5 that allows for the described growth pattern.

5.2 Benchmarks

We have listed the benchmarks that are run on the simulator in Table 5.3. Some
of the benchmarks in the different suites have the same names. To distinguish
between these, and make it easier to reference a particular benchmark from a
specific benchmark suite, we add a prefix consisting of an underscore followed
by an uppercase letter, the first letter in the benchmarks suite: _M for MachSuite,
_P for PolyBench and _D for DsP. E.g. 2mm_P is the benchmark 2mm from the
benchmark suite PolyBench.

In this collection of benchmarks there are mostly programs that normally ben-
efit from regular parallelization, such as matrix multiplication and stencil applica-
tions: 2mm_P, 3mm_P, atax_P, gemm_P, gemver_P, gesummv_P, mm_D, mvt_D,
stencil-2d_M, stencil-3d_M. They are particularly suited for streaming and the
computation regions are typically easy to spatially distribute.

The DsP suite is a collection of benchmarks crafted by the PolyArch group
targeting their REVEL paper [12]. In this suite one benchmarks, qr_q_D, specifi-
cally target the temporal region. The benchmarks are collected from the compiled-
workload collection at [13] and are mostly untouched. gemm_M is slightly mod-
ified to make it produce correct results, see Appendix A for the modified imple-
mentation.

5.3 Metrics

The simulator can report metrics for a specific run-time region. This region of
interest is programmatically set to enclose the computational kernels so that we
measure only the CGRA-specific parts of the benchmarks, leaving general system



30 L. A. Eggen: Towards Efficiently Utilizing Coarse-Grained Reconfigurable Accelerators

overheads out of the data collection. We report the number of cycles needed to
execute the region of interest.

As a baseline we choose the baseline CGRA configuration of Weng et al. [12],
namely the revel-1x1 configuration (our s5-t1 configuration is a slight variation
of the baseline that enables more consistent scaling to larger CGRA sizes). To
compare across different sizes and across benchmarks we chose to normalize all
data to the baseline configuration.



Chapter 6

Results

In this chapter we quantitatively analyze the CGRA performance to complement
and validate the qualitative analysis in Chapters 2 to 4. More specifically, we first
examine the performance of purely dedicated CGRAs, i.e. all reconfigurability is
mapped and scheduled statically. Then we introduce a temporal region to identify
potential gains in performance and mappability.

6.1 Performance versus CGRA Size

Figure 6.1, 6.2, and 6.3 show execution time for the region of interest normalised
to the REVEL baseline across the PolyBench, MachSuite, and DsP benchmarks
suites, respectively. The REVEL baseline is not shown in the plot as its normalized
performance is always one.

Benchmarks that normally benefit from regular parallelization1, such as ma-
trix multiplication and stencil applications show that the performance is virtually
the same for all configuration sizes. A DFG will map to a CGRA whenever there
are sufficient computational resources on the fabric. All of our results shows that
there are no significant gains in increasing the number of mappable PEs by in-
creasing the size of the reconfigurable fabric. This could mean that the memory
system is operating on its limit, providing maximum bandwidth. This is, however,
unlikely, as all benchmarks do not share memory access pattern.

From the perspective of mappable CGRAs it is evident that as long as a sched-
ule can be found for a DFG, the same schedule latency is attainable regardless of
CGRA size. This is also the case for benchmarks that require frequent reconfigu-
ration, such as fft_D, incurring higher total configuration, fill and drain overhead.
The overheads of filling and draining the pipelines are the same for all configura-
tions meaning that there is no difference in schedule latency. If not, there would
be aggregate differences for larger CGRAs when we could have made schedules
with lower latencies.

12mm_P, 3mm_P, atax_P, gemm_P, gemver_P, gesummv_P, mvt_P, stencil-2d_M, stencil-3d_M,
and mm_D in Figure 6.1a, 6.1b, 6.1c, 6.1d, 6.1e, 6.1f, 6.1g, 6.2e, 6.2f, and 6.3b, respectively

31
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Figure 6.1: Benchmarks from the PolyBench suite



Chapter 6: Results 33

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5 t6 t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7 t8 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s5 s6 s7 s8 s9 s10

0

1

2

3
N

or
m

 E
xe

c 
Ti

m
e

(a) crs_M

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5 t6 t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7 t8 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s5 s6 s7 s8 s9 s10

0

1

2

3

N
or

m
 E

xe
c 

Ti
m

e

(b) ellpack_M

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5 t6 t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7 t8 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s5 s6 s7 s8 s9 s10

0

1

2

3

N
or

m
 E

xe
c 

Ti
m

e

(c) gemm_M

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5 t6 t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7 t8 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s5 s6 s7 s8 s9 s10

0

1

2

3

N
or

m
 E

xe
c 

Ti
m

e

(d) md_M

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5 t6 t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7 t8 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s5 s6 s7 s8 s9 s10

0

1

2

3

N
or

m
 E

xe
c 

Ti
m

e

(e) stencil-2d_M

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5 t6 t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7 t8 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s5 s6 s7 s8 s9 s10

0

1

2

3

N
or

m
 E

xe
c 

Ti
m

e

(f) stencil-3d_M

Figure 6.2: Benchmarks from the MachSuite suite
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(d) qr_q_D

Figure 6.3: Benchmarks from the DsP suite

For larger CGRAs, reconfiguration overheads could be mitigated by swapping
in the required mapping in other parts of the fabric, i.e. partial reconfiguration.
Otherwise we will not be able to execute multi-pass programs on a static dataflow
without writing large amounts to memory between passes, or carefully design
data streams so that we can store parts of the data in the scratchpad.

6.2 Performance versus Temporal Region Size

We now turn our attention to how performance evolves when the temporal region
varies. All benchmarks are run with a temporal region of size 1, and every increase
in size until the maximum size for each configuration. E.g. for a CGRA of size 5
(s5) we run all benchmarks on configurations s5-t1, s5-t2, s5-t3, s5-t4, and s5-t5.
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We find that none of the benchmarks increase their performance when the
temporal region increases in size. This is not surprising on its own, if it were not
for the fact that performance starts to degrade when the ratio of temporal-to-
dedicated-region increases.

Regions that are not explicitly marked temporal can be mapped to the tem-
poral region when the dedicated region is too small to house the complete DFG.
This sometimes results in that the mapping algorithm chooses to overprovision
PEs with multiple FUs nodes (operations in the DFG). For small fabrics where
resources are scarce, this is a viable option to keep data in the fabric to reduce
communication overhead, and possibly achieve higher efficiency than a GPP al-
ternative. For fabrics that would otherwise be able to spatially distribute all oper-
ations to the temporal region we would expect to achieve the same performance
as a comparably sized dedicated region.

When the temporal region becomes large, or the configuration is entirely tem-
poral, performance, surprisingly, tends to degrade by a factor of about 2 to 3. To
illustrate why this is the case, we examine gemm_P. For s5-t0, s5-t1, s5-t2 and
s5-t3 the performance is the same as the baseline. There are two DFGs running at
different times in this benchmark, they are swapped in when needed, and the one
with the most nodes has a total of 9 nodes: 5 multipliers and 4 adders. This DFG
maps to a total of 9 FUs on the CGRA. The number of available temporal PEs eats
into the number of available dedicated PEs and the total number of dedicated PEs
in the s5-t3 configuration is 5 ∗ 5 − 3 ∗ 3 = 16. We observe that the DFG is still
spatially distributed to the dedicated region.

However, when the temporal region grows more, we observe that the perfor-
mance degrades. The s5-t4 consists of 5 ∗ 5− 4 ∗ 4= 9 dedicated PEs, of which 8
are multipliers and 1 is an adder. We see that we are missing 3 adders to map this
entirely to the dedicated region and the mapper chooses to allocate temporal PEs
to supply enough resources to house all FUs.

In these cases the nodes in the DFG is distributed over the temporal region,
and we expect to achieve the same performance as with a pure dedicated region,
at the cost of increased power dissipation. However, we are not seeing this. When
inspecting the final map and schedule, we observe that two adders are allocated
to the same temporal PE. This will serialize execution and double total runtime,
which is what we observe in Figure 6.1d. The same is true for s5-t5, the final map
and schedule has allocated three multiplications to a single PE, which again leads
to serialization and a trifold in execution time compared to an optimal schedule.

Sometimes, overprovisioning a temporal PE can be beneficial when it will pro-
duce more output data than subsequent stages are able to consume in the same
amount of time. It can be used as a means to delay the operands, which otherwise
would be realized in FIFO queues or detours in the CGRA network. Computa-
tion requires less energy than moving data around, so this might even offset the
negatives of temporal execution.

For benchmarks that have DFGs that fit in the dedicated region alone, we find
no benefits when adding a temporal region. In some cases it can free up resources
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in terms of PEs, but we have to remember that a dataflow PE is 5.8x the area of a
systolic one. Hence, the overheads of the dataflow PE outweighs their benefits in
this case.

By adding a temporal region we gain the ability to map a wider set of problems
to the reconfigurable fabric, at the cost of higher power consumption and larger
area footprint. Given that we can reduce or get rid of external communication,
roundtrips to memory and fallbacks to a GPP, these tradeoffs are worth it.

6.3 Explicit Temporal Region

For qr_q_D, Figure 6.3c, the only benchmark that have a code region that is pro-
grammatically specified to require a temporal region in order to map to the ar-
chitecture, we observe that it cannot map to the purely dedicated configurations,
even for c10-t0.

For qr_q_D, one reason is that there are four division operations and two
square root operations in one of the DFGs. That requires at least six PEs support-
ing those operations, while all our configurations only house 3. In the temporal
region this is handled by dynamic scheduling and temporal sharing of resources,
but the dedicated units do not have this ability, hence the lack of mappability.



Chapter 7

Towards Scalable CGRA
Accelerators

Chapter 6 shows that the current state-of-the-art approaches do not scale to larger
CGRA architectures. While limitations of the simulator infrastructure meant that
we could not empirically validate improvements, we have attained a better under-
standing on important aspects to consider how to achieve scalable CGRA accel-
erator performance — and the aim of this chapter is to make these observations
explicit.

We illustrate in Figure 7.1 the important aspects that drive performance and
efficiency when accounting for the interplay between application, and mapping
and scheduling, and the architecture. We need to consider limitations and oppor-
tunities between mapper/scheduler and architecture, (3) and (4) in the figure,
and the common limitations and opportunities between the toolchain and the ap-
plication, (1) and (2) in the figure.

Considering that the programming interface is similar to other parallel pro-
gramming approaches, we are confident that we are able to express sufficient
parallelism in the application and communicate it to the toolchain, (1) in the fig-
ure. However, when we try to unroll and vectorize benchmarks in excess of the
original factors we find in the benchmarks, we fail to produce results with the
toolchain and simulator.

Specifically, we wanted to examine benchmarks that theoretically have no
computational limits in parallelism, such as mm_D, to explore memory bandwidth
limitations (the memory wall). We expected that, as we had expressed a high level
of parallelism in (1), that we would enjoy optimizations at the framework level
for increased efficiency. We encountered problems as a combination of limitations
in the scheduler and in the CGRA configurations. To begin with we tried to naively
unroll by larger factors, i.e. express even more parallelism (1), but scheduling did
not succeed. Then, we added more vector ports to the configuration, addressing
shortcomings in number of vector ports (4), to allow the scheduler more freedom
in where to direct the data streams. We had no luck. Finally, we increased the size
of the CGRA configuration (4), but the scheduler was not able to find a viable
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Figure 7.1: Drivers of performance and efficiency in the application vs map-
ping/scheduling and architecture.

schedule with more degrees of freedom.
What should have been opportunities in point (4) materialized as limitations

when they arrived at the mapper and scheduler stage. We realize that a larger
CGRA might increase the search space of the mapper and scheduler, but even
DFGs that saturate the CGRA at smaller sizes suffer. It is likely that vector ports
are the main suspect, as it is this interface that most often hinders successfully
mapping and scheduling an application.

It turns out that the heuristics used to map and schedule a DFG to the CGRA
are insufficient to map anything that is wider (higher unrolling factor) than what
can be accommodated by two 8-operand vector ports. When we try to schedule
more than 16 vectorized input operands in total, the scheduler struggles to find a
schedule, and ultimately fails. One could assert that this is a matter of letting the
scheduler run for longer, but we are confident that stopping the scheduler after a
week’s worth of work without success is sufficient evidence that it will not find a
schedule. At least when compared to the normal schedules, which it decides on
in a matter of seconds.

To elaborate on (3), we have to look to our results from Chapter 6 to see op-
portunities and limitations. If the CGRA is entirely dedicated, the scheduler has
to decide on a static schedule. If portions of the CGRA is temporal, the mapper
and scheduler has to figure out whether the application can map to the dedicated
region or if it has to rely on dynamic scheduling capabilities of the temporal re-
gion to offload the program. First, an edge case is for the scheduler to move all
scheduling to runtime and communicate to the mapper that it can map the DFG to
the CGRA at free will. The worst case being that it maps all operations to a single
temporal PE. This counters intuition, however a similar approach is sometimes
taken when the dedicated region lacks resources and parts of a DFG has to be
mapped to the temporal region. We would expect that the mapper and scheduler
iteratively improved on each other to attain high performance.

If an application does not inhibit characteristics of a typically acceleratable
program, as described in Section 2.1.1, we expect (1) to be a limitation. In these
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cases we should not strive to compute the application on the CGRA. If the algo-
rithm can be rewritten to host these characteristics it is a viable candidate. Care
have to be taken not to exclude applications based on a first-sight basis. At least
currently, the programmer plays the sole role of application analysis. As for (2)
what we probably will encounter is classes of problems that should be able to
attain performance on this architecture, but insufficient mapping and scheduling
algorithms, limits how far we can reach.





Chapter 8

Conclusion and Future Work

In this work we have scratched the surface of scaling applications to exploit avail-
able parallelism and utilize CGRA resources. We find that attaining high perfor-
mance requires that the program formulation, the mapping and scheduling al-
gorithms, and the CGRA accelerator architecture all align favorably. Due to the
high complexity in the mapping and scheduling problem, we are not able to gain
efficiency when we try to express more parallelism than the original REVEL work-
loads. We have shown empirically that increasing the CGRA size alone does not
contribute to execution scalability, neither does introducing dynamic dataflow in
isolation. Software-hardware cooperation is key to exploit the expressed paral-
lelism, although we are not able to quantitatively show this, even when we use
the current state-of-the-art compiler and simulator framework.

This thesis has raised more questions than it has answered, opening a vast
amount of research opportunities. We find the following avenues of further work
particularly interesting:

• Currently the REVEL architecture acts as a bimodal architecture that either
computes spatially distributed programs at high performance and efficiency
in the dedicated region, or utilize a less efficient temporal region to exploit
other forms of less efficient computations. An opportunity here is to impose
a static schedule onto the temporal region to fully exploit the temporal par-
allelism we can extract from pipelining computation. This would eliminate
all serialization of performance-critical code we have encountered in this
work, albeit at the cost of area.
• Reduce power dissipation impact on remapping to the temporal region. We

can degrade the temporal PE by clock gating certain issue logic and possibly
register files to make the system more efficient.
• Update scheduler heuristics so that we can express more parallelism in the

application source code. This will require the ability to take into account
that unrolling can be wider than a vector port. Distributing memory streams
to multiple vector ports seems to be a key improvement to expose more
parallelism. Without this ability the programmer has to manually partition
the program into multiple similar loops, then annotate all of them as unique
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DFGs. This is too much effort and the refactored code is harder to reason
about.
• When we encounter triangular access patterns due to induction-variable de-

pendencies, how can we balance the width of the vector interface to the set
of problems we target? This requires empirical studies, and maybe profiling
to identify appropriate tradeoff points.
• The previous point can be pivoted into modifying the vectorized computa-

tion at runtime by analyzing access patterns. This is interesting both from
a static and dynamic view, as we can produce static schedules that can be
improved by inspecting a small part of the execution state: the inductive
variables.
• Automatic loop parallelization. Currently we have to express all parallelism

in the program and rely on the compiler to build a DFG. Ideally, we would
like for the compiler explore opportunities in scaling the DFG to exploit the
parallelism without us explicitly setting the best-suited unrolling factor. To
begin with, a hint of how much of the DFG we can unroll would be helpful,
later we would like to annotate a region of code with e.g. #pragma ss ded-
icated explode to automatically fill available dedicated region resources
with our critical path.
• Restrict search space of mapper and scheduler, at least when the DFG has

multiple vector memory streams. This can enable more programs to map,
either faster, or at all. In tandem with new heuristics this can increase us-
ability of this architecture.
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Appendix A

Modified GEMM_M

Code listing A.1: Modified gemm (MachSuite)

void bbgemm(TYPE m1[N], TYPE m2[N], TYPE prod[N])
{
#pragma ss config
{
int i, k, j, jj, kk;
int i_row, k_row;
TYPE temp_x, mul;

for (jj = 0; jj < row_size; jj += block_size) {
for (kk = 0; kk < row_size; kk += block_size) {
for (i = 0; i < row_size; ++i) {

#pragma ss stream nonblock
for (k = 0; k < block_size; ++k) {
i_row = i * row_size;
k_row = (k + kk) * row_size;
temp_x = m1[i_row + k + kk];

#pragma ss dfg dedicated unroll(U)
for (j = 0; j < block_size; ++j) {
mul = temp_x * m2[k_row + j + jj];
prod[i_row + j + jj] += mul;

}
}

}
}

}
}

}
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