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Abstract

Due to programming being more and more popular, CS1 courses are becoming more
prominent. With the increased student mass, comes an increase in workload for the pro-
fessors, lecturers, and teaching assistants responsible for the courses. They have to spend
an increasing amount of time correcting exercises, rather than helping the students. A
solution to this problem is to generate exercises and auto-correct them.

This thesis looks at two ways of generating program tracing exercises using templates,
namely the CFG and the SCT approaches, and implements the CFG approach into a work-
ing prototype. Through iterative evaluations and a final test, the suitability of the CFG
approach was evaluated. The analysis of the results suggests several advantages over the
SCT approach, mainly by allowing for more advanced and exciting exercises to be gen-
erated. Several drawbacks with the technique were identified, including a large amount
of boilerplate work required to set up and constraints on generating exercises for different
target languages. However, the advantages outweigh the drawbacks, indicating that the
CFG approach is a good technique for auto-generating program tracing exercises.
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Sammendrag
Programmering har de siste årene blitt mer og mer populært, som et resultat har førsteårs-
programmringskurs fått en betydelig økning i antall studenter. Med den økte student-
massen kommer en økning i arbeidsmengden for professorene, foreleserne og undervis-
ningsassistentene som er ansvarlige for kursene. De må bruke stadig mer tid på å rette
øvinger, i stedet for å hjelpe studentene. En løsning på dette problemet er å både generere
og rette øvinger automatisk.

Denne masteroppgaven ser på to ulike teknikker for å generere kodeforståelsesoppgaver
på ved hjelp av maler: CFG og SCT teknikkene, og implementerer CFG teknikken i en
fungerende prototype. Gjennom iterative evalueringer og en avsluttende test ble egne-
theten til CFG teknikken evaluert. Analysen av resultatene viser flere fordeler med CFG
i forhold til SCT, som hovedsakelig ligger i mulighetene for generering av mer avanserte
og spennende oppgaver. Flere ulemper med teknikken ble også identifisert, blant annet at
det kreves en stor mengde grunnarbeid for å sette opp et templatespråk, i tillegg til begren-
sninger for generering av øvinger for flere forskjellige programmeringsspråk. Fordelene
oppveier imidlertid ulempene, som indikerer at CFG teknikken er en god tilnærming for
auto-generering av kodeforståelsesoppgaver.
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Chapter 1
Introduction

1.1 Motivation
Programming has seen a significant surge in popularity over the past decades. Naturally,
courses teaching programming has also followed this trend. As a result, introductory pro-
gramming courses are taught to large amounts of students at a time. Creating and correct-
ing exercises to evaluate the students’ knowledge during and after the course has become
tedious, requiring much work from both the professors and the teaching assistants. Being
able to automate parts of this process can, therefore, save much unnecessary time spent,
and thus improve the courses by allowing the staff to spend more time helping the students,
rather than creating and correcting exercises.

Ozmen and Altun has shown that one of the biggest causes of failure for students learning
to program is the lack of practice [6]. When students are given the same exercises, the
threshold for copying each other’s answers is drastically reduced, resulting in reduced
learning outcomes. By providing every student with unique exercises, the likelihood of
cheating is massively reduced [7]. Creating one set of exercises to evaluate students is
time-consuming. Creating individual exercises for every student by hand is, therefore,
not feasible. Being able to auto-generate such exercises, accompanied by their correct
answers, can prove itself a useful tool for reducing cheating.

Rørnes et al. [8] conducted a study exploring students’ mental models when completing
exercises related to references in Python. They found that students have trouble under-
standing simple assignment models, indicating a failure in understanding essential con-
cepts of programming. A study conducted by Lahtien et al. [9] found that one of the best
ways to learn programming concepts is by practical exercises. Providing a broad set of ex-
ercises, focusing on the simple, but essential concepts, could allow the students to practice
and increase their understanding of the relevant concepts properly.

Another advantage of using unique exercises can be seen in an exam situation. Sindre and
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Chirumamilla [10] showed that making exams unique can drastically increase the thresh-
old of cheating, since no exam will have the same exercise/answer pairs. Uniquely gener-
ated exercises can, therefore, provide a safer exam environment by reducing the likelihood
of cheating.

While there are many benefits related to auto-generating exercises, there are several issues
that must be taken into account. In situations where the results of the exercises are graded,
all exercises must be of the same difficulty. Without this assurance, the results are hard to
determine, as the students’ will not be evaluated on the same premises. It is therefore clear
that knowing the difficulty of every exercise generated is required when used in exam en-
vironments. Additionally, the generated exercises should expose proper code conventions
to avoid teaching students bad code practices.

1.2 Research Questions
The main focus of the project is to look at existing ways of creating templates for gen-
erating programming exercises, as well as finding the best approach for generating pro-
gram tracing exercises for CS1 courses. The project focuses on the curriculum of the
CS1 courses at NTNU, but the results are generalized for most CS1 courses. As a re-
sult, four main research questions looking at existing solutions and the best-fit solution for
CS1 courses at NTNU as well as technical limitations regarding the approach have been
outlined:

1. Research question 1: What solutions of auto-generating programming-exercises
have already been proposed in research-literature?

2. Research question 2: What is the best approach for generating a large amount of
program tracing exercises?

3. Research question 3: Which parts of CS1 courses would the generated exercises
be most useful for?

4. Research question 4: Are there any significant technical limitations related to the
approach chosen for generating exercises?

1.3 Scope
Currently, there are a lot of different exercise types used when teaching CS1 courses.
It is not feasible to generate all of those exercise types. The main focus of this project
is about generating program tracing exercises in Python for CS1 courses at NTNU. The
two main courses in focus are Information Technology, Introduction (TDT4110/TDT4109)
[11] [12]. This course’s primary focus is to learn the basic concepts and elements in
practical, procedure-oriented programming. As a result, only Python 3.x programs will be
generated by the prototype.

The artifact is designed as a prototype, and is therefore not a complete system. Its focus
is on generating exercises from templates, and therefore lacks proper infrastructure to be
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set up as a fully functional system for generating, distributing, and correcting exercises.
The main focus of the project is to study whether the chosen approach is a good way of
generating program tracing exercises for the CS1 courses at NTNU or not. The code for
the generator can be found at Autogenerator.

1.4 Outline
The report is structured in the following manner:

• Chapter 1: Introduces the thesis and its motivation.

• Chapter 2: Provides relevant background information on typical programming ex-
ercises and a previous project on the topic.

• Chapter 3: Describes related work on auto-generating exercises and relevant tech-
nologies.

• Chapter 4: Presents relevant research methodology, and its relevance to the report.

• Chapter 5: Reveals the results from the research, as well as relevant information to
re-create the prototype.

• Chapter 6: Discusses and interprets the results from the previous section regarding
the research questions.

• Chapter 7: Concludes the research questions and lists future work and research that
can be done in the area.

3
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Chapter 2
Background

2.1 Exercise types

A vast number of different exercise types exist, usually targeting different concepts and
areas. As a result, it is crucial to investigate and evaluate the most common types to
determine their suitability for the project at hand.

2.1.1 Code writing exercises
Code writing exercises are often considered the best way to measure the students’ ability
to create code. The BRACElet project investigated the hierarchy of programming skills
[13]. They found that the bottom of the hierarchy consisted of basic constructs such as if
statements, while the top of the hierarchy represents the ability to write code. However,
it is hard to estimate the difficulty of code writing exercises [14]. There are several issues
related to code-writing exercises:

• Code writing exercises usually require students to understand and utilize multiple
concepts, even though the exercise was designed to look at only one concept.

• Weak students tend to spend a large amount of time on solving code-writing exer-
cises, presenting limitations on how many of these exercises it is feasible to utilize
as obligatory exercises.

• Weak students lacking the understanding of underlying concepts might try and fail,
then look for examples that solve the problem, potentially providing the correct
answer without understanding why.

• There are usually several solutions to a particular code writing exercise; some stu-
dents might solve the problem without actually utilizing the concepts the exercise
was supposed to expose.
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Venables et al. [15] conducted a study comparing program tracing, program explana-
tion and code writing in novice programmers and their relationship with the hierarchy of
programming skills. The paper investigated the relationship between program tracing, ex-
planation, and code writing in an exam containing three code writing, two code explaining,
and one tracing exercise. By analyzing the results, they found a relationship between the
three exercise types. Among the results, they found that the first skill the students acquire
is the ability to trace. Once their tracing capability becomes reliable, the ability to explain
the code emerges. When both of the former abilities are in place, the students’ ability to
write code improves. In essence, it was discovered that students capable of tracing and
explaining what a selected piece of code does, are more likely to be able to write code.
However, the results are purely based on statistics and thus do not prove, but rather imply
the connection between these exercise types. While the results also imply a hierarchy of
programming skills, this hierarchy might not be totally strict. Writing code means that
the student needs to understand what the code does and explain it, while also needing to
trace it. It is therefore clear that code writing might provide opportunities to improve code
tracing and explaining skills, which in return improves the code writing skills.

A proposed way of testing the students’ ability to write code is the Soloway’s Rainfall
problem [16]. The problem is aimed at testing multiple different concepts relevant to the
curriculum of CS1 courses. It consists of creating a program that can calculate the average
of the numbers provided through an input, then once the sentinel number is provided, stop
the execution. Lakanen et al. [17] conducted a study where they presented students with
a rainfall type question during the final exam of their CS1 course. Their proposed version
of the rainfall exercise required the students to do the following:

• Ignore inputs after the sentinel has been hit.

• Negative values are to be ignored

• The sum of valid inputs have to be calculated

• Needs to calculate the occurrences of valid input numbers

• Needs to protect against zero division

• Needs to calculate the average input value based on the information stored

In addition to the Rainfall exercise, the exam contained 6 other exercises of different types
(code tracing, modification, theory). The study looked at how suitable the rainfall code
writing exercise was for measuring the students’ ability to write code and measure their
knowledge of the curriculum, as well as its suitability as an exam question. Through
analysis of the exam results, there were mainly two interesting observations. The first ob-
servation is related to parameter passing in the rainfall exercise. They found that certain
students struggled with assigning values to corresponding parameter values, even though
they were perfectly able to understand the concept in other exercises. In contrast, it seemed
that other students were perfectly able to comprehend variable usage and scoping in the
rainfall problem, but not in other code tracing exercises. The students failing the trac-
ing exercise might have been related to the fact that the course did not provide a lot of
conceptual exercises such as program tracing and code explanation.
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A proposed approach to help students to understanding code writing as well as evaluat-
ing their knowledge is goals and plans [18]. Goals are ”things” that need to be done in
the code to solve the problem. The Soloway rainfall problem can be used as an example.
The rainfall problem entails calculating the average of a stream of numbers, indicating the
need for two goals, one to sum all of the numbers and one to count the amount of numbers
summed. Based on these goals, two plans have to be established. A sum-loop plan and a
count-loop plan. Solving the rainfall problem requires these two plans to be merged into
one, where the counting and summing happens in one common loop. Explicitly defin-
ing and explaining these two concepts can help novice programmers in understanding and
solving more complex problems. The study conducted by Costantini et al. [18] tested
the approach of grading program writing exercises by looking at the plans made for the
program. The study found that plans for more complex exercises and combining differ-
ent concepts require a deep program comprehension. Despite this, they found that using
plans can be a satisfactory approach to evaluating exercises and the students’ knowledge.
Although the test was only performed on students who passed the course (usually the stu-
dents with the highest skill level), it seems that using plans to evaluate a students’ skill
levels is a different, but valid approach.

2.1.2 Single concept questions
It is well known that learning programming is hard. Successfully learning to program
requires knowledge and understanding of a large set of concepts and skills. Even though
students learn to understand and apply these concepts throughout a CS1 course, they still
struggle to see the ”big” picture of a problem and how multiple of these concepts can
be used to solve it. As a result, they tend to focus on smaller parts of the problem [19]
[20].

An issue related to coding exercises are the concepts required to solve them. Even exer-
cises that are designed to focus on specific concepts tend to require knowledge of more
concepts than just the one in focus. If a student lack understanding in any one of the re-
quired concepts, their overall performance may tank considerably [14], which is the core
of what makes code writing exercises particularly hard. Most exercises require knowledge
of multiple concepts, but they also require the knowledge of which concepts to use and
where to apply them.

A solution to the issue above is suggested by Zingaro et al. [21]. They propose an exercise
type referred to as single concept questions. Single concept questions are code writing
exercises, but it tries to tackle the issue with multiple concepts in one exercise by provid-
ing multiple questions, each focusing on one single concept instead of one broad question
requiring multiple concepts. The study conducted by Zingaro et al. focused on one ques-
tion requiring the knowledge of multiple concepts, and four smaller questions requiring
the same concepts as the first. During the study, these five questions were given as a part
of a CS1 exam.

The large, multi-concept exercise explicitly asked the students to iterate over a list of
tuples, each containing a name and a list of grades. Their task was to calculate the average
grade of each tuple in the list, representing students and their grades. Listing 2.1 shows
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the variable marks, which is the list of tuples. A function skeleton to help the students
get started was also provided, as shown in listing 2.1. This exercise required the students
to know the four concepts; accessing a list element, iterating over a list, nested lists, and
accumulating from the lists. Each of the four remaining questions, therefore, exposed one
of these four concepts.

1 marks = [(’dan11’, [76,80,67]), (’jane23’, [81,90,69]),
2 (’jones11’, [77,79,55])]
3

4 def calc_average(a_num, marks):
5 ’’’Return the average mark on assignment a_num for
6 all students in list marks.
7 Precondition: marks contains an assignment
8 corresponding to a_num.’’’

Listing 2.1: A snippet of the code writing exercise.

The exam scores were divided into four quartiles, where Q1 contained the weakest results
and Q4 the best. The whole idea behind single concept questions is to split concepts into
separate questions. It was therefore anticipated that the code writing exercise was going
to score worse than all concept questions. All of the single concept questions except for
nesting ended with better scores than the code writing exercise, indicating that nesting is
a particularly hard concept. The quartile data also show that the weakest quartile students
were mostly able to solve the list element access and iterate questions, while the other
quartiles did pretty well all over, which is also reflected in the code writing exercise.

The results indicate a high correlation between single concept questions and plain code-
writing exercises that expose the same concepts. Through the study, it was shown that
single concept questions are better and more effective tools for feedback since weaker
students are allowed to expose knowledge of concepts that would be missed in multi-
concept code-writing exercises.

2.1.3 Program tracing exercises
Program tracing exercises require the student to trace the program through its execution
[19]. The exercises usually require the student to provide the output of a function or a
printed value, but can also involve explaining in short what the code does or even require
the student to determine intermediate values during execution. Additionally, it is possible
to create exercises with specific bugs the students have to identify. Program tracing exer-
cises can range from simple exercises with a few lines to exercises consisting of multiple
classes, but in general, they test the students’ knowledge of concepts such as functions,
loops, conditional statements, lists, and other essential concepts. Listing 2.2 illustrates a
simple exercise where every number in a is summed in the variable b and printed out. The
task here is to determine the final value of the variable b.

1 a = [1,2,3,4,5,6]
2 b = 0
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3 for i in range(len(a)):
4 b += a[i]
5 print(b)

Listing 2.2: An example of a simple trace exercise.

Lopez et al. found that tracing code accounted for 46% of the variance exhibited in the
code writing exercises of an exam [13]. During an exam, they found that students who per-
formed poorly on code tracing exercises also performed poorly on code writing exercises,
showing a linear relationship between the two. However, the relationship does not mean
that students doing well on code tracing also do well on code writing. Instead, it only
confirms the relationship between the two exercise types in cases where students perform
poorly.

It has also been found that code tracing exercises require considerably less cognitive load
compared to code-writing exercises, as explained in section 2.1.5, providing a great ad-
vantage over code writing. Additionally, program tracing exercises expose other advan-
tages:

• Program tracing exercises can focus on specific concepts, making it easier to test
that a student has understood that concept in particular.

• Solving the exercises are faster because they do not require any writing and has
no compiler or run-time errors. Therefore, the exercises are less time-consuming,
allowing for more of these exercises than an equivalent writing exercise.

• Program tracing exercises allow the exercises to test a wide variety of cases within
the concept. E.g., for loops and index variables.

An important factor related to successfully solving code tracing exercises is sketching [22]
[23]. Sketching is the notion of tracing the code and updating some external model as code
is being ”executed”. A line-by-line tracing technique proposed by Xie et al. recommends
having a separate memory model on paper that is updated every time a code line modifies
a memory value. Both [22] and [23] showed that sketching could considerably improve
the program tracing capabilities of students.

2.1.4 Parson’s Problems
The relevant work was reviewed, and the relevant background carried out in the project
preceding this thesis [19] were identified. This is amended with a discussion of a few
papers that have been studied after the project.

Learning to program can be both a tedious and time-consuming task, and it can often be
compared to learning a new language [19]. Writing code properly requires high compre-
hension of both semantics and syntax, and without understanding a language’s syntactic
rules, writing correct code is impossible. A common technique for learning a programming
language is drill exercises, where one continuously solve exercises to gain knowledge. The
issue with this form of learning, however, is that it is tedious and boring. Being able to
engage the learner is, therefore, an important concept when learning students to program
[24].
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Learning to program is a hard task that, in some ways, can be compared to learning a
new spoken language. Both of the cases require mastering of syntax and semantics. It is
impossible to write in a programming language without knowledge of its syntactical rules.
A technique that can be used to learn these rules are repetitive drill exercises. The problem,
however, is that such exercises are boring. Task engagement in learning is, therefore, an
important concept when teaching students to program [24].

Parson’s problems focus on learning and memorizing syntactic constructs by using drag-
and-drop style exercises [25]. Its main principles are:

• Maximize the engagement: By making the exercises puzzle-like, they become
more engaging for the students, and thus ensure that students get enough repetition
of the exercises.

• Constrain the logic: Parson’s puzzles provide a good code structure, where the
available code fragments constrain the logic, preventing the student from becoming
sidetracked by not being able to find the correct logical or algorithmic approach to
the given problem.

• Permit common errors: By providing distractors, the Parson’s exercises inten-
tionally give options that resemble errors students often make, allowing them to
compare their mistakes with the correct solution.

• Model good code: By using fragments of good code, the student is exposed to
good code practices.

• Provide immediate feedback: Beginner programmers cannot usually debug pro-
grams properly, and, therefore, spend considerable time doing so. In Parson’s exer-
cises, mistakes and errors can be immediately identified and shown to the student.

Parson’s problems are providing students with a set of different text snippets (usually re-
sembling one or more code lines) that are often referred to as code fragments. These
fragments have to be placed correctly relative to each other to create a correct solution.
It is possible to check the correctness of the current answer at any given time, and it is
also encouraged to do so until the correct solution is found. Figure 2.1 shows a Parson’s
problem where students need to drag fragments from left to right and place them in the
correct order and with correct indents.

Ericson et al. [26] performed an in-depth analysis of solving Parson’s problems versus
fixing and writing code. They performed a study where students were provided with one
of three random exercises; a Parson’s problem with distractors, fixing code with the errors
equivalent to the distractors of the Parson’s problem, or writing the equivalent code. The
study was conducted in two different sessions. The first session consisted of solving one
of the three exercises described, while the second session consisted of an exercise isomor-
phic to the first. Through the study, they found that solving the Parson’s problem was
significantly faster than fixing errors or writing the code from scratch, while still giving
significant improvements from the first to the second session. The results show that Par-
son’s problems could be classified as equally effective or even more effective in learning
than correcting errors or writing code. Parson’s problems can, therefore, be a handy tool
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Figure 2.1: Illustration of a Parson’s problem exercise where the student has to drag code fragments
from left to right in the correct order and with correct indents. The illustration is reprinted from [1].

for learning the basics of syntax, semantics, and algorithms.

Paul et al. found that Parson’s problems have a high correlation to code-writing [27].
They also come with the advantage of being easier to correct, since the amount of possible
solution is restricted by the permutation of correct code fragments and distractors. Even
though a correlation between Parson’s problems and code-writing was found, it does not
directly imply that students’ being able to solve Parson’s problems also can solve similar
code-writing problems. The same study [27] conducted an experiment where the students
were asked to solve a Parson’s problem. Once solved, they were asked to solve the same
problem with code. A lot of the students were unable to do so, indicating that students can
solve Parson’s problems without fully comprehending the whole meaning of the underly-
ing code.

Initially, Parson’s problems were designed to be combined with distractors. Distractors
are code fragments that are not a part of the solution code, and therefore ”distracts” the
student. The idea behind the distractors is to make them resemble correct code fragments
to make them harder to distinguish from the correct fragments. Harms et al. researched
the topic of distractors in Parson’s problems and found that distractors could prove itself
detrimental to learning [28]. Because distractors come with an increased cognitive load, it
reduces the students’ ability to solve the problem and increases the time spent. As a result,
it might harm the learning, rather than the opposite.

2.1.5 Program Completion vs. Program Generation
Merriënboer et al. conducted a study focused on investigating the differences in learning
outcomes between observing, modifying, and extending well-designed programs (comple-
tion) versus creating new programs from scratch (generation) [29].

Developing a broad knowledge base requires variation. A wide variety of exercises can
provide such variation:

1. Running and tracing programs, designing and coding algorithms, modifying, ex-
tending and debugging programs
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2. Presentation of a large set of problems with different underlying solutions, and pro-
grams that are correct solution to different programming problems

In terms of variety, code completion exercises expose the variation above. Another signifi-
cant advantage of code completion is that the students are presented with a partial solution,
providing exposure to a wide variety of problems and, therefore, well-designed solutions
for these problems [29]. Variation is not as quickly exposed in code generation exercises.
Since the time spent both designing and implementing complete programs often takes
much time, variety is harder to achieve.

In addition to exposing variety, program completion exercises have another critical advan-
tage over code generation; it has a natural usage of examples. The reasoning behind the
importance of this is directly connected to how students transition from passive, declara-
tive knowledge to program state behavior. In more concrete terms, it means that students
are rather picky when selecting material to learn from, and they usually favor examples
directly related to the problem at hand.

During the study, Merriënboer et al. conducted an experiment where they tested a set of
generation and completion exercises on two different groups of high-school students, then
tested their acquired knowledge. It was found that both groups wrote approximately the
same amount of code lines during the experiments, but the completion group had, on av-
erage more correct lines. Additionally, it was found that the completion group also had
produced higher-quality programs. Further, they found that during the course, the genera-
tion group felt the difficulty increased, while the completion group found all exercises to
be of the same difficulty. Further research found that the generation exercises increased
in difficulty, resulting in processing overload. The completion group did not encounter
this issue and had an even processing load throughout the experiment. This is attributed
to its variation in activities such as tracing, modification, completion, and reading. Code
generation can, therefore, be deemed inferior to code completion when compared in terms
of processing load.

2.2 Concept inventories and exercise meta-data
Concept-inventories (CI) are assessments that are specifically designed to measure the
learning of core concepts [30]. Concept inventories are common and well used in other
sciences such as Physics. The main idea behind concept inventories is to develop ways
to measure student knowledge across core concepts of science. As a result, CI’s provide
educators with ways to measure and compare the learning outcomes of students across in-
structors, institutions, and curriculum. This allows for educators to improve the efficiency
and other teaching-related factors based on the feedback from the CI.

Although concept inventories are well established in other sciences, CS is still a young
science currently in development. As a result, concept inventories are still lacking. Current
issues related to CI’s for computer science are the constant changes in the field. Since
new languages are developed continuously, the languages used in CS courses change over
time. As a result, CI’s specific for a language might, therefore, not be valid over a more
extended period. A possible solution to the problem is language independent CI’s, but this
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does not solve the problem over time. Since different courses use different programming
paradigms, such as Object-oriented or functional programming, which use very different
memory models, a single pseudo-language cannot capture the context for these different
approaches.

A possible way of developing new CI’s for computer science could be through analyz-
ing results from multiple-choice questions containing meta-data such as topics, difficulty,
and language [30]. These questions are rather easy to administer, allowing researchers to
compare the results across different contexts, such as instructors and courses. By utiliz-
ing accompanied meta-data, researchers could utilize the information available to further
develop CI’s for CS.

2.3 Symbol table

A symbol table is a way of storing variables and their types, as well as functions available
at any given program scope [31]. Symbol tables are often used to aid the traversal of the
parsing tree, as seen in Figure 3.2. There are multiple ways of implementing a symbol
table, but it is commonly done by defining unique tables for every program’s scope and
linking them together. With this approach, a base symbol table, at the highest level, is
instantiated. Once a new scope is found, a new table is created, pointing to the previous
table. Thus, all available variables in any given scope is contained either in the symbol
table from the current scope, or in the symbol table in any of the parent scopes. The
creation of a symbol table can be illustrated with an example using the code presented in
Listing 2.3. In the code, there is a total of three scopes. The initial scope, containing the
variables a and b, and two deeper scopes with separate variable assignments. Figure 2.2
illustrates the symbol table created from the code in Listing 2.3. An example of using this
symbol table would be to check for available variables in the else: scope. Here, the current
symbol table is the child table to the right in Figure 2.2. By first extracting the variables
in that symbol table, then looking at the variables in the parent, it is possible to determine
that the variables, a = 5, b = 6, c = 9 and d = 10 is available in the else: scope.

1 a = 5
2 b = 6
3 if a > b:
4 a = 6
5 c = 7
6 d = 8
7 else:
8 c = 9
9 d = 10

Listing 2.3: A simple template for generating random ways of iterating a for loop
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Figure 2.2: The symbol table generated from the code snippet in Listing 2.3.

2.4 Comparison of exercise types

Throughout the section, a lot of different exercises have been presented and described.
The most obvious choice for testing a students’ code writing skills are code-writing exer-
cises. As mentioned in section 2.1.1, there are several drawbacks linked to code-writing
exercises. Additionally, generating satisfactory code-writing exercises is a rather hard
problem. On the other hand, single concept questions aim to mitigate some of the prob-
lems linked to code-writing exercises. The main idea is to split the concepts within a
code-writing exercise into smaller sub-exercises. This approach has been proven to help
students’ show their knowledge, but as with code writing exercises, they can be hard to
generate since their solution generation is rather complicated.

On the other hand, program tracing exercises are not as good for testing the students’
knowledge as the formerly presented exercises, but they require less of a cognitive load
and still gives a decent indication of the students’ code-writing skills. Section 2.1.3 also
present some of the other advantages of using program tracing exercises. Compared to
code-writing, a big advantage of program tracing is its ability to test many different aspects
of a concept. Another great advantage of the program tracing exercises is their solution
generation. Since program tracing relies on the student to determine the output of some
code, running said code would also generate the solution. Although program tracing has
many advantages over code-writing exercises, they are not automatically better. Tracing
exercises allow for quick and easy testing of concepts, providing reasonable grounds for
expanding into code-writing exercises with the same concepts. Therefore, the two exercise
types can be looked upon as complementary, as the ultimate goal is to teach students to
write code. Finally, program-tracing exercises are not just relevant for beginners. Working
with IT usually require the candidate to understand code written by others, requiring the
ability to trace.

Parson’s Problems are also presented, and can, to a certain extent, be looked at as an exten-
sion of program tracing. The big difference is that they usually require a better description
of program tracing exercises and require the code to be split up into fragments. Thus,
Parson’s problems would be a natural expansion from program tracing exercises.
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2.5 Auto-generating program tracing exercises

In a previous project, related to the pre-project, a prototype for a generator was imple-
mented and evaluated. The project was finished autumn 2019 as a part of a 15 points
course. Its choice of exercise type to generate was based on the same reasoning presented
in section 2.4. Section 3.4 also discusses the different models, and gives the reasoning
behind the best model for this project, which is the same reasoning the pre-project is based
on.

Based on the presented reasoning, the pre-project implemented a prototype capable of
generating simple program tracing exercises using a context-free grammar (CFG). The
goal of the project was to prove that the CFG approach is a good way of generating pro-
gram tracing exercises, and the prototype was evaluated and improved through design
iterations.

The first focus of the project was to implement a bare-bones solution capable of generating
program tracing exercises with some form of randomization. To achieve this, ANTLR4
was chosen as a framework for implementing the CFG. The initial CFG implementation
contained simple logic for variable assignment, if statements, for statements, expressions,
and randomized functions, which are briefly explained below.

2.5.1 Initial grammar
As explained, the first solution contained grammar for variable assignment, if statements,
for statements, expressions, and randomized functions. Below is a brief explanation of the
different elements and their implementation in the prototype.

2.5.1.1 Variable assignment

Variable assignment is a crucial part of almost any programming language, including
Python, and is therefore required to generate proper exercises. An assignment is divided
into two types: assign variable and assign list. The former represents an assignment of
any variable. The latter explicitly targets list assignments, which requires a more care-
ful definition to allow more than one element to be defined in a list. In Appendix I the
Productions 7.9, 7.10, and 7.11 show the three productions required to define a list. The
last Production defines the restrictions for a variable name, which states that variables can
have names containing numbers from 0 to 9 and a to z, but is not allowed to start with a
number.

2.5.1.2 If-statements

If-statements are just as crucial as variable assignment, and therefore had to be imple-
mented in the most simple prototype. The if-statements implemented was designed to
allow any number of if, else if and else clauses to simulate how if-statements in Python is
implemented. Appendix I shows the implementation of if-statements in the Productions
7.12 to 7.14.
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2.5.1.3 For-statements

As with if-statements, for-statements are an important tool, especially when working with
lists. The initial approach only supported one type of for statement, namely for var name
in range(0, n). While there are several other ways to iterate over a set of values or a list,
for in range is the most common, and was therefore chosen as the initial way to express a
simple loop.

2.5.1.4 Expressions

Expressions are the bread and butter of almost any grammar, as productions usually end in
one or more expressions. The grammar defines arithmetic, relational and atomic expres-
sions. Arithmetic expressions are mathematical expressions, usually used for numbers
and certain String operations. Relational expressions are essential to define conditions for
if-statements, and atomic expressions are primarily used to define atomic variables of dif-
ferent types. The grammar used in the prototype explicitly defines numbers, strings, and
booleans as atomic variable types.

2.5.1.5 Custom functions

The final part of the initial grammar was custom functions. These functions are specific
for this grammar and define parts of the grammar that is to be randomized. The initial im-
plementation allowed for randomization of arithmetic and relational operators, random int
values, and random int arrays. Randomization of these custom functions is implemented
during the traversal of the parse tree, by substituting the functions with real values. Figure
2.3 shows a simple parsing tree with the custom randInt function that is substituted for a
random value within its parameters. As explained, this process is done for every custom
function implementation every time an exercise is generated.

2.5.2 Further development
The grammar explained in the sections above was the bare-bones implementation of the
prototype. During the project, the prototype was further developed to generate better and
more interesting exercises. As mentioned it was evolved through an iterative process.
Based on the evaluation and feedback of the exercises generated by the initial grammar, a
second iteration was used, where two new key features were implemented into the proto-
type. These two features were randomized iteration and if relational statements generated
with available variables at the given scope.

2.5.2.1 Randomized iteration

The first feature, implemented as a result of the first evaluation was randomized iteration.
The idea behind this feature is to provide a language construct that allows the writer of the
template to define that a loop should be used, but not explicitly define what kind of loop.
There exists multiple ways of iterating over a list, and the three most common is the for-in-
range, while and for-each approaches. A vital hindrance of a unified definition of a for loop
is how to access the list element currently iterated. Since for-each explicitly defines the
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Figure 2.3: The parse three before and after the randInt visitor has modified it with a random value.

current element accessed in a list, while for-in-range and while loops usually define some
index to be iterated over, these approaches also handle accessing elements differently. To
handle this issue, a pre-determined value, it, was defined. This value is used as a general
way of ”pointing” at the current element used. Upon exercise generation, all it references
inside of a randomly generated loop are substituted with the correct way of accessing the
list element. Listing 2.4 illustrates a simple example of how the template is translated into
an exercise when it contains a randomized iteration.

1 # The template used for generating
2 a = [1,2,3,4,5]
3 sum = 0
4 for (a) {
5 sum = sum + it
6 }
7 print(sum)
8

9 # Exercise 1 generated
10 a = [1, 2, 3, 4, 5]
11 sum = 0
12 i = 2
13 while i < len(a):
14 sum = sum + a[i]
15 i = i + 1
16 print(sum)
17
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18 # Exercise 2 generated
19 a = [1, 2, 3, 4, 5]
20 sum = 0
21 for e in a[0:len(a) - 2]:
22 sum = sum + e
23

24 print(sum)

Listing 2.4: A simple template and two generated exercises containing the random for loop
construct.

2.5.2.2 Composed relational expressions

The second feature implemented was the ability to generate relational expressions con-
sisting of variables available at the given scope, and usually also contain the type of the
variables. A symbol table was implemented to keep track of variables available at any
given scope. The particular symbol table implemented is as described in section 2.3. The
first step of actually generating a composed expression is to extract the variables to be
used. By traversing the available symbol tables, available variables of the correct type can
be selected. Only variables that are defined as numbers are selected by the prototype to
simplify the generation process. Once the available variables have been extracted, they
are combined iteratively by placing relational operators between them. Listing 2.5 show
an example of a simple template with a composed relational expression and two of the
exercises generated from it.

1 # Template used for generating
2 a = 5
3 b = 6
4 c = 7
5 d = 8
6 if composedStatement() {
7 print(a + b)
8 } else {
9 print(c + d)

10 }
11

12 # Exercise 1 generated
13 a = 5
14 b = 6
15 c = 7
16 d = 8
17 if c < d or a > b:
18 print(a + b)
19 else:
20 print(c + d)
21

22 # Exercise 2 generated
23 a = 5
24 b = 6
25 c = 7
26 d = 8
27 if d <= b and c < a:
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28 print(a + b)
29 else:
30 print(c + d)

Listing 2.5: A simple template and two generated exercises containing one composed relational
expression.

2.5.3 Application used for evaluation
In addition to the prototype, a simple application was set up to make the evaluation of the
prototype easier. The application consists of a simple graphical interface implemented in
React [32] and a small web-server containing the prototype as well as a small REST-API
used for communication between the front-end interface and the prototype. The REST-API
is written in Java with the Spring-Boot [33] framework. Figure 2.4 shows the architecture
of the application and how the different components communicate with each other. This
application was used during interviews with professors while evaluating the prototype. It
simplified the process of showing the capabilities of the prototype by allowing them to see
templates and exercises generated from them in real-time, with proper support for checking
whether the answer to the exercise is correct or not. Images of the web application can be
found in Appendix J.

Figure 2.4: A simple illustration of the prototype architecture and the communication between the
components.
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Chapter 3
Related work

3.1 Good program tracing exercises

In section 2.1.3, tracing was presented and compared to program writing exercises. The
most common way of evaluating tracing exercises is compared to program writing exer-
cises, where the students’ scores on program tracing exercises are directly related to their
scores on program writing exercises focusing on the same concepts.

Venables et al. conducted a study where they looked at the outcomes of simple and com-
plex program tracing exercises and code-writing exercises [15]. Their definition of sim-
ple program tracing exercises, were exercises with only one loop, while the complex had
more than one. Through the study, they found a causal relationship between the simple
program tracing and code writing exercises. Their data indicated a relationship between
the two that indicates the existence of a minimum tracing skill requirement to enable code
writing, but the minimal program tracing skill does not suffice by itself to enable code
writing. It becomes clear that too simple program tracing exercises might not capture
the minimum required skill to write code. The study also made a comparison between
complex and simple exercises. They found that the complex tracing exercises required
a systematic approach to the tracing, e.g., sketching [22] [23]. This, in return, indicates
that students require a deeper understanding of the whole execution process when answer-
ing more complex tracing exercises. Through comparison with code writing exercises,
they found clear evidence that complex tracing would relate better to performance on code
writing than simple tracing exercises. Such exercises might be better suited for exercises
where the students’ skills are being evaluated. On the other hand, the relationship between
the complex tracing exercises and the combined code-writing exercises does not expose
a direct linear relationship. A possible reason for this is that complex program tracing
exercises are very error-prone, and a small mistake might, therefore, cause the answer to
be completely wrong, even though the student understood all of the critical concepts in the
exercise.

19



While solving complex tracing exercises might make the student more capable of writing
code, it does not necessarily imply that simple program tracing exercises does not bring
anything to the table. Simpler exercises might not provide proper evaluation of a student;
however, they might still help improve the students’ knowledge of simple concepts in
programming, and help them understand how to apply them. Therefore, it is essential
to distinguish between different use-cases when evaluating the usefulness of the tracing
exercises at hand.

3.2 Specification, Configuration and Templates (SCT)
A review of the current related work and state of the art was performed, and relevant
background material from the preceding project was identified [19]. Through this pro-
cess, no new material was found. The presentation from the project report is included
below.

Radovsevic et al. proposed a generator framework called Specification, Configuration, and
Templates (SCT) that allows for the generation of specified and personalized exercises [2]
[19], by providing a model represented through a set of artifacts, the framework allows for
program synthesis. The artifacts consist of application parameters and templates which can
be synthesized according to the generator’s configuration. Additionally, the SCT allows
for a multi-level design, where higher-level generators can be defined through one or more
lower-level generator. This way, generators can be re-used, striking a similarity to Object-
Oriented Programming.

3.2.1 The SCT Model
The three core elements of the SCT model are: Specification, Configuration, and Tem-
plates. An SCT frame represents the three elements, which are illustrated in figure 3.1.
The three elements can be used in conjunction to generate unique and customized exer-
cises. Below is a short description of each of the elements:

• Specification The specification contains features of the generated application in the
form of attribute-value pairs.

• Template contains the source code in the desired programming language, together
with a set of connections.

• Configurations defines the connection rules between the specification and the tem-
plates.

3.2.2 Generating source code with SCT
To generate source code, the three elements: Specification, configuration, and template,
have to be defined. Each of the elements play an essential role in the generation pro-
cess.

A Specification defines concrete values that are used in the connections. Below is an
example of a specification:
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Figure 3.1: Illustration of the three elements that together makes a SCT frame. Reprinted from [2].

1 OUTPUT:out1
2 out1:output/Linked_list.cpp
3 field_int:student_id
4 field_char:surname_name
5 field_int:year_of_study
6 field_char:note

Listing 3.1: An example of how a specification is defined.

The specification defines an output file, Linked list.cpp, which has four attribute pairs
defining their type and the attribute name.

Configurations define how the connections defined in the templates are to be replaced.
The listing 3.2 shows an example of a configuration file:

1 (1) #1#,,main.template
2 (2) #fields_declarations#,field_*,field_*.template
3 (3) #data_entry#,field_*,data_entry.template
4 (4) #field#,field_*

Listing 3.2: An example of how a configuration is defined.

The first rule defines the starting template to be used. The second rule replaces the oc-
currence of #field declarations# in the template file with all the fields and their templates
defined in the specification. Similarly, rule 3 replaces the #data entry# connection with
every definition starting with field in the specification. The fourth rule is used to replace
the #field# connection in the data entry template.

Templates are program fragments where connections are explicitly defined. Listing 3.3
shows a template:

1 cout << "#field#: ";
2 cin >> new_element->#field#;

Listing 3.3: A simple template

The SCT model defined above goes through every variable defined in the specification and
prints its name and value.
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3.2.3 Using SCT to generate personalized student exercises
The SCT generator framework was initially designed to generate specified exercises tai-
lored for students. However, it can also be used to generate randomized exercises as pro-
posed by Radovsevic et al. [7]. To generate randomized exercises, the specification part
of the generator has to contain constant attributes, but randomized values. When the at-
tributes remain constant, the configuration and the template elements can be kept constant
for every instance of the specification, meaning it is the only element that has to be changed
for randomization.

3.3 Syntactic Generation of Programs using Context-free
grammar (CFG)

State of the art and related work were reviewed, and an identification of the relevant back-
ground material was carried out in the project preceding this thesis [19]. This is amended
with a discussion of a few papers that have been studied after the project.

An approach to generating a large number of exercises based on a context-free grammar
(CFG) was presented by Ade-Ibijola [3]. The solution utilizes a CFG, which is mainly
used for recognizing or generating languages. The grammar used during the study was
designed to emulate Python to a high degree, and thus making it easier to convert the
grammar to complete and working Python code.

The study focused on generating program tracing exercises. As a result, all exercises
generated requires at least one print statement that the student is supposed to determine the
output of. The main focus of the generator was on three different types of concepts: Loops,
conditional statements, and arithmetic operations. The generator also allowed for the usage
of built-in math functions to allow for more complex and interesting exercises.

3.3.1 CFG
A context-free grammar (CFG) is used to specify the syntax of a language. A grammar
describes the hierarchical structure of a programming language. Formally, a CFG is often
expressed as a four-tuple: G = (N, Σ, P, S) [31], where:

• N is a set of non-terminals, usually called ”syntactic variables”. Each non-terminal
represents a set of strings of terminals.

• Σ is a set of terminal symbols, often referred to as ”tokens”. The terminals are
elementary symbols of the language defined by the grammar.

• P is a set of productions, where each production consists of a non-terminal, called
the left side of the production, an arrow, and a sequence of terminals and/or non-
terminals, often called the right side of the production.

• S is a designation of one of the non-terminals used as the start symbol.
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3.3.2 Lexical analysis and Syntax analysis
Two essential steps in capturing the logic of a language for a CFG are lexical- and syntax
analysis. These are two of three steps in the front-end of a compiler. The front-end of
the compiler is concerned with taking a source program and converting it to some form
of intermediate representation. An example of this is a compiler converting C code into
assembly instructions, where C is the source code, and the assembly instructions are the
intermediate representation.

Lexical analysis is the notion of splitting the text into tokens, the terminal symbols de-
scribed by the CFG. With the help from the tokens generated, the syntax analyzer, often
referred to as a parser, can create a parse tree and validate the tokens based on the CFG. A
parse tree is a logical representation of the flow of the language. Since all productions in
the CFG are deterministic, the syntax analysis will always have a set of expected tokens.
If an unexpected token is provided to the analyzer, it means the language provided is not
correct in regards to the CFG. Figure 3.2 shows the three steps in the front-end of a com-
piler. In this case, the end output, usually known as the intermediate representation, is the
generated python code.

Figure 3.2: The three steps in the front-end of a compiler. The symbol table is used to store symbols
such as variable names and other values that might be required in any of the three steps.

3.3.3 CFG as a template
The CFG proposed by Ade-Ibijola describes a subset of the language rules for identifiers,
control rules, and structures of the programming language Python. Production 3.1 to 3.5
below are a few of the productions he proposes for terminal symbols. They describe
terminal productions for letters, digits, and different operators used.

<letter> −→ l ∈ Σ (3.1)
<digit> −→ d ∈ 0 | ... | 9 (3.2)
<rel op> −→ < | > | <= | >= | != | == (3.3)
<arth op> −→ + | - | ∗ | / | % (3.4)

<logi op infix> −→ and | or (3.5)

23



As mentioned, every CFG has a symbol S, denoting a non-terminal start symbol. This is
required to construct the root of the parsing tree used for syntax analysis. The proposed
solution defines the non-terminal <prog> as shown in production 3.10 to 3.12 to be the
start symbol. Productions 3.6 to 3.8 show the productions for the three different program
types.

<prog arth expr eval> −→ <ident init><assignments><display> (3.6)
<prog cond expr eval> −→ <ident init><if stmt><tab in><display> | (3.7)

−→ <ident init><if stmt><tab in><display>

((<elif-stmt><tab in><display>) | λ)

<else stmt><tab in><display>

(3.8)

<prog loop expr eval> −→ <ident init><for loop> | <while loop> (3.9)
<prog> −→ <prog arth expr eval> | (3.10)

−→ <prog cond expr eval> | (3.11)
−→ <prog loop expr eval> (3.12)

3.3.4 Generating exercises from a CFG
To generate a set of distinct exercises from a parsed program, traversing the parse-tree
and looking at every leaf node is required. Every leaf node that solely consists of some
syntactic variable can be printed out, as the CFG is designed to emulate the syntax of
Python. Leaf nodes that contain relational operators, arithmetic operators, and numerical
values can be substituted for other randomized values. Multiple randomized and different
exercises can be generated by doing this for multiple iterations of the parse tree.

Additionally, special syntax was defined for generating a random number of variables. Be-
cause the parse tree is linear to the program flow, it is easy to keep track of the available
variables at any given state in the program. This makes it possible to generate mathemati-
cal expressions between all available numerical variables to create even more randomized
output.

3.3.5 Solution generation
Generating solutions for the programming exercises made this way is a rather trivial task.
Since all the programs are related to program tracing, the only output made from the
programs are printed to the console. Generating the solution of any given program require
each generated Python program has to be run individually, then storing their output. Figure
3.3 shows the simple process of generating solutions for the generated programs.

3.4 Comparison of models for generating exercises
A few fundamental features can differentiate the two models for generating exercises de-
scribed above. The syntactic generator is built by defining a grammar very similar to
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Figure 3.3: Solutions are generated by iterating over all of the newly generated Python files and
saving their outputs to appropriate files. Reprinted from [3].

Python, then parsing said template and analyzing it to generate distinct exercises in the
specified output language. On the other hand, the SCT approach is based on templates
in any given language. It works by inserting connections into the templates to randomize
certain elements. Their use-cases may differ due to their differences; therefore, it makes
sense to compare them when generating program tracing exercises for Python.

One of the SCT models’ most significant strengths is that it is not confined to a single
target language, like the syntactical model. It is language-independent, and therefore does
not require a template to be written for a specific language. Thus, using such a generator
would allow exercises to be generated for many courses, utilizing different programming
languages. This flexibility can prove itself extremely valuable if the generator model is
to be used for multiple courses. The syntactic generator approach has a different focus:
generating exercises for a single output language, rather than any language. It is, however,
possible to generate exercises for more than one language. This requires considerable
work, since the whole tree traversal and generating step would have to be written for the
given output language. Hence, the syntactic generator approach is most suitable for single
target language use-cases.

Although the syntactic generator is used for generating exercises for a single language,
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it allows for far more complex analysis and generation than the SCT model. The SCT
model is based on simple substitutions through connections, while the syntactic generator
allows for more in-depth analysis and, therefore, more complex substitutions. Since the
syntactic generator utilizes parse trees, it can construct Symbol tables, allowing it to gen-
erate randomized comparisons based on the available variables at any given state of the
program. Ade-Ibijola [3] showed that the syntactical generator is capable of generating
if statements containing different permutations of variables available at any given scope.
Hence, the syntactic approach is superior in cases where a wider variety of more random-
ized exercises for a single language is preferred over simpler exercises for a large number
of languages.

Based on the comparison above, it is clear that the syntactic approach would be a better
fit for generating program tracing exercises for CS1 courses where Python is the only
language used.

3.5 ANTLR4
ANTLR4 (ANother Tool For Language Recognition) is a robust parser generator frame-
work. The framework takes in a grammar that specifies a language and generates a recog-
nizer for the specified language. The input grammar is defined as a Context-free grammar.
The framework supports generating code in Java, C#, C++, JavaScript, Python, Swift, and
Go.
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Chapter 4
Methodology

4.1 Design Science and Behavioral Science

The two main paradigms that characterize the research in the information systems genre is
behavioral and design science [4]. While both of the paradigms are important to the genre,
their focus’ differ;

• Behavioral science: Behavioral science usually focus on an IT-artifact implemented
in a given context. Usually, theories are created, seeking to explain or predict human
or organizational behavior. The paradigm address research through developing and
justifying an IT-artifact.

• Design science: Design science seeks to extend the boundaries of human and orga-
nizational capabilities by creating new and innovative artifacts. It is concerned with
solving problems by creating innovative and effective solutions to solve problems.

From the characterizations of the two paradigms, it is clear that behavioral science is con-
cerned with ”why” an IT-artifact works, while design science focuses more on whether
it works or not. Even though they differ, they are also highly co-dependent. Since de-
sign science focuses on the creation of new and innovative IT-artifacts, it also relates to
behavioral science. Creating useful and innovative IT-artifacts requires existing theories
to be applied, tested, modified, and extended through experience, creativity, intuition, and
problem-solving [4]. It is, therefore, clear that both of these paradigms depend on each
other to drive research forward.

4.2 Design Science: A Framework for IS Research

Design Science has a great focus on both the process and the product to be made. There are
two processes and four design artifacts produced by design science research in information
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systems [34]. The two processes described are build and evaluate. These processes define
an iterative workflow where the artifact is built then evaluated. The evaluation step is used
to further build and modify the artifact. The four design artifacts described are:

• Constructs: Defines the language in which problems and solutions are defined and
communicated.

• Models: Uses constructs to represent a real-world situation, the design problem, and
its solution space.

• Methods: Defines the processes. Provides guidance on how to solve problems; e.g.,
search the solution space.

• Instantiations: Shows how constructs, models, and methods can be used together
in a working system.

Figure 4.1 shows the framework proposed by Hevner et al. [4]. The environment section is
the problem space. It consists of people, organizations, and their existing or planned tech-
nologies. In combination, they define the problem. As mentioned, the IS research stage
consists of two processes; developing/building and justify/evaluating. From the justifica-
tion/evaluation phase, weaknesses can be identified in the theories/artifacts, allowing the
researchers to refine and reassess. The knowledge base is the last section, and it consists
of prior research in the area and methodologies for evaluation.

Figure 4.1: The framework for information system research. Reprinted from [4].

In addition to the framework, Hevner et al. proposes seven guidelines for design sci-
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ence:

1. Design as an Artifact: The result of the design-science research is to create an arti-
fact that solves an important organizational problem. It should also provide enough
description to enable efficient implementation in the problem domain.

2. Problem Relevance: The objective of IS research is to acquire knowledge and un-
derstanding to enable the development and implementation of technology-based so-
lutions to unresolved problems. Hence, the problem that is being researched must
be significant enough to warrant an efficient technical solution.

3. Design Evaluation: Evaluation is a crucial step in the research process. Proper
evaluation is fundamental to the success of the research, and without it, the building
phase suffers.

4. Research Contributions: Effective and good research must provide clear contribu-
tions to the problem. The final assessment for any research is ”What are the new
and interesting contributions?”.

5. Research Rigor: Design science relies on the application of rigorous methods in
both construction and evaluation.

6. Design as a Search Process: To create an effective artifact, the researcher must
utilize available means to reach the desired result, while also satisfying the laws of
the problem environment.

7. Communication of Research: The design research results must be properly pre-
sented and conveyed to both technology-oriented and
management-oriented audiences.

These guidelines assist in understanding the requirements for effective design-science re-
search.

4.3 Application of Design Science
Both Behavioral science and Design Science play integral parts to the information science
research genre. While behavioral science mostly focuses on why something works, design
science is mainly interested in if something works. This report is mostly concerned with
the finding out if there is a good approach to generating a large amount of program tracing
exercises. In the light of this problem, design science provides the best tools. Therefore,
the focus of this report is to answer the research questions provided in the context of design
science.

As stated in the introduction, the first research question proposed is: What solutions
of auto-generating programming-exercises have already been proposed in research-
literature? This question mainly supports the second and third research question, and it
is deeply rooted in the second design guideline, namely, problem relevance.

The second research question, however, What is the best approach for generating a
large amount of program tracing exercises? warrants proper usage of the design science
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principles. This question is also affected by the methods used for testing and evaluating
the prototype.

The third question: Which parts of CS1 courses would the generated exercises be most
useful for? is related to the usefulness of the generator in CS1 courses. Since this report
mainly focuses on the technical aspects of the exercise generation, the research question
is not within the main focus. The question, however, is important, because it allows the
prototype to be discussed in the light of the problem that has to be solved, which is rooted
in the problem relevance.

The fourth question is related to the limitations of the generation approach: Are there any
significant technical limitations related to the approach chosen for generating exer-
cises? This question requires exploration of the different aspects of the implementation.
Since design science is an inherently iteration-based approach, different aspects of the
implementation will naturally be explored, and thus, limitations will also be discovered
during development.

Table 4.1 explains the relevance of the seven guidelines to the project, as well as how they
have been taken into account.

4.4 Evaluation technique
As mentioned in Table 4.1, the evaluation form for the project chosen was semi-structured
interviews with professors in the CS1 courses at NTNU. There are many ways of evalu-
ating the generator and the exercises generated, such as having user tests where students
test the exercises. The choice, however, fell on semi-structured interviews with profes-
sors between every iteration based on a few critical reasons. Since this project mainly
focuses on whether the technique for generating exercises is suitable for the CS1 courses
at NTNU, the professors in charge of the courses, who have many years of experience, sit
on valuable information related to the quality of the exercises and the generator. A semi-
structured interview then allows for a more in-depth discussion of features related to the
generator, resulting in a good way of evaluating the usefulness of the exercises generated
without directly setting up a test with students.

Another essential reason behind this choice was the time constraints of the project. Setting
up a test with students is time-consuming and highly relies on the generator being able to
generate sensible and correct exercises at the time of the test. Hence, such a test would
only be sensible to perform after the final iteration and also requires access to a large
number of CS1 course students. Discussing with professors is less time-consuming and
allows for evaluation of every design iteration.

4.4.1 Testing
Instead of directly interviewing professors with examples of generated code, the last it-
eration was evaluated through a prototype test. The professor was given access to the
prototype, along with documentation of how it works. They were given free reigns to test
different templates as they pleased, but were also provided with a few examples to get
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some inspiration. This freedom was given because, in addition to being testers, they are
also experts in the field. Thus, they had a good idea of what features they would want from
an auto generator.

Since the purpose of the test was to test the auto generator’s ability and usefulness, the
professor was given access to the prototype without any supervision and were given a
form with a set of questions to answer after they had done the testing.

4.5 Functional requirements
Another important aspect of the methods used to develop the artifact is requirements. The
term functional requirements are fundamental concerning this aspect. A functional re-
quirement can mainly be defined in two different ways [36]:

• The first aspect is that a functional requirement is a requirement stating a function
the system should be able to perform.

• The second aspect defines the behavioral aspects of the system. Thus, a functional
requirement can be defined as ”those requirements that specify the inputs (stimuli)
to the system, the outputs (responses) from the system, and behavioral relationships
between them”.

The functional requirements are essential to the project as they help define the needs of the
system. Since the project is based on design science, iterations are an essential part of the
development process. To properly structure and apply the evaluation feedback from every
cycle, functional requirements to be implemented in the next iteration are to be made after
every evaluation round. By providing good and thorough functional requirements, it is
easier to evaluate and test the new features of the system, as their functionalities have been
explicitly defined.

4.6 System development method
Developing the system requires a set of methods and processes to be chosen to support the
development properly. The subsections below describe different techniques and tools used
to aid the development process.

4.6.1 Agile software development
The domain of auto-generating programming exercises using syntactic methods is rather
unexplored, and the requirements for the prototype at the beginning of the first iteration
were somewhat open-ended. As a result, a development method, such as the waterfall
model, would not be appropriate for the project. The waterfall model is highly based on
an initial plan, and therefore not a good fit for the project. An agile-development process,
on the other hand, would fit the project very well.

Agile development method is highly linked to an environment where the requirements and
solutions continuously evolve and change. Such a method fits very well with the iterative
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nature of design science and the current state of the domain. Since many of the approaches
that are being tested in the project has not been explicitly tested before, it is crucial to be
able to adjust and modify the requirements during the project to test and evaluate the
solution space properly. Even though the project is only handled by one person, a tool for
keeping track of the requirements during the project is highly recommended. Kanban was,
therefore, chosen to handle this aspect.

4.6.2 Kanban
A Kanban board, which comes from the lean development method Kanban, was decided
to be used. The board contains multiple columns and allows for requirements within each
of the columns. By using the Kanban board, visualizing and keeping track of the progress
during the project was simplified by a large margin and helped structure the work. Trello,
an online Kanban board website, was chosen as the tool for implementing the board. Using
enables a clean way of structuring requirements and tasks that has to be done. It also helps
with structuring and presenting the tasks that have to be done every sprint by having an
easy to use interface that makes it easy to make changes on the fly.
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Design Science Guideline Usage in the project
Design as an artifact The artifact designed is specifically created to solve

an organizational problem related to creating exercises.
The design is created to allow lecturers and professors
to save valuable time they otherwise would have spent
creating exercises. Through the result section, the im-
plementation is carefully explained, providing clear in-
formation on how to implement it.

Problem Relevance The relevance and motivation for the problem is pre-
sented in Section 1, where it explains why the artifact
could provide large organizational benefits. In addi-
tion, section 2 gives insight into existing solutions.

Design Evaluation The end users of the artifact is the lecturers and profes-
sors in various CS1 courses (and the end-users are the
students the exercises are generated for). Evaluation
of the project was therefore done by qualitative inter-
views with professors in CS1 courses on NTNU. The
interview style used was semi-structured interviews
[35]. A semi-structured interview is a more open-ended
interview technique, where the interviewer follows a
set of pre-determined questions and allows for con-
versation that is not strictly related to the question at
hand. Through functional requirements derived from
the evaluation, changes to be made in the new iteration
are established.

Research Contributions The conclusion section of this report found in Section 7
gives a clear conclusion to the research questions pro-
posed, and also gives a clear summary of the contribu-
tions of this report.

Research Rigor Research rigor is achieved by performing a careful
evaluation of the possible techniques that can be used
to generate program tracing exercises before choosing
what technique to utilize. Additionally, an iterative
process was used to allow for valuable evaluation of
the artifact during its development.

Design as a Search Process The inherent iterative process of design science was
utilized in the project. Through iteration, a search was
performed to find a good implementation that solved
the presented research questions.

Communication of Research Through the three final chapters, the report presents
both the technical aspects of the artifact, as well as its
implications for the audience without any technical ex-
pertise.

Table 4.1: A table of the seven guidelines in design science and their relevance to the report.
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Chapter 5
Results

Since this project was a continuation of the project described in section 2.5, the main fo-
cus was on improving the prototype with novel features that allowed for more complex and
interesting exercises to be generated. As mentioned in Section 4, the prototype was de-
veloped through an iterative process with a basis from design science. During the project,
three iterations were completed. The first iteration was an extension from the previous
project, as described in Section 2.5. The two remaining iterations were purely to develop
and evaluate new prototype features.

5.1 The initial iteration (Iteration 1)
This iteration was done to evaluate the features implemented during the final parts of the
pre-project. Two of the features from the pre-project, however, were not fully finished.
The prototype from the pre-project was found to have the following shortcomings:

• Randomized iterations

– Nested iterations would use each others’ index variables

– The it variable would not work as intended in nested loops

• Lists were implemented in such a way that did not allow for lists within lists

• The final product of the pre-project was not evaluated

The following subsections explain how these issues were addressed.

5.1.1 Finalizing randomized iterations
While randomized iterations were implemented in the previous project, they were not fully
completed. There were mainly two issues related to the iteration construct that had to be
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solved. Both of them were directly related to the nesting of loops.

The first issue occurred when two randomized iterations were nested into each other and
using the same substituted variable. If the randomly chosen loop types were a for in range
and while loop, the loops could potentially terminate early or run indefinitely because the
for loop would tamper with the while loops index variable. The problem was caused by the
generator not choosing different index variable names for each of the loops. Solving the
issue required using the symbol table again, allowing the randomized constructs to check
for taken variable names while ensuring their own selected variable would not be taken by
another structure. Thus, the randomized constructs would have to choose another name if
the one they wanted to select was taken.

The second issue was caused by how the it variable was handled in nested loops. Since the
variable pointed to by the it variable was reset upon exiting of any randomized iteration, the
it variable would stop working properly if it was referenced below a randomized construct
but within another. Line 7 in Listing 5.1 shows a line were the it variable would not
work as intended. Solving the problem involved utilizing a stack for holding the currently
reference it variables. The current referenced it variable would be added onto the stack
when a for iterator is created and popped from the top of the stack once it is exited. This
solution would ensure that the top of the stack is always the correct variable at any given
time.

1 a = [1,2,3,4,5]
2 b = [6,7,8,9,10]
3 for a {
4 for b {
5 print(it)
6 }
7 print(it) # This it would not be substituted for the variable iterated

over in the variable a, because the for construct above it would
reset the reference.

8 }

Listing 5.1: An example of a case were the it variable would not work.

5.1.2 Re-writing list definition
One of the problems with the existing list definition was the fact that a list definition
was defined as a separate production, and not part of an expression. As a result, a multi-
dimensional list could never be instantiated since the contents of a list was required to be an
expression. To solve this problem, the way a list was defined had to be changed. Initially,
the two productions 5.1 and 5.2 were created to specifically handle list declarations. This
solution, however, was far from optimal, as the definition of list meant it would not be
counted as an expression and thus not work as intended.

The solution was to create a new expression production. This way, multi-dimensional lists
are naturally created, since a list can be used as a bottom level expression. Production 5.3
illustrate the new production that was added as an expression. Additionally, the empty list
definition was baked into the expression, reducing the total amount of productions.
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<assign list>

−→ ’[’ <expr> ( ’,’ expr)* ’]’
(5.1)

−→ ’[’ ’]’ (5.2)
<expr> −→ ’[’ (<expr> ( ’,’ expr)*)* ’]’ (5.3)

The other great advantage of re-writing this implementation is that it is now part of the
default variable assignment code. As a result, there is no need to have more than one
visitor for handling variable declaration.

5.1.3 Evaluation

As mentioned in Section 4, semi-structured interviews with Professors and lecturers in the
CS1 courses at NTNU was used to evaluate the artifact. Table 5.4 lists the two professors
who participated during the first evaluation and how long they have been teaching in the
relevant course.

Professor Years of experience
A 2
B 17

Table 5.1: Table of professors interviewed during the first evaluation.

Since this evaluation was performed on the prototype from the previous project, the two
main features in focus was the randomized iteration construct and composed statement.
The interview therefore consisted of three overarching questions:

1. How useful would the addition of randomized iterations be for creating interesting
and educational exercises?

2. How useful would the addition of composed statements be for creating interesting
and educational exercises?

3. The ground-works for the first part of the syllabus of the CS1 course at NTNU has
now been implemented in the artifact. In the light of the CS1 course, which concepts
would be most beneficial to focus on?

Before these three questions were asked, the artifact and some examples of exercises using
the two new features were shown. The two first questions were used to start a discussion to
evaluate the usefulness of the two novel features. The last question is concerned with un-
covering new potential features that would improve the learning outcomes of the exercises.
Table 5.2 in section 5.1.4 summarizes the answers and highlights differences between the
answers.
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5.1.3.1 Question 1: How useful would the addition of randomized iterations be for
creating interesting and educational exercises?

Teacher A was very positive to the feature, and clearly stated that it could open the door
for many interesting exercises. The significant advantage is that the difference between
the different loops and iterations changes up exercises enough to the point were they are
somewhat similar but different enough to prevent students from answering the next ques-
tion correctly based on recall of previous answers rather than the actual tracing of the code.
During the first part of the interview, an exercise where two randomized iterations were
nested was shown. This exercise was rather short, but all of the professors pointed out that
such an exercise would usually exceed the ceiling of how difficult exercises in the subject
could be. One of the big problems with it was that such exercises combined different sorts
of iteration, such as a for in range with a while loop, which is not as relevant for CS1
courses. Hence, such usage of the randomized iterations would not be very beneficial.
Another problem with both of the new features is related to the text description of the ex-
ercises. With more deluded and different exercises, it becomes harder to give an accurate
description of every exercise, since they might deviate a lot from each other.

5.1.3.2 Question 2: How useful would the addition of composed statements be for
creating interesting and educational exercises?

Both teachers thought this feature could prove itself extremely useful when generating
large amounts of exercises. Since it allows exercises to combine available variables into
an expression, a large number of different exercises can be made. Additionally, it serves
very well in combination with the randomized iteration construct. While there were no
clear complaints about the feature, it is clear that it is currently quite limited. Since the
current implementation of the artifact mostly focuses on number variables, other variables
such as strings might still be implemented. Thus, the composed statement implementation
would have a limited number of combinations in exercises where variables such as strings
are used. A possible solution to this problem is to use techniques for converting the other
variable types into numbers.

5.1.3.3 Question 3: The ground-works for the first part of the syllabus of the CS1
course at NTNU has now been implemented in the artifact. In the light
of the CS1 course, which new concepts would be most beneficial to focus
on?

A clear concept many students struggle with are dictionaries. Dictionaries are harder to
grasp than other concepts in the course, and it is necessary to solve a considerable number
of exercises to understand the concept properly. Additionally, this means that exercises
using dictionaries does not need to be overly complicated, but instead teach the basics.
Also, both strings, lists, and tuples are essential parts of the curriculum, and should also
be prioritized. These three concepts can generally be viewed as pretty similar, and in most
exercises, they are used in similar ways. While these concepts are useful on their own, they
are often used in conjunction with built-in functions such as list.append or string.join. A
requirement for the implementation of these three concepts is, therefore, a construct that
allows built-in functions to be called on these types. The last feature discussed by all of
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the professors were functions. Functions are an essential part of almost any programming
language, and students usually fail to understand certain concepts involving functions such
as parameter passing, immutable and mutable variables, and return values. Teacher A also
suggested looking at file I/O, with a focus on reading from text-files. Here the generator
would generate files with a particular structure and generate code that handles this file
structure. Teacher B, on the other hand, iterated that I/O should not be in focus, only
because it requires more work than the other features, and might not yield as good results
compared to the work required.

5.1.4 Summary of answers

Question Summarized answer
Question 1 Both Teacher A and Teacher B thought the generator could generate

some great exercises for learning some of the simpler concepts. Addi-
tionally, Teacher A thought some of the randomly generated nested for
loops could be a bit too complex due to its mixed usage of loops (e.g., a
while loop within a for loop). In general, the features were well received

Question 2 Both of the teachers thought that the composed statement generation
would be a great fit for most exercises. The only drawback pointed by
Teacher B is the fact that it would only work on numbers, and thus, would
not apply to certain exercises that did not explicitly work with numbers.

Question 3 Both of the teachers are responsible for the same course, and thus agreed
on many of the new concepts to focus on. Lists, tuples, dictionaries,
sets, and strings were all pointed out by both of the teachers. Teacher A
also stated that functions with and without return values are something
students’ struggle with, and therefore should be included. Teacher A
and B had conflicting views related to I/O. Teacher A thought it could
make for some interesting exercises, while Teacher B thought it could
potentially be too much work compared to the results.

Table 5.2: A summary of the answers during the interview for the first evaluation.

5.1.5 Requirements for the next iteration
As mentioned in Section 4, the development part in each iteration is done according to
a set of requirements extracted from the evaluation of the previous iteration. From the
interviews, a few specific features were pointed out as natural concepts to implement into
the artifact. Those were:

• Functions

• Sets

• Dictionaries

• Strings

• Tuples
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• Built-in Python functions for lists, strings and dictionaries

I/O is missing from this list. It was decided that I/O would not be as high of a priority as the
other features listed, simply because the other features were requested by both teachers,
while I/O was a conflicted topic.

Looking at the new proposed features in the light of the previously implemented features,
a few changes would also be required to support them properly. The randomized iterator
construct would need to support randomized iteration over dictionaries, sets, strings, and
the currently implemented lists. To properly handle this issue, the current type system
needs to be expanded to allow the construct to check the type of the variable it is iterating
over, to customize the iteration to the given type. Additionally, the composed statement
should be expanded to allow other variable types to be included by converting them to
numbers.

A few concrete requirements for the next iteration can be extracted from these points:

• The prototype should support the generation of tracing tasks where the code includes
functions definitions and function calls.

– The functions should be able to generate both void functions and return value
functions.

– The functions should be able to support input parameters.

– The functions defined should be callable with parameters.

• The prototype should support dictionaries.

– Dictionaries should be defined as a variable declaration.

– Dictionary entries should be accessed through its variable name, followed by
square brackets.

– Randomized iterations should be able to iterate over dictionaries.

• The prototype should support Strings as a primitive type.

– A String should be defined as a variable declaration.

– Randomized iterations should be able to iterate over Strings.

– Concatenation of String should be allowed through the arithmetic operator ’+’.

• The prototype should support sets.

– Sets should be defined in the same manner as lists, but surrounded by paren-
thesis instead of square brackets.

– Randomized iterations should be able to iterate over sets.

• The composed statement should support String variables by converting them to num-
bers using the len function.
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• The type system should support the proper type checking of statically defined vari-
ables.

• The artifact should support the usage of specific built-in Python functions for lists,
strings, and dictionaries.

• The artifact should support randomized string concatenation.

5.1.6 Summary of requirements
Table 5.3 presents the overarching topics for each requirement, who suggested the require-
ment and the requirement itself. The source of the requirement is either one or more of the
teachers or the author.

Id Overarching
topic

Source Requirement

FR1 Functions Teacher A The functions should be able to generate
both void functions and return value func-
tions.

FR2 Functions Both teachers The functions should be able support input
parameters.

FR3 Functions Both teachers The functions defined should be callable
with parameters.

FR4 Dictionaries Both teachers Dictionaries should be defined as a variable
declaration.

FR5 Dictionaries Both teachers Dictionary entries should be accessed
through its variable name, followed by
square brackets.

FR6 Dictionaries Author Randomized iterations should be able to it-
erate over dictionaries.

FR7 Strings Both teachers Strings should be defined as a variable dec-
laration.

FR8 Strings Author Randomized iterations should be able to it-
erate over Strings.

FR9 Strings Author Concatenation of strings should be allowed
through the arithmetic operator ’+’.

FR10 Sets Both teachers Sets should be defined in the same manner
as lists, but surrounded by parenthesis’ in-
stead of square brackets.

FR11 Sets Author Randomized iterations should be able to it-
erate over sets.

FR12 Composed
statements

Teacher B &
Author

The composed statement should support
String variables by converting them to
numbers using the len function.
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FR13 Type system Author The type system should support proper
type checking of statically defined vari-
ables.

FR14 Built in
Python func-
tions

Author The artifact should support usage of spe-
cific built-in Python functions for lists,
strings and dictionaries.

FR15 Strings Author The artifact should support randomized
string concatenation.

Table 5.3: A summary of the requirements from the first round of evaluations.

5.2 Iteration 2

The requirements for this iteration is summarized in table 5.3. The sections below explain
the implementation of the requirements.

5.2.1 Function calls
Functions are essential to almost any programming language, including Python. Imple-
menting functions require the usage of several constructs used in the implementation of
previous features. There are two main aspects of implementing the generation of program
tracing exercises where the code includes functions. The first is allowing for functions to
be defined with a name and parameters, while the second aspect is allowing for function
calls to be used in expressions and statements.

To allow for functions to be defined, one of the root productions of the grammar had to
be changed. The code block is the highest grammar rule, which allows for 0 or more
statements to be defined within it. Since functions in Python can only be defined at the
highest level, a code block must have to allow for functions and statements to be defined.
Production 5.4 and 5.5 represent the two productions used to define a function. The former
shows the structure of a function, which consists of defining that it is a function, its name,
and then a parameter list. The parameter list is a list of zero or more variable names. To
properly implement a function definition, the symbol table also has to be included. Since
the parameters count as standard variables inside the function scope, they have to be added
to the symbol table representing this scope. An issue with doing this is that there is no way
of knowing the variable type of the parameters until the function is called with values.
Generally, this would not be a problem, but since other features of the generator, such
as composed statements, utilize the type of the variables to combine them, the variables
utilized in the function have to be assigned some type if they are to be correctly integrated
in the prototype.

Additionally, the function has to be added to the highest level symbol table. Since Python
explicitly requires a function to be defined before its called, all functions need to be added
to the symbol table. Since the parse-tree traversal always traverses the tree linearly, a faulty
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function call can be detected by checking if the function in question is stored in the highest
level symbol table.

<function definition> −→ <function><var name>

’(’ <parameter list> ’)’ <stat block>
(5.4)

<parameter list> −→ (<var name> (’,’ <var name>)*)? (5.5)

The second part is allowing a function to be called, as, without this part, the function
would be useless. The Productions 5.6 and 5.7 show the two productions required to
properly call a function with its parameters. Production 5.6 simply refers to the function
name and the parameters required. As mentioned, knowing the type of the variable passed
into the function parameters is also essential. However, this issue does not have a simple
solution, because a parameter might have different types in two different function calls.
As a result, the parameters are given an open type that is always accepted when generating
composed expressions, unless they are specified to not part of it. While this in no way is
the most optimal solution, it is viable and enables functions to be used in conjunction with
other features.

<function call> −→ <var name>

’(’ <parameter expression list> ’)’
(5.6)

<parameter expression list> −→ (<expr> (’,’ <expr>)*)? (5.7)
<return stat> −→ <return> <expr> (5.8)

The last required feature to allow proper function calls is the return statement. Without it,
the function would only be capable of either printing values or mutating mutable variables.
Production 5.8 displays the structure of the return statement.

Listing 5.2 shows how function parameters can be combined to be utilized with composed
expressions.

1 # The template
2 a = 5
3 def fun(b, c, d) {
4 if composedStatement() {
5 return b + c
6 } else {
7 return a + d
8 }
9 }

10 print(fun(6,7,8))
11

12 # Exercise 1
13 a = 5
14 def fun(b,c,d):

42



15 if c <= d or a > b:
16 return b + c
17 else:
18 return a + d
19

20 print(fun(3,5,8))
21

22 # Exercise 2
23 a = 5
24 def fun(b,c,d):
25 if d <= b and a > c:
26 return b + c
27 else:
28 return a + d
29

30 print(fun(3,5,8))

Listing 5.2: A template and exercises with a function call that incorporates composed expressions.

5.2.2 Tuples

Just like lists, tuples are indexed collections; however, tuples are immutable. It, therefore,
has no concrete built-in Python functions to mutate it in any way. Parenthesises are used to
define a tuple, and each element within it is defined the same way as a normal list. Produc-
tion 5.9 show the structure of a tuple definition. Even though tuples are immutable lists,
they still behave just like lists when iterating over them. Therefore, the tuples had to be
added to the randomized iteration structure to allow randomly generated iterations.

<assign tuple> −→ ’(’ (<expr> (’,’ <expr>)*)* ’)’ (5.9)

5.2.3 Dictionaries

Dictionaries are an important part of the curriculum in the CS1 courses at NTNU. It is,
therefore, essential to give templates the ability to utilize dictionaries and their use-cases.
Assigning a dictionary is very similar to list assignment, and is illustrated in Production
5.10. This production involves both assigning empty and populated dictionaries. The big
difference between the two is that a dictionary entry is defined with two values; a key and a
value. This is reflected in Production 5.11, which represents a dictionary entry. Since both
the key and the value are defined as two expressions, their type can be determined upon
definition. This data is stored in a separate data structure that is passed to higher-level
productions during tree-traversal. This also includes storing the variable defined in the
symbol table, containing a HashMap of all its values. Doing this allows other constructs
in the generator to use dictionaries in a better way. An example would be to have the
randomized iterator determine what type of variable it is iterating over, and then adjust its
output based on this information.
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<assign dictionary> −→

’{’ (<dict entry> (’,’ <dict entry>)*)* ’}’
(5.10)

<dict entry> −→ <expr> ’:’ <expr> (5.11)

5.2.4 Sets
A set is an unordered and unindexed collection. They are defined by curly brackets, just
as dictionaries, but instead of having a key-value pair for every entry, it only contains
values for every entry. An empty set is achieved in Python by the call set(), since {}
yields an empty dictionary. Production 5.12 shows the simple production for defining a
set. In addition to adding a way of defining sets, an entry for sets was also added to the
randomized iterator construct. Since sets behave rather similar to dictionaries, they are not
indexed, and thus, using a while or for in range loop does not make sense. A for-each
implementation was, therefore, the only iteration structure utilized for sets.

<set> −→ ’{’ <expr> (’,’ <expr>)* ’}’ (5.12)

5.2.5 Strings
Strings are essential and one of the building blocks of CS1 courses. In the grammar,
they have to be defined as the lowest level variable, to allow them to be added to the
symbol table by the system currently in place. Production 5.13 shows a regular expression
determining the rules for defining a string.

<string> −→ ’"’ (˜[\r\n] | ’""’)* ’"’ (5.13)

To allow a string to be concatenated, it needs to be defined as an expression. In the gram-
mar, all other primitive variable types are defined as atomic expressions, and thus, the
string is also included here.

5.2.6 Improved Type Checking
One of the underlying features of the grammar is that the atomic expressions have explicit
types (number, string, or boolean). While this feature was fundamentally implemented in
the grammar, it was never utilized in the parser other than to determine the variable type
to be inserted into the symbol table. Since other features of the prototype, such as the
randomized iterator, could significantly benefit from having the ability to check the type
of variables, a system for passing variable types through the tree was implemented. The
idea behind this system is to allow lower-level productions such as atomic expressions or
variable declarations to return a value containing information about the type and variable
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name. By doing this, higher level productions are given access to more information about
the variables utilized.

Since ANTLR4 generates visitors for every production that is allowed to return generic
values, this was utilized to pass information through the tree. The type to be passed as
a return value from the visitors was named AtomicVariable, which took two parameters,
first the value as a generic object, as this value could vary based on the type of variable
to be returned. The other parameter contains information about what type of variable it
is. This implementation also made it easier to extend the Symbol Table, as it allows the
symbol table to be populated at a higher level than previously.

Another major issue related to types are data-structures that can contain variables of mul-
tiple types. Lists or dictionaries are examples of such structures. The issue with these
structures is that there is that the generator cannot with one hundred percent certainty tell
what type each element within the structure is. Because the prototype operates at compile-
time, it is unaware of what might potentially happen at runtime. The issue arises from the
parameter variables in functions. Since a function’s parameter can be of any type, depend-
ing on what is passed to it during a function call, mutation of lists in a function is hard to
track. A result of this is that when generating composed statements with elements from a
list, there is no trivial way to determine what type each element is. While this is a hard
problem, it is still possible to solve by making an assumption. It is possible to assume that
if every element in the list is of a single type when its assigned, then no other type than the
initial will be appended to the list. This assumption makes it possible to check the elements
of a list when it has been assigned and give it a specific type (e.g., a list of strings). Doing
this allows constructs such as the composedStatement to accurately determine the type of
every element, giving it more information to create better statements. The assumption,
however, is at the mercy of the template creator. If the template creator decides to append
elements with a type that is not in the initial list, the composedStatement has the potential
to generate erroneous statements, resulting in invalid Python code. Therefore, this feature
requires a more in-depth evaluation to determine if making such an assumption provides
more benefits than potential problems. Due to these potential problems, a simple property
was added to determine if such an assumption is to be made. Hence, the assumption can
be removed by merely disabling it in the settings.

5.2.7 Expanding the randomized iterator to include different types
To expand the randomized iterator to include different types, the symbol table needs to
be used. Since some types, such as dictionaries, do not have an index to iterate over,
loops such as for in range will not work on this data-structure. To solve this, the generator
needs to determine the type of the variable to iterate over before it generates a loop. A
list containing all variable types that can be iterated over was therefore created. This list
contains: Lists, Tuples, Dictionaries, Sets, and Strings. Iterating over lists, strings, and
tuples can be done in the same way, as a tuple is just an immutable list, and a string is
essentially a tuple of characters. The list implementation is therefore done the same way
for lists, strings, and tuples. Dictionaries and sets have to be handled differently, however.
Since these are not indexed by numbers (and sets are not indexed at all), the for in range
implementation is not possible. A while loop over dictionaries and sets are technically
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possible; however, it does not make much sense. Hence, only the for-each implementation
was included for these two data-structures.

5.2.8 Built-in Python Functions
Another feature that would allow for better exercise generation is to allow certain built-in
functions from Python to be used. Examples of this would be list.append() and list.clear().
These features are commonly used in the CS1 courses, and should, therefore, also be re-
flected in the prototype. To properly add such functions, the type checking system needs
to be utilized. Since every function is to be applied to a variable of some type, the vis-
itors need to be able to determine if the function called from the current variable exists
for that type. An example would be to call the .append() function on an integer, which
would not work. To solve this problem, every built-in function gets a separate production
consisting of the variable being called and the specifications for that function. Produc-
tions 5.14 to 5.19 show five of the implemented functions. Each production has its own
generated visitor that handles type checking for that specific function. The # behind ev-
ery production denotes that the productions have a specific visitor. This allows multiple
productions to have the same visitor. The idea behind labeling productions is that some of
the productions can be handled in the same way. It is, therefore, sensible to allow multiple
productions to utilize the same visitor. Hence, functions on lists can all be handled by the
same visitor.

To validate the variable type, the symbol-table is consulted. Based on the type of informa-
tion, it decides if the function exists for the given variable. As seen, the first part of each
production is the same. While this looks redundant, it is required because every production
needs to specifically know the variable name to do the type checking.

<variable function>

−→ <var name> ’.’ <append> ’(’ <expr> ’)’#listFunction
(5.14)

−→ <var name> ’.’ <remove> ’(’ <expr> ’)’#listFunction (5.15)
−→ <var name> ’.’ <clear> ’(’ <expr> ’)’#listFunction (5.16)
−→ <var name> ’.’ <join> ’(’ <expr> ’)’#stringFunction (5.17)
−→ <var name> ’[’ <expr>? ’:’ <expr>?

((’:’) <expr>?)? ’]’#lis
(5.18)

−→ <var name> ’.’ <random slice> ’(’ ’)’#randomStringSlice (5.19)

As seen above, Production 5.18 has a different structure than the other four. This is because
the production handles list slicing. A decision was made to treat list slicing as a function
since it only can be performed on lists and tuples, and thus requires the same type-checking
as the other productions. The production simply allows the template to define list slices
where either of the three parameters in the square-brackets can be taken. An example
would be string[::-1], which simply reverses a whole string (Note that a string can be
looked at as a special tuple, and therefore also applies to this production).
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Production 5.19 were also added, and essentially generates random slices using the same
syntax seen in Production 5.18. To generate random slices, it utilizes the same constructs
as the randomized iteration construct. It generates random lower and upper boundaries and
a direction to slice (backward indicates that the string is reversed). Based on these values, it
creates a string slice. An important feature of this function is that certain boundaries, such
as start slice from index 0 or end at the length of the string is omitted since these are im-
plicitly specified unless otherwise defined. A concrete example would be list[0:len(a):2]
and list[::2], which are equivalent. Omitting implicit values was implemented to make the
generated code snippets as realistic as possible. If the generated snippet simply had re-
verted boundaries (from the length of the string to the index 0) and a negative step length,
it essentially means the list is to be reverted. The best practice for this is by simply writ-
ing list[::-1], which the generator achieves by properly checking the boundaries and step
direction.

All of the productions above except 5.18 and 5.19 is implemented in a very general way,
where the main distinction between them is what type the function is allowed to be called
from. Such a solution makes adding more built-in functions easy, as the only required
information is what type the function call needs to be allowed.

5.2.9 Evaluation
The evaluation for iteration 2 was done in conjunction with three professors. The evalua-
tion’s main focus was to determine the suitability of the features implemented and look at
the possibilities for the final iteration.

Professor Years of experience
A 7
B 2
C 17

Table 5.4: Table of professors interviewed during the second evaluation.

While many features were implemented during the iteration, much of the work was not
as visible as previous iterations. A clear example is the improved type-system, which
required much work, but was only visible in a small part of the generator. As a result,
more focus was put into the future features than in previous iterations. The questions
asked and discussed around during the evaluation were the following:

1. How useful would the addition of functions be for generating interesting and educa-
tional exercises?

2. How useful would the addition of strings, sets, tuples, and dictionaries be for gener-
ating interesting and educational exercises?

3. There is one iteration left of the project. Based on the current implementations, what
features would you like to see in the last iteration?

Before the three questions above were asked, the prototype was shown with some sample
exercises utilizing the new features. The two first questions were used to spark a discussion
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to evaluate the features of iteration 2, while question 3 was used to determine new features
to be implemented in the final iteration.

5.2.9.1 Question 1: How useful would the addition of functions be for generating
interesting and educational exercises?

Teacher A gave a positive response to the feature but thought the usefulness for generat-
ing new exercises over time would be reduced because it had no features that allowed for
direct randomization. However, since functions are a significant part of most CS1 courses,
the feature makes sense and enables the generation of exercises relevant for the course.
A suggestion was to allow for usage of pre-determined common functions for algorithms
such as sorting. These functions would be pasted into the code during exercise generation
to test the students’ knowledge. Both teachers B and C gave positive feedback and, in
general, expressed that the usefulness of the generator increased with the addition of func-
tions. None of the two teachers had any direct criticism or changes that should be made,
and teacher B stated that learning the concepts of the functions is most important.

5.2.9.2 Question 2: How useful would the addition of strings, sets, tuples, dictio-
naries, and built-in functions be for generating interesting and educational
exercises?

The exercises generated using the mentioned features with randomized constructs create
very technical exercises. Teacher A thought the exercises were very specific and would
test precise knowledge, such as understanding exactly how slicing works. While such
features could create interesting exercises, they might not be as attractive in the larger
picture. Teacher B thought the features would be interesting and that they would increase
the diversity of the generator. On the other hand, these features, in conjunction with the
randomized constructs, could increase the risk of exercises becoming too obscure, thus
reducing the exercises’ ability to test the students understanding of concepts. As a result,
the exercises generated might be difficult because of obscurity rather than testing difficult
concepts. Teacher C gave a positive response and thought the implemented features would
enhance the exercises generated.

5.2.9.3 Question 3: There is one iteration left of the project. Based on the cur-
rent implementations, what features would you like to see in the last itera-
tion?

As mentioned briefly, during question 1, teacher A thought that having a set of commonly
used functions available in the generator would make much sense. Since there are certain
functions students should learn during a course, having these as a part of various exercises
would provide better learning outcomes. An example would be to have allowed the usage
of merge-sort, where the function that does the sorting is pasted to the top of the exercise
during generation. This would not provide any more randomization to the exercises, but it
would allow students to understand essential functions better.

Both Teacher B and C thought that new features to the generator should not be the main
focus since there was only one iteration left. Both expressed that another important aspect
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of the generator and the template language would be how easy it is to use. This was
emphasized in terms of the quality of feedback the ”compiler” creating exercises from the
template would respond with. An interesting approach both of the teachers lightly touched
on would be to look at how to give good error messages to the template creator if parts of
the template has invalid syntax or logic. Such a feature would make it easier to learn how
to use the generator.

While discussing the features, Teacher C also thought the ability to tag exercises with
relevant concepts would be a great idea. Tagging could prove useful when storing the
exercises, as it would be easier to find relevant exercises by fetching them based on their
tags.

5.2.10 Requirements for iteration 3
Based on the feedback from section 5.2.9, three new features came up:

1. Error handling and responses

2. Tagging of exercises

3. Commonly used functions should be included with code in every exercise if used

The first feature is all about making it easier to utilize the generator and its template lan-
guage. Feature 2 looks at ways to classify the exercises generated based on the concepts
it utilizes, while feature 3 aims to increase the students’ understanding of important func-
tions by including them in the exercises.

Table 5.5 below illustrates the functional requirements derived from the feedback in sec-
tion 5.2.9.

Id Overarching
topic

Source Requirement

FR1 Error & Feed-
back

Teacher A &
B

The generator should give feedback of the
line, position and offending symbol when
a syntax error occur.

FR2 Error & Feed-
back

Teacher A &
B

The generator should give feedback of the
line and error when a logic error occur.

FR3 Tagging Teacher C &
Author

The generator should be able to tag exer-
cises with concepts it tests.

FR4 Common
functions

Teacher A The generator should have a set of com-
monly used functions that are copied into
exercises upon generation when used in the
template.

Table 5.5: A summary of the requirements from the second round of evaluations.
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5.3 Iteration 3

5.3.1 Tagging topics of an exercise
As mentioned in section 2.2, meta-data linked to exercises could allow researchers to de-
velop existing CI’s further and also create new ones. This makes tagging exercises with
relevant topics and concepts relevant. Additionally, having specific tags for topics would
allow students to target exercises containing specific concepts they want to practice di-
rectly. Therefore, it is desirable to automatically allow the auto-generator to tag exercises
with topics and concepts utilized in each exercise as they are generated. However, to tag
the exercises, proper and correct tags have to be identified.

Chinn et al. conducted a study examining exams and found a set of important topics
covered during exams [37]. A small subset of these topics are illustrated below:

• Loops

• Arrays

• Assignment

• I/O

• Parameter passing

• Strings

• Arithmetic operators

The topics presented by Chinn et al. serves as a good list for topics to be used for tagging
generated exercises.

Since the generator utilizes ANTLR4 to define and parse the specified grammar, it has ac-
cess to visitors for all productions within the grammar. These visitors allows the generator
to determine what constructs are being used in an exercise specifically. An example would
be a loop. Since a loop is specifically defined within a production, the visitor that han-
dles that production could automatically add a tag to that exercise if it is executed. Figure
5.1 shows a very simplified version of the parse-tree generated from the exercise template
illustrated in Listing 5.3.

1 a = [1,2,3,4,5]
2 for e in a {
3 print(a[i])
4 }

Listing 5.3: Code illustrating a for each iterator being used on a list.

For each node in Figure 5.1, there exists a visitor. Even though the parse-tree has been
drastically simplified compared to the real parse-tree, it still contains enough information
to generate relevant topic tags. By looking at the small list of topics above, both assign-
ments and loops are part of the suggested topics. As seen, the assignment node exposes
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Figure 5.1: A simplified parse tree generated from the snippet in Listing 5.3.

the assignment topic, meaning the assignment visitor could add the assignment tag to the
exercise. The same principle goes for the loop, as the forInIterator visitor could assign the
loop tag. Additionally, the code also iterates over a list (array). Since the symbol table also
stores what type of variables have been assigned, one could simply look up all variables
referenced to see if any of them are of the type list. In this case, the a reference in the
for-each loop references a list, and therefore that visitor could apply the array tag.

5.3.2 Error handling and feedback
Another essential aspect when looking at the technique for generating exercises is its ca-
pabilities to give error messages and warnings to the user during exercise generation. Even
though it might be capable of generating interesting exercises, its usefulness is diminished
if it is hard to learn or fails to give proper feedback to the user. Therefore, creating a good
generator based on templates is an integral part of creating a sound system for handling
feedback and errors.

Generally, there are two types of errors that have to be handled; syntactic and logical
errors. The former is directly related to the characters used in the template. A syntax error
can formerly be defined as an error that occurs when the parser fails to find an available
production that fits the next character in the template, and therefore causes the template to
be invalid with respect to the grammar. A logic error can be defined as an error that occurs
when the syntax is correct, but the logic of the template is faulty. An example would be
using the plus (+) operator between an int and a list. While the grammar might allow this,
the logic in itself does not make sense (when looking at the features of Python), and the
generator should, therefore, report this issue. The two subsections below explain how error
handling and responses were implemented in the prototype.

5.3.2.1 Syntax errors

As mentioned, syntax errors are issues where the input does not match the productions of
the grammar. They are therefore detected upon parsing the template language. The gen-
erator is implemented with the parser-generator framework named ANTLR4. ANTLR4
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allows the user to attach custom error listeners to the parses. Doing this allows the devel-
oper to be notified when an error occurs. During parsing, the only error possible are errors
where the syntax is not valid. Hence, the detection of syntax errors is, therefore, achieved
in the generator by attaching a custom error listener to the parser.

When the error listener is invoked, it will extract information from the error at hand. Since
the error is a result of a syntax error, it contains information about what caused it. The
relevant information extracted by the listener is the line number and the character position
that caused the error. Additionally, it can extract the offending symbol, e.g., the symbol
that caused the error. Once the information is acquired, the listener throws a custom Syn-
taxErrorException, which can be caught by the generator. The message attached to the
SyntaxErrorException is crafted to an easily readable message consisting of the informa-
tion extracted from the parser. When the generator catches the SyntaxErrorException, it
responds to the exercise generation request with the error message.

5.3.2.2 Logical errors

The other category of errors are linked to invalid logic. These errors can only occur if there
were no syntax errors, because these errors are generated during tree traversal, implying
that the syntax was valid and hence a parse-tree could be generated. There are multi-
ple logic errors, some are inherited by Python, while some are specific to the template-
language. The way of handling the errors is equal to the SyntaxErrorException, where an
exception is thrown, then caught by the generator, and passed on as a response.

Errors inherited by Python are mostly related to expressions between different variable
types. The example with adding using the logic operator plus (+) between a list and an
integer is such an error. To catch these errors, a set of rules has to be established. These
rules explicitly determine what types can interact with each other and with what operators.
As such, the rules state that a list can be multiplied (*) by an int and that the expression
should be evaluated as a new list. To implement these rules, all productions with expres-
sions had to be re-written. Previously they would not care about what types they were
given, which could lead to errors, but since there was no logic in place to determine what
was wrong, a proper error message would not be possible to generate. With the new logic,
error messages are entirely able to determine if an expression is valid, and if it is not, it can
explicitly tell what is wrong, by pointing to the variable types and the operator. Another
issue related to Python is function calls. While functions could be defined and called in
the template, there was no logic in place to determine if the function call was valid. An
example would be a function fun with three parameters. If fun were called with two pa-
rameters, nothing would happen, as this error could only be detected during parsing. To
adequately detect and report such errors, logic was implemented to count the number of
parameters in the function definition and throw an IllegalParameterExpression if it was
called with the wrong number of parameters.

Errors specific to the template-language are related to the constructs mentioned in previous
chapters. These are usually caused by constructs receiving variables of invalid types. An
example would be the randomized iteration construct. It allowed for any iterable type to be
used, but if an invalid type were provided to the construct, it would fail with an exception,
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but the exception did not contain important information about why it failed. The excep-
tions were therefore expanded to utilize custom exceptions. While error handling in these
constructs were already implemented, new exceptions had to be generated to categorize
the errors correctly.

All of the logic above, including exceptions, also contain the offending line number in the
template.

5.3.3 Evaluation
As mentioned, the evaluation of the last iteration was performed through a test where the
professors were given access to the prototype itself, along with documentation. Because
the professors themselves are the experts at creating exercises for obligatory deliveries and
exams, they were given free reigns to test generating exercises they could see fit. To inspire
their creativity, the documentation also contained multiple different example templates that
could help with inspiration.

The test’s main objective was to see how suitable the generator would be for their CS1
course while also looking at how easily they were able to understand and use the template
language. Based on the objectives, qualitative responses would be the most interesting to
look at. Each participant was, therefore given a set of questions to answer after the testing
was done:

1. How many years of experience with CS1 courses do you have?

2. Did the error messages and warnings affect your ability to create correct templates?

3. Could the exercises you generated have use cases in your course?

4. Is there any features you wish would be implemented to further improve the gener-
ators ability to create exercises?

5. Do you see any drawbacks with using the prototype to generate program tracing
exercises?

6. Would you be interested in using such a tool to create exercises in the future?

7. Do you have more feedback not included in the previous questions?

Due to the Covid-19 related lockdown of Norwegian university campuses in the Spring of
2020, performing all of the planned tests became a significant challenge. All of the planned
participants were teachers of different CS1 courses at NTNU, and due to the lockdown,
their courses required re-structuring. The large amount of additional work meant the test
needed to be down-prioritized, and as a result, only one professor had the opportunity to
participate. In the sections below, the participant is referred to as Teacher A.

5.3.3.1 Did the error messages and warnings affect your ability to create correct
templates?

Teacher A had mixed thoughts about the error messages and warnings. While some of
the errors gave specific feedback about what went wrong and where it went wrong, others
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did not give clear enough information about what went wrong. Unexpected errors partially
caused this during the testing. Teacher A stated that it could be used in a real context based
on the error messages that gave proper information.

5.3.3.2 Could the exercises you generated have use cases in your course?

Based on the examples from the documentation as well as the testing performed by Teacher
A, a tool like the prototype could be very useful for creating program tracing exercises.
In its current state, however, a certain degree of manual inspection must be done to assure
that the exercises are of decent quality, as the quality of the generated exercises varies.
Additionally, it would have to have a support system around it. For example, storing
templates and exercises for different parts of the curriculum in a manner that allows the
students to access them easily.

5.3.3.3 Is there any features you wish would be implemented to further improve the
generators ability to create exercises?

Teacher A thought that the generator covered most of the important aspects of their CS1
course. In general, the most important focus point would be to fix all of the small er-
rors (Such as wrong return value for specific built-in functions) contained in the template
language to make it more fluent. The one feature not covered in the CS1 course is I/O
handling, which could be something to expand upon. Additionally, it could be interesting
to generate textual descriptions of the exercises. Such a feature would allow a new type
of exercise where the students’ are given a description of the exercise and tasked with
writing the code that matches the description. These exercises could then be corrected by
comparing them to the exercise generated.

5.3.3.4 Do you see any drawbacks with using the prototype to generate program
tracing exercises?

Teacher A was a bit unsure of any particular drawbacks with the prototype. In general, the
most significant drawback was the small errors linked to the template language. Addition-
ally, it was a bit hard to understand which parts of the template language causes changes
in each exercise. It could potentially be helpful to have even more complex examples to
show other sides of the generator.

5.3.3.5 Would you be interested in using such a tool to create exercises in the fu-
ture?

Teacher A thought such a tool could be handy for generating exercises. The concept has
potential, but it would require a more stable and polished prototype. For it to be useful in a
course, it would have to be implemented in a system that is capable of storing the exercises
as well as testing the students.
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5.4 Duplicate exercises

During the development, code was implemented to measure duplicates for different tem-
plates. The code simply compares the code for every generated exercise, and if two code
snippets are identical, they are deemed as duplicates. The percentage of duplicates out
of total exercises was measured on some of the templates used during evaluation, and
is presented in figure 5.2. The figure measure duplicates for 100, 500, and 10000 exer-
cises. Each set size of generated exercises was generated 100 times, and the results are the
average of the 100 times generated. The corresponding table with absolute numbers of du-
plicate exercises and the corresponding standard deviation is shown as Table 5.6. The four
templates used to sample the duplicate count can be found in Appendix K.1, in Listing 7.2,
7.3, 7.4 and 7.5. Note that template 4 has correct data entries; there are just 0 duplicates
for all entries.

Figure 5.2: Percentage of duplicate exercises from four selected templates.

As seen in the graph, there are templates 1 and 4 with 0 or very close to 0 duplicates for
100 generated exercises. Templates 2 and 3, however, have around 30% duplicates, and
both have a standard deviation of around 3.5% (Depicted as the black lines on the top
of the bars). When increasing to 1000, the number of duplicates increases drastically for
templates 2 and 3, while the standard deviation drops very close to 0. n, as depicted by the
little line at the top of the graphs. Template 1 has around 3% duplicates. When increasing
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Template # Duplicate of
100

σ Duplicate of
1000

σ Duplicate of
10000

σ

1 0.22 0.44 30.29 5.71 2245.92 31.11
2 29.89 3.73 831.68 1.21 9830.0 0.0
3 16.13 3.71 642.47 5.82 9592.0 0.0
4 0 0 0 0 0 0

Table 5.6: Table containing the average number of duplicate exercises for each generated template
and the standard deviation when running the generation 100 times.

to 10000 generated exercises, both Template 2 and 3 stabilizes at 98% and 96% duplicates
respectively with precisely 0 in standard deviation. As seen in the Table 5.6, there are
precisely 9830 and 9592 duplicates. During all of the tests, there were no duplicates in
template 4.
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Chapter 6
Discussion

This chapter will be discussing the results from the design science process in the light of
the four research questions:

1. What solutions of auto-generating programming-exercises have already been pro-
posed in research-literature?

2. What is the best approach for generating a large amount of program tracing exer-
cises?

3. Which parts of CS1 courses would the generated exercises be most useful for?

4. Are there any significant technical limitations related to the approach chosen for
generating exercises?

6.1 Evaluating the generator

6.1.1 Implementation and testing
The results from the test, as shown in Section 5.3.3, highlighted both advantages and
disadvantages of the generator. From the testing, it became clear that one of the main
drawbacks of the prototype, in particular, was its susceptibility to errors related to the tem-
plate language. Since a large part of the workload related to the generator revolved around
creating and implementing a functioning template language, it is also naturally more prone
to errors. Since all types, functions, and constructs has to work exactly as described when
creating a programming language, any implementation mistakes could easily cause errors
when using said language. While the type system of the prototype was in place, it became
clear that the system could use even more testing. It would be possible to test the proto-
type even more by conducting a more extensive test on even more lecturers and teachers to
identify and fix the template language’s remaining issues. Additionally, creating a suite of
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tests matching the language’s specifications could also provide an excellent way to iden-
tify bugs. By implementing unit tests checking the type and return values of variables and
built-in functions, small errors could be caught early without direct human testing, and
new errors could also be prevented during further development.

Another point presented during the test was the ability to learn how to use the generator.
Before the test was conducted, the two primary tools for learning were the documentation
given to the testers, as well as the error and warning messages given by the generator.
Based on the response from Teacher A in Section 5.3.3.1 and Section 5.3.3.4, some time
was spent understanding how the generator worked and how it converted a template into
exercises. Initially, the subject struggled with understanding the difference between some
of the generated exercises, but as they tried new templates, it became more evident. For
the prototype to be even more usable, a more in-depth description of how it generates ex-
ercises is required. One of the most natural approaches to solve the problem would be to
provide an even more thorough documentation explaining more of the generator’s underly-
ing techniques, as well as concrete examples of what happens when the generator converts
a template to a set of exercises. Since the system’s users are seasoned programmers, hav-
ing such a technical description and explaining the inner workings of the system would be
feasible. Additionally, the error messages and warnings could be further developed to give
an even more explicit description of the problem, since responding with error and warning
messages in ”dangerous” situations are important [38].

The last point discussed during the test was the prototype’s usefulness in the CS1 course
taught by the test subject. While the subject agreed the prototype could prove useful in
their course, based on the feedback, two main issues have to be resolved for the prototype
to be fully use-able:

1. The template language has to be stable, without any errors or small bugs

2. The generator has to be incorporated into a helping system for the students

The first issue is linked to the technical implementation of the generator itself, and is
described further in section 6.3.

Issue #2 is related to the system around the generator. While the generator itself is ca-
pable of generating exercises that can be used in various CS1 courses, its usefulness is
diminished if it cannot be implemented into existing or novel e-learning systems. Making
the prototype more useful for these courses would require a design that allows for inte-
gration with other systems. In its current state, the prototype does utilize a REST-API
to retrieve templates and return exercises and answers, but this is also the only end-point
implemented. Making a standardized API with proper documentation would allow for im-
plementation into existing and novel learning systems without much modifications to the
generator.

6.1.2 Duplicate exercises
As seen in the graph from Section 5.4, templates 2 and 3 receive an increasing percentage
of duplicates when increasing the number of exercises generated. When hitting 10000
exercises generated, they have a standard deviation of precisely 0, which is a clear indicator
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that they are hitting a cap of possible exercises to generate. When looking at the increased
percentage of duplicates while increasing the number of exercises generated, this makes
sense. Since there is a maximum number of exercises a concrete template can generate,
the percentage of duplicate increases as its getting closer to having generated all of the
exercises possible, which explains the statistics of templates 2 and 3.

Based on the way the generator creates exercises, it is also possible to calculate the total
number of possible exercises a template can generate. The number of possible exercises
is directly affected by the different constructs utilized in the templates. Many of the con-
structs also rely on randomization, and an increase in the number of such constructs also
increases the number of possible exercises. To calculate all of the different exercises a
single template can generate, one has to take the product of all the different outputs of the
random constructs in a template. Equation 6.1 shows the formula. Note that each entry
in the set con represents the number of different outputs a construct can generate. A sim-
ple example of this formula could be calculating the maximum number of exercises for
the simple template shown in 6.1. In the template, there are two randomized constructs,
namely the randInt functions for a and b. These both range from 1 to 10, meaning each
construct has 10 different outputs. Using the equation, we find that there are 100 differ-
ent combinations. This can be confirmed by generating an adequate amount of exercises
(where the standard deviation is zero) and confirming that the number of duplicates is n -
100, where n is the number of exercises generated.

1 a = randInt(1, 10)
2 b = randInt(1, 10)
3 if a > b {
4 print(a)
5 } else {
6 print(b)
7 }

Listing 6.1: A very simple template used to illustrate the concept of calculating duplicates for the
exercises.

The equation can also be used to confirm the duplicate numbers in Table 5.6 for template
2 and 3 when generating 10000 exercises. As seen, template 2 shown in Listing 7.3 from
Appendix K.1 utilizes a randomized list and a randomized iteration. The randomized
list has five different outputs, and iteration construct has a total of 34 different ways to
loop over the list. Using the equation gives a total of 170 unique exercises for template 2,
which confirms the number of duplicates shown in Table 5.6 when subtracted from the total
number of exercises generated. Template 3 also has two different randomized constructs:
a randomized iteration and a randomized string slice. The randomized iteration has 34
different outputs, while the string slice has 12 different outputs. This gives a total of 408
unique exercises, which also matches the table entry for template 3.

As seen in the graph from Figure 5.2, the number of duplicates highly depends on the
template. While some templates allow for a vast amount of unique exercises, a large
variety of exercises might not be required. Template 2 and 3 from the graph was shown to
have 170 and 408 distinct exercises, respectively. In a course containing 1000 students, the
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exercises =
∏

n∈con

n (6.1)

Figure 6.1: To equation to calculate the number of unique exercises generated by a given template.
The set named con represents every randomized construct in the template and the number of different
outputs the construct can generate.

two templates mentioned would generate more than enough exercises. Since the exercises
generated are rather simple and do not require much time to solve, students are less likely
to cheat, regardless of them having the same exercise. Additionally, it is beneficial to have
a certain number of students per exercise to facilitate analysis. Having too few students
per exercise makes it harder to determine the difficulty of each exercise generated by the
template. In practice, it means that cheating by getting the answer from someone else
or someone sitting next to the student is severely reduced due to the low chance of them
having the same exercise.

Duplicates can also prove themselves problematic if the creator of the template is not aware
that the generator creates duplicates. Also, duplicate exercises can be extremely prob-
lematic if the generated exercises are used in exams, because it runs the risk of students
receiving the same question more than once. Having duplicate exercises in a formative
evaluation such as self-testing could provide the students with a false sense of accomplish-
ment, since they might end up learning the correct answer of a duplicate exercise, rather
than learning the underlying concepts. A possible solution to the duplicate issue would
be to utilize the formula presented in Equation 6.1 to show the creator of the template
how many unique exercises could be generated with the current template. Also, an option
could be provided to the generator, where it only selects unique exercises, resulting in no
duplicate exercises.

6.1.3 Ability to expand
Another essential feature to consider when evaluating the quality of the generator is its
ability to be expanded with new features. A significant advantage of using the context-
free grammar approach for generating exercises is not only its ability to extract much
information from the template but also the ability to modify the grammar to make the
template language fit the user’s needs. These two advantages, in conjunction, give the
developer great freedom to implement new features that can be manifested either in the
generator itself or in the template language.

Being able to expand the generator past just generating program tracing exercises is also a
highly valued attribute. A natural expansion from program tracing is program tracing with
multiple choice answers where one answer is correct, while the other answers are wrong,
but could resemble the correct answer. Generating multiple choice answers where the
distractors do not utilize the exercise context is a lot easier than using distractors that utilize
the context. Hence, generating ”dumb” multiple choice answers could be done regardless
of the approach used to generate the exercise. Both the CFG and the SCT approach can
easily generate the answer for a program tracing exercise and could, therefore, pick random
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answers, very similar to the correct answer as distractors. Such an approach, however, does
not allow for exciting distractors.

A way to expand the generator to generate interesting distractors is to look at the way
the generator itself generates exercises. Since it highly relies on randomizing certain con-
structs defined in the template language, it is possible to generate answer distractors by
tweaking the randomly generated constructs. An example would be when generating an
exercise with a randomized iterator. Tweaking the number of iterations done by, e.g.,
changing the start or end index would allow for a very similar answer to be generated that
could easily capture a mistake. Such an approach is easily implementable in the prototype.
Generators using the SCT approach, on the other hand, lack the information about loops
and iterators that would enable the generation of such distractors. The same technique
could be applied for other randomized constructs as well, and it is generally easier to gen-
erate distractors utilizing the context of the exercise, such as the example above, when
utilizing the CFG approach.

6.2 Usage in CS1 courses

Exercises are used in several parts of a CS1 course. It can range from exam exercises
to simple self-testing exercises where the exercises aim to teach more about the related
concepts or to perform self-evaluation. This discussion below focus’ on the usefulness of
the generator concerning three specific use cases in CS1 courses:

1. Exam exercises

2. Obligatory exercises required to take exam

3. Voluntary test

6.2.1 Exams
Out of the three use-cases mentioned above, the hardest one to satisfy the requirements of
is the exam exercises. Exam exercises have a set of requirements that has to be satisfied
to be utilized in an exam. Bloom’s taxonomy describes six different levels of questions
that are used to evaluate their quality [39]. Figure 6.2 shows the six different parts of the
taxonomy, and their related levels. The taxonomy is related to all types of questions, and as
such, all of its parts are not directly applicable to the program tracing exercises generated
by the prototype. In general, the two most applicable classifications to program tracing
exercises are analyzing and applying. Since the program tracing exercises generated are
based on the concepts, the students’ are required to analyze the questions and apply their
knowledge about the relevant concepts to solve them. According to the taxonomy, the
exercises would fit within the classifications of exercises used on an exam.

However, satisfying parts of the taxonomy does not imply that the questions themselves are
good exam questions. If exams contain randomized questions for every student, fairness
between the exercises is extremely important. The prototype mostly relies on randomiza-
tion techniques to generate unique exercises. This randomization creates opportunities for
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Figure 6.2: The six classifications of Bloom’s taxonomy.

some exercises to be ”lucky”. In reality, this could mean the exercise depends on some
statement that never becomes true, meaning that the student only needs to evaluate one
simple if statement rather than the whole exercise, and thus the exercise becomes trivial.
Mathew Hillier suggested that one of the biggest concerns students’ had when taking digi-
tal exams containing questions from a random question bank is the fairness of the exercises
[40].

Solving the exercise difficulty issue would require some form of metric to measure the
difficulty of each exercise generated before the exam, then assigning equally difficult exer-
cises to each student. Kasto and Whalley propose a set of metrics to measure the difficulty
of program tracing exercises in a Java CS1 exam [5]. While the target language was Java,
many of the metrics are still relevant for the prototype. Figure 6.4 display the metrics. All
of the metrics not related to object-oriented programming in the basic column is accessi-
ble through the parsing/traversing steps of the generator. Additionally, most of the other
metrics marked in the structural column can be measured in the generator. The two mea-
sures for complexity: Cyclomatic complexity and nested block depth are also assessable,
though a bit more complicated than the former metrics. For program tracing exercises, the
researchers found a significant correlation between performance and the metrics: cyclo-
matic complexity, nested block depth, and a dynamic metric counting statements executed
along the correct path of execution, indicating that these metrics could be useful for the
generator to calculate.

The cyclomatic complexity can be measured by using equation 6.3 [41], where V(G) is the
complexity, e is the number of edges and n is the number of nodes. Using the grammar, the
number of nodes can be calculated by counting the number of statements, while the edges
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V (G) = e− n+ 2 (6.2)

Figure 6.3: Formula for cyclomatic complexity.

are found by counting all productions using branching (e.g., if statements, loops). The
nested block depth calculation is shown in Section 3.3.5. During this step, it is possible
to look at the total number of scopes made during tree traversal, as this represents the
nested block depth. Calculating the number of statements executed during the correct
path is a bit more complex, and would not be possible to calculate with the generator.
Since it is dependent on the decisions made at run-time, a tool that either interprets the
generated code or instruments code to determine the path of execution in Python would be
required.

Figure 6.4: Metrics for measuring difficulty of program tracing exercises. Reprinted from [5].

Another way to solve the issue of difficulty is to randomly pick exercises from the gener-
ated set and give every student the same exercise. Such an approach would make cheating
more straightforward, as every student has the same set of exercises. It is possible to
randomize the order in which the exercises appear on the exam to make cheating harder.
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Randomizing the order makes cheating by looking at other students a lot harder, but still
does not entirely prevent cheating. Since every student has the same exercises, it is still
possible for friends to communicate the answers. Another approach to make cheating
even more difficult would be to have exercises with subtle differences. These differences
would hardly be visible, but would in return, slightly change the correct answer, punishing
students who cheat [42].

It is still possible to utilize the generated exercises in an exam without knowing their exact
difficulty. Such a case would require a sufficient amount of students and relies on scaling
the points given for a question based on their relative difficulty. An example would be to
choose a set of around 50 to 100 exercises for an exam with 1000 students, where the dif-
ficulty of each exercise has to be roughly known. It is then possible to randomly distribute
these exercises to different students in the group. It is also important to distribute these
exercises to random students with different skill levels, e.g., different study programs to
ensure that every exercise is evenly distributed between students of different skill levels.
When grading the exam, the grades of each student is scaled based on the relative diffi-
culty of the question given; thus, a student who received exercises with an overall lower
score due to hard exercises would still receive a fair evaluation because it is taken into
account.

Additionally, to utilize program tracing exercises in exam situations, a requirement is that
the students do not have any way to run the code, as it would trivialize the question.
At NTNU, the current exam system utilized, Inspera, only supports syntax highlighting,
meaning the trace exercises generated by the prototype could be utilized. In the future,
Inspera might end up with supporting code execution. In such a case, program tracing
exercises would not make sense. A requirement for tracing to be feasible in this exam
situation would be to force parts of the exam to be done without the ability to execute
code.

6.2.2 Obligatory exercises
Another potential use is for obligatory exercises during the course that is required before
taking the exam. These exercises usually test the students in the curriculum during the
course, and the students’ are often required to complete a certain amount of these exercises
to take the exam. Compared to the exam exercises, the difficulty of these exercises does
not need to be as equal. The difficulty problem could be overcome by giving each student
enough questions to increase the probability of every student receiving approximately an
equal distribution of exercises in regards to difficulty.

While the difference in the difficulty of each exercise might pose itself as a problem, it
is also an opportunity. Adaptive e-learning systems are tailored to give every student
exercises that fit their skill level. These systems provide students with exercises that fit
their current skill level, and as their skills increase, so does the difficulty of the exercises.
Such systems rely on having access to exercises of different difficulties. Utilizing such
a system would prevent skilled students from receiving easy exercises and less skilled
students from receiving too hard exercises. By giving students exercises that fit their skill
level, they are also more likely to achieve Flow [43]. An important part of achieving Flow
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is dependent on the difficulty of the task at hand. To achieve Flow, the student should be
given a reachable goal, i.e., complete tasks within their skill level, but not too easily. If
the student is presented with too easy exercises, they are likely to become bored, while
presenting too hard exercises might lead to anxiety. An adaptive e-learning system can,
therefore, help the student achieve Flow by providing the students with exercises that are
challenging, but solvable. Having a system to distribute the exercises adaptively would
also increase the usefulness of the exercises. In obligatory exercises, it could be possible to
create a limit where the students’ have to complete a given number of exercises tailored at
their skill level to pass. Such an approach would ensure that every student has to complete
a set of exercises to take the exam in the course, but would also provide each student with
exercises that fit their skill level, potentially increasing their learning to a more substantial
degree than exercises of static difficulty would.

A problem that arises for obligatory exercises is the cheating possibilities. These exercises
are performed at home, outside of a controlled environment. As a result, they can be solved
simply by executing the code and copying the output. It is, however, possible to prevent or
reduce the likelihood of cheating. A possible technique is to display the exercise in a way
that makes it impossible to copy, and thus requires the student to write out the whole code
snippet to find the answer. It is also possible to utilize characters that are not accepted by
the Python interpreter or use a combination of spaces and tabs, which would look just like
runnable Python code, but would cause exceptions upon execution.

Another way of preventing cheating could be to include function calls to functions that
are not directly included in the program tracing exercise. An example is a function called
number to text, which takes in a number and returns its text without spaces, converting 402
to four hundred two. Running the code to solve such an exercise would require the student
to create the function being called, which would need more work than solving the tracing
exercise. A requirement for such an approach would be a clear and concise description of
what the function does. Without a concise explanation, the exercise’s difficulty might shift
from the tracing itself to understanding what the function does.

6.2.3 Voluntary tests

Voluntary test exercises are the easiest type of questions to generate. These type of ques-
tions does not require the exercises to be marked with any difficulty level, making this area
the easiest to generate exercises for. Knowing the difficulty of each exercise, however, is
still important for self-examination questions. Specific e-learning systems rely on tailor-
ing the exercises given based on the students’ progression, providing the difficulty of each
exercise is therefore required for them to be utilized appropriately in said system [44]. An-
other vital requirement to use exercises for self-examination is to ensure that the exercises
generated from the same template are sufficiently different from each other. If the exer-
cises become too similar, it could cause the student to memorize the answer or a specific
process for extracting the answer. A result of such exercises could be reduced learning
outcomes, as the student stops learning how the specific concepts work, but instead relies
on remembering the answers.

65



6.3 Technical limitations

As presented in the Results section, there are many benefits to using the CFG approach
for generating program tracing exercises. However, certain drawbacks were discovered
during the prototype development. Some of the biggest technical limitations encountered
during the development that could potentially become issues in the future are:

• Work required to implement the boilerplate system

• Implicit type system and randomized constructs

• Generating exercises for multiple languages

The subsections below explain and discuss the different limitations.

6.3.1 Required work

While there are several significant advantages of using a context-free grammar approach
for generating exercises, there are also drawbacks. One of the most significant drawbacks
that translates to much work for the writer of the generator is that the generator gets almost
nothing for free from the target language. In practice, this means that if the template lan-
guage wants to use a construct, function, or other features present in the target language, it
has to make sure to support these features explicitly. Designing a good template language
that allows for usage of concepts present in the target language and providing proper er-
ror messages and feedback to the user of the generator is, therefore, an enormous task.
While defining these constructs in the template language gives the generator full control
over every feature, basic features such as built-in functions might require an amount ex-
cessive work to be appropriately implemented. In an SCT generator, on the other hand, no
error handling or validation is present, and all features of the generator stems from the fea-
tures of the target language. Thus, creating a generator using the SCT approach requires
substantially less effort at the cost of generator complexity. From the implementation of
the prototype, it has become clear that the amount of work to implement constructs for
generating randomized exercises in addition to adding simple features present in Python
requires much work that could potentially be saved by using the SCT. On the other hand,
the control given by explicitly defining every feature of the template language gives the
generator a great ability to give feedback and error messages to the user of the generator,
giving it a significant edge in usability.

Due to the boilerplate requirements of the template language, such as validating logic,
types, and other constructs of the language, much time has to be spent on areas of the
generator that is not directly linked to features for generating exercises. Additionally, the
test performed after the last iteration showed that a lot of small bugs could break specific
templates. From the test, it became clear that much work also has to be put in to validate
all of the features in conjunction with each other, as one feature is could potentially break
another. Thus, significant overhead is attached to implement interesting and novel features
properly.
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6.3.2 Type system and randomized constructs

One of the most significant limitations of the approach is the fact that it operates at
compile-time and lacks information about certain things happening at run time. The first
issue this caused was related to Pythons implicit type-system. The prototype template-
language was designed to imitate Python as much as possible, making it easy to learn the
language. As a result, the implemented grammar was designed to be type implicit (just like
Python). Type implicit languages do not explicitly define the type of variables or parame-
ters; instead, it is inferred from its definition. This sparked problems when trying to utilize
different variable types to generate constructs such as composedStatements—generating
these statements requires the generator to be 100% certain of the type of each variable
used, since some have to be converted to integers before being compared in such an ex-
pression. An example would be a String that has to be converted to an int by taking its
length. The problem with the implicit type system and composedStatements emerges from
function calls. Since the parameters of function calls are not explicitly typed, they can be
of any type. This means that if a function, named fun with one parameter, a, is called
twice; one time where a is a number, then another time where a is a string, the generator
cannot determine a single type for the input parameter a. If the function then adds this
parameter to a list defined outside of the function, the generator no longer with 100% cer-
tainty what types the list contains. It is, therefore, clear that without explicit types, the
generator struggles with utilizing all types of variables in its different constructs.

As mentioned in the code, one way to solve the mutation issue with the function parameter
being added to the list, is by making an assumption. By assuming that a list only contains
one type, the constructs of the generator can still be utilized. One of the most significant
drawbacks of this assumption is that more responsibility is given to the template writer. If
the template writer fails to ensure single types in a list with this assumption, the generator
may create erroneous exercises that fail to run.

Another way to solve this issue would require a thorough re-write of the grammar used for
the prototype. The template language could utilize explicit typing even though the target
language, Python, uses implicit typing. By making all variable declarations and parameters
require explicit typing, the issue described above could be avoided, since the generator
would catch any errors with type mismatches. Even though Python does not utilize explicit
types, forcing the template to utilize explicit types would make sense in terms of what is
allowed in the generated exercises. While forcing a list only to allow elements of one
type does not happen in Python, it does not make sense to utilize a list with elements of
different types in the generator. As explained above, having lists containing multiple types
would make many of the randomized constructs impossible to utilize without adding a lot
of unnecessary and bloated logic to the exercises themselves, which in practice would ruin
the exercises. If, for some reason, the template needs to support lists of multiple types,
it is possible to utilize the Any type, which is accepted by most constructs. Utilizing this
type would tell the generator that there are certain limitations to the variable, limiting the
features of the constructs.
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6.3.3 Generating exercises for multiple programming languages
As presented in the Section about the CFG generator, a problem with it is that it targets a
specific language. During the development of the prototype, it became clear that creating
a generator for multiple languages would require a large amount of work compared to
a generator for a single language. The amount of work would, of course, depend on
how significant the differences between the target languages are and what concepts the
exercises should focus on.

An example would be generating exercises for Java and Python from the same grammar.
To be able to do this, a few considerations have to be made. The first consideration is that
Java is only object-oriented, while Python is Procedure oriented (can be object-oriented
though). Generating exercises for these two languages would require the generator to
create the boilerplate constructs around the exercise (such as the main function and its
surrounding class) for Java, while Python could be generated as explained in this report.
The second consideration is that Java has explicit typing. When comparing these two
ways of deciding the type of a variable, explicit typing is more strict. In reality, this would
mean that the grammar needs to have explicit typing to satisfy the Java requirements. The
third consideration is related to what types of exercises one would utilize in courses that
teach Java versus courses that teaches Python. Since Java is object-oriented, many courses
utilize this language to teach object-oriented programming. Generating object-oriented
exercises would be different from simple procedure-oriented exercises, resulting in little
re-use of logic between the two target languages.

The example above shows that while it is possible to utilize a single generator & gram-
mar to generate exercises for different languages, this approach might require much work.
Additionally, different languages might expose different problems, meaning that the dif-
ference in exercise types might warrant utilizing two different grammars and generators to
efficiently generate exercises that fit the course’s need in mind.
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Chapter 7
Conclusion and Future Work

Due to programming being more and more popular, CS1 courses are becoming more
prominent. Consequently, professors, lecturers, and teaching assistants have to spend an
increasing amount of time correcting exercises rather than helping the students. A way
of combating this issue is to create templates that can be used to create exercises similar
to the template in question. With the ability to both generate a broad set of exercises and
auto-correct them, the time spent by those responsible for the course can be shifted from
creating and correcting exercises to helping students. This thesis looks at an approach for
creating templates for generating program tracing exercises, then evaluates the suitability
of such an approach for CS1 courses.

Research question 1: What solutions of auto-generating programming-exercises have
already been proposed in research-literature?

There were mainly two approaches discovered during the literature review, the Specifica-
tion, Configuration & Template (SCT) and the context-free grammar (CFG) approaches.
The SCT technique is based around having templates in the target language, and utiliz-
ing configurations and specifications for the template to substitute values in the template.
The configurations define connections that are directly used in the templates. These con-
nections are linked to values defined as specifications. Upon generation, the connection
entries in the template is substituted for the values from the specification. Therefore, the
SCT template approach can create unique exercises by randomizing the values placed in
the template. Additionally, its implementation allows the templates to be written in the
target language, meaning the generator would work for any programming language. The
CFG approach is based on defining a context-free grammar that is parsed in and converted
to exercises. The main idea behind the approach is to parse in the template language and
substitute different sub-trees within the parse-tree of a template to randomize the output
(each exercise). Such an approach gives the exercise generator much context of the tem-
plate at hand, allowing for more advanced randomization of the template. The downside
of using a context-free grammar is that the generator has to be programmed to output ex-
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ercises in the target language, thus, to make it generate exercises for multiple languages
require extra work.

Research question 2: What is the best approach for generating a large amount of program
tracing exercises?

Through the project, a prototype was developed to determine the potential and limitations
of generating exercises through a CFG approach. The study conducted showed that the
CFG approach opens the door for generating interesting program tracing exercises for
CS1 courses. By using a template language customized for the task at hand, the prototype
gained insight into the exercise templates, allowing for more advanced exercise genera-
tion. On the other hand, developing a template language requires much work and is prone
to errors. Through the final test, several small errors were found, diminishing the use-
fulness of the generator. While some templates used in the prototype might not lead to
many thousands of distinct exercises, having a smaller amount of unique exercises is still
useful.

Compared to the SCT approach for generating exercises, the CFG approach has a signif-
icant advantage because it uses its own template language that is parsed and analyzed,
allowing for more nuanced and complex exercises. This advantage comes at the cost of a
much larger workload to get the generator working, due to more boilerplate requirements.
Additionally, the CFG approach generates exercises for a single language, making it less
diverse than the SCT approach. Regardless of the drawbacks found during the project,
the potential of the CFG generator outweighs the drawbacks, and compared to the SCT
approach, it comes out ahead. By comparing the different approaches for generating ex-
ercises discovered during the literature review and looking at the project results, the CFG
generator is the best approach to generator program tracing exercises.

Research question 3: Which parts of CS1 courses would the generated exercises be most
useful for?

There are mainly three areas of a CS1 course where exercises generated by the prototype
would be the most useful; exams, obligatory exercises, and self-examination. Exams are
the most strict area and usually require a way of measuring the difficulty of each exercise
generated. Scaling the grades for each question on the exam based on the overall perfor-
mance is a feasible approach, but even then, having a rough estimate of the difficulty of
each exercise is required.

On the other hand, obligatory exercises do not require each exercise to be equal in diffi-
culty. The main problem in this use-case is deferring students from cheating by executing
the code. This can be circumvented to a certain degree by ensuring it takes more time to
run the code than by just solving it. There are several approaches to achieving this:

• Utilize signs in the code that are not accepted by the Python interpreter, resulting in
exceptions

• Make it impossible to copy the code, forcing the student to write every line manually

• Include functions with obvious functionality that is not included in the exercise,
forcing the student first to write the function to execute the code.
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By utilizing one of these techniques, the generated exercises could be useful for reducing
cheating in obligatory exercises.

The last area is self-testing, and generating exercises for this area can be looked upon as
the easiest. Since self-testing does not affect the students’ grades in the CS1 course, each
exercise does not require a specific difficulty estimate. However, knowing the difficulty
of each exercise would still be of great help when utilizing the exercises. Since some e-
learning systems rely on providing students with exercises based on their knowledge and
progression, they also require an estimate of the exercise difficulty. Despite this, using the
exercises generated could still provide excellent learning outcomes by providing unique
exercises for different concepts.

Research question 4: Are there any significant technical limitations related to the ap-
proach chosen for generating exercises?

The main drawback of the CFG technique is the amount of boilerplate work required to
generate interesting exercises properly. The two main points posing limitations are:

• Implicit type system

• Generating exercises for multiple languages

Since the idea behind the CFG approach is to define a grammar to represents a template
language, much work is required to ensure that the logic of the template is correct. To
properly create randomized constructs and other features, a proper type system needs to
be in place, requiring a substantial amount of work. Additionally, much work is required
to allow the parse-tree traverses to check for logical errors. In general, it can be seen as
creating a rather simple compiler for a new programming language. Much effort must be
put into validating the logic, type, and other aspects of the template language, rather than
directly focusing on features for generating exciting exercises. These features are also
error-prone, meaning much time needs to be put into fixing bugs and testing different edge
cases.

Finally, multiple target languages pose limitations to the approach. Since the CFG ap-
proach requires the developer to implement logic to generate exercises for a specific lan-
guage, additional logic must be implemented to support more languages. The CFG tech-
nique, therefore, scales poorly when looking at more than one target language.

7.1 Future work

7.1.1 Multiple choice distractors
A natural expansion for the program tracing problems is to generate multiple-choice an-
swers (distractors). The distractors could be of any value, but should ideally be very similar
to the correct answer, either in terms of their actual value, or by reflecting common errors
related to the question. There are multiple ways to approach this problem; one way could
be to accumulate answers for a given question and pick the most common wrong answers
to be used as distractors. Another way is by tweaking the exercise generated in a small
way to generate an answer that could be mistaken for the correct one.
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7.1.2 Parson’s problems
Parson’s problems would also be a natural way to expand the prototype. These problems
consist of dividing a block of code into smaller fragments that must be ordered in the
correct way to create the correct output. While distractors are common with Parson’s
problems, it has been shown that their impact might not be significant in any way. Thus,
the main job of generating Parson’s problems is to divide the generated exercises into
sensible code fragments.

7.1.3 Evaluating difficulty
As mentioned during the discussion, an essential aspect of every exercise is their difficulty.
Knowledge about each exercises’ difficulty could improve their usability in the various
areas of a CS1 course. As discussed, there are multiple ways of trying to determine the
difficulty of an exercise. Due to the importance of knowing the difficulty of each exercise,
it is certainly worth looking into approaches for classifying their difficulty.

7.1.4 New generating features
During the project, much work was put into making the template language and the un-
derlying features of the generator. This work diverted resources from creating features to
generate novel features to make the exercises better and more exciting. More work should
be put into looking at how the features available in the prototype can be utilized to create
new and exciting constructs.

7.1.5 Further testing
From the testing, some of the issues with the template language surfaced. The biggest issue
found during the test was small errors and bugs within the language, preventing the gen-
erator from being fully utilized. Minimizing the number of errors and bugs is crucial, and
further testing should, therefore, be conducted to identify bugs and issues. Additionally,
more focus could be put on the end-users of the exercises generated. During the project,
the evaluation was performed in conjunction with the professors who were going to use
the system, but no testing was performed on students. Therefore, it would be highly effi-
cient to test the generated exercises on students to evaluate the capabilities of the generator
further. Different types of tests could also be done. One possibility is to test the exercises
either in a real exam environment or an environment emulating an exam situation. Such a
test would provide great insight into the usefulness of the exercises.

7.1.6 Exercise descriptions
One of the suggestions presented after testing was expanding the generator to create a
textual description of each exercise generated. Having such a feature would allow the
generator to create code-writing exercises, where the student are tasked with implementing
code based on the textual description given. Correcting these exercises would, in return,
require a comparison between the code of the exercise generated and the code created by
the student. Such a comparison would not always work since there are usually different
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ways of solving a problem. A more elaborate way of correcting each exercise would,
therefore, have to be implemented to catch situations where the generated code does not
match the student-written code, even though the students’ code is correct.

7.1.7 Final thoughts
While this report mainly looks at whether the chosen approach for generating exercise
would be suitable for program tracing exercises in CS1 courses, it would be interesting to
look at it in the context of its usability in the courses. As discussed, adaptive e-learning
systems could greatly benefit from having access to exercises of different difficulty. In the
future, implementing the metrics presented by Kasto & Whalley [5] in the generator could
provide an excellent basis for usage in adaptive e-learning systems. Utilizing the exercises
with the given metrics in adaptive systems would then provide the basis for evaluating the
exercises on a larger scale with students of different skill levels. As it currently stands,
there are no features for storing and organizing the exercises generated. Making the gen-
erator more accessible would require some system to both generate and store the exercises
in a sensible manner. By expanding the current prototype using the already implemented
REST-API, one could implement the generator into an already existing e-learning system,
or design a stand-alone system that handles both generation and exercise storage.
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Appendix

H Grammar used in the artifact
The grammar is how the grammar is defined in ANTLR4. It is also accessible here. Note
that the grammar is expressed as

<production name> : <another production> | <another production1> ;

Where the colon (:) equals to the right arrow (−→) of the productions previously men-
tioned in this report.

1 grammar Autogenerator;
2

3 grammar Autogenerator;
4

5 parse
6 : block EOF
7 ;
8

9

10 block
11 : (stat | function_definition) *
12 ;
13

14 stat
15 : assignment #regularStatement
16 | expr #regularStatement
17 | if_stat #regularStatement
18 | for_stat #regularStatement
19 | random_for_stat #customStatement
20 | print #regularStatement
21 | return_stat #regularStatement
22 ;
23

24 assignment
25 : VAR_NAME (’[’ expr ’]’)* ASSIGN expr
26 ;
27

28 if_stat
29 : IF condition_block (elif_stat)* (else_stat)?
30 ;
31

32 elif_stat

78

https://github.com/danielromanich/Autogenerator/blob/master/src/antlr4/Autogenerator.g4


33 : ELIF condition_block
34 ;
35

36 else_stat
37 : ELSE stat_block
38 ;
39

40 return_stat
41 : RETURN expr
42 ;
43

44 condition_block
45 : expr stat_block
46 ;
47

48 stat_block
49 : OBRACE block CBRACE
50 | stat
51 ;
52

53 for_stat
54 : FOR VAR_NAME IN RANGE OPAR expr (’,’ expr)? (’,’ expr)? CPAR

stat_block #forInRange
55 | FOR VAR_NAME IN expr stat_block

#forInIterator
56 | WHILE expr stat_block

#whileLoop
57 ;
58

59 random_for_stat
60 :
61 FOR VAR_NAME stat_block
62 ;
63

64 print
65 : PRINT OPAR expr CPAR
66 ;
67

68 function_definition
69 : FUNCTION VAR_NAME OPAR parameter_list CPAR stat_block
70 ;
71

72

73 function_call
74 : VAR_NAME OPAR parameter_expression_list CPAR
75 ;
76

77 parameter_list
78 : (VAR_NAME (’,’ VAR_NAME)*)?
79 ;
80

81 parameter_expression_list
82 : (expr (’,’ expr)*)?
83 ;
84

85 dictionary_entry
86 : expr COL expr
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87 ;
88

89 // TODO - Rewrite this to have production for every function.
90 variable_function
91 : VAR_NAME ’[’ (expr)? ’:’ (expr)? ((’:’) expr?)? ’]’

#stringSliceFunction
92 | VAR_NAME DOT RANDOM_SLICE OPAR CPAR

#randomStringSlice
93 ;
94

95

96

97

98 expr
99 : function_call #

function_callExpr
100 | MINUS expr #

unaryMinusExpr
101 | NOT expr #notExpr

// DONE
102 | expr op=(MULT | DIV | MOD | PLUS | MINUS) expr #

mathematicalExpr // DONE
103 | expr op=(LTEQ | GTEQ | LT | GT) expr #

relationalExpr //DONE
104 | expr op=RAND_ARITHM_OP expr #

randomArithmOpExpr
105 | expr op=RAND_REL_OP expr #

randomRelOpExpr
106 | expr op=(EQ | NEQ) expr #

equalityExpr // DONE
107 | expr IN expr #inExpr

// DONE
108 | expr AND expr #andExpr

// DONE
109 | expr OR expr #orExpr

// DONE
110 | atom #atomExpr

// DONE
111 | RAND_INT OPAR expr ’,’ expr CPAR #

randIntExpr
112 | RAND_INT_List OPAR expr ’,’ expr ’,’ expr CPAR #

randIntArrayExpr
113 | LEN OPAR expr CPAR #lenExpr
114 | STR OPAR expr CPAR #strExpr
115 | COMPOSED_EXPRESSION OPAR VAR_NAME* (’,’ VAR_NAME)* CPAR #

composedExpression
116 | ’[’ (expr ( ’,’ expr )*)* ’]’ #listExpr
117 | ’{’ (dictionary_entry ( ’,’ dictionary_entry )*)* ’}’ #dictExpr
118 | ’{’ expr ( ’,’ expr)* ’}’ #setExpr
119 | ’(’ (expr ( ’,’ expr)*)* ’)’ #tupleExpr
120 | expr DOT VAR_NAME OPAR parameter_expression_list CPAR #

dynamicVariableFunction
121 | variable_function #

varFunctionExpr
122 ;
123

124 atom
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125 : OPAR expr CPAR #parExpr
126 | (INT | FLOAT) #numberAtom
127 | (TRUE | FALSE) #booleanAtom
128 | VAR_NAME ’[’ expr ’]’#varNameAtomAccessIndex
129 | VAR_NAME #varNameAtom
130 | STRING #stringAtom
131 | NONE #noneAtom
132 ;
133

134 OR : ’or’;
135 AND : ’and’;
136 EQ : ’==’;
137 NEQ : ’!=’;
138 GT : ’>’;
139 LT : ’<’;
140 GTEQ : ’>=’;
141 LTEQ : ’<=’;
142 PLUS : ’+’;
143 MINUS : ’-’;
144 MULT : ’*’;
145 DIV : ’/’;
146 MOD : ’%’;
147 POW : ’ˆ’;
148 NOT : ’not’;
149

150 SCOL : ’;’;
151 COL : ’:’;
152 ASSIGN : ’=’;
153 OPAR : ’(’;
154 CPAR : ’)’;
155 OBRACE : ’{’;
156 CBRACE : ’}’;
157

158 TRUE : ’True’;
159 FALSE : ’False’;
160 NONE : ’None’;
161 IF : ’if’;
162 ELSE : ’else’;
163 ELIF : ’elif’;
164 FOR : ’for’;
165 IN : ’in’;
166 RANGE : ’range’;
167 WHILE : ’while’;
168 PRINT : ’print’;
169

170 DOT : ’.’;
171 RANDOM_SLICE : ’randomSlice’;
172

173 RAND_INT : ’randInt’;
174 RAND_INT_List : ’randIntList’;
175 LEN : ’len’;
176 STR : ’str’;
177

178 RAND_ARITHM_OP : ’randArithmOp’;
179 RAND_REL_OP : ’randRelOp’;
180 COMPOSED_EXPRESSION : ’composedStatement’;
181
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182 RETURN : ’return’;
183 FUNCTION : ’def’;
184

185 VAR_NAME
186 : [a-zA-Z_] [a-zA-Z_0-9]*
187 ;
188

189 PYTHON_FUN_NAME
190 : [a-zA-Z_] [a-zA-Z_0-9]*
191 ;
192

193 INT
194 : [0-9]+
195 ;
196

197 FLOAT
198 : [0-9]+ ’.’ [0-9]*
199 | ’.’ [0-9]+
200 ;
201

202 STRING
203 : ’"’ (˜["\r\n] | ’""’)* ’"’
204 ;
205 COMMENT
206 : ’#’ ˜[\r\n]* -> skip
207 ;
208 SPACE
209 : [ \t\r\n] -> skip
210 ;
211

212 OTHER
213 : .
214 ;

Listing 7.1: The ANTL4 grammar representing the auto-generator template language.
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I Relevant productions from the pre-project

<parse> −→ <block>λ (7.1)
<block> −→ <statement> ∗ (7.2)

<statement> −→ <assign> | (7.3)
−→ <if statement> | (7.4)
−→ <for statement> | (7.5)
−→ <random for statement> | (7.6)
−→ <print> (7.7)

(7.8)

<assign> −→ <var name><assign><expression> | (7.9)
−→ <var name><assign><assign list> (7.10)

<var name> −→ [a-zA-Z ][a-zA-Z 0-9]* (7.11)

<if stmt> −→ ’if’ <cond block> (<elif stmt>)* (<else stmt>)? (7.12)
<elif statement> −→ ’elif’ <condition block> (7.13)
<else statement> −→ ’else’ <statement block> (7.14)

<condition block> −→ <expression> <statement block> (7.15)
<statement block> −→ ’{’ <block> ’}’ (7.16)

−→ <statement> (7.17)

<print> −→ ’print’ ’(’ <expr> ’)’ (7.18)

J Image of the prototype used during evaluation of the project
As mentioned in chapter 2.5.3 a simple web-application was built to make testing of the
prototype easier. Below is a set of images of the web-application used during evaluation.
Figure 7.1 and 7.2 show the initial design used during the two first iterations. Figure 7.3
illustrate the new version used during the final test. The code input section was upgraded
to be more programming friendly.
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Figure 7.1: The website implemented to use for the interviews.

Figure 7.2: The website implemented to use for the interviews.
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Figure 7.3: An upgraded version of the website used during the final test.
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K Template examples

K.1 Templates used to measure duplicates

1 a = [1,2,3,4,5]
2 sum = 0
3 b = 6
4 c = 7
5 d = 8
6 for a {
7 if composedStatement(a, sum) {
8 sum = sum + it
9 }

10 }
11 print(sum)

Listing 7.2: Template #1 used for measuring duplicates.

1 a = [5] * randInt(4, 8)
2 sum = 0
3 for a {
4 sum = sum + it
5 }
6 print(sum)

Listing 7.3: Template #2 used for measuring duplicates.

1 words = ["Hello", "Wonderful", "Python", "Exercise", "World", "!"]
2

3 def myst(a) {
4 b = ""
5 for a {
6 b = b + it.randomSlice() + " "
7 }
8 return b
9 }

10

11 print(myst(words))

Listing 7.4: Template #3 used for measuring duplicates.

1 table = {}
2 elements = randIntList(1, 10, 20)
3

4 for elements {
5 if it in table {
6 table[it] = table[it] + 1\n" +
7 } else {
8 table[it] = 1
9 }

10 }
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11

12 print(table[randInt(1, 10)])

Listing 7.5: Template #4 used for measuring duplicates.

K.2 Templates used in evaluations

1 # 1
2 a = [1,2,3,4,5]
3 sum = 0
4 b = 6
5 c = 7
6 d = 8
7 for a {
8 if composedStatement(a, sum) {
9 sum = sum + it

10 }
11 }
12 print(sum)

Listing 7.6: Template used in the first round of evaluation.

1 a = [5] * randInt(4, 8)
2 sum = 0
3 for a {
4 sum = sum + it
5 }
6 print(sum)

Listing 7.7: Template used in the first round of evaluation.

1 a = [[1,2,3],[4,5,6],[7,8,9]]
2 sum = 0
3 for a {
4 for it {
5 sum = sum + it
6 }
7 }
8

9 print(sum)

Listing 7.8: Template used in the first round of evaluation.

1 a = [[randInt(2, 8)] * randInt(4, 8)] * 3
2 sum = 0
3 for a {
4 for it {
5 sum = sum + it
6 }
7 }
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8 print(sum)

Listing 7.9: Template used in the first round of evaluation.

1 list = ["This", "is", "a", "short", "list", "of", "strings"]
2 count = 0
3 for list {
4 count = count + len(it.randomSlice())
5 }
6 print(count)

Listing 7.10: Template used in the second round of evaluation.

1 def fun(l, a, b) {
2 l1 = []
3 for l {
4 l1.append(it * a + b)
5 }
6 return l1
7 }
8

9

10 print(fun(randIntList(2,5,5), randInt(1, 3), randInt(5, 15)))

Listing 7.11: Template used in the second round of evaluation.

1 words = ["Hello", "Wonderful", "Python", "Exercise", "World", "!"]
2

3 def myst(a) {
4 b = ""
5 for a {
6 b = b + it.randomSlice() + " "
7 }
8 return b
9 }

10

11 print(myst(words))

Listing 7.12: Template used in the second round of evaluation.

1 table = {}
2 elements = randIntList(1, 10, 20)
3

4 for elements {
5 if it in table {
6 table[it] = table[it] + 1
7 } else {
8 table[it] = 1
9 }
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10 }
11

12 print(table[randInt(1, 10)])

Listing 7.13: Template used in the second round of evaluation.

1 def c(e) {
2 a = {}
3 for e{
4 if it in a {
5 a[it] = a[it] + 1
6 } else {
7 a[it] = 1
8 }
9 }

10 r = randInt(1, 10)
11 if r in a {
12 return a[r]
13 } else {
14 return 0
15 }
16 }
17

18

19 print(c(randIntList(1, 10, 20)))

Listing 7.14: Template used in the second round of evaluation.

1

2 a = ["This", "is", "a", "list", "of", "strings"]
3

4 def m(b) {
5 for i in range(0, len(a)) {
6 s = a[i]
7 a[i] = s.randomSlice()
8 }
9 }

10

11 m(a)
12 print(a)

Listing 7.15: Template used in the second round of evaluation.

L Documentation
The documentation for the generator can be found at:
https://github.com/danielromanich/Autogenerator.
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