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Summary

Over the past decades the industry has been pushing to find ways to achieve better per-
formance and efficiency. The natural evolution of microarchitecture has introduced first
the pipeline and then out-of-order superscalar processors to achieve a greater Instruction
Level Parallelism. This newer iteration have, on the other hand, increased the complexity
of the pipeline stage such as the issue stage.

This thesis focus on the above mentioned pipeline stage, analysing which are the aspect
that add complexity and energy inefficiency. Using Sniper simulator, an x86 architecture
will be used to track the usage of the wake up signal in order to find the instructions that
really need to broadcast a signal. Lastly a simple hardware addition will be investigated as
a possibility to reduce the broadcast width and simplify the wake up logic.
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Chapter 1
Introduction

The word of computing devices has had since the beginning an insatiable demand for
better performance year over year. Moore’s law, since the 1960s, has predicted the growth
of the number of transistors in computer chips that would lead to increasing performances
at a lower cost.

Another correlated positive trend is expressed by Dennard’s law, which describes how
the power density in a chip stays constant since the growing density of transistor is com-
pensated by the lower power they require to function. This abundance of resources brought
to the introduction of new architecture like super-scalar out-of-order processor that could
expose an higher Instruction Level Parallelism and therefore greater performances.

Around a decade ago the above-mentioned models stopped being valid due to technical
limitation and caused designers to focus on other ways to reach an increase of performance.
The whole industry has also been subject to a shift of the attention towards the energy
efficiency of chips due to the growing number of small and portable device. This new
environment is demanding for architecture that are more aware of the area and power
consumption. This phenomenon eventually brought designer to even prefer simpler in-
order scalar architecture respect to the more complex ones, scarifying performance in favor
of energy efficiency.

Another way of facing this matter is, instead, to simplify and optimize the superscalar
out-of-order architecture and in particular their most energy expensive component : the
issue queue, which can make up 18-40% [3] of the whole chip consumption. The high
complexity is due mainly to the wake up logic, to tell the entries their components are
ready, and to the select logic which sends to execution the ready instruction.

A significant amount of work has been already done in order to simplify the issue
stage, but the main focus so far has always been the select stage. Many proposal take into
consideration the simplification of the out-of-order architecture [8][11][2][3] while others
take the opposite approach, making the in-order more performing [4] [9].

In this thesis, instead, the major focus will be the wake up logic that none of the cited
works have faced and therefore offers great possibility for improvements. In this project
we will, in order, analyze the usage of the wake up, reduce the instruction that need to

2



1.1 Thesis goal

use this logic and imagine a simple additional hardware structure to further shrink the
broadcasts needed.

1.1 Thesis goal
The goal of this thesis is to analyze and reduce the complexity of instruction wake-up
logic in superscalar out-of-order processors. All the instructions finishing their execution
need to broadcast wakeup signals (i.e. generally, their destination register IDs) so that
their dependents in the issue queue can be waken up. Therefore, the number of wake-up
signals need to be broadcasted depends on the maximum number of instructions that can
finish execution in the same cycle. The goal of this thesis is to minimize the number of
signal that need to be broadcasted per cycle, thereby reducing the number of comparisons
required per issue queue entry and their associated area and energy cost.

Towards this end, we first study the distribution of number of instructions finishing
execution in same cycle. We use this distribution to identify the minimal broadcast width
(i.e. maximum number of wakeup signals broadcasted per cycle) with minimal impact
of performance. To further reduce the broadcast width, we make a critical observation
that an instruction does not need to broadcast its results if none of the instructions in issue
queue depends on it. By avoiding to broadcast wakeup signals for such instructions we can
reduce the broadcast width. To reduce the broadcast width even further, our key insight
is that we can delay the broadcast of a wakeup signal if all the instructions needing this
signal are the non-critical ones. Prior work has shown that not all instructions contribute
to performance equally. Therefore, delaying the wakeup of non-critical instruction has the
potential to reduce broadcast with a minimal performance penalty.

1.1.1 Requirements
• R1 Gather information on broadcast usage

• R2 Study the instruction and their relation with the wake up signal

• R3 Develop a strategy to reduce complexity

1.1.2 Contribution
• An overview on the use of wake up signal by instructions

• An evaluation on the necessary broadcast width

• A microarchitecture which exploits instruction criticality to reduce the broadcast
width
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Chapter 2
Background

This chapter presents the necessary background in how a processor works, forming the
basis for the following research.

INTRODUCTION 5

remains in the reorder buffer until it commits. The goal of the reorder buffer is to store information 
about the instruction that is useful for its execution but also for squashing it if necessary.

Memory operations are handled in a special manner. They need to compute the effective ad-
dress, which typically is done in the same way as an arithmetic instruction. However, besides access-
ing the data cache, they may need to check their potential dependences with other in-flight memory 
instructions. The load/store queue stores the requited information for this, and the associated logic 
is responsible for determining when and in which order memory instructions are executed.

In an in-order processor, instructions flow through these phases in the program order. This 
means that if an instruction is stalled for some reason (e.g., an unavailable operand), younger in-
structions may not surpass it, so they may need to be stalled too.

In a superscalar processor, each one of the components described above has the capability of 
processing multiple instructions at the same time. Besides, it is quite normal to add buffers between 
some pipeline stages to decouple them and in this manner allow the processor to hide some of the 
stalls due to different types of events such as cache misses, operands not ready, etc. These buffers are 
quite common between fetch and decode, decode and rename and dispatch and issue.

1.3.1 Overview of the Pipeline
This section presents an overview of the main components of the pipeline. A detailed description of 
them is presented in following chapters.

FIGURE 1.1: High-level block diagram of a microprocessor.
Figure 2.1: A general scheme of a pipeline design and major stages. Picture from [7]

2.1 Pipeline
The foundation of modern processor architecture is the pipeline which splits the execution
of an instruction in multiple smaller stages that run independently at a higher frequency.
This makes possible to execute many instruction at the same time in different stages, ex-
posing what is defined as Instruction Level Parallelism. The processor therefore achieves
an higher throughput because the smaller stages have a smaller execution time that allows
the processor to run at an higher frequency. Since the architecture works as an assembly
line each cycle it can deliver a complete instruction meaning that the total throughput is
much higher.

One typical design of a pipeline is showed in Figure 2.1 and its main stages are:

4



2.1 Pipeline

• Fetch

• Decode

• Rename

• Execute

• Write-back

• Commit

Ideally the more the pipeline is split in smaller and numerous stages, higher is the fre-
quency it could operate on; however, this is not entirely true because the time for each step
to complete is anchored to the slowest of the stages.

Another factor that can affect the performance of the pipeline is the dependencies in
between the instructions, for example: if I2 needs the data produced by I1 then the former
needs to wait until the source instruction is completed and this could cause a stall.

2.1.1 Fetch and Decode

Fetch is the first stage of the pipeline and it’s the one responsible of inserting the instruc-
tion into the processor. This stage computes the address of the next instruction and then
it accesses the instruction cache to fetch it; this whole process for one instruction is usu-
ally completed in one cycle but it can be affected by branches which, due to their nature,
prevent the next instruction address to be calculated in parallel (unless a speculative mech-
anism is introduced).

Decode is the stage which is in charge of interpreting the instruction previously fetched,
so to understand what type of operation it describes, which execution unit it needs, which
source operands it depends on as well as in which register the result will be written to.

2.1.2 Rename Stage

Strictly related to the decode is the rename stage. It is used to allocate physical registers
to the decoded instruction that are not necessarily the one encoded in the instruction. It
can happen that multiple instructions are meant to use the same architectural register even
if the data meant to be written will not be shared, this creates a false dependency which
is called ”Name dependency”. The renaming logic solves this problem: it allocates the
above-mentioned instruction in different physical registers and it keeps track of this allo-
cation in dedicated tables [14]. In a superscalar (see subsection 2.2.1) processor there is
the necessity to rename multiple instructions in the same cycle: to find the dependencies
between them the source register of each entry is compared to the destination of the others.
If an instruction’s parent is in its group, the identifier of the physical register allocated to
the parent overrides the identifier obtained from the rename map [14]. This logic is use-
ful when many dependencies are exposed, therefore it finds a better use in out-of-order
architecture rather than in-order.

5



Chapter 2. Background

2.1.3 Issue stage
The issue stage has two main purpose: 1) it is responsible for choosing which instruction
will be sent to the Functional Units for execution and 2) it keeps track of the readiness of
the source operands and wakes up instructions when all their source operands are ready.
It represents one of the most complex and energy consuming components, especially in
out-of-order architecture. As issue stage is the focus of this thesis, it will be described
more in details in 2.2

2.1.4 Execute and write back
This is the stage at which the results are actually computed. The instruction, as we know,
can be of different types and therefore need different functional unit for their execution:
for example an integer operation needs different components compared to a memory oper-
ation. In modern processors, there are implemented different execution paths for integer,
memory, floating point and branch instructions which also have different execution laten-
cies.

Once the operation is completed the results are immediately available but they should
then be written back to the register files before they can be used by the dependant instruc-
tion and this would cause a loss of 1 or more cycles. In modern processors, in order to
maximize performance, the result can also be forwarded as soon as it is available after the
execution stage through the bypass network

2.1.5 Commit
The commit is the last stage of a pipeline and it is in charge of actuating the modification
derived from the execution of the instruction in previous stages. In modern architecture
it is important to keep feeding the processor with new instruction to be executed even
if it is not sure that their result will be used due to branches and exceptions. Therefore
there is a difference between architectural state, which is the correct flow of execution,
and speculative state which is the current flow of instruction that are being executed and
will be committed into architectural state only in the commit stage.

In an out-of-order processor this is also the place where the instruction are finally put
back in order before being written in memory and the resources in the Reorder Buffer and
other structures are reclaimed.

2.2 Issue Stage Details
As this project aims to simplify instruction wake up mechanism, we discuss the issue stage
in details.

2.2.1 Issue order
There are two main approaches to issue instructions in a processor: in-order and out-of-
order. The former is more classic approach where the instructions are issued in the same

6



2.2 Issue Stage Details

order as they are fetched and it results in a simple hardware implementation. However,
it is limited in its ability to extract Instruction level parallelism (ILP). With out-of-order
issue, the instruction are executed as soon as they are ready, meaning as soon as their
source operands are produced. Once they are executed they are then put back in order in
the commit stage. While this solution is beneficial to the speed of the processor, it also
results in a very complex implementation and the issue stage can become the critical path,
limiting the clock frequency in the pipeline.

The issue stage also represents one of the most energy consuming component, the issue
queue alone can count up for 18% [11] of the total energy in a processor due to a writing
activity which is high energy demanding.

2.2.2 Scalar/Superscalar processor

Another major difference in processor microarchitectures is the issue width, in other words
the number of instruction issued per cycle. A Scalar processor is able to issue only one
instruction per cycle and work only on one piece of data at the time. The Superscalar
processor, instead, can issue multiple instructions each cycle and work on multiple pieces
of data [10] therefore it is able to achieve a throughput higher than one instruction/cycle
unlike the former solution.

THE ISSUE STAGE 49

file that stores the architectural state and the speculative values as described in detail in Chapter 5. 
However, the described hardware easily can be adapted to any other register file scheme.

This chapter also covers other alternatives like distributed issue queues and reservation sta-
tions. These alternatives will be explained in less detail since most of the tradeoffs that need to be 
considered in the implementation already have been covered with the aforementioned scenarios.

Finally, we pay special attention to the implementation of the issue logic for memory opera-
tions. Conversely to the rest of operations where data dependences are checked at the renaming 
stage, memory dependences cannot be identified until the memory operations compute their ad-
dresses. This characteristic has significant implications on the management of these instructions, as 
we will decribe later.

6.3.1 Issue Process when Source Operands Are Read before Issue
The main characteristic of an issue queue where operands are read before the issue stage is that it 
needs to hold the information from the instruction to perform the issue and the values from the 
source operands that have been already produced. Figure 6.1 shows a general overview of the typi-
cal components used to store this information. Every block in Figure 6.1 represents a table with as 
many entries as the number of instructions that can be held by the issue queue. Moreover, for the 
sake of simplicity, we assume a processor with an ISA similar to a simplified MIPS [32], where in-
structions can have up to two source operands or one source operand and an immediate value coded 
as part of the instruction.

Src1 data Src2 data
Or ImmCtrl infoV1 V2R1 R2SrcId

1
SrcId

2
CAM
Dests

Destination Id of produced value

CAM
Dests

Produced value

Select Logic

To Functional Units

FIGURE 6.1: Hardware components of a typical issue queue where source operands are read before 
issue. Figure 2.2: Example of Issue stage with operands read before the issue. The image is take from [7]

2.2.3 Reading Operands

An instruction can read its operands either before or after the issue stage:

7



Chapter 2. Background

Reading the operands before the issue stage

Figure 2.2 shows the necessary hardware blocks when the operands are read before the
instruction is issued. Src1Id and Src2Id are the memory blocks used to keep the operand ID
(after they have been renamed) of the instruction in the issue queue. Other two symmetric
tables Src1 data and Src2 data are used to hold the values of correspondent operands of the
instruction along with immediate value (in Src2 data only) when necessary. The validity
bits are stored in other two tables V1 and V2. When the operands of an instruction are
produced then the latter is marked as ready for issue, marking the corresponding bits in
the R1 and R2.

Reading the operands after the issue stage

In case the operands are read after the issue, the hardware structure is simplified: The table
Src1 data is not needed anymore while Src2 data is kept only to be used for immediate
operands and is therefore reduced in size. The consequence of reading after is that there is
an extra cycle between the instruction being ready and being issued.

On the other hand this design brings benefits such as the reduction of stages between
renaming and queue allocation since data are yet to be read; this also causes a reduction of
CAM memory needed.

Another big difference is in the number of the read port needed which is also propor-
tional to area, power and access latency of the register file. With this implementation the
number of read port is, in fact, linked to the issue width but it can be be also smaller with
minimal impact on the performance. Most of operands is also read from the bypass logic
making the number of read port needed even smaller.

For this project we will consider this implementation as the target architecture.

Phy_ID(Op1_src1)

Phy_ID(Op1_src2)

Phy_ID(Op2_src1)

Phy_ID(Op2_src2)

Phy_ID(Op3_src1)

Phy_ID(Op3_src2)

Phy_ID(Op1_dest)

Phy_ID(Op2_dest)

Phy_ID(Op3_dest)

from rename map
Physical identifiers Op3_destOp3_src2Op3_src1

Encoder
Priority

Encoder
Priority

Op2_destOp2_src2Op2_src1Op1_dest

Op2 Op2 Op2
Src1 Tag Src2 Tag Dest Tag

Op3Op3
Src1 Tag Src2 Tag Dest Tag

Op3
Src2 Tag

Op1
Src1 Tag

Op1
Dest Tag

Op1

Figure 4. Dependency Analysis Logic for Three Instructions

RSE SRC TAG M SHIFT R SRC TAG M SHIFT RDELAY DELAY

SELECT
LOGIC

DEST TAG

GrantRequest

Destination Tag Bus

Figure 5. Scheduling Logic for One Reservation Station Entry

labeled SRC TAG contain the tags of the source operands.
The R (READY) bit for each source is set if the data for
that source is available in the register file or is available for
bypass from a functional unit.

In our machine model, instructions broadcast their tags
in the same cycle they are selected for execution. Because
not all instructions have the same execution latency, the
number of cycles between the time their tags are broadcast
and the time their results are available is not constant. The
DELAY fields are used to handle this variability. 2 For each
source, the DELAY field encodes the number of cycles—
relative to some base—between when the tag for the source
is broadcast and when the associated result is available. We
will provide more details shortly about the actual number
that is encoded. For the logic implementation described in
this paper, this number is encoded as an inverted radix-1
value; e. g., 3 is represented by ‘1. . . 1000’.

Figure 6 shows the wakeup logic of one source tag for
our machine model. It is similar to the MIPS R10000
wakeup logic [5] but has been modified for handling multi-
cycle operations. When the destination tag of a parent is
broadcast, one of the tag comparators will indicate that a

2Alternative solutions exist. For example, if each functional unit only
executes instructions that all have the same latency, the tag broadcast can
simply be delayed so that it occurs a fixed number of cycles before the re-
sult broadcast. This eliminates the need for the DELAY fields. However,
if functional units can execute instructions of differing latencies, this solu-
tion is unsuitable at high clock frequencies: Multiple pipe stages may need
to broadcast tags, rather than just one. Either the pipe stages will need to
arbitrate for tag buses, or the number of tag buses will need to be increased.

match has occurred, and the M (MATCH) bit will be set.
The MATCH bit is a sticky bit that will remain set after the
tag match. On a tag match, the SHIFT field is loaded with
the value contained in the DELAY field. The SHIFT field is
actually contained in an arithmetic right shift register. The
MATCH bit is the shift enable for this register. The least sig-
nificant bit of the SHIFT field is the READY bit mentioned
above. After the READY bits for all source operands have
been set, the instruction requests execution.

= OR

=

load

shift
SRC TAG M SHIFT R

Source is Ready

DELAY

Destination Tag Bus
Tag 1

Tag 8

Figure 6. Conventional Wakeup Logic

For a source whose producer has an N-cycle execution
latency, the DELAY field contains N-1 zeros in the least
significant bits of the field. The remaining bits are all set to
1. This allows the READY bit to be set N-1 cycles after the
match. For example, in our model, a load instruction that
hits in the data cache takes three cycles to execute. Sup-

Figure 2.3: Conventional wakeup logic [13]
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2.2 Issue Stage Details

2.2.4 Wake up signal
Once one of the source operand has been produced a signal is sent to issue queue con-
taining the ID and validity. The CAM logic is used to check that the ID is present in
above-mentioned ID table and eventually set the corresponding validity bit.

In Figure 2.3 is reported an example of Wake up logic: the tag logic marks a match
when the destination tag of a parent is broadcasted and the correlated bit is set.

Since the wakeup signal is produced only once it must be guaranteed that all the inter-
ested consumers get the information even if not in the issue queue, this brings to the use of
the CAM memory also in the renaming tables. CAM memory, unfortunately, are known
for taking more area and consuming more then a normal addressed memory like SRAM.
This means that reducing their usage could certainly benefit the overall energy efficiency.
In fact it has been found that the wake up logic represents up to 63% of the whole issue
logic [6] which can be roughly translated to 16% of the total energy consumption of a
processor.

The waking up signal is generated by an instruction when it finishes the execution to
inform the dependant operands that they can be ready to execute. As shown in Figure 2.4
the wake up signal can be generated in advance, knowing how long it takes to a specific
instruction to complete so to bring an higher overlapping of the pipeline stages. This
implementation can be possible if a data bypass, discussed in subsection 2.1.4, is put in
place. It allows data from the executed instruction to be used directly by the following,
without storing it in the register files.

In addition, the number of comparisons required for each issue queue entry equals
the number of source operands times the number of instructions finishing execution each
cycle. Though the number of operands remains constant for an ISA, the number of instruc-
tions producing results increases with issue width of processor. Thus, the wakeup logic
becomes more complex as the issue width increases.
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incurring in significant performance drops [7]. In conclusion, back-to-back execution is critical for 
performance [34], and for this reason, most of the processors implement it [27,30,33,48] among  
others.

There are two common implementations to generate the wakeup signal. One alternative is to 
generate the signal in the pipeline stage where the instruction resides three cycles before its execu-
tion completes. Note that the number of cycles an instruction requires for execution depends on the 
functional unit it uses. For instance, an integer adder usually requires one single cycle to complete, 
whereas an integer multiplier or a floating point functional unit may require longer. Therefore, the 
pipeline should be able to generate the wakeup signal from the select stage, for single-cycle opera-
tions, until three cycles before the functional unit that takes longer ends.

Another alternative is to implement every entry of the valid bit array as a shift register plus 
the valid bit. These shift registers also may be implemented as a scoreboard with one shift register 
per physical register. Every shift register should have as many bits as the maximum number of cycles 
required by a functional unit to produce the value. Then, the wakeup signal is always generated at 
the select stage, and it sets to 1 the bit of the shift register in the position equal to the latency of 
the functional unit minus 1. The shift registers shift every cycle and, as soon as the bit 0 of the shift 
register becomes 1, the corresponding valid bit is set.

Note that these mechanisms are suitable when the latency of an instruction is constant and 
only depends on the instruction itself. This assumption applies to all arithmetic operations but 
not for memory operations. The latency of a memory operation (a load, for instance) depends on 
whether it hits or misses in the data cache or the data TLB. Unfortunately, this is known only when 
the load is issued, computes its address and accesses these structures.

Wake-Up Select Drive Execution WriteBack

Wake-Up Select Drive Execution

Wake-Up Select Drive Execution

3 cycles bubble

1

2

Wake-Up Select Drive Execution WriteBack

Producer

Consumer

Producer

Consumer

WakeUp signal received when value becomes available

WakeUp signal received 3 cycles before becomes available

Wakeup signal

Wakeup signal

Data bypass

Time

FIGURE 6.3: Timing of the wakeup signal to support back-to-back execution.
Figure 2.4: Example of the waking signal and the possible bypass implementation [10]
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Chapter 3
Opportunity Analysis

This chapter analyzes the opportunity in reducing the broadcast width, i.e. the maximum
number of wake-up signals broadcasted in a cycle, by either avoiding or delaying the
broadcast of wake-up signals.

3.1 Instruction categories
The instructions can be categorized as follows based on whether or not they need to broad-
cast a wake-up signal:

• ARITHMETIC
• LOAD
• STORE
• BRANCH

An instruction needs to broadcast a wake-up signal, when it finishes execution, to
wakeup the dependent instructions in the issue queue. However, if an instruction does not
generate a date value, it would not have any dependents and hence it does not need to
broadcast a wakeup signal. This is the case for branch instructions. Branch instructions
only decide the control flow direction and do not have any data dependent instructions.
Therefore, they do not need to broadcast a wakeup signal.

Store instructions write to memory and not to register file. The dependencies through
memory are handled by load/store queue and not by the issue queue. Therefore, stores
also do not need to broadcast a wakeup signal. Arithmetic and load instructions, on the
other hand, do have dependent instructions in the issue queue that wait for their results.
Therefore, these two category of instructions do not need to broadcast wake-up signals
when they finish execution.

We assume that the baseline core does this distinction among instructions based on
whether or not they need to broadcast wakeup signals. Next we show the fraction of
instructions that does not need to broadcast wakeup signals in the baseline core.
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3.2 Instruction distribution in baseline core

3.2 Instruction distribution in baseline core
Figure 3.1 shows the dynamic instruction distribution in the above categories. As the figure
shows, on average, about 9% of instructions are stores and a further 11% of instructions
are branches. Therefore, a total of about 20% of instructions do not need to broadcast
the wake-up signal in the baseline architecture. Looking at individual workloads, there
are benchmarks like omnetpp and perlbench where instructions that do not need to
broadcast wake-up signals (stores and branches) constitute about 35% of dynamic instruc-
tion stream. Therefore, these applications do not require a wide broadcast width.

However, for the majority of applications, the dynamic instruction stream is domi-
nated by instructions requiring to broadcast wake-up signal. For example, in gamess,
GemsFDTD, gromacs, leslie3d, sphinx3, wrf, and zeusmp nearly 90% of in-
structions need to broadcast the wakeup signals. Therefore, they all are likely to require
wide broadcast width.
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Figure 3.1: This graph shows the usage of the different categories of instruction for each benchmark

3.3 Instructions with no dependents in the issue queue
As noted earlier, our critical observation is that, if an instruction (load or arithmetic) does
not have any dependent instruction in the issue queue it does not need to broadcast a
wake-up signal on its completion. This is because it has no instruction to wake-up in the
issue queue. If a dependent instruction later enters the issue queue, it will already have its
operands present in the register file.

If we detect and avoid the wake-up signal broadcast for such instructions, we can
further reduce the total number of instructions that need to broadcast wake-up signals.
Figure 3.2 shows the fraction of dynamic instructions that have no dependent instructions
in the issue queue when they finish execution. Note that the figure includes only loads and
arithmetic instructions as stores and branches do not need to broadcast wake-up signal. On
average the 7% of the instructions broadcast a wake up signal that does not wake-up any
instruction in issue queue. There are some benchmarks like hmmer and sphinx3 where
this observation does no affect a significant slice of the instructions. On the other hand
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Chapter 3. Opportunity Analysis

many workloads like calculix, wrf, xalancbmk and zeusmp present percentage
even higher than 10%, suggesting that this observation could still lead to a meaningful
reduction of the broadcast width when applied.
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Figure 3.2: This graph shows the percentage of instruction that should not broadcast a signal because
they do not have dependent. Store & Branch are not included because they do not need to broadcast
a wake up signal

3.4 Instruction criticality to reduce broadcast width

To further reduce the number of instructions requiring to broadcast wake-up signal, we
exploit the phenomenon of instruction criticality. Prior work [5, 11, 4] has shown that
non all instruction contribute equally to the performance. Delaying the execution of non-
critical instructions by some cycles hardly has any impact on performance. Our key idea
is to delay the wake-up signal broadcast for non-critical instructions to reduce the broad-
cast width. Though this will delay their wake-up and execution, it might not have a big
performance impact as these instructions are not critical to performance.

We describe the mechanism to identify the non-critical instructions and delay wake-
up signal broadcast for them in section 4.2. Here we present the number of additional
instructions that do not need to broadcast their wake-up signal immediately, rather when
broadcast ports are available.

Figure 3.3 shows the number of instructions that generate results only for non-critical
instructions. Hence, their wake-up signal broadcast can be delayed. In figure, for the
sake of simplicity, the instructions with no dependent are excluded because already taken
into consideration in Figure 3.2. The average number of instruction that can be delayed
is around 41%, with conspicuous peaks given by benchmarks like castsADM, gromacs
and mcf (79%, 66% and 61% respectively). This results meets our expectation and intro-
duces a further idea to reduce the broadcast width.
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3.5 Combining all the results
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Figure 3.3: Percentage of instruction, out of the total, that are sending a wake up signal to a non
Critical dependant. In this figure the percentage of instruction that have no dependent has been
excluded to simplify the comparison

3.5 Combining all the results
Having seen the three categories of instructions, as mentioned above, whose wake-up sig-
nal broadcast can either be avoided or delayed, now we combine them together and present
the overall results in Figure 3.4. On average the amount of instruction that do not need to
broadcast wake-up signal immediately or never at all is around 68%, which supports our ar-
gument. In most of the workloads this number exceeds 50% while some like cactusADM
and mcf even get above 90%, showing the best predisposition to benefit from a broadcast
width reduction while keeping similar performance.
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Figure 3.4: In this figure all the percentage of instruction (Store & Branch, No dependant, No
critical dependent) discussed in previous point are combined
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Chapter 4
Analyzing the broadcast width
requirements

This chapter puts into practise the ideas of broadcast width reduction described in chap-
ter 3, analysing the resultant behaviour for each of the previous proposal

4.1 Analyzing the broadcast width requirements
The major focus of this study is to analyze and reduce the broadcast width, which means
reduce the number of wake up signal that can be broadcasted in one cycle. As mentioned
before, in the baseline core, all the instruction broadcast a wake up signal apart from stores
and branches. To understand further developments here we will show the initial situation.

4.1.1 Broadcast width for baseline core
Figure 4.1 shows the distribution of wake-up signals that need to be broadcasted each
execution cycle. The benchmarks show very different distributions. In cases like gcc
or mcf the majority of cycles ( 84% and 90% respectively) does not seem to need any
broadcast which is likely due to frequent stalls caused by cache misses.

On the other hand cases like cactusADM, gamess and hmmer point out a far higher
pressure on the broadcast logic, in particular the latter workload presents 38% of cycles
with 2 wake up signal and 31% with 3 wake up signals. Considering all benchmarks the
average of the distribution is fairly uniform with the cases from 0 up to 3 wakeup per cycle
representing 90% of the total (40%, 18%, 18% and 14 % are the respective percentage in
order from 0 to 3 wake up / cycle).

From the data presented so far we can deduce that more than 4 broadcasts per cycles
are rarely needed. In fact, on average, 4 broadcast are used in 7% of the cycles while 5 and
6 represent 2% and 0.2% respectively. This shows that a broadcast width set to 4 would
be already capable of covering 98% of the cycles in the baseline core.
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Figure 4.1: Broadcast usage per cycle in the baseline version with issue queue set to 168

4.1.2 Minimizing broadcast width
Given the data illustrated in Figure 4.1 we now explore what is the change in the distribu-
tion of broadcast when putting in practise the ideas discussed in chapter 3

Eliminating broadcast for instructions without dependents

In section 3.3 we found that, on average, 7% of the instruction still broadcast a wake up
signal even if they do not have any dependent. In this section we explore the impact on the
broadcast distribution if the above-mentioned instructions do not use a wake up signal.
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Figure 4.2: Broadcast usage per cycle with issue queue set to 168 when the instruction with no
dependent do not send a signal

Figure 4.2 shows the new distribution and the improvement obtained in most of the
workloads. We can observe that, as expected, since the number of broadcasts is lower,
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Chapter 4. Analyzing the broadcast width requirements

also the number of wake up signals per cycle should diminish.
The average shows that 96% of the cycles require 3 or less broadcasted signal respect to

90% showed in the previous scenario. It’s worth noticing that the individual concentration
are 44%, 22%, 19% and 10 % in order from 0 to 3 wake up / cycle, displaying a shift of
the concentration toward the lower end.

In line with Figure 3.2 the benchmark xalancbmk shows one of the biggest improve-
ment, with an increase of 11% of cycles without broadcast. Astar, on the other hand, has
a small increase in both 0 and 1 wake up signal per cycles (3.70% and 0.14% respectively)
as the Figure 3.2 suggested. Overall 4.2 confirms our prediction and shows a general im-
provement. In particular it appears that a broadcast width higher than 3 does not affect a
great number of instruction and neither brings great benefit, therefore it could be set as a
good compromise when considering this setting.

Delaying broadcast for non-critical instructions

In chapter 3 we found that the concept of instruction criticality could be exploited to reduce
the number of broadcast per cycle. This is possible because the non critical instruction
have a smaller impact on the performance and they can be delayed to reduce the pressure
on the broadcast logic.
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Figure 4.3: Broadcast usage per cycle with issue queue set to 168 when only the signals towards
critical instructions are broadcasted

Figure 4.3 shows the simulation when only the wake up signals to Critical instruction
are broadcasted immediately (non-critical are not shown in this figure). In this scenario
the pressure on the broadcast logic is further reduced and, as the average data shows, the
cases from 0 to 2 wake up per cycle signal gather 95% of the total cases. In detail the
cycles with 0 wakeup represent the 67%, while the other from 1 to 3 make for 20%, 9%
and 3% respectively.

Looking in details, the benchmarks cactusADM and h264ref show the biggest
difference with respect to the section 4.1.2. This may be due to the fact that most of the
instructions do not have a critical dependent in the issue queue.
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4.2 Critical instructions

Noticeably the workloads that less benefit from this scenario (in terms of increase of
cycles without any wake up signal needed), are at the same which had already a low usage
of the broadcast logic, gcc and mcf.

Lastly the decrease in the broadcast of wake up signal is aligned to the expectation
given by Figure 3.4: the benchmark that have more instruction that broadcast to a non-
critical dependent have also an higher improvement in Figure 4.3.

Given the data showed so far we can say that the broadcast width needed in this sce-
nario is of 2 or 3 signal per cycle to have a minimal impact on the performances. This
simulation helps to have an idea on the broadcast width reduction that could be possible in
an ideal situation with only critical broadcast; in realistic scenario all the wake up signal
should be considered. An additional component is needed to delay the broadcast when
possible.

4.2 Critical instructions

To pursue the goal of reducing the broadcast width, in previous chapters we have intro-
duced the concept of instruction criticality. Previous work [5, 11, 4] have shown that not
all the instruction contribute equally to performance. In particular it has been noticed that
the instruction which need to access the memory tend to have longer execution time than
others and should therefore be prioritize. This is mainly caused by the growing amount of
memory off-chip and more complex cache hierarchy.

Among the memory related instruction, our interest is towards the Loads instruction
because we know that Stores, by definition, do not have dependent waiting for them in
the issue queue. In addition, the instructions that generate addresses for loads are also
categorized as critical as loads cannot execute until their address is available. Furthermore,
instruction generating addresses for stores are also considered critical. This is because
store addresses are needed to disambiguate younger loads.

4.2.1 Detecting critical instruction

To detect critical instruction, we use the Iterative Backward Dependency Analysis (IBDA)
[4]. The main purpose of IBDA is to exploit the loops that are commonly present in code
to mark the critical instruction using simple hardware structures: The Instruction Slice
Table (IST) and Register dependency table (RDT). The first is used to store the address of
the instruction marked as critical and the latter stores the address of the instruction which
last wrote to the source register of a critical instruction to trace dependencies and identify
address-generating instructions. The main idea is that on the first iteration of a loop the
Loads are marked as Critical and treated accordingly, meantime IBDA will trace, for each
of these Loads, the instruction which computed their addresses in the RDT. On the second
iteration of the loop the IBDA, using the information collected previously, will also mark
in the IST the address-generating instruction as critical. It has been found that with an IST
of 128 entry the IBDA is capable of marking 99% of the relevant instruction [4].
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Chapter 4. Analyzing the broadcast width requirements

4.3 Broadcast queue
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Figure 4.4: The microarchitecture used in this thesis which keeps some components of the Load
Slice Core [4]. It introduces two additional FIFO queues (in green) to buffer the Broadcast directed
to Critical Instruction (CBQ) and Non-critical instruction (NCBQ)

We have discussed so far that the criticality of an instruction is given by its impact
on the execution performance. We have found as a result that definition can be applied
to two category of instructions, Loads and their address-generators, because accessing the
memory is a long-latency operation.

Given this distinction, in section 3.4 we have found out that the amount of instruction
that broadcasts a wake up signal to a non-critical dependent is, on average, 41 %. The main
idea is, in fact, to broadcast the wake up signal to critical instruction as soon as possible
while the remaining wake up signals can be delayed and spread over the following cycle
where the pressure on the broadcast logic is lower. By doing so, we expect to distribute
the broadcast of signal more evenly over different cycles and therefore be able to reduce
the broadcast width with minimal impact on performance.

To achieve this goal we introduce two simple FIFO queues to buffer the wake up signal
informations : the first is used for wake up signals broadcasted to critical dependents and
the second for signals to any other instruction. Each new cycle the queue for critical
instruction will have higher priority; only when broadcast ports are left unused the second
queue can then broadcast its signals.

These queues are introduced because they allow us to vary the broadcast width and
understand its impact: when the number of broadcasted signals exceeds the slots available,
they will be stored in the queues and handled in the following cycles. This allows us
to evaluate which could be the performance loss associated to different broadcast width
reductions in order to find which is the best compromise. Throughout our study we will
assume that the FIFO queues introduced will have infinite entries.
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Chapter 5
Evaluation

In the following chapter we will make a comparison in order to find which is the best
compromise taking into consideration the broadcast width reduction and the eventual per-
formance loss.

5.1 Methodology
The main tool that we have used to evaluate the proposed architecture is Sniper simulator
[1] which works by expanding Intel’s PIN tool with models for the core, memory hierarchy,
and on-chip networks. The simulations have been performed using CPU2006 benchmark
suite with reference inputs. To keep the simulation time reasonable, SimPoint methodol-
ogy [12] is used to choose a single most representative region of 1 billion instructions in
each application. For our experiment we have considered the following designs.

- The first is based on the Baseline core and introduces one unlimited FIFO queue
where all the wake up signals exceeding the broadcast width will be stored.

- The second is an improved version of the first where the instruction with no dependent
do not broadcast any signal in order to lower the pressure on the broadcast logic.

- The third is described in 4.3 and uses two different FIFO queue to manage critical
and non-critical wake up signal.

5.2 Broadcast width of 4
We first set the broadcast width to 4 as we found in subsection 4.1.1 that the usage of more
than 4 broadcasts per cycle is rare; therefore, we don’t explore broadcast widths higher
than four.

Figure 5.1 shows the performance loss caused by setting the broadcast width to 4 over
an unlimited broadcast width design. The results in figure point out that the baseline ver-
sion is, as expected, affected more than the other two designs, i.e. when the instructions
with no dependents do not broadcast and when the critical instruction are prioritized. The
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average performance penalty in the baseline case is about 1% while the other two de-
signs show much lower performance loss: 0.03% and 0.02% respectively. These results
show that the performance loss with a broadcast width of 4 is negligible compared to an
unlimited broadcast width design.

Considering each benchmark individually we can see that gamess presents the peak
delay in terms of additional cycles with respect to unlimited broadcast width in all the
scenarios considered: 4.3%, 0.2% and 0.2% respectively. This numbers show that all the
three microarchitecture, even in the worst case considered, have a limited performance
loss, especially when excluding unnecessary broadcast when there are no dependents or
when prioritizing the critical instructions.

It is worth noticing that the benchmarks that happened to have 5 or 6 broadcast per
cycle more often in Figure 4.1 (gamess, leslie3d, h264ref and wrf ) here show
the highest delay as it can be expected. On the other side, workloads like hmmer, even
showing an higher pressure on the broadcast logic (94% of the cycles require to broadcast
at least 1 wake up logic) does not look to suffer from the reduction in broadcast width.
This is because the broadcast width of four is wide enough to wake-up the majority of
instructions on time.
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Figure 5.1: The figure shows the increase of the number of cycles, when the maximum number of
broadcasted signals is set to 4, expressed as a percentage respect to the case with unlimited broadcast
width

5.3 Broadcast width of 3
Figure 5.2 presents the performance loss when the broadcast width is set to 3 in terms of
percentage of additional cycles needed to complete execution. In this scenario we found
that No Dependant and Critical Instruction are slightly impacted in the performance, in
fact their average delay gets to 0.51% and 0.50% respectively.

When looking at individual benchmark we found that the delay for the baseline is
greater in the same workloads mentioned above (gamess, leslie3d, h264ref and
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wrf ) but at the same time not all of them show the same slow down when looking at
No Dependant and Critical Instruction(i. e. wrf has a pretty negligible delay both when
it broadcasts wake up signals for critical instruction and when excluding the signal when
no dependent is in the issue queue) . The Baseline maintains a similar behaviour to the
previous case with a delay of 1.13%.
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Figure 5.2: The figure shows the increase of the number of cycles, when the maximum number of
broadcasted signals is set to 3, expressed as a percentage respect to the case with unlimited broadcast
width

5.4 Broadcast width of 2
Figure 5.3 shows the results when the broadcast width is set to 2. A significant perfor-
mance loss can be seen in the baseline core due to instructions not being waken up on
time. The average slowdown for the baseline core is about 9%, with the slowdown being
as high as about 24% in gamess. The same trend can be observed also when the design
does not broadcasts results for non-dependent instructions. The average performance loss
in this case is about 5.6%.

Our final design that considers instructions criticality shows 5.7% performance loss.
When looking to benchmarks individually it can be noticed that, besides group of bench-
marks already cited before, new critical cases emerged : calculix shows the biggest
increase of delay probably because the short amount of wake up signals allowed exposes
close-up dependency that cause the slow down. The narrow broadcast width also showed
that in benchmarks like gamess or calculix the proposed microarchitecture with two
queues is found to cause a greater delay than the second architecture with only one queue.
This can be caused by the huge number of ”Critical” broadcast which, due to the pri-
oritized queue, block the ”Non-critical” signals so long that the benefits brought by this
architecture on the MLP are counterweight and result in a loss of performance.
Summary: To summarize, simply reducing the broadcast width of the baseline core, to
reduce the complexity of wake-up logic, significantly hurts performance. As the results
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Figure 5.3: The figure shows the increase of the number of cycles, when the maximum number of
broadcasted signals is set to 2, expressed as a percentage respect to the case with unlimited broadcast
width

presented in this section show, reducing the broadcast width to 2 leads to a performance
loss of about 9% and as high as 24% in some benchmarks. Our proposal, in contrast, aim
to keep the performance penalty to minimal by taking advantage of instruction criticality
and the observation that some instructions do not have their dependents in the issue queue
when they finish execution.

From the data collected we can see that adding one queue and preventing instruction to
broadcast when they have no dependent gives the best results at the minimum cost. Using
two queues to prioritize the broadcasts causes, in some benchmarks, a meaningful loss
with respect to the previous solution.
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Chapter 6
Related Work

The issue stage, as mentioned before, is one of the most expensive component of a pipeline
due to its high complexity. Many studies that have been carried out focus on this stage in
order to find simpler architecture with a low impact on performance.

Table 6.1: Comparison withing different proposal to improve the issue stage. Picture from [3]

6.1 Works on out-of-order architecture
One of the first work presented on such topic has been the MLP-Aware Dynamic Instruc-
tion Window Resizing [8] that, as the name suggests, focuses on extracting Memory-
Level Parallelism (MLP). The main observation is that the issue window influences the
performance according to the type of workload: the gcc benchmark have a degradation of
IPC when the windows size increases but, on the other hand, memory intense benchmark
like libquantum benefit from a large issue window because of the better MLP. This brought
to the idea of implementing an architecture which is capable of resizing the window and

23



Chapter 6. Related Work

have a large size only when necessary to extract MLP and a smaller window when the
workload is more computing-intense.
Another important work is Long Term Parking [11], which first introduced the idea of
separate queues for less important instructions. The idea is to identify which instruction
can expose Memory-Level Parallelism and can therefore be considered worth of allocat-
ing the expensive IQ resources; all the other types should instead be ”parked” in a simper
and cheaper structure (like a FIFO) until they are ready. An instruction should allocate
resources according to a metric based on its Readiness and its relation with Long Latency
Instruction called Urgency, otherwise be ”parked”. This allows to reduce the dimension
of the IQ and the Register File without affecting the performance.
Another proposed idea to simplify the issue stage is the Front-end Execution Architec-
ture which focuses on reducing the issue width. The design includes a both an in-order
execution unit (IXU) and an out-of-order execution unit (OXU) placed one after the other:
the instruction will first enter the IXU and,, if ready, it will be executing using the FUs
present at this stage; if not ready the instruction will be considered as a NOP and enter the
OXU. The IXU in mainly acting like a filter for ready instruction that can instantly execute
without wasting the issue resources of the OXU so that the latter can have a reduced width.
Taking on these previous ideas and merging some aspects of it another work has been pre-
sented: Delay-and-Bypass [3] The instruction are, in this case, separated according to a
criteria based on both readiness and criticality: the resources of the IQ are allocated only
to critical instructions waiting to be ready. When it is critical and ready it is issued directly
to the execution units; non-critical are put in a simple FIFO queue. This evolution of the
criteria allows DNB to reduce the IQ in size and width while keeping better performance
than LTP.
The FIFOrder MicroArchitecture [2] focuses on using cheaper FIFO to deduct the pres-
sure on the IQ so to improve energy efficiency up to 50% and performance [2]. To achieve
that it categorizes the instruction according to their readiness at the dispatch stage : three
of these types (Ready-at-Dispatch, Almost-Ready-at-Dispatch and Load-tail) are found to
not benefit from the out-of-order execution and can be put in cheap separated FIFOs to
avoid further stalls. The remaining category (which represents on average the remaining
33%) will allocate resources in the IQ. Respect to the cited FXA, this architecture proves
to have better performance per energy when using three FIFOs and it does not require to
replicate Functional Units. [2]

6.2 Work on in-order architecture
One other approach to the problem of complexity is to improve the performance and ILP
of the in-order architecture that are by definition simpler than out-of-order architecture.
The Load Slice Core microarchitecture [4] focuses on extracting Memory-Level Paral-
lelism: the instructions that are interested in this process (Loads and address generating)
are marked as critical and therefore bypassed to another dedicated queue in order to avoid
the stall that can occur in the normal stream. The structure used are still simple (RAMs
and FIFOs) because the order is still kept as it is, generating ”slices” of instructions. This
idea guarantees simple hardware but its performance cannot be compared to a real out-
of-order processor because the dependencies in between instruction still frequently block
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MLP generation.
An evolution on this architecture to overcome dependence-oblivious in-order slice execu-
tion has been proposed by Freeway [9]. The idea is that when executing the bypassed
instruction mentioned above, the architecture should be aware of their dependency and, by
using another FIFO structure, put them aside until they are available for execution. This
whole mechanism allows the independent instruction to be executed out-of-order using a
minimum amount of additional Hardware.

6.3 This work
All the projects and proposals that have been illustrated so far take different approaches to
improve the issue stage : some start from a out-of-order architecture and try to reduce its
complexity without losing performance, other try improve a simple and efficient in-order
architecture to gain performance without over complicating. Most of this efforts have been
made on the issue logic but none of this works takes into consideration the wake up logic
which also represents a critical component. The use of CAM and RAM in the Issue Queue
is strictly correlated to the employment of the wake up signals and, in particular, the area
and energy consumption are proportional to the ports of the cited memories.
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Chapter 7
Conclusion

The continuous demand for higher performance has caused processor design to change
drastically over the year. Processors has evolved from simple single-cycle in-order execu-
tion machines to highly speculative out-of-order execution engines. Though this evolution
has brought many fold performance benefits, it has also increased processor complexity
significantly. Specifically, the instruction scheduling mechanism, i.e. the issue stage, is
one of the most complex operations in contemporary processors. Its complexity stems
from its need to wake-up instructions for execution when all their operands become avail-
able and select them for execution based on priority heuristics.

The goal of this thesis was to analyze and reduce the complexity of the instruction
wake-up mechanism. We first established a reasonable baseline by assuming that store and
branch instructions never need to broadcast wake-up signal as they do not have any data
dependent instructions. Starting from this baseline, we further showed that there are other
instructions for which the wake-up signal broadcast can either be completely eliminated or
delayed, thus reducing the required broadcast width. For example, if an instruction does
not have any dependent instructions in the issue queue when it completes its execution, it
does not need to broadcast a wake-up signal at all. Furthermore, we exploited instruction
criticality to delay the wake-up broadcast if all the dependents of an instructions are non-
critical.

If more instructions finish execution in a cycle than the number of wake-up broadcasts
supported by the processor, we buffer the extra broadcasts in two FIFO queues: one for
critical and other for non-critical instructions. When a broadcast port becomes available,
we issue broadcasts from these queue with instructions in critical queue getting higher
priority than non-critical ones.

By reducing the number of instructions that need to broadcast wake-up signal imme-
diately, we are able to reduce the broadcast width with various degree of success. When
restricting the broadcast width to 4 and 3 the performance loss is, on average, negligible
( around 0.02 % and 0.50% respectively). With the broadcast width set to 2 wake up sig-
nal per cycle the delay is more noticeable and stands at 5.6% with only one queue. We
also found that implementing two queues of broadcast to prioritize the critical signal does
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not bring an substantial improvement and, when the broadcast width is set to 2, it causes
substantial delays in some benchmarks.

We proved to some degree that is possible, implementing simple hardware, to reduce
the broadcast width to simplify the wake up logic with a limited impact on the perfor-
mances.
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