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Abstract

Norway’s inland waters powered over 31GW installed hydropower capacity, and
produced over 144 TWh of clean power in 2016 according to the International
Hydropower Association. This thesis investigates 9 hybrid models in order to
improve the predictions of the much used HBV model for inflow forecasting.
The hybrid models are combinations of two different HBV implementations, one
closed source commercial product and one open source model, in conjunction with
a deep LSTM network to be able to provide better forecasts for a 40 hour time
window into the future, in order to improve power producing companies ability
to predict how much power they should produce hour by hour in the Northern
European power market’s day-ahead market and also save environmental and
societal cost.

This study is conducted with a basis in a systematic literature review analysing
the state of the art within hydrological inflow modelling using hybrid models with
neural networks, with emphasis on investigating which neural network architec-
tures are in focus, which multiclassifier methods are in focus and which tools are
necessary to conduct good experiments in the field. The review is followed by ex-
periments with 9 hybrid models and 2 pure LSTM networks on the water power
plant inflow field, Søa, with a discussion and evaluation of the effect of using
closed source vs open source HBV models with access to a limited or full set of
state variables, the effect of having access to previous inflow as input, the effect
of using two HBV model’s predictions, and the effect of using no physical model
at all. The results present multiple good models and the difference between their
predictions. The problem is defined as predicting water reservoir inflow utilizing
historical data of precipitation and temperature together with previous reservoir
inflow. The thesis ends by outlining suggested future work to be done in the field.
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Sammendrag

Norges innsjøer oppn̊adde over 31GW innstallert vannkraftskapasitet, og pro-
duserte over 144 TWh ren kraft i 2016 i følge International Hydropower Associ-
ation. Denne avhandlignen vurderer 9 hybridmodeller for prediksjon av tilsig til
vannreservoirer for å forbedre prediksjonene til den mye brukte HBV-modellen
for tilsigsprediksjon. Hybridmodellene er kombinasjoner av to ulike HBV imple-
mentasjoner, en med lukket kildekode som er et kommersielt produkt som selges
og en med åpen kildekode, sammen med et dypt LSTM nettverk for å kunne
tilby bedre prediksjoner for en 40 timers tidshorisont fremover, for å kunne bedre
vannkraftprodusenters evne til å predikere hvor mye kraft de burde produsere
time for time i det Nordiske kraftmarkedets day-ahead market og ogs̊a spare
miljømessige og samfunnsmessige kostnader.

Studiet er gjennomført med grunnlag i et systematisk litteratursøk som anal-
yserer de fremste teknikkene innen hydrologisk tilsigsmodellering ved hjelp av
hybridmodeller med nevrale nettverk, med fokus p̊a å undersøke hvilke nevrale
nettverksarkitekturer som er i fokus, hvilke multi-klassifikator-metoder som er i
fokus og hvilke støtteverktøy som er nødvendige for å gjennomføre gode eksperi-
menter i feltet. Litteratursøket følges opp med eksperimenter med 9 hybridmod-
eller og 2 rene LSTM-nett vannkraftverket p̊a Søa’s tilsigsfelt, med diskusjon
og evaluaering av effekten av å bruke en HBV modell med lukket- eller åpen
kildekode med tilgang til en begrenset eller komplett del av modellens interne til-
stand, av effekten av å ha tilgang til tidlige tilsigsdata som input, av effekten av å
bruke to HBV modeller sine prediksjoner, og effekten av å ikke bruke noen fysik
modell sammen med LSTM-nettet no HBV model at all. Resultatene presenterer
flere gode modeller og forskjellene p̊a deres prediksjoner. Problemet er definert
som prediksjon av tilsig ved hjelp av historisk data om nedbør, temperatur sam-
men med tidligere reservoir-tilsig. Avhandlingen avlsuttes ved å beskrive anbefalt
fremtidig arbeid innen feltet.
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Chapter 1
Introduction

This thesis implements and tests different hybrid machine learning models for
predicting reservoir inflow for a water power plant in Norway and compares their
loss/NSE-efficiency in order to create a model with better performance than com-
mercially available tools today that are solely based on numerical models.

1.1 Introduction and Problem Statement

Norway’s inland waters powered over 31GW installed hydropower capacity, and
produced over 144 TWh of clean power in 2016 according to the International
Hydropower Association (House et al., 2017). One of the mail challenges faced
by hydro power producers is the scheduling task (Seim and Thorsnes, 2007), of
which one of the mail factors that contribute uncertainty is water reservoir inflow.

Predicting water’s movement through soil is a complex problem. Rainfall from a
long backwards timespan affects the water content in an inflow field’s surround-
ing soil, which affects both inflow amount and latency in accordance to rainfall.
This problem is complex and difficult to model accurately, and for climates with
yearly snowfall the complexity is even greater due to the need for modelling the
building and melting of a snowpack.

The ability to improve accuracy of inflow prediction models is however of great
interest and would lead to great societal, environmental and economic benefit for
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water power plant operation and surrounding society and environment. There
are multiple reasons for this, and they are described in section 2.5 Motivation.
The economic benefits have their foundation in the fact that deciding how much
water to use in order to generate power at any given point in time is a complex
problem where one need to consider the amount of water left in the reservoir, the
free capacity before water overflows, the power consumption at the given time
in the consuming region and the price per Megawatt of generated power for the
future 36 hours(due to the Nordic power market system described in section 2.1),
and the predicted inflow into the power plant’s water reservoir.

Having more accurate inflow predictions simplifies this problem and minimizes
chances of reservoir overflow and reservoir depletion due to inaccurate predic-
tions, which will both help improve income optimization per liters of inflow for
power plant operations.

This thesis implements and tests different hybrid machine learning models for
predicting reservoir inflow for a water power plant in Norway and compares their
loss/NSE-efficiency in order to create a model with better performance than com-
mercially available tools today that are solely based on numerical models. Then
we evaluate the effect of having access to previous inflow data as model input, and
the importance of a non black-box model where the inner state of the numerical
sub-model, HBV, is accessible to the machine learning architecture compared to
a black-box hybrid where only the output is accessible to the machine learning
architecture.

1.2 Research Motivation

The underlying motivation for this thesis is to improve water inflow forecasting.
This can however be specified and concretized by categorizing it into societal,
ecological, economical, technological and personal motivation in the following
list, which is further elaborated in section 2.5

• Societal motivation - Being able to accurately predict inflow to water reser-
voirs accurately can help predict floods, especially during spring, and ensure
time for a safe temporary evacuation for citizens of a flood prone residential
area.

• Environmental motivation - Being able to accurately predict inflow can help
power plant operators ensure that enough water is available in the future to
help ecosystems around water power plants downstream to remain stable
(Suen and Eheart, 2006)
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• Economic motivation - Being able to accurately predict inflow enables water
power plant operators to maximize revenue per water available

• Personal motivation - It has been a personal motivation to learn more about
neural networks through this thesis, because the amount of data available
(155304 points) is a relatively large dataset capable of tuning neural net-
works

• Technical motivation - Being able to more accurately predict inflow by using
modern machine learning techniques in conjunction with domain specific
models in order to verify if deep learning can provide value in the field of
hydrology

1.3 Goals and Research Questions

This section presents the goal of this thesis and related research questions which
need to be answered to meet the goal. They are the following:

Goal To measure the effectiveness of HBV - Neural Network hybrid models for
timeseries prediction of inflow in hydrology and pinpoint the importance of
access to previous inflow data, access to advanced HBV models and access
to inner states of HBV models in conjunction with a neural network

Research question 1 Will a machine learning model that has access to previous
inflow data and the state of an HBV-model be able to predict inflow more
accurately than the HBV-model?

Research question 1.1 Will a machine learning model that does not have ac-
cess to the state of an HBV-model be able to predict inflow more accurately
than the HBV-model?

Research question 2 Will a machine learning model that has access to previous
inflow be able to predict inflow more accurately than the HBV-model?

These research questions are set into the context of a climate with yearly
snowfall, which makes the prediction problem more complex to solve.

1.4 Research Method

The research method in this thesis consist of 3 phases: First an analytical pro-
cess consisting of a literature review of research in the field of hydrological inflow
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forecasting. The knowledge from the analytical phase is used to design and im-
plement algorithmic models and supporting systems based on untouched models
in the field. The final phase consist of conducting experiments and evaluating the
performance of the tested models, where statistical analysis is used to compare
the models performance against both each other and benchmark models.

1.5 Thesis Structure

The following parts of the thesis is structured as follows:

• Chapter 1 - Introduction, gives the aforementioned intro to the thesis and
answers why this study is of importance.

• Chapter 2 - Background Theory and Motivation, describes the necessary
concepts related to this thesis, such as inflow forecasting, the Power Market,
LSTM networks; and presents a structured literature review in the field
of inflow forecasting with neural networks, including research objectives,
research questions, inclusion critera, query selection and database selection;
as well as describing the motivation behind this thesis with context to the
background theory.

• Chapter 3 - Architecture / Model, This section describes the model and
architecture used for the experiments in this thesis by presenting figures for
each model’s input.

• Chapter 4 - Experiments and Results, sketches initial plans for models to
build, how to evaluate their performance and describes the data that is the
foundation for the experiments together with each model’s performance
measured by MSE

• Chapter 5 - Evaluation and Conclusion, presents an evaluation and dis-
cussion around the current results and describes the tools needed for good
future work.

• Appendix - Contains visualization of the results using the other error met-
rics: MAE, Smooth L1 loss and NSE, and tuned hyperparameters for the
models



Chapter 2
Background Theory and
Motivation

2.1 Background Theory

The Identification of the relavant background was carried out in the project pre-
ceding this thesis (Osberg, 2019). This is amended with additional information
adapted to the full thesis such as: Background related to the Power market, LSTM
networks, additional evaluation metrics, review of all M-Competitions up until M-
4 and their findings. As it is not expected that the readers of this thesis will have
read the pre-project report, its contents have been re-stated here.

The section describes the theoretical background related to water inflow fore-
casting. The topics that build the foundations of this domain are hydrological
inflow modelling, time series forecasting methods and recurrent neural networks,
which are all described in this chapter.

2.1.1 Inflow forecasting

Hydrological inflow modelling is the process of modelling the inflow to a water
reservoir. The process can be done by using weather data such as precipitation
and temperature as input to the model and reservoir inflow as output. The pre-
cipitation and temperature data will either be measured or forecasted data from
the field, or the general region the field is in. Water reservoir inflow forecasting is
an important field in hydrology with the focus on understanding how water from

5
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rain, hail, sleet and snow moves in soil and ground water, and a field with great
societal, environmental, economical and technical interest as described in 2.5.

2.1.2 Hydrological time series forecasting

As an initial background description of the field, a short review is conducted for a
arbitrarily selected hybrid model used for hydrological inflow modelling in order
to map out the architecture in focus and the experiment structure.

In the field of hydrological time series forecasting, (Wang and Lou, 2019) show
how a hybrid machine learning model consisting of the statistical time series fore-
casting method ARIMA-modelling and an LSTM recurrent neural network can
be utilized for improved forecasting of daily water level in a River Basin. Here the
LSTM is used to forecast the error produced by the ARIMA model and then cor-
rect the given error. The authors of this recent paper (March 2019) describe that
their experiments shows that this model can be well adapted to the hydrological
time series forecast and that the version using a BP-ANN-ARIMA model has the
best forecast effect, compared to experiments with EMD-ANN-ARIMA. ”BP”
being short for ”back propagation” and ”EMD” for ”empirical mode decomposi-
tion”, both being adaptive techniques for time series decomposition (Chengzhao
et al., 2015)

The proposed forecasting technique uses ARIMA as it’s main forecasting tool,
and states that ARIMA is not suited for long term forecasting, so the test set is
therefore predicted using the one-step forecasting method. This method uses all
data up until the Nth day as training data for predicting the value of time N,
and then uses data up until inclusive N as training data to predict time N+1.
When predicting the value for hte N+1’th datapoint it is critical to mention that
the authors did not use the predicted values for N as training data, but rather
the exact measured data. This is a key limitation to their model, as the tests the
authors have performed are all predictions of 1 day into the future, however with
this limitation the authors achieve a very low error for their predictions. The
MSE of their experiments with 2129 days of water level data was at minuscule
0.0078. Here the 2000 first datapoints were always used as training data and the
last 129 used as test data.

2.1.3 HBV - Hydrological inflow model

The HBV model is a rainfall-runoff model and includes both conceptual numeri-
cal descriptions of hydrological processes of water catchment, which is the process
of collecting water.
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There has been made different versions of the model and these versions has been
applied to over 40 countries throughout the world and the models for the countries
have been ranging from lysimeter plots (Lindström and Rodhe, 1992), a plot for a
device at the size of a flower pot for measuring water percolation through soil, to
the entire baltic sea drainage basin (Bergström, 1976) and (Mason et al., 1999).
The HBV model being using in this thesis uses the same features as the model
used by the Norwegian Water Resources and Energy Directorate (Langsholt and
Beldring, 2020) which is based on the work of Bergström and the Swedish Mete-
orological and Hydrological Institute (Bergström, 1976).

This model is built around the concepts of water basins/buckets for a snowpack,
soil water and the remaning parts of the ground which is where most water is
moving in the field and contributing to water runoff and inflow. These remaining
buckets can be separated into one for the upper parts of groundwater and one for
lower parts of groundwater or many more buckets for separating the surface are
of an inflow field by field height with lower temperatures for the higher placed
basins, as is the case for the commercial HBV model used in this thesis.

HBV can be turned into a semi-distributed model by dividing the entirety of
the catchment area into sub-basins, where each sub-basing again can be divided
into zones according to altitude within the basin, lake area and vegetation.

The state of the art of the HBV model is based on the research of the HBV-
96 model that was made after a comprehensive re-evaluation of the model during
the 1990’s. The objective then was to improve the potential for making use of
spatially distributed data in the model to make it match the physical attributes
of water catchment and thus improve the models performance.

2.1.4 Power Market

To understand the motivation behind this thesis, it is essential to understand
the Norwegian power market. The system is a market based power production
and turnover system and a strictly regulated power grid monopoly. The grid
monopoly together with proposed regulation changes requires the separation of
power grid companies from power producing companies (The Norwegian Water
Resources and Energy Directorate, 2019), with different regulation and motiva-
tions as described below.

2.1.4.1 Power grid monopoly and strict regulation

A power grid is an expensive system to build and it is not societally rational to
build multiple competing power grids (Energifakta Norge - Ministry of Petroleum



8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

and Energy, 2019). The power grid business is therefore a monopoly in Norway,
and the monopoly is subject to strict regulation in order to avoid the exploitation
of a power grid company’s customers. NVE, The Norwegian Water Resources
and Energy Directorate, even dictates an annual allowed revenue for each power
grid company which should cover costs of operation, depreciation of material
and give a reasonable return on invested capital (Energifakta Norge - Ministry of
Petroleum and Energy, 2019). It is therefore an upper limit to how much revenue
can be gained from a grid company.

2.1.4.2 Tariffs

Grid customers pay a so-called point tariff for transfer and distribution of power
and get access to the entire power market. The tariff amount is subject to
variation due to differences in topology making the building of the power grid
more difficult, in differences in density of homes in the region and differences in
how efficiently the grid company operates.

2.1.4.3 Integrated market & market organisation

The Norwegian power production and distribution market is integrated with the
market for Sweden, Denmark and Finland, which then again is integrated with
the european power production and distribution market via transfer-connections
to the Netherlands, Germany, The Baltic’s, Poland and Russia (Norwegian Min-
istry of Petroleum and Energy, 2019b).

This market is organised as an engross market and end user market, where the
engross market is where large power volumes are traded and the actors in the
market are power production companies, brokers, power delivery companies and
large industry customers. The market consists of the following three organised
sub-markets where market players place bids and prices are determined:

• Day-ahead market

• Balance market

The end user market on the other hand is where end users sign a deal with a
specific power supplier. In this market the end user is roughly 1

3 private housing, 1
3

industry and 1
3 medium-size end users, such as hotels or brand stores (Norwegian

Ministry of Petroleum and Energy, 2019b).

2.1.4.4 Day-Ahead Market

The day-ahead market is the main power market in the Nordics, where most of
the power volume is traded on the exchange ”Nord Pool” (Norwegian Ministry
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of Petroleum and Energy, 2019b). This market deals in contracts of delivery of
power per hour for the next full day and sales and buy offers are places between
8 am and 12pm the day before (Norwegian Ministry of Petroleum and Energy,
2019b), meaning that the contracts are placed for a timeframe of minimum 12
hours into the future and maximum 40 hours into the future. This higher and
lower boundary for the time-frame is therefore used as the output window for the
model predictions in the experiments that follow.

2.1.4.5 Intra-Day Market

There can occur changes that can affect the prognosis of the day ahead-market
after the offers are frozen at 12pm, such as changed weather forecasts, which can
affect the market players actual production and consumption. To cope with this,
there exists an intra-day market where trades are done between the freeze time
of the day-ahead market and until 1 hour before the operation hour (Norwegian
Ministry of Petroleum and Energy, 2019b) This gives the market players the
opportunity to trade into balance to adjust for the changes that have occurred.

2.1.4.6 Balance Market

To ensure the momentary balance in the power grid, there is also a balance
market where Statnett, the designated transmission system operator(TSO) of
the Norwegian power system (Norwegian Ministry of Petroleum and Energy,
2019b), regulates production and consumption up or down (Norwegian Ministry
of Petroleum and Energy, 2019b). It is often more expensive for a power producer
to purchase production quotas from Statnett if a producer cannot meet their day-
ahead predictions and haven’t traded accordingly in the intra-day market. It is
therefore of great value to the company to be able to make accurate predictions
to how much power they will produce.

2.1.4.7 Relevance for this thesis

The northern european power market and how it operates is highly relevant for
the motivation of this thesis. This is due to the necessity of reporting good
prognosis for how much power will be produced 12-40 hours into the future.
The process of deciding how much power to produce is a complex problem of
maximising the profit per inflow amount, which again means minimizing the
chance for reservoir overflow due to larger inflow amounts than anticipated or
reservoir dry out due to smaller inflow amount than anticipated.

In order to minimize these two unwanted scenarios, it is of great value to have
accurate inflow predictions throughout the day-ahead market time window of 12
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to 40 hours into the future, and accurate predictions for 1 to 12 hours into the
future for trades in the intra-day market.

2.1.5 Time Series Analysis

A time series is a set of observations xt, each one being recorded at a specified
time t. A discrete-time series is one in which the set T0 of times at which obser-
vations are made is a discrete set, as is the case for example when observation
are made at fixed time intervals. On the other hand continuous-time series are
obtained when observations are recorded continuously over some time interval,
e.g. when T0 = [0, 1] (Brockwell et al., 1998).

The analysis of a given time series is primarily aimed at studying it’s internal
structure (autocorrelation, trend, seasonality), to gain a better understanding
of the dynamic process by which the time series data are generated (Palit and
Popovic, 2016).

2.1.6 Makridakis Competitions

The Makridakis Competitions, also called M-Competitions are forecasting com-
petitions led by Spyros Makridakis, a researcher in the field of forecasting. The
competitions aim at evaluating different forecasting methods accuracy. In 2020
there has been arranged 4 M-Competitions and M5 is being organized from march
through june 2020 and a conference in desember 2020 where findings from M-5
will be presented.

The reviews of the M-Competitions provide empirical evidence and compar-
isons of performance of different methods for time series prediction. Therefore,
the paper discussing results, conclusions and implications of the M-Competitions
until and including M-3 has been reviewed, as well as the winning solution of the
recent M-4 competition.

2.1.7 M-4 competition winner: ESRNN - Exponential Smooth-
ing Recurrent Neural Network

An exciting recent advancement in time series forecasting by machine learning
is the 2018 winner of the M4 competition, Makridakis (M) Competition a chal-
lenge for time series forecasting. Here where Slawek Smyl, one of Uber’s self
proclaimed leading data scientists won by a solid margin with his hybrid model.
(Smyl, 2018) The algorithm is split into two connected layers: a pre-processing
layer which aims to normalize and deseasonalize the data and does so by expo-
nential smoothing in the algorithm itself rather than a preprocessing step; and an
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LSTM layer that aims to update parameters for each series of the Holts-Winter
model

2.1.7.1 Preprocessing

Slavek Smyl states that when preprocessing the data the output window size
was chosen to be the same as the prediction horizon, and the input size was set
partly by experimentation, but also noting that it should be at least the size of
the seasonality, e.g. 12 for a monthly series. Normalization is also a key part
of the preprocessing, of which Slavek normalized per input/output windows by
dividing the values in the timeseries by some constant, of which he chose to
divide by level. Little argumentation is given to the choice, although the level is
a smoothed estimate of the value of the data at the end of each period (Kalekar,
2004)

2.1.7.2 Exponential Smoothing and the Holt Winter’s model

Exponential smoothing in itself is a function from the time series forecasting
field, being published in the 1950’s by Brown and Holt, separately. Holts article
has been republished in recent years (Holt, 2004). The formula for exponential
smoothing is ŷt+1 = ŷt + a(yt − t̂t), of which a is a smoothing factor in the
range [0, 1]. As Slawek Smyl describes it, the algorithm says that the forecast
of a next step is equal to the forecast of the previous step adjusted by part of
the previous error. The characteristics and goal of this method has later been
expanded to span other components like level, trend and seasonality. One of he
most well known models describing these concepts together is the Holt-Winters
model, published in 1960 by Peter R. Winters, a student of Holt, who improved
upon Holt’s work by adding seasonality and published here (Winters, 1960). It
is also known as the triple exponential smoothing method.

It’s formulas are:

lt = a(yt/st) + (1− a)(lt−1 + bt−1) (2.1)

bt = β(lt − lt−1) + (1− β)bt−1 (2.2)

st+m = γ
yt

lt + bt
+ (1− γ)st (2.3)

Here s are multiplicative seasonality coefficients, a, β and γ are smoothing
factors in the weighted sums of respectively (3.1), (3.2) and (3.3), l is the level
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of the series and b is the trend of the series. (Taylor, 2003)

It is worth noting that the Holt Winters method was even extended in 2003,
more than 40 years after being published, by James W Taylor adding methods
for handling multiple seasonalities simultaneously, also called n-th exponential
smoothing, here (Taylor, 2003).

2.1.8 The M-3 and older competitions

The paper reviewing results, conclusions and implications from the M-3 competi-
tion was written by Makridakis & Hibon in 2000 after the M-3 competition. Here
they present the results of M3 with the accuracy of various methods compared
to a benchmark, the four conclusions of the M-Competition, implications for the
theory and practice of forecasting, and suggestions for further research.

The four conclusions were:

• Statistically sophisticated or complex methods do not necessarily produce
more accurate forecasts than simpler ones

• The rankings of the performance of the various methods vary according to
the accuracy measure being used

• The accuracy of the combination of various methods outperforms, on aver-
age, the specific methods being combined and does well in comparison with
other methods

• The performance of the various methods depends upon the length of the
forecast horizon

These conclusions are highly applicable to this thesis, where we evaluate models
with different levels of complexity, from an LSTM network alone to a stacked
hybrid model using data from two separate HBV models as input to the LSTM
network. The depth and width of the LSTM is also varied throughout the pa-
rameter search.

The fact that rankings of performance varies with the performance measure being
used is also a factor that will be used to these experiments’ advantage. The choice
of different performance measures enables us to choose one that is biased towards
our ideal features, which in this case is to minimize large errors that occur less
frequently. Since that are more important errors to minimize than smaller con-
sistent errors, we choose a performance measure/error metric that enhances that
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behaviour. For our case that means choosing MSE or RMSE where larger loss
values are penalized more than when using MAE.

The fact that combination methods on average outperform specific methods mo-
tivates us to create and evaluate good hybrid models in comparison to specific
methods, which in these experiments are a standalone LSTM network and the
predictions from both the HBV models alone.

The final conclusion about the length of the forecast horizon’s effect on method
performance highlights the importance of choosing an appropriate forecast hori-
zon, which in this study was easy to pinpoint to 40 hours due to the NordPool
Nordic power market’s day-ahead market where energy production amounts per
hour from midnight to midnight need to be submitted before 12pm the day be-
fore, such that forecasts need to be computed and predicted between 8am and
12pm each day.

2.1.9 ANN - Artificial Neural Networks

Artificial Neural Networks (ANN’s) are computing systems that are inspired by
the synapses and neurons in a biological brain. The computing system consists of
a directed graph of nodes(neurons) and connections between them, edges, with an
associated weight, whereas the nodes has a bias state. When data is propagated
through the directed graph, it is passed through an activation function in each
neuron and passed to neurons in the next network layer, where the value of a
neuron is the sum of the inputs leading to the specific neuron, where the data
is iteratively passed through another activation function, until it reaches the
output layer, where we measure the output-layer’s neurons values before tuning
the network by backpropagation in order to improve performance.
Neural networks are a computer architecture capable of distorting the input space
to make classes of data linearly separable (Lecun et al., 2015), this is done by the
activation functions so that that the The chain rule of derivatives tells us how
two small effects of x on y, and z on y; where x is the neural network input, y is
a layers output from the activation function with z as its input, and z being the
sum of weights multiplied by layer input. Small changes in ∆x is transformed
first into a small change ∆y in y by being multiplied by δy

δx
.

2.1.10 RNN - Recurrent neural networks

Recurrent neural networks is a class of neural networks where the nodes connec-
tion is structured as a directed graph. This forms a temporal graph along the
network sequence and enables the network to be trained to recognise temporal
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dynamic behaviour. A common example of this is the research field of NLP, nat-
ural language processing. A sequence of words’s semantic meaning is influenced
not only by the set of words, but also by their order. Recognition of this meaning
can be trained for a recurrent neural network. Another typical challenge where
RNN’s are applied is the field of speech recognition, also due to the semantic
meaning of sequences of words being related to the order of the words.

RNN’s process an input sequence one element at a time, and maintains a state
vector containing all the neurons hidden units. This state vector contains infor-
mation about the history of all the past sequence elements (Lecun et al., 2015).

2.1.11 LSTM - Long Short Term Memory networks

The LSTM(Long Short Term Memory) network, a specified RNN architecture,
was first presented in 1997 by Hochreiter and Schmidhuber (Hochreiter and
Schmidhuber, 1997) under the title ”LSTM can solve hard long time lag prob-
lems” which was the prime motivation for creating a such a recurrent neural
network. As they state in the article, traditional recurrent nets fail when data
has a long minimum time lag between input and corresponding targets.

In order to improve upon these challenges for regular recurrent networks, func-
tionality has been added that also carry signals from an LSTM cell to later cells
while being adjusted less by cell input than a regular RNN cell. Each cell is
called a memory block (Graves and Schmidhuber, 2005) and consists of three
gates, or multiplicative units/activation functions, which control memory by an
input, output and forget gate. The input gate affects how much of the current
cell’s input, xt and ht−1 should be accepted onto the long term memory lane,
where it after an activation function is combined with the current state, on top
of the cell in figure 2.1, shown by the +sign; while the forget gate is the top
leftmost x that decides the scalar between 0 and 1 that the state on the long
term memory lane should be multiplied with, in order to make the state forget
its stored values. The right bottom-most x is the output gate that decides the
amount of the state in the long term memory should be used as input to the
succeeding LSTM cell together with xt+1.
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Figure 2.1: LSTM cell structure, created by (Chevalier, 2018)

An LSTM network is build up of many of these cells both in width and depth,
as can be seen in section 3.2.

2.1.11.1 Hybrid machine learning models

One of the most used formal definitions of a hybrid system is the hybrid automa-
ton (Niggemann et al., 2012) and a simplified and adapted version for learning
tasks has been defined by (Vodenčarević et al., 2011) based on Niggemann’s
work. The defintion defines the system as a state machine with S finite states,
σ as its alphabet and T ⊆ SxσxS giving the set of transitions in the system.
The definition also contains timing constraints, function for counting number of
observations per transition, and a set of functions with elements to compute value
changes within S.

The types of hybrid systems in focus in this thesis consists of at least one system of
non-linear machine learning methods such as neural networks and decision trees,
in conjunction with another prediction system, such as a numerical forecasting
method or another different type of non-linear machine learning method.

2.1.11.2 LSTM Hybrid Models

Since regular neural networks tend to struggle with learning seasonalities, as
Slavek describes, and when using neural networks it most often is used tools
to deseasonalize the data, he describes it as sensible to combine and merge the
Holt Winters and NN models, where the NN was a recurrent neural network to
be precise. When it becomes unnecessary to account for the linear trend, he
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describes that the forecasting formula becomes:

ŷt+1..t+h = RNN(Xt) ∗ lt ∗ st+1..t+h (2.4)

here, Xt is a vector of preprocessed data and the multiplication is element-
wise.

2.1.12 Bayesian Optimization

Bayesian optimization is founded in the method of bayesian inference, a method
of continually improving a probability distributions by drawing observations from
a system, in this case hourly measured weather and inflow data. The weight ma-
trix in a regular neural network is regarded as a random latent variable drawn
from a probability distribution. We want to learn a distribution for these weights
that is adjusted according to the observations seen in the data, consisting of re-
lations of output according to input, in this case output of water inflow amounts
in relation to measured precipitation and temperature in the past. In the case
of using bayesian optimization in combination with a numerical HBV-model the
input could also consist of the amount of water stored in the layers in the soil,
represented by state variables which again are updated according to previously
measured precipitation, temperature, and a function for decay over time. (Sprin-
genberg et al., 2016)

The end goal is to be able to learn this posterior

p(W |X, y) ∝ p(y|X,W )p(W )P (X)

However, it is computationally infeasible to perform exact inference on p(W |X, y)
(Louizos and Welling, 2017) resulting in the need for approximation of the pos-
terior distribution. A common way of performing this approximation is to use
variational inference, where an approximation of p(W ) is made as qλ(W ) with
hyperparameters λ that are tuned to minimize the difference between the ap-
proximated distribution and the true posterior distribution. (Springenberg et al.,
2016).

The difference between the distributions can be measured by calculating the
Kullback-Leilbler divergence KL(q||p) between the two distributions, and mini-
mizing the divergence because p = q =⇒ KL(q||p) = 0.

2.1.13 Evaluation metrics

There are different evaluation metrics available to measure accuracy and loss,
and these have different characteristics and behaviour
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When performing inflow modelling, a focus on good evaluation is important.
Some key principles that are taken into account when evaluating time series
modelling are the following:

• Splitting the time series in a train and test partition for parameter tuning on
the train partition and performing error calculations on the test set. The
train-test split ratio is selected based on the situation, though common
splits can be 70% to 90% of the full data set for training and the remaining
30% to 10% for testing and validation.

• Calculating the MAE(mean absolute error), MSE, the combination metric
Smooth L1 Loss, NSE of the entire test partition of the inflow prediction
are examples of ways to describe the error of a predicted time series.

• The forecast horizon for the predictions can be chosen according to the
problem in focus. Examples include predictions by hour, day, month or
40 hours as in our case. Examples of prediction lead time rationale is
that as correct hourly inflow predictions are important for calculating the
optimal amount of water to spend in a water reservoir power plant and for
reporting to the intra-day market described above. Daily correctness on the
other hand is important for evacuating citizens in the case of potentially
dangerous flood levels.

• Prediction results need context, and as such a baseline is important to
provide context to the reader. The baseline in this thesis is the commercial
HBV model by powel (Powel, 2019).

2.1.14 Loss Functions and Efficiency Coefficient

Loss Functions

• MSE - Mean squared error, also called L2 loss, is a metric that squares
the difference between the prediction and target value. This has the effect
of penalizing larger errors exponentially more than many smaller errors, so
that for instance 5 errors of [1, 1, 1, 5] is significantly worse than [2, 2, 2, 2],
which would receive the same loss value when using MAE. This property
of assigning a higher loss value to larger errors is beneficial when more
stability is wanted where larger errors also are of exponential importance,
as described in chapter 3, Model. MSE’s formula is 1

n

∑n
i=1(yi − ỹi)

2

• RMSE - Root mean squared error calculates the root of MSE which has the
effect of changing the unit of the error to the same unit as the metric that
is being measured, and otherwise show the same behaviour as described for
MSE.



18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

• MAE - Mean absolute error, also called L1 loss, is a metric where the
absolute value of the difference between prediction and target value ensures
that no loss is negative. As the loss scales linearly, this function evaluates
many smaller losses with the same importance as fewer but larger losses,
such as when 5 timesteps have 1 unit of error it has an equally negative
outcome as 5 timesteps where 4 has an error of 0 and 1 has 5 units of error.
It’s formula is 1

n

∑n
i=1 |yi − ỹi|

• Smooth L1 Loss - A combination metric of MSE and MAE, where it for
values where |x − y| > 1 behaves exactly as MAE and for values where
|x − y| <= 1 it behaves like MSE. This is beneficial compared to MAE
when the error is small in a regression problem, where MAE can create
instability; and beneficial compared to MSE as it is less sensitive to outliers.

• MAPE - Mean absolute percentage error, and sMAPE - symmetric MAPE.
The mean absolute percentage error er is relative error measurement. It
is defined as, when X is the observed, real value and F is the predic-

tion/forecast: 1
n

∑n
i=1

|X−F |
X

∗ 100 and would have the effect in inflow pre-
diction of penalizing heavily large errors when little water flows into the
reservoir compared to when there’s much inflow and the error is similarly
high. This is not necessarily a correct prioritization for this domain, see
chapter 5.5.

An effect to consider when using MAPE as an error metric is that ”it has a
bias favoring estimates that are below the actual values” (Armstrong, 1985)
due to the fact that the denominator is only based on the observed, real
value. This means that when X is 60 and F is 90 the error is 30/60=0.5
which is higher than when X is 90, F is 60 and the error is 30/90=0.33.
To cope with this, one can use a ”Symmetric mean absolute percentage
error” as (Makridakis, Hibon 2000 describes). Which is defined as where
the denominator consists of the average of the forecasted and real value.
This makes the errors in the two example cases described above where X
and F is 60 or 90 result in the same error value for both situations.

Efficiency Coefficient

• NSE - Nash-Sutcliffe model efficiency coefficient, also called coefficient of
determination, is a metric that is designed for assessing the predictive power
of hydrological models and was presented by the two researchers Nash and
Sutcliffe in the Journal of Hydrology in 1970 (Nash and Sutcliffe, 1970).

The metric is defined as 1 −
∑

T

t=1
(Qm−Qo)

2

∑
T

t=1
(Qo−Q̄o)2

, where Qo is observed values,

Q̄o is the observed values’ mean, and Qm is the model’s predicted values.
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The output ranges from 1 to −∞ where 1 is the value for perfectly match-
ing predictions to the observed values, where 0 is the value for when the
predictions match the mean of the observed data and negative values for
worse predictions where the residual variance between the predicted and
observed values, which is in the numerator is greater than the variance of
the data itself which is in the denominator.

NSE is a correlation and efficiency performance measure that preserves
the data pattern, which neither of the above measures does, which rather
consider each time step event as separate items. NSE on the other hand
preserves these patterns by also considering how data points and their er-
rors relate to each other (Bennett et al., 2013). This behaviour enables the
models to be evaluated also according to if their predictions are following
the patterns of the targets, but with lag or if they are preceding the target’s
patterns.

2.2 Structured Literature Review - SLR

The Structured Literature Review were carried out in the project preceding this
thesis (Osberg, 2019) As it is not expected that the readers of this thesis will have
read the pre-project report, it’s contents have been re-stated here.

This section introduces the process and methods which is used to conduct the
review. The SLR research objective (SLR RO) and SLR research questions (SLR
RQ) that guide the review are presented. The query for the search is presented
and the chosen inclusion and quality critera for filtering the search results is
presented. From the basis of the research question- and objective, concepts and
terms for categorizing the papers are described.

The use of a structured literature review (SLR) is done to support evidence based
research with the goal of using and aggregating previous empirical research to
answer a set of research questions. When comparing a structured review with
other review types, narrative and thematic for instance, the systematic review
utilises tools to minimise potential author bias and mistakes by rigorously cover
all the papers that fulfil the inclusion criteria. However, a perceived weakness is
that restricting inclusion criteria can possibly limit insights to effectiveness rather
than seeking answers to more complex search questions (Grant and Booth, 2009).
The perceived strengths definitely outweighs the perceived weaknesses still, as the
authors also describe that this is the best known type of review.
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2.2.1 SLR Objectives

The goal of the review is twofold. The first goal is to provide a systematic review
of progress in the field of hydrological inflow modelling with the use of different
types of neural networks. The second goal is to prepare the necessary evaluation
metrics, benchmarks and data to conduct experiments of utilising neural networks
to improve inflow predictions and modelling.

Table 2.1: Research objectives
ID Research Objective
SLR RO1 Review research of water reservoir inflow modelling
SLR RO2 Define the necessary tools in order to conduct an experiment for

measuring the effectiveness of BNN for water reservoir inflow mod-
elling as future work

2.2.2 Concise & formal SLR research questions

Based upon the research objectives defined above, research questions have been
made in order to aid the systematic review process. The question in focus on
the review is what types of neural network architectures are used in research in
the field of hydrological inflow modelling. As it is expected that multiple results
to the chosen query will be multiclassifier models; either bagged or boosted in
the case of ensembles, or stacked in the case of hybrid methods; another research
question is which other method is used in conjunction to the machine learning
methods.

Answering the first two research questions, SLR RQ1 and SLR RQ2, will also
naturally answer question three, SLR RQ3, which is whether peer reviewed re-
search has been conducted on the use of bayesian neural networks for hydrological
inflow modelling, which is one of the described architectures in the background
section of which the model outputs probability density functions, which enables
the evaluation of the models certainty of its predictions. Question 4, SLR RQ4,
is highly relevant for future work in the field and is about what is necessary for
performing good experiments in the field of hydrological inflow modelling, in the
form of tools, in the form of experiment setup, data foundation or other aspects
discussed in the reviewed literature.
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Table 2.2: SLR Research Questions
ID Research Objective
SLR RQ1 What are the main neural network architectures used in research

for reservoir inflow modelling
SLR RQ2 In the case of research on hybrid models for hydrological inflow

modelling, which methods are used in conjunction with the ma-
chine leaning methods

SLR RQ3 Have peer reviewed research been done on the topic of using
bayesian neural networks for hydrological inflow modelling

SLR RQ4 What are the necessary tools in order to conduct a good future
experiment for measuring the effectiveness of a neural network
architecture for water reservoir inflow modelling

2.2.3 Sources

The process of the structured literature review was done by searching among
publications from the portals: IEEE Xplore, The ACM Guide to Computing
literature, Science Direct and Scopus. The sources were selected by being portals
for peer reviewed research, of which Scopus is the largest one of the four, hosting
abstracts from 25300 journal titles (Data sources — The ISSN Portal, 2019).
Scopus is also a multidisciplinary database enabling the search among titles both
published under the discipline of computer science due to the focus on machine
learning methods as well as in the discipline of hydrology under earth sciences
due to the problem in focus.

2.2.4 Query construction

2.2.4.1 Query nr. 1

The first attempted query was:

Q1 : TITLE ABS KEY (hydrological AND inflow AND modelling)

This is a query that requires the three words “hydrological”, “inflow” and “mod-
elling” to appear together in the set consisting of the title, abstract and keywords.
It returned a vast number of articles, in the range of thousands. The returned
documents was observed to in most cases to not be able to answer SLR RQ1
and SLR RQ3, as the documents did not use neural networks, or any machine
learning method for that matter, to model the inflow. To account for this, query
number 2 was created.
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2.2.4.2 Query nr. 2

After iterating on how to narrow the search to focus solely on neural networks
and multiclassifiers utilizing neural networks for predicting inflow, to match the
thesis motivation, the following query was selected:

Q2 : TITLE ABS KEY (hydrological AND inflow AND modelling AND neural)

This query, which requires the words to appear in either the the title, abstract
and keywords; narrowed the search substantially and specialized it to be able to
answer SLR RQ1, SLR RQ2 easily. All returned papers used neural networks as
one of usually multiple methods in focus in the article.

2.2.4.3 Selection Criteria

The following inclusion criteria (IC) and quality criteria (QC) have been used to
select relevant literature in the search for hydrological time series forecasting

IC1 - The study’s main focus should be inflow modelling by utilising measured
or predicted weather data, such as precipitation and temperature.

IC2 - The type of publication of the literature is an original study presenting
empirical results, and not a review or editorial.

IC3 - The study focuses on improving accuracy / decreasing errors in hydrological
inflow modelling by the means of neural networks, either alone or in combination
with other methods, in the form of a multiclassifier.

IC4 - The literature is reasonably recent, by being published in between and
including the years 2014 and 2020

QC1 - The study must evaluate model performance by using objective measures,
such as MAE and other evaluation methods described under “Evaluation Metrics”

QC2 - The study should have been peer-reviewed, which is fulfilled by choice
of databases.

QC3 - The study is put into context of other studies and research

The reason for choosing IC3 as a criteria is due to the recent advancements
in machine learning, such as described by Turing Award winners here (Lecun
et al., 2015)
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2.2.5 Results

This section describes the findings from the conducted structured literature re-
view and relates them to the defined research questions and objectives from
section 2.2.2.

2.2.5.1 Excluded Papers

The result from reading all returned abstracts to the query was that 13 articles,
42%, were marked as “Not relevant”, due to not meeting IC1 “The study’s main
focus should be inflow modelling by utilising measured or predicted weather data,
such as precipitation and temperature”. The most common reason for this was
that the study did not attempt inflow modelling, but rather modelling of a dif-
ferent aspect of hydrology, by using inflow as input to the model. Therefore it is
very understandable that these articles also were returned from the chosen query.

The full description of why each article did not meet the inclusion and/or quality
criteria is described in the full spreadsheet file of the returned articles, which in
the appendix of (Osberg, 2019). Other examples of focus for excluded articles
was: attempting synthetic data generation rather than modelling, prediction of
discharge within the inflow and not the inflow itself, creating a modelling frame-
work for entire ecosystems, and prediction of where, when, and for how long algal
blooms will occur in water body.

2.2.5.2 Neural Network Architecture

SLR RQ1 questions what kind of neural network architecture is used in research
in this field. The following table, 2.3, shows the aggregated data of how many
papers described each of the listed neural network architectures:

Table 2.3: Neural network architecture in focus
NN architecture Corresponding papers
MLP - MultiLayer Perceptron 11
WANN - Wavelet Artificial Neural Network 5
ANFIS - Adaptive Neural-based Fuzzy Inference
System

3

RBFNN - Radial Basis Function Neural Network 1
ENN - Elman Neural Network 1
RNN - Recurrent Neural Network 1
Total amount of relevant returned papers 19
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2.2.5.3 Multiclassifier Models

In the same manner as the previous table, 2.3, answers SLR RQ1, the following
table shows aggregated data in regards to SLR RQ2: “In the case of research
on hybrid models for hydrological inflow modelling, which methods are used
in conjunction with the machine leaning methods”. The literature review and
Database in the Appendix of (Osberg, 2019) shows that 9 of the 13 relevant
articles, 69%, addressed multiclassifier models, and their structure is described
in the tables 2.4 and 2.5.

Table 2.4: Multiclassifier individual methods in use, excluding methods in 4.1
Method Corresponding papers
AR - Autoregressive modelling 2
ARX - Combination of AR and exogenous values 1
ARMAX - Autoregressive Moving average with
exogenous input

1

WNARX - Wavelet-based Non-linear Autoregres-
sive with Exogenous input

1

SARIMA - Seasonal Autoregressive Integrated
Moving Average

1

CPMDE - Combined Pareto Multi-Objective Dif-
ferential Equation)

1

VIC - Variable Infiltration Capacity 1
MLR - Multiple Linear Regression 1
WBMLR - Wavelet Based MLR 1
SVR - Support Vector Regression 1
TF - Thomas Fiering model 1
Total amount of multiclassifier articles 9
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Table 2.5: Full multiclassifier architectures. Full names in table 2.3 and 2.4
Multiclassifier architecture Corresponding papers
Ensemble of 3 MLP & Bayesian model averaging 1
Ensemble of WANN & WBMLR & MLP & MLR 1
AR & MLP stacked 1
CPMDE & MLP stacked 1
VIC & WANN stacked 1
VIC & AR stacked 1
VIC & ARMAX stacked 1
VIC & WNARX stacked 1
RBFNN & SVR stacked 1
WANN & TF stacked 1
ENN & ENN stacked 1
Total amount of multiclassifier articles 9

Among the hybrid structures most of the models are multiclassifiers in a hybrid
form that utilized “stacking” which is a method that uses the output of one model
as input to the next, and often then training one part of the multiclassifier to
model and correct for the errors of a preliminary method in the hybrid system.

2.2.5.4 Comparison of chosen evaluation metrics

The reviewed articles have chosen somewhat different sets of evaluation met-
rics, which are summarized in table 2.6. In the table they are also categorised
into “Deterministic, absolute”-, “Deterministic, relative”-, “Probabilistic”- and
“Manual” metrics, which respectively output an error metric either determinis-
tically as an absolute value, deterministically as a relative size of the predicted
values size, as a histogram/aggregation of histogram, or as a description from
a manually conducted case analysis often with the use of the other described
metrics. Among the retrieved relevant articles 2 articles does not provide readily
available information as one of the relevant papers is written in spanish, with an
english abstract, and in another case the journal article is not available without
purchase, even under the collaboration between the university and the journal
publisher, Elsevier. The article in question has been ordered in the form of a
physical copy via the university library, and its details will be added at the time
of working on future steps.
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Table 2.6: Used Evaluation Metrics
Category Evaluation metric Corresponding

papers
Deterministic, RMSE - Root Mean Square Error 10
Absolute NSE - Nash Sutcliffe Efficiency Coefficient 10

MAE - Mean Absolute Error 5
NRMSE - Normalized RMSE 1
Bias & Mean Bias error(4) 1

Deterministic, CC - Correlation Coefficient 8
Relative Coefficient of Determination, square of CC 3

RAE - Relative Absolute Error 3
MAPE - Mean Absolute Percentage Error 2
MARE - Mean Absolute Relative Error 1
RRSE - Root Relative Square Error 1
Peak Flow Criteria(3) 1
Scatter Index(4) 1
Willmott Index of Agreement(4) 1
Confidence Index(4) 1
Percentage Bias 1

Probabilistic PIT - Percentage Integrated Transform
Histogram

1

CD - Calibration Deviation(1) 1
IGN - Ignorance Score(2) 1
CRPS - Continuous Ranked Probability
Score

1

Efficiency Index 1
Manual Case Analysis 3

Own Defined Metric(5) 1

Amount of articles with complete descrip-
tion of evaluation metrics

17

The following less frequent metrics are referenced directly for ease of access to
documentation:
(1) The metric CD - Calibration Deviation is the degree of deviation from flat
PIT histogram and is referenced from (Nipen and Stull, 2011)
(2) The metric IGN is referenced from (Roulston and Smith, 2002)
(3) Peak flow criteria is referenced from (Budu, 2014)
(4) The metric is referenced from (Allawi et al., 2019)
(5) The defined metric is found in (Wang and Lou, 2019)
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2.3 SLR Discussion

2.3.1 Sensitivity Analysis

During the research process decisions are made, of which have the possibility
of affecting the outcome of the research. This section addresses this issue by
reflecting over possible different decisions.

2.3.1.1 Database Choices

The chosen databases of articles are described in 2.2.3, and contains multiple
high regarded databases, of which Scopus is the definitively largest one in the set
used in this study. According to (Elsevier’s Webpage, 2019) in 2017, it hosted
75 million items from 16 million Author profiles and 70 000 institution profiles
dating back to 1970.

There are however more large scale abstract databases than Scopus and Mart́ın-
Mart́ın et al. (2018) compared systematically the citations of articles shown by
Google Scholar, Web of Science, and Scopus. Their review concluded with amongs
other things that Google Scholar finds significantly more citations than the Web
of Science and Scopus across all subject areas. As such Google Scholar also finds
a vastly higher amount of articles than the other two detabases in question, which
could lead to more relevant retrievals to the query of this study.

However a higher article retrieval count is not the only factor in focus. Google
Scholar was described by Mart́ın-Mart́ın et al. (2018) to find 48% to 65% from
other materials than journals, and rather from theses/dissertations, books or
book chapters, conference proceedings, unpublished materials, and other docu-
ment types. They continue by concluding that “Google Scholar has reached a
high level of comprehensiveness... However, at this point there is no reliable and
scalable method to extract data from google Scholar, and the metadata offered
by the platform is still very limited...”.

It is uncertain whether search with other large scientific search engines such
as Google Scholar would have increased the number of relevant retrieved articles
by a large amount, and whether or not retrieved articles would to a larger extent
not meet the inclusion criteria. Especially so as Google Scholar does not retrieve
solely peer-reviewed articles, according to Mart́ın-Mart́ın et al. (2018), which is
one of the Quality Criteria of this SLR.
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2.3.2 Principal Findings

This study conducts a systematic review of 31 papers returned from the chosen
query. 18 of the 31 returned papers, 58%, were marked as relevant as relevant
or semi-relevant. Reasons for the semi-relevant classification was that the papers
met IC1 and IC3 still, however inflow modelling was not the single most important
focus of the article, but rather ranked to equal importance with other aims.
Examples include the focus on modelling both inflow and outflow in the article.

2.3.2.1 Neural Network Architecture in Focus

As can be seen in table 2.3, a substantial majority of the relevant papers used
multilayer perceptrons either as the full model, as a part of an ensemble or as
a apart of a stacked hybrid model. The second most used architecture was the
wavelet artificial neural network, then followed by the adaptive neural-based fuzzy
inference system. This data provide good objective answers to SLR RQ1, in the
context of the utilised query and databases.

It is clear to see that the neural network types used are rather homogeneous
when compared to the joined methods used in the case of multiclassifiers. In the
light of these articles, there has been more effort put into testing similar neural
network architectures with many different supporting methods than to test the
effectiveness of different neural network types. Different neural network types
that are dominant in the field of time series modelling and that are either not
found here or that is barely touched upon in the reviewed articles, are described
in section 2.3.3.

2.3.2.2 Multiclassifier Methods in Focus

Table 4.2 and 4.3 shows that the architecture of multiclassifier models in this
review is very heterogeneous, with almost no single architecture being used in
two different returned articles. However when the scope is broadened slightly
and methods are aggregated into categories, ARIMA, versions of ARIMA or
submethods of ARIMA is the most common method to use in conjunction to
neural networks in multiclassifiers.

2.3.2.3 Experiment Tools in Reviewed Papers

The tools that has been found to be used in the context of this review’s query,
databases, and inclusion criteria with extra emphasis on IC1, is: Historical
weather data, which consists of precipitation, wind data, temperature data and
in one case typhoon data; measured inflow data for both evaluation and training,
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objective evaluation metrics that in most cases are put into the context of rele-
vant benchmarks by comparing the model to existing well tested models. Some
were also tested on a public readily available dataset.

2.3.2.4 Untouched/barely Touched Topics According to SLR

The homogeneity of the neural network types used in the reviewed articles show
that either advancements and improvements from the field of machine learning
on neural networks has not made its way into the field of hydrology, or that the
language and terms that are used are different depending on whether the re-
searchers main field is hydrology, under Earth Sciences or if its machine learning,
under Computer Science. Which explanation that are more likely is not certain,
and is described in section 2.4.1.

Some examples of barely touched neural network types are: Recurrent Neural
Networks and corresponding architectures such as LSTM(Long Short-Term Mem-
ory), GRU(Gated Recurrent Unit); Elman Neural Networks; Convolutional Neu-
ral Networks; M-Competition winning hybrid methods such as ES-RNN(Exponential
Smoothing-Recurrent Neural Network) which is described in section 2.2.

2.3.3 Recurrent Neural Networks and LSTM’s for Inflow
Modelling

One of the untouched upon types of neural network for this application according
to this structured review is the RNN architecture long short term memory net-
works(LSTM). As can be seen from the results in 2.2.5.2, none of the retrieved
articles attempts using a LSTM’s for inflow modelling. We will the following
sections of the discussion look into what prerequisites are necessary to perform
a good experiment with this architecture in this domain, in order to give more
details to the answer of SLR RQ4.

2.3.3.1 Experiment Regarded Tools

In order to be able to evaluate the performance of bayesian neural networks or
other methods, a benchmark for comparison is needed for context. The state of
the art in commercial industry, for Trønderenergi Kraft AS, is utilizing Powel’s
“Powel Inflow” tool (Powel, 2019), which is a commercial implementation of the
HBV-model. The tool is closed source software where state variables are hidden
from the user. The variables that are available for the user are the hyperparam-
eters for the given inflow field that experts/users select and the total inflow to
a reservoir from all HBV-model buckets combined. The Powel Inflow model’s
output is an example of a contextualising model that can be used for comparison
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when evaluating an experiment.

A numerical HBV models usability does not only limit itelf to verification how-
ever. It will also enable building a stacked hybrid aswell, as the predicted bucket
values can be treated as inputs to a neural network, or the predicted inflwo.
Then the stacked networks can correct errors or get more data to use for inflow
modelling rather than just using a standalone neural network model. Howeeer,
because the commercial implementation from Powel is closed source, an open im-
plementation of an HBV-model isnecessary in order to benefit from the stacked
hybrid approach.

A suggested open source HBV-model is the numerical HBV-96 implementation
based on the research of Amir Agha Kouchak from the University of California
- Irvine (AghaKouchak, 2010), who have implemented a MATLAB version of
the HVB-96 model in conjunction with his paper in 2010. This model has been
converted to Python by water resource engineer John Robert Craven (Craven,
2016).

2.3.3.2 Model Comparison, Academical - Commercial

The commercial HBV model built by Powel, which is served to B2B customers
as a purchaseable tool. This model is clearly more advanced than the academic
HBV 96 implementation, as it has more than 6x the amount of hyperparameters
than the academical version. Distinct differences is especially seen in how they
model a snowpack, and altitude temperature differences. Here the commercial
Powel Inflow tool utilises a distinct hyperparameter per temperature difference
in 10 height regions and has over 10 parameters solely for adjust the behaviour
of a snowpack. such as distinctions for quartile, 2*quartile, 3*quartile and fully
covered land areas of snow.

Due to the increased complexity, and adaptability the commercial model is natu-
rally expected to perform better than the open implementation for the Søa field,
especially due to the difficult snowpack modelling features that are especially
valuable in Norway, in a climate with yearly snowfall, and also due to the great
expert help that has been provided when this models parameters has been tuned
by professional experts.

2.4 SLR conclusion

As can be seen in the SLR discussion 2.3, this review has summarised research
in the field of Hydrological inflow modelling by the use of neural networks either
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standalone or as ensembles or hybrids in conjunction with numerical or regression
techniques. The research objectives of answering which NN architectures have
been in focus in this field of research has been accomplished, and information
from the review process to reach this objective has also provided solid and good
information on how to prepare for proposed experiments that will be described
further in section 2.4.1.

The most critical details to SLR RQ1 to SLR RQ4 can be summarised as follows:

• SLR RQ1, What are the main neural network architectures used in research
for reservoir inflow modelling?

– The main neural network architecture types use in research in the
field is by a large margin MLP networks, followed by Wavelet neural
networks, and other architectures described in table 2.3.

• SLR RQ2, In the case of research on hybrid models for hydrological inflow
modelling, which methods are used in conjunction with the machine leaning
methods?

– The main methods used in conjunction to neural networks in the case
of multiclassifiers are varied and the method that is the most used is
autoregression. When the scope is broadened slightly and methods are
aggregated into categories, ARIMA, versions of ARIMA or submeth-
ods of ARIMA is the most common method to use in conjunction to
neural networks in multiclassifiers.

• SLR RQ3, Have peer reviewed research been done on the topic of using
bayesian neural networks for hydrological inflow modelling?

– Peer reviewed research on bayesian neural networks has not been done
in this field in the search and database context of this study. How this
can be achieved in the future is described in chapter 8, Future Work,
and in the context of answering SLR RQ4.

• SLR RQ4, What are the necessary tools in order to conduct a good future
experiment for measuring the effectiveness of a neural network architecture
for water reservoir inflow modelling?

– The tools that has been found to be necessary in the context of this
review’s query, databases, and inclusion criteria with extra emphasis
on IC1, is: Enough historical weather data with as low uncertainty
as obtainable, measured inflow data for both evaluation and training,
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objective evaluation metrics put into the context of relevant bench-
marks by comparing the model to existing well tested models also on
a public readily available dataset.

2.4.1 Untested Architectures & Open Challenges

As described in section 2.3 and 2.4, multiple architectures have not been tested
in this review’s context. These architectures and open unsolved problems are e.g:

• LSTM networks have not been tested in this review’s context, this is a
suggested step for future work.

• The same applies to hybrid models that utilise the HBV bucket values as
input to a neural network.

• In regards to the differences in the academical and commercial model for
modelling a snowpack, research with special focus on modelling inflow when
there is a snowpack on the landscape is highly interesting and a challeng-
ing problem to model accurately according to hydrologist Frode Vassenden
(Domain expertise interview, October 24, 2019).

• Research with the focus of doing flood prediction is a very encouraged field
of future work, as it is of high importance to residents safety near inflow
fields.

2.5 Motivation

The underlying motivation for this thesis is to improve water inflow forecasting.
This can however be specified and concretized by categorizing it into societal,
ecological, economical, personal and technological motivation in the following
manner:

• Societal motivation - Being able to accurately predict inflow to water reser-
voirs accurately can help predict floods, especially during spring, and ensure
time for a safe temporary evacuation for citizens of a flood prone residential
area.

• Environmental motivation - Being able to accurately predict inflow can help
power plant operators ensure that enough water is available in the future to
help ecosystems around water power plants downstream to remain stable
(Suen and Eheart, 2006).

• Economic motivation - Being able to accurately predict inflow enables water
power plant operators to maximize revenue per water available due to:
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– Lower risk of loosing water due to overflow caused by erroneous inflow
predictions forecasting to low values, and when the reservoir is close
to full and the inflow is of a higher value than the maximum possible
consumption at the power plant;

– Lower risk of water reservoir depletion as a consequence of lower in-
flow than predictions suggest or due to too higher evaporation than
expected during dry seasons;

– These lower risks helps water power plant operators’s attempt at op-
timising the revenue per water used by creating more power when
national consumption is high and less when consumption is lower but
still avoid depletion and overflow.

Which enables power plant operators to give more accurate bids for the
amount of power they should create in the day-ahead market, described in
chapter 2. Due to the structure of the Nordic Power market, also described
in chapter 2, these economic benefits for operators can also affect prices
beneficially for consumers which translates to a socioeconomic motivation
as well.

• Personal motivation - It has been a personal motivation to learn more about
neural networks through this thesis, because the amount of data available
(155304 points) is a relatively large dataset capable of tuning neural net-
works.

• Technical motivation - Being able to more accurately predict inflow by using
modern machine learning techniques in conjunction with domain specific
models in order to verify if deep learning can provide value in the field of
hydrology

– To measure which architectures perform the best of a physical model,
a deep machine learning model or a combination model.

– To measure the effectiveness of stacked hybrid models with the com-
mercially used HBV model and a neural network architecture

– Measure whether and if so, the amount of positive impact on perfor-
mance knowing all internal state variables of the numerical part of the
hybrid has on predictions

– Testing an open source HBV model that is free and a white box model
with full access to it’s inner state.
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Chapter 3
Architecture/Model

The models that will be tested in these experiments are models that all use an
LSTM network as a component. The differences between them are what data
is used as input to the LSTM network, where they all use precipitation and
temperature data. The hybrid models with an open source or commercial HBV
model are tested in 3 stages from simpler to more complex:

• 1 - Only predicted inflow from HBV, precipitation and temperature

• 2 - All data from 1, and access to previous inflow, where datapoints up until
the last 4 are smoothed and the last 4 points are unsmoothed.

• 3 - All data from 2, and access to the available state variables of the HBV
models, which is complete access in the case of the open source model, and
limited access in the case of the commercial model.

The commercial HBV model is far more complex than the open source model,
however the limited state available mimics the full state of the open source model
to some degree because the data available is the global bucket contents, which
mimics the single bucket that the open source model consists of. The commer-
cial model consists of many buckets divided into different reservoir heights with
different air temperature, but this state data is closed source.

3.1 Models

The model diagrams show:

35
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• Each hybrid’s sub-models: Open source HBV model, commercial HBV
model and the LSTM network; shown in coloured round-edged boxes

• Measured data: Inflow, temperature and precipitation; shown in rightward
facing arrows

• Sub-model output and state data; shown in leftward facing arrows

Figure 3.1: Model Notation Visualization, as described above
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Figure 3.2: Model using only an LSTM net with precipitation and temperature
as input

Figure 3.3: Model using only an LSTM net with precipitation, temperature and
previous inflow as input
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Figure 3.4: Model using the commercial HBV’s predicted inflow together with
precipitation and temperature as input to an LSTM net

Figure 3.5: Model using the commercial HBV’s predicted inflow together with
precipitation, temperature and previous inflow as input to an LSTM net
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Figure 3.6: Model using the commercial HBV’s limited internal state together
with precipitation, temperature and previous inflow as input to an LSTM net
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Figure 3.7: Model using the open source HBV’s predicted inflow together with
precipitation and temperature as input to an LSTM net

Figure 3.8: Model using the open source HBV’s predicted inflow together with
precipitation, temperature and previous inflow as input to an LSTM net
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Figure 3.9: Model using the open source HBV’s full internal state together with
precipitation, temperature and previous inflow as input to an LSTM net

Figure 3.10: Model using both the commercial HBV’s- and open source HBV’s
predicted inflow together with precipitation and temperature as input to an
LSTM net
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Figure 3.11: Model using both the commercial HBV’s- and open source HBV’s
predicted inflow together with precipitation, temperature and previous inflow as
input to an LSTM net
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Figure 3.12: Model using both the commercial HBV’s limited internal state and
open source HBV’s full internal state together with precipitation, temperature
and previous inflow as input to an LSTM net

3.2 LSTM Network Architecture

The LSTM network Visualization in 3.13 created by (StackOverflow nnnmmm,
2018) shows a general visualization of depth and width of LSTM networks, where
a depth of 2 stacked LSTM layers is the case for w = 1, and the width of hidden
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dimensions decides the value of n. The effect of a higher or lower n value decides
how many timesteps that will be evaluated at the same time to create a prediction

Figure 3.13: LSTM visualization of LSTM layers and hidden dimensions

In addition to tuning the depth and width of the LSTM network, the architecture
and pipeline is also comprised of:

• The LSTM network is initialized with an input dimension according to the
amount of data fields sent as input from precipitation, previous inflow and
HBV models for the respective hybrid models.

• A hidden state is initialized with the dimensions(lstm layers, batch size,
hidden dimension). The hidden state’s weights are initialized as zero values
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for reproducibility, and passed to CUDA on the GPU in order to achieve as
reproducible results as we can on a GPU. See section 5.1 for more details
about reproducibility.

• The input data is passed into the network together with the hidden state
by the training algorithm and passed through the lstm layers and hidden
dimensions, with a dropout function after each LSTM layer, also when there
is only 1 layer.

• The dropout function prevents overfitting by randomly setting output state
values to zero, according to the dropout probability tuned as a hyperpa-
rameter.

• After the data is passed through the dropout function after the final lstm
layer, it is passed to an MLP fully connected layer which changes the di-
mensionality of our data to the output dimension.

• The output dimension of the fully connected layer is set to (1 x forecast
horizon) where out forecast horizon is 40 time steps

• After the output is received from the network, backward propagation is
done which accumulates gradients based the loss function.

• Then gradient clipping is performed on these accumulated gradients. This
prevents exploding gradients by clipping the derivative loss so that it is kept
within a certain range defined by the gradient clipping hyperparameter.

• After the gradient clipping the optimizer updates the net parameters based
on the currently stored gradients

• Then finally the networks accumulated gradients are set to zero toprepare
for another iteration.

3.2.1 Loss Function and Evaluation Metric

The experiments in this thesis use MSE as the chosen loss function because mini-
mizing fewer larger errors are of higher importance than minimizing smaller errors
often. The reasons behind this are both due to the cost of reservoir overflow, the
way the Nordic power market’s day-ahead market operates and also because of
the environmental and societal cost of floods. A water power plant that registers
that it will produce X amount of power in the day-ahead market but fails to do
so because of a lack of water in the reservoir and is not able to trade or hedge
their errors in the intra-day market, described in paragraph 2.1.4.5, is penalized
heavily because of the increased market price per megawatt in the balance market
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supplied by the contry’s operating TSO, described in paragraph 2.1.4.6. On the
other side of the spectrum the cost for overfilling a water reservoir is also vast.
The cost here consists of the alternative cost for the plant operators of lost water,
and also the cost of damage from floods to infrastructure during the spring flood
period, as well as societal and environmental cost.

MSPE (Mean Squared Percentage Error) or other relative metrics will not be
used as a loss function because the errors in focus is not always in relation to the
expected inflow, but rather in relation to the reservoir water amount. A negative
deviation, where the observed inflow is lower than the predicted inflow is also a
more severe error when the reservoir water levels are low, and likewise a positive
deviation, where the observed inflow is higher than the predicted inflow is a more
severe error when the reservoir water levels are high. As such, a relevant problem
for future work is to design and test a relative error metric that measures inflow
error relative to reservoir water contents, as is described in section 5.5.

After the training and tuning of the models has been completed with the use
of MSE, NSE will be used for the primary evaluation of the models because of
its ability to consider data patters, as described in section 2.1.14. However, NSE
is calculated as sums over the forecast horizon so that the output value will be
a scalar that represents the entire forecast of 40 hours, meaning that it will not
be possible to use NSE to visualize performance per hour when the data has the
same granularity. Because of this, MSE, MAE and Smooth L1 Loss will be used
to present the models’ hourly performance.



Chapter 4
Experiments and Results

4.1 Experimental Plan

The experimental plan consists the following steps:

1. Decide upon suitable inflow field for experiments, together with hydrologist
Frode Vassenden

2. Join available data into dataset for the suitable inflow field

3. Analyse outliers and data quality for the data set

4. Clarify what operations or processing, if any, have been performed on the
dataset

5. Implement tunable LSTM network that will aim at forecasting inflow in
the case of non-hybrid models with only an LSTM network, and aim at
improving inflow forecasts in the case of hybrid models with an HBV model
component

6. Tune the open source HBV model on the training partition of the data

7. Clarify data acquisition latency from time of measurement and the time it
is available to the prediction models, and implement that latency as a gap
between the input data and the target labels.

8. Implement custom dataset logic to be able to combine smoothed and un-
smoothed data as model input and target lables.

47
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9. Implement hybrid model structure for three stages of simple to complex
models for the case of using the open source HBV, commercial HBV and
both HBV models at the same time:

• Simple: LSTM has access to measured weather data and HBV inflow
predictions

• Medium: LSTM has access to the data for the simple model, and in
addition access to previous inflow data

• Complex: LSTM has access to the data for the medium model, and
in addition access to all available data ablit the HBV model(s) inner
state

10. Select suitable loss function/evaluation metric for the problem definition

• Implement custom evaluation metric for the pyTorch framework for
NSE, Nash Sutcliffe Efficiency

11. Select suitable forecast horizon length for the problem definition

12. Perform initial upper boundary search for the models’ hyperparameters

13. Perform hyperparameter search using bayesian optimization for efficient
search, by evaluating performance on a validation partition of the data

14. Create model performance metrics by using the tuned parameters to train
the model on the train partition, validating and selecting the model that
performs best on the validation partition, and creating the performance
metrics based on error on the test partition of the data.

15. Evaluate performance by comparing performance between the models on
the test partition

16. Measure performance by total mean error and standard deviation and also
by hourly mean error and standard deviation during the selected forecast
horizon.

As the data is collected before the conduction of these experiments this is a
retrospective study, as the goal in this study is predicting temporal events it is
prognostic, and as the forecasts will predict continuous variables it’s a regression
problem.



4.2. EXPERIMENTAL SETUP 49

4.2 Experimental Setup

4.2.1 Data

The data available are time series dating back to 1st of September 2002 and up to
20th of may 2020 for Søa water power plant which is operated by TrønderEnergi
Kraft AS. The datasets used during the current study are not publicly available
due to them being owned by TrønderEnergi Kraft AS, and is considered confi-
dential by the company. The data is still available from the author with approval
from TrønderEnergi on reasonable request as is recommended by SpringerLink
(SpringerLink, 2020). The data has a granularity of 1 hour, meaning that there
are 155304 data points over the 6471 days, with the following dimensions:

• Measured data:

– Measured precipitation in mm per hour

– Measured temperature in degrees Celsius

– Measured inflow, smoothed in m3 per second The smoothing opera-
tion evens out each data point according to 4 neighbouring values(a
smooth width of 5) (Domain expertise interview, May 20, 2020), two
preceding and two succeeding data points. This is the timeseries used
by TrønderEnergi to tune and evaluate the commercial HBV model’s
performance.

– Measured inflow, unsmoothed in m3 per second

• Commercial HBV limited state data:

– Evaporation in mm

– Total HBV model bucket contents in mm

– Predicted inflow in m3 per second

– Snowpack-coverage fraction, in percentage

– HBV predicted snowpack-melting in mm

– HBV total snowpack in mm

– Soil water level in mm

– HBV predicted field-temperature at mid-height in unit of degrees Cel-
sius

• Open-source HBV model complete state data:

– Soil water level in mm

– Upper reservoir water level in mm
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– Lower reservoir water level in mm

– Predicted inflow Unadjusted in m3 per second

– Predicted inlfow adjusted reservoir field size in m3 per second

– Snowpack contents in mm

– Liquid water amount in mm

– Effective precipitation(precipitation that contributes to runoff)

– Potential evapotranspiration

– Actual evapotranspiration

4.2.2 Preprocessing

4.2.2.1 Outlier analysis

An outlier analysis was performed on all of the measured and smoothed data,
which is: temperature, precipitation, smoothed inflow and unsmoothed inflow.
These timeseries was analyzed to find values deviating both from the global mean,
but more importantly the values that were deviating from the surrounding local
values. The amount of neighbouring values tocalculate the local mean was set to
the same amount as was used by the domain expert who performed the smooth-
ing operation on the unsmoothed inflow data where the neighbouring values were
4 preceding and 4 succeeding values (Domain expertise interview, May 20, 2020).
The table 4.2.2.1 shows the amount of outliers more than 1-5 and 1-3 standard
deviations away from the global and local mean.

Table 4.1: Outlier analysis
global/local std Temp. Precip. Inflow not

smoothed
Inflow

Smoothed
Deviation 1 std 44321 11360 14098 16432

from 2 std 8487 5732 4394 7266
global 3 std 794 3155 1582 3478
mean 4 std 45 1832 776 1802

5 std 0 1108 375 1123
Deviation 1 std 32280 17811 44470 42922
from mean 2 std 933 7838 6774 1133

of 8
neighbours

3 std 9 3130 727 0
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As is expected, the smoothed inflow values minimize the local deviations, as
is the effect of smoothing. It is however interesting to see how much variation it
is for the unsmoothed inflow, temperature and precipitation, where the local de-
viations provide a sense of quality measurement of the data. It is also interesting
to see that the smoothing operation pull the data points away from the global
mean, so that the smoothed data have more outliers when comparing points to
a global mean, while having fewer outliers when comparing to the local mean.

It can be seen that the dataset contains values deviating vastly from the lo-
cal mean, it is however difficult to without bias decide a definite threshold for
correct or faulty values, and it is also difficult to decide upon a suitable replace-
ment value of which to substitute deviating values without introducing bias to
the research. Because of these reasons, the time series has been used with all
original values in the experiments following below.

4.2.2.2 Negative Values

The smoothed and unsmoothed inflow time series was also analysed for negative
inflow values, shown below. The inflow is expected to not be negative, however
it is a common occurrence due to inaccuracies in water level readings, as inflow
is calculated as the sum of reservoir water height changes and water spent in
electricity generating turbines. A few centimeters of deviance as a result of wind
will result in massive changes in reported water content when the surface area
spans square kilometers.

It is a potential great bias factor introduced when choosing what values the
negative readings can be replaced by. If replacing them by 0, the accumulated
total water inflow per week, month, year and so forth will be greatly affected
and altered, which could alter the accumulated state to a higher inflow value
than is accurate by removing only negative values. Due to this and the fact that
smoothing the inflow improved the negative readings by lowering them by 76%,
negative reading has been unaltered, and smoothed inflow is used in conjunction
with unsmoothed inflow as the LSTM-models input.

Inflow not smoothed Inflow smoothed

Negative inflow values 34160 8343

Table 4.2: Negative values
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4.2.2.3 Data scaling

The input data is scaled using a min-max scaler which both fits and tranforms
the data by the formula below so that it is in a range from 0 to 1.

All input data is transformed for the models which do not use previous inflow
data as input, and for the models that use previous inflow as input, all data
except for the previous inflow is scaled. This is due to the fact that we fit and
transform input according to the target values, and when previous inflow also
is used as input it still remains as target values as well. The reason the labels
and output isn’t scaled is because we want the model output to be a meaningful
metric, directly applicable to power plant operation.

Min-max scaling uses the following formula to scale data and normalize the val-
ues, making all values fit a range between 0 and 1. xnew is the new value to
substitute, X is the previous value, xmin is the lowest recorded value in the
series and xmax is the highest recorded value:

xnew =
x− xmin

xmax − xmin

The same scaling has been applied to all partitions of data: train, validation
and test, as the model is trained and adapted to input data for all non-inflow
related dimensions to be in the range from 0 to 1 to improve convergence during
training.

4.2.3 Open source HBV model Tuning

The HBV model requires tuning to perform well, and the open source HBV
model was implemented with the PEST framework (Doherty et al., 2018) and its
method SCEUA P, an acronym for “Shuffled Complex Evolution method devel-
oped at The University of Arizona” and implemented by the PEST framework.
The framework optimizes the 10 tunable parameters that are described in 4.2.3.1
and does so by using the SCE(Shuffled Complex Evolution)-algorithm which is a
generative evolution algorithm described by (Duan and Publisher, 1991), (Duan
et al., 1992), (Duan et al., 1993) and (Duan et al., 1994) together with their runoff
model, where both the model and optimization algorithm is designed specifically
for inflow models.

It creates an initial set of parameters randomly by drawing samples from the
defined parameter ranges and densities, uniform in our case, that are used to
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run the model and measures an error metric, which in our case is NSE which is
modified to range from 0 to inf where smaller values are better. The parame-
ter combinations, called complexes, are ranked by their error score where all are
evolved by another algorithm CCE(Complex Competitive Evolution), described
by the same authors.

CCE evolves the complexes by evaluating if they are within a boundary from
their centroid value, a value that averages all other complexes than the one being
altered by evolution. If the complex is outside thos boundary, a it is changed to a
randomly generated point in the parameter space. If this complex performs bet-
ter than the average of the other complexes, it is kept, otherwise the performance
of parameters averaging the new random complex and the centroid is evaluated.
If this peforms better, it is kept, otherwise it is randomly changed again and
iteratively evaluated aswell.

After the completion of each iteration’s CCE-algorithm the parent complexes
are replaced by the evolved offspring. The evolved complexes are then shuffled
and measured against a convergence criteria which is a user specified metric for
how small the difference between each the order of shuffled complex and itera-
tively ordered and evolved again if the criteria is not met.

The method requires you to define an initial number of complexes to evaluate,
which again affects default values for parameter sets per complex, parameter set
per sub-complex, evolution steps before shuffling, minimum number of complexes
and a random number seed. According to documentation the initial number of
complexes should be between 2 and 20, and in most cases be set to 5 (Doherty,
2015). The remaining parameters were set to their default values, affected by the
value of initial complexes, such that 20 sub complexes also were created when
choosing 20 initial complexes. Both initial values of 5 and 20 were tested to
perform the most exhaustive search available, though 20 could and did lead to
slight overfitting when tuned on only the training partition of the data and eval-
uated on the validation partition. The parameter combination that was used was
therefore with 5 initial parameter complexes.

The 11th configurable parameter, called “ca” or “Watershed Area” is manually
set to the total area of the power plants inflow field.

4.2.3.1 Open source HBV model parameters

The open source HBV model has the following tunable parameters
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Table 4.3: Open source HBV tunable parameters
Parameter Description

d tuning air temps effect on liquid water amount when air temp
is over snow threshold(falls as rain)

fc Tuning effective precip(dq) by dividing yesterday’s soil water
by fc and exponentiate this base to the power of beta

beta Tuning effective precip(dq) by exponentiating the base of
yesterday’s soil water by fc to the power of beta

c Tuning potential ET(evapotranspiration)
k0 Tuning inflow factor from S1, fast flow when water contents

are above l0
l0 Minimum water amount in S1 cutoff for fast inflow from S1
k1 Tuning inflow factor from S1, slow continuous flow
k2 Tuning inflow factor from S2
kp Tuning factor for flow down from S1 to S2
pwp Permanent wilting point: the minimum amount of water

content in the soil for water to be available to plants and
agriculture, where water contents below the pwp will lead to

the plants wilting (Kirham, 2005) (Rai et al., 2017)

The parameter search requires us to define an upper and lower band of pa-
rameter values. For the permanent wilting point the upper and lower band was
set to cover the range that is described to apply for both sand, clay and loam
of up to 250 (Brouwer et al., 1985). The remaining parameters had both the
upper and lower bound widened from the ranges provided by water resources
engineer (Craven, 2016) in order to increase the chance of finding an optimal
configuration. Where the tunable parameters were used in both the open source
and commercial HBV model, the parameter ranges for the open source was made
sure to cover the values used for the commercial model, such as was the case for
fc and beta.

To accommodate for the larger parameter space and the high amount of pa-
rameter combinations to test, the tuning was given 3 days of processing time on
an Intel i5-6200U 2.30GHz cpu combined for the two parameter searches.

The parameter ranges that was used during tuning, and the discovered tuned
values were:
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Table 4.4: Open source HBV tunable parameter ranges and tuned values
Parameter Lower bound Upper bound Tuned value

d 1.000 40.00 38.909
fc 50.00 500.0 53.07
beta 3.000E-1 7.600 0.3080
c 5000E-3 1.750 2.374E-02
k0 1.000E-2 2.000E-1 2.381E-02
l0 2.000 10.00 5.479
k1 1.000E-2 4.000E-1 0.3991
k2 1.000E-2 0.2000E-1 1.759E-02
kp 1.000E-3 5.000E-2 1.611E-03
pwp 25.00 250.0 249.8

4.2.4 LSTM Hyperparameter Constraint Analysis and Pa-
rameter Distribution

The possible hyperparameter space for a machine learning model is vast and
in order to minimize the time needed for the hyperparameter search, an initial
search was conducted for each model with hyperparameters that provided an up-
per bound for the parameter space that still overfitted the model.

Because we initially have little information about the parameter space and how
the model will perform within it, the initial parameter distributions were set to
be uniform distributions for all parameters. While the Tree-Parzen estimator(see
below) improves the loss, the distributions are iteratively changed for each run,
which contributes to faster convergence.

4.2.5 Hyperparameter Search

4.2.5.1 TPE - Tree-structured Parzen Estimator

Tree-structured Parzen Estimator(TPE) optimization is a technique that uses a
surrogate model for tuning parameters and falls under the category “Sequential
Model-Based Optimization”(SMBO). The original paper referenced by the Hy-
perOpt library described below was written in 2011 by Bergstra et. al. (Bergstra
et al., 2011)

The algorithm begins by sampling the response surface by random search to
initialize the algorithm (Bergstra et al., 2011). Rather than modelling p(y—x)
directly, TPE models p(x—y) and p(y). Then the observations are split into
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groups according to the best performing quantile, y∗, according to the defined
loss, and the remaining worse performing quantiles. p(x—y) is as such defined
by these two densities: (Bergstra et al., 2011)

p(x|y) =

{
l(x), if y < y∗

g(x), if y ≥ y∗
(4.1)

The density l(x) is formed by observations x i from past evaluations such that
the loss is less than the threshold y∗. g(x) is the remaining worse performing
quantile.

EIy∗ :=

∫ ∞

−∞

max(y∗ − y, 0)p(y|x)dy (4.2)

When using the TPE algorithm, it can be shown that maximizing EI(Expected
Improvement, above) amounts to choosing x values that minimizes g(x)/l(x).
i.e. we would like points with a high likelihood of being in l(x) and a low like-
lihood of being in g(x). At each iteration, the algorithm draws several samples
from l(x), the wanted density, evaluates them in terms of g(x)/l(x) and returns
the candidate with highest EI1 (Bergstra et al., 2011) before the next iteration
begins.

A benefit of using TPE for Bayesian Optimization is the fact that TPE easily
can optimize both mixed continuous and discrete spaces (Falkner et al., 2018),
which is applicable for this model as e.g. the amount of LSTM layers is a discrete
space while dropout probability on the other hand is a continuous space.

4.2.5.2 Early stopping

In order to be able to test a higher amount of hyperparameter settings, early
stopping was implemented and set to stop the training if the validation loss was
increasing for 2 consecutive epochs. Then after the hyperparameter search, the
best hyperparameter settings were applied and the network was trained for a
higher amount of epochs, before selecting the network weights that provided the
lowest validation loss.

4.2.5.3 Hyperparameter Space

The hyperparameters that are being tuned are the following:

• Learning rate

• In window, the amount of timesteps that are being used as input to the
model

• Batch size
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• Dropout probability

• Clipping coefficient, for gradient clipping, described in section 3.2

• Hidden dimensions, the width of the network

• Amount of stacked LSTM layers

Frozen parameters, description of the parameter and the reason behind the
freeze:

• Out window: the amount of timesteps forward to predict the reservoir
inflow

– Frozen at 40 hours due to the specific time step requirement for power
plant operators in the joint Nordic power market of how many hours
ahead they need to report their power production, in the Intra day
market described in chapter 2.

• Input-output latency: The delay associated with receiving the measurement
data and HBV-prediction data, resulting in the necessity to use input data
from x amount of timesteps backwards to predict the future out window of
inflow.

– Frozen at 1 hour due to the specific time delay of up to 1 hour to receive
the HBV model predictions from measurements are being made. This
ensures that no data leakage is experienced due to using data that
would not be available in the moment of prediction.

4.2.5.4 HyperOpt - Hyperparameter Optimization Library & Param-
eter Configuration Space

The algorithm and configurations described above were implemented for the ex-
periment using the optimization library HyperOpt (Bergstra et al., 2013). The
library does in addition to using the TPE algorithm described in 2.1 also allow
and require the definition of a parameter configuration space, which is the prior
probability distribution used for the defined parameter.

As the parameter space is complex and it is difficult to predict the models
behaviour prior to optimization, all continuous parameters were initialized with
a uniform prior distribution to not introduce any bias.

4.2.6 Reproducibility

Reproducibility is of high importance in order to provide results that are trust-
worthy and reliable. In order to enhance the reproducibility of the results in this
thesis there added some critical configurations to the implemented pipeline
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4.2.6.1 Random Seed

In order to make computation more reproducible, the random seed both for py-
torch and cuda calculations have been manually fixed. In order to remove bias
even more, the seed was frozen to a value selected by the random integer gener-
ator of random.org within 0 and 1 000 000 000.

The same value was also used for Numpy’s random seed as any libraries that
rely on Numpy are dependent on a fixed random seed for Numpy to obtain re-
producibility. An example of a library that uses numpys random seed is Hyperopt,
that is used for the hyperparameter search.

4.2.6.2 CuDNN backend

The experiments were runned on an NVIDIA Tesla P100 GPU with 16gb of
memory. This gpu uses cuda for network tuning and in order to ensure more
reproducible results, two configuration flags has been set according to pytorch
documentation (Torch Contributors 2019, 2019):

• Torch.backends.cudnn.deterministic = True

• Torch.backends.cudnn.benchmark = False

Where the CuDNN benchmark configuration according to pytorch moderators
allows you to enable the inbuilt auto-tuner to find the best algorithm to use for
your hardware. It usually leads to faster runtime (Massa and AlbanD, 2017). By
locking the random seed in accordance with configuring the CuDNN backend to
deterministic, we are able to ensure deterministic computation within the same
pytorch releases on the same GPU.

4.2.6.3 Limitations to the effect of random seed

The random seed in pytorch, does not guarantee reproducible results across soft-
ware releases, individual commits or different platforms, (Torch Contributors
2019, 2019). Running the same pytorch code on different GPU’s will also be able
to yield different results, confirmed by pytorch’s own moderators (AlbanD, 2019).
This case would be the same if Tensorflow was used rather than pytorch.

4.2.6.4 Weight initialization

Weight initialization can affect the outcome of the trained model heavily. In
order to ensure that different weight initialization is not the reason behind dif-
ferent model performance the cell state and hidden state of the LSTM layers are
therefore initialized as zero in all experiments.
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4.3 Experimental Results

4.3.1 NSE - Nash-Sutcliffe Efficiency for Entire Forecast

The figures show the mean of each forecast’s NSE and their standard deviation,
with the range (∞, 1].

Figure 4.1: Model using only an LSTM net with precipitation and temperature
as input
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Figure 4.2: Model using only an LSTM net with precipitation, temperature and
previous inflow as input

Figure 4.3: NSE for model using the commercial HBV’s predicted inflow together
with precipitation and temperature as input to an LSTM net



4.3. EXPERIMENTAL RESULTS 61

Figure 4.4: NSE for model using the commercial HBV’s predicted inflow together
with precipitation, temperature and previous inflow as input to an LSTM net

Figure 4.5: NSE for model using the commercial HBV’s limited internal state to-
gether with precipitation, temperature and previous inflow as input to an LSTM
net
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Figure 4.6: NSE for model using the open source HBV’s predicted inflow together
with precipitation and temperature as input to an LSTM net

Figure 4.7: NSE for model using the open source HBV’s predicted inflow together
with precipitation, temperature and previous inflow as input to an LSTM net
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Figure 4.8: NSE for model using the open source HBV’s full internal state to-
gether with precipitation, temperature and previous inflow as input to an LSTM
net

Figure 4.9: NSE for model using both the commercial HBV’s- and open source
HBV’s predicted inflow together with precipitation and temperature as input to
an LSTM net
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Figure 4.10: NSE for model using both the commercial HBV’s- and open source
HBV’s predicted inflow together with precipitation, temperature and previous
inflow as input to an LSTM net

Figure 4.11: NSE for model using both the commercial HBV’s limited inter-
nal state and open source HBV’s full internal state together with precipitation,
temperature and previous inflow as input to an LSTM net
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4.3.2 MSE - Models’ Mean Square Error and Standard De-
viation per Hour

The graphs here show mean MSE per hour as blue bars, and standard deviation
as black capped lines.

General trends to notice:

• For all but one model, both the mean error and standard deviation is strictly
increasing with time in the forecast horizon

• There is a large bump in mean error from hour 36 to hour 37. Remember
the input and target data structure where due to the smoothing, the last 4
data points of both the input and targets are unsmoothed.

• All eleven models, hybrids and LSTM models perform better than the HBV
models, which are presented below in this section.

Figure 4.12: MSE for model using only an LSTM net with precipitation and
temperature as input
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Figure 4.13: MSE for model using only an LSTM net with precipitation, tem-
perature and previous inflow as input

Figure 4.14: MSE for model using the commercial HBV’s predicted inflow to-
gether with precipitation and temperature as input to an LSTM net
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Figure 4.15: MSE for model using the commercial HBV’s predicted inflow to-
gether with precipitation, temperature and previous inflow as input to an LSTM
net

Notice the fact that the standard deviation decays from hour 26 to 36. The mean
error does however strictly increase with time.

Figure 4.16: MSE for model using the commercial HBV’s limited internal state to-
gether with precipitation, temperature and previous inflow as input to an LSTM
net

Notice how much longer into the forecast horizon the standard deviation is
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kept to a low value compared to the model without access to previous inflow
as well as how the mean error decreased. However, it can also be seen that for
the first 4 hours, the standard deviation is higher for this model with access to
previous inflow compared to the one without.

Figure 4.17: MSE for model using the open source HBV’s predicted inflow to-
gether with precipitation and temperature as input to an LSTM net

Figure 4.18: MSE for model using the open source HBV’s predicted inflow to-
gether with precipitation, temperature and previous inflow as input to an LSTM
net
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Figure 4.19: MSE for model using the open source HBV’s full internal state to-
gether with precipitation, temperature and previous inflow as input to an LSTM
net

Figure 4.20: MSE for model using both the commercial HBV’s- and open source
HBV’s predicted inflow together with precipitation and temperature as input to
an LSTM net
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Figure 4.21: MSE for model using both the commercial HBV’s- and open source
HBV’s predicted inflow together with precipitation, temperature and previous
inflow as input to an LSTM net

Figure 4.22: MSE for model using both the commercial HBV’s limited inter-
nal state and open source HBV’s full internal state together with precipitation,
temperature and previous inflow as input to an LSTM net
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4.3.2.1 MAE and Smooth L1 Loss

Error metrics for each model is also available measured in MAE and Smooth L1
Loss, and is located in the appendix in A.1. These metrics show the error for
the exact same models, that are all trained using MSE as their loss function, and
provide more perspective about the model’s performances.

4.3.3 Benchmark Models’ Efficiency and Theoretical Hourly
Error

Figure 4.23: NSE for the commercial HBV model in a theoretical scenario where
it makes 40 hour forecasts based on measured data
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Figure 4.24: NSE for the open source HBV model in a theoretical scenario where
it makes 40 hour forecasts based on measured data

The graphs below show what the theoretical error would be if the HBV models
were to make 40 hour forecasts based on measured data. As they don’t provide
such forecasts, one would need to use weather forecasts as input to the models,
which has a higher uncertainty and error rate than measured data. Because of
this, the errors reported here are best case scenarios for the HBV models where
1 hour forecasts only based on measured data are stacked, while in reality, the
error would on average be higher for all but the first timestep. As the forecast
here is 40 stacked 1 hour forecasts, the error per hour is approximately uniform
between the 36 smoothed values and between the 4 unsmoothed values. The only
difference between teh approximate uniform values and true uniform values are
the 40 first and last data points as the timeseries’ are not padded.
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Figure 4.25: MSE for the commercial HBV model in a theoretical scenario where
it makes 40 hour forecasts based on measured data

Figure 4.26: MSE for the commercial HBV model in a theoretical scenario where
it makes 40 hour forecasts based on measured data

4.3.4 Model Mean and Standard Deviation

Abbreviations:

os HVB = open source HBV
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c HVB = commercial HBV

no HVB = only LSTM net

both HVB = both os HBV and c HBV

Table 4.5: Benchmark Model Performance, NSE efficiency and MSE error
Metric Model

Name
Mean Std

NSE c HBV -8.161738 29.219992
NSE os HBV -8.093324 29.447031
MSE c HBV 341.472595 1507.546875
MSE os HBV 339.355225 1508.660400

Notice in table 4.3.4 that the two HBV models perform almost identically, even
though they are of vastly different complexity.

Table 4.6: Model Mean Efficiency and Standard Deviation by NSE
Metric Model

Name
Access

to
Previous
Inflow?

Access
to state?

Mean Std

NSE no HBV N N -2.277737 1.948010
NSE no HBV Y N -0.621070 0.586458
NSE os HBV N N -2.355785 2.960371
NSE os HBV Y N -0.015438 0.164231
NSE os HBV Y Y -0.5276523 0.408788
NSE c HBV N N -0.368335 0.363243
NSE c HBV Y N -0.173352 0.196634
NSE c HBV Y Y -0.049486 0.127185
NSE both HBV N N -0.429513 0.370954
NSE both HBV Y N -0.252391 0.232111
NSE both HBV Y Y 0.028954 0.096195
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Table 4.7: Model Ranking Based on Mean NSE
Ranking Model

Name
Access to
Previous
Inflow?

Access to
state?

Mean

#1 both HBV Y Y 0.028954
#2 os HBV Y N -0.015438
#3 c HBV Y Y -0.049486
#4 c HBV Y N -0.173352
#5 both HBV Y N -0.252391
#6 c HBV N N -0.368335
#7 both HBV N N -0.429513
#8 os HBV Y Y -0.5276523
#9 no HBV Y N -0.621070
#10 no HBV N N -2.277737
#11 os HBV N N -2.355785

Table 4.8: Model Mean Error and Standard Deviation by MSE
Metric Model

Name
Access

to
Previous
Inflow?

Access
to state?

Mean Std

MSE no HBV N N 228.416988 626.435014
MSE no HBV Y N 155.350956 541.777600
MSE os HBV N N 228.152865 626.574387
MSE os HBV Y N 145.194504 519.628831
MSE os HBV Y Y 150.131950 526.282740
MSE c HBV N N 154.310330 525.421053
MSE c HBV Y N 139.346881 511.562233
MSE c HBV Y Y 139.712514 515.380863
MSE both HBV N N 165.523761 542.951148
MSE both HBV Y N 148.771959 519.132510
MSE both HBV Y Y 168.525514 564.390794
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Table 4.9: Model Ranking Based on Mean MSE
Ranking Model

Name
Access to
Previous
Inflow?

Access to
state?

Mean

#1 c HBV Y N 139.346881
#2 c HBV Y Y 139.712514
#3 os HBV Y N 145.194504
#4 both HBV Y N 148.771959
#5 os HBV Y Y 150.131950
#6 c HBV N N 154.310330
#7 no HBV Y N 155.350956
#8 both HBV N N 165.523761
#9 both HBV Y Y 168.525514
#10 os HBV N N 228.152865
#11 no HBV N N 228.416988

Table 4.10: Model Mean MSE Ranking for Hour 1
Ranking Model

Name
Access to
Previous
Inflow?

Access to
state?

Mean

#1 c HBV Y N 53.95747
#2 both HBV Y Y 59.860035
#3 os HBV Y N 60.18853
#4 no HBV Y N 63.598618
#5 os HBV Y Y 64.541534
#6 c HBV Y Y 64.815865
#7 both HBV Y N 72.46247
#8 both HBV N N 79.609604
#9 c HBV N N 79.71544
#10 os HBV N N 161.90985
#11 no HBV N N 227.43687

The results in table 4.3.4 are relevant for a TSO in the balance market. Notice
that access to inner state is beneficial for the hybrid with both HBV models,
but not for the commercial or open source hybrids. Notice also the impressive
performance of the LSTM net with no HBV model, but with access to previous
inlfow.
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Table 4.11: Model Mean Error and standard deviation for hours 2-5
Ranking Model

Name
Access to
Previous
Inflow?

Access to
state?

Mean

#1 c HBV Y N 64.25658375
#2 both HBV Y Y 66.598165
#3 c HBV Y Y 70.57612875
#4 os HBV Y N 70.715311
#5 os HBV Y Y 74.00548225
#6 no HBV Y N 74.9794625
#7 both HBV Y N 80.56453
#8 both HBV N N 88.8856565
#9 c HBV N N 90.20724625
#10 os HBV N N 167.01682
#11 no HBV N N 227.1588125

The results in table 4.3.4 are especially relevant for the intra-day market. Notice
that access to inner state is beneficial for the hybrid with both HBV models, but
not for the commercial or open source hybrids.

Table 4.12: Model Mean Error and standard deviation for hours 12-36
Ranking Model

Name
Access to
Previous
Inflow?

Access to
state?

Mean

#1 c HBV Y Y 150.68379
#2 c HBV Y N 158.2374521
#3 no HBV Y N 162.1238992
#4 os HBV Y N 162.8817623
#5 both HBV Y N 165.1701258
#6 both HBV Y Y 168.0984185
#7 os HBV Y Y 168.4151928
#8 both HBV N N 169.0070413
#9 c HBV N N 175.1553508
#10 os HBV N N 206.7631413
#11 no HBV N N 224.8984004

These results in table 4.3.4 are especially relevant for the day-ahead market.
Notice that state access is beneficial for the commercial HBV hybrid, but not the



78 CHAPTER 4. EXPERIMENTS AND RESULTS

open source HBV hybrid or the hybrid with both HBV models. Notice also the
impressive performance of the LSTM net with no HBV model, but with access
to previous inlfow.



Chapter 5
Evaluation and Conclusion

5.1 Evaluation

5.1.1 Hyperparameter Tuning

The dimensionality of the input data to the LSTM is high for the most complex
models in these experiments, such as using both the limited state of the commer-
cial HBV, the full state of the open source HBV and the measured temperature,
precipitation and previous inflow. Because of this factor, the more complex mod-
els with access to full state- and limited state variables was seen to converge at
a slower rate during the Bayesian hyperparameter tuning. It is likely that the
more complex models would improve more relative to the simpler models with
no access to state variables and potentially no access to previous inflow data ei-
ther. The amount of hyperparameter combinations that were tested was 100 per
model. When training the models with the selected hyperparameters, the max
amount of epochs was increased from 25 to 100 and the number of epochs with
a non-increasing validation error to stop the training was increased from 2 to 20,
in order to increase the chance of good performance.

An additional test run was performed on the most complex model, with access to
the states of both HBV models, where 300 different hyperparameters were tested
and compared to the one tuned only 100 parameter combinations and seen to
improve as described in the result tables.

When working with complex models it is however important to remember the
findings of Makridakis & Hibon when reviewing the M-3 competition in year

79
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2000 (Makridakis and Hibon, 2000) they presented four conclusions of the M-
competition, where one of them was: “Statistically sophisticated or complex
methods do not necessarily produce more accurate forecasts than simpler ones”
(Makridakis and Hibon, 2000) Such that a model with a higher time till conver-
gence does not always perform better than a simpler model that takes a shorter
time to train.

This can also be seen in these experiments where the bayesian hyperparame-
ter tuning for all models tuned the LSTM layer depth of the network down to
low numbers around 2. This is likely due to the massive amount of data needed
to train really deep machine learning archictures, and due to and vanishing gra-
dients for the deeper configurations. It is however natural that shallower nets
prevailed as when comparing to very deep machine learning models 155304 data
points is not a large dataset.

5.1.2 Hardware and Time Limitations

The thesis’ experiments are characterized by being restrained by hardware and
time constraints, specifically about the time available for hyperparameter tuning
for each model. This means that conclusions drawn must be seen in conjunction
with these limitations. The performance differences between each model could
have been different with a longer tuning period. However, we know that each
model’s performance is lower bound to the performance seen in these experiments,
and can perform the same or better with further tuning.

5.1.3 Forecast Horizon

The forecast horizon decides the models’ priorities as they during training are
measured against an error metric across the entire horizon. Therefore the results
for 1 hour, 2-5 hours and 12-36 hours are using models that are not specifically
tuned and trained for the best performance for that horizon. The results are
however, interesting in order to evaluate subsets of the behaviour of the models.

5.2 Discussion

Interpreting Results When interpreting the results, they are discussed in a
matter where if the data is correct and the tuning is acceptable, the dis-
cussion topics and conclusions following can be drawn.
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5.2.1 Complex Model’s Tuning Time Required for Conver-
gence

The amount of hyperparameter combinations attempted before new best valida-
tion losses were recorded more rarely was very different from model to model,
where the simpler models were seen to converge much more rapidly than the
models with access to state and previous inflow. This suggests that the complex
models, especially the models with access to the full and limited state variables
would improve more than the models without access to this data if given more
time for tuning parameters.

5.2.2 Time Step Loss Differences

As can be seen for all the models, there is a significant difference between the
loss of the 36 first hours and the last 4. This big difference is likely caused by
the label-structure where the smoothing operation done on the inflow where 8
neighbouring points, 4 earlier and 4 later timesteps, are used to smooth out the
inflow values. Because we in the event of predicting 40 hours into the future do
not have 4 later timesteps to use for smoothing for the 4 last hours, the labels
created therefore consists of 36 smoothed values and 4 unsmoothed values where
the smoothed values have a lower variance and the unsmoothed values have a
higher variance. Both its higher variance and the fact that these datapoints only
consists of 5% of the forecast horizon, making the model adapt much less to these
datapoints than the smoothed ones makes it natural that the difference between
the 36 first and 4 last time steps are larger.

5.2.3 Performance comparison of the commercial and open
source HBV model

The comparably good performance of the open source HBV model, when both
have access to previous inflow, which is free and simpler than it’s commercial
counterpart is likely to partly be a result of the tuning of the models. The mod-
els need thorough and regular tuning in order to keep performance high according
to hydrologist Frode Vassenden (Domain expertise interview, October 24, 2019).
The open source HBV was tuned with the entire train partition of the data, while
the commercial model according is not tuned as recently. Both models also re-
quire data about monthly average evaporation for the field, where the two models
used the exact same values. Another reason is the highly beneficial effect the ac-
cess to data about previous inflow has on the models, so that the dependence on
the HBV models weakens slightly. This is also made very apparent by the great
gap in performance for the LSTM net without HBV models with and without
access to previous inflow.



82 CHAPTER 5. EVALUATION AND CONCLUSION

However, as can be seen for the case of when the models don’t have access to
previous inflow, the commercial model outperforms the open source model dras-
tically for the first few hours both in mean loss and standard deviation. With
longer forecast horizons especially the standard deviation evens out, though the
error mean is still much better for the commercial model.

5.2.4 Effect of having access to previous inflow data

The models that utilizes input from the open source HBV model and the com-
mercial HBV model on their own were tested both with and without access to
previous inflow data and its effect can clearly be seen on the graphs for hourly
prediction error, where the first hours have a significantly lower error than for
the models without access to previous inflow. The error for the first 10 hours for
the models without access to previous inflow was 3 times as large while the error
for the 10 last hours was only 25% as large. All hours in the forecast horizon
benefited from access to previous inflow and we see that the improvement from
access to previous inflow was much greater than the improvement from also hav-
ing access to state variables in addition to inflow. The only part of the prediction
that did not improve with access to previous inflow was that the relative error
increase from hours 30-36 to 37-40 with the unsmoothed inflow values was larger
for the models with access to previous inflow.

A possible explanation for this was that the inflow input data consisted of smoothed
values up until the last 4 values, such as for the target values, so the model did
only have access to 0.009% of the input window size of 222 as unsmoothed values
per time step in the case for the open source HBV hybrid.

This result emphasises the importance of having low latency systems for inflow
measurements, such as for this inflow field where access to reservoir data is avail-
able within one hour. Although it also seems that the effect of access to previous
inflow diminishes severely around 24 to 26 hours into the future in these experi-
ments which means 25 to 27 hours between the latest data input to the forecasted
values due to the 1 hour latency. This makes it likely that the relative difference
between these two models would be much lower for the case where spring floods
should be predicted, as the forecast horizon increases from hours to days.

5.2.5 Relevance for Future Behaviour

An important question when evaluating the performance for a model using his-
torical data to predict the future behaviour of a system is whether it will perform
well in the future. This is a difficult question to answer as the real life system can
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and most likely will change over time. However, by structuring the experiments
so that the test partition is the 5% most recent data and only the first 95% of the
timeseries was used for training and validation, it is likely that the performance
experienced in these experiments is comparable to future behaviour as it was
tested on the most recent data.

5.2.6 Effect of Access to HBV Model’s Inner State

The effect of having access to the state of the HBV models had a positive impact
on mean error of predictions, where the improvement for the commercial HBV
model improved the most of the two from access to this data. Possible reasons
for this are the fact that access was given to the complete state in comparison
to only a limited part of the state for the commercial, which then would behave
less predictably than the open source one. Another possible reason is that the
commercial model is more advanced and that improving the models become ex-
ponentially more difficult the better they perform. The effect of access to subsets
of the inner states of the models is a relevant research problem for future work,
described in section 5.5.2.

5.2.7 Answering the Research Questions

As we see in these experiments, and discussed in sections 5.2.6 and 5.2.4 we
can answer the research questions presented in section 1.3 in the light of the
limitations presented in the evaluation section, 5.1. Once again, the research
questions and their answers are set into the context of a climate with yearly
snowfall, which makes the prediction problem more complex to solve.

Research question 1 Will a machine learning model that has access to previous
inflow data and the state of an HBV-model be able to predict inflow more
accurately than the HBV-model?

• Yes it will, for both HBV models: Although, in conjunction with access
to data about previous inflow, inner state access was not beneficial
for the models performance for forecast horizons under 12 hours with
this restricted hyperparameter search, likely due to longer convergence
time for the more complex models.

Research question 1.1 Will a machine learning model that does not have ac-
cess to the state of an HBV-model be able to predict inflow more accurately
than the HBV-model?

• Yes it will, for both HBV models. This is especially true for short
forecast horizons of up to 12 hours, and also for horizons of 25-27 hours
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from inflow observation when having access to data about previous
inflow.

Research question 2 Will a machine learning model that has access to previous
inflow be able to predict inflow more accurately than the HBV-model?

• Yes it will, as is shown for the full 40 hour forecast horizon in these
experiments, even for the LSTM network with no HBV model input,
and especially for short term predictions of 25-27 hours from the time
of measurement or less

5.3 Conclusion

According to the results shown in this thesis, the best performing model overall
during the forecast horizon is the hybrid model that has access to previous inflow,
the full state of the open source HBV and the limited state of the commercial
HBV. The model received a positive mean Nash-Sutcliffe efficiency and the lowest
standard deviation of NSE as well.

The other well performing models according to MSE are:

Open source HBV hybrid with access to previous inflow, but no state
This was the second best performing model by NSE over the full forecast
horizon, and even outperformed the commercial HBV model both with and
without access to limited state.

• A conclusion that should be drawn from these results is that the com-
mercial HBV model should be re-tuned and re-tested. If the perfor-
mance does not improve significantly, the open source HBV model
should be used in stead of- or in conjunction with the commercial
HBV model.

Commercial HBV hybrid with access to previous inflow, but no state
This model was the best performing model according to MSE for both hour
1/balance market, and for hour 2-5/intra-day market.

Commercial HBV hybrid with access to previous inflow and state This
model was the best performing model according to MSE for the 12-36/day-
ahead market.

It has also been clearly shown that the performance of all the hybrid models was
greatly improved when compared to their respective benchmarks, the commercial
HBV and the open source HBV, and also when compared to a standalone LSTM
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network without an HBV model and no acces to previous inflow.

The most significant change for model performance was having access to pre-
vious inflow, especially for short forecasting horizons, but also across the entire
horizon.

5.4 Contributions

The contributions of this thesis are:

• Creation and evaluation of sequence to sequence models that uses measured
data as input in order to forecast inflow

• Creation and evaluation of 9 Hybrid models that forecast inflow.

• Evaluation of the importance of access to previous inflow and low latency
for inflow measurements.

• Creation of- and running experiments with target values from two different
dimensions of the dataset to be able to smooth data with a large smoothing
width and still avoid leakage of the targets.

• Evaluating LSTM networks performance for inflow forecasting alone and as
sub-models in a hybrid architecture.

• Tuning and evaluation of a free and open source alternative to a commercial,
complex and costly HBV model.

5.5 Future Work

5.5.1 Error metric and reservoir state

Error metric that analyses deviations in accordance with reservoir water level.
This is interesting because

• When the reservoir level is low and the model predicts a higher inflow than
what happens, the outcome is more negative than when the model predicts
a too low inflow

• When the reservoir level is high and the model predicts a lower inflow than
what happens, the outcome is more negative than when the model predicts
a too high inflow
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5.5.2 Effect of access to specific subsets of the HBV states

A relevant research problem for future work is evaluating the effect on perfor-
mance of access to subsets of the HBV model’s states. This is interesting as
it could provide details to what kind of behaviour is extra difficult to predict
for machine learning models, compared to numerical models created by domain
experts.

5.5.2.1 Effect on performance of access to snowpack data for flood
predictions

Of all the variables accessible in the full and limited states of the HBV mod-
els, one state variable is especially connected to a difficult subsection of inflow
prediction: Flood prediction during the spring. According to hydrologist Frode
Vassenden (Domain expertise interview, October 24, 2019), it is difficult to tune
the models to maximise the resemblance of real life snow pack contents and also
the snowpack’s effect on inflow.

5.5.3 Deep LSTM-layered hybrid networks

As the best performing networks were shallow networks with few hidden dimen-
sions and with few LSTM layers, it should be experimented with techniques that
could improve deep RNN’s performance such as minimizing the vanishing gradi-
ent problem in recurrent neural networks even more than the LSTM architecture
does on its own.

The dimensionality of the input data to the LSTM is also high for the most
complex models in these experiments, such as using both the limited state of the
c HBV, the full state of the os HBV and the measured temperature, precipitation
and previous inflow. These models could potentially benefit from performing a
tree search to weight the input data according to importance
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Appendix

A.1 Other Error/Efficiency Metrics

A.1.1 MAE - Mean Absolute Error

Figure 1: MAE for model using only an LSTM net with precipitation and tem-
perature as input
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Figure 2: MAE for model using only an LSTM net with precipitation, tempera-
ture and previous inflow as input

Figure 3: MAE for model using the commercial HBV’s predicted inflow together
with precipitation and temperature as input to an LSTM net
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Figure 4: MAE for model using the commercial HBV’s predicted inflow together
with precipitation, temperature and previous inflow as input to an LSTM net

Figure 5: MAE for model using the commercial HBV’s limited internal state to-
gether with precipitation, temperature and previous inflow as input to an LSTM
net
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Figure 6: MAE for model using the open source HBV’s predicted inflow together
with precipitation and temperature as input to an LSTM net

Figure 7: MAE for model using the open source HBV’s predicted inflow together
with precipitation, temperature and previous inflow as input to an LSTM net
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Figure 8: MAE for model using the open source HBV’s full internal state together
with precipitation, temperature and previous inflow as input to an LSTM net

Figure 9: MAE for model using both the commercial HBV’s- and open source
HBV’s predicted inflow together with precipitation and temperature as input to
an LSTM net
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Figure 10: MAE for model using both the commercial HBV’s- and open source
HBV’s predicted inflow together with precipitation, temperature and previous
inflow as input to an LSTM net

Figure 11: MAE for model using both the commercial HBV’s limited internal
state and open source HBV’s full internal state together with precipitation, tem-
perature and previous inflow as input to an LSTM net
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Table 1: Model Mean Error and Standard Deviation by MAE
Metric Model

Name
Access

to
Previous
Inflow?

Access
to state?

Mean Std

MAE No HBV N N 8.441065 6.263072
MAE No HBV Y N 4.811425 5.660452
MAE os HBV N N 7.414157 6.555375
MAE os HBV Y N 4.843859 5.397728
MAE os HBV Y Y 5.086882 5.451234
MAE c HBV N N 5.066901 5.592323
MAE c HBV Y N 4.900718 5.289573
MAE c HBV Y Y 4.586271 5.343112
MAE both HBV N N 5.661468 5.698024
MAE both HBV Y N 5.109941 5.445168
MAE both HBV Y Y 5.213559 5.850499

A.1.2 Smooth L1 Loss

Figure 12: Smooth L1 Loss for model using only an LSTM net with precipitation
and temperature as input
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Figure 13: Smooth L1 Loss for model using only an LSTM net with precipitation,
temperature and previous inflow as input

Figure 14: Smooth L1 Loss for model using the commercial HBV’s predicted
inflow together with precipitation and temperature as input to an LSTM net
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Figure 15: Smooth L1 Loss for model using the commercial HBV’s predicted
inflow together with precipitation, temperature and previous inflow as input to
an LSTM net

Figure 16: Smooth L1 Loss for model using the commercial HBV’s limited inter-
nal state together with precipitation, temperature and previous inflow as input
to an LSTM net
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Figure 17: Smooth L1 Loss for model using the open source HBV’s predicted
inflow together with precipitation and temperature as input to an LSTM net

Figure 18: Smooth L1 Loss for model using the open source HBV’s predicted
inflow together with precipitation, temperature and previous inflow as input to
an LSTM net
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Figure 19: Smooth L1 Loss for model using the open source HBV’s full internal
state together with precipitation, temperature and previous inflow as input to an
LSTM net

Figure 20: Smooth L1 Loss for model using both the commercial HBV’s- and
open source HBV’s predicted inflow together with precipitation and temperature
as input to an LSTM net
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Figure 21: Smooth L1 Loss for model using both the commercial HBV’s- and
open source HBV’s predicted inflow together with precipitation, temperature
and previous inflow as input to an LSTM net

Figure 22: Smooth L1 Loss for model using both the commercial HBV’s limited
internal state and open source HBV’s full internal state together with precipita-
tion, temperature and previous inflow as input to an LSTM net
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Table 2: Model Mean Error and Standard Deviation by Smooth L1 Loss
Metric Model

Name
Access

to
Previous
Inflow?

Access
to state?

Mean Std

S L1 No HBV N N 7.953812 6.258918
S L1 No HBV Y N 4.382490 5.647306
S L1 os HBV N N 6.958296 6.543710
S L1 os HBV Y N 4.408518 5.384838
S L1 os HBV Y Y 4.649657 5.438251
S L1 c HBV N N 4.635481 5.578340
S L1 c HBV Y N 4.457947 5.277793
S L1 c HBV Y Y 4.158230 5.329552
S L1 both HBV N N 5.204155 5.688353
S L1 both HBV Y N 4.663914 5.433761
S L1 both HBV Y Y 4.780924 5.837101
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A.2 Benchmark models’ other error/efficiency met-

rics

A.2.1 Commercial HBV: MAE, Smooth L1 loss

Figure 23: MAE for the commercial HBV model in a theoretical scenario where
it makes 40 hour forecasts based on measured data

Figure 24: Smooth L1 Loss for the commercial HBV model in a theoretical
scenario where it makes 40 hour forecasts based on measured data
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A.2.2 Open Source HBV: MAE, Smooth L1 loss, NSE

Figure 25: MAE for the open source HBV model in a theoretical scenario where
it makes 40 hour forecasts based on measured data

Figure 26: Smooth L1 Loss for the open source HBV model in a theoretical
scenario where it makes 40 hour forecasts based on measured data
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A.3 Tuned Hyperparameters for Each Model

Model using only an LSTM net with precipitation and temperature as
input
{’batch size’: 318.0, ’dropout probability’: 0.09168090818037575, ’gradient clipping’:
0.1258678646136906, ’hidden dim’: 50.0, ’in window’: 5.0,
’learning rate’: 0.005358957245286223, ’lstm layers’: 3.0}

Model using only an LSTM net with precipitation, temperature and
previous inflow as input
{’batch size’: 39.0, ’dropout probability’: 0.2582174008849078, ’gradient clipping’:
0.49896174269733257, ’hidden dim’: 27.0, ’in window’: 425.0,
’learning rate’: 0.006618471494254368, ’lstm layers’: 1.0}

Model using the commercial HBV’s predicted inflow together with
precipitation and temperature as input to an LSTM net
{’batch size’: 112.0, ’dropout probability’: 0.055972153852199, ’gradient clipping’:
0.43658919926509676, ’hidden dim’: 15.0, ’in window’: 118.0,
’learning rate’: 0.00662901177440361, ’lstm layers’: 2.0}

Model using the commercial HBV’s predicted inflow together with
precipitation, temperature and previous inflow as input to an LSTM
net
{’batch size’: 227.0, ’dropout probability’: 0.23446272129078952, ’gradient clipping’:
0.6796383403042253, ’hidden dim’: 18.0, ’in window’: 234.0,
’learning rate’: 0.04191621389991214, ’lstm layers’: 1.0}

Model using the commercial HBV’s limited internal state together
with precipitation, temperature and previous inflow as input to an
LSTM net
{’batch size’: 274.0, ’dropout probability’: 0.3496138957680823, ’gradient clipping’:
0.7274912860999065, ’hidden dim’: 48.0, ’in window’: 307.0,
’learning rate’: 0.0031971263204014764, ’lstm layers’: 1.0}

Model using the open source HBV’s predicted inflow together with
precipitation and temperature as input to an LSTM net
{’batch size’: 84.0, ’dropout probability’: 0.5400905317288727, ’gradient clipping’:
0.321704976403499, ’hidden dim’: 33.0, ’in window’: 222.0,
’learning rate’: 0.002208554017192015, ’lstm layers’: 2.0}

Model using the open source HBV’s predicted inflow together with
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precipitation, temperature and previous inflow as input to an LSTM
net
{’batch size’: 357.0, ’dropout probability’: 0.12643475846392224, ’gradient clipping’:
0.08871140522951365, ’hidden dim’: 28.0, ’in window’: 316.0,
’learning rate’: 0.010157334192686128, ’lstm layers’: 1.0}

Model using the open source HBV’s full internal state together with
precipitation, temperature and previous inflow as input to an LSTM
net
{’batch size’: 73.0, ’dropout probability’: 0.48076317042871436, ’gradient clipping’:
0.4584051911951125, ’hidden dim’: 48.0, ’in window’: 998.0,
’learning rate’: 0.0019632955333275955, ’lstm layers’: 3.0}

Model using both the commercial HBV’s- and open source HBV’s
predicted inflow together with precipitation and temperature as input
to an LSTM net
{’batch size’: 279.0, ’dropout probability’: 0.39913642117439174, ’gradient clipping’:
0.388739688450507, ’hidden dim’: 35.0, ’in window’: 172.0,
’learning rate’: 0.015467203339116966, ’lstm layers’: 2.0}

Model using both the commercial HBV’s- and open source HBV’s
predicted inflow together with precipitation, temperature and previ-
ous inflow as input to an LSTM net
{’batch size’: 188.0, ’dropout probability’: 0.093306635161192, ’gradient clipping’:
0.33827390746609365, ’hidden dim’: 36.0, ’in window’: 305.0,
’learning rate’: 0.05924978100093053, ’lstm layers’: 1.0}

Model using both the commercial HBV’s limited internal state and
open source HBV’s full internal state together with precipitation, tem-
perature and previous inflow as input to an LSTM net
{’batch size’: 334.0, ’dropout probability’: 0.18790784325908566, ’gradient clipping’:
0.694783218334632, ’hidden dim’: 10.0, ’in window’: 995.0,
’learning rate’: 0.007169395593965098, ’lstm layers’: 4.0}

A.4 Tuned Hyperparameters for Selected Mod-
els when tuned for Longer Than 100 Com-

binations

Model using both the commercial HBV’s limited internal state and
open source HBV’s full internal state together with precipitation, tem-
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perature and previous inflow as input to an LSTM net
{’batch size’: 209.0, ’dropout probability’: 0.1501815850398151, ’gradient clipping’:
0.7866505582273241, ’hidden dim’: 20.0, ’in window’: 67.0,
’learning rate’: 0.004963359770016575, ’lstm layers’: 2.0}After 164 combinations

Model using the commercial HBV’s limited internal state together
with precipitation, temperature and previous inflow as input to an
LSTM net
{’batch size’: 345.0, ’dropout probability’: 0.09544273297259243, ’gradient clipping’:
0.48923633376708975, ’hidden dim’: 28.0, ’in window’: 20.0,
’learning rate’: 0.004332006051395278, ’lstm layers’: 1.0}After 272 combinations
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