
Pernille Johnsen
Investigating the Cost of Fairness in Autom

ated D
ecision-M

aking System
s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Pernille Johnsen

Investigating the Cost of Fairness in
Automated Decision-Making Systems

Master’s thesis in Computer Science

Supervisor: Pinar Øzturk

June 2020

Pernille Johnsen

Investigating the Cost of Fairness in
Automated Decision-Making Systems

Master’s thesis in Computer Science
Supervisor: Pinar Øzturk
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

This thesis was written during spring 2020 to fulfill the graduation requirements
for the Computer Science master’s degree program at the Department of Com-
puter and Information Science, Faculty of Information Technology and Electrical
Engineering at the Norwegian University of Science and Technology (NTNU).

I would like to thank my supervisor Pinar Øzturk for her guidance and encour-
agement through the work with this thesis. Additionally, I would like to thank
fellow student Gunnar Strand Jacobsen for helpful cooperation and discussion
throughout this project. Finally, I would like to thank my family for their sup-
port through this entire master’s degree.

Pernille Johnsen

Trondheim, June 4, 2020

ii

Abstract

This thesis investigates the use of multi-objective optimization and Pareto fron-
tiers to explore the cost of fairness in automated decision-making systems.

Artificial intelligence (AI) systems are now being introduced into several facets of
society, both in the public and private sector. These systems often make critical
decisions about people’s lives, in areas like health care, law enforcement, court
cases, hiring, credit scoring, lending, and more. Such automated decision-making
systems have been shown to reproduce or amplify human biases, sometimes even
introducing new ones. These discoveries led to the emergence of research in the
field of fair AI systems. In this field there is a general consensus that there exists a
tradeo↵ between the accuracy and fairness. This concern has not received nearly
enough research.

Multi-objective optimization (MOO) is a method for optimizing a solution for
multiple objectives, and the use of Pareto frontiers is a popular method for com-
bining the multiple objectives. The frontiers present the users with options where
they can select the solutions they want from the front based on their desired trade-
o↵ between objectives. In this thesis we build upon the work by Haas [2019], who
created a framework for using MOO to generate Pareto frontiers that can be used
to examine the tradeo↵ between accuracy and fairness. The framework includes
the selection of data set(s), fairness and accuracy metrics, and classifiers and bias
mitigation methods. These are used to build AI models that can be evaluated
by studying the tradeo↵s they produce.

The main contribution of this thesis is twofold. We further verify the framework
by Haas, by applying it on a di↵erent data set, and using di↵erent bias mitigation
methods. Our results generalize the use of MOO and Pareto frontiers as a method
for investigating the cost of fairness. In addition, we present a novel method
and architecture adapted from Haas’ method, that allows for the same study of
fairness tradeo↵s. However, as opposed to Haas’ method, this novel method can
be applied on existing AI systems that have already been trained for optimal
accuracy with no regard for fairness. The method and architecture builds upon
state-of-the-art research in the field of fairness vs. accuracy tradeo↵s.

iii

Sammendrag

I denne masteroppgaven undersøker vi bruken av multi-objektiv optimalisering
(multi-objective optimization) og Pareto fronter for å utforske konsekvensen ret-
tferdighet kan ha p̊a riktigheten i automatiske beslutningssystemer.

Kunstig intelligens (KI/AI) systemer blir mer og mer brukt i flere deler av sam-
funnet verden rundt, b̊ade i privat og o↵entlig sektor. Disse systemene tar ofte
avgjørende beslutninger for menneskers liv, p̊a omr̊ader som helse, rettsprosesser,
ansettelsesprosesser, kredittscore kalkulering, l̊aneinnvilgelse, med mer. Ofte har
slike automatiske beslutningssystemer vist seg å reprodusere eller øke menneske-
lige fordommer, til og med introdusere nye i noen tilfeller. Slike funn har ført til
en fremtreden av forsking p̊a omr̊ader som omhandler rettferdighet og diskrim-
inering i AI systemer. P̊a dette omr̊adet er det stort sett konsensus om at å
forsøke å gjøre slike systemer mer rettferdige fører til at riktigheten til systemet
synker.

Multi-objektiv optimalisering (MOO) er en metode for å optimalisere løsninger
for flere formål. Bruken av Pareto fronter er en populær metode for å kom-
binere slike formål. Frontene presenterer brukere ett sett med de beste mulige
løsningene, hvor en løsning kan velges basert p̊a ønsket utbytte mellom formålene.
Denne masteroppgaven bygger p̊a arbeid av Haas [2019], som utviklet et ram-
meverk som bruker MOO og Pareto fronter for å utforske kostnaden rettfer-
dighet har p̊a riktigheten til AI systemer. Rammeverket krever valg av datasett,
rettferdighet- og riktighetsmetrikker, og klassifiseringsalgoritmer og diskriminer-
ingsforebyggende metoder. Disse blir brukt til å bygge AI modeller som kan
evalueres ved å studere Pareto frontene de produserer.

Hovedbidraget til denne masteroppgaven er todelt. Vi bidrar til å verifisere ram-
meverket til Haas, ved å anvende et annet datasett og bruke flere diskriminerings-
forebyggende metoder. Resultatene v̊are generaliserer bruken av MOO og Pareto
fronter som en metode for å undersøke kostnaden av rettferdighet. I tillegg pre-
senterer vi en ny metode og arkitektur videreutviklet fra Haas sin metode. Denne
nye metoden tilbyr samme muligheter for undersøking av kostnaden av rettfer-
dighet, men kan bli anvendt p̊a eksiterende AI systemer som allerede har blir
trent for optimal riktighet uten å ta rettferdighet i betraktning. Denne metoden
og dens arkitektur bygger p̊a aktuell forskning.

Contents

1 Introduction 1

1.1 Goals and Research Questions . 2
1.2 Thesis Structure . 3

2 Background Theory 4

2.1 Fairness in Machine Learning . 4
2.1.1 Fairness Definitions and Metrics 5
2.1.2 Bias Types . 8
2.1.3 Mitigation Methods . 12
2.1.4 Aif360 . 14

2.2 Multi-Objective Optimization . 14
2.2.1 Pareto Optimality and Pareto Frontiers 16

2.3 Evolutionary Algorithms . 17
2.3.1 NSGA-II . 19

2.4 Support Vector Machines . 20
2.5 Scikit-learn . 22

3 Related Work 23

3.1 The Tradeo↵ Between Accuracy and Fairness 23
3.2 Multi-Objective Optimization for Studying Fairness 28

4 Method and Architecture 32

4.1 Hyperparameter and Feature Selection for SVMs using Genetic
Algorithms . 33

4.2 Method Description . 34
4.3 Architecture for Experiment 1 . 36

4.3.1 Chromosome Design . 36
4.3.2 Genetic Operators . 38
4.3.3 The Main Loop . 39

Contents v

4.3.4 The Evaluation Function 41
4.4 Architecture for Experiments 2 and 3 44

4.4.1 Chromosome Design and Genetic Operators 44
4.4.2 The Main Loop . 45
4.4.3 The Evaluation Function 47

4.5 Implementation Details . 49

5 Experiments and Results 51

5.1 The COMPAS Data Set . 51
5.1.1 Data Set Preprocessing . 52
5.1.2 Data set Analysis . 52

5.2 Experiments . 55
5.2.1 Experimental Setup . 55
5.2.2 Experiment 1 - Optimizing SVM Parameters and Feature

Selection . 59
5.2.3 Experiment 2 - Optimizing a Classification Threshold . . . 60
5.2.4 Experiment 3 - Optimizing Group Specific Thresholds . . . 60

5.3 Results and Analysis . 60
5.3.1 Experiment 1 . 61
5.3.2 Experiment 2 . 72
5.3.3 Experiment 3 . 77

6 Conclusion and Future Work 83

6.1 Conclusion . 83
6.2 Future Work . 87

Bibliography 89

Appendices 93

A Selected Classifiers for Experiment 2 And 3 93
B User Guide for the Source Code . 95

List of Figures

2.1 AI development lifecycle . 9
2.2 AI design bias overview . 10
2.3 Example of a Pareto frontier in the case of two objective functions

f1 and f2, where both functions are maximized. 17
2.4 NSGA-II selection procedure (from [Deb et al., 2002]) 19

3.1 General framework to explore algorithmic fairness tradeo↵s (from
[Haas, 2019]) . 28

3.2 Pareto fronts from Haas [2019] case study. 30

4.1 The chromosome for experiment 1 consists of three parts; C, gamma
(�) and the feature mask. 36

4.2 IEEE standardized binary representation of floating-point numbers
using 16 bits. 37

4.3 The genetic crossover and mutation operations used in this thesis. 38
4.4 The main flow of the architecture for experiment 1. 40
4.5 The evaluation function used in experiment 1 to calculate fitness

scores for each chromosome in the population. 43
4.6 The chromosome for experiment 2 and 3 consists of one or more

classification thresholds (⌧). 45
4.7 The main flow of the architecture for experiments 2 and 3. 46
4.8 The evaluation function used in experiments 2 and 3 to calculate

fitness scores for each chromosome in the population. 48

5.1 Label distributions in the training and test sets. ’No recid.’ is the
favorable label, while ’Did recid’ is the unfavorable label. 53

5.2 Race distribution in the training and test sets. ’Caucasian’ the the
privileged group, while ’Not Caucasian’ is the unprivileged group. . 54

List of Figures vii

5.3 Label distribution for the privileged group (Caucasians) in the train-
ing and test sets. ’No recid.’ is the favorable label, while ’Did recid’
is the unfavorable label. 54

5.4 Label distribution for the unprivileged group (Not Caucasians) in
the training and test sets. ’No recid.’ is the favorable label, while
’Did recid’ is the unfavorable label. 55

5.5 Experiment 1 - Results from five runs of all algorithms for scenario
1: Statistical Parity Di↵erence vs. Accuracy 62

5.6 Experiment 1 - Results from five runs of all algorithms for scenario
2: Theil Index vs. Accuracy . 64

5.7 Experiment 1 - The ’best’ fronts from all algorithms for scenario
1: Statistical Parity Di↵erence vs. Accuracy 65

5.8 Experiment 1 - The ’best’ fronts from all algorithms for scenario
2: Theil Index vs. Accuracy . 66

5.9 Experiment 2 - Results from all four algorithms for both scenar-
ios, using the predefined ’most accurate’ classifiers selected from
experiment 1. 73

5.10 Experiment 2 - Results from all four algorithms for both scenarios,
using the predefined ’most fair’ classifiers selected from experiment
1. 76

5.11 Experiment 3 - Results from all four algorithms for both scenar-
ios, using the predefined ’most accurate’ classifiers selected from
experiment 1. 78

5.12 Experiment 3 - Results from all four algorithms for both scenarios,
using the predefined ’most fair’ classifiers selected from experiment
1. 81

List of Tables

3.1 Overview of parameters from Haas’ case study. (adapted from
[Haas, 2019]) . 30

4.1 List of Python modules required to run our code. 49

5.1 The table shows the two data set splits with their respective amounts
of data points and percentage of the total amount of data. 53

5.2 The table shows the two dataset splits of the Optimized Pre-Processing
version of the COMPAS dataset with their respective amounts of
data points and percentage of the total amount of data. 57

5.3 The NSGA-II parameters for our experiments 58
5.4 Summary of parameters for our experiments. 59
5.5 The table shows the number of data points for the positive and

negative label in the test set as well as the percentage. 68
5.6 Experiment 1 - Selected SVM hyperparameters and features for the

most accurate classifiers from both scenarios. 70
5.7 Experiment 2 - The most accurate and most fair threshold for both

scenarios, generated from the most accurate classifiers. 74
5.8 Experiment 3 - The most accurate and most fair thresholds for both

scenarios, generated from the most accurate classifiers. 80

A.1 Selected SVM hyperparameters and features from Scenario 1: Sta-
tistical Parity Di↵erence vs. Accuracy 93

A.2 Selected SVM hyperparameters and features from Scenario 2: Theil
Index vs. Accuracy . 94

Chapter 1

Introduction

Artificial Intelligence (AI) and Machine Learning (ML) has seen a new wave of
popularity in recent years. Due to current optimism, achievements and better
hardware the field has taken a big step forward. AI systems are now being in-
troduced into several facets of society, both in the public and private sector.
These systems often make critical decisions about people’s lives, in areas like
health care, law enforcement, court cases, hiring, credit scoring, lending, and
more. Such automated systems held the promise of removing human biases from
the decision-making process. However, in practice they have been shown to re-
produce or amplify human biases, sometimes even introducing new ones. One
such famous discovery was made by journalists from ProPublica, who in 2016
published an article detailing how a system used to predict recidivism in the US
was biased against black people [Angwin et al., 2016]. Such discoveries led to the
emergence of research in the field of fair AI and ML systems.

Most of the work done in this field have focused on methods for mitigating bias
and help ensure fairness, as well as formulating how best to measure fairness.
However, there is a general consensus that there is a tradeo↵ the accuracy and
fairness of such systems. This concern has not received nearly as much research.
Reducing such a tradeo↵ would help further energize e↵orts to ensure fairness.
This thesis will build on what was learnt through the Specialization Project in
the subject TDT4501, where a review was done of the current state-of-the-art in
the field of fair AI and ML. Based on this research the focus was narrowed for
this thesis. In this thesis we will investigate what the cost of fairness may be for
automated decision-making systems.

Multi-objective optimization (MOO) is a method for optimizing a solution for

Introduction 2

multiple objectives. There exist several ways to combine the multiple objectives
when using MOO, but one of the most popular methods is to produce Pareto
frontiers. Such frontiers represent the optimal set of solutions, where one solution
might be worse at one objective but must therefore be better at another objective.
These frontiers present the users with options where they can select the solutions
they want from the front based on their desired tradeo↵ between objectives. In
e↵ect it moves the decision on how to tradeo↵ the di↵erent objectives to the end
of the process, where all available options can be judged. MOO is frequently
used in complex resource allocation problems, e.g. scheduling problems, Internet
bandwidth allocation, etc. We believe using MOO along with Pareto fronts will
provide fruitful ground to investigate the tradeo↵ between accuracy in fairness in
automated decision-making systems. A paper by Haas released late 2019 further
inspired this idea [Haas, 2019].

1.1 Goals and Research Questions

The overarching goal of this master’s thesis is to:

Goal Investigate the tradeo↵ between fairness and accuracy in automated decision-
making systems.

This is a substantial and complex goal, and the scope is narrowed in order to
fit into the timeframe of a master thesis. More specifically we will explore the
following research questions:

Research question 1 What is the state-of-the-art in research concerning the
tradeo↵ between fairness and accuracy in automated decision-making sys-
tems?

Based on the current state-of-the-art, we will attempt to investigate the possibil-
ities for a method that can be used to answer the following research question.

Research question 2 Using multi-objective optimization and Pareto fronts to
optimize feature selection and classifier hyperparameters, what type of trade-
o↵s can be observed?

We will then expand on this method based on interesting results from state-of-
the-art papers that suggest that classification thresholds play a key role in the
tradeo↵ between accuracy and fairness.

Research question 3 Can we use this multi-objective optimization method to
optimize classification thresholds, and what e↵ect will this have on the type
of tradeo↵ that can be observed?

Introduction 3

1.2 Thesis Structure

This thesis consists of five main parts. In chapter 2 we will present the background
theory needed to understand the contents of this thesis. Chapter 3 will present the
related work that cover the current state-of-the-art in research into the tradeo↵
between accuracy and fairness, as well as how multi-objective optimization and
Pareto fronts are being used in this field. Chapter 4 will describe the methods
and approaches we use, as well as describe the architectures used in this thesis.
In chapter 5 we will describe the experiment plan and show, analyze and discuss
the results of the experiments. Finally, in chapter 6 we will conclude the thesis
and present our vision for future work.

Chapter 2

Background Theory

This chapter presents the theoretical background of this thesis. First, we present
the topic of fairness in Machine Learning, in section 2.1. This section covers
the relevant definitions, metrics and mitigation methods. In section 2.2 we cover
the concept of multi-objective optimization (MOO). Related to this concept, in
section 2.2.1, we cover Pareto optimality and Pareto frontiers, sometimes used
in multi-objective optimization methods. In section 2.3 we cover Evolutionary
Algorithms, and more specifically the NSGA-II algorithm. In section 2.4 we cover
Support Vector Machines (SVMs) which will be used in this thesis. Lastly, we
cover the scikit-learn Python package that we will be using in our implemen-
tation of the architecture.

The first section, section 2.1 on fairness, features some direct or rewritten re-
iteration of relevant background theory from the Specialization Project report
[Johnsen, 2019]. However, as there has been some changes and updates to fo-
cus the research questions for this thesis, further relevant background theory has
been found that present topics not covered in as much detail in the project re-
port. This new material mainly consists of more detailed descriptions of fairness
metrics and mitigation methods that follow in sections 2.1.1 and 2.1.3.

2.1 Fairness in Machine Learning

Fairness is an intricate concept that is hard to define precisely. The notion of
fairness and justice has been a topic for philosophical discussion for thousands of
years. In general, one might say that fairness is the absence of any prejudice or
favoritism towards an individual or a group. This is closely related to the term

Background Theory 5

discrimination, where one might equate fairness with the absence of discrimina-
tion. The term discrimination is often used more specifically when someone is
receiving unfair treatment because of some intrinsic or acquired traits, like race,
gender, age, sexuality, etc. Such traits are often called protected or sensitive
attributes.

To prevent discrimination and ensure fairness, many countries have enacted laws
to prohibit many forms of discrimination. The Norwegian Equality and Anti-
Discrimination Act [Norwegian Ministry of Culture, 2017] states that its purpose
is to ... prevent discrimination on the basis of gender, pregnancy, leave in connec-
tion with childbirth or adoption, care responsibilities, ethnicity, religion, belief,
disability, sexual orientation, gender identity, gender expression, age or other
significant characteristics of a person and that this Act shall apply in all sectors
of society. Such anti-discrimination laws provide a somewhat of a foothold for
what constitutes fairness in legal terms and denote the minimum requirement
for companies looking to develop AI systems. One complication is that the legal
doctrine is not static, but di↵er from country to country, and over time. In order
to determine whether a system is fair (outside of legal action), in an e�cient
manner, a clear mathematical definition is needed. There have been several at-
tempts at creating such a definition, but there is no consensus on which is the
’best’ definition.

2.1.1 Fairness Definitions and Metrics

There exist many di↵erent fairness definitions. The di↵erences between them
are not just theoretical, but produce entirely di↵erent outcomes [Bellamy et al.,
2019]. For example, ProPublica and Northpointe had a public debate on the
issue of predictive recidivism (in Northpointe’s COMPAS system, [Angwin et al.,
2016]) revolving entirely around which fairness definition should be used to make
such decisions. Kleinberg et al. [2017] compare three formalized definitions and
find that, except in highly constrained special cases, all three fairness conditions
cannot be satisfied simultaneously. This shows the complexities around the con-
cept of fairness, and the use of these definitions in order to ensure fairness in AI
systems.

Often definitions of fairness are divided into two categories; Group Fairness and
Individual Fairness. Group fairness definitions are focused around treating groups
equally, often measured by certain metrics (e.g. equal accuracy, or equal false
positive or negative rates). Individual fairness definitions are centered around
treating individuals equally, independent of group membership. Not all existing
fairness definitions are easily measurable, but in both categories there exists some
measurable metrics for fairness.

Background Theory 6

Group Fairness

The following metrics are popular group fairness metrices.

Statistical Parity was introduced early in fair AI literature, often used inter-
changeably with the term group fairness at the time [Zemel et al., 2013]. The
term demographic parity has also been used to refer to this metric. The idea be-
hind it is to ensure that the proportion of members in a protected group (G = 1)
receiving positive classification (Ŷ = 1) should be equal to the proportion of the
population as a whole. Which means that the probability of receiving a positive
classification is independent of group membership.

P (Ŷ = 1|G = 1) = P (Ŷ = 1)

A special case of statistical parity is conditional statistical parity, where protected
groups and the population as a whole should have equal probability of receiving
positive classification, given a set of legitimate factors (L = 1).

P (Ŷ = 1|G = 1, L = 1) = P (Ŷ = 1|L = 1)

The metric used to measure statistical parity is defined as the di↵erence between
the percentage of people in the protected group receiving positive classification
and the percentage of people in the unprotected group (G = 0) receiving positive
classification.

SPDiff = |P (Ŷ = 1|G = 0)� P (Ŷ = 1|G = 1)| (2.1)

Disparate Impact similarly to statistical parity also considers the probability
of receiving the positive classification depending on group membership. However,
disparate impact considers the ratio between the probabilities for the two groups,
rather than di↵erence between them [Feldman et al., 2015].

DisparateImpact =
P (Ŷ = 1|G = 0)

P (Ŷ = 1|G = 1)
(2.2)

Equalized Odds was introduced as an alternative to statistical parity. As op-
posed to looking at the percentage of observations with positive classification,
equalized odds was suggested, which considers the true positive and false posi-
tive rates instead. Hardt et al. [2016] defines equalized odds as; A predictor Ŷ

satisfies equalized odds with respect to protected attribute G and outcome Y, if
Ŷ and G are independent conditional on Y.

Background Theory 7

P (Ŷ = 1|G = 0, Y = y) = P (Ŷ = 1|G = 1, Y = y), y 2 {0, 1}

Another way to put it is that an algorithm is considered fair under equalized
odds, if the protected and unprotected groups have equal rates of true positives
and false positives.

FPRG=0 = FPRG=1

TPRG=0 = TPRG=1

To measure equalized odds, the di↵erence between the true positive and false
positive rates are calculated.

EqOddsDiff = 0.5 ⇤ (|FPRG=0 � FPRG=1|+ |TPRG=0 � TPRG=1|) (2.3)

Equal Opportunity is a special case of equalized odds, where only the di↵erence
between true positive rates is considered.

EqOppDiff = |TPRG=0 � TPRG=1| (2.4)

Individual Fairness

Most fair AI literature considers group fairness metrics. Individual fairness is not
always as easily quantifiable. However, one popular individual fairness metric is
the Theil Index.

The Theil Index builds on the theory of general entropy indices, and measures
if individuals are treated in a similar way. Speicher et al. [2018] proposed using
such inequality indices to measure algorithmic fairness, which had previously been
used in the field of economics. The generalized entropy indices for a problem with
n observations is defined as follows:

GEI =
1

n↵(↵� 1)

nX

i=1

[(
bi

µ
)↵ � 1] (2.5)

Background Theory 8

where bi = ŷi � yi + 1 and µ =

P
i
bi

n
. The Theil index is a special case where

↵ = 1:

Theil =
1

n

nX

i=1

bi

µ
log(

bi

µ
) (2.6)

2.1.2 Bias Types

When working to ensure fairness it is important to understand the di↵erent
sources of unfairness, i.e. the bias that may occur or already exist. In this
section we will detail these di↵erent types of biases.

Through working on the Specialization Project, subject TDT4501, we found sev-
eral existing taxonomies for bias. Friedman and Nissenbaum [1996] presented the
earliest work we are aware of, attempting to establish a framework to understand
and remedy bias in computer systems. They sort bias under three overarching
categories relating to the timeline of AI system development; pre-existing bias,
technical bias, and emergent bias. Later, Dobbe et al. [2018] expanded on this
early work in a Machine Learning context, focusing on technical and emergent
bias. These papers provide a good starting point from which to organize bias, but
are not detailed enough to give good practical guidance when designing AI/ML
systems.

Some works limit their scope to study bias in specific fields. Olteanu et al.
[2019] limit their scope to social data on the web (from websites like Facebook,
Wikipedia, etc.), to create their framework. Torralba and Efros [2011] look at
bias in image recognition datasets. Rajkomar et al. [2018] present a framework
to mitigate unfair bias in the context of health care. Suresh and Guttag [2019]
create a framework that looks at bias in the AI design process, basing their
work on previous research in fairness. They create five categories relating to
data generation, model building and implementation. These five categories are:
Historical bias, Representation bias, Measurement bias, Aggregation bias, and
Evaluation bias. In a survey by Mehrabi et al. they attempt to summarize
the work in [Suresh and Guttag, 2019] [Olteanu et al., 2019] as well as some
others. However, the summary is very broad and fairly rudimentary, simply a
long list of bias types (23 types, too many to list here), with short explanations.
No significant attempt has been made by the authors to organize these biases,
simply organizing them loosely around data, algorithm and user interaction.

These approaches and taxonomies listed above are often too general, or too spe-
cific, either not giving enough detail for practical purposes or only covering cer-
tain research areas or certain parts of the AI development lifecycle. Additionally,

Background Theory 9

the terminology is often not aligned or is sometimes conflicting. A clear agreed
upon list of concepts lacking. Inspired by these drawbacks and in cooperation
with another student, Gunnar Strand Jacobsen, as well as our supervisor, Pinar
Øzturk, we created a new taxonomy for bias. The goal was to establish a unifying
taxonomy, with clearly defined and commonly used terms, in order to create a
comprehensive approach to bias for ML practitioners. Below follows a summary
of this new taxonomy from the Specialization Project [Johnsen, 2019].

Figure 2.1: AI development lifecycle

Figure 2.1 shows a rudimentary overview of the AI development lifecycle, from the
current state of the world to the interaction between the world and the finished,
deployed AI system. A realistic model of the AI development lifecycle would have
more branching and looping paths, but the model has been simplified in order
to illustrate the di↵erent types of bias that might occur. The figure has been
split into three parts; Pre-existing, AI Design and Emergent. These three parts
are the overarching categories we used in our taxonomy. They are similar to the
taxonomy introduced in [Friedman and Nissenbaum, 1996], separating between
bias existing in the world before any development, the decisions made during
the design and development of the AI system, and the interaction between the
finished system and the world. However, in our case we used AI Design bias
instead of Technical bias, to reflect the whole spectrum of decisions made during
the design in the AI system, not just technical. AI Design bias is the most
relevant for the contents of this thesis and will receive the most attention in this
summary.

Pre-existing bias is the bias that exist in the world, before ML practitioners have
even started thinking about building a system. This type of bias can be split
into three main sub-types; Historical, Social, and Stakeholder bias. Historical
bias is bias related to the passing of time and historical di↵erences. Social bias
is similar to historical bias, but is not necessarily related to time. Social bias
relates to the bias of people in society in general, not restricted by changing laws

Background Theory 10

or social norms. Stakeholder bias relates to the biases that might exist in the
people making decisions regarding the AI system, from the developers to the
company owners. These biases may be subconscious or not.

After the AI system has been finished and released into the world, emergent bias
might be introduced. It is therefore important to continue to monitor the system,
not only for testing purposes but also to protect against biases that might occur
at this time. If emergent biases are introduced after release, the system might
have to go back into the design and development phase in order to fix it, or
perhaps some solutions could be introduced before the system is released at all.
Emergent bias can be split into several sub-types, but we will not cover them
here.

AI Design Bias

The term AI design bias is used to cover the process from collection of data
through development all the way to the finished system. This is the part where
most decisions about the AI system is made, which means it is also the part with
most possibilities of bias. Figure 2.2 gives an overview of the di↵erent types of
biases that might occur during this process.

AI Design

Dataset

Under-Coverage Aggregation Data-Point

Feature Selection Label

Label Choice Labeling

Data Measurement

Algorithmic Processing Presentation

Figure 2.2: AI design bias overview

Background Theory 11

Dataset bias. The dataset is a central part of ML, and it is therefore important
to ensure that it is unbiased. First, we will cover types of bias that e↵ect the
dataset as a whole; under-coverage bias and aggregation bias. Afterward we will
cover biases that relate to individual parts of the data-points in the dataset.

Under-coverage bias. Under-coverage bias occurs when some underlying group
is underrepresented in the dataset. In such cases the ML algorithm will perform
worse for the underrepresented groups, because it hasn’t had enough data to
learn from. Some sources also call this representation bias, under-representation
bias or minority bias.

Aggregation bias. Aggregation bias relates to the underlying groups (e.g. women,
white people, etc.) that a system is set to make decisions about. This type of
bias can occur when these groups have important di↵erences that should a↵ect
the outcome of the decisions. When one algorithm is used to make decisions
for such di↵ering groups, the algorithm is often unable to perform well on any
of the group, because it is unable to recognize any consistent pattern. If one
group has more data-points than any other, the algorithm might become biased
towards that group, making bad decisions for people belonging to any other
group. Aggregation bias does not only e↵ect how one should handle the dataset,
but also stretch into the handling of learning. It might for example be prudent
to train di↵erent models and/or use di↵erent learning algorithms for the di↵erent
groups.

Data-point bias. Data-point bias relates to individual parts of data-points.
Such bias may a↵ect the features, feature values or the label.

Feature selection bias. Feature selection bias occurs during feature selection.
Feature selection is an important part of ML, as it aims to assure that the proper
features are selected, while not selecting to many, lowering the e�ciency of the
system. However, feature selection not only a↵ects the accuracy and e�ciency
of the system, but also how fair the system is. An important discussion here is
whether a protected attribute (e.g. gender, race, etc.) should be a feature or if
it should be left out entirely.

Label bias. Label bias is by some regarded as the biggest obstacle for fair Machine
Learning. Label bias can come from either the choice of label, or the labeling
itself. When the goal of an AI system is to make decisions in the real world,
the desired label is often unobservable or partially observable. This can lead
to label choice bias. In such cases the label needs to be replaced by a proxy.
The goal of the proxy is to represent the label as near to ’the ground truth’ as
possible. As such, bias in the choice of label can be viewed as a measurement
error between the proxy label and the ground truth. Labeling bias occurs when
the labels are incorrect, not because of the use of a proxy, but because of some

Background Theory 12

bias or misconception from whomever assigned the label.

Data Measurement bias. Data measurement bias e↵ects the feature values in
the data-points. This type of bias occurs when these values are inaccurate. For
example, in image processing, it is known that images cannot represent the world
completely because they are limited by camera technology.

Algorithmic processing bias. Often, when discussing bias in ML, it is said
that the learning algorithm is completely neutral and simply reflect bias in the
data. However, bias might still be introduced in the learning step, depending
on which decisions are made regarding the algorithms used [Danks and London,
2017].

Presentation bias. When using ML systems in general society a user interface
(UI) is often needed, especially when the end users are regular people, unfamiliar
with ML and programming in general. The design and development of the UI
often fall outside the jurisdiction of ML practitioners, depending on the size of
the development team and the budget. Regardless of who the UI is made by it
is important to note that bias can be introduced depending on how information
is presented [Mehrabi et al., 2019].

2.1.3 Mitigation Methods

Mitigation is a huge part of the fair AI discussion. After discovering a problem,
the innate response is to find ways to fix it. An attractive approach to mitigating
unfairness for computer scientist is to develop technical solutions to the problem,
as the problem comes from technical systems. Fairness is a complex concept, and
many point out that technical solutions are likely not enough to fix the problem
entirely [Whittaker et al., 2018]. However, they are still an essential part of the
solution.

Mitigation methods can be split into three categories: pre-, in-, and post-processing.
Pre-processing methods are methods intended for use on the original data, before
the main learning phase. In general, they work by taking the original collected
data as input, performing some algorithm, and outputting a ’new’ dataset. In-
processing methods generally run as part of the main learning phase, either inte-
grated into an existing algorithm, or as entirely new algorithms. Post-processing
methods are used after the learning phase, working on the output from the learn-
ing algorithm. These methods can also be used when the systems are otherwise
a black-box and there is no way to make any changes to the outputted model.
Below we will present a brief summary of the three mitigation methods used in
this thesis. All of them are pre-processing algorithms.

Background Theory 13

Reweighing

The Reweighing method was introduced by Kamiran and Calders [2012]. The
method generates weights di↵erently for each (group, label) combination in the
training data, to unbias the data set. This results in data sets where each data
point is given a weight depending on what (group, label) combination it contains.
For example, data points where the sensitive attribute (e.g. race) is part of an
unprivileged group (e.g. black) and the label is positive will be given higher
weights then data points part of the unprivileged group with a negative label.
Oppositely, data points that are part of the privileged group (e.g. white) are given
lower weights if the label is positive and higher weights if the label is negative.
The weight (W) for each data point (X) are assigned using the following formula:

W (X) =
Pexp(S = X(S) ^ Class = X(Class))

Pobs(S = X(S) ^ Class = X(Class))
(2.7)

where S denotes the sensitive attribute. Kamiran and Calders state: ”The weight
of an object will be the expected probability to see an instance with its sensitive
attribute value and class given independence, divided by its observed probabil-
ity”. Using the Reweighing method, no data point values are changed, they are
given weights that compatible classifiers can use during training.

Disparate Impact Remover

The Disparate Impact Remover was introduced by Feldman et al. [2015]. The
method attempts to increase group fairness while preserving rank-ordering within
groups, by editing feature values. The fairness measure used in the method is the
disparate impact metric we described in section 2.1.1, hence the name Disparate
Impact Remover. The feature values are edited so that any attributes in the data
set (D) that could be used to predict the sensitive attribute are changed so that
the transformed data set (D̄) can be certified as having no disparate impact. In
the resulting data set D̄ only feature values are transformed, not the protected
attribute and the label. The goal of the method is also to preserve the relative
per-attribute ordering, rank, in the data set so that it is still able to predict the
label.

The algorithm creates Ȳ , such that for all y 2 ȲS , the corresponding ȳ =
F

�1
A

(FS(y). Ȳ denotes the set of features excluding the protected attribute. S
denotes the protected attribute. F�1

A
is the quantile function of the median dis-

tribution A: F�1
A

= median s2SF
�1
S

(u). FS ranks the values of YS (i.e. F�1
S

(1/2)
is the value of y such that P (Y � y|X = x) = 1/2).

Background Theory 14

Since the ’repair’ process outlined by the algorithm is likely to degrade the ability
to classify accurately, Feldman et al. adds a ’repair level’ parameter � 2 [0, 1] to
the algorithm. � = 0 yields the unmodified data set and � = 1 yields the fully
repaired data set as described above. In our thesis we will use a repair level of
� = 0.8 in our experiments. It is, however, also possible to add this parameter
to the set of parameters to be optimized by our method and architecture as
described in chapter 4.

Optimized Pre-Processing

The Optimized Pre-processing method by Calmon et al. [2017] learns a proba-
bilistic transformation that, using group fairness, transforms the original data
set so that it satisfies three properties: discrimination control, distortion control,
and utility. This transformation edits the features and labels in the data set.

The first objective, discrimination control, is to limit the dependence of the trans-
formed label L̄ on the protected attribute S. The second objective, distortion
control, is to satisfy distortion constraints. These constraints restrict the trans-
formation to reduce or eliminate certain large changes (e.g. a very low credit
score mapping to a very high credit score). In addition to these constraints on
individual distortion, the third objective, utility, requires that the distribution of
(Ȳ , L̄) is close to the distribution of (Y , L). Y denotes the features in the data
set, excluding the protected attribute. This objective ensures that the model
learned from the transformed data set is not too di↵erent from one learned from
the original data set.

2.1.4 Aif360

Aif360 [Bellamy et al., 2019] is an open source toolkit that we will be using
in this thesis. The toolkit includes a Python module for examining, reporting
and mitigating bias and discrimination in machine learning models. The package
contains over 70 fairness metrics, and 10 state-of-the-art mitigation algorithms,
that can be integrated throughout the AI lifecycle. The package also provides
easy access to some common data sets often used when studying fair AI: The
Adult Data Set, The Bank Marketing Data Set, The COMPAS Data Set, and
the German Credit Data Set.

2.2 Multi-Objective Optimization

When performing any task, the goal is to reach and optimize an objective. This is
also the case when AI systems perform tasks. During training and development,
the performance of the system is often measured by calculating how well the

Background Theory 15

task was performed, i.e. if and how well the desired objective was reached. The
function used the calculate the measure is often called a fitness function. In
automated decision-making systems the main objective is often measured by the
accuracy of the system, as the ultimate goal for the system is to always make
the correct decision. However, some tasks may also have multiple objectives. For
examples, when making a software product, a clear goal is for the software to be
able to handle the requirements correctly, but there are often other goals as well.
It is desirable for the software to have good usability, to be easy to maintain and
update, and there might be limits on the timeframe or the expense.

The goals of meeting requirements, good usability, and easy maintenance may
be referred to as objectives, while limits on the timeframe and the expense are
constraints. AI systems may also have multiple objectives and/or constraints.
In the context of AI systems, objectives are measurable goals (e.g. accuracy,
false/positive rates, etc) used to create fitness functions. Meanwhile, constraints
limit the solution space by declaring some solutions infeasible [Floreano and Mat-
tiussi, 2008]. For example, while the software requirements create a measurable
solution space, containing only software reaching the requirements, a time or ex-
pense limit decreases the solution space by declaring all software solutions that
break the limit infeasible.

In some cases, the distinction between an objective and a constraint is not en-
tirely clear, as some goal may be declared to be either or. For example, when
introducing fairness into an AI system. The desired solution may be formulated
as a system with high accuracy that doesn’t violate a fairness constraint, or fair-
ness can be viewed as a second objective. In both cases a new measurement is
needed, as measuring accuracy says nothing about the fairness of the system.
The di↵erence between regarding fairness as an objective versus a constraint, is
that having a constraining value is a simple quantitative approach, while viewing
fairness as an objective opens up for more qualitative considerations.

There are several methods for handling multiple objectives. One method is to
rank objectives by priority, in which case the system will focus on the most
important objective first, before taking into account objectives with lower priority
[Floreano and Mattiussi, 2008]. A second method is the use of objective targets,
where each objective has a value representing its target. These targets can be
used to convert the multiple objectives into a single scalar fitness function, in
which case a single-objective algorithm can be used [Floreano and Mattiussi,
2008]. A third method is to use weights. Assuming one knows the tradeo↵
between di↵erent objectives, it is possible to create an aggregated fitness function
where each objective function is weighted based on the known tradeo↵ between
them. This creates a single aggregated fitness function that, again, can use
single-objective algorithms for optimization. This approach is often used because

Background Theory 16

of its simplicity. However, the approach relies on the tradeo↵s being known and
easy to quantify. The more objectives, the more di�cult creating weights will
be. Additionally, it might not always be the case that the objectives can be
combined linearly. A fourth approach that doesn’t require knowledge of tradeo↵s
beforehand is based on the concept of Pareto optimality.

2.2.1 Pareto Optimality and Pareto Frontiers

Italian economist Vilfredo Pareto (1848–1923), in his study of distributional e�-
ciency, developed the concept of Pareto optimality.

Pareto optimality. An allocation is considered Pareto optimal if no alternative
allocation could make someone better o↵ without making someone else worse
o↵. [Mock, 2011]

The concept has long been used to study markets and society, but it is also ap-
plicable for multi-objective optimization purposes. In more mathematical terms
(from [Floreano and Mattiussi, 2008]):

Pareto dominance. A solution x1 is said to dominate x2 if
(1) it is at least as good with respect to all objective functions, and
(2) strictly better with respect to at least one objective.
If a solution is not dominated by any other solutions it is Pareto optimal.

Though this condition is fairly strict, in the space of feasible solutions it is possible
for there to be a whole set of candidate solutions that are not dominated by
any other solutions. This set is called the Pareto-optimal set or the Pareto
frontier/front.

In general, it is often the case that there are several optimal solutions rather than
a single optimal individual. Such a set of solutions allows for considerations of
the tradeo↵s between each objective, allowing for informed consideration before
a final solution is picked, or for interesting research opportunities. Figure 2.3
shows an example of a Pareto frontier in a case with two objective functions
where the goal is to maximize each objective. The general shape of the front will
vary depending on whether objective functions are maximized, minimized, one
of each, etc. Such a plot provides an easy illustration of the tradeo↵s between
each objective. However, having more objectives adds more dimensions to plots of
Pareto fronts, diminishing the e↵ect of such a plot. There exist several algorithms
for multi-objective optimization (MOO) and a subset of them use the concept of
Pareto optimality and find Pareto fronts. These algorithms are often based on
the theory of evolutionary algorithms.

Background Theory 17

f2

f
1

Pareto front
Dominated solutions

Figure 2.3: Example of a Pareto frontier in the case of two objective functions
f1 and f2, where both functions are maximized.

2.3 Evolutionary Algorithms

Evolutionary algorithms are based on the natural evolutionary process. In the
60s and 70s computer scientist and engineers began developing algorithms in-
spired by this natural evolution. Most evolutionary algorithms are based on
the same four pillars of natural evolution: (1) maintenance of a population; (2)
creation of diversity; (3) a selection mechanism; and (4) a process of genetic
inheritance [Floreano and Mattiussi, 2008]. This can be summed up in the fa-
mous line: ”Survival of the fittest”. There are several ways to handle each of
these four main pillars, pillars (1) and (4) are determined based on the specific
problem at hand, while pillars (2) and (3) are generally determined by which evo-
lutionary algorithm is chosen. However, all steps have an e↵ect on the outcome
of the algorithm. Some famous evolutionary algorithms are; Genetic Algorithm
(GA), Evolutionary Strategies (ES), Genetic Programming (GP), and Evolution-
ary Programming (EP). In general, all of these algorithms follow the procedure
as shown in Algorithm 1.

When using such algorithms important decisions include how to (a) represent the
population; (b) generate the initial population; (c) design the fitness function;
(d) design the crossover and mutation operators; (e) determine the termination
condition. The decision made on how to represent the population has an e↵ect on
all the other decisions. In EAs the population consist of individuals represented as
chromosomes. The chromosomes represent potential solutions to a problem, and

Background Theory 18

Algorithm 1 Evolutionary Algorithm

1: generate initial population P

2: generation: t = 0
3: while NOT termination condition do

4: calculate fitness of each individual in P

5: select parents based on fitness score
6: perform crossover to create o↵spring from parents
7: perform mutation on the o↵spring
8: P = selected individuals from set of parents and o↵spring
9: t = t + 1

10: end while

performing genetic operations on them ensure the process of genetic inheritance.
The representation of a chromosome can be split into two parts, the genotype and
the phenotype. The genotype is the encoding of the solution that is used by the
evolutionary algorithms, while the phenotype is the encoding that represent the
real-world solution. To calculate fitness scores, in general, the genotype has to
be decoded into a phenotype that can be used to calculate these scores.

There are two main types of genetic operators; crossover, and mutation. The
crossover operator is used to combine two parent chromosomes to generate chil-
dren chromosomes, and the mutation operator is used to add a slight mutation to
a child chromosome. In general parameters defining the probability of crossover
and the rate of mutation are used in EAs to define how often crossover and muta-
tion is performed. Often the probability of crossover is fairly large, but not 100%,
while the rate of mutation is a lot smaller, closer to 0%. These two operators are
performed in consecutive order, where crossover is performed first, and mutation
is performed on the children produced from the crossover. Because the crossover
probability is not 100%, some parent chromosomes will become part of the next
generation, but it is still possible that some mutation will occur.

Introducing multiple objectives into EAs brings with it further considerations
as described in section 2.2. There exist several algorithms developed to handle
multi-objective optimization (MOEAs), most of them based on existing single-
objective algorithms like the ones listed above. Some example algorithms are:
Multiple Objective Genetic Algorithm (MOGA), Strength Pareto Evolutionary
Algorithm (SPEA), Niched Pareto Genetic Algorithm (NPGA), Pareto-Archived
Evolution Strategy (PAES), Multi-Objective Messy Genetic Algorithm, Nondom-
inated Sorting Genetic Algorithm (NSGA) and NSGA-II. All of these algorithms
have di↵erent advantages and disadvantages. In this thesis we will be using
NSGA-II. This algorithm is popular as it is fast, not overly complex, and it

Background Theory 19

results in a Pareto front that can be used to study tradeo↵s.

2.3.1 NSGA-II

Deb et al. [2002] introduced an upgrade to the Nondominated Sorting Genetic
Algorithm (NSGA) called NSGA-II, aiming to improve upon the original and ad-
dress the main criticisms it received. In their paper they find that their improved
algorithm also mostly outperforms two other popular MOEAs, PAES and SPEA,
in many common test problems used to evaluate MOEAs. NSGA-II improves
upon the original NSGA by introducing a fast nondominated sorting algorithm,
incorporating elitism, and making it parameterless. The algorithm follows the
same general procedure as single-objective algorithms, as it is based on GA. How-
ever, instead of a single fitness function more complexity is needed to determine
the ”best” individuals. This is done through the fast nondominated sorting al-
gorithm and a crowding-distance algorithm is used to preserve diversity in the
population.

Figure 2.4: NSGA-II selection procedure (from [Deb et al., 2002])

Figure 2.4 exhibit the three essential principles involved in NSGA-II; elitism,
fast nondominated sorting, and crowding-distance. The procedure starts with
a population of chromosomes, Rt consisting of both the parents, Pt, and the
children, Qt. This is what the principle of elitism boils down to; rather than
just discarding the parent population after children are generated, the parents
are also considered when evaluating the population and are kept if they perform
well. This principle helps ensure that if a good solution has been found in the
middle of the run this solution is not lost because the children might be evolved

Background Theory 20

in worse directions. From this combined population fast nondominated sorting is
performed sorting the entire population into Pareto fronts, by removing the found
fronts from the population before finding the next. Leading to the population
being sorted by whether they are in the best F1, second best, F2, to worst fronts
Fn. Finally, a crowding-distance algorithm is used to preserve diversity by apply-
ing Tournament selection to reduce the population, where solutions compete by
comparing their crowding-distance (a measure of the density of solutions). After
ranking the solutions in this procedure, the algorithm follows the same approach
as most EAs, creating a new population using selection, crossover and mutation,
before the loop starts over again. Pseudocode for the main loop of the NSGA-II
algorithm can be seen in Algorithm 2.

Algorithm 2 NSGA-II Main Loop (from [Deb et al., 2002])

1: Rt = Pt [Ot Combine parent and o↵spring pop
2: F = fast-non-dominated-sort(Rt) F = (F1, F2, ..) all nondominated fronts
3: Pt+1 = and i = 1
4: repeat

5: crowding-distance-assignment(Fi) Calculate crowding-distance
6: Pt+1 = Pt+1 Include ith nondominated front
7: i = i+ 1 Check next front
8: until |Pt+1|+ |Fi|  N Until the parent population is filled
9: Sort(Fi,�n) Sort in descending order using �n

10: Pt+1 = Pt+1 [Fi[1 : (N � |Pt+1|)] Choose the first (N � |Pt+1|) elements
11: Qt+1 = make-new-pop(Pt+1) Using selection, crossover and mutation
12: t = t+ 1 Increment generation counter

NSGA-II is a popular MOEA, often used on common EA problems that need
multiple objective measures to ensure the best outcome. A prevalent set of
problems are resource allocation problems, which work well with EA. In most
real-world resource allocation problems, many objectives are needed to fit the
complexity of the real world. Example problems include memory management,
Internet bandwidth allocation, and scheduling problems. In these areas NSGA-II
is in common usage. Using NSGA-II for fairness measures, however, is not as
frequently explored.

2.4 Support Vector Machines

Support Vector Machines (SVMs) are popular and flexible class of classifiers for
supervised learning problems. Russell et al. [2010] list three properties that make
SVMs attractive:

Background Theory 21

1. SVMs construct a maximum margin separator — a decision boundary with
the largest possible distance to example points. This helps them generalize
well.

2. SVMs create a linear separating hyperplane, but they have the ability to
embed the data into a higher-dimensional space, using the so-called kernel
trick. Often, data that are not linearly separable in the original input space
are easily separable in the higher-dimensional space. The high-dimensional
linear separator is actually nonlinear in the original space. This means the
hypothesis space is greatly expanded over methods that use strictly linear
representations.

3. SVMs are a nonparametric method—they retain training examples and po-
tentially need to store them all. On the other hand, in practice they often
end up retaining only a small fraction of the number of examples—sometimes
as few as a small constant times the number of dimensions. Thus, SVMs
combine the advantages of nonparametric and parametric models: they
have the flexibility to represent complex functions, but they are resistant
to overfitting.

The di↵erent SVMs are defined by the type kernel function used. Kernel functions
specify the type decision boundary that can be learned by the classifier, and the
calculations needed to ensure this. Both linear and non-linear kernels can be
used. Examples of non-linear kernels are radial kernels, and polynomial kernels.
Though non-linear kernels are more flexible, they are also more complex and
require more computational power, especially as the size of the training data set
grows. The choice of kernel function is therefore an important consideration when
working with SVMs. The choice of kernel also e↵ects what hyperparameters need
to be provided to the SVM classifier.

The main hyperparameter for SVM is independent of the chosen kernel. This is
the penalty parameter C. As mentioned above SVMs find a separating hyperplane
with the maximal margin. The C parameters determines how to tradeo↵ the
maximization of this margin with the correct classification of training samples
[Hsu et al., 2016]. This is done by determining the penalty to apply to the error
term for each training data point. A small C will encourage a larger margin at
the cost of training accuracy, while a larger C will accept small margins at the
cost of complicating the decision function in order to fit more training points. In
addition to the C parameters, another important hyperparameter is the kernel
parameter. The kernel parameter is determined by which kernel is used in the
SVM. In our thesis we will be using the radial basis function (RBF) kernel. The

Background Theory 22

RBF kernel has the following kernel function:

K(xi, xj) = exp(��||xi � xj ||2), � > 0 (2.8)

where xi and xj are training points, and � is the kernel parameter [Hsu et al.,
2016]. The � parameters determines the influence of each training point over
other training points, a low � means the influence reaches ’far’, while a high value
means the influence ’close’. The optimal value for both C and � is dependent
upon the dataset.

2.5 Scikit-learn

Scikit-learn [Pedregosa et al., 2011] is an open source machine learning module
for Python. We will be using this module in our thesis. The package integrates a
wide range of state-of-the-art machine learning algorithms, including SVM, near-
est neighbor, decision trees, naive Bayes, linear models, neural network models,
ensemble methods and more. The package also provides methods for model se-
lection, preprocessing, and evaluation, etc. The authors of scikit-learn state
that the package focuses on bringing machine learning to a wide range of users,
with an emphasis on ease of use and performance. This means that though the
module might not be ideal for very complex machine learning, it provides an
excellent use case for exploring and studying medium scale problems.

Chapter 3

Related Work

This chapter will answer RQ1 from chapter 1 and present the state-of-the art in
the field of fairness vs. accuracy tradeo↵s. First, in section 3.1 we cover papers
that study the tradeo↵ between accuracy and fairness in a general and theoretical
manner. Then we present research using Pareto frontiers and Multi-Objective
Optimization techniques to study fairness, in section 3.2.

3.1 The Tradeo↵ Between Accuracy and Fairness

There is a prevailing theory that fairness and accuracy are at odds with each
other. In this section we will cover some relevant papers that cover this tension
in the domain of automated decision-making systems.

Zliobaite [2015] study the relation between fairness and accuracy in binary clas-
sification. They measure discrimination, i.e. fairness, as the di↵erence between
the rates of acceptance. This means that in the extreme cases, where either
everyone or no one is accepted, there is no discrimination, but also very low ac-
curacy. Zliobaite introduces a normalized version of the discrimination measure
and show that the upper bound for accuracy and discrimination remain linear. In
practice the relation means that a classifier would reduce discrimination by either
reducing the acceptance rate for the favored group, and/or increase the accep-
tance rate for the protected group. The acceptance rate is the rate at which data
points are ’accepted’, i.e. given the positive label. Classification thresholds con-
trol the acceptance rate. A low classification threshold means more data points
are accepted, and a high threshold means that less data points are accepted.
The resulting decrease in accuracy from changing the acceptance rate would be

Related Work 24

linearly proportional to the discrimination in the data. The main message of
the paper is that because changing the acceptance rate, i.e. the classification
threshold, changes the baseline accuracy and discrimination, classifiers are not
comparable unless acceptance rates are taken into account.

Zliobate’s paper contribute a relevant element to consider when comparing classi-
fiers, but otherwise the papers has a fairly narrow contribution. It only considers
one measure of fairness and makes no attempt to generalize the results.

Menon and Williamson [2018] also study the cost of fairness in binary classifica-
tion. They take a largely theoretical approach, looking at the inherent tradeo↵s in
learning classifiers with a fairness constraint, not specific to any algorithm. They
formalize the fairness-aware learning problem, in which the goal is to predict the
label well, the performance measure Rperf , while not being able to predict the
sensitive feature well, the fairness measure Rfair. The objective is to minimize
the function

Rperf (f ;D)� � ·Rfair(f ;D)

for tradeo↵ � 2 R. The tradeo↵ parameter � determines how to balance the com-
peting goals of fairness and accuracy. In their paper they investigate more closely
a subset of such problems, that they call cost-sensitive fairness-aware learning,
where cost-sensitive risks are used as a measure for both performance and fairness.
They relate two popular fairness measures disparate impact and mean di↵erence
to cost-sensitive risks. Further they show that for such cost-sensitive fairness
measures the Bayes-optimal classifier is an instance-dependent thresholding of
the class-probability function. These results are largely theoretical. Lastly, they
show that in fairness-aware learning problems, the tradeo↵ between fairness and
accuracy is dependent on how ’dissimilar’ the label and sensitive attribute is, the
disalignment. For example, in a loan application process, if a sensitive attribute,
e.g. gender, perfectly coincides with how well a person can repay their loans, then
perfect accuracy would entail that only applicants of this gender would receive
loans, and attempting to make the process fairer between genders, would result
in a large cost to the accuracy. Meanwhile, if gender was perfectly independent
from loan repayment capabilities, then it would be possible to have perfect ac-
curacy and fairness simultaneously. This means that the more disalginment, i.e.
independence, there are between the label and sensitive attribute the less of an
e↵ect introducing a fairness constraint will have on the accuracy.

Menon and Williamson’s paper provide interesting theoretical results, but lack
somewhat in real practical solutions. The tradeo↵ parameter � present a clear
picture of the concept, but unless the desired tradeo↵ is already determined,

Related Work 25

tuning of this parameter is needed. Additionally, not every fairness problem can
be reduced to what they call a fairness-aware learning problem. In some domains
it is illegal to use sensitive attributes in the decisions making process, which the
authors approach relies on.

Corbett-Davies et al. [2017] study the cost of fairness in algorithmic decision
making, specifically in pretrial release decisions. Such algorithms predict defen-
dants risk scores, which are supposed to indicate how likely they are to commit
a violent crime. These algorithms don’t use race explicitly as an input, but have
still been shown to be substantially more likely to incorrectly classify black defen-
dants than white. One such famous algorithms is COMPAS [Angwin et al., 2016].
Corbett-Davies et al. reformulate algorithmic fairness as constrained optimiza-
tion, where the objective is to maximize public safety while satisfying formal
fairness constraints designed to reduce racial disparities. They show that for
many past definitions of fairness, the optimal algorithms require applying mul-
tiple, race-specific threshold for individuals’ risk scores. However, the optimal
unconstrained, i.e. safety maximizing, algorithm requires applying a single, uni-
form threshold for all defendants. Such a threshold satisfies another important
understanding of equality, where all individuals are held to the same standard,
irrespective of race. The di↵erence between the constrained and unconstrained
algorithms highlight the tension between fairness, i.e. reducing racial disparity,
and accuracy, i.e. maximizing safety.

Corbett-Davies et al.’s paper has a slightly narrower scope then the above papers,
which leads to more practical and specialized results. Though, the results might
not necessarily be applicable in other domains, outside predictive risk scoring
for pretrial release decisions. However, as the authors write themselves, the
principles they discuss could be applied to other domains, and perhaps even to
human decisions makers as well. The results are similar to the results from Menon
and Williamson’s paper [Menon and Williamson, 2018], in that they suggest that
instance dependent thresholds (e.g. based on race, gender, etc.) are the optimal
algorithms for optimization constrained by fairness goals. This means there are
also similar problems to consider. One is the legality of using protected attributes
as inputs for the algorithm. Another similar problem is the requirement of a
predetermined, or alternatively having to tune, a fairness threshold parameter.

While the above papers consider the fairness/accuracy tradeo↵ in regard to classi-
fiers and mitigation methods, Wick et al. [2019] take a slightly di↵erent approach
by considering where the bias leading to unfairness might come from. In particu-
lar they focus on label and selection bias. They point out that when a mitigation
method works to ensure fairness in the model using the training data, often no
changes are being made to the evaluation data. It is therefore only natural that
accuracy is decreased, when measured on the biased evaluation data. However,

Related Work 26

the true accuracy of the classifiers, if it could be measured against unbiased data,
might not be as drastically reduced as one might think. In some cases, they posit,
increasing fairness might in fact increase the accuracy as well. If protected at-
tributes in fact have no e↵ect on a person’s intelligence, potential, qualifications,
etc., then it follows that enforcing fairness should normally increase the accuracy.
Although, as they specify, such assumptions do not always hold. There might
be historical, systematical, and/or biological reasons that can lead to di↵erent
groups having di↵erent limitations or advantages. In which case results similar
to those found in the papers mentioned above would likely hold instead. One
concern when attempting to consider the origin of the bias is the dataset while
evaluating the fairness/accuracy tradeo↵, is that having a ’perfect’, ground truth
dataset is in most cases impossible. Wick et al. use data simulation to attempt
to circumvent this problem and create a ground truth dataset. However, they
acknowledge the lack of reliability, as there is no way of measuring how good the
simulated data is. Though, if one assumes that this method works somewhat
well, their results largely supporters their hypothesis.

A common through line in all the papers mentioned above is the use of group
fairness measures. Speicher et al. [2018] consider individual fairness instead. The
core idea of their paper is to use existing inequality indices from economics to
measure fairness. In addition, they perform some comparative analysis, first
comparing the tradeo↵ between accuracy and their notion of individual fairness,
and secondly between individual and group fairness. The former analysis is the
most relevant for this thesis. They make a proposition suggesting, similarly to
Wick et al. [2019], that their notion of fairness should be in perfect harmony
with accuracy, i.e. that eliminating error should mean the elimination of fairness
as well. Like Wick et. al. they acknowledge this is often only true in special
cases and not in general. Speicher et al.’s empirical analysis of the fairness vs.
accuracy tradeo↵ use a generalized entropy index to measure individual fairness.
See eq. (2.5) for the definition of generalized entropy indices. In their analysis
they use the index with ↵ = 2. They experiment with two real-world datasets:
The Adult Income Dataset [Dua and Gra↵, 2017], and the ProPublica COMPAS
Dataset [Larson et al., 2016]. Three standard classifier models are used; logistic
regression, SVM with RBF kernel, and random forest classifier, all of which
are optimized for accuracy. In addition, they compare these classifiers with an
’oracle’ that can perfectly predict the label for each instance. Then they use a
classification threshold 0  ⌧  1 to predict a label for each instance based on
the likelihoods output from the classifiers. Increasing the threshold results in
more instances being rejected, and vice verca. In their experiment they vary this
threshold to study the e↵ect it has on accuracy and fairness. They find that for
the oracle increasing ⌧ produces results that support their original proposition,
up until a point, after which the trend reverses (close to 0.75 in the Adult data

Related Work 27

and 0.45 in the COMPAS data, corresponding to the fraction of instances in the
negative class in the respective datasets). For the other (non-oracle) classifiers,
the more general case is true. The optimal threshold for (imperfect) accuracy is
not the same as the optimal threshold for fairness.

One mayor takeaway from this related research is that most of the papers use
group fairness measures. This is not surprising, as such measures are more easily
calculated, an essential part of being able to evaluate tradeo↵s. The papers
by Zliobaite [2015], Menon and Williamson [2018], and Corbett-Davies et al.
[2017] all mostly examine classifiers and how to make them fair. They reach
results that show that the optimal classifiers constrained by fairness requires
multiple, group-specific thresholds for when to accept an individual. They all
find that using such classifiers, however, reduces the accuracy. It also requires
either a predetermined threshold parameter, or alternatively some tuning of the
threshold. Menon and Williamson also highlight that the correlation between
protected attributes and the label can have a large e↵ect on how good or bad
the tradeo↵ will be, in some cases (with no correlation) they suggest that there
will be no tradeo↵ at all, and that both accuracy and fairness can be maximized.
Wick et al. [2019] take this one step further, hypothesizing that if one assumes
that an individuals protected attributes have no e↵ect on their capabilities, then
increasing fairness can in fact increase accuracy. They consider where the bias
comes from, and claim that because most methods only change the model made
from the training data, and continue to evaluate the accuracy on evaluation
data that is likely also biased, it is no wonder that the new model does not fit the
evaluation data as well as before. Their results support their hypothesis and show
that the tradeo↵ increases or decreases based on how well this bias is mitigated
in the evaluation data. Speicher et al. [2018] is the only paper that specifically
considers an individual fairness metric. Similarly to Zliobaite [2015], Menon and
Williamson [2018], and Corbett-Davies et al. [2017] they consider classification
thresholds in their analysis. However, they take a more empirical rather than
theoretical approach. Additionally, they only use one threshold for the whole
population, rather than group specific thresholds. One might hypothesize that
using group specific thresholds only holds for group fairness measures.

In this thesis we wish to investigate several of the findings discovered in this
research. In addition, we believe using MOO and Pareto frontiers presents a
di↵erent and more practical approach to the question of fairness vs. accuracy
tradeo↵s. This belief was further inspired by a paper by Haas [2019]. In the next
section we will cover this paper and explore how MOO and Pareto frontiers have
been used to study fairness previously.

Related Work 28

3.2 Multi-Objective Optimization for Studying
Fairness

Most research using multi-objective optimization (MOO) to study fairness is cen-
tered around resource allocation problems, like Internet bandwidth allocation,
memory management, scheduling tasks, etc. Fairness concerns in this domain is
centered around a fair allocation of resources, which entails using slightly di↵er-
ent fairness measures then the ones we consider in this thesis. Bertsimas et al.
[2019] attempt to quantify the ’price’ of fairness relative to e�ciency loss, in re-
search allocation problems. They examine other types of fairness specific to the
resource allocation domain and explore these is several common resource alloca-
tion problems. Additionally, some papers cover fairness in o↵spring diversity in
MOO problems [Friedrich et al., 2011]. Both of these examinations of fairness
are slightly out of the scope of this paper, and nothing more will be covered
about this research. However, there is fortunately one paper which focuses on
automated decision-making systems and use MOO to examine the fairness vs.
accuracy tradeo↵ in such systems. This paper was a big inspiration, and we built
on its results and research in this thesis.

Figure 3.1: General framework to explore algorithmic fairness tradeo↵s (from
[Haas, 2019])

Haas [2019] rightly states that the tradeo↵ between fairness and accuracy (or
other performance measures) hasn’t been researched nearly enough. They present
a generic framework for exploring these tradeo↵s in algorithmic fairness. Addi-
tionally, they perform a case study to compare several fairness metrics and miti-
gation methods. The framework consists of five separate steps that can be seen in
fig. 3.1. Step 1-3 consists of selecting the dataset and protected attributes, met-

Related Work 29

rics and other objectives, and classifier algorithms and mitigation approaches. In
step 4 the Pareto frontier is calculated using MOO. Based on the results from
step 4, the ’best’ tradeo↵ is selected in step 5 through analysis of the Pareto
front.

In their case study they use the German Credit Card data set [Dua and Gra↵,
2017], with Age as the protected attribute, where <25 is considered young and
part of the unprivileged group, and � 25 not young and therefore part of the
privileged group. They run two scenarios, one where the group fairness met-
ric statistical parity di↵erence [eq. (2.1)] is used, and one where the individual
fairness metric Theil Index [eq. (2.6)] is used. In both scenarios AUC is used
as the performance metric. SVM is used as the baseline classifier, while the
pre-processing mitigation method Reweighing is used before SVM. The post-
processing method Reject Option classifier (ROC) is used after SVM. Addition-
ally, as an in-processing method, the Meta-Fair classifier is used as an alternative
classifier. To determine the Pareto frontier, NSGA-II is used to select hyperpa-
rameters and features for the classifiers. This results in a Pareto front consisting
of the di↵erent non-dominated classifiers based on the selected objectives (the
fairness and performance metrics). 5-fold cross validation is used to determine
the performance for the objectives. Table 3.1 summarizes the parameters for the
case study.

Figure 3.2 shows the resulting Pareto fronts from both scenarios. In the graphs
the y axis shows the fairness metric, while the x axis shows the performance
metric. For both metrics the ’ideal’ value is 1, which indicates that the approach
is perfectly ’fair’ or perfectly ’accurate’. In addition to these Pareto fronts, they
also investigated the distribution of values for other potentially relevant metrics.

Their results show that the framework can be used to systematically analyze
the di↵erences between fairness and performance metrics, by evaluating a set
of strategies and metrics for a given data set. For example, the results show
that for their case study, optimization for a group fairness metric resulted in
observable di↵erences between the di↵erent approaches, whereas optimization
for an individual fairness metric resulted in much more similar behavior between
approaches.

Though the framework shows great potential, there is yet more that can be
done with it to explore more complex situations and tradeo↵s. Haas only cover
a small amount of possibilities, and as they state themselves, exploring more
data sets, more metrics and more mitigation methods would be beneficial. We
wish to leverage and build upon this framework in our thesis. Unfortunately,
they don’t provide their code from the case study, but our hope is that we will
be able to somewhat recreate and further develop our own version based on

Related Work 30

Parameter Values Description

Dataset German Credit Data Set [Dua and Gra↵, 2017]
Protected
Attribute

Age < 25: young;
� 25: not young.

Algorithms SVM, SVMReweighing,
SVMROC , Meta� Fair

The di↵erent mitigation ap-
proaches. See section 2.1.3 for
further descriptions.

Metrics Performance metric:
AUC

Fairness metrics:
SP Diff or Theil

The metrics used in the two case
study scenarios. Scenario 1 uses
AUC and Statistical Parity Dif-
ference, Scenario 2 AUC and the
Theil Index. See section 2.1.1 for
further descriptions.

NSGA-II
Parame-
ters

Generations: 100
Mutation rate: 0.05
Cross-over probability: 0.7
Population Size: 50

The parameters used for NSGA-
II

Table 3.1: Overview of parameters from Haas’ case study. (adapted from [Haas,
2019])

(a) Scenario 1 (b) Scenario 2

Figure 3.2: Pareto fronts from Haas [2019] case study.

the limited description given in the paper. Additionally, we believe there are
some other avenues that can be explored using the framework Haas created.

Related Work 31

Haas optimizes SVM hyperparameters and feature selection in order to generate
di↵erent classifiers along the Pareto frontiers. Based on state-of-the-art research
stating the importance of classification thresholds (see section 3.1), we want to
investigate whether it is possible to optimize such thresholds instead of SVM
parameters. Further we find that although Haas analyze their resulting frontiers
in light of which final solution to choose, their analysis of the tradeo↵ itself is
lacking. Therefore, we want to realize our own results using their framework and
analyze them in light of the current state-of-the-art research in the fairness vs.
accuracy tradeo↵. In chapter 4 we will describe how our method and architecture
di↵ers from Haas’ method. In chapter 5 we will describe the experiments we will
perform in order to investigate these additional avenues of interest, as well as
analyze and discuss our results.

Chapter 4

Method and Architecture

This chapter will describe our method and the architectures we are using to
answer RQs 2 and 3 from section 1.1. RQ2 was somewhat answered by section 3.2
already where we discussed the paper by Haas [2019] that established a framework
based on multi-objective optimization (MOO) to investigate the cost of fairness.
In this thesis we wish to leverage the framework introduced by Haas. In our first
experiment we will be implementing our version of this framework to provide
results we can analyze and build upon in our following experiments. We will
investigate a di↵erent data set from Haas and some di↵erent mitigation methods,
to further answer RQ2 and further confirm the validity of the framework. As we
discussed in section 3.1 much research in the field of fairness vs. accuracy tradeo↵s
highlight the importance of classification thresholds. This led us to formulate
RQ3 related to optimizing classification thresholds. In order to answer this third
research question our other experiments will therefore be adapting the method
and architecture to study whether optimizing classification thresholds will give
similar tradeo↵s to optimizing classification parameters. Because of the slight
di↵erence between the goals of each experiment, a slight di↵erence between the
architectures are also required. The biggest di↵erence is that experiments 2 and
3 require predefined and trained classifiers, that will be selected from experiment
1 results.

This chapter will first present the method that forms the basis for our approach in
this thesis. Secondly, we will describe our method and how it di↵ers from Haas’
method. Thirdly, we will present the architectures needed to implement our
method. Finally, we will cover relevant implementation details that will further
explain how our architecture works.

Method and Architecture 33

4.1 Hyperparameter and Feature Selection for
SVMs using Genetic Algorithms

When working with machine learning, two important steps of the process are fea-
ture selection and hyperparameter selection. Feature selection is used to identify
the optimal number of features to use from the original dataset. More features
mean more patterns to recognize, more time needed for computation, and more
examples needed for learning. Therefore, the goal of feature selection is for the
model to be able to generalize well with as few provided features as possible. Once
the appropriate features have been selected, most machine learning classifiers re-
quire careful selection of parameters in order to tune the classifier to ensure it
performs at its optimal capacity given the data provided. Such parameters, often
called hyperparameters are specific to the type of classifiers used, for example
the number of neighbors (k) in a k-nearest neighbors classifier or the maximum
depth for a decision three classifier. Genetic algorithms (GAs) have been shown
to be very e�cient in automating this parametrization process [Huang and Wang,
2006]. Huang and Wang show that their proposed GA based method for SVM
significantly improves results, when compared to another common parametriza-
tion option; Grid Search. As opposed to Grid Search, using GAs also allows for
automated feature selection in the same process. Such GA based methods like
the one suggested by Huang and Wang [2006], allows the feature selection and
hyperparameter selection processes to be combined. In Huang and Wang’s paper
they use a single objective GA where they combine the criteria of classification
accuracy, number of selected features and the feature cost into a single objective
fitness function using weights. Another option would have been to use a multi-
objective GA, with each criterion as an objective function. The latter is what we
will be doing in this thesis but using an accuracy metric as one of the objective
functions, and a fairness metric as another objective function.

In this thesis we will be using an SVM classifier. Similarly to Haas [2019] and
Huang and Wang [2006] we will be using the radial basis function (RBF) kernel.
The hyperparameters that should be optimized for SVM with an RBF kernel
is the soft margin constant (penalty parameter) C, and the kernel parameter
gamma (�) used by RBF. For more on C and � see section 2.4. In addition
to optimizing these SVM hyperparameters we will optimize which features to
include as well.

In order to implement this approach, the following decisions have to be made; (a)
how to represent the hyperparameters and features as a chromosome, (b) how to
design the crossover and mutation operators, and (c) how to generate the initial
population. Our implementation of these decisions, as well as how this approach
integrates into our method will described in section 4.2.

Method and Architecture 34

4.2 Method Description

Our method and architecture used in the thesis is based on the framework de-
scribed by Haas [2019], which itself appears to be based on the method developed
by Huang and Wang [2006]. Figure 3.1 shows Haas’ framework. In this thesis
we will be leveraging this framework, which includes five steps; (1) Select dataset
and protected attribute; (2) Define objectives and fairness metrics; (3) Select
algorithms and approaches (i.e. classifiers and mitigation methods); (4) Calcu-
late MOO solutions and determine Pareto frontier; (5) Select ’best’ tradeo↵ on
Pareto frontier. As the goal for this thesis is to study tradeo↵s, not to select a
solution, we will be disregarding step 5. Step 1-3 entails selecting parameters for
the experiments. Section 5.1 describes the dataset and protected attribute we
have selected for our experiments (step 1). In section 5.2.1 we will describe which
objectives, metrics, algorithms, and approaches we will be using (step 2 and 3).
Step 4 is the main interest for this chapter, chapter 4. This step is where all the
calculations are done to determine the Pareto frontier.

Step 4 states; Calculate MOO solutions and determine Pareto Frontier. In order
to perform this step Haas [2019] uses the method created by Huang and Wang
[2006] to optimize SVM hyperparameters and feature selection in order to gen-
erate classifier solutions. However, instead of optimizing a single objective like
Huang and Wang, Haas optimizes two objectives, one fairness objective and one
accuracy objective. In order to perform this optimization a MOO algorithm is
therefore needed. Haas uses the NSGA-II algorithm. See section 2.3.1 for more
on NSGA-II.

In experiment 1, we will be optimizing parameters and features for SVM, similarly
to Haas [2019] and Huang and Wang [2006]. Meanwhile in experiment 2 and 3, we
will be optimizing classification thresholds for trained classifiers. These trained
classifiers will be selected based on results from experiment 1. Therefore, our
architecture will di↵er slightly from experiment 1 to experiment 2 and 3. Further
descriptions of the experiments can be found in section 5.2.

In the first experiment our method and architecture will be fairly similar to Haas’s
method. However, their architecture description is incomplete and limited. It is
therefore not possible to be sure that the architecture is perfectly recreated. Ad-
ditionally, because we will be reusing classifiers found in experiment 1 for exper-
iments 2 and 3, some additional changes have been made. These changes mainly
consist of using a defined train/test split rather than the k-fold method used
by Haas. Furthermore, we will be using a di↵erent dataset, di↵erent mitigation
methods and a di↵erent accuracy metric. For more on the choice of dataset, and
the train/test split see section 5.1. In section 5.2.1 we will we discussing which
mitigation methods and metrics we use and explain why the changes were made.

Method and Architecture 35

In sections 4.3 and 4.4 we will further describe our architectures. First, we will
cover the main decisions that influenced the architecture.

In section 2.3 we outlined the four major pillars that define evolutionary algo-
rithms: (1) maintenance of a population; (2) creation of diversity; (3) a selection
mechanism (for selecting the best parent chromosomes to evolve into a new gen-
eration); and (4) a process of genetic inheritance. Pillar (1) includes making
decisions about how to design the chromosome and represent the hyperparame-
ters and features in experiment 1, and represent the classification thresholds in
experiment 2 and 3. Each chromosome will represent a potential solution, i.e
a set of hyperparameters and features or a set of classification thresholds that
represent unique SVM classifiers. In pillar (1) we also include the question of
how to generate the initial population of chromosomes. Pillar (2) is determined
by which EA is used. Similarly to Haas [2019] we will be using the NSGA-II
algorithm. The NSGA-II algorithm uses crowding distance sorting to create di-
versity in the population. For more on crowding distance sorting and NSGA-II
see section 2.3.1. Pillar (3) involves two steps: (a) calculating fitness scores for
the population; and (b) selecting the ’best’ chromosomes based on the fitness
scores. Step (b) is again determined by NSGA-II, where chromosomes are se-
lected using elitism, fast nondominated sorting and crowding distance sorting.
For further descriptions on the selection procedure used in NSGA-II see fig. 2.4
and section 2.3.1. Step (a) is where the SVM classifiers and mitigation meth-
ods are introduced. In this step the fairness and accuracy objectives need to be
calculated in order to provide fitness scores NSGA-II can use to select the best
chromosome. Pillar (4) ensures the process of genetic inheritance by determining
what type of crossover and mutation operators to use. For more on crossover and
mutation operators see section 2.3.

Our decisions for pillars (1), (3a) and (4) forms the basis for our architectures.
The choice to use NSGA-II determined the other pillars; (2) and (3b). The de-
scriptions of our architecture will be split into two parts, covering the architecture
for experiment 1 and the architecture for experiment 2 and 3 respectively. Both
descriptions consist of four main sections based on the three decisions. First, we
will cover our choice for pillar (1) by describing the chromosome design. Then
we will cover pillar (4) by describing our choice for genetic operators. After the
preliminary description of the chromosome and genetic operators we will describe
the main loop of our architecture and how everything connects. Finally, we will
present the evaluation function that calculates fitness scores for pillar (3a).

Method and Architecture 36

4.3 Architecture for Experiment 1

In experiment 1 we will be optimizing hyperparameters and feature selection for
SVM. In section 4.2 we outlined the main choices that defines our architecture.
First, we will cover our chromosome design for experiment 1. Secondly, we will
describe our chosen genetic operators. Thirdly, we will describe the main loop
of the architecture and how everything connects. Finally, we will present the
evaluation function used to calculate the fairness and accuracy objectives we
wish to optimize for in our experiment.

4.3.1 Chromosome Design

In section 2.3 we covered the importance of the chromosome design as each chro-
mosome represents a potential solution to the problem at hand. First, we will
describe the chromosome representation we use to represent the solutions. Sec-
ondly, we will describe how the initial population of chromosomes is generated.

Chromosome Representation

As stated in section 2.3 the representation of a chromosome can be split into
two parts, the genotype and the phenotype. The genotype is the encoding of
the solution that is used by the evolutionary algorithms, while the phenotype
is the encoding that represent the real-world solution. In our architecture, the
phenotype for experiment 1 is the real valued parameters for SVM and the feature
mask representing the features to keep. There exist several options for how to
represent this phenotype as a genotype. We have chosen a very simple option, the
binary encoding system. This allows for easy implementation of the genotype,
as a list of bits is all that is required. In addition, genetic operations are easy to
perform on this type of encoding.

Figure 4.1: The chromosome for experiment 1 consists of three parts;
C, gamma (�) and the feature mask.

Using binary encoding one section each of the chromosome will represent the C,

Method and Architecture 37

gamma(�) and the feature mask, as seen in figure 4.1. In fig. 4.1, c1...cn represent
the value of parameter C, �1...�n represent the value of �, and f1...fn represent
the feature mask. nc is the number of bits chosen to represent the value of C, n�

is the number of bits for � and nf is the number of bits representing the features.
The values of nc and n� are chosen according to the calculation precision wanted
for the value C and �, and nf must equal the number of features in the data set.

To decode the feature mask genotype, we use the same method as Huang and
Wang [2006] that influenced Haas [2019], where the bit value of ’1’ represents that
the feature is kept, and a bit value of ’0’ represents that the feature is discarded.
In [Huang and Wang, 2006] they use a simple scaling method to decode the
genotype of the bit representations of C, �, which requires many bits to allow
a decent amount of precision, as the desired value range increases. Instead we
have chosen to decode the bit representations of C and � using the concept of
floating-point numbers to allow for more precision using fewer bits. Symbolically
the value of a floating-point number is:

s

bp�1
⇤ be

where s is the significand, p is the precision (i.e. the number of digits in the
significand), e is the exponent, and b is the base (in our case this will be the
number 2.

In the IEEE standardized binary representation of floating-point numbers, the
bits are split into three parts. One bit is used to represent whether the value is
positive or negative, a set of bits is used to represent the value of the exponent,
and the rest is used to represent the significand. Figure 4.2 shows a binary
representation where five bits are used to represent the exponent and ten bits are
used to represent the significand, in addition to the one bit used for the sign.

Figure 4.2: IEEE standardized binary representation of
floating-point numbers using 16 bits.

In our case we can disregard the sign bit, as all our values have to be positive
values. The number of bits used to represent the exponent defines the range the
number can represent, and the number of bits used to represent the significand

Method and Architecture 38

defines the precision. To calculate the decimal value of our binary representation
the following equation is used:

(
p�1X

n=0

⇤2�n) ⇤ 2e

In cases where the exponent range is smaller or larger than the desired parameter
range, the exponent value is scaled to fit into the desired range.

Generating the Initial Population

Generating the initial population is an important step in EAs, as the initial pop-
ulation sets the basis for which further generations are evolved. It is therefore
important to have a diverse initial population. In our case we randomly gener-
ate the initial population, placing a random number of 1 and 0 bits into each
chromosome at random positions.

Figure 4.3: The genetic crossover and mutation operations used in this thesis.

4.3.2 Genetic Operators

In order to evolve from the initial population genetic operators are needed. In
section 2.3 we described the importance of genetic operators and covered the
main procedure of the two genetic operators; crossover and mutation. Because
we have chosen to use binary encoded chromosomes, crossover and mutation can
be done fairly simply. In our case we decided that the crossover operation will

Method and Architecture 39

choose a random crossover point at which to split the parents into two parts,
where the opposite parts from each parent is used to generate two children. Our
mutation operator chooses a random bit in the chromosome and flips the value of
the bit. Figure 4.3 provides a visual representation of how these operators work.

4.3.3 The Main Loop

The architecture for experiment 1 is largely inspired by the architectures from
Haas [2019] and Huang and Wang [2006]. However, as previously discussed, some
changes have been made to ensure that the results from experiment 1 will work
with experiments 2 and 3.

Algorithm 3 Experiment 1 - Main Loop

1: train set, test set = get dataset split()
2: Pt = create population(n)
3: t = 0
4: repeat

5: Pt+1 = Pt + generate children(Pt)
6: fitness scores = evaluate population(Pt+1, train set, test set)
7: Pt+1 = select population(Pt+1, fitness scores)
8: t = t+ 1
9: until t == num generations

10: return get pareto frontier(Pt+1)

The pseudocode for the program can be seen in algorithm 3. The main flow
consists of two initial steps, performed at lines 1 and 2 of algorithm 3 respectively;
(a) Gathering and splitting the dataset, as described in 5.1; and (b) Initializing
the population of chromosomes with population size n, as described in 4.3.1.
After these two initial steps, the program runs in a loop until some termination
condition is met (in our case; a maximum number of generations). In this loop
three main steps are performed, in addition to a termination check requiring the
iteration of a generation counter (t = t + 1) in line 8 in algorithm 3. The three
main steps are:

1. Generate children. In this step the chromosome ’children’ are generated
from the selected ’parents’. This is line 5 in algorithm 3. The parents are
selected at the end of the loop, in step 3. Therefore, in the first iteration,
the initial population is the parents. The children are generated using the
genetic operators described in section 4.3.1. These children are then added
to the parent population. In this step the population size is increased with
the number of children. The population size at this point is therefore usually

Method and Architecture 40

Figure 4.4: The main flow of the architecture for experiment 1.

2n, as n children are generated. However, because it is possible for some
children to be identical to some parents (either because the crossover and
mutation probabilities did not hit, or because they coincidentally became
equal through the random crossover and mutation operators), the amount
of children might be slightly smaller than n because we discard non-unique
children to avoid duplicate calculations.

2. Evaluate population. This is line 6 in algorithm 3. In this step the popula-
tion of 2n chromosomes are evaluated and fitness scores are calculated. The
fitness score for each chromosome is a tuple consisting of a fairness score
and an accuracy score. The split data set is introduced in this second step
and used to evaluate the population. A more detailed description of this
process and how the fairness and accuracy scores are calculated will follow

Method and Architecture 41

in our description of the evaluation function.

3. Selection. In this step the best chromosomes from the population are
selected using principles from NSGA-II; elitism, fast nondominated sort
and crowding distance. For further description of this procedure see sec-
tion 2.3.1. This selection is used to reduce our population of 2n to the
desired number of n by choosing the ’best’ chromosomes from the set of
parents and children. This is performed at line 7 in algorithm 3 and returns
the n chromosomes that will be used as parents in the next generation.

4. Terminate? Finally, if the termination condition is met, i.e. the maxi-
mum number of generations, the Pareto front from the final population is
returned. Otherwise the program returns to step (1), line 5 in algorithm 3.
The frontier is returned in line 10 in algorithm 3.

The main flow of the architecture can be seen in fig. 4.4.

4.3.4 The Evaluation Function

The second step of the main loop (line 6 in algorithm 3), the evaluation of the
chromosome population, is where our SVM classifier and mitigation approaches
are used. In order to evaluate the population, the classifier and the desired
mitigation method needs to be ran for each chromosome in order to calculate
accuracy and fairness scores. Figure 4.5 shows the architecture of the evaluation
function that runs for each chromosome in the population. Pseudocode for the
evaluation function can be seen in algorithm 4. The function takes as input; a
chromosome; and the training and test data sets. The main steps of the evaluation
architecture are:

1. Optional: Perform mitigation algorithm. The step is optional, as we will
also be running one approach without mitigation algorithms as a baseline.
If this step is performed a mitigation algorithm is used on the training
set. In our experiments we will only be using pre-processing mitigation
methods which means that this step needs to be performed before training
the classifier. If other types of mitigation algorithms were to be used the
architecture would need to be expanded to allow for mitigation algorithms
both during and after training as well. This step is performed at line 5 in
algorithm 4.

2. Scaling. In the second step both the training and test sets are scaled using
the following function:

xscaled =
x� X̄

s
(4.1)

Method and Architecture 42

Algorithm 4 Experiment 1 - Evaluation function

1: Input: chromosome, train set, test set, accuracy metric, fairness metric

2: Output: fitness scores

3: Procedure:

4:

5: train set = perform mitigation method(train set) (Optional)
6: train set, test set = perform scaling(train set, test set)
7:

8: keep features, C, gamma = get phenotype(chromosome)
9: train set, test set = feature reduction(train set, test set, keep features)

10: classifier = train SVM(C, gamma, train set)
11:

12: classifications = test classifier(test set)
13: accuracy score = accuracy metric(classifications)
14: fairness score = fairness metric(classifications)
15:

16: return [accuracy score, fairness score]

where X̄ is the mean of the training samples, and s is the standard deviation
of the training samples. This step is performed at line 6 in algorithm 4.

3. Convert genotype to phenotype. In this step the chromosome genotype is
converted to phenotypes that can be used by the evaluation function. The
genotype is converted as described in section 4.3.1. This step is performed
at line 8 in algorithm 4.

4. Keep feature subset. The phenotype representing the feature mask is in
this step used to keep the chosen feature subset and discard the other
features from the training and test sets. This step is performed at line 9 in
algorithm 4.

5. Train SVM classifier. In this step the phenotypes of the values C and � are
used as parameters for the SVM classifier that is trained using the training
set. This step is performed at line 10 in algorithm 4.

6. Test SVM classifier. In this step the trained classifier is used to predict
the probabilities of each label for the test data points. These probabilities
are then assigned labels using a classification threshold of 0.5, where prob-
abilities over 0.5 is assigned the positive label and probabilities under 0.5 is
assigned the negative label. This step is performed at line 12 in algorithm 4.

7. Calculate metrics. Finally, we calculate the desired accuracy and fairness

Method and Architecture 43

Figure 4.5: The evaluation function used in experiment 1 to calculate
fitness scores for each chromosome in the population.

metrics based on the predictions from the former step. These steps are
performed at line 13 and 14 in algorithm 4. These metrics are then returned,
at line 16 in algorithm 4, as the fitness scores for the chromosome.

In experiment 1 a classification threshold of 0.5 is used to label the data points
in the test set. The classifier outputs the predicted probability of a data point
belonging to the positive label, and if this probability is over 50% the data point

Method and Architecture 44

is given the positive label. Else, it is given the negative label. This is a common
default value for classification threshold as it follows the logic that the data point
is given the label it is most likely to belong to. In experiment 2 and 3 we will be
optimizing the classification threshold(s), rather than maintaining the standard
0.5 used in experiment 1.

4.4 Architecture for Experiments 2 and 3

In experiments 2 and 3 we will be using a select few of the classifiers generated
in experiment 1. These classifiers will be used to output predictions for the
data points in the test set. These predictions will be labeled using classification
thresholds that will be optimized using the MOO method. In experiment 2 a
single classification threshold will be optimized. Meanwhile, experiment 3 will
optimize group specific thresholds that will used to classify data points depending
on what group they belong to (i.e. the privileged or unprivileged group). In
section 4.2 we outlined the main choices that defines our architecture. This
section will follow the same structure as section 4.3 that described the architecture
for experiment 1. Some of the architecture will be similar to experiment 1, but
there are some changes which we will cover in this section. First, we will cover
our chromosome design and genetic operators for experiments 2 and 3. Secondly,
we will describe the main loop of the architecture and how everything connects.
Finally, we will present the evaluation function used to calculate the fairness and
accuracy metrics we wish to optimize for in our experiments.

4.4.1 Chromosome Design and Genetic Operators

Compared to experiment 1 the chromosome design and genetic operators mostly
remain the same. Similarly to experiment 1 the initial population is generated
randomly. Additionally, the genetic operators are identical. Further descriptions
of these procedures can be found in section 4.3.1 and section 4.3.2 respectively.
However, because we will be optimizing classification thresholds and the SVM
hyperparameters and selected features are already selected based on results from
experiment 1, the chromosome representation will di↵er. In experiments 2 and 3
the solutions are represented by the classification threshold rather than features
and SVM hyperparameters.

Chromosome Representation

For experiments 2 and 3 the phenotype of the chromosome is the classification
thresholds. The chromosomes will be encoded using the binary encoding sys-
tem. Using this system one section each of the chromosome will represent each

Method and Architecture 45

classification threshold (⌧i) for experiments 2 and 3, as seen in fig. 4.6.

Figure 4.6: The chromosome for experiment 2 and 3 consists of one
or more classification thresholds (⌧).

In fig. 4.6 ⌧i:1...⌧i:n and represent the value each classification threshold, ⌧i. n⌧i

is the number of bits chosen to represent the value of ⌧i. The value of n⌧i

is chosen according to the calculation precision required. To decode the the bit
representations of ⌧ we use the same procedure as described in fig. 4.1 to generate
values in the range [0, 1].

4.4.2 The Main Loop

Algorithm 5 Experiment 2 and 3 - Main Loop

1: train set, test set = get dataset split()
2: train set = perform mitigation method(train set) (Optional)
3: train set, test set = perform scaling(train set, test set)
4: train set, test set = feature reduction(train set, test set)
5: classifier = train classifier(train set)
6: P = create population()
7: t = 0
8: repeat

9: Pt+1 = Pt + generate children(Pt)
10: fitness scores = evaluate population(Pt+1, classifier, test set)
11: Pt+1 = select population(Pt+1, fitness scores)
12: t = t+ 1
13: until t == num generations

14: return get pareto frontier(Pt+1)

In experiment 2 and 3 the goal is to optimize classification thresholds. Based on
the results from experiment 1 classifiers will be chosen that will be used in experi-
ment 2 and 3. This di↵erence changes the architecture slightly from experiment 1
to experiments 2 and 3. The main di↵erence being that the classifiers are trained
before entering the main loop, using the selected hyperparameters and features

Method and Architecture 46

from experiment 1. Figure 4.7 shows the architecture for these experiments and
the pseudocode for the main loop can be seen in algorithm 5.

Figure 4.7: The main flow of the architecture for experiments 2 and 3.

The main flow of the architecture consists of two initial steps. Step (a) is similar
to the evaluation function from experiment 1, up until the testing of the classifiers:

1. Split data. First, the data set is split into training and test sets. Line 1 in
algorithm 5.

2. Optional: Perform mitigation algorithm. Secondly, the optional mitigation
algorithm is performed on the training set. Line 2 in algorithm 5.

3. Scaling. The training set is scaled using eq. (4.1). Line 3 in algorithm 5.

4. Keep feature subset. In the final step of pre-processing the chosen feature
subset is kept, and the rest discarded. This time a predefined subset based
on results from experiment 1 is used. Line 4 in algorithm 5.

Method and Architecture 47

5. Train SVM classifier. Finally, the classifier is trained. This time using
predefined parameters based on results from experiment 1. Line 5 in algo-
rithm 5.

The classifier resulting from this process as well as the test set is then provided
to the evaluation function in the main loop. Step (b) is to generate the initial
population (line 6 in algorithm 5). The main loop is identical to experiment 1,
the only di↵erence being the evaluation function used in the ’evaluate population’
step.

4.4.3 The Evaluation Function

Algorithm 6 Experiment 2 and 3 - Evaluation function

1: Input: classifier, chromosome, test set, accuracy metric

2: fairness metric

3: Output: fitness scores

4: Procedure:

5:

6: test set = perform scaling(test set)
7: test set = feature reduction(test set)
8: classification thresholds = get phenotype(chromosome)
9:

10: classifications = test classifier(test set, classification thresholds)
11: accuracy score = accuracy metric(classifications)
12: fairness score = fairness metric(classifications)
13:

14: return [accuracy score, fairness score]

The architecture of the evaluation function for experiments 2 and 3 can be seen
in fig. 4.8. Pseudocode for the evaluation function can be seen in algorithm 6.
The main steps of the evaluation function are:

• Scaling. First, the test set is scaled using the same scaler used on the
training set. Line 6 in algorithm 6.

• Keep feature subset. Secondly, the chosen feature subset is kept identically
to the training set. Line 7 in algorithm 6.

• Convert genotype to phenotype. In this step the chromosome genotype is
converted to phenotypes representing the one or more classification thresh-
olds. Line 8 in algorithm 6. The genotype is converted as described in
section 4.4.1.

Method and Architecture 48

• Test SVM classifier. In this step the phenotype values of the classification
threshold(s) are used alongside the trained classifier to predict probabilities
for the samples in the test set. If one classification threshold is used the
samples are assigned labels based on whether the probability of belonging
to the positive label are above or below the threshold. If group specific
thresholds are used, the samples belonging to a specific group are assigned
labels based on whether the probability of belonging to the positive label is
above or below the threshold specific to this group. This step is performed
at line 10 in algorithm 6.

• Calculate metrics. Finally, we calculate the desired accuracy and fairness
metrics based on the predictions from the former step. These calculations
are performed at line 11 and 12 in algorithm 6. These metrics are then
returned, at line 14 in algorithm 6, as the fitness scores for the chromosome.

Figure 4.8: The evaluation function used in experiments 2 and 3 to calculate
fitness scores for each chromosome in the population.

Method and Architecture 49

4.5 Implementation Details

The code implementing the architectures described in sections 4.3 and 4.4 was
version controlled using git and is saved in a Github repository1. The code
has been written in Python3 and run using version 3.7.3. The necessary Python
modules and the version of them we used to run our code is listed in table 4.1.
In addition, modules datetime, random, json, path, and os are used from the
Python Standard Library.

Module Version Notes

numpy 1.16.4
scikit-learn (sklearn) 0.21.2
aif360 0.2.3
pandas 0.24.2 At the time of writing our code appears

incompatible with the newest versions
of pandas. We believe this is because of
the pandas version required by aif360.

matplotlib 3.1.0

Table 4.1: List of Python modules required to run our code.

We chose to use the popular machine learning tool scikit-learn in this thesis.
Other popular machine learning tools, like Tensorflow, Keras and PyThorch,
were considered but dismissed as options, either for being unnecessarily complex
for our use case or simply because we had more experience using scikit-learn.
For more on scikit-learn see section 2.5. The bias mitigation tool used for this
thesis is the AI Fairness 360 Open Source Toolkit (or aif360). There is not yet an
extensive amount of options when it comes to choosing bias mitigation tools, as
the area of research is still fairly new. Aif360 is currently the only viable option,
with an extensive set of mitigation algorithms and fairness metrics. For more on
aif360 see section 2.1.4. Numpy was used to represent and perform calculations
on the chromosomes in our NSGA-II implementation. It is also a requirement for
several of the other modules. Pandas was a requirement for use of the aif360
module. At the time of writing our code appears incompatible with the newest
versions of pandas. We believe this is because of the pandas version required by
aif360 not being compatible with newer versions. Matplotlib was used to plot
the results from our experiments.

Instructions on how to run the code can be found in the README.md file in the
Github repository1.

1https://github.com/pernillej/Cost-of-Fairness

https://github.com/pernillej/Cost-of-Fairness

Method and Architecture 50

SVM Settings

In addition to providing the C and � parameters to our SVM classifiers, we also
set a maximum number of iterations and a seed for the random number gener-
ator. The latter is provided to ensure that the code produces the exact same
classifier every time given the same feature subset, SVM parameters and training
data. This allows us to be sure that when reusing classifiers from experiment 1
in experiment 2 and 3, these classifiers are the same. In addition, it allows us to
speed up the evaluation process in experiment 1. Because this process requires
training an SVM classifier and optionally using a mitigation algorithm, the pro-
cess can be computationally expensive. If we know that the same parameters,
i.e. the same chromosome will produce the same classifier, we can check whether
an identical chromosome has been evaluated before and simply reuse those scores
instead of having to rerun the evaluation function unnecessarily. We know this
example will occur because of the elitism of NSGA-II where children and parents
are evaluated together.

We set the maximum number of iterations to 10 000, after some experimentation.
Because we know that research suggest that the COMPAS data set is neither lin-
early nor non-linearly separable (as discussed in section 5.1), we know that there
is a possibility that the SVM classifier will try to fit the training set indefinitely
(or at least for a very long time), especially for some values of C and �. We wish
to ensure that our experiments finish and don’t run for an unnecessarily long
time. Therefore, the maximum number of iterations is set. Setting this number
to 10 000, seems to provide su�cient results, as our initial results seem to align
with those previously found for the data set.

NSGA-II implementation

Due to previous experience implementing NSGA-II and the simplicity of the
chromosome representation, a decision was made to implement the NSGA-II el-
ements of our code ourselves (with some help from online sources [Allen, 2019]).
This ensured we were able to get our experiments up and running fairly quickly,
and therefore more time could be a↵orded to integrating sklearn’s SVM classifier
with mitigation methods from aif360 which proved more di�cult than expected.
Given more time a natural next step would be to implement the NSGA-II ele-
ments using modules such as DEAP. This would make the code more scalable long
term.

Chapter 5

Experiments and Results

In chapter 4 we described the architecture used for the three experiments we run
in order to answer RQs 2 and 3 described in section 1.1. In this chapter we will be
answering these RQs by presenting our experiment plan, covering the experimen-
tal setup, and analyzing and discussing the results from the experiments. First,
we will describe the dataset we will be using in our experiments, The COMPAS
data set. Secondly, we will present the experiment plan, including the setup and
parameters used for the experiments, as well as a detailed description of each of
our three experiments. Finally, we will present, analyze and discuss the results
from each experiment consecutively, starting with experiment 1 and ending with
experiment 3.

5.1 The COMPAS Data Set

In this thesis we will be using the ProPublica COMPAS data set [Larson et al.,
2016]. This data set was made famous after ProPublica published an article
describing how a US predictive recidivism system (called COMPAS) was biased
against black people [Angwin et al., 2016]. To predict recidivism means to predict
whether a person will commit crime again after being released from prison or on
bail. These predictions, often called risk assessment scores, are increasingly used
in courtrooms to inform decisions about who to set free at every stage of the
criminal justice system.

The COMPAS data set consist of records of criminal defendants from Boward
County, Florida, over a two-year period, where the defendants either recidivated
or didn’t. The COMPAS system generates several scores including ’Risk of Re-

Experiments and Results 52

cidivism’ and ’Risk of Violent Recidivism’. In this thesis we will be looking at the
’Risk of Recidivism’. The task will be to predict whether a criminal defendant
will recidivate (negative class) or not (positive class), based on features such as
current charge degree and prior o↵enses. The sensitive attribute for this type of
task can be either or both; gender (Male or Female) and race (Black, Hispanic,
White). In this thesis we will be viewing only the race attribute as the sensitive
attribute, where ’White’ (i.e. ’Caucasian’) is the privileged group, and the other
races (i.e. ’Not Caucasian’) are combined into the unprivileged group.

5.1.1 Data Set Preprocessing

The aif360 package provides a pre-processed version of the COMPAS data set.
The aif360 package performs the same pre-processing as the original analysis
by ProPublica [Larson et al., 2016]. This includes removing rows with missing
data and selecting only the most relevant features. Additionally, aif360 uses
one-hot-encoding to encode the categorical features. Before one-hot-encoding
the COMPAS data set provided by aif360 includes 10 features in addition to
the label; sex, age, age category, race, juvenile felony count, juvenile
misdemeanor count, juvenile other count, priors count, charge degree,
and charge
description. These are the same features used by Dressel and Farid [2018]
for their human assessment. We will come back to Dressel and Farid’s paper
when we analyze the data set. Because aif360’s one-hot-encoding of the charge
description feature increases the feature set substantially (from 1 feature before
encoding to 389 features), we have chosen to drop the charge description fea-
ture, as we find it provides an unnecessary complexity to the data set. Ideally one
would circumvent aif360’s automatic one-hot-encoding for this feature. How-
ever, we found that removing this feature entirely did not substantially impact
our results, if at all. This leaves us with a data set containing 12 features, after
the age category and charge degree features have been one-hot-encoded. After
removing instances (data points) with missing data the data set contains 6172
data points before being split.

5.1.2 Data set Analysis

We split the data set into an 80/20 split for the training set and test set. After
some analyzing of the data set, we found that simply splitting the data set at the
data point separating the first 80% and the last 20% maintains the distribution of
both the label and the protected attribute, race. Therefore, no random shu✏ing
of the data points was needed. Details about the split can be seen in table 5.1.

As can be seen in fig. 5.1 the label distribution of the data set is maintained in

Experiments and Results 53

Data set name # of features # of data points % of total data set

Training Set 12 4937 80%
Test Set 12 1235 20%
Total Data set 12 6172 100%

Table 5.1: The table shows the two data set splits with their respective
amounts of data points and percentage of the total amount of data.

(a) Training set (b) Test set

Figure 5.1: Label distributions in the training and test sets. ’No recid.’ is the
favorable label, while ’Did recid’ is the unfavorable label.

the test set, with both the training and a test set containing circa 54% ’No recid.’
labels, and 46% ’Did recid’ labels. However, we can also see that there is a slightly
uneven distribution between ’No recid.’ (positive label) and ’Did recid’ (negative
label), with the former label having more cases than the latter. Because ’race’ is
our sensitive attribute, we also analyzed the distribution of this attribute in the
data set. Again, we can see that the ’race’ distribution is equal in the training
in test set. This time however, there is substantially more cases of one of the
values. ’Not Caucasian’, the unprivileged group, is represented at roughly twice
the amount of ’Caucasian’, the privileged groups, with 65-68% ’Not Caucasian’
to 32-35% ’Caucasian’ in both data sets. Figure 5.2 shows the distribution.

We also investigated the label distribution within each group. Figure 5.3 and
5.4 shows the label distribution for the privileged group and unprivileged group
respectively. Once again, we find that the distribution is equal across the training
and test sets. We can therefore conclude that the data set split is good. Addi-
tionally, we can see that for the unprivileged group the distribution of ’No recid.’
and ’Did recid.’ is nearly equal at around 50%. However, for the privileged group

Experiments and Results 54

(a) Training set (b) Test set

Figure 5.2: Race distribution in the training and test sets. ’Caucasian’ the the
privileged group, while ’Not Caucasian’ is the unprivileged group.

the cases are labeled as ’No recid.’ almost twice as much as ’Did recid.’ with
60-64% ’No recid.’ to 36-40% ’Did recid’ in both data sets. Given these distri-
butions it is perhaps not surprising that ProPublica journalists found the system
to be biased against black people.

(a) Training set (b) Test set

Figure 5.3: Label distribution for the privileged group (Caucasians) in the
training and test sets. ’No recid.’ is the favorable label, while ’Did recid’ is the

unfavorable label.

The COMPAS data set has received attention in some other research as well as
the ProPublica article [Angwin et al., 2016]. Corbett-Davies et al. [2017] and
Speicher et al. [2018] use the COMPAS data set in their analysis of fairness
vs. accuracy tradeo↵s. For more on these papers see section 3.1. Dressel and

Experiments and Results 55

(a) Training set (b) Test set

Figure 5.4: Label distribution for the unprivileged group (Not Caucasians) in the
training and test sets. ’No recid.’ is the favorable label, while ’Did recid’ is the

unfavorable label.

Farid [2018] found that the COMPAS system is no more accurate or fair than
predictions made by people with little or no criminal justice experience. They
find that a simple linear predictor and non-linear predictors using substantially
less features then COMPAS yields similar prediction results both in regard to
accuracy (roughly 66%) and fairness. This led them to conclude that the data is
not separable, neither linearly nor non-linearly. Given the complexities of crime
and the real world in general, this finding is perhaps not surprising. We can
therefore expect to find similar accuracy scores in our experiments, with the
highest accuracies reaching values around 66%.

5.2 Experiments

In this section we will describe the three experiments we will be performing in
this thesis. First, we will cover the experimental setup, including which metrics
we will use, which mitigation algorithms are added, and other parameters for the
experiments. Then we will describe each experiment.

5.2.1 Experimental Setup

Dataset and Protected Attribute

Haas [2019] uses the German Credit Data Set [Dua and Gra↵, 2017] to test
their framework. We found, however, that for our purposes the German Credit
Data Set had too few instances (only 1000), and the label distribution was very

Experiments and Results 56

uneven. Instead we decided to use the COMPAS Data Set, with 6172 instances
and a more even distribution of labels. For a more detailed analysis as well as a
description of the pre-processing performed on the dataset, see section 5.1. The
protected attribute we will use is the ’race’ attribute. The ’race’ attribute is split
into two groups; the privileged group ’Caucasian’, and the unprivileged group
’Not Caucasian’.

Metrics

Similarly to Haas [2019] we decided to run two scenarios in regards to the met-
rics. One with a group fairness metric and the other with an individual fairness
metric. We decided to use the same two metrics as Haas, as these metrics are
widely used and popular metrics. The group fairness metric is Statistical Parity
Di↵erence, eq. (2.1), and the individual fairness metric is the Theil Index metric,
eq. (2.6). For the accuracy metric we had do deviate from Haas. Because we will
be investigating the use of classification thresholds in our final two experiments,
we cannot use metrics like AUC, as these use prediction probabilities to calcu-
late the score. Instead we use a simple binary accuracy metric which calculates
the percentage of correct classifications. The accuracy is calculated using the
following equation;

Accuracy =
TP + TN

P +N
(5.1)

where TP and TN are true positives and true negatives respectively, and P and
N are the number of positives and negatives in the dataset (which means adding
them equal the amount of data points in the dataset). This accuracy metric will
be used to compare against both fairness metrics, which means we will have two
scenarios to run for each experiment:

Scenario 1: Statistical Parity [eq. (2.1)] vs. Accuracy [eq. (5.1)]

Scenario 2: Theil Index [eq. (2.6)] vs. Accuracy [eq. (5.1)].

Algorithms

To investigate the e↵ect of di↵erent mitigation methods our experiments will
consider four approaches/algorithms for both scenarios:

1. The baseline: An SVM classifier with no added mitigation methods.

2. SVM + Reweighing: The Reweighing algorithm is performed on the train-
ing data before it is used to train an SVM classifier.

Experiments and Results 57

3. SVM + Disparate Impact Remover: The Disparate Impact Remover algo-
rithm is performed on the training data before it is used to train an SVM
classifier.

4. SVM + Optimized Pre-Processing: Optimized Pre-Processing is used on
the dataset before it is used to train and test and SVM classifier.

For each of these four algorithms NSGA-II is used to optimize the feature se-
lection and SVM parameters. Descriptions of each mitigation method can be
found in section 2.1.3. All three mitigation methods used are pre-processing
methods performed before training the classifier. A decision was made to only
use pre-processing methods because we know that they will not distort the e↵ect
of classification thresholds. This is because the pre-processing methods are per-
formed before the SVM classifier is trained and the classifier outputs predictions
that are labeled using the classification thresholds. Using in-processing and post-
processing methods would require that all methods be able to output prediction
probabilities rather than direct predictions of the label. This was not possible
using the aif360 module, where all available methods output predicted labels
directly without the ability to specify classification thresholds.

Dataset name # of features # of data points % of total dataset

Training Set 10 4222 80%
Test Set 10 1056 20%
Total Dataset 10 5278 100%

Table 5.2: The table shows the two dataset splits of the Optimized
Pre-Processing version of the COMPAS dataset with their respective
amounts of data points and percentage of the total amount of data.

A note about the Optimized Pre-Processing mitigation method: While the two
other mitigation algorithms are performed on the COMPAS dataset described
in section 5.1, this method requires importing a pre-processed COMPAS dataset
from aif360, processed according to the Optimized Pre-Processing method. In
the paper presenting the Optimized Pre-Processing method [Calmon et al., 2017]
one of the datasets they perform their method on is in fact the COMPAS dataset.
Details about the resulting version of the COMPAS dataset as well as the train-
ing/test split can be seen in table 5.2.

NSGA-II parameters

In order to run NSGA-II four parameters need to be set: Number of generations
to run; The size of the chromosome population; The rate of mutation; and the
crossover probability. We will be using the same parameters as Haas [2019].

Experiments and Results 58

Parameters Value

Number of generations 100
Population size 50
Mutation rate 0.05
Crossover probability 0.7

Table 5.3: The NSGA-II parameters for our experiments

We found that these parameters work well for our exploration purposes, but
given a real-world problem increasing both the population size and number of
generations would perhaps be beneficial. The length of the chromosome (at least
one with bits such as ours) dictates the amount of possible variations, with 2n

variations where n is the length of the chromosome. The longer the chromosome,
the larger the population size and number of generations should be. Although
with long chromosomes one would never be able to near the amount of variations,
the nature of evolutionary algorithms is such that a su�cient solution could still
be found because of the targeted evolution that is involved.

Chromosome length: For each experiment the chromosome is represented as
described in sections 4.3.1 and 4.4.1 respectively. For the first experiment we will
be using a chromosome length of 42, with 15 bits each for the C and � values,
and 12 bits to represent the 12 features of our COMPAS dataset (this will be 10
bits for the SVM + Optimized Pre-Processing algorithm, giving a chromosome

length of 40). The C value will be decoded into a range of [
1

216
, 216], while the �

value will be decoded into a range of [
1

210
, 23].

For the second and third experiments the length of each chromosome section
representing a classification threshold will be 10 bits. This means that for ex-
periment 2 with only one threshold the length will be 10, while for experiment 3
with two thresholds the length will be 20. The thresholds will be decoded into a
range of [0, 1].

Summary

Table table 5.4 summaries the parameter and experimental setup for our experi-
ments.

Experiments and Results 59

Parameter Values Description

Dataset The COMPAS Data Set See section 5.1
Protected
Attribute

Race Privileged: Caucasian
Unprivileged: Not Caucasian

Algorithms SVM, SVMReweighing,
SVMDisparateImpactRemover,
SVMOptimPreProcessing

The di↵erent algorithms. See
above for further descriptions.

Metrics Performance metric:
Accuracy

Fairness metrics:
SP Diff or Theil

The metrics used in the two
case study scenarios. Scenario
1 uses Accuracy [eq. (5.1)]
and Statistical Parity Di↵er-
ence [eq. (2.1)], Scenario 2 Ac-
curacy [eq. (5.1)] and the Theil
Index [eq. (2.6)].

NSGA-II
Parameters

Generations: 100
Mutation rate: 0.05
Cross-over probability: 0.7
Population Size: 50

The parameters used for
NSGA-II

Chromosome
length

Experiment 1: 42(40) bits
Experiment 2: 10 bits
Experiment 3: 20 bits

The length of the chromosome
for each experiment. See above
for further descriptions.

Table 5.4: Summary of parameters for our experiments.

5.2.2 Experiment 1 - Optimizing SVM Parameters and Fea-
ture Selection

In experiment 1 the feature selection and SVM hyperparameters will be optimized
for each of our algorithms described above in section 5.2.1. First, we will run both
tradeo↵ scenarios with the four algorithms, five times each. We will compare the
five results for each algorithm with each other to see if the tradeo↵ varies between
each run, and to test whether the NSGA-II parameters are su�cient. The ’best’
(chosen randomly if they are fairly equal) Pareto front for each algorithm will
then be presented and compared to each other. These fronts will then be analyzed
further.

From the resulting Pareto Frontiers, we will select the most ’accurate’ and the
most ’fair’ classifiers for each of the algorithms. These classifier configurations
will then be used in experiment 2 and 3.

Experiments and Results 60

5.2.3 Experiment 2 - Optimizing a Classification Threshold

In experiment 2 we will be optimizing a single classification threshold. Previ-
ous research, discussed in section 3.1, suggest that using a single classification
threshold is optimal for accuracy, at the cost of fairness. For more on this see
section 3.1. We will be considering this statement by investigating whether op-
timizing a single classification threshold provides similar or dissimilar tradeo↵s
to the ones seen in experiment 1. For both tradeo↵ scenarios we will be running
classifiers for each algorithm optimized for accuracy and fairness respectively (i.e.
the resulting classifiers from experiment 1), to study whether the same tradeo↵
can be reached given such di↵ering starting points. Another interesting question
is whether an already trained classifier can be ’course corrected’ using classifica-
tion thresholds and provide the same results as a classifier trained to optimize
either fairness or accuracy.

5.2.4 Experiment 3 - Optimizing Group Specific Thresh-
olds

In our final experiment we will be optimizing group specific thresholds. Previous
research, discussed in section 3.1, suggest that using a group specific classifica-
tion threshold is optimal for fairness (or at least group fairness), at the cost of
accuracy. For more on this see section 3.1. In our case group specific thresholds
means two thresholds, one for the privileged group, and one for the unprivileged
group. Similarly to experiment 2 we will be running classifiers for each algorithm
optimized for accuracy and fairness respectively. We will explore whether using
group specific thresholds will give a di↵erent tradeo↵ as opposed to using a single
threshold.

5.3 Results and Analysis

In section 5.2 we described our experimental setup and outlined the purpose and
details of the three experiments we will run in order to answer RQs 2 and 3 from
section 1.1. In this section we will be presenting, analyzing and discussing the
results from these experiments. The section will cover each experiment consecu-
tively, starting with experiment 1 and ending with experiment 3.

The results are presented using graphs showing the Pareto frontiers, in addition
to tables displaying various interesting values. While the optimal score for both
the Theil Index and statistical parity di↵erence is zero, all graphs displaying
frontiers displays the score as |1 - fairness metric|, where a score of 1 on the
y-axis indicated ’perfect’ fairness according to the used metric. On the x-axis
the accuracy is shown, with a score of 1 indicating ’perfect’ accuracy, i.e. no

Experiments and Results 61

errors. Because the goal is to maximize both these values the frontiers should
look similar to the example frontier shown in fig. 2.3. Each point on the graphs
represents one chromosome/solution that generated those exact fairness and ac-
curacy scores. The points therefore represent either the hyperparameter and
feature subset combinations used for SVM in experiment 1 or the classification
thresholds in experiments 2 and 3. Tables will be used to present the values for
these combinations for some relevant solutions. The Pareto frontiers represent
the tradeo↵ found by an algorithm. A good tradeo↵ means that an increase or
decrease in one value doesn’t have a large cost on the other objective. If there
exist no cost to accuracy when introducing fairness, all frontiers should contain
only a single point on the graph with a high fairness score and a high accuracy
score. Otherwise, the frontiers should contain several points, were some are more
fair then others, but therefore has a lower accuracy. The smaller the cost to each
value is at the expense of increasing the other, the better the tradeo↵.

5.3.1 Experiment 1 - Optimizing SVM Parameters and Fea-
ture Selection

In experiment 1 the goal is to optimize feature selection and hyperparameters for
an SVM classifier with regards to a fairness metric and an accuracy metric. In
addition to the baseline SVM classifier, three di↵erent pre-processing mitigation
methods are used, resulting in four di↵erent algorithms; The baseline SVM, and
three SVM + mitigation method algorithms. For further descriptions of the four
algorithms, see section 5.2.1. A description of the architecture used to perform the
experiment can be found in section 4.3. The experiment is run for two di↵erent
scenarios depending on the fairness metrics we wish to optimize for. In scenario 1
a group fairness metric in addition to the accuracy metric is optimized; Statistical
Parity [eq. (2.1)] vs. Accuracy, [eq. (5.1)]. In scenario 2 an individual fairness
metric is optimized in addition to the accuracy metric; Theil Index [eq. (2.6)] vs.
Accuracy [eq. (5.1)].

In the first step of experiment 1, all four algorithms were run five times for each
scenario. The results from scenario 1 can be seen in fig. 5.5, while the results from
scenario 2 can be seen in fig. 5.6. The goal of this first step is to analyze whether
the NSGA-II parameters we selected (see table 5.3) su�ciently provides the MOO
algorithm with opportunity to search the solution space. Additionally, we will
select the ’best’ front from each algorithm for further analysis and comparison in
step 2 of the experiment. Ideally all the frontiers for a specific algorithm should
be fairly identical, and at least display no great deviance from each other. This
means that it should be di�cult to di↵erentiate the frontiers from each other, and
that they should all have reached roughly the same values for both fairness and
accuracy. In fig. 5.5, the frontiers in figures (a) and (d), representing the SVM

Experiments and Results 62

(a) SVM (b) SVM + Reweighing

(c) SVM + Disparate Impact Remover (d) SVM + Optimized Pre-Processing

Figure 5.5: Experiment 1 - Results from five runs of all algorithms for
scenario 1: Statistical Parity Di↵erence vs. Accuracy

and SVM + Optimized Pre-Processing algorithms respectively, all follow roughly
along the same general arch. Meanwhile, figure (c), representing the SVM +
Disparate Impact Remover algorithm, shows a bit more divergence between the
frontiers. However, figure (b), representing the SVM + Reweighing algorithm,
displays the largest amounts of divergence between fronts. Additionally, we can
see that this algorithm generates much fewer points on the frontiers, i.e. the
frontier is very sparse as opposed to the other algorithms with many more points
on the frontiers.

There are two options for reasons as to why SVM + Reweighing produces such
varying and sparse frontiers. One reason might be that the NSGA-II parameters
need to be adjusted, in particularly increasing the number of generations and the
population size. Doing so would broaden the spectrum of the search and might
therefore find more possible solutions. Because we know that the Reweighing

Experiments and Results 63

method generates instance weights for the training set (see section 2.1.3), this
additional complexity during training might need additional search space to op-
timize. The second reason might be that the Reweighing method and the statis-
tical parity metric simply combines to create such sparse variance, at least when
hyperparameters and features selection is optimized. Exactly what about the
combination that could give such a result is unclear from our immediate analysis
and would require further examination. Likely, the interaction with the weights
generated by the Reweighing method combined with the hyperparameters and
selected features limits the variance of possible predicted labels. This option is
supported by what we can see in fig. 5.6, which is that the same algorithm but
run with the Theil Index fairness metric instead of the statistical parity metric
produces much more uniform and abundant frontiers. In either case, we can see
that at least a few of the frontiers produced by SVM + Reweighing in scenario
1, score within the general values that the other algorithms found.

In order to further compare each algorithm with each other we chose the ’best’
frontier from each algorithm for comparison. For SVM, SVM + Disparate Impact
Remover, and SVM + Optimized Pre-Processing this choice is fairly arbitrary as
the frontiers are roughly equal. For SVM the blue frontier was chosen. For SVM
+ Disparate Impact Remover the orange frontier was chosen. And for SVM +
Optimized Pre-Processing the red frontier was chosen. For SVM + Reweighing,
the choice is not as arbitrary. The orange frontier was chosen because even though
it doesn’t strictly dominate neither blue or green, only one point on each blue
and green stops orange from strictly dominating them. The chosen frontiers for
scenario 1 can be seen in fig. 5.7. Before we analyze this figure, however, we will
look at the results from step 1 for scenario 2.

Figure 5.6 shows the results from running each algorithm five times on scenario
2: Theil Index vs. Accuracy. For this scenario we can see that no algorithms
stand out like SVM + Reweighing did for scenario 1. All algorithms produced
fairly equal frontiers, however, in this case the baseline SVM algorithm is the one
with the most divergence. In fact, the purple frontier is nearly strictly dominant
on the lower fairness scores. This means that purple frontier appears to be the
best candidate to represent the SVM algorithm during further comparison and
is therefore the one we selected. For SVM + Reweighing the purple frontier was
chosen. For SVM + Disparate Impact Remover the purple frontier was again
chosen. And for SVM + Optimized Pre-Processing the red frontier was chosen.

Based on the results from step 1 for both scenarios we can conclude that the
chosen NSGA-II parameters (see table 5.3) su�ciently provided results for further
analysis. However, the SVM + Reweighing algorithm produced an overly sparse
set of frontiers in Scenario 1. Therefore, if our method were to be used for actual
decision making, more investigation would be needed to pinpoint the proper

Experiments and Results 64

(a) SVM (b) SVM + Reweighing

(c) SVM + Disparate Impact Remover (d) SVM + Optimized Pre-Processing

Figure 5.6: Experiment 1 - Results from five runs of all algorithms for
scenario 2: Theil Index vs. Accuracy

parameters. However, for our purposes they are su�cient. As we shall discuss
later, the fairness and accuracy scores produced are within the expected ranges.
However, even though EAs in general can rarely be expected to produce identical
frontiers each and every run, especially in our case where the genetic operators
are random, increasing the number of generations and the population size could
be beneficial.

With the chosen frontiers from step 1, we will now compare algorithms with each
other. Additionally, we will further analyze each frontier and discuss the type
of tradeo↵s that can be observed. This will help answer RQ2 from section 1.1.
Figure 5.7 shows the four chosen frontiers from scenario 1, and fig. 5.8 shows the
four chosen frontiers from scenario 2.

It can be immediately concluded from both figures 5.7 and 5.8 that our architec-

Experiments and Results 65

Figure 5.7: Experiment 1 - The ’best’ fronts from all algorithms for
scenario 1: Statistical Parity Di↵erence vs. Accuracy

ture, as described in section 4.3, works. Both figures show the resulting frontiers
that can be used to make decisions on what type of algorithm and metrics to use
when building fair automated decision-making systems. This result adds valid-
ity to the framework originally proposed by Haas [2019] to investigate tradeo↵s
between fairness and accuracy. In addition, it can immediately be seen that a
tradeo↵ exists. In fig. 5.7 it can be seen that while all the algorithms are able to
reach accuracy scores at around 0.68, the fairness scores reach just around 0.80
in that case. Meanwhile, the algorithms are all able to reach a ’perfect’ fairness
score of 1, but at the cost of the accuracy score which is then lowered to around
0.55. In fig. 5.8 similar results can be seen. All algorithms are able to reach a
fairness score of just over 0.94 for the Theil Index, but at the cost of the accuracy
score which is lowered from around 0.68 to 0.55 again.

While the results from Haas [2019] (see fig. 3.2) are not directly comparable to
ours, as they use a di↵erent dataset as well as a di↵erent set of mitigation meth-
ods, the general overarching conclusion remains the same: A higher fairness score

Experiments and Results 66

Figure 5.8: Experiment 1 - The ’best’ fronts from all algorithms for
scenario 2: Theil Index vs. Accuracy

comes at the cost of accuracy. These results are supported by other previous work
in this field as well. Zliobaite [2015], Menon and Williamson [2018] and Corbett-
Davies et al. [2017] all conclude that fairness comes at the cost of accuracy. Wick
et al. [2019] and Speicher et al. [2018] also reach similar conclusions, but with a
caveat. They both suggest that in theory the notion of fairness (especially indi-
vidual fairness which Speicher et al. advocate for) should in fact be in perfect
harmony with accuracy and not come at the cost of one another. However, they
both acknowledge that in most practical cases this proposition doesn’t hold. Our
results support this fact. Wick et al. take their reasoning of perfect harmony one
step further to consider the pre-existing bias in the dataset. They submit that if
the accuracy was measured against unbiased data their proposition would hold,
but because such unbiased data is a rarity, this is hard to prove. The COMPAS
data set used in our experiment is already known to be biased, see section 5.1,
therefore our experiment falls in this same pitfall. Attempting to circumventing
this pitfall is an interesting direction for further work.

Experiments and Results 67

When directly comparing the individual algorithms in figures 5.7 and 5.8, an in-
teresting result is that for both scenarios the SVM + Optimized Pre-Processing
algorithm is nearly strictly dominated by all other algorithms, except for a sin-
gle point from the SVM + Disparate Impact Remover algorithm in scenario 1.
Where these results to be used to choose the ’optimal’ solution based on the
desired tradeo↵, one could therefore easily eliminate the SVM + Optimized Pre-
Processing algorithm from the competition. The three other algorithms are less
easily distinguishable. In fig. 5.7 the SVM + Reweighing algorithm displays less
of a tradeo↵ in the higher fairness scores, but is not able to reach as high accu-
racy scores as SVM and SVM + Disparate Impact Remover. In fig. 5.8 this is
nearly reversed, with SVM + Reweighing reaching the highest accuracy score,
but there is less of a divergence from the other two algorithms in this scenario.
However, the purpose of our thesis is not to choose an ’optimal’ solution and we
will therefore conclude our discussion around this decision. Later, however, we
will use our results to select the most fair and the most accurate solution for each
algorithm in each scenario. These will be used in experiments 2 and 3.

If we look at the actual scores reached in each scenario some interesting results
can be seen. The accuracy scores for the most accurate solutions range from 67%
to 70% which is low considering the COMPAS system is used to make decisions
that a↵ect people’s lives. Dressel and Farid [2018] reach accuracies of at most
65% to 67% in their experiments, using both linear and non-linear classifiers.
This led them to conclude that the COMPAS data set is not separable, neither
linearly nor non-linearly. Our accuracies are slightly higher, but this can likely be
written of to the fact our dataset split is not the same as the one used by Dressel
and Farid. In fact, they test their classifiers over 100 random 80/20 splits, which
is likely what leads to the slightly lower accuracy. Even though we only use a
non-linear classifier, SVM with the radial bias function (RBF) kernel, our similar
accuracy scores support the conclusion that the COMPAS data set is at least not
non-linearly separable.

In addition to the low maximum accuracy scores, the accuracy scores are reduced
to around 55% when the fairness score is at its maximum. This supports a
statement made by Zliobaite [2015] pointing out that in cases where either no one
or everyone is accepted there is no discrimination because everyone receives the
same outcome, i.e. ’perfect’ fairness. However, it also means that the accuracy
is very low. If a dataset contains exactly 50% of each binary label, this would
mean that the accuracy would be exactly 50%, either because the negative labels
where falsely accepted, or the positive labels were falsely rejected.

Table 5.5 shows the number of data points and percentage of both labels in the
test set. The table shows that the percentage of positive labels in the test set
is 54%. The accuracy score if all data points were accepted would therefore

Experiments and Results 68

Label # of data points % of test set

Positive 671 54%
Negative 564 46%
All 1235 100%

Table 5.5: The table shows the number of data points for the positive and
negative label in the test set as well as the percentage.

be 54%, which is very close to our average of 55% and therefore supports the
statement made by Zliobaite [2015]. If all were rejected the score would be 46%.
Because both situations would likely give a fairness score of 1, the case where
all are accepted will therefore dominate the case where all are rejected. We can
therefore hypothesize that for all our algorithms the most fair solution accepts
nearly every data point. An interesting e↵ect of this conclusion is that because
every data point is accepted, the classifier must be very bad at generalizing from
the training set. We know, from experience in the field of machine learning,
that making a bad classifier is much easier than making a good one, as there are
only a few hyperparameter values and feature subsets that provide good results.
Inversely there is therefore a large set of hyperparameters and feature subsets
outside the range of the good ones, that provide bad results. Our results support
this fact. Figures 5.7 and 5.8 doesn’t show this, but if one investigates our saved
result files1 containing all the chromosomes that make up each frontier, it can
be seen that there exist several di↵erent chromosomes that reached the same
maximum fairness score and low accuracy score. These data points are hidden
behind each other in our figures. Conversely, there exists just a few, often just
one, chromosome that reached the maximum accuracy score and a low fairness
score. Later, as we select our chromosomes, i.e. classifiers that will be used in
experiments 2 and 3, we will take a look at some of the hyperparameter values
and feature subsets they contain.

In section 3.1 we covered how Menon and Williamson [2018] show that in fairness-
aware learning problems the tradeo↵ between fairness and accuracy depends on
the ’similarities’ between the label and sensitive feature. They claim that the
more disalignment, i.e. independence, there is between the label and the sensi-
tive attribute the less of an e↵ect introducing a fairness constraint will have on
the accuracy. In section 5.1 we covered the label distribution with regard to the
sensitive attribute, race, in the COMPAS data set. Figures 5.3 and 5.4 displays
the label distribution for the privileged group, Caucasians, and the unprivileged
group, Not Caucasians, respectively. The figures show that a data point is more

1https://github.com/pernillej/Cost-of-Fairness

https://github.com/pernillej/Cost-of-Fairness

Experiments and Results 69

likely to belong to the positive label, no recidivism, if it belongs to the privileged
group then if it belongs to the unprivileged group. This shows that the sensitive
attribute, race, is not perfectly independent from the label, indicating that if
Menon and Williamson’s claim holds, this fact aids in explaining the existence of
the tradeo↵ that can be seen in our results. Menon and Williamson also provide
a way to theoretically quantify the tradeo↵. However, their method requires a
predefined degree of fairness in order to calculate. Our thesis is not centered
around specifying such a degree of fairness. Nevertheless, making these calcula-
tions after choosing a specific solution from our results could be an interesting
direction for future work.

In conclusion, the results from experiment 1 support the state-of-the-art research
in the field of fairness vs. accuracy tradeo↵s. Additionally, our results help verify
the Haas [2019] framework by which our architecture was inspired. Finally, the re-
sults provide interesting paths for further work investigating further claims made
by several of the papers. In our next two experiments we will be investigating
another claim made by state-of-the-art research; the importance of classification
thresholds in regard to the tradeo↵. In addition, we shall see whether we can
observe similar tradeo↵s in our next experiments given predefined classifiers and
optimizing classification thresholds. In order to perform these experiments these
predefined classifiers have to be chosen from our results in this first experiment.
For each scenario, the most fair, and the most accurate classifiers were chosen for
each algorithm. For example, for the baseline SVM algorithm from scenario 1,
the most fair classifier is the one with a fairness score of 1, and the most accurate
classifier is the one with an accuracy score of close to 0.7. The respective hyper-
parameters and feature subsets representing all these classifiers can be seen in
tables A.1 and A.2 in appendix A. Earlier in our analysis, we discussed how there
were many ’fair’ classifiers discovered, but just a few that were the most accurate.
Because there were many such ’fair’ classifiers, one was chosen at random. The
values of the hyperparameters, C and �, as well as the selected feature subset is
therefore not that interesting to discuss, as they are simply put, bad. However,
the hyperparameter values and feature subsets are more interesting for the most
accurate classifiers.

Table 5.6 shows the values of C and � and the selected features for the most
accurate classifiers, representing each algorithm for each scenario. Although op-
timizing these values and features in regard to a single accuracy objective is the
best and simplest way to find optimal values with regard to accuracy, our values
and features gives a good indication of what these optimal values and features
might be. As can be seen in table 5.6 no set of hyperparameters and features are
equal to one another. When comparing algorithms with each other this fact is not
surprising, as all the mitigation methods pre-process the training data leading to

Experiments and Results 70

Algorithm C � Selected features

Scenario 1: Statistical Parity Di↵erence vs. Accuracy
SVM 19.5 0.02001 age, priors count,

charge degree=misdemeanor

SVMReweighing 403.75 0.01187 race, juvenile other count,
priors count, age cat.25-45,
age cat.>45, age cat.<25,
charge degree=misdemeanor,
charge degree=felony

SVMDIR 0.99658 0.65440 age, juvenile felony count,
juvenile misdemeanor count,
juvenile other count,
priors count,
charge degree=misdemeanor,
charge degree=felony

SVMOptPreProc 0.01566 0.16075 All features
Scenario 2: Theil Index vs. Accuracy

SVM 9.98378e�7 0.00077 age, race,
juvenile felony count,
juvenile other count,
priors count, age cat.>45,
charge degree=misdemeanor

SVMReweighing 2.42233e�4 0.00310 age, juvenile felony count,
juvenile other count,
priors count,
charge degree=felony

SVMDIR 2.44141e�4 0.02075 age, race,
juvenile other count,
priors count,
charge degree=misdemeanor

SVMOptPreProc 6.66081e�6 0.15649 race, age cat.>45,
age cat.<25, priors count=0,
priors count 1-3,
charge degree=felony

Table 5.6: Experiment 1 - Selected SVM hyperparameters and features for the
most accurate classifiers from both scenarios.

each SVM classifier training on di↵erent datasets. Therefore, they require slightly
di↵erent hyperparameters and features to provide the best accuracy. However,

Experiments and Results 71

when comparing the hyperparameters and features for each individual algorithm
across scenarios, we can see that the C values in Scenario 2 are substantially
lower than the ones in Scenario 1. This is surprising, as one would expect the
same algorithm would have the same optimal hyperparameter values and features
across scenarios, as the only di↵erence is the fairness metric. On reason might
just be that the optimal range of hyperparameter values and features is large and
that we coincidentally happened to select classifiers exhibiting this result. More
investigation would be needed to make any conclusions. It might be interesting
to compare our results with results generated from running the method made
by Huang and Wang [2006] optimizing for a single accuracy objective using the
same algorithms. Additionally, several more runs of our experiment would help
investigate whether this is simply a coincidence.

Another interesting aspect of our selected classifiers is the feature subset selected
for each classifier, more specifically in regard to the protected attribute; race. An
open discussion in fair AI research is whether to include the protected attribute in
the model. Initially there was some claims that excluding the protected attribute
ensures that there is no possibility of bias. In fact, Saxena et al. [2019] found
that ordinary people seem to favor such an approach. However, research has
proven that this does not eliminate bias, as several other features in the data sets
may be closely connected to the protected attribute, such as names, addresses,
etc., and thus circumventing the e↵ect of removing the protected attribute by
becoming its proxy. Therefore, many mitigation e↵orts work to not only lessen
the e↵ect of the protected attribute on the predicted label, but also the e↵ect
of potential proxy features. However, there is some that claim that including
the protected attribute in the model would help the model compensate for the
existing bias, and that there may be some cases where the outcome should be
correlated Dwork et al. [2012]. For example, when using group specific classifica-
tion thresholds, as suggested by some literature, the model requires the protected
attribute to identify which group specific threshold to apply. This discussion is
further complicated by the existence of laws that in e↵ect require the protected
attribute to be removed. Many of our selected ’most fair’ classifiers, as seen in
tables A.1 and A.2 in appendix A, include the race attribute, in both scenar-
ios. This suggests that including the protected attribute aids fairness, at least
for some approaches. However, because there exist many ’most fair’ classifiers
in our results, it is possible that some of these don’t include the race attribute
but is able to reach the same fairness score. Further investigation is required to
determine the e↵ect of the race attribute in each approach.

In our next two experiments we will be using the classifiers from table 5.6 in
addition to the selected ’fair’ classifiers shown in tables A.1 and A.2 in appendix
A. These classifiers will be used to investigate the importance of classification

Experiments and Results 72

thresholds in regard to the tradeo↵. In addition, we shall see whether we can
observe similar tradeo↵s in our next experiments given predefined classifiers and
optimizing classification thresholds.

5.3.2 Experiment 2 - Optimizing a Classification Threshold

In experiment 2 we optimized a single classification threshold using an update
version of our method from experiment 1. The goal of the experiment is to inves-
tigate whether this approach has a di↵erent e↵ect on the fairness vs. accuracy
tradeo↵ as opposed to the e↵ects seen in experiment 1. A description of the
di↵erences in architecture used to perform the experiment can be found in sec-
tion 4.4. The classification threshold will be used to classify the data points of our
test set based on the predicted probabilities generated by our algorithms. These
algorithms consist of a baseline SVM classifier, as well as three algorithms where
a pre-processing mitigation method is used before the SVM classifier. For fur-
ther descriptions of the four algorithms as well as other experiment parameters,
see section 5.2.1. The experiment is run for two di↵erent scenarios depending
on the fairness metrics we wish to optimize for: Scenario 1; Statistical Parity
[eq. (2.1)] vs. Accuracy, [eq. (5.1)], Scenario 2; Theil Index [eq. (2.6)] vs. Ac-
curacy [eq. (5.1)]. In experiment 1 we optimized hyperparameters and feature
selection for the SVM classifiers in all four algorithms. From these results the
most fair classifier (i.e. the classifier with the highest fairness score) and the most
accurate classifier (i.e. the classifier with the highest accuracy score) were chosen
for each algorithm in both scenarios. A secondary goal for this experiment is
to examine whether it is possible to ’course correct’ an already trained classifier
using the classification threshold, i.e. whether the most fair classifier is still able
to reach high accuracy scores and the most accurate classifier is still able to reach
high fairness scores. The selected classifiers represented by their respective hy-
perparameters and feature subsets can be seen in tables A.1 and A.2 in appendix
A.

First, we ran experiment 2 using the most accurate classifiers for both scenarios.
Figure 5.9 shows the resulting frontiers. In RQ3 from section 1.1, we asked
whether optimizing classification will have a di↵erent e↵ect on the tradeo↵ than
we had in experiment 1. At an immediate glance the frontiers from experiment 1
and the ones in fig. 5.9 appear to have the same overall e↵ect. Both experiments
produce frontiers exhibiting the existence of a tradeo↵ that e↵ectively reduces
the accuracy from around 68% to 55% in order to increase the fairness to its
maximum. However, at a closer look some interesting di↵erences can be seen.

One interesting aspect is the fact that the frontiers in figures 5.9a and 5.9b are
much more similar to each other than figures 5.7 and 5.8 from experiment 1. The

Experiments and Results 73

(a) Scenario 1 (b) Scenario 2

Figure 5.9: Experiment 2 - Results from all four algorithms for both scenarios,
using the predefined ’most accurate’ classifiers selected from experiment 1.

e↵ect of using di↵erent fairness metrics is almost none-distinguishable as opposed
to in experiment 1. This is likely because varying a single classification threshold
provides a much narrower range of values in which each solution may deviate,
as opposed to varying both hyperparameters and feature subsets. Another inter-
esting aspect of these results is that if one compares 5.8 and fig. 5.9b showing
the results from scenario 2 in experiment 1 and this experiment respectively, the
maximum fairness score, the Theil Index score, has increased from 0.94 to 1.
Even more interestingly is that this increase is not at the cost of accuracy. In
fig. 5.8 from experiment 1, the accuracy is around 55% when the fairness score is
at its highest, 0.94. In fig. 5.9b the accuracy score is again around 55% when the
fairness score is at its maximum, but this time the maximum is 1 rather than just
0.94. In fig. 5.9b the accuracy score is around 58% or closer to 60% depending
on the algorithm, when the fairness score is at 0.94, the maximum from experi-
ment 1. For Scenario 1, the di↵erences are not that stark, as the frontiers follow
roughly the same values as in experiment 1. However, the frontiers are clearly
not as sparse (i.e. they contain more points/solutions) as they were in experi-
ment 1, meaning our method from experiment 2 is able to provide an even larger
spectrum of choices when deciding on a final solution. Another interesting result
is that the SVM + Reweighing algorithm strictly dominates the other algorithms
for both scenarios, until the highest accuracy scores are reached. This is a close
reflection on the SVM + Reweighing algorithm in Scenario 1 in experiment 1.
However, the same e↵ect was not seen in Scenario 2 in experiment 1 where SVM
+ Reweighing performed roughly equal to the baseline SVM and SVM + Dis-
parate Impact Remover. Meanwhile, in this experiment the SVM + Reweighing
frontier strictly dominates in the upper fairness scores in this scenario as well.

Experiments and Results 74

This suggests that the Reweighing method is good at improving fairness, but
comes at a larger cost to accuracy than the baseline SVM and SVM + Disparate
Impact Remover.

There are also some similarities across experiments. Again, the SVM + Opti-
mized Pre-Processing algorithm is nearly strictly dominated by all other algo-
rithms and therefore clearly a worse option. Additionally, as discussed, the max-
imum accuracy reached is still just at most close to 70%. This further enforces
the statement from Dressel and Farid [2018], who found the same low accuracy,
that the COMPAS data set isn’t non-linearly separable. Furthermore, several
other discoveries enforcing by the state-of-the-art literature from experiment 1
still hold in this experiment. The cost to accuracy still exists, as most literature
supports. The ’similarities’ between the label and sensitive attribute e↵ecting
the tradeo↵, as proposed by Menon and Williamson [2018] still holds as the same
data set is used. An accuracy of around 55% (just as in experiment 1) when the
fairness is at its maximum leads us to the same conclusion reached in experiment
1, that as Zliobaite [2015] suggest, accepting (or rejecting) all data points gives
a ’perfect’ fairness score, but at a large cost to accuracy.

Algorithm Most Accurate Threshold Most Fair Threshold

Scenario 1
SVM 0.3418 0.0361
SVMReweighing 0.5996 0.2446
SVMDIR 0.4170 0.1333
SVMOptPreProc 0.6133 0.1563

Scenario 2
SVM 0.4561 0.2495
SVMReweighing 0.5293 0.0430
SVMDIR 0.4307 0.1528
SVMOptPreProc 0.6152 0.0007

Table 5.7: Experiment 2 - The most accurate and most fair threshold for both
scenarios, generated from the most accurate classifiers.

Table 5.7 shows the thresholds that resulted in the most fair results (i.e. highest
fairness score) and the most accurate results (i.e. highest accuracy score) when
we used the most accurate predefined classifiers. In experiment 1, all data points
were classified using a threshold of 0.5. In table 5.7 we can see that none of
the most accurate or most fair thresholds maintained the same threshold. The
most accurate thresholds are in a range of 0.5 ± 0.15. While this is a significant
variation from 0.5, the changes are even more significant for the most fair thresh-
olds. The values of the most accurate thresholds still suggest that some data

Experiments and Results 75

points are likely to be classified with the negative label. Meanwhile, the most
fair thresholds are very low, at most roughly 0.25, but some as low as 0.0007 for
SVM + Optimized Pre-Processing in Scenario 2. The lower the threshold, the
more data points are accepted, i.e. given the positive label. This supports our
hypothesis that nearly all data points are accepted when reaching the highest
fairness scores. Because of this fact, our results contain many chromosomes that
reached the highest fairness score. The most fair thresholds shown in table 5.7
are simply a threshold selected from this set of chromosomes. However, a quick
investigation of the other chromosomes shows similarly low thresholds.

In conclusion, the method from experiment 2 optimizing a single classification
threshold on accuracy optimized predefined classifiers does show some di↵erent
e↵ects to the tradeo↵ as opposed to optimizing classifier hyperparameters and
feature selection. A downside of this method is that a predefined and trained
classifier is required. However, this can also be viewed as an upside as it allows
AI systems already in use to be tested and adapted using this method. A lot of
discussion in the field of fair AI has centered around the statement that enforcing
fairness from the start is better than fixing for fairness after the fact. The method
from experiment 1, and as suggested by Haas [2019], enforces fairness from the
start as the classifiers is ’trained’ with fairness in mind. However, our method
from this experiment uses an already trained classifier and can be compared to
fixing the system after the fact. Although, it is not nearly that black and white.
Choosing fairness metrics is still an important discussion that should be taken
from the start. Additionally, all our algorithms, except for the baseline SVM
algorithm, had mitigation methods introduced from the start. However, our
results from this experiment using accuracy optimized classifiers suggest that our
method and architecture for experiment 2 is not worse at introducing fairness, and
in fact better in some cases. For Scenario 1, with the statistical parity di↵erence
fairness metric, no large di↵erences were seen, only that the frontiers were less
sparse providing more options. For Scenario 2 with the Theil Index fairness
metric, the method provided a di↵erent tradeo↵ than in experiment 1, enabling
the classifiers to reach fairness scores of 1 at the same cost to accuracy that
experiment 1 required to reach a fairness score of 0.94. This experiment clearly
provided better options for final solutions than experiment 1. The validity of
this result would still need further experimentation and verification in order to
be sure this method and architecture is in fact better.

As discussed, the most accurate classifiers where able to reach similar or poten-
tially better tradeo↵s by optimizing a classification threshold than the ones seen
in experiment 1. However, can the same be said for the most fair classifiers? Fig-
ure fig. 5.10 shows the result of optimizing classification threshold for the most
fair classifiers for both scenarios.

Experiments and Results 76

(a) Scenario 1 (b) Scenario 2

Figure 5.10: Experiment 2 - Results from all four algorithms for both scenarios,
using the predefined ’most fair’ classifiers selected from experiment 1.

A big caveat for these results is that, as discussed in section 5.2.2, there were
many most fair classifiers in our results, and one was chosen at random for each
algorithm. Based on claims by Zliobaite [2015] we hypothesized, in our discussion
of the results from experiment 1, that these most fair classifiers nearly accepted all
data points. Therefore, we know that nearly all predicted probabilities were over
0.5, which was the classification threshold used in experiment 1. To determine
how much these values varies above the 0.5 threshold would require further study
of all those classifiers. Likely some varied more than others, but because we chose
the most fair classifier randomly, we cannot be sure if other classifiers would have
provided other results then the ones seen in fig. 5.10. Further investigation of this
would be an interesting path for further work. Regardless, we will take a quick
look at the results. Figure fig. 5.10b is nearly identical to the results in fig. 5.9 and
exhibit the same di↵erences across experiments. Figure fig. 5.10a however, is very
di↵erent. It is not very clear from the graph, but all algorithms produced only one
solution/chromosome in the frontier, or rather several chromosomes that reached
the same fairness scores, except the SVM + Optimized Pre-Processing algorithm
that found two di↵erent sets of fairness scores. They all found a chromosome that
reached a fairness score of 1 and an accuracy of roughly 54%. Because they all
found the exact same set of scores for the one point, the graph hides these points
behind the algorithm added last to the graph, which also happens to have one
additional point; SVM + Optimized Pre-Processing. This second point reached
a very low fairness score at nearly 0.75 (as low as the lowest fairness scores in our
other results), but reached an accuracy of just over 56.5%, which is much lower
than the maximum accuracy SVM + Optimized Pre-Processing has reached in
all our other results. These incredibly sparse and bad tradeo↵s might suggest

Experiments and Results 77

that optimizing for a single threshold using a group fairness metric doesn’t work
at all when the predefined classifiers are already optimized for fairness. However,
as discussed, more investigation would be needed to determine whether this is
just a case of a badly selected most fair classifier, or if this holds across more
cases. Either way, it can definitively be said that the opposite doesn’t hold over
all cases.

In conclusion, while optimizing a single classification threshold for the most accu-
rate classifiers similar or better tradeo↵s were seen (see fig. 5.9. However, while
optimizing a single threshold for the most fair classifiers for scenario 2 exhib-
ited these same tradeo↵s, for scenario 1 the method appears to not work at all.
Because the most fair classifiers were selected from a large set of options from
experiment 1, it is possible that if others were selected the results might be di↵er-
ent. In our next experiment we will examine whether optimizing several, group
specific thresholds rather than a single threshold will give di↵erent results.

5.3.3 Experiment 3 - Optimizing Group Specific Thresh-
olds

In experiment 3 we will optimize group specific classification thresholds. In our
case, using the COMPAS data set (section 5.1), there will be two thresholds.
One threshold for the privileged group, Caucasians, and one for the unprivileged
group, Not Caucasians. This experiment uses the same architecture used for ex-
periment 2, except the chromosome represents the two group specific thresholds
rather than one single threshold. The goal of the experiment is to investigate
whether optimizing group specific thresholds has a di↵erent e↵ect on the fairness
vs. accuracy tradeo↵ as opposed to the e↵ects seen in experiment 2 and experi-
ment 1. A description of the architecture used to perform both experiments can
be found in section 4.4. The classification thresholds will be used to classify the
data points in each group respectively, where one threshold will be used to classify
the privileged group, and the other threshold will be used to classify the unprivi-
leged group. The thresholds will classify the data points by determining whether
the predicted probabilities generated by our algorithms are above or below the
threshold. There are four algorithms used to generate these probabilities. One is
the baseline SVM classifier, while the three others are SVM classifiers with three
di↵erent pre-processing mitigation methods performed before training the SVM.
These are the same algorithms used in both experiment 1 and 2. For further
descriptions of the four algorithms as well as other experiment parameters, see
section 5.2.1. This experiment consists of two di↵erent scenarios depending on
the fairness metric that is optimized: Scenario 1; Statistical Parity [eq. (2.1)] vs.
Accuracy, [eq. (5.1)], Scenario 2; Theil Index [eq. (2.6)] vs. Accuracy [eq. (5.1)].
In experiment 2 we optimized a single classification threshold for all data points

Experiments and Results 78

without considering the race attribute. In order to perform that experiment we
needed predefined and trained classifiers to test the thresholds against. These
classifiers were selected from experiment 1 where we optimized hyperparameters
and feature selection for the SVMs used in all four algorithms. From the results
of experiment 1 we selected the most fair classifier (i.e. the classifier with the
highest fairness score) and the most accurate classifier (i.e. the classifier with
the highest accuracy score) for each algorithm in both scenarios. In this experi-
ment we again need to use predefined classifiers, and we will be using the same
classifiers that were used in experiment 2. The selected classifiers represented by
their respective hyperparameters and feature subsets can be seen in tables A.1
and A.2 in appendix A.

(a) Scenario 1 (b) Scenario 2

Figure 5.11: Experiment 3 - Results from all four algorithms for both scenarios,
using the predefined ’most accurate’ classifiers selected from experiment 1.

First, we performed experiment 3 using the most accurate classifiers for both
scenarios. Figure 5.11 shows the resulting frontiers. In experiment 2 we saw
that optimizing a single threshold using the most accurate classifiers produced
similar results for Scenario 1, and better results for Scenario 2, compared to the
results from experiment 1. State-of-the-art literature, as discussed in section 3.1,
suggest that using group specific classification thresholds is better for fairness,
but comes at a large cost to accuracy. This literature is largely based on group
fairness metrics. Figure 5.11a shows that for scenario 1 the resulting frontiers are
nearly identical (i.e. reach the same values) to the results from both experiment
1 and 2. However, the frontiers are once again less sparse, even less sparse then in
experiment 2. This can likely be attributed to the fact that using two thresholds
rather than one creates more complexity leading to the chromosomes being able
to represent even more fairness scores.

Experiments and Results 79

For scenario 2, the resulting frontiers are again di↵erent from the previous ex-
periment. In this experiment, using the most accurate classifiers for scenario 2,
all the di↵erences between each algorithm is gone, and they all follow along the
same values. Additionally, a steep tradeo↵ in fairness can be seen from a score
of roughly 0.96 to 0.93. At this tradeo↵ the accuracy increases minimally. In
fact, from this point an onward as the accuracy increases, the algorithms follow
more closely the tradeo↵ seen in experiment 1, then the improved tradeo↵ from
experiment 2. However, they are still able to reach fairness scores of 1 as seen in
experiment 2, except the baseline SVM algorithm, reaching just 0.96. Another
interesting aspect from scenario 2 is that the SVM + Optimized Pre-processing
algorithm performs better than in the previous experiments, reaching an accu-
racy of nearly 70% with a fairness score of roughly 0.835, a lot better than a
fairness score of closer to 0.75 while the accuracy is just over 66%.

These di↵erences in scenario 2 from the previous experiments are interesting,
suggesting that perhaps this method of using group specific classification thresh-
olds creates a middle ground between the method from experiment 1 and the
method from experiment 2, when using the Theil Index fairness metric. An ex-
ception is that the results from the SVM + Optimized Pre-Processing algorithm
performed a lot better in the lower fairness scores than seen in both previous ex-
periments, with both higher accuracy scores and higher minimum fairness scores.
This result suggests that the di↵erences between our methods are not as clear
cut, where for some algorithms this method performs better, but for others it
performs worse. However, again all these di↵erences in tradeo↵s are only seen
in scenario 2. Meanwhile, for scenario 1, with the statistical parity di↵erence
fairness metric, the tradeo↵s remain the same but the frontiers grow denser for
each experiment.

Table 5.8 shows the thresholds that resulted in the most fair results (i.e. highest
fairness score) and the most accurate results (i.e. highest accuracy score) when
we used the most accurate predefined classifiers. In experiment 1, all data points
were classified using a threshold of 0.5, and in experiment 2 the most fair and
most accurate thresholds can be seen in table 5.7. In experiment 2, we found
that none of the most accurate or most fair solutions maintained a threshold
of 0.5. The most accurate thresholds varied in the range 0.5 ± 0.15, while the
most fair thresholds very much lower, from 0.25 to ⇠0. This result supported the
hypothesis that nearly all data points are given the positive label when reaching
the highest fairness scores. An interesting finding in our results from this exper-
iment, is that just one or a few chromosomes reached the highest fairness score,
as opposed to in our previous experiments when many chromosomes reached the
highest score. This is likely because of the added complexity the group spe-
cific thresholds provide. However, the hypothesis that nearly all data points are

Experiments and Results 80

Algorithm Most Accurate Thresholds Most Fair Thresholds
Privileged
Threshold

Unprivileged
Threshold

Privileged
Threshold

Unprivileged
Threshold

Scenario 1
SVM 0.5586 0.5176 0.0015 0.0459
SVMReweighing 0.5586 0.5547 0.3818 0.2261
SVMDIR 0.2783 0.4590 0.0032 0.0117
SVMOptPreProc 0.4434 0.625 0.0005 0.0039

Scenario 2
SVM 0.4873 0.4971 0.4951 0.125
SVMReweighing 0.4980 0.4834 0.0625 0.0020
SVMDIR 0.4873 0.4766 0.2510 0.0625
SVMOptPreProc 0.3291 0.4599 0.1719 0.0625

Table 5.8: Experiment 3 - The most accurate and most fair thresholds for both
scenarios, generated from the most accurate classifiers.

accepted still holds, as the most fair thresholds are again low, in most cases.

Based on the research supporting group specific thresholds (covered in section 3.1),
the hypothesis for this experiment is that the resulting thresholds should indicate
that the most fair thresholds are lower for the unprivileged group then for the
privileged group. This means that more data points from the unprivileged group
should be accepted then they would be if a single threshold was used for both
groups, thereby mitigating the bias against the unprivileged group. Studying the
most fair thresholds from table 5.8, we can see that this hypothesis mostly holds,
except in the cases were both thresholds are very small (e.g. the baseline SVM
algorithm in scenario 1). In such cases, the deviation between the group specific
threshold are insignificant, because we can assume that with such low thresholds
all data points are accepted from each group. Another interesting finding is that
some of the most fair thresholds are much larger than the ones found in experi-
ment 2, with the baseline SVM algorithm having a privileged threshold of nearly
0.5 in scenario 2. This suggests that most of the data points in the privileged
group was already accepted by this algorithm back in experiment 1.

If we study the most accurate thresholds, we can see that the privileged and
unprivileged thresholds deviate insignificantly from each other, except in three
cases. Additionally, most of these thresholds are close to 0.5 as well. However,
in the cases where the thresholds do deviate from each other, the privileged
threshold is the lowest (e.g. SVM + Disparate Impact Remover in scenario 1).
This suggest that these algorithms are biased against the unprivileged group in

Experiments and Results 81

order to reach a high accuracy score.

While scenario 1 retains the same tradeo↵s, and the tradeo↵ for scenario 2 varies
for each experiment, some facts still remain constant across experiments. The
existence of a tradeo↵ still remains, as most state-of-the-art literature supports.
The same maximum accuracy of nearly 70% is also, consistent, and within the
values expected given previously documented accuracies for the COMPAS data
set. See section 5.1 for more on the data set. The lowest accuracy also remains
consistent at close to 54%-55%. The fairness scores exhibit slightly lower variance
for this experiment, varying from a score of 1 to just under 0.8, as opposed to
nearly 0.75. This is because the SVM + Optimized Pre-Processing algorithm
performed better in this experiment then it did in both previous experiments.

(a) Scenario 1 (b) Scenario 2

Figure 5.12: Experiment 3 - Results from all four algorithms for both scenarios,
using the predefined ’most fair’ classifiers selected from experiment 1.

Finally, we will take a look at the results from the most fair classifiers. Figure
5.12 shows the resulting frontiers. The same caveat stated in experiment 2 still
holds for this experiment, as these are the same randomly selected most fair
classifiers. In fig. 5.12a we see nearly the same results that was seen for scenario
1 in experiment 2 as well. Some frontiers have a few more solutions, but the
conclusion remains the same. Trying to make the fair classifiers more accurate
by varying both a single threshold or group specific thresholds is nearly impossible
for scenario 1. For scenario 2 we saw no changes in the tradeo↵ when using the
fair classifiers as opposed to the accurate classifiers. In this experiment however,
the frontiers look very di↵erent. While the baseline SVM algorithm as well as
the SVM + Optimized Pre-Processing algorithm reach somewhat similar results
as we have seen previously, the frontiers are very sparse. In addition, the SVM
+ Reweighing and SVM + Disparate Impact Remover algorithms are unable to

Experiments and Results 82

’escape’ the higher fairness scores.

Clearly using group specific thresholds on scenario 2 with the Theil Index, gives
very di↵erent results from using a single classification threshold. Results from
Speicher et al. [2018] suggest that using a single classification threshold works
well with individual fairness metrics like the Theil Index up, where both accu-
racy and fairness increase, until a point (i.e. a threshold value) is reached where
the accuracy starts to decrease while the fairness remains increasing. Though
Speicher et al. do not investigate the e↵ect of multiple group specific thresholds.
Their suggestion that increasing fairness is in harmony with increasing the accu-
racy clashes with other state-of-the-art literature, where most claim that fairness
comes at a cost to accuracy. See section 3.1 for a discussion of the state-of-the-art
literature. In this other literature they use group fairness metrics in their reason-
ing leading them to conclude that group specific thresholds improve fairness at
a cost to accuracy, while a single threshold is optimal for accuracy. Combining
these claims with Speicher et al.’s proposition we could speculate that a single
threshold may be optimal for individual fairness metrics, while group specific
thresholds is optimal for group fairness metrics. Our results from experiment
2 and 3 supports this statement in regard to individual fairness. However, the
same cannot be said for group fairness, as the results remained the same across
experiments.

In conclusion, optimizing group specific classification thresholds provided similar
tradeo↵s in scenario 1, and showed a di↵erent e↵ect on the tradeo↵s in scenario 2.
For scenario 1 the most accurate classifiers generated slightly more dense frontiers,
but they all exhibited the same tradeo↵ as seen in both previous experiments. The
most fair classifiers were again unable to generate substantially higher accuracy
scores then was originally found by the classifiers in experiment 1. For the most
fair classifiers scenario 2 generated much worse results then seen in experiment
2, but not as bad as for scenario 1. Some of the algorithms were still able to get
good accuracy scores at similar costs to fairness as seen previously. The results
for the most accurate classifiers in scenario 2 were a combination of results from
experiment 1 and 2, where again we were able to reach ’perfect’ fairness scores of
1, but for the lower fairness scores the tradeo↵ remained closer to the ones seen in
experiment 1 rather than the slightly better tradeo↵ from experiment 2. However,
the SVM + Optimized Pre-Processing algorithm performed considerably better
in this experiment then it had in both previous experiments, suggesting that the
choice of method to be used might depend on which mitigation methods will be
included. The di↵erences between scenarios also suggest that for some fairness
metrics the distinction between methods is inconsequential, but for others, like
the Theil Index, the di↵erence can have more of an e↵ect.

Chapter 6

Conclusion and Future
Work

This chapter will present our conclusion of the work presented in the previous
chapters of this thesis. We will discuss how our work might impact the current
state of the fairness vs. accuracy tradeo↵ research. Finally, we will present our
vision for future work.

6.1 Conclusion

In this master’s thesis our overarching goal was to:

Goal Investigate the tradeo↵ between fairness and accuracy in automated decision-
making systems.

To narrow the scope of our investigation we presented three research questions.
Our first research question was:

Research question 1 What is the state-of-the-art in research concerning the
tradeo↵ between fairness and accuracy in automated decision-making sys-
tems?

The results from our review of the state-of-the-art literature was detailed and dis-
cussed in chapter 3. In summary, our findings were that the limited research done
in this area mostly concluded that such a tradeo↵ between fairness and accuracy
exists. Additionally, a few papers questioned this assumption, proposing that

Conclusion and Future Work 84

in theory these concepts should rather be in harmony. However, they acknowl-
edged that in practice this proposition would rarely hold. Another interesting
factor discussed in the state-of-the-art research was the impact of classification
thresholds. Research based on group fairness metrics concluded that using a sin-
gle classification threshold was optimal for accuracy, while using group specific
thresholds was optimal for fairness, but at the cost of accuracy. Meanwhile, a
paper by Speicher et al. [2018] using an individual fairness metric found that
using a single classification threshold lead to fairness and accuracy increasing in
harmony, up until a point. These papers highlighted the importance of classifi-
cation thresholds and indicated that they might have di↵erent e↵ects depending
on whether group fairness or individual fairness is considered.

In our review of the state-of-the-art research we also found a paper by Haas [2019]
that proposed a framework using MOO and Pareto frontiers to investigate the
cost of fairness. Before starting the work on our master’s thesis, we had taken
a course in these concepts, among others. The combination of these factors as
well as our findings from our review of the state-of-the-art research lead us to
formulate our two last research questions:

Research question 2 Using multi-objective optimization and Pareto fronts to
optimize feature selection and classifier hyperparameters, what type of trade-
o↵s can be observed?

Research question 3 Can we use this multi-objective optimization method to
optimize classification thresholds, and what e↵ect will this have on the type
of tradeo↵ that can be observed?

Research question 2 had already been answered previously by Haas [2019]. In
this thesis we used the framework proposed by Haas and adapted the architecture
slightly in order to create our own variation of the method. In addition, we
applied the framework on a di↵erent data set, and di↵erent mitigation methods.
This provided results that generalize the use of multi-objective optimization and
Pareto fronts as a method for investigating fairness vs. accuracy tradeo↵s. Our
further adaptation of the method was performed so that we could further apply
the method in order to answer research question 3. We have found no previous
work using a similar adaptation of the method. In chapter 4 we described the
methods and architecture we used to answer these two research questions. In
chapter 5 we formulated our experiment plan for the experiments that will be
used to test our architectures and answer the RQs. In the latter part of the
same chapter we presented our results from the experiments and analyzed and
discussed the results in the light of the state-of-the-art literature.

In experiment 1 we optimized feature selection and classifier hyperparameters us-
ing NSGA-II. The experiment would help us answer RQ 2. We used the COMPAS

Conclusion and Future Work 85

dataset (see section 5.1) with 12 features and 6172 data points. This dataset was
split into a training set and a test set, containing 80% and 20% of the data points
respectively. The mitigation methods we used were the Reweighing method, the
Disparate Impact Remover method, and the Optimized Pre-Processing method.
Additionally, we had a baseline algorithm that didn’t use a mitigation method.
All algorithms used an SVM classifier with the RBF kernel. The experiment was
performed for two di↵erent scenarios depending on the fairness metrics we wished
to optimize for. In scenario 1 a group fairness metric in addition to the accuracy
metric was optimized; Statistical Parity [eq. (2.1)] vs. Accuracy, [eq. (5.1)]. In
scenario 2 an individual fairness metric was optimized in addition to the accuracy
metric; Theil Index [eq. (2.6)] vs. Accuracy [eq. (5.1)]. Based on the results from
experiment 1 we found that our variation of Haas’ method works, and though a
di↵erent dataset and di↵erent mitigation methods were used, the tradeo↵s were
similar. Our results enforce the existence of a tradeo↵, as most state-of-the-art
research suggests. Additionally, we found that the particular values we were able
to reach with regards to the accuracy and fairness scores, could be supported
by previous findings and claims proposed by state-of-the-art research, as well as
previous research using the COMPAS dataset. We found that our results support
research by Zliobaite [2015] claiming that the most fair classifiers likely accept
(or reject) all data points at a large cost to accuracy. Menon and Williamson
[2018] show that the tradeo↵ between fairness and accuracy is dependent on the
’similarities’ between the label and protected attribute. Our analysis for the
COMPAS data set in section 5.1 showed that there is some correlation between
the protected attribute, race, and the label. This correlation aids in explaining
the existence of a tradeo↵. The most accurate results (i.e. the solutions able to
reach the highest accuracy scores) reached accuracies of 66-70%. Similar accura-
cies were found by previous research of the COMPAS data set [Dressel and Farid,
2018].

In experiments 2 and 3 we optimized a single classification threshold and group
specific thresholds respectively. These methods required existing algorithms to
generate prediction probabilities. These algorithms were selected from experi-
ment 1. In particular we selected the most fair classifier (i.e. the classifier with
the highest fairness score) and the most accurate classifier (i.e. the classifier with
the highest accuracy score) for each algorithm in both scenarios. In these exper-
iments the same data set, algorithms, and scenarios from experiment 1 was used.
For the most accurate classifiers we found that in scenario 1 both experiments
generated nearly equal results. The only di↵erence was that the resulting fron-
tiers became denser with solutions from one experiment to the next. For scenario
2 however, we found some di↵erent e↵ects across experiments. In experiment
2 the best overall tradeo↵ was reached, as the algorithms were able to reach a
perfect fairness score of 1 as opposed to just 0.94 at no cost to the accuracy when

Conclusion and Future Work 86

comparing the results to experiment 1. In experiment 3 the tradeo↵ turned out
to be a combination of the results from experiment 1 and 2. The frontiers from
experiment 3 resembled the frontiers in experiment 2 in the upper fairness scores,
but more closely resembled experiment 1 in the lower fairness scores and higher
accuracy scores. However, the SVM + Optimized Pre-Processing algorithm per-
formed better than it had in all previous experiments. This led us to conclude
that not only does the outcomes of our methods vary depending on which fair-
ness metric is used, they also vary depending on the mitigation method. We can
therefore not definitively conclude that using a single classification threshold is
better for individual fairness metrics, or at least the Theil Index, but in most
cases, this appears to be true.

We also tested the most fair classifiers in experiment 2 and 3, but this came with
a caveat. Our results from experiment 1 contained many most fair classifiers,
and one was chosen randomly for each algorithm. It is therefore possible that
if other classifiers were chosen, our results might have been di↵erent. Using our
selected classifiers, we found that for scenario 1 the algorithms are never able to
’escape’ the low accuracy scores of roughly 55% in both our experiments. This
suggests that for group fairness metrics, while classifiers trained for accuracy
can be adapted to be more fair using classification thresholds, the classifiers
trained for fairness exclusively cannot become more accurate. For scenario 2
the results were slightly di↵erent. In experiment 2, using a single classification
threshold, the results were identical to the ones reached by the most accurate
classifiers. However, in experiment 3 the algorithms had more di�culty ’escaping’
the low accuracy scores, but some algorithms were able to reach the same accuracy
scores as found by the most accurate classifiers. In either case, the algorithms
performed much worse for the most fair classifiers in experiment 3 then they did
in experiment 2.

In conclusion, we verified the e�ciency of the framework suggested by Haas [2019]
in experiment 1. We found that, as most state-of-the-art research suggests, the
introduction of fairness comes at the cost of accuracy. In experiment 2 and
3 we found that this result still holds. Additionally, because these methods
found similar results to experiment 1 using predefined classifiers rather than
using the method to find said classifiers, another conclusion can be reached. We
can conclude that the method used in experiments 2 and 3 can be used as a
substitute for Haas’ method in cases where AI decision making systems have
already be trained and in use. In fact, for the Theil Index fairness metric we
found that the method from experiments 2 and 3 provides a better tradeo↵ then
the one found in experiment 1.

Based on our conclusions, the research contributions from our work can be sum-
marized as follows:

Conclusion and Future Work 87

1. Verification of the Haas [2019] framework for studying the cost of fairness
and potentially selection of a final approach and algorithm than can be
used to make automated decision-making systems with the desired amount
of fairness.

2. A novel method and architecture that allows for the same study and selec-
tion, but that can be used on existing AI systems. Or potentially, practi-
tioners can train a model by optimizing accuracy, and afterwards determine
what degree of fairness to introduce depending on the tradeo↵s found using
this novel method and architecture.

6.2 Future Work

There are several directions for future work that can be taken to expand on our
current work. Some interesting paths have already been discussed previously in
the thesis. Here we will summarize potential avenues for future work.

In their paper Haas [2019] suggest several options for future work that is also
relevant for our work in this thesis. This includes testing the method and ar-
chitecture using other datasets, other mitigation methods, other fairness and
accuracy metrics, and other types of classifiers then SVMs. This would help to
further verify both the framework suggested by Haas and the novel methods and
architecture presented in this thesis.

Based on our work in this thesis we are able to generate some hypothesis as to
the di↵erence between using a group fairness metric as opposed to an individual
fairness metric. However, we only use one of each type of metric in our ex-
periments. Further investigating whether our hypotheses hold when using more
metrics representing both group and individual fairness, would be interesting as
it would allow more firm conclusions to be reached.

In our discussion of the state-of-the-art research, as well as in analyzing our
results we discussed a paper by Wick et al. [2019]. They claim that in theory
fairness should increase along with accuracy and not come at a cost. However,
in practice they acknowledge that this would rarely hold. This they claim, is
because of the bias that exists in most data sets. For example, in section 5.1
we covered how the COMPAS data set has been repeatedly proven to be biased
against non-whites. Wick et al. point out that when a mitigation method works
to ensure fairness in the model using the training data, often no changes are
being made to the evaluation data. It is therefore only natural that accuracy
is decreased when measured on the biased evaluation data, they claim. In their
paper they suggest a data simulation method for finding a unbiased data that can
be used for evaluation. An interesting path for future work would be to attempt

Conclusion and Future Work 88

to use this method or a similar method to investigate whether we would still find
a tradeo↵ between fairness and accuracy in our results.

Finally, we believe that our implementation of our architectures could be im-
proved further. First, given more time, we would have liked to implement our
NSGA-II code using recognized Python modules like DEAP. This would make the
code more scalable long term. In addition, we believe that our code could be
expanded and adapted to be more modular and include more dataset options,
more fairness metrics, and more mitigation methods. This could potentially lead
to a tool that AI practitioners could use without having to implement their own
versions of our architecture in order to use the methods suggested in this thesis
for analyzing the cost of fairness in their systems.

The source code for our implementation can be found at https://github.com/
pernillej/Cost-of-Fairness. The code includes a README.md file that con-
tains a user guide describing the contents of the code base, as well as how to run
and configure the 3 experiments from this thesis. The requirements for running
the code are listed in this file as well. See also section 4.5 for a list of requirements
as well as some other details about the implementation. A copy of the user guide
is found in appendix B.

https://github.com/pernillej/Cost-of-Fairness
https://github.com/pernillej/Cost-of-Fairness

Bibliography

Allen, M. (2019). 117. genetic algorithms 2 – a multiple objective genetic algo-
rithm (nsga-ii). https://pythonhealthcare.org/2019/01/17/117-genetic-
algorithms-2-a-multiple-objective-genetic-algorithm-nsga-ii/. Ac-
cessed: 2020-04-11.

Angwin, J., Larson, J., Mattu, S., and Kirchner, L. (2016). Ma-
chine Bias. https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing. Accessed: 2020-02-03.

Bellamy, R. K. E., Dey, K., Hind, M., Ho↵man, S. C., Houde, S., Kannan, K.,
Lohia, P., Martino, J., Mehta, S., Mojsilovic, A., Nagar, S., Natesan Rama-
murthy, K., Richards, J., Saha, D., Sattigeri, P., Singh, M., Varshney, K. R.,
and Zhang, Y. (2019). AI Fairness 360: An Extensible Toolkit for Detecting
and Mitigating Algorithmic Bias. IBM Journal of Research and Development,
63(4/5):4:1–4:15.

Bertsimas, D., Farias, V. F., Trichakis, N., Bertsimas, D., Farias, V. F., and
Trichakis, N. (2019). The Price of Fairness. Operations Research, 59(1):17–31.

Calmon, F., Wei, D., Vinzamuri, B., Natesan Ramamurthy, K., and Varshney,
K. R. (2017). Optimized pre-processing for discrimination prevention. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R., editors, Advances in Neural Information Processing Sys-
tems 30, pages 3992–4001. Curran Associates, Inc.

Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., and Huq, A. (2017). Algo-
rithmic decision making and the cost of fairness. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 797–806.

Danks, D. and London, A. J. (2017). Algorithmic bias in autonomous systems.
In IJCAI International Joint Conference on Artificial Intelligence, pages 4691–
4697.

https://pythonhealthcare.org/2019/01/17/117-genetic-algorithms-2-a-multiple-objective-genetic-algorithm-nsga-ii/
https://pythonhealthcare.org/2019/01/17/117-genetic-algorithms-2-a-multiple-objective-genetic-algorithm-nsga-ii/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Bibliography 90

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolution-
ary Computation, 6(2):182–197.

Dobbe, R., Dean, S., Gilbert, T., and Kohli, N. (2018). A Broader View on Bias
in Automated Decision-Making: Reflecting on Epistemology and Dynamics.
In 2018 Workshop on Fairness, Accountability, and Transparency in Machine
Learning, pages 1–5.

Dressel, J. and Farid, H. (2018). The accuracy, fairness, and limits of predicting
recidivism. Science Advances, 4(1):1–5.

Dua, D. and Gra↵, C. (2017). UCI machine learning repository - statlog (german
credit data) data set. http://archive.ics.uci.edu/ml/datasets/statlog+
(german+credit+data). Accessed: 2020-03-11.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference, ITCS ’12, page 214–226. Association for Computing
Machinery.

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubra-
manian, S. (2015). Certifying and removing disparate impact. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 259–268.

Floreano, D. and Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence, chap-
ter 1, pages 1–100. The MIT Press, Cambridge Massachusetts, 1 edition.

Friedman, B. and Nissenbaum, H. (1996). Bias in Computer Systems. ACM
Transactions on Information Systems, 14(3):330–347.

Friedrich, T., Horoba, C., and Neumann, F. (2011). Illustration of fairness
in evolutionary multi-objective optimization. Theoretical Computer Science,
412(17):1546–1556.

Haas, C. (2019). The Price of Fairness - A Framework to Explore Trade-O↵s in
Algorithmic Fairness. In 40th International Conference on Information Sys-
tems, ICIS 2019, pages 1–17.

Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised
learning. In 30th Conference on Neural Information Processing Systems, pages
3323–3331.

http://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
http://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

Bibliography 91

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2016). A Practical Guide to Support
Vector Classification. Technical Report, Department of Computer Science, Na-
tional Taiwan University.

Huang, C. L. and Wang, C. J. (2006). A GA-based feature selection and param-
eters optimization for support vector machines. Expert Systems with Applica-
tions, 31(2):231–240.

Johnsen, P. (2019). Fairness and discrimination in machine learning. Project
report in TDT4501, Department of Computer Science, NTNU – Norwegian
University of Science and Technology.

Kamiran, F. and Calders, T. (2012). Data preprocessing techniques for classifi-
cation without discrimination. Knowledge and Information Systems, 33:1–33.

Kleinberg, J., Mullainathan, S., and Raghavan, M. (2017). Inherent trade-o↵s in
the fair determination of risk scores. In Leibniz International Proceedings in
Informatics, LIPIcs, volume 67, pages 1–23.

Larson, J., Mattu, S., Kirchner, L., and Angwin, J. (2016). Data and analy-
sis for ’machine bias’. https://github.com/propublica/compas-analysis.
Accessed: 2020-04-20.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2019).
A Survey on Bias and Fairness in Machine Learning. eprint arXiv:1908.09635.

Menon, A. K. and Williamson, R. C. (2018). The Cost of Fairness in Binary
Classification. In Proceedings of Machine Learning Research, pages 1–12.

Mock, W. B. T. (2011). Pareto optimality. In Chatterjee, D. K., editor, Ency-
clopedia of Global Justice, pages 808–809. Springer Netherlands, Dordrecht.

Norwegian Ministry of Culture (2017). Act relating to equality and a prohibi-
tion against discrimination (Equality and Anti-Discrimination Act) - Lovdata.
https://lovdata.no/NLE/lov/2017-06-16-51. LOV-2017-06-16-51.

Olteanu, A., Castillo, C., Diaz, F., and Kıcıman, E. (2019). Social Data: Biases,
Methodological Pitfalls, and Ethical Boundaries. Frontiers in Big Data, 2:13.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830.

https://github.com/propublica/compas-analysis
https://lovdata.no/NLE/lov/2017-06-16-51

Bibliography 92

Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., and Chin, M. H. (2018).
Ensuring fairness in machine learning to advance health equity. Annals of
Internal Medicine, 169(12):866–872.

Russell, S., Russell, S., and Norvig, P. (2010). Artificial Intelligence: A Modern
Approach, Third Edition. Prentice Hall.

Saxena, N. A., Huang, K., DeFilippis, E., Radanovic, G., Parkes, D. C., and Liu,
Y. (2019). How do fairness definitions fare? examining public attitudes towards
algorithmic definitions of fairness. In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, AIES ’19, page 99–106. Association for
Computing Machinery.

Speicher, T., Heidari, H., Grgic-Hlaca, N., Gummadi, K. P., Singla, A., Weller,
A., and Zafar, M. B. (2018). A unified approach to quantifying algorithmic
unfairness: Measuring individual & group unfairness via inequality indices.
In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2239–2248.

Suresh, H. and Guttag, J. V. (2019). A Framework for Understanding Unintended
Consequences of Machine Learning. eprint arXiv:1901.10002, pages 1–6.

Torralba, A. and Efros, A. A. (2011). Unbiased look at dataset bias. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 1521–1528. IEEE.

Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E., Mathur, V.,
Myers West, S., Richardson, R., Schultz, J., and Schwartz, O. (2018). AI Now
Report 2018. AI Now, pages 1–62.

Wick, M., Panda, S., and Tristan, J.-B. (2019). Unlocking Fairness: a Trade-
o↵ Revisited. In 33rd Conference on Neural Information Processing Systems,
pages 1–10.

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., and Dwork, C. (2013). Learning fair
representations. 30th International Conference on Machine Learning, ICML
2013, 28:1362–1370.

Zliobaite, I. (2015). On the relation between accuracy and fairness in binary clas-
sification. In The 2nd Workshop on Fairness, Accountability, and Transparency
in Machine Learning, pages 1–5.

Appendices

A Selected Classifiers for Experiment 2 And 3

Algorithm C � Selected features

Highest Accuracy
SVM 19.5 0.02001 age, priors count,

charge degree = misdemeanor
SVMReweighing 403.75 0.01187 race, juvenile other count,

priors count, age cat. 25-45,
age cat. >45, age cat. <25,
charge degree = misdemeanor,
charge degree = felony

SVMDIR 0.99658 0.65440 age, juvenile felony count,
juvenile misdemeanor count,
juvenile other count, priors count,
charge degree = misdemeanor,
charge degree = felony

SVMOptPreProc 0.01566 0.16075 All features
Highest Fairness

SVM 39936.0 1.67129 charge degree = misdemeanor
SVMReweighing 4412.0 0.03608 race, charge degree = felony
SVMDIR 65376.0 1.00098 charge degree = misdemeanor,

charge degree = felony
SVMOptPreProc 0.01602 0.48730 race,

charge degree = misdemeanor

Table A.1: Selected SVM hyperparameters and features
from Scenario 1: Statistical Parity Di↵erence vs. Accuracy

Appendices 94

Algorithm C � Selected features

Highest Accuracy
SVM 9.98378e�7 0.00077 age, race, juvenile felony count,

juvenile other count, priors count,
age cat. >45,
charge degree = misdemeanor

SVMReweighing 2.42233e�4 0.00310 age, juvenile felony count,
juvenile other count, priors count,
charge degree = felony

SVMDIR 2.44141e�4 0.02075 age, race, juvenile other count,
priors count,
charge degree = misdemeanor

SVMOptPreProc 6.66081e�6 0.15649 race, age cat. >45, age cat. <25,
priors count = 0, priors count 1-3,
charge degree = felony

Highest Fairness
SVM 1.49011e�8 1.3332 sex, race, juvenile felony count,

juvenile other count,
age cat. 25-45

SVMReweighing 3.78711 0.85525 race, charge degree = felony
SVMDIR 61504.0 4.18945 age, race, juvenile other count,

priors count,
charge degree = felony

SVMOptPreProc 6.63102e�6 0.84112 age cat. 25-45,
charge degree = felony,
charge degree = misdemeanor

Table A.2: Selected SVM hyperparameters and features
from Scenario 2: Theil Index vs. Accuracy

Appendices 95

B User Guide for the Source Code

The source code for the code used in this thesis can be found at:

https://github.com/pernillej/Cost-of-Fairness.

The project consists of code for running 3 di↵erent experiments. The code for
each experiment is contained in 3 separate folders. In addition, some code is used
across experiments and exist in their own folders.

Content Description

• src/nsga2 - This folder contains the code used to perform NSGA-II oper-
ations used to produce Pareto Frontiers.

• src/util - This folder contains utility code used to read and write result
files, plot results, and convert from binary to decimal values.

• src/compas analysis.py - This file contains the code used to analyse the
COMPAS data set that is used in all 3 experiments.

• src/data.py - This file contains the code used to gather the COMPAS
data set from aif360.

• src/metrics.py - This file defines the possible fairness and accuracy met-
rics that can be used in each experiment.

• src/experiment1, src/experiment2, src/experiment3 - These folders
contain the code used to run each respective experiment. Each folder con-
tains:

– /results - This folder is used to store the results as .txt files contain-
ing json dictionaries describing the results and configurations from
each run of the experiment.

– algorithms.py - This file defines the 4 algorithms: svm,
svm reweighing, svm dir, svm optimpreproc. See thesis for the pur-
pose of these algorithms.

– config.py - This file defines the run configurations for the experiment.

– main.py - This file is the file used to define and run the experiment.

– plot results.py - This file is used to plot the results from the exper-
iment.

– baseline.py, disparate impact remover.py, optimpreproc.py,
reweighing.py - These files initiate each algorithm into the NSGA-II

https://github.com/pernillej/Cost-of-Fairness

Appendices 96

optimization approach, by running NSGA-II using the proper param-
eters, and defining the evaluation function to be used by NSGA-II.

Running an experiment

Each experiment folder contains its own main.py file. Running this file will run
the entire experiment as it was performed in the thesis.

Run configurations

Each experiment folder also contains its own config.py file that can be used to
update NSGA-II parameters like number of generations, population size, muta-
tion and crossover rate. The max iterations and seed used for the SVM classifiers
can also be changed. Finally, it is also possible to update which fairness and
accuracy metrics are used.

Possible accuracy metrics: auc and binary accuracy.

Possible fairness metrics: statistical parity difference, theil index,
equal opportunity difference, average odds difference, and
disparate impact.

Pernille Johnsen
Investigating the Cost of Fairness in Autom

ated D
ecision-M

aking System
s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Pernille Johnsen

Investigating the Cost of Fairness in
Automated Decision-Making Systems

Master’s thesis in Computer Science

Supervisor: Pinar Øzturk

June 2020

	Introduction
	Goals and Research Questions
	Thesis Structure

	Background Theory
	Fairness in Machine Learning
	Fairness Definitions and Metrics
	Bias Types
	Mitigation Methods
	Aif360

	Multi-Objective Optimization
	Pareto Optimality and Pareto Frontiers

	Evolutionary Algorithms
	NSGA-II

	Support Vector Machines
	Scikit-learn

	Related Work
	The Tradeoff Between Accuracy and Fairness
	Multi-Objective Optimization for Studying Fairness

	Method and Architecture
	Hyperparameter and Feature Selection for SVMs using Genetic Algorithms
	Method Description
	Architecture for Experiment 1
	Chromosome Design
	Genetic Operators
	The Main Loop
	The Evaluation Function

	Architecture for Experiments 2 and 3
	Chromosome Design and Genetic Operators
	The Main Loop
	The Evaluation Function

	Implementation Details

	Experiments and Results
	The COMPAS Data Set
	Data Set Preprocessing
	Data set Analysis

	Experiments
	Experimental Setup
	Experiment 1 - Optimizing SVM Parameters and Feature Selection
	Experiment 2 - Optimizing a Classification Threshold
	Experiment 3 - Optimizing Group Specific Thresholds

	Results and Analysis
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Selected Classifiers for Experiment 2 And 3
	User Guide for the Source Code

