
Phi Thien H
oang &

 Jonas Laskem
oen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Phi Thien Hoang
Jonas Laskemoen

Predicting stock prices with Long Short-
Term Memory based models using a
combination of data sources

Master’s thesis in Computer Science

Supervisor: Prof. Björn Gambäck

August 2020

Phi Thien Hoang
Jonas Laskemoen

Predicting stock prices with Long
Short-Term Memory based models
using a combination of data sources

Master’s thesis in Computer Science
Supervisor: Prof. Björn Gambäck
August 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The focus of this thesis is stock price prediction using easily available sources of
information. The four research questions presented are related to identifying patterns
in the gathered data (1), comparing Long Short-Term Memory (LSTM) based mod-
els to simpler baseline models (2), analyzing the effect of introducing a novel context
module to the LSTM based models (3) and analyzing the effects of generalizing mod-
els (4). Three groups of data were used, representing trading data, sentiment data and
trendscore data. The performance of the models were measured in terms of mean abso-
lute percentage error (MAPE), mean absolute error (MAE), mean squared error (MSE)
and direction accuracy (DA). Generally, the LSTM based models were inferior to the
baseline models and seemed to converge to the naive 1-step-behind model, a model
that always predicts the next price to be the current price. However, one LSTM con-
figuration managed to improve statistically significant over a random guessing model
in terms of DA, although only on the time frame related to the test set. The inconsis-
tencies across time frames led to the conclusion that the model did not seem suitable
for practical use. Multiple hypotheses explaining why this task is as hard as witnessed
are presented, mainly related to the varying properties across time frames; symbolized
by the price variances, differences across stocks, and the amount of usable information
in the available data.

i

Sammendrag

Fokuset for denne oppgaven er prediksjon av aksjekurser ved hjelp av lett tilgjen-
gelige informasjonskilder. De fire presenterte forskningsspørsmålene er relatert til å
identifisere mønstre i de innsamlede dataene (1), sammenlikne Long Short-Term Me-
mory (LSTM) -baserte modeller med enklere grunnmodeller (2), analysere effekten
av å introdusere en ny kontekstmodul til de LSTM-baserte modellene (3) og analysere
effekten av generaliserende modeller (4). Tre grupper av data ble brukt, som represen-
terer handelsdata, sentimentdata og trendscore-data. Ytelsen til modellene ble målt i
form av gjennomsnittlig absolutt prosentvis feil (MAPE), gjennomsnittlig absolutt feil
(MAE), gjennomsnittlig kvadratfeil (MSE) og retningsnøyaktighet (DA). Generelt var
de LSTM-baserte modellene dårligere enn grunnmodellene og syntes å konvergere til
en modell som alltid forutsier at neste pris skal være den nåværende prisen. Imidler-
tid klarte en LSTM-konfigurasjon å forbedre seg statistisk signifikant over en tilfel-
dig gjetningsmodell når det gjelder DA, men bare på tidsrammen relatert til testsettet.
Uoverensstemmelsene på tvers av tidsrammene førte til konklusjonen at modellen ikke
syntes egnet for praktisk bruk. Flere hypoteser som forklarer hvorfor denne oppgaven
er så vanskelig som observert presenteres, hovedsakelig knyttet til de forskjellige egen-
skapene på tvers av tidsrammene; symbolisert av prisavvik, forskjeller mellom aksjer
og mengden brukbar informasjon i tilgjengelige data.

ii

Preface

We started this project with a lot of interest in the stock market, but had little to no practical
experience with it. Coming from a computer science background with specialization in
artificial intelligence, we wanted to see what computers would be able to do in this field as
of now. Working on this project has given us better understanding of the stock market, as
well as deeper knowledge of practical usage of machine learning tools, that we hope could
be useful in our future endeavours. We hope that the readers are at least as fascinated by
our findings as we initially were.

We would like to thank our supervisor Professor Björn Gambäck for his guidance. All the
help, advice and suggestions have been greatly appreciated and played an integral part in
the finished thesis. His willingness to accept the task of being our supervisor despite his
tight schedule gave us the extra motivation needed to complete this project.

iii

CONTENTS

Contents
Abstract i

Sammendrag ii

Preface iii

1 Introduction 1

2 Background 5
2.1 Essentials . 5

2.1.1 Sentiment analysis . 5
2.1.2 Prediction . 6
2.1.3 Time series . 6
2.1.4 Supervised learning . 7
2.1.5 Overfitting . 7
2.1.6 Linear Regression . 7
2.1.7 Ridge regression . 8
2.1.8 Artificial neural networks . 9
2.1.9 Recurrent Neural Network (RNN) 15
2.1.10 Long Short-Term Memory (LSTM) 20
2.1.11 Bidirectional LSTM . 22
2.1.12 Encoder-Decoder architecture . 23
2.1.13 Adam . 23
2.1.14 Autocorrelation Function and Partial Autocorrelation Function . . . 24
2.1.15 Normalization . 24
2.1.16 Metrics . 25

2.2 Additional knowledge . 26
2.2.1 Logistic regression . 27
2.2.2 Support Vector Machines . 27
2.2.3 Naive Bayes . 27
2.2.4 K-Neareast Neighbors . 28
2.2.5 K-means . 28
2.2.6 Decision tree learning . 28
2.2.7 Random Forest . 29
2.2.8 Convolutional Neural Networks (CNNs) 29
2.2.9 Pearson correlation and Granger causality 29
2.2.10 Forecasting . 30

2.3 Tools . 30

iv

CONTENTS

2.3.1 statsmodels . 31
2.3.2 scikit-learn . 31
2.3.3 TensorFlow . 31
2.3.4 Keras . 32

3 Related work 33
3.1 Sentiment analysis . 33
3.2 Prediction and forecasting . 33
3.3 Prediction of events with sentiment analysis 34
3.4 Predicting stock market prices using sentiment 35
3.5 Predicting and forecasting cryptocurrency values 36

4 Data 38
4.1 Data sources . 38

4.1.1 Investing.com . 38
4.1.2 StockFluence . 38
4.1.3 Google Trends . 39

4.2 Description of the data . 39
4.2.1 Historical trading data . 39
4.2.2 Stock sentiment data . 40
4.2.3 Trend data . 41

4.3 Initial data analysis . 42
4.4 Data preprocessing . 49

5 Architecture 50
5.1 Context module . 51
5.2 Prediction module . 52
5.3 Multiple outputs . 54

6 Experimental setup 55
6.1 Data related setup . 55

6.1.1 Normalization . 55
6.1.2 Dividing data into training, validation and test sets 56

6.2 Model implementation . 57
6.2.1 Simple 1-step-behind model (naive model) 57
6.2.2 Linear regression . 57
6.2.3 Ridge regression . 57
6.2.4 Random guessing . 58
6.2.5 Vanilla LSTM . 58
6.2.6 Stacked LSTM . 59

v

CONTENTS

6.2.7 Bidirectional LSTM . 60
6.2.8 Context module . 61
6.2.9 How the LSTM models are combined with the context module . . . 62

6.3 Evaluation metrics rationale and implementation 65

7 Experimental plan 67
7.1 The essential parts of the experiments . 67
7.2 Experiments outline . 68

7.2.1 Initial experiments . 68
7.2.2 Additional experiments due to the initial results 70
7.2.3 Evaluation on the test set . 71

7.3 Elaboration . 71
7.3.1 Hyperparameter search . 71
7.3.2 Multiple layers and bidirectional layers 73
7.3.3 Feature analysis and feature subsets 73

7.4 Evaluation . 74

8 Results 76
8.1 Baseline models . 76

8.1.1 Evaluating DA when random guessing 77
8.1.2 Simple 1-step-behind model . 78
8.1.3 Linear regression . 79
8.1.4 Ridge regression . 81
8.1.5 Extending the baseline experiments 82

8.2 Analyzing the loss history . 84
8.3 Hyperparameter search . 86
8.4 Issues with the bidirectional implementation 88
8.5 Feature analysis, predicting price . 88
8.6 Introducing the context module . 95
8.7 Predicting price by optimising on price and direction 99
8.8 Additional experiment: Predicting price change 100

8.8.1 Predicting price change without using context 100
8.8.2 Predicting price change using context 107
8.8.3 Examining additional data further 109
8.8.4 Experimenting with feature engineering 112

8.9 Additional experiment: Predicting next price change using several time steps113
8.10 Additional experiment: Predicting price change for one stock at a time . . . 116

8.10.1 Experimenting on AAPL . 116
8.10.2 Experimenting on FB . 120
8.10.3 Experimenting on HD . 123

vi

CONTENTS

8.11 Summary and evaluation on the test set . 125
8.11.1 Experiments on all stocks . 125
8.11.2 Experiments on individual stocks 129

9 Discussion 134
9.1 Using different data to improve prediction 134
9.2 Comparing of the LSTM models to the baseline models 139
9.3 Including context module . 142
9.4 Using the same parameters across all stocks 145
9.5 Additional points . 146

9.5.1 Different variance . 146
9.5.2 Overfitting on the data . 147
9.5.3 Issues with lagging behind the actual values 148
9.5.4 Observations related to the evaluation method used 148
9.5.5 Comparing against other works 150

10 Conclusion 152

11 Future work 154

References 156

Appendix 160
A Details on all stocks . 160
B Results . 161

B.1 Hyperparameter search . 161
B.2 Issues with the bidirectional implementation 165
B.3 Feature analysis, predicting price 169
B.4 Introducing the context module 177
B.5 Predicting price by optimising on price and direction 180
B.6 Additional experiment: Predicting price change 182
B.7 Additional experiment: Predicting next price change using several

time steps . 197
B.8 Additional experiment: Predicting price change for one stock at a

time . 201
B.9 Summary and evaluation on the test set 209

C Discussion . 226
C.1 Using different data to improve prediction 226
C.2 Comparing the LSTM models to the baseline models 226

vii

LIST OF FIGURES

List of Figures
1 The perceptron . 10
2 Multilayered neural network . 11
3 Multilayered neural network detailed . 12
4 Visualization of the RNN at every timestep t 16
5 Unrolled RNN . 18
6 LSTM cell . 21
7 Bidirectional LSTM . 23
8 Example of trend data before and after applying adjusting process. 42
9 Examples of plots showing that linear relationship is present and not present. 43
10 ACF plots of prices of the stocks AAPL, KO, PFE and QCOM 45
11 PACF plots of prices of different stocks 46
12 Seasonal decompose on the stock AAPL with different periods. 48
13 System with input and output . 50
14 Subsystem 1: With the context module . 50
15 Subsystem 2: Without the context module 50
16 The context module . 52
17 Prediction module with stacked LSTMs 53
18 Prediction module with stacked bidirectional LSTMs 54
19 System with input and two outputs . 54
20 The complete dataset divided into a training set, a validation set and a test set 56
21 Connections between layers in the vanilla LSTM model 58
22 Connections between layers in the vanilla LSTM model with two output

layers . 59
23 Connections between layers in the stacked LSTM model 60
24 Connections between layers in the bidirectional LSTM model. 60
25 Connections between layers in the context module 62
26 Implementation of the context module in combination with the vanilla or

stacked LSTM models . 63
27 Implementation of the context module in combination with the Bidirec-

tional LSTM model . 64
28 The simple 1-step-behind model predictions on the test set for BIDU 78
29 The linear regression model predictions on test set for the stocks BIDU,

DIS, FB and HD . 79
30 The linear regression model predictions on test set for the stocks BIDU,

DIS, FB and HD, zoomed in on the 50 first predictions 80
31 The ridge regression model predictions on test set for AMZN, zoomed in

on the first 50 predictions . 81
32 Loss history without patience . 85

viii

LIST OF FIGURES

33 Loss history with patience . 86
34 Predicted prices vs actual prices of the stocks INTC, KO, NFLX and NVDA,

generated by the vanilla LSTM with all features 92
35 Predicted prices vs actual prices of the stocks INTC, KO, NFLX and NVDA,

generated by the vanilla LSTM with all features, zoomed in on the 25 first
predictions . 93

36 The vanilla LSTM model predictions on validation set for HD, zoomed in
on the 50 first predictions. 94

37 Predicted prices vs actual prices of the stock DIS, generated by the vanilla
LSTM with context moduel on Price + Sentiment data 97

38 LSTM without context module predicting price change on the stock AMZN,
using all trading data . 106

39 LSTM with context module predicting price change on the stock FB, using
trading data . 108

40 Predicting the next price change for the stock AAPL, using the trading data
only . 118

41 Predicting the next price change for the stock AAPL, using “change” and
trendscore data . 119

42 Predicting the next price change for the stock FB, using the “change” fea-
ture and sentiment data . 122

43 The first 25 time steps on the training set 143
44 The first 25 time steps on the validation set 144
45 Examples showing the mean of the predictions to be slightly above 0. . . . 194
46 Examples showing the added price changes making little difference in pre-

diction. Trained on sentiment divided into smaller subsets. 195
47 Using price differences between open, low and high, and close price or

trendscore change . 197
48 Predicting next change when using change[0-2] and trendscore[0-2] 200
49 Examples showing the LSTM model with context module predicting with

different feature subsets on the INTC stock. 226

ix

LIST OF TABLES

List of Tables
1 The different gates used in LSTM. 20
2 Description of trading data . 39
3 Description of sentiment data . 40
4 Hyperparameters used in hyperparamater search 72
5 Data categories divided into feature subsets 73
6 Feature subsets . 74
7 The baseline models on the test set . 77
8 The naive model on the validation set . 77
9 The ridge regression model with different values for α. 82
10 The ridge regression model with different features omitted. 83
11 The baseline models on the stock AAPL, ridge regression optimized 84
12 Hyperparameter search . 87
13 Feature search using vanilla LSTMs and stacked LSTMs 89
14 Dividing into smaller feature sets . 90
15 Trendscore in addition to price . 91
16 The best model found when predicting the next price 95
17 Predicting the next price using the context module. 96
18 Optimising model related to each feature subset 10 times 98
19 The best model found when using context 99
20 Predicting price and direction. 99
21 Price change prediction without context module. 101
22 The best individual runs for each selected feature subset. 101
23 Predicting price change, analysing different subsets of the trading data . . . 102
24 The metric result variations using the same features; trading data 103
25 Comparing using only price to using only price change when predicting the

next change. 103
26 Price change prediction without context module. 104
27 Splitting up the trading features in order to identify patterns. 105
28 Price change prediction with context module. 107
29 Identifying how much each feature subset contributes to the configuration

that yielded the best results in Table 28. 109
30 Identifying how much each feature subset contributes to the configuration

that yielded the best results in Table 29. 110
31 Introducing trendscore. 111
32 Introducing trading data . 111
33 Using price differences between open, low and high, and close price or

trendscore change. 112
34 The selected feature sets for the models with and without context module . 113

x

LIST OF TABLES

35 Using several time steps . 114
36 Best results using several time steps, extracted from Table 35 115
37 Feature search on the AAPL stock . 117
38 Using only “trendscore” on the AAPL stock 120
39 Feature search on the FB stock . 121
40 Feature search on the HD stock . 123
41 Most important results . 125
42 Selected feature subsets when predicting price. 126
43 Selected feature subsets when predicting price change. 126
44 Predicting next price without context on the test set 127
45 Predicting next price change without context on the test set 127
46 Predicting next price using context on the test set 128
47 Predicting next price change using context on the test set 128
48 Most important results related to predicting prices for individual stocks . . . 130
49 Predicting next price change on the test set for AAPL stock 131
50 Predicting next price change on the test set for FB stock 131
51 Predicting next price change on the test set for HD stock 132
52 Inconsistent results on the AMD stock . 137
53 Variance of the different stock in the different data partitions 142
54 Variance of the normalized prices . 147
55 The naive model predicting the next price 149
56 The stocks included in the project. 161
57 Full table: Hyperparameter search . 165
58 Bidirectional . 169
59 Full table: Feature search using vanilla LSTMs and stacked LSTMs 173
60 Full table: Trendscore in addition to price 175
61 Full table: Dividing into smaller feature sets 177
62 Full table: Predicting the next price using the context module. 178
63 Full table: Optimising model related to each feature subset 10 times 180
64 Full table: Predicting price and direction. 182
65 Full table: Price change prediction without context module. 184
66 Full table: Predicting price change, analysing different subsets of the trad-

ing data . 185
67 Full table: Price change prediction without context module. 186
68 Full table: Splitting up the trading features in order to identify patterns. . . 187
69 Full table: Price change prediction with context module. 189
70 Full table: Comparing using only price to using only price change when

predicting the next change. 189
71 Full table: Identifying how much each feature subset contributes to the

configuration that yielded the best results in Table 28. 191

xi

LIST OF TABLES

72 Full table: Identifying how much each feature subset contributes to the
configuration that yielded the best results in Table 29. 192

73 Full table: Introducing trendscore. 192
74 Full table: Introducing trading data . 193
75 Full table: Using price differences between open, low and high, and close

price or trendscore change. 196
76 Full table: Using several time steps . 200
77 Full table: Feature search on the AAPL stock 203
78 Full table: Feature search on the FB stock 206
79 Full table: Feature search on the HD stock 209
80 Full table: Predicting next price without context on the validation set . . . 210
81 Full table: Predicting next price without context on the test set 211
82 Full table: Predicting next price change without context on the validation

set . 212
83 Full table: Predicting next price change without context on the test set . . 213
84 Full table: Predicting next price using context on the validation set 214
85 Full table: Predicting next price using context on the test set 215
86 Full table: Predicting next price change using context on the validation set 216
87 Full table: Predicting next price change using context on the test set 217
88 Full table: Predicting next price change on the test set for AAPL stock . . 220
89 Full table: Predicting next price change on the test set for FB stock 222
90 Full table: Predicting next price change on the test set for HD stock 225
91 The top DA results related to the random model over 1000 runs 227
92 The top MSE results related to the random model over 1000 runs 228
93 The top DA results related to the random model over 1000 runs on the

Facebook stock . 230
94 The top MSE results related to the random model over 1000 runs on the

Facebook stock . 231
95 The top MAE results related to the random model over 1000 runs on the

Facebook stock . 232
96 The top MAPE results related to the random model over 1000 runs on the

Facebook stock . 233
97 The top DA results related to the random model with a 51.47% chance of

predicting a higher price than the current over 1000 runs on the test set . . . 234

xii

1 Introduction

The efficient market hypothesis is a widely known hypothesis related to stock trading
(Fama, 1970). The hypothesis posits that the market is perfectly efficient in reflecting
all public information. When news appear, the prices in the market will immediately and
perfectly reflect these news (Malkiel, 2003). Price movements will only reflect previously
unknown information, i.e. news. As news are unpredictable, price movement therefore
follows a random walk. This implies that expert stock traders would be no more efficient
in earning than amateurs, which has been shown to not be the case. According to Investo-
pedia.com, 2020, the Windsor stock fund had a yearly return of 13.7% vs 10.6% for the
S&P500 from 1964 to 1995, which adds up to a return of 53 times the initial investment
over 31 years. This shows that there is an enormous potential for making money in the
stock market for expert traders. In later years, the sentiment has moved from the mar-
ket being perfectly efficient to the notion that it is extremely efficient. The market does
not move according to a perfectly random walk and previous information can be used to
predict future price movements. As the market is extremely efficient in reflecting public in-
formation, one way of consistently beating the market is to find superior predictive patterns
in this information that few others find.

Being efficient in identifying complex patterns is a fundamental property of humans, this is
how we make sense of the world around us. Generally we are extremely efficient in identi-
fying these patterns as a result of the refinement process of natural selection. Solving hard
pattern recognition tasks has therefore historically been assigned to humans, but in later
years computers have due to an increase of available data, optimization of hardware, and
the emergence of machine learning algorithms surpassed humans in hard, abstract prob-
lems. According to Scientificamerican.com (2020) even in facial recognition Artificial In-
telligence (AI) has reached the level of the best forensic examiners, i.e. top human experts.
AI can therefore be a valid tool for pattern recognition tasks. These results combined with
the massive amounts of information related to the stock market is a strong indicator that a
machine learning algorithm is an interesting candidate for stock prediction. The thesis will
therefore explore the efficacy of using machine learning algorithms for predicting future
stock prices.

The overarching goal of this thesis can be summarized as following: Investigate whether
easily available data can be used to accurately predict stock prices using machine
learning. To limit the scope and make the task more manageable, the thesis will focus on
achieving this goal by answering the following research questions:

I) Are there some patterns in the trading data, sentiment data and search popu-
larity data gathered in this project that can facilitate price prediction?

1

II) Will a model based on LSTMs outperform the baseline models in predicting the
next day prices of stocks?

III) Will introducing a context module improve prediction?

IV) Can one of the models with configurable parameters in this project outperform
the baseline models in predicting stock prices, using the same set of parameters
for every stock in this project?

Motivation for the research questions mentioned above will be explained in the following
paragraphs.

In later years, the number of users on social media has increased dramatically. According
to Statista.com (2020) Facebook had 2.375 billion monthly active users in the first quarter
of 2019. Twitter had 326 million monthly active users by 26th of October 2018. These
services are platforms in the sense that users can express their own opinion for other users to
digest. Information flow between humans is now, more than ever, facilitated through these
platforms. People express their opinions on virtually everything, ranging from individual
opinions on sports and family life, to covering wider issues such as politics and stock
markets. In this plethora of information, is there anything that can be useful for finding
some predictive patterns related to the stock market? Bollen, Mao & Zeng (2011) measured
the general mood given Twitter posts in order to improve stock market predictions with
positive results. In addition to social media, there are many other services where a large
proportion of the world express themselves. Google, the most widely used search engine
is one such example. On this service, users express their own curiosities by searching.
In 2012, over 1.2 trillion searches were conducted through Google (Internetlivestats.com,
2019). Preis, Moat & Stanley (2013) found some correlation between Google search trends
and market price movements, and concluded that Google search trends might even provide
insight into future market trends. Research question I) was motivated by the possibilities
present in such data. The machine learning models proposed in this thesis will therefore use
Twitter and Google trends data in order to predict the stock market, in addition to historical
trading data. Twitter data in the form of historical sentiment scores produced by sentiment
analysis by the service StockFluence (2020), and Google data in the form of historical
search popularity data.

Research question II) was derived from the preliminary research. The results found in the
preliminary research on related works, such as the works of Althelaya, El-Alfy & Mo-
hammed (2018), Jiahong Li, Bu & Wu (2017) and Xiong, Nichols & Shen (2016) show
that Long Short Term Memory neural network is one of the models that is often considered
when working with sequential data such as a time series, and consistently delivers decent
performance in most of the works, even achieving state-of-the-art performance in some
cases. This thesis will therefore use and analyse LSTM models in order to find predictive

2

patterns in the data. These models will be compared to simpler models that will act as the
baseline models, such as a linear regression model, a ridge regression model, and a simple
model that always predicts the price of tomorrow to be equal to the price of today.

Different configurations of LSTMs will be examined in the thesis, all implemented using
Keras (2020) with TensorFlow (2020) backend. A vanilla LSTM model, an LSTM model
which no modification is done will be presented. A stacked LSTM, meaning a model with
more than one LSTM layer will also be presented, as adding layers often means increasing
the ability to capture complex non-linear relationships. Since this task is often regarded
as one of complex nature, investigating whether adding more layers could combat this
complexity could be of value. To investigate whether improvements could be made when
analysing the data both forwards and backwards, a bidirectional LSTM model was also
implemented. According to Althelaya, El-Alfy & Mohammed (2018), a tuned (optimized
number of hidden units and number of epochs) bidirectional LSTM model performed bet-
ter on predicting stock prices given historical prices compared to both an untuned simple
LSTM model and a tuned stacked LSTM model.

Additionally, experiments on a configuration trying to provide context to the model will
be conducted. This is done by making the model trying to specialize in what stock it is
learning on, by providing meta-information such as the name of the stock it is currently
training on. This configuration is inspired by the encoder-decoder architecture mentioned
in Goodfellow, Bengio & Courville (2016). The usage of information to guide the model
on what to focus on is the main inspiration of the configuration trying to utilize context
information, and the reason why research question III) is one of the main focuses of this
thesis.

The last thing this project has focused on is whether it is possible to find a model and
associated configurations that work well on a set of different stocks, without the necessity
of manually fine-tuning the configurable parameters for each and every stock. This is
equivalent to answering research question IV), which was motivated by the amount of
resources needed to manually fine-tune models, and amount of configurable parameters a
machine learning model may have. This was also motivated by the fact that manually fine-
tuning models for each stock makes the model less flexible in practical usage, and makes
it harder to make use of information that can be shared across multiple stocks, if any exists
at all.

Contributions to this field made by this thesis are multiple. First of all, the thesis contributes
to the field with comparisons between the LSTM based models and a simpler model that
constantly lags one step behind the actual values with some key observations. In terms of
experimentation with new implementation of models, this thesis also contributes by pre-
senting and analyzing a novel context module that is added to the LSTM models. Another
contribution is the investigation and evaluation of results not only on one time frame, but

3

on two consecutive time frames in order to present a more comprehensive investigation of
the models. The last contribution of this thesis is illustrating the challenges related to this
task by presenting and discussing them.

This thesis starts off with the fundamental understanding necessary in Chapter 2, in addition
to a brief introduction of the main tools used. Chapter 3 presents the preliminary research
on related works. Chapter 4 provides insights on the data utilized in this project, as well as
the data sources and any preprocessing deemed necessary. In Chapter 5, the architecture
and design of the implemented models are presented and described. A thorough description
of the experimental setup, including implementations and data partitioning, is provided in
Chapter 6. Following this, Chapter 7 details how the experiments were organized and
carried out. Results obtained from the experiments are presented in Chapter 8, along with
brief discussions of some interesting observations and highlights. In Chapter 9, the results
are discussed and compared. Chapter 10 draws the conclusion, and Chapter 11 presents
possible future works in this field.

4

2 Background

This chapter provides background knowledge necessary for this project, divided into es-
sentials and additional knowledge, to provide insight on what is directly related to the core
parts of this thesis. The information is presented to give understanding of the subjects and
ideas this project is based upon, as well as techniques that need to be implemented in the
experimental part. Some methods for data analysis and evaluation of the results are also
presented. Lastly, the final section of this chapter gives a brief description of the tools
utilized in this project.

2.1 Essentials

The knowledge deemed necessary to understand the core parts of the project will be pre-
sented here. This includes theoretical knowledge of the models, metrics, and other associ-
ated concepts that are directly related to the project.

2.1.1 Sentiment analysis

The sentiment of a text can be viewed as the reduction of the text into different categories
by extracting the opinion and subjectivity of the text. Categories often used are “positive”,
“negative” and “neutral”, but dividing text into categories are not limited to these only.
Other examples of categories are different emotions, for instance “anger”, “sadness”, “fear”
and “happiness”,

Humans are social and emotional beings and we write texts that express emotions. Consider
the text “This is one of the best days of my life”. It is easy to see that this text expresses
emotions such as ecstasy and happiness which in turn clearly are positive emotions - this
text can therefore be viewed as having a positive sentiment. It is important to have in mind
that it is not always that simple. Sometimes the text might express conflicting emotions
- not all texts are either positive or negative but might express strong positive and strong
negative emotions. Also, considering the possibility of sarcasm, properly identifying the
sentiment can prove challenging.

Sentiments give us insight into how people interpret the world around them. People act on
their interpretations of the world, and in that way, sentiments can help us in predicting be-
havior. For instance, if a person expresses highly negative emotions towards a presidential
candidate, chances are that the person is not going to vote for that candidate.

5

2.1 Essentials

Sentiment analysis is the act of extracting the sentiment of texts, usually the act of making
machines able to extract this information automatically. Sentiments extracted are often
used to give further insight on some task or issue, for instance the task of finding the most
popular presidential candidate or predicting the winner of an election.

2.1.2 Prediction

Prediction is the act of estimating a future value or providing a statement about a future
event, using available and preferably relevant information. Prediction is a major focus in
machine learning and is employed in various fields, such as financial markets to predict
values or growth of stocks, or in sports to predict results of matches.

Within the field of machine learning, prediction is done by providing a machine learning
model input data, often divided into a set of instances I = (i1, i2, i3, . . . , in) of which
each contains a set of features X = (x1, x2, x3, . . . , xn). The task is then to predict future
instances. In supervised learning, each instance also contains a label y, which can be used
to find the way of dividing into different classes, also known as classification.

The act of prediction can also be extended to predict continuous values instead of a defined
set of limited classes. This is then called regression, and is done by having the machine
learning model learn a way to use X to find an approximation as close as possible to the
true value y.

2.1.3 Time series

Time series are data sets that consist of a sequence of data that are indexed and ordered by
time, often with a constant time interval between the instances of the sequence. Time series
can be divided into different types:

• Linear and non-linear time series: A linear time series is a time series where each
data point can be viewed as a linear combination of past data points. A non-linear
time series is a time series that is not linear.

• Deterministic and non-deterministic time series: Time series that are deterministic
tend to follow a set of rules, making the time series behave in a certain way. Non-
deterministic time series, on the other hand, exhibit stochastic or random behavior.

6

2.1 Essentials

2.1.4 Supervised learning

Supervised learning is approximation of a function f using pairs of input and outputs of
the function: {X1, f(X1)}, {X2, f(X2)}, ..., {Xn, f(Xn)}.

In practice, supervised learning is used in many applications, such as object classification of
images, regression tasks, etc. In recent years, neural networks have seen massive adoption
as they are effective for applications that contain large amounts of noisy data.

2.1.5 Overfitting

Overfitting can be summarized as the act of a supervised learning model being overly spe-
cialized in prediction on the trained data so that the performance on predicting unseen data
is low, meaning the supervised learning model is bad at generalization.

Let X, Y be the set of all possible input data and output data, respectively, and let f be a
function so that f : X → Y . Then let Xobserved be the set of input data that the supervised
learning model can be trained upon, and Xunseen be the set of input data that has not been
seen. We have that Xobserved +Xunseen = X . Let f̂ be the approximation function learned
from training on Xobserved, so that f̂ : Xobserved → Yobserved performs well, meaning that f̂
performs close to or as good as f on this task. If the model is overfitted, then f̂ : Xunseen →
Yunseen will not perform well, even though f̂ : Xobserved → Yobserved performs well.

2.1.6 Linear Regression

Linear regression is a statistical method used to investigate the linear relationship between
a dependent variable and independent variables. Dealing with the relationship between
a dependent variable and multiple independent variables is often referred to as multiple
linear regression. In machine learning we can express multiple linear regression as a model
that assumes a relationship between y, the variable to be predicted, and p input features
x1, x2, x3, . . . , xm:

y = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βmxm + ε, (1)

where β0, β1, β2, β3, . . . , βm are regression coefficients and ε is the random error of the
model (Yan & Su, 2009).

Given a data set which consists of n sets of variables to be predicted and input features,

7

2.1 Essentials

{yi, xi1, xi2, . . . , xip}ni=1, and we have that

y =


y1
y2
...
yn

 , X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
...

1 xn1 xn2 . . . xnp

 , β =


β0
β1
...
βm

 and ε =


ε1
ε2
...
εn

 .

the linear relationship can be represented as:

y =Xβ + ε. (2)

yi is the variable to be predicted of the ith set, xij is the jth input feature of the ith set, and
εi is the random error of the ith set.

Building the multiple regression model requires the regression coefficients β0, β1, β2, . . . , βm
to be estimated. Finding the least square solution is a frequently used method. This means
finding the coefficients that minimizes

∑n
i=1 εi. Using this method, the estimated regression

coefficients β̂0, β̂1, β̂2, . . . , β̂m can then be defined as:

β̂ = (XTX)−1XTy. (3)

2.1.7 Ridge regression

Ridge regression can be viewed as a variation or an extension of linear regression men-
tioned in Section 2.1.6. It includes L2 regularization, which makes the model act as if the
input features X = (x1, x2, . . . , xp) have a higher variance, making it shrink the corre-
sponding set of β values of features that have a lower covariance with the output compared
to this added variance from the regularization (Goodfellow, Bengio & Courville, 2016,
p. 231-234). The estimated regression coefficients is then defined as:

β̂ = (XTX + λI)−1XTy, (4)

where the added λI term represents the extension of a linear regression model that uses a
least square solution, such as the one explained in Section 2.1.6.

8

2.1 Essentials

2.1.8 Artificial neural networks

An artificial neural network (ANN) is a mathematical model represented by a weighted
directed graph. This model defines a function f̂ that is used as a function approximator
of a specific function f . Generally, ANNs are used for supervised learning problems, i.e.
approximating the function f using input/output pairs
{(x0,f(x0)), (x1,f(x1)), ..., (xn,f(xn))}.

This section will present an illustration of how a neural networks work in a very simplified
and general way. There are many ways to implement a neural network, but the focus will
be on the most salient concepts needed to be understood at a high level on how a neural
network works. Vector notation will be used, i.e. representation of vectors by lowercase
letters in bold, e.g. x. Matrices are represented by uppercase letters in bold, e.g. W . Also,
functions that project a vector onto a vector space will be represented by lowercase letters
in bold, e.g. σ : Rm −→ Rn

The graph

To understand the neural network, one can first look at the building block of the graph
- the perceptron, seen in Figure 1. The perceptron is a representation of a function that
transforms an input signal x = [x0, x1, ..., xn] received from preceding nodes through some
edges w = [w0, w1, ..., wn] into a value a. The perceptron combines x and w in a function
σ to produce the output a. To make the perceptron able to represent nonlinear functions, σ
must be a nonlinear function.

a = σ(x ·wT)

9

2.1 Essentials

Figure 1: Visualization of the perceptron

10

2.1 Essentials

Figure 2: Visualization of the neural network f̂ , layer by layer
11

2.1 Essentials

In the network, perceptrons are arranged in layers. A neural network is shown in Figure
2. Calculations can be done by calculating the output of a complete layer by using matrix
multiplication. E.g. the output of the second layer is a1 = σ1(a0 ·W1), where σ1 is
a function that transforms a vector into a vector of the same dimension, σ : Rn ⇒ Rn.
The weights between two succeeding layers with j and k amount of nodes respectively are
represented by the weight matrix:

W i =


wi0,0 wi1,0 . . . wij,0

wi0,1
. . .

...
wi0,k wij,k



Figure 3: Visualization of an n-layered neural network transforming x into f̂

Learning

Let the function f be the one to be approximated with a neural network f̂ . First step is
to initialize the network f̂ with random weights. Since the goal is to have f̂ approximate
f , f̂(x) should be as close as possible to f(x) for all x. To do this, one must define the
distance function (the network needs to know what outputs are good and which are bad),
also called the loss function, L(f̂ ,f ,x). Then, to minimize this loss, modifications of the
weights in the network are needed. This is done by using partial derivatives to incrementally
improve the network, therefore the loss function must be differentiable with respect to the
weights in the network. The method for minimizing the loss in neural networks is generally
inspired by the gradient descent algorithm.

12

2.1 Essentials

Gradient descent is an incremental method to locate local minima in a differentiable func-
tion. This method is analogous to walking to a local bottom in a varied landscape. If one
simply move in the direction that have the steepest fall, one is guaranteed to eventually
reach a local bottom. In the same way, in gradient descent, one can start off at some value
L(x1). Then, finding the gradient can be done by derivating L in terms of all of the param-
eters (weights in the neural network). Afterwards, one can move in the opposite direction
of the gradient to move in the direction of the steepest fall. This is done until the gradient
is below a threshold which means being as close to a local bottom as was desired.

To find these gradients the backpropagation algorithm can be of use. Assume an arbitrarily
large neural network. Can a formula to find the derivative of the loss in terms of every
weight in the network be found? The mathematical operations can be visualized:

To produce an output, follow the graph in figure 2 from top to bottom. First calculate z1,
then a1, then z2 etc, all the way to aL which is the output of the network f̂ for an input
vector x, where f̂ : Rm −→ Rn. The goal is to find the gradient, i.e.

4L =

[
∂L

∂W1

,
∂L

∂W2

, . . . ,
∂L

∂WL

]

Start with finding the derivative of the loss in terms of the final layer, and go backwards
through the network until the first layer. To do this, the chain rule which states that

∂x

∂z
=

∂x

∂y1

∂y1
∂y2
· · · ∂yn−1

∂yn

∂yn
∂z

for any x, y1, y2, ..., yn, z is needed.

13

2.1 Essentials

∂L

∂WL

=
∂L

∂aL

∂aL
∂zL︸ ︷︷ ︸

δL

∂zL
∂WL

= δL
∂zL
∂WL

Chain rule

∂L

∂WL−1

=
∂L

∂aL

∂aL
∂zL︸ ︷︷ ︸

δL

∂zL
∂aL−1

∂aL−1

∂zL−1

∂zL−1

∂WL−1

= δL
∂zL
∂aL−1

∂aL−1

∂zL−1︸ ︷︷ ︸
δL−1

∂zL−1

∂WL−1

= δL−1
∂zL−1

∂WL−1

∂L

∂WL−2

=
∂L

∂aL

∂aL
∂zL

∂zL
∂aL−1

∂aL−1

∂zL−1︸ ︷︷ ︸
δL−1

∂zL−1

∂aL−2

∂aL−2

∂zL−2

∂zL−2

∂WL−2

= δL−1
∂zL−1

∂aL−2

∂aL−2

∂zL−2︸ ︷︷ ︸
δL−2

∂zL−2

∂WL−2

= δL−2
∂zL−2

∂WL−2

...

∂L

∂W1

= δ1
∂z1
∂W1

From the above equations, one can identify a recursive pattern of the derivative of the loss
with respect to any arbitrary weightWγ for γ ∈ {1, 2, . . . , L}:

14

2.1 Essentials

∂L

∂Wγ

= δγ
∂zγ
∂Wγ

= δγ
∂

∂Wγ

aγ−1Wγ = δγaγ−1 (5)

δγ = δγ+1
∂zγ+1

∂aγ

∂aγ
∂zγ

= δγ+1
∂aγWγ+1

∂aγ

∂σγ(zγ)

∂zγ
= δγ+1Wγ+1σ

′
γ(zγ) (6)

δL =
∂L

∂aL

∂aL
∂zL

=
∂L

∂aL

∂σL(zL)

∂zL
=

∂L

∂aL
σ′L(zL) (7)

Let it exist a pair {x,f(x)} and that f̂ approximating f is wanted. The procedure can be
divided into three parts:

1. Forward propagation step: Feed inx into the neural network, producing {a0,a1, . . . ,aL}.

2. Backward propagation step: Calculate the partial derivatives of the loss in terms of the
weights in the last layer, using formulas 5, 6 and 7. Then calculate for the previous layer,
etc. until the partial derivatives for all weights is acquired, using the outputs produced in
step 1.

3. Gradient descent step: Then update all the weights in the network using the gradient
descent method:

Wγ ←Wγ − α
∂L

∂Wγ

where α is the step size

2.1.9 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN), developed based on the works of Rumelhart, Geoffrey
E. Hinton & Williams (1986), is a class of ANN that has loops which allows informa-
tion to persist, making it able to emulate temporal dynamic behavior. This ability makes
RNNs especially interesting when dealing with sequential data, where some kind of mem-
ory between the sequential information can be important to achieve proper results. This
makes RNN models a viable option when dealing with tasks such as sentiment analysis
and forecasting, since information from earlier time steps can be useful on these tasks.
Other examples of application include handwriting recognition and speech recognition.

15

2.1 Essentials

Intuition

Let there be a time series, X = [x1,x2, . . . ,xT], to be transformed in some way. E.g.
there exists an array of images of letters to be converted into the word they form. A regular
neural network would transform every letter independently of the other letters. Can better
results be achieved if the input images are iterated through sequentially and the network is
provided with a context which consists of some transformation of previous inputs? Say the
input, i.e. the letters, form the word “pizza” and we have a suboptimal regular neural net-
work. It transforms the inputs into the word “pizsa”. It is very uncertain whether the fourth
letter is “s” or “z”, but decides that it is more likely an “s”. It simply looks more like an “s”
than a “z”. Let us instead traverse the input sequentially and introduce a context as some
transformation of the previous inputs. On the fourth step, the context is a transformation
of “piz”. Now the network can see that it is much more likely that the letter is a “z” since
no word that consist of the string “pizs” exists in the English vocabulary. In this case, one
can clearly see that traversing through the input sequentially, and at every step, can provide
context as a transformation of the previous inputs that can give better results. RNNs can be
used for these kinds of problems.

The math

Figure 4: Visualization of the RNN at every timestep t, where the symbols in the nodes
represent the output of the node and the symbols over the edges represent the parameters,
i.e. the weights in the RNN

16

2.1 Essentials

What is wanted is to transform the input X = [x1,x2, . . . ,xT] into the output Ŷ =
[ŷ1, ŷ2, . . . , ŷT]. Visualization of the RNN can be seen in Figure 4. Here, ht−1 denotes the
“hidden state” which represents the context mentioned in section 2.1.9, i.e. a transformation
of previous inputs. The output, ŷt, is produced at each timestep t using formulas:

ŷt = fŷ(ht ·W)
Where fŷ is a differentiable, non-
linear function. The sigmoid function
is often used

ht = fh(ht−1V + xtU)
Where fh is a differentiable, non-
linear function. The hyperbolic tan-
gent function is often used

The newly calculated context, ht is passed on to the next iteration in the RNN and on to
the next layer which is a function of Ŷ = [ŷ1, ŷ2, . . . , ŷT]. This means that a subset of Ŷ
can be chosen to be further propagated through the network, meaning that the timeseries
can be transformed into a timeseries of any size ≤ the size of the input timeseries, or into a
single value.

The shortcomings of the basic RNNs

To identify the shortcomings of the basic RNN one can examine the learning process. Un-
rolling the graph as seen in figure 4, i.e. presents it in a way to show all of the steps of the
transformationX −→ Ŷ . The resulting unrolled network is presented in figure 5.

17

2.1 Essentials

Figure 5: Unrolled RNN

Calculating the gradients of the loss with respect to the weights, ∂L
∂θ

where θ =

[
W ,U ,V

]
.

The total loss can be defined as:

L =
t∑
i=1

Li

18

2.1 Essentials

∂Lt
∂θ

=
∂Lt
∂ŷt

∂ŷt
∂θ

=
∂Lt
∂ŷt

∂ŷt
∂ht

∂ht
∂θ

Chain rule

=
∂Lt
∂ŷt

∂ŷt
∂ht

∂ht
∂h1

∂h1

∂θ

=
∂Lt
∂ŷt

∂ŷt
∂ht

[t−1∏
i=1

∂hi+1

∂hi

]
∂h1

∂θ
Chain rule

=
∂Lt
∂ŷt

∂ŷt
∂ht

[t−1∏
i=1

∂

∂hi
fh(ht−1V + xtU)

]
∂h1

∂θ

=
∂Lt
∂ŷt

∂ŷt
∂ht

[t−1∏
i=1

f ′h(hiV + xi+1U)
∂(hiV + xi+1U)

∂hi

]
∂h1

∂θ
Chain rule

=
∂Lt
∂ŷt

∂ŷt
∂ht

[t−1∏
i=1

f ′h(hiV + xi+1U) · V
]
∂h1

∂θ

∣∣∣∣∏t−1
i=1 f

′
h(hiV + xi+1U) · V

∣∣∣∣ −→ 0 or
∣∣∣∣∏t−1

i=1 f
′
h(hiV + xi+1U) · V

∣∣∣∣ −→ ∞ when

t is large, depending on whether the values of V are large or small. This is called the
vanishing gradient problem in the case where it quickly goes to 0 and exploding gradient
when it quickly goes to infinity. This means that the network has troubles learning long
term relationships.

In practice, basic RNNs are only able to utilize information from a few time steps back
due to the problems of vanishing gradients or exploding gradients. Vanishing gradients
occur due to the gradient being too small, making it difficult for the network to assess
which direction the parameters should move for it to make an improvement (Goodfellow,
Bengio & Courville, 2016, p. 290). In case of exploding gradients, the gradient is too
large resulting in unstable learning, as the networks parameters are changed too drastically
(Goodfellow, Bengio & Courville, 2016, p. 290). To mitigate the issues with vanishing and
exploding gradients, variations of RNNs have been developed. One such model, a widely
implemented and in some instances successful variation, is the Long Short-Term Memory
(LSTM) model. Examples of the application of LSTM can be found in Section 2. Another
widely implemented variation of RNN is the Gated Recurrent Unit (GRU).

19

2.1 Essentials

2.1.10 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) model is a type of RNN model that implements the idea
of self-loops to produce paths where the gradient can flow for a long duration, therefore
making the model able to remember information over a long period of time and acquire
knowledge across multiple time steps (Goodfellow, Bengio & Courville, 2016, p. 410-411
and Olah, 2015). LSTM models have shown to perform better on learning long-term depen-
dencies than other comparable recurrent neural network models according to Goodfellow,
Bengio & Courville (2016, p. 412). Another important feature included in LSTM models
is the coping mechanism introduced to combat vanishing or exploding gradients (Good-
fellow, Bengio & Courville, 2016, p 413-416), again making LSTM models suitable for
capturing both long-term and short-term dependencies in the data.

The aforementioned features of the LSTM model are incorporated using states that are
saved in the LSTM cells, the units of the LSTM model. To control and protect the cells
and their states, three types of gates are involved: the memory/input gate, the forget gate,
and the output gate (Olah, 2015 and S. S. Namin & A. S. Namin, 2018). Table 1 briefly
explains the different gates.

Gate Description
Memory/input gate The gate that decides what

new data to be stored in the
LSTM cell.

Forget gate The gate that decides to
which degree information
should be forgotten.

Output gate The gate that decides what
information should be output
from the LSTM cell.

Table 1: The different gates used in LSTM.

20

2.1 Essentials

Figure 6: Illustration of an LSTM cell. Sources: Olah (2020), Chevalier (2020)

Producing the output

The mathematical procedure of producing the output is illustrated in figure 6. Producing
the output ht is done as following:

First, the forget gate vector is produced:

ft = σ(Wf · [xt,ht−1])

This decides how much of each element we should retain from the previous cell state ct−1.

Then the adding part is calculated. The neural network produces it which decides which
elements are needed to add information to, and a tanh neural network that produces the
candidate values c̃t:

it = σ(Wi · [xt,ht−1])

c̃t = tanh(Wc̃ · [xt,ht−1])

21

2.1 Essentials

The vector that is added to the cell state ct is

it � c̃t

The cell state at each timestep is:

ct = (ct−1 � ft)⊕ (it � c̃t)

The cell state is passed forward to the next cell and used to produce the output. For the
output, the output gate is used:

ot = σ(Wo · [xt,ht−1])

The output ht is:

ht = tanh(ct)� ot

2.1.11 Bidirectional LSTM

A bidirectional LSTM model can be viewed as an extension of the normal LSTM model.
In the bidirectional model, an additional LSTM layer is added which is trained backwards
on the data. Information gained from the layer training the normal way, or forwards, on the
data is combined/merged with the information gained on training backwards on the data,
resulting in the model potentially performing better than without this combination. This is
due to the model learning one pattern of predicting when training forwards, while learning
another pattern when training backwards. The combination/merging of the results from
these layers can be better due to reducing the chances of overfitting on the data and re-
ducing the variance, which is similar to how ensemble learning models can have improved
performance compared to using only one instance of the model. Figure 7 depicts a bidirec-
tional LSTM model, with the input features at time t named Xt and output at time t named
Yt. Notice that there are no direct connections between the layer that processes the data
forwards and the layer that processes the data backwards. Instead, the results from these
layers are combined/merged using an additional layer. Strategies for how the merging is

22

2.1 Essentials

done include summation, multiplication, averaging and concatenating the results from the
layers.

Figure 7: Illustration of a bidirectional LSTM model

2.1.12 Encoder-Decoder architecture

A model that follows the encoder-decoder architecture (also called sequence-to-sequence
architecture by Goodfellow, Bengio & Courville, 2016, p. 396-398) is a model that trans-
forms the input into another representation, which often is the final hidden state of the
encoder part of the encoder-decoder model. This representation is then used by the de-
coder part of the model to produce the final result (Goodfellow, Bengio & Courville, 2016,
p. 396-398). The representation, which can be called the context C, represents a semantic
summary of the input sequence. This was originally used for language translation tasks
where the input and output size of sequences could vary.

2.1.13 Adam

Adam, first introduced by Kingma & Ba (2015), is an algorithm that can be used as an opti-
mizer in artificial neural networks, based on gradient descent which is explained in Section

23

2.1 Essentials

2.1.8. More specifically, Adam can be viewed as an extension of stochastic gradient descent
(Brownlee, 2020). In stochastic gradient descent, the data is divided into smaller subsets,
also referred to as minibatches, and the algorithm performs an update on the parameters
after processing each minibatch, compared to updating after processing the whole set of
data.

Where Adam differs from the stochastic gradient descent is that Adam makes use of adap-
tive learning rates, whereas stochastic gradient descent uses a single learning rate for all
updates of parameters (Brownlee, 2020). The learning rates are adapted using the first and
second moments of the gradients (Kingma & Ba, 2015).

2.1.14 Autocorrelation Function and Partial Autocorrelation Function

The Autocorrelation Function (ACF) is a function that quantifies the correlation a time se-
ries contains with its lagged values. That is, given a time series Y = (y1, y2, . . . , yt, . . . , yn),
where t is an arbitrary time step, and n is the length of the time series, then ACF is defined
as:

ACF (h) = corr(yt, yt−h), (8)

where corr(yt, yt−h) describes the correlation between yt and yt−h, and h being the value
representing the lag.

The Partial Autocorrelation Function (PACF) is similar to ACF, but finds the correlation
with the residuals instead. That is, PACF gives the autocorrelation between a point yt and
yt−h without the contribution of the points in between, meaning (yt−1, yt−2, . . . , yt−h+1).

ACF and PACF are often used to investigate how well earlier time steps can provide infor-
mation on later time steps.

2.1.15 Normalization

Normalization is the act of transforming data with values that conform to different scales
into data where all data conform to a common scale, without compromising the integrity of
the values. One of the more common ways of normalizing is Min-Max normalization.

24

2.1 Essentials

Min-Max normalization

Min-max normalization scales all values to be between 0 and 1. LetX be a set of values that
conform to a particular scale. Min-max normalization is then achieved using the following
formula:

xi_normalized =
xi −min(X)

max(X)−min(X)
, (9)

where xi is the ith value of X , min(X) is the minimum value that can be found in X , and
max(X) is the maximum value that can be found in X .

2.1.16 Metrics

One way to evaluate machine learning models is to use metrics that measure performance.
Below are the metrics that are relevant for this project.

Mean Average Percentage Error (MAPE)

Mean Average Percentage Error evaluates the performance of a model by taking the average
of the absolute value of error percentage. Let Ŷ = [ŷ1, ŷ2, . . . , ŷn] be the predicted values
and Y = [y1, y2, . . . , yn] be the actual values, then MAPE is calculated as:

MAPE(Y, Ŷ) =
100%

n

n∑
i=1

|yi − ŷi
yi
|. (10)

Mean Average Error (MAE)

MAE evaluates the performance of a model by taking the average of the errors of the result-
ing predictions. Let Ŷ = [ŷ1, ŷ2, . . . , ŷn] be the predicted values and Y = [y1, y2, . . . , yn]
be the actual values, then MAE is calculated as:

MAE(Y, Ŷ) =

∑n
i=1 |yi − ŷi|

n
. (11)

25

2.2 Additional knowledge

Mean Squared Error (MSE)

MSE evaluates the performance of a model by taking the average of the squares of the
errors of the resulting predictions. Let Ŷ = [ŷ1, ŷ2, . . . , ŷn] be the predicted values and
Y = [y1, y2, . . . , yn] be the actual values, then MSE is calculated as:

MSE(Y, Ŷ) =

∑n
i=1(yi − ŷi)2

n
. (12)

Accuracy

Accuracy evaluates the performance of a model by measuring the fraction of correctly
classified instances. Let Ŷ = [ŷ1, ŷ2, . . . , ŷn] be the predicted class and Y = [y1, y2, . . . , yn]
be the actual class, then Accuracy is calculated as:

Accuracy(Y, Ŷ) =

∑n
i=1 ỹi
n

,where ỹi =

{
1, if yi = ŷi

0, otherwise
(13)

Direction Accuracy (DA)

Direction accuracy will in this project be defined as the fraction of which the predicted
values in a regression task move in the same direction as the actual values. Let Ŷ =
[ŷ1, ŷ2, . . . , ỹn] be the predicted values, and Y = [y1, y2, . . . , yn] be the actual values. Then
let Direction(Ŷ) and Direction(Y) be the representation of the direction of the values of
Ŷ and Y , respectively. The direction accuracy can then be defined as:

DirectionAccuracy(Y, Ŷ) = Accuracy(Direction(Y), Direction(Ŷ)), (14)

where Accuracy is defined in Equation 13 from the section above.

2.2 Additional knowledge

Knowledge that is not fundamental with regards to the core parts of the project is provided
in this section. This consists mainly of methods or concepts that appear in Chapter 3, but
are not carried further into other parts.

26

2.2 Additional knowledge

2.2.1 Logistic regression

Logistic regression is a statistical method used in machine learning as a model for classifi-
cation. It is a supervised learning model (Goodfellow, Bengio & Courville, 2016, p. 140-
141) that models the probability of an instance belonging to a certain class, using a logistic
function to achieve this. Example of such a logistic function is the sigmoid function, which
is defined by Norvig & Russel (2016, p. 725-727) as:

Logistic(z) =
1

1 + e−z
(15)

2.2.2 Support Vector Machines

Support Vector Machines (SVM), introduced by Cortes & Vapnik (1995), are supervised
learning models that are driven by a linear function y = Xβ + ε (Goodfellow, Bengio
& Courville, 2016, p. 141-143). The linear function is used to create a maximum mar-
gin separator, meaning that it finds a decision boundary with the largest distance to the
instances of the different classes (Norvig & Russel, 2016). SVM models are also able to
perform classification on non-linear separable data by utilizing the kernel trick. The ker-
nel trick enables the data to be embedded into a higher-dimensional space where it can be
linearly separable (Norvig & Russel, 2016, p. 744-748), making the model able to perform
non-linear classification.

2.2.3 Naive Bayes

Naive Bayes is a probabilistic machine learning model that is based on Bayes’ theorem and
an assumption of conditional independence, meaning that a feature is independent of all
other features given that the necessary conditions are met. Bayes theorem can be defined
as:

P (A|B) =
P (B|A)P (A)

P (B)
, (16)

where A and B are events (Norvig & Russel, 2016, p. 495-496).

Combining Bayes’ theorem with a conditional independence assumption gives the ability
to perform predictions by calculating the probability of an instance having a certain class y
given that the instance has the features X . That is, calculating P (y|X) (Norvig & Russel,
2016, p. 496).

27

2.2 Additional knowledge

2.2.4 K-Neareast Neighbors

(Disclaimer: This part is taken from a previous project report (TMA4850) that one of the
authors of this thesis contributed. This part, in its entirety, was written by the author)

K-Nearest Neighbors(k-NN) is a machine learning method used for classification and re-
gression. K-NN is classified as an instance-based learner, meaning that computations are
deferred until classification or regression (Witten, Frank & Hall, 2011). It is based on
learning by analogy, as the result of classification or regression of an instance are based on
similar instances in its knowledge, the set of instances in the training set provided (Han,
Kamber & Pei, 2011). Similarity can be measured by using a distance measure, such as the
normalized Euclidean distance:

dist(A,B)normalized Euclidean =

√∑m
i=1(xi − yi)2

m
, (17)

To perform classification or regression on the given instance, the class or value of the k
most similar instances are taken into consideration. During classification, a majority vote
is typically used to determine the class of the given instance. That is, give the instance the
class that majority of its neighbors possess. When using regression, simple linear regres-
sion might be used to determine the value of the given instance.

2.2.5 K-means

K-means is a clustering algorithm, meaning that k-means is used to partition similar in-
stances into groups. Similarity in this case can be that these instances are of the same class
or categorization. This is done by predetermining a value k to represent the amount of
clusters to divide the instances into. K centroids, representing the prototype of the clusters,
are then calculated. Each instance is grouped into the cluster of the centroid the instance is
closest to, where closest is usually determined by a distance measure.

2.2.6 Decision tree learning

Decision tree learning is a modelling method used in machine learning to perform predic-
tions. A decision tree is made by determining which input feature that can be used as a
means to determine the class of an instance, and builds a tree with these input features
as nodes. The decision tree then performs a sequence of tests based on the tree structure,

28

2.2 Additional knowledge

eventually arriving at a leaf node, meaning a node without child nodes, deciding the class
of the instance (Norvig & Russel, 2016, p. 698).

2.2.7 Random Forest

Random forest is an ensemble learning model consisting of decision trees, meaning that
the model utilizes multiple decision trees to classify instances. Random forest mitigates
the issue of decision trees being susceptible to overfitting on the training data and reduces
the variance by combining multiple decision trees, each one being different from the others
in some way, and classify the instance by combining the classification from each of the
decision trees into one classification. The idea is that the collective force of the ensemble
will result in better performance compared to each individual member of the ensemble.

2.2.8 Convolutional Neural Networks (CNNs)

A convolutional neural network is a class of neural networks most often used for image
processing problems including facial recognition, text extraction from images and medical
image analysis. CNNs consist of alternating “convolution”- and “pooling” layers that lead
to a fully connected neural network. The convolution layers identify meaningful patterns
in the image while the pooling layers down-sizes the image in order to reduce the effect of
noise and to reduce computations in the network. Generally the earlier layers identify sim-
ple patterns such as edges and simple shapes, while the latter layers identify more abstract
patterns such as complex objects like a car, a face, etc. A successful implementation of a
CNN that classifies images from the ImageNet database into 1000 different classes can be
seen in Krizhevsky, Sutskever & Geoffrey E Hinton (2012).

2.2.9 Pearson correlation and Granger causality

Pearson correlation

The Pearson correlation, rXY , is a measurement of the linear relationship between two
variables X and Y (Yeager, 2020). The Pearson correlation is defined as:

rXY =
covariance(X, Y)√

variance(X) ·
√
variance(Y)

(18)

Therefore, for two discrete random variables, the Pearson correlation rXY becomes

29

2.3 Tools

rXY =

∑n
i=1(Xi −X)(Yi − Y)√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y)2
(19)

where n is the sample size and X = 1
n

∑n
i=1Xi is the sample mean

rXY is always in the interval [−1, 1]. A value close to −1 means that the two variables
are negatively correlated and a value close to 1 means that the two variables are positively
correlated. An intuitive example of positive correlation could be between the variables
weight and height of people. Tall people tend to be heavier than short people. An example
of negative correlation could be between the heart rate of mammals and their size. Small
animals tend to have higher heart rates while bigger animals tend to have lower heart rates.

Granger causality

The Granger causality test is a test used in order to identify a causal relationship between
two random variables. The test is based on prediction: X “Granger-causes” a Y if past
values of X contain information not present in Y that can help in predicting Y (Granger,
1969).

2.2.10 Forecasting

Forecasting is similar to prediction, but has the main purpose of predicting multiple time
steps ahead with the use of available information from current and previous time steps.
Forecasting is often related to working with data that has a time aspect to it, for instance
time series such as weather data or stock prices. This can in many cases be seen as more
complex than regular prediction due to the higher amount of uncertainty that follows from
estimating further ahead.

2.3 Tools

This section briefly describes the tool libraries that are essential to this project in order
to assist in understanding as the tools are mentioned throughout this thesis. An overall
description of the library as well as an overview of the relevant methods or relevant tools
contained in this library are provided.

30

2.3 Tools

2.3.1 statsmodels

statsmodels.org (2020) provides methods and tools for conducting statistical tests and sta-
tistical data exploration, as well as estimation of various statistical models. From this
library of statistical tools and methods, this project utilized the following:

• statsmodels.graphics.tsaplots.plot_acf : Plots the autocorrelation function.

• statsmodels.graphics.tsaplots.plot_pacf : Plots the partial autocorrelaction function.

• statsmodels.tsa.seasonal.seasonal_decompose: Seasonal decomposes into compo-
nents using moving averages.

2.3.2 scikit-learn

Scikit-Learn (2020) is a library that provides tools and mehods to perform machine learning
in the programming language Python, built on NumPy (a library providing matrix compu-
tation and related mathematical functions), SciPy (a library providing various numerical
routines) and matplotlib (a library providing tools for visualization in Python). The tools
used from this library are:

• sklearn.preprocessing.MinMaxScaler: Transforms data into a given range, the range
0 to 1 being the default. Used to perform min-max normalization (see Section
2.1.15).

• sklearn.linear_model.LinearRegression: Creates a linear regression model.

• sklearn.linear_model.Ridge: Creates a ridge regression model.

• sklearn.metrics.mean_squared_error: Computes the MSE.

• sklearn.metrics.mean_absolute_error: Computes the MAE.

• sklearn.metrics.accuracy_score: Computes the accuracy.

2.3.3 TensorFlow

TensorFlow (2020) is an open source platform for machine learning, containing a com-
prehensive and flexible ecosystem of tools, libraries and community resources enabling
development in the field of machine learning.

The main tool from the TensorFlow library of tools utilized in this project was Keras inte-
grated with TensorFlow.

31

2.3 Tools

2.3.4 Keras

Keras (2020) is an application programming interface (API) with the goal of simplifying
implementation of machine learning, specifically the creation of models based on neural
networks. This project utilized the following tools provided by Keras to construct the
LSTM models:

• keras.layers.Input

• keras.layers.LSTM

• keras.layers.CuDNNLSTM

• keras.layers.Dropout

• keras.layers.Dense

• keras.layers.Bidirectional

• keras.layers.Embedding

• keras.layers.Reshape

Section 6.2 provides further details on how these were used.

32

3 Related work

This chapter aims to provide insights on related activities and achievements in the literature.
The focus has been on both sentiment analysis and prediction, as the foundation for this
project was to investigate how additional information such as sentiment can be combined
with prediction of time series. Additionally, investigating achievements in the field of
predicting/forecasting cryptocurrency values was done, as this field is comparable to stock
markets. Knowledge from the field of predicting/forecasting cryptocurrency could then be
transferred to the field of predicting stock market prices.

3.1 Sentiment analysis

Some of the more common approaches to sentiment analysis found in the literature include
SVM and naive Bayes. Applying these methods have resulted in decent results, as can
be seen in Jadav & Vaghela (2016), where the authors propose an SVM model with a
more optimized kernel as their best model, and Preety & Dahiya (2015), where the authors
propose a modified K-means and naive Bayes algorithm and compare against SVM.

With the growing emphasis on deep learning and the possible applications, the field of
sentiment analysis has also seen an increase in utilizing deep learning methods to achieve
further advancement on the task. The survey commenced by Zhang, Wang & Liu (2018)
mentions various approaches using deep learning to perform sentiment analysis, many of
which have obtained state-of-the-art results on the various tasks in the field of sentiment
analysis. Among the applications mentioned in the survey, the models having an extended
amount of usage seem to be CNN and LSTM, while a few approaches implement a com-
bination of the two models suggesting that this area might be unexplored to some extent.
Some findings in the literature imply that such a combination could improve performance
on sentiment analysis, including the findings of Sosa (2017) where the author achieved im-
provement over both models when using a combined approach. Another example showing
similar results is Alayba, Palade, England & Iqbal (2018) where the authors implemented
a CNN-LSTM model that acquired an improvement over their previous tested methods in
which a CNN model was among those methods.

3.2 Prediction and forecasting

Prediction has been implemented in various fields, with a large amount of these being con-
sidered successful applications. Due to the growing popularity of machine learning appli-
cations, and further development of techniques and models, there are cases where multiple

33

3.3 Prediction of events with sentiment analysis

approaches have been applied to one single field. Such a case can be seen in Mosavi, Oz-
turk & Chau (2018), which is a literature review of the usage of machine learning models
in flood prediction, whereas several of the approaches have reached respectable results. In
Næss (2018), Multilayered ANN and LSTM were used to predict freight rates. In Kumar
(2013), the author investigates the ability of machine learning to predict soccer outcomes.
The mentioned examples from the literature illustrate the wide array of applications pre-
diction has and can be implemented in.

Forecasting has seen an extended amount of application in the literature, and has been im-
plemented in various tasks. Such tasks include forecasting of oil prices (Jian Li, Xu, Yu
& Tang, 2016), where the authors utilize sentiment analysis to forecast and conclude that
sentiment analysis is a viable option for forecasting in that specific task, electric load fore-
casting (Bouktif, Fiaz, Ouni & Serhani, 2018), financial and economical data forecasting
(S. S. Namin & A. S. Namin, 2018), and solar power forecasting (Gensler, Henze, Sick
& Raabe, 2016), where all three papers implement LSTM to do forecasting and achieve
decent results.

Related to the stock market, Fischer & Krauss (2018) observed the superiority of an LSTM
based model over a random forest, a standard deep neural network (a neural network with
multiple layers between the input layer and output layer) and a simple logistic regression
model for predicting the S&P 500 from the year 1992 until 2015 using historical prices.
Another interesting observation they made was that LSTM decreased in profitability over
time - the market became more and more efficient in relation to the LSTM used.

3.3 Prediction of events with sentiment analysis

With the vast and continuously growing amount of sentiments and opinions available on
social media platforms, such as Twitter, interest in discovering ways of utilizing this in-
formation has grown considerably. One of the fields that have experienced an extensive
growth of interest is the field of prediction using sentiment analysis. Predicting results of
events where the public’s opinion is a major contributing factor, such as polls and elections,
can be seen numerous times in the literature.

For instance, in Sharma & Moh (2016) in which the authors applied sentiment analysis
of tweets using dictionary based, naive Bayes and SVM solutions and achieved results
that reflected the outcome of the Indian general state elections in 2016. In El Alaoui,
Gahi, Messoussi, Chaabi, Todoskoff & Kobi (2018) the authors used sentiment analysis
on Twitter posts in order to predict the results of the American election from 2016 with
promising results. Salunkhe & Deshmukh (2017) combined sentiment analysis to extract
polarity and emotions from Twitter to investigate the performance on predicting election

34

3.4 Predicting stock market prices using sentiment

results in the U.S and in India. In Amador, Collignon-Delmar, Benoit & Matsuo (2017),
the authors implement sentiment analysis on Twitter data using SVM models to analyze
the public’s opinion on Brexit, and compare the results to Internet and telephone polls,
concluding that such methods could be a suitable replacement for Internet polls.

Prediction of other kinds of events, such as results of American Idol (Alon, Perrigaud &
Neyrand, 2013), has also been done. Predicting and forecasting stock market prices using
Twitter sentiment analysis can also be seen in the literature, for instance in Kordonis, Syme-
onidis & Arampatzis (2016) where the authors found correlation between tweet sentiments
and stock prices and concluded the results as promising based on the findings.

All of these articles have shown promising results when it comes to predicting some future
event using tweets. Most of these use methods like naive Bayes and SVM for the sentiment
analysis and manually analyse the results from the sentiment analysis in order to predict the
event such as a president election. If one presidential candidate has more positive tweets
and less negative than the other it may lead to the conclusion that the candidate has a higher
probability of winning. Although when used for a regression task, the sentiment must be
processed in some way in.

3.4 Predicting stock market prices using sentiment

There are numerous works that have explored finding relations between sentiments and the
stock market. The increased volume of available data has made room for constant addition
in this part of the literature, with several showing promising results. The usage of Twitter
posts seems to be a major focus, although extracting sentiments from other sources, such
as news and online forums, is also present.

Ranco, Aleksovski, Caldarelli, Grčar & Mozetič (2015) examined the relation between
Twitter sentiment and the stock market. They found a generally relatively low Pearson and
Granger causality between prices and sentiment. What was interesting was that they found
a significant correlation at the times where tweet volumes peeked, both at expected peaks
and non-expected peaks.

Bollen, Mao & Zeng (2011) is one of the most referenced works on prediction of the
stock market using sentiment analysis. They used OpinionFinder, a public tool in order to
analyse the emotional content of tweets and a self organizing fuzzy neural network in order
to transform the sentiment into DJIA closing values. They were able to predict the next
Dow Jones Industrial Average close price with a MAPE of 1.83% and a direction accuracy
of 87.6%. This is clear evidence that tweets can be helpful in order to predict stock market
prices.

35

3.5 Predicting and forecasting cryptocurrency values

Jiahong Li, Bu & Wu (2017) collected sentiments from investors on different online forums
as a basis for an LSTMs in order to predict the direction of the CSI300, an index reflecting
the top 300 stocks traded in the Shanghai and Shenzen stock exchanges. They reached
a direction accuracy of 50.71% when predicting the next close price. The vastly different
results between Bollen, Mao & Zeng (2011) and Jiahong Li, Bu & Wu (2017) is an indicator
that this area needs more research.

Shynkevich, Coleman, Mcginnity & Belatreche (2015) experimented with a model that in
addition to trading data used news and a relevance score related to the target stock in order
to predict the direction of stock price movements. The news were sourced from the news
database LexisNexis which contains news articles published in major newspapers. Their
solution reached a direction accuracy of up to 81.63% for the WLP (Anthem, Inc.) stock.

Kordonis, Symeonidis & Arampatzis (2016) combined sentiment analysis and machine
learning models such as naive Bayes and SVM to predict prices of stocks. They reached
a MAPE score of 1.668%. They did not measure direction accuracy. The MAPE result
lead to the conclusion that combining machine learning and sentiments is promising. It
should, however, be noted that Kordonis, Symeonidis & Arampatzis (2016) only presented
the results of predicting stock prices of one single day (23rd of June 2016). Results may
differ when predicting over a larger time frame.

Xiong, Nichols & Shen (2016) used a single layered LSTM on Google domestic trends data
in order to predict the volatility of the S&P 500 index, reaching 24% MAPE outperforming
their linear and autoregressive baseline models by at least 31%. They conclude that deep
learning in the presence of strong noise is promising.

Althelaya, El-Alfy & Mohammed (2018) investigated and compared different configura-
tions of LSTM to see how they would perform on this task and different configurations
of complexity. They concluded that Bidirectional LSTM was superior to a Stacked LSTM
when it comes to both long- and short term predictions of stock prices, and that their deeper
neural networks outperform the more shallow.

3.5 Predicting and forecasting cryptocurrency values

Forecasting and predicting cryptocurrency values have seen an increase in research in con-
junction with the rising popularity of such currency from the mid 2010s and onward. De-
spite the rise in popularity, forecasting in the field of cryptocurrency is still a rather unex-
plored territory compared to similar fields, such as forecasting of stock market prices.

Abraham, Higdon, Nelson & Ibarra (2018) proposed a multiple linear regression model that
transformed Twitter sentiment and Google Trends data into predictions. They concluded

36

3.5 Predicting and forecasting cryptocurrency values

that price movements related to Ethereum and Bitcoin, the two largest crypto currencies,
are more accurately reflected by search volumes and tweet volumes than sentiment. They
observed that sentiments were positive when prices rise and fall.

In Jain, Tripathi, DwarDwivedi & Saxena (2018), the authors combined Twitter sentiment
analysis with Multiple Linear Regression to predict the value of Bitcoin and Litecoin, two
well known currencies in the cryptocurrency market. In this article it was observed that
Litecoin was more affected by tweet sentiments than Bitcoin. It was concluded that the
price of Bitcoin is dependent on other factors like mining cost.

Galeshchuk, Vasylchyshyn & Krysovatyy (2018) combined historical data of Bitcoin value
and Twitter sentiment in terms of a score to forecast the values and concluded that including
sentiment in some way can have a positive effect on forecasting and prediction.

37

4 Data

One of the most important aspect when working with machine learning of any kind is
access to useful and reliable data for the task at hand. In this chapter, the data and the data
sources will be described, as well as any preprocessing steps deemed necessary to make the
data useful for the task. Additionally, this chapter will cover the initial data analysis done
to better understand the data.

Data values that this project aims to be able to predict will be referred to as outputs or
output features, while data used to learn how to produce the output will be referred to as
inputs, input features or simply features.

4.1 Data sources

A part of this project was to investigate whether data available to the public could be utilized
in a way to predict prices of stocks to an adequate degree. The focus has therefore been on
finding data sources that can be easily accessed by anyone, in addition to containing data
that could possible improve the performance of the task.

4.1.1 Investing.com

Investing.com (2020) is, among other things, a global financial portal providing access to
various information regarding the global financial markets, including analysis, news and
technical data.

Investing.com was founded in 2007, and according to their usage data, has an estimate of
20 million unique visitors and 1 billion page views per month.

4.1.2 StockFluence

StockFluence (2020) is a tool providing sentiment analysis on stocks from some of the
biggest companies on the global scale. StockFluence claim to be able to predict stock price
movement with an accuracy of 70%. This is achieved by analysing over 400 thousand
articles and 1 million tweets daily. In total, almost 1 billion articles have been analyzed, in
addition to over 2 billion tweets.

38

4.2 Description of the data

4.1.3 Google Trends

Google Trends (2020) provide access to relative scores of search terms on Google Search
Engine. The scores reflect the relative popularity of the search term. As Google has been
providing the most popular search engine for more than a decade, using Google Trends to
investigate the popularity of a search term seems reliable to a sufficient degree.

4.2 Description of the data

Data related to 15 different stocks were gathered for this project. The stocks are represented
in a variety of different market categories, including, but not limited to, technology, retail,
pharmacy, and e-commerce. Table 56 in the Appendix presents all the stocks included in
the project along with a small description of the company the stock belongs to.

The following sections will present the different types of data gathered for each stock.

4.2.1 Historical trading data

Historical stock data were obtained from Investing.com. The historical data contain in-
formation related to the stock from every day available. The data considered utilized and
experimented upon are presented and shortly described in Table 2.

Name Description
Open The price of which the stock is first

traded at on the opening of the cor-
responding trading day.

High The highest price the stock is traded
at for the corresponding day.

Low The lowest price the stock is traded
at for the corresponding day.

Price The final price of which the stock is
traded at for the corresponding day.

Volume The amount of stocks traded on the
corresponding day.

Change % The change in price between the
previous and the corresponding day,
given in percentage.

Table 2: Data from Investing.com used in this project

39

4.2 Description of the data

The “change %” feature was used to generate an additional feature to reflect the direction
instead of the change of price given in percentage. The direction was specified to have the
value 1 if the change was equal to or higher than 0, and would be 0 otherwise.

In the additional experiments, a feature called “change” was added, reflecting the actual
price change between between the price of the day before and the current price. Later, addi-
tional features representing change was added as well, including “open_close_change” de-
picting the difference between “open” and “price” of the current day, “high_close_change”
depicting the difference between “high” and “price” of the current day, “low_close_change”
depicting the difference between “low” and “price” of the current day, and “trendscore_change”
depicting the difference between the value of “trendscore” of yesterday and the current
“trendscore”.

4.2.2 Stock sentiment data

The stock sentiment data were provided by Stockfluence. The data consist of information
Stockfluence is willing to provide to the public. Data utilized from the stock sentiment data
are presented and shortly described in Table 3.

Name Description
Positive The amount of articles and Twitter

posts related to the stock that were
categorized as positive by Stockflu-
ence’s sentiment analyzer.

Neutral The amount of articles and Twitter
posts related to the stock that were
categorized as neutral by Stockflu-
ence’s sentiment analyzer.

Negative The amount of articles and Twitter
posts related to the stock that were
categorized as negative by Stockflu-
ence’s sentiment analyzer.

Table 3: Data from Stockfluence used in this project

To have an alternative way of using the stock sentiment data, the values of “positive”, “neu-
tral” and “negative” were used to represent the proportion of positive, neutral and negative
posts. For instance, if the amounts were “positive”=21, “neutral”=61 and “negative”=2, the
values would be changed to “positive_prop”=25.0%=0.25, “neutral_prop”=72.6%=0.726

40

4.2 Description of the data

and “negative_prop”=2.4%=0.024. These alternative data were used in addition to the
original data, which gave not only more features, but also the possibility of different stock
sentiment data combinations.

Other data provided by Stockfluence included a score of the sentiments, a number repre-
senting the change in sentiment from day to day, score of the strength, reach and passion
of the sentiments, among other information. These data were excluded as they were not
provided consistently over the timeline to be analyzed, or because they were deemed un-
necessary for the experiments.

4.2.3 Trend data

The trend data was provided by Google Trends, and were used to see if search popularity
or frequency could have correlation with stock prices.

Google Trends provide a score of each time point of the search term at interest, relative to
the highest and lowest scores of the time period. Because of limitations on the functionality
provided by Google Trends, mainly due to the restrictions on the timeline of daily scores,
some preprocessing were necessary to get a better approximation of the scores for the time-
line to be examined in this project. To obtain these approximations, the data were adjusted
according to the method suggested by Bewerunge (2018). Google Trends aggregates the
days into larger groups, for instance into weeks or months, when larger timelines are exam-
ined. To circumvent these limitations, data from each month during the whole time period
were downloaded separately to get the daily relative scores, then the monthly scores for
each month during the whole timeline were downloaded together to get the monthly scores
relative to each other. The daily data were then scaled according to the monthly scores of
their associated month, using the formula:

DailyScoreAdjusted(d) =
DailyScoreOriginal(d) ·MonthlyScore(d)

100
, (20)

where d is the day of interest, DailyScoreOriginal is the non-adjusted relative daily score
of d, and MontlyScore is the monthly score of the associated month of d.

Summarized, the data were adjusted by using the aggregated score for each month in the
timeline at interest to give a better approximation of the daily data of each month in the
timeline. Figure 8 is an example of the data before and after the applying the process.

41

4.3 Initial data analysis

(a) Trend data before: Displaying aggregated scores for each month

(b) Trend data after: Displaying approximate daily scores

Figure 8: Example of trend data before and after applying adjusting process.

4.3 Initial data analysis

To get a better understanding of the data to be included in the experimentation phase, data
analysis was performed prior to the experiments. Results from the analysis were used as
guidance on data inclusion and handling, in addition to increase knowledge before and after
the results.

42

4.3 Initial data analysis

Correlation

Correlation plots were used to inspect the linear relationships between the input features
and output. Additionally, the plots were used to determine the input features which clearly
did not have linear relationships with the output, with the goal to experiment with these to
see whether a non-linear relationship could be captured by the model that could possibly
improve the results.

The analysis resulted in evidence that some of the input features had strong linear rela-
tionship with the outputs. Figure 9a shows an example of a clear linear relationship that
is present in the data set. Multiple input features exhibit similar behavior with the output
“price”, including “low” and “high”. Other input features seem to show that no linear corre-
lation is present between them and the output “price”, including “volume” and “negative”.
Examples of such results are shown in figure 9b and 9c.

(a) Plot displaying linear relationship is present
between values for “open” and “price”.

(b) Plot displaying no linear relationship is
present between values for “negative” and
“price”.

(c) Plot displaying no linear relationship is
present between values for “volume” and
“price”.

Figure 9: Examples of plots showing that linear relationship is present and not present.

43

4.3 Initial data analysis

Autocorrelation

When working with time series data, adding output from previous time steps, also known
as lags, as additional input features might be beneficial in some cases. This adds infor-
mation and patterns the prediction model can make use of to improve the output predic-
tion. To better the understanding of the data and see if there were any obvious indications
that including lags would be beneficial, Autocorrelation Function (ACF) plots and Par-
tial Autocorrelation Function (PACF) plots were produced using functionality provided by
statsmodels.org (2020).

The results from the ACF plots of the different stocks suggest that most stocks behave in
a similar manner when it comes to autocorrelation. That is, the correlation seems to drop
slowly as the lags increase, and there are no noticeable drop or increase in autocorrelation
value. This is illustrated in Figure 10, which depicts the general trend across all stocks with
regards to ACF.

44

4.3 Initial data analysis

(a) AAPL (b) KO

(c) PFE (d) QCOM

Figure 10: ACF plots of prices of the stocks AAPL, KO, PFE and QCOM

The kind of behavior described above and illustrated in Figure 10 suggests that the time
series data used in this project are non-stationary, which is important to keep in mind. The
results suggest that if lagged variables are to implemented, only including a few time steps
backwards might improve the performance.

To further analyze and understand the data, PACF was applied. The results from the PACF
plots suggested that only one time steps backwards could be useful for prediction. Figure
11 shows some of the results. Results from the PACF plots suggest that most stocks behave
in a similar way when it comes to partial correlation. In a few cases, as can be seen in Figure
11c, there seem to be some movement when the lags increase, which can be interesting to
investigate further. However, the other results from Figure 11 seem to be the norm.

It is important to note that the results from the ACF and PACF analysis do not determine

45

4.3 Initial data analysis

that there are no useful information in the earlier time steps, only that the data have the
strongest correlation with the directly preceding time step. Including earlier time steps
might still lead to improved performance. Due to the lack of evidence in the amount of
lagged variables that could prove useful, this project will include a maximum of two earlier
time steps for investigative purposes.

(a) AAPL (b) DIS

(c) NVDA

Figure 11: PACF plots of prices of different stocks

Seasonal decompose

Seasonal decomposition is the act of decomposing data into different components that are
meant to reflect different patterns present in the data. This project utilizes this method to
assist in understanding the nature of the data better. The analysis was done using the sea-

46

4.3 Initial data analysis

sonal_decompose tool provided by statsmodels.org (2020), which calculates the decompo-
sition using moving averages. The observed values were decomposed into:

• Trend: The trend shows the increasing and decreasing direction of the data

• Seasonal: The component reflecting the seasonal variations of the data

• Resid: The random variations of the data, also known as noise

Four different values for period were chosen for analysis. These are 5, 20, 60 and 250, and
correspond to the amount of trading days in a week, month, quarter and year, respectively.
None of the values are exact values, as the exact number of trading days in a certain period
depends on a number of different factors, such as holidays, leap years and so on. They
are, however, close to the actual numbers and can assist in understanding the data that are
being dealt with. An example from the results is presented in Figure 12, illustrating how
the different periods affect the seasonal decompose results.

47

4.3 Initial data analysis

(a) With period 5. (b) With period 20.

(c) With period 60. (d) With period 250.

Figure 12: Seasonal decompose on the stock AAPL with different periods.

What can be seen from this part of the analysis is that a large part of the stocks have a
general upwards trend. There are stocks that fluctuate, and even stocks that have a down-
wards trend. This indicates that in terms of trend, there might not be a general description
that will hold true for all stocks. The seasonal components seem to be relatively low for
all stocks compared to the trend and observed max values, indicating that stock prices are
little affected by seasonal variations. This seems to hold true for all values of period ana-
lyzed. These results indicate that overall, stock prices do not follow a overarching seasonal
pattern. Furthermore, the various resid results suggest that there is a prevalent presence of
random variations in the data, suggesting the difficulty of working with stocks and illustrate
the uncertainty factor related to this task.

48

4.4 Data preprocessing

4.4 Data preprocessing

Some preprocessing were necessary in order to use the different models selected for this
project. The applied processes will be briefly described below. Reasoning behind these
decisions will also be presented.

Normalization

In order to make progress with several models, and improve performance, it was necessary
to normalize the data. Normalization of data is the act of adjusting the data to conform to
a chosen scale (see Section 2.1.15). This can assist in obtaining improved result and an
increased speed of learning (Stöttner, 2020).

Leaving the data as is can have a negative impact on performance that can be introduced
due to different features operating on different numerical scales. For instance, the “vol-
ume” feature have values in the millions, compared to “change %” that only has values
between 0 and 1. The difference in magnitude can cause models to incorrectly assume
that “volume” is a more important feature in terms of prediction, due to the difference in
magnitude. This can be because of values that operate on a larger magnitude also change
with greater magnitude. These changes can cause the models to regard these features with
higher importance than what actually is the case. Normalizing the features to a common
scale can assist in mitigating this problem.

The other positive outcome when normalizing the data is that it can help models that have
weights of some kind, such as the LSTM models that will be used in this project, find
adequate weights in less time. Normalizing the data to only have values between 0 and
1, for instance, allows for the usage of higher learning rates and makes weights easier to
initialize.

Also, some methods, such as ridge regression, require normalization to perform properly.
This is due to the regularization in ridge regression, which may lead to different and unfair
regularization when features conform to different scales.

In this project, all data have been normalized using min-max normalization (Section 2.1.15).
Further details on implementation can be found in Section 6.1.1.

49

5 Architecture

The system in this thesis is a neural network and in this chapter the structure and the ratio-
nale behind the decisions will be presented. The objective of the system is to transform time
series of stock signals into accurate predictions of stock prices. The system implemented
can be divided into two independent modules: the context module (described in Section
5.1) and the prediction module (described in Section 5.2). In this thesis the two different
subsystems - one with the context module, depicted in Figure 14, and one without, depicted
in Figure 15 - will be analyzed and compared.

Figure 13: System with input and output

Figure 14: Subsystem 1: With the context module

Figure 15: Subsystem 2: Without the context module

50

5.1 Context module

5.1 Context module

To possibly assist the LSTM models in making better predictions, context information will
be included. This context might help the models understand that each stock should be
treated differently.

Additionally, are there some similarities between how different stocks behave? It seems
reasonable to believe that there exists a stock A that behave more similarly to some stock
B than to some stock C in terms of price movements. Maybe stocks A and B are related
to similar companies in the same section of the market, while stocks A and C are related to
wildly different companies. Let us posit a hypothesis: “Some stocks behave more similar to
each other than they do other stocks”. If this hypothesis is correct, can such a relationship
be captured, and can one transfer knowledge of one stock and apply it to another stock?

Inspired by the encoder-decoder architecture, this thesis will propose a context module
that will process the name of the stock semantically, in the form of an embedding. This
embedding is a semantic vector in the form that vectors that are close to each other are more
similar than vectors that are far from each other. Instead of the context module processing
the whole sequence of features like in traditional encoder-decoder architectures it will only
process the name of the stock to make a representation which will be used as the initial
state for the LSTM based network. The ideas is that this will enable the LSTM based
network to tweak the behavior depending on what stock that is currently being predicted,
since each stock name will produce different initial states. Additionally, this might enable
the embedding to produce representations that allow for the LSTM based network to make
use of the hypothesis described in the previous paragraph. Description on how the context
module was combined with the LSTM based networks is provided in Section 6.2.9, while
Section 7.2.1 presents how the context module fits in the experimental plan.

51

5.2 Prediction module

Figure 16: The context module

5.2 Prediction module

The prediction module is the crux of the system and will predict future prices by processing
stock signals, sentiment and search trend. Two different implementations of the prediction
module will be compared and analyzed, one with regular LSTMs and one with bidirectional
LSTMs. The vanilla LSTM can be seen as a stacked LSTM with one layer. The initial state
of the LSTMs is either the zero vector if it is not provided with any context or the output
of the context module if provided. Different numbers of LSTM/bidirectional LSTM layers
will be tested, in addition to different configurations of dropout layers.

52

5.2 Prediction module

Figure 17: Prediction module with stacked LSTMs

53

5.3 Multiple outputs

Figure 18: Prediction module with stacked bidirectional LSTMs

5.3 Multiple outputs

In an attempt to increase the performance on direction accuracy, systems trained to predict
both the next day prices and the direction were implemented. The overall system remained
the same, with only an additional value that the system outputs, as illustrated in Figure 19.

Figure 19: System with input and two outputs

54

6 Experimental setup

This chapter introduces the setup and implementations necessary to conduct the experi-
ments. The chapter is separated into three parts, the first part presents the setup associated
with the data, the second part presents how the models are implemented in order to produce
the results, while the last part will explain the metrics utilized in evaluation, the tools used
and their implementation.

6.1 Data related setup

6.1.1 Normalization

In order to normalize the data, Scikit-Learn’s sklearn.preprocessing.MinMaxScaler with
default parameters was applied.

Let ns = number of stocks
ntrain = number of training time steps
ntest = number of validation/test time steps
nf = number of features

The full data set is represented by a numpy array of shape (ns, ntrain + ntest, nf). In order
to scale the data set, the full data set is divided into ns arrays of shape (1, ntrain + ntest,
nf) in order to scale each stock individually. Only the training set will be used for fitting
the scaler in order to prevent peeking: For each of these arrays of size (1, ntrain + ntest,
nf), we use the first (1, ntrain, nf) to fit the sklearn.preprocessing.MinMaxScaler. This is
done to prevent the models from acquiring information that would not be present otherwise,
such as the mean of the whole set instead of just the training set. The whole array is then
transformed using the fitted scaler. Each feature is fitted and transformed separately; the
fitting/transformation of a feature is independent of another feature. E.g. the resulting
scaled price is dependent only on the price in other time steps, and not on other features
such as volume. Normalization was applied to both the input features and the output.

55

6.1 Data related setup

6.1.2 Dividing data into training, validation and test sets

The dataset {X, y} was at first divided into two sets. The first set was used to train the
model, hereby called the training set or training data {Xtrain, ytrain}. The second set was
held out until performance evaluation time and used to evaluate how well the model gener-
alises, i.e. how accurately it predicts on data it has never seen before. This data was called
the test set {Xtest, ytest}. The dataset was then defined as [{Xtrain, ytrain}, {Xtest, ytest}].
The general, incremental method to creating a good model is to train the model on the
training set, then validate it using a validation set. Then modify some of the hyperparam-
eters to see whether one can achieve better validation results. Repeat this process until the
model is satisfying. If this method was to be used with the training set and test set only,
it would introduce some bias in that the hyperparameters are updated in order to increase
the accuracy on the test set - the model has been tweaked to perform as good as possi-
ble on the test set, deeming the results biased and skewed, ultimately not representative
of real results. Therefore, the training set was further divided into a training set and a
validation set, resulting in the dataset being split into three parts - a training set, a valida-
tion set and a test set, [{Xtrain, ytrain}, {Xval, yval}, {Xtest, ytest}], where {Xtrain, ytrain}
precedes {Xval, yval} in terms of time, and {Xval, yval} precedes {Xtest, ytest} in terms of
time. Figure 20 depicts the described scenario.

Figure 20: The complete dataset divided into a training set, a validation set and a test set

The test set is untouched when optimising the model by hyperparameter tuning or feature
searching, and can therefore be used on the final model to evaluate the model in an unbiased
way. The final results on the test set will be used to compare the models in this thesis as
well as to compare results to related work whenever possible. The ratio {80%, 10%, 10%}
will be used for the training set, validation set and the test set respectively when tuning hy-
perparameters, analyzing features and training and evaluating the LSTM models (training
set for training, validation set to decide early stopping and for experimentation, test set for
evaluation), while the ratio 90%, 10% will be used during evaluation of the baseline mod-
els. As each stock has a total of 1660 data points, the described way of dividing the data set
will result in a training set of 1328 data points and a validation set of 166 data points and
a test set of 166 data points. The ratio 90%, 10% will result in a training set at 1494 data
points, with the test set at 166 data points.

56

6.2 Model implementation

6.2 Model implementation

A detailed description on how the different models have been implemented is presented
in this section. This includes the off-the-shelf methods, tools and packages utilized, in
addition to any important parameters provided to the aforementioned methods, tools and
packages. These tools and packages consist primarily of Keras, NumPy (2020) and Scikit-
Learn (2020). Parameters were kept as default, unless specified otherwise.

All LSTM configurations were trained the same way. This was done by training on the
whole set of training data, without dividing the data according to stocks and training on
each stock individually. All results using the LSTM models were produced in a similar
manner. Producing results with the baseline models differed slightly from the approach
with the LSTM models, which is explained in their respective sections below.

6.2.1 Simple 1-step-behind model (naive model)

This is a simple model that outputs the current price, which is given as an input feature, as
the predicted price of the next day.

6.2.2 Linear regression

The linear regression model was implemented using sklearn.linear_model.LinearRegression,
the linear regression model provided by Scikit-Learn.

Each stock had a linear regression model with default parameters and the model was built
with the training data of the corresponding stock using the function fit. The results were
then produced using the function predict on the corresponding test data.

All features available, specified in Section 7.3.3, were used as input to the linear regression
model.

6.2.3 Ridge regression

The ridge regression model was implemented using sklearn.linear_model.Ridge, the ridge
regression model provided by Scikit-Learn.

A parameter called alpha is included in the provided model that represents the strength of
the regularization, which will be depicted as α in this project. The α value was initially

57

6.2 Model implementation

kept as default (α = 1.0), to see how the model would perform. Section 8.1.5 will describe
experimenting with the value for α further.

For each stock, a ridge regression model was created and trained upon the corresponding
training data with the provided function fit. All models utilized the same value for α.
Generating the results for a specific stock were done by running predict with the associated
ridge regression model on corresponding test data.

The ridge regression model utilized all features as input features. These are specified in
Section 7.3.3.

6.2.4 Random guessing

The random guessing model takes in the current price as a feature, and predicts the next
day price by either adding or subtracting from the current price, with both cases having an
equal probability of happening.

6.2.5 Vanilla LSTM

The vanilla LSTM model was implemented using the following layers, all provided by
Keras:

• Input layer: keras.layers.Input.

• LSTM layer: keras.layers.LSTM or keras.layers.CuDNNLSTM depending on the
hardware used, with return_sequences=True and return_state=True.

• Dropout layer: keras.layers.Dropout.

• Output layer: keras.layers.Dense, with activation=“linear”.

Figure 21 illustrates how the layers mentioned above are connected in the implementation.

Figure 21: Connections between layers in the vanilla LSTM model

The model input was specified to take in the input features and states, while the model
output was specified to be the output from the output layer and the newly computed states

58

6.2 Model implementation

returned by the LSTM layer. The initial states were set to either all zeros or to the initial
state outputted from the context module, depending on the configuration.

Vanilla LSTM with 2 output layers

The vanilla LSTM model with 2 output layers was implemented similar to the vanilla
LSTM model, except that it had an additional output layer using keras.layers.Dense with
activation=“sigmoid”. Figure 22 illustrates the change applied to the vanilla LSTM model.

Figure 22: Connections between layers in the vanilla LSTM model with two output layers

6.2.6 Stacked LSTM

The stacked LSTM model was implemented using the following layers, all provided by
Keras:

• Input layer: keras.layers.Input.

• LSTM layers: keras.layers.LSTM or keras.layers.CuDNNLSTM depending on the
hardware used, with return_sequences=True and return_state=True.

• Dropout layer: keras.layers.Dropout.

• Output layer: keras.layers.Dense, with activation=“linear”.

Figure 23 illustrates how the layers mentioned above are connected in the implementation.

59

6.2 Model implementation

Figure 23: Connections between layers in the stacked LSTM model. The dots represent
the repeat of LSTM and Dropout layers.

The model input was specified to take in the input features and states, while the model
output was specified to be the output from the output layer and the newly computed states
returned by all the LSTM layers.

6.2.7 Bidirectional LSTM

The bidirectional LSTM model was implemented using the following layers, all provided
by Keras:

• Input layer: keras.layers.Input.

• Bidirectional wrapper: keras.layers.Bidirectional, with merge_mode=“ave”, mean-
ing averaging.

• LSTM layers: keras.layers.LSTM or keras.layers.CuDNNLSTM depending on the
hardware used, with return_sequences=True and return_state=True.

• Dropout layer: keras.layers.Dropout.

• Output layer: keras.layers.Dense, with activation=“linear”.

Figure 24 illustrates how the layers mentioned above are connected in the implementation.

Figure 24: Connections between layers in the bidirectional LSTM model.

60

6.2 Model implementation

Bidirectional LSTM prediction

Prediction was carried out in another way for the bidirectional models than the other models
because of the backwards LSTM layer. Because of this backwards layer, it was important to
not feed the whole data set at once during prediction. If we are predicting the next price at
time t, then the model will use features from the future if possible because of the backwards
LSTM layer. Therefore in order to predict a time series of stock prices, we have to feed the
time series incrementally, starting with one time step, then two time steps, then three time
steps, etc. and using only the last predicted price each increment as the predicted price at
that time step.

f(x1) = p11

f(x1, x2) = p12,p22

f(x1, x2, x3) = p13, p23,p33

f(x1, ..., xn) = p1n, ...,pnn

wheref = The bidirectional model
xi = The features at time step i
pji = The predicted price at time step j, in the ith increment

The final time series of predicted prices is:

p = p11,p22,p33, ...,pnn

6.2.8 Context module

The context module was implemented using the following layers, all provided by Keras:

• Input layer: keras.layers.Input.

• State generation layer: keras.layers.Embedding.

• State reshape layer: keras.layers.Reshape

Figure 25 illustrates how the layers mentioned above are connected in the implementation.

61

6.2 Model implementation

Figure 25: Connections between layers in the context module. The dots represent that
varying amounts of State generation layers in parallel are possible

This module is responsible for generating the initial states for the LSTM-based models.
The module takes in an input representing the context, for instance the digit representing
the ID of a stock as done in this project, and outputs all initial states for the LSTM and
bidirectional LSTM. As each layer of the vanilla and stacked LSTMs has two internal states
- the hidden state and the cell state, this module produces two states for each layer. For the
bidirectional model, this module produces four states for each layer, as a bidirectional layer
consists of two LSTM layers. The embedding layer processes the input representing the
context and generates an output that corresponds to this input. The state reshape layer is
then used to make the state generated compatible with the state input of the different LSTM
models.

6.2.9 How the LSTM models are combined with the context module

The vanilla/stacked LSTM models are combined with the context module using the layers
described in Section 6.2.6 and Section 6.2.8. Figure 26 illustrates how the Keras layers are
connected in the implementation.

62

6.2 Model implementation

Figure 26: Implementation of the context module in combination with the vanilla or stacked
LSTM models

The top Input layer in Figure 26 receives the stock-representations while the bottom Input
layer receives the input features (trading data, sentiment data and trendscore data). The
two top Reshape layers will send the output into the first LSTM layer as the initial states
(hidden state and cell state). The next two Reshape layers (only one is shown in the Figure)
will pass the output to the next LSTM layer, etc.

The bidirectional LSTM model was combined with the context module using the layers
described in Section 6.2.7 and Section 6.2.8. Figure 27 illustrates how the Keras layers are
connected in the implementation.

63

6.2 Model implementation

Figure 27: Implementation of the context module in combination with the Bidirectional
LSTM model

The top Input layer in Figure 27 receives the stock-representations while the bottom Input
layer receives the input features (trading data, sentiment data and trendscore data). The
four top Reshape layers will send the output into the first Bidirectional layer as the initial

64

6.3 Evaluation metrics rationale and implementation

states (hidden state and cell state for the forward layer, and the hidden state and cell state
for the backward layer). The next four Reshape layers (only one is shown in Figure 27)
will pass the output to the next Bidirectional layer, etc.

6.3 Evaluation metrics rationale and implementation

There are several evaluation metrics that are used across a multitude of works in the lit-
erature. In order to be able to compare results with other works, in addition to be able to
compare internally with the implemented models, it is a good idea to implement evaluation
metrics that facilitate this. MAPE is one of these widely used metrics, such as in Bollen,
Mao & Zeng (2011) and Xiong, Nichols & Shen (2016), and should be considered. Addi-
tionally, MSE and MAE have been widely used in many related regression tasks, such as
in the works of Bouktif, Fiaz, Ouni & Serhani (2018) and Næss (2018), and will therefore
be included as metrics of which performance will be evaluated.

In addition to the commonly used metrics for regression, a last metric, direction accu-
racy (DA), will also be implemented. Direction accuracy is included to provide a different
way to evaluate the results, and reflects an aspect important when dealing with financial
tasks that is not necessarily captured by the usage of metrics only focused on evaluating
regression. This project aims not to improve the direction accuracy on related tasks, but
implements it as a means of investigation and discussion whether a model learning regres-
sion can be improved in terms of a metric that can result in tremendous results in practical
use.

All of these relevant evaluation metrics are described in Section 2.1.16.

Implementation

MSE

MSE was computed using sklearn.metrics.mean_squared_error, the MSE metric provided
by Scikit-Learn.

MAE

MAE was computed using sklearn.metrics.mean_absolute_error, the MAE metric pro-
vided by Scikit-Learn.

65

6.3 Evaluation metrics rationale and implementation

MAPE

MAPE was computed using Equation 10 defined in Section 2.1.16. The absolute value was
computed using numpy.abs, and the mean value was computed using numpy.mean, both
provided by the NumPy package.

DA

For the direction accuracy, the following method was used:

1. For both the predicted values and the actual values, moving one day at a time: give
the value 0 if the actual value of the current day is higher than the next day, give it 1
otherwise. The result is two lists that represent the direction of predicted values and
actual values.

2. Compute the accuracy between these lists.

66

7 Experimental plan

This chapter will present a thorough description on how the experiments were carried out
and outlines the experimental plan that was followed. This includes the explanation and
motivation on why the experiments were conducted in this fashion, the procedure that was
followed. Elaboration on the hyperparameter search and the feature search parts is also
present. Description on how the results were evaluated is also included in this chapter.

7.1 The essential parts of the experiments

The objective of the experiments is to generate data as a basis for answering the research
questions. These are:

I) Are there some patterns in the trading data, sentiment data and search popu-
larity data gathered in this project that can facilitate price prediction?

II) Will a model based on LSTMs outperform the baseline models in predicting the
next day prices of stocks?

III) Will introducing a context module improve prediction?

IV) Can one of the models with configurable parameters in this project outperform
the baseline models in predicting stock prices, using the same set of parameters
for every stock in this project?

To answer research question I), the experiments comprise of implementing and optimizing
vanilla LSTM models, stacked LSTM models and bidirectional LSTM models. These
models will then be used to predict prices using different combinations of features. In
order to answer research question III) a context module is added to some of the models that
seem promising, in order to compare the context-free model with a model with a context.

In addition to the implemented LSTM models, implementation of several baseline models
was also conducted. The baseline models primarily act as points of reference to put the
results into perspective, and enable discussion and comparison with models that are based
on different theories and ideas, as well as different complexities. This analysis enables
answering research question II), as well as giving further insight on research question I).

Answering research question IV) meant that the models needed to be restricted in terms
of parameter/hyperparameter tuning. By performing hyperparameter search for the LSTM
models, a set of favorable hyperparameters that would work on all stocks could be deter-
mined before evaluating on the test set.

67

7.2 Experiments outline

Overall, the tasks necessary can be summed up into several parts: Hyperparameter search,
feature search, prediction on the test set, and evaluation.

7.2 Experiments outline

The experimentation evolved over time due to new evidence appearing as the experiments
went on. To make sense of the expansions and additional experiments, an outline of the
conducted experiments will be described here, including the reasoning behind the experi-
ments that were added as a consequence of the initial results. This section will also work
as a supplement that gives prior knowledge to the order of the results presented in Chapter
8.

Note that since the experiments ran on GPUs (Graphic Processing Unit), the results were
non-deterministic due to the nature of how GPUs compute the gradients. It practice, this
means that it was not possible to reproduce the exact same result in a deterministic way, for
instance by setting the seed.

7.2.1 Initial experiments

Experimenting with baseline models

The experimenting started with producing results with the baseline models. As the base-
line models did not undergo any hyperparameter search, the data were only divided into
two parts, training data and test data. The models were trained on the training data, and
evaluated with the test data.

Due to the ridge regression model having a parameter that could be tweaked, further ex-
perimenting were conducted to achieve better understanding of the task and the results.
Also, an additional model that behaves closely to random guessing was implemented, to
put the performance of the other models into perspective and to quantify what is meant by
performance that is similar to random guessing.

Hyperparameter search

Before running experiments to produce results with the LSTM models, hyperparameters
had to be determined. This consisted of determining the number of epochs to use as a
guide first, followed by the actual hyperparameter searching. Due to time restraints, some

68

7.2 Experiments outline

restrictions were introduced to make this part manageable. Hyperparameter search is elab-
orated further in Section 7.3.1.

In order to decide the number of epochs related to the fitting of the models, the loss history
graph was analysed. A fully fledged loss graph should tell the scale of the number of
epochs before reaching the minimum validation loss. Are 10 runs sufficient, or 100, 1000,
10000, etc.? Also, the graph should reveal when the model starts overfitting, i.e. when
the validation loss is starting to increase while the training loss is still decreasing. An
arbitrary set of hyperparameter values was chosen for this analysis. The values chosen
in this project produced a single layer LSTM with 160 hidden units, 0.2 dropout rate and
MAE loss function. All features, elaborated in Section 7.3.3, were used.

The actual hyperparameter search used a single LSTM model with all features. The result-
ing hyperparameters were used in the subsequent parts.

Feature search with LSTM models

After the hyperparameters were determined, feature search (elaborated in Section 7.3.3),
also called future analysis, was conducted. The first part of this experiment utilized the
same data set as the hyperparameter search to give a basis for analysis and feature selection.
The second part consisted of evaluation of the models on a set of features selected based on
the results and analysis made in the first part. This part utilized the test set for evaluation,
and these results were to be compared against results of the baseline models.

Including the context module

Following the process described above, a selection of the best LSTM configurations was
identified and expanded upon using the context module. This was to see whether further
improvements could be made. The prior trained models had a context module attached and
was trained further, before being evaluated.

When training the model with context module, the process was similar to training the
model without, only that the context module was trained simultaneously with the LSTM
model. This would lead to the context module embeddings being modified together with
the weights of the LSTM model being modified by training. In essence, the embedding
layer used as the context module should have been optimized based on the feedback that
was received during training.

69

7.2 Experiments outline

7.2.2 Additional experiments due to the initial results

Experimenting with price change instead of price

Due to unfavorable results from the initial experiments, suspected being due to predict-
ing the next day price with the current day price provided as a feature, experiments were
expanded with predicting the price change instead. The experiment was ran on a single
layered LSTM model with the hyperparameters achieved from the initial experimentation.

Because of some difficulties with calculating the MAPE, some adjustments were imple-
mented. When calculating MAPE, one has to keep in mind that it is not defined when any
of the true values are zero. The MAPE also yields very high values when true values are
close to zero. This can be seen in the Formula 10. The results can in these cases be hard to
analyse in a meaningful way. It was the case that there were some true price changes that
were zero, making it a challenge to use the output as is. To circumvent this issue, the pre-
dicted price changes were transformed to predicted next day prices by adding the predicted
price change to the real current price for each time step.

Experimenting with lagged variables

Another approach investigated in an effort to mitigate the issues present was introducing
lagged variables, mainly with a model predicting the change of price, although some short
experimentation were done on a model predicting price as well. These experiments were
conducted with a single layered LSTM model and the same hyperparameters as the other
experiments.

Simplifying the scope by analyzing one stock at a time

As the modifications mentioned above did not yield substantial performance improvements,
the scope of the project was reduced considerably in order to attain understanding of the
issues present. This was done by analyzing one arbitrarily chosen stock and performing
experiments on this particular stock only. Additionally, this was done to investigate whether
the issues stemmed from trying to predict a relative large set of different stocks, or had its
origin on a more basic level. With some promising initial results, the experimenting was
extended to analyze several additional stocks individually.

70

7.3 Elaboration

7.2.3 Evaluation on the test set

During the experiments, all evaluations were conducted on the validation set, to give the
freedom of experimentation while still maintaining the integrity of the results on the test set.
The evaluation on the test set was conducted after all the experiments were concluded, with
a selection of configurations based on the results and observations from the experiments.
This process was based on both the time constraint and the idea that configurations with
inadequate results on the validation set are not interesting to investigate further due to
already having displayed lacking results. Even if the performance on the test set might be
better, evidence of inadequate performance already exist. Some results that are deemed
lacking on a more general level are still included, in order to have enough evaluation on the
test set to answer the research questions.

7.3 Elaboration

7.3.1 Hyperparameter search

The hyperparameters that can be configured in order to optimize the model are shown in
Table 4. Some of these hyperparameters are continuous values while others have a high
number of different possible discrete values. Testing all possible values for each of the
hyperparameters would neither be beneficial nor feasible. Given that all hyperparameters
have n possible values, the number of different models possible to be generated would be
n7. Due to time constraints, this number would quickly be unmanageable when n increases.
Even with only n = 3, 37 = 2187 models would have to be created in order to test and an-
alyze all different values. Instead, some hyperparameters were prioritized, which would be
the hyperparameters that are the most specific to the data at hand. These hyperparameters
will have different potential values in the search. The values of other hyperparameters will
be based on conventional values in the literature. In this experiment, the hyperparameter
search consists of a search through all the different values to try in Table 4.

71

7.3 Elaboration

Hyperparameter Values Justification

Sum of number
of hidden units in
the LSTM

32, 128, 160 A wide range of numbers of hidden
units

Learning rate 0.001 Default value for Adam

Epochs Analyse training
and loss graph to
decide

This hyperparameter is highly specific
to the task at hand. The graph will
therefore be analyzed to decide the
value to use

Dropout rate 0, 0.2, 0.5 According to Goodfellow, Bengio &
Courville (2016, p. 259), 0.5 is recom-
mended for hidden layers, 0.2 for the
input layer. A 0 dropout will also be
analyzed in order to examine whether
dropout will improve the model.

Optimization
method

Adam According to Brownlee, 2020 “Adam
is relatively easy to configure where
the default configuration parameters
do well on most problems”.

Batch size 15 This is the amount of stocks included
in the project

Loss function MSE, MAE These are sensible when predicting
prices using regression

Table 4: Hyperparameters used in hyperparamater search

To evaluate which hyperparameters are optimal, comparisons over different metrics are
used - MAE, MSE, MAPE and DA. As these are four different dimensions, some set of hy-
perparameters might be better than some other set in some aspects. For instance, one model
might be superior in MSE but inferior in MAPE in relation to another model. Therefore,
deciding the set of hyperparameters to continue with requires some thought process when
the results are clear. The process utilized in this project is described in Section 7.4.

72

7.3 Elaboration

7.3.2 Multiple layers and bidirectional layers

Experiments involving the stacked LSTM or the bidirectional LSTM will be conducted in
the same manner as for the vanilla LSTM. The only difference is that the sum of number
of hidden units in the LSTM (see table 4) will be distributed through the different layers.
For the stacked LSTM, two and three layers will be implemented and analyzed where each
layer have approximately the same amount of hidden units. The bidirectional LSTM was
planned with a similar implementation, but due to the initial results and analysis, further
exploration of this model was left out.

7.3.3 Feature analysis and feature subsets

Data type Consists of

Trading data [Price], [Price change, Direction], [Volume], [Open, High,
Close]

Sentiment data [Positive, Negative, Neutral], [Positive proportion, Negative
proportion, Neutral proportion]

Trend data [Trendscore]

Table 5: Data categories divided into feature subsets - described in section 4.2

The objective of the feature analysis is to identify relationships between features and future
prices to be predicted. All of the features available to search through are presented in Table
5.

73

7.4 Evaluation

Data types Feature subset

Price {Price}

Price + Trading data {Price, Price change, Direction, Volume, Open, High,
Close, Direction}

Price + Sentiment data {Price, Positive, Negative, Neutral, Positive proportion,
Negative proportion, Neutral proportion}

Price + Trend data {Price, Trendscore}

All data {Price, Price change, Direction, Volume, Open, High,
Close, Direction, Positive, Negative, Neutral, Positive pro-
portion, Negative proportion, Neutral proportion,
Trendscore}

Table 6: Feature subsets

The number of subsets of a set of size n is 2n − 1, excluding the empty set. The set of all
features can therefore be divided into 213 − 1 = 8191 subsets. Given the time restrictive
nature of the project, training and analysing 8191 different feature subsets is infeasible.
The features were grouped together based on how strongly related they were perceived to
be, in order to reduce the number of feature subsets. E.g. Positive proportion, Negative
proportion and Neutral proportion are features that are highly related to each other and was
grouped together. The feature arrangements are presented in Table 6. The price will be
included in every group as predicting the next price without having the current price can
be very hard in some cases. For instance, when only “trendscore” is present, predicting the
next price would be extremely hard. If some of the feature subsets yield better results than
only price, these will be combined in order to analyse whether a combination of these will
yield even better performance.

7.4 Evaluation

Ranking the models

To evaluate a model, MAE, MSE, MAPE and DA were used. As the performance of a
model in relation to these metrics can vary depending on the run, in this experiment, every
configuration of a model or features was run three times, and the scores were averaged.
The discussion and analysis were, however, based on both the averaged score of the runs
as well as the score of each individual run.

74

7.4 Evaluation

In the feature subset analysis and hyperparameter search steps of the experiment, a pool of
different models is generated. These will be presented in a table along with their rank in
the different metrics, ordered by the sum of their rank over the different metrics. After the
hyperparameter search only the superior configuration of hyperparameters was retained,
i.e. the configuration that yielded the lowest sum of ranking scores. A similar procedure
followed in the feature search, although not with the same restrictive manner as investigat-
ing both features that resulted in an improved performance and worse performance could
be interesting.

75

8 Results

The results with accompanying analysis and comments are presented in this chapter. This
content has the aim to produce material for discussion in Chapter 9, and to answer the re-
search questions motivating this project. This chapter starts with the baseline results, to
give a point of reference for comparison. Experiments to determine hyperparameters and
training regime follows, with experimenting on the LSTM models after that. Experiment-
ing with the LSTM models are the main focus of thesis, so it was allocated the largest
amount of available time. The experimentation can be divided into two major parts. In
the first part, the LSTM models are configured to predict the next day price (Section 8.4,
8.5, 8.6 and 8.7), while predicting the price change was the main focus of the second part
(Section 8.8, 8.9 and 8.10).

Color coding in tables

Color coding has been used in tables to convey additional information and to differentiate
the information displayed. The following colors and their meaning have been used:

• Red: Results generated from the baseline model

• Yellow: Results extracted from a previous table

• Green: Results generated on evaluation on the test set

8.1 Baseline models

Implementing the baseline models has the main purpose to put the results gathered from ex-
perimenting with the LSTM models into perspective. Three models were chosen initially,
with an increasing complexity between them to see whether this increase would yield posi-
tive results. Specifics on how the models were implemented are mentioned in Section 6.2.1,
6.2.2, 6.2.3 and 6.2.4.

The simple 1-step-behind model uses only price as input, while the linear regression model
and ridge regression model both have all data as input. The results from these models are
presented in Table 7. Since neither the linear regression model nor the ridge regression
model showed any improvements over the 1-step-behind model, only the 1-step-behind
model was used in comparison against the LSTM models. The 1-step-behind model is also
referred to as the baseline model and the naive model from Section 8.5 and onward.

76

8.1 Baseline models

Model MAPE MAE MSE DA

1-step-behind 1.6567% 4.4283 143.2291 51.47%
Linear regression 1.6676% 4.4545 143.6266 49.94%
Ridge regression 1.7718% 4.8482 158.6432 49.17%

Table 7: The baseline models on the test set

Table 8 presents the performance of the naive model measured on the validation set, as this
model was compared against the LSTM models the most in the later sections, due to this
model having the best performance of all the baseline models.

Model MAPE MAE MSE DA

1-step-behind 1.342% 3.153 52.42 52.61%

Table 8: The naive model on the validation set. The purpose of this table to for compare
the different LSTM models that have only been measured on the validation and not yet the
test set

Prior to analyzing the results of the baseline model, a random guessing model was imple-
mented. This model and the result is presented in the next section, Section 8.1.1.

8.1.1 Evaluating DA when random guessing

To put into perspective how the models perform in terms of direction accuracy compared
to random guessing, the baseline experiments were extended with a model that performs
closely to random predictions. This random guessing model takes the current price as an
input and outputs a price that has an equal chance of being higher than the current price as
well as being lower. The model was run 1000 times, and the DA averaged over these runs,
which resulted in a DA score of 49.99%. This result is as expected since, intuitively, the
probability of guessing something correct when there are two choices is 50%, given that the
process deciding the actual value is random too. With the DA score of the random guessing
model being close to 50%, this indicates a random process, or at least a process close to a
random process, that decides the day to day direction of stock prices. Although the general
market value has risen over time, suggesting the process to not be entirely random, when
examining a limited time frame such as the test set, the process still resembles a random
process, implied by the DA score of this experiment.

77

8.1 Baseline models

8.1.2 Simple 1-step-behind model

Inspecting the regression scores MAPE, MAE and MSE together with the resulting plotting
of the results, such as the one presented in Figure 28a, the simple 1-step-behind model gives
the impression of doing a good job at predicting the stock prices. Investigating the plots
close, however, reveals the opposite. Figure 28b shows the results from Figure 28a zoomed
in on the 50 first predictions. This highlights what can be a problematic issue with using
such a model. With such results, financial gains in the stock market are hard, as the model
always is one step behind the actual prices. This is also reflected by the DA score, as
the model performs close to what can be considered as guessing the direction of the stock
prices. Discussion on how this is problematic is included in Chapter 9.

(a) Results for the stock BIDU (b) Results zoomed in on the first 50 predictions

Figure 28: The simple 1-step-behind model predictions on the test set for BIDU

78

8.1 Baseline models

8.1.3 Linear regression

(a) Bidu (b) DIS

(c) FB (d) HD

Figure 29: The linear regression model predictions on test set for the stocks BIDU, DIS,
FB and HD

79

8.1 Baseline models

(a) BIDU (b) DIS

(c) FB (d) HD

Figure 30: The linear regression model predictions on test set for the stocks BIDU, DIS,
FB and HD, zoomed in on the 50 first predictions

The regression scores achieved by the linear regression model seem to be relatively good
when inspecting them briefly, which is also supported by the plots as illustrated in Figure
30. However, when examining the plots closer, they exhibit the same characteristics as
the plots from the simple 1-step-behind model. As can be observed from the plots in
Figure 30, all the results seem to consistently be one step behind the actual value, as if the
linear regression model has learned that only the current price should be considered when
predicting the price of the next day. Despite the relatively low regression error, displaying
this kind of characteristic makes it hard for real life usage. Similar to the simple 1-step-
behind model, this results in the linear regression model achieving relatively low DA scores.
These results are, however, expected. The correlation analysis in Section 4.3 indicated that
the next day price only exhibited linear correlation with related trading data, such as the

80

8.1 Baseline models

current day closing price and open price.

8.1.4 Ridge regression

Figure 31: The ridge regression model predictions on test set for AMZN, zoomed in on the
first 50 predictions

Examining the results and the plots of the results, it seems that the ridge regression model
consistently achieves worse results than the previous two models. The model also seems
to exhibit the same issues as the other models (illustrated in Figure 31), mainly that it is
overly dependent on the price related features, such as price, open, high and low. This is
not unexpected, as the other features do not have high correlation with the next day price.
If there are any relationships between the output to be predicted and the other features,
a model able to capture non-linear relationship is necessary. The ridge regression model

81

8.1 Baseline models

was inspected further in Section 8.1.5 as an effort to identify the reasons for the results
achieved, and to obtain better understanding of the input features effect on prediction.

8.1.5 Extending the baseline experiments

Some investigative experiments were commenced as a consequence of the obtained re-
sults above. The investigative experiments were used to gain better comprehension of the
achieved results. It should be noted that the experiments were done on the actual test data,
and should be treated with this in mind.

Examining ridge regression further

As the ridge regression model displayed results that were worse than the other baseline
models, this model was examined further. This was done primarily by changing two differ-
ent factors separately.

First off was experimenting with different α values to see how this would affect perfor-
mance. By applying different values for α, information on how inclusion on other features
was affecting performance could become more prevalent.

α MAPE MAE MSE DA

2.0 1.8123% 4.9920 165.8314 48.81%
1.0 1.7718% 4.8482 158.6432 49.17%
0.5 1.7507% 4.7817 155.3082 50.42%
0.2 1.7264% 4.7129 152.3614 50.87%
0.1 1.7084% 4.6571 149.8386 50.91%
0.0 1.6671% 4.4534 143.6018 49.86%

Table 9: The ridge regression model with different values for α.

The results from Table 9 show that the performance gets worse as the α value grows. This
indicates that the model is not able to make use of features other than those related to price.
When being forced to take other features into consideration, the performance is affected
negatively. When the α is set to 0.0 the performance is similar to the linear regression
model (the discrepancy is due to the implementation of sklearn.linear_model.Ridge), as
expected. As this is the best performing configuration, it indicates that forcing the model

82

8.1 Baseline models

to take into consideration other features is not helpful, at least when dealing with a model
capable of capturing linear relationships only.

The second factor to be varied was features. To see how they impacted results, one feature
was left out at a time, a procedure also called ablation, producing the following results:

Omitted feature MAPE MAE MSE DA

price 1.8702% 5.1535 174.4701 49.17%
high 1.7898% 4.9019 160.2271 49.41%
low 1.7855% 4.9004 164.5560 48.97%
open 1.7420% 4.7449 154.3025 49.53%
volume 1.7699% 4.8437 158.7204 49.61%
direction 1.7999% 4.9338 162.0643 50.46%
neutral_prop 1.7717% 4.8481 158.6460 49.13%
positive_prop 1.7717% 4.8479 158.6125 49.13%
negative_prop 1.7717% 4.8480 158.6297 49.21%
negative 1.7717% 4.8452 158.3191 49.21%
positive 1.7718% 4.8476 158.6376 49.25%
neutral 1.7714% 4.8463 158.6257 49.05%
trendscore 1.7528% 4.7824 154.2285 50.67%

Table 10: The ridge regression model with different features omitted.

From the results presented in Table 10, it can be seen that there are some features that seem
to influence the performance in a negative way. Thus, by omitting them, performance may
increase. For instance, omitting the feature “trendscore” resulted in performance noticeable
better than when including it. Investigating this further, however, indicated that this might
not always be the case. When running the same setup with a different training and test split
(80% and 10%, respectively), the results did not indicate similar noticeable improvements.
Except for “price”, there seems to overall not be any one feature that is the sole reason for
a performance increase or performance degradation, when experimenting with the ridge
regression model.

83

8.2 Analyzing the loss history

Model MAPE MAE MSE DA

1-step-behind 1.4858% 2.7978 15.4556 56.36%
Linear regression 1.4936% 2.8100 15.6733 53.33%
Ridge regression 1.4795% 2.7829 15.3712 58.18%

Table 11: The baseline models on the stock AAPL, ridge regression optimized

Additional investigations of α showed that better results could be achieved if the α was
tweaked to optimize performance on each individual stock. For instance, when applying
an optimized α when processing the AAPL stock only, performance in terms of all metrics
exceeded the other baseline models, as depicted in Table 11. This suggests that it is possible
to achieve better results with the ridge regression model comparable to the other baseline
models, although the issue of constantly lagging behind is still present. Since optimizing
α manually for each individual stock was deemed out of scope due to time limitations and
research question IV), this was not investigated further. Chapter 9 will discuss the results
achieved in Table 11 further, examining whether this approach is applicable on other time
frames as well.

8.2 Analyzing the loss history

Understanding how long the LSTM models should be trained for is a challenging task.
To get a sense on what should be done with regards to this matter, a run with a model
configured to have 160 hidden units, 0.2 dropout and MAE as loss function was conducted
with an exaggerated amount of epochs. The result is illustrated in Figure 32.

84

8.2 Analyzing the loss history

Figure 32: Training/validation loss during training using a single layered LSTM with 160
hidden units, 0.2 dropout rate and MAE loss over 25000 epochs. The first 10 epochs were
removed from the graph because of high values compared to later values. Including these
would make it harder to analyze the later values.

In Figure 32, the validation loss generally decreases until around epoch 5000 where it
reaches the minimum. After this, the validation loss increases while the training loss con-
tinues decreasing. This is a classical sign of overfitting. As it is very hard to predetermine
exactly which epoch is related to the lowest validation loss, early stopping will be used.
Early stopping is a tool used for stopping the training prosess at a favorable time. It uses
the “patience” parameter in order to decide when to stop. If the model has not improved on
the validation set in the last x epochs (where x is the patience), the training process should
stop. Early stopping will in addition to stopping at a good time also be used to save the
weights related to the epoch where the loss was lowest in order to restore these at the end
of training. Observing the graph, it seems that one would safely reach the minimum vali-

85

8.3 Hyperparameter search

dation loss by using a patience of 1000. One should keep in mind that the loss graphs will
be different for other hyperparameters and features. Even with that in mind, 1000 epochs
for the patience seems fairly safe. Figure 33 shows that the model finds the minimum using
early stopping with a patience of 1000 without running too many unnecessary epochs after
reaching the minimum.

Figure 33: Using patience of 1000 epochs

8.3 Hyperparameter search

As described in Section 7.3.1, an experiment to determine what hyperparameter to use in
the later experiments was conducted. The top three results and two bottom results are
presented in Table 12.

86

8.3 Hyperparameter search

Dropout Number
of units

Loss
function

Mean
MAPE

Mean
MAE

Mean
MSE

Mean DA

0.0 [160] mae 1.396%
(#1)

3.314
(#1)

57.52
(#1)

50.76%
(#4)

0.0 [128] mae 1.403%
(#2)

3.329
(#2)

58.34
(#2)

50.29%
(#6)

0.2 [128] mae 1.406%
(#3)

3.553
(#3)

68.62
(#3)

50.06%
(#10)

0.5 [32] mae 1.768%
(#17)

5.849
(#17)

224.0
(#17)

48.13%
(#16)

0.5 [32] mse 1.849%
(#18)

6.268
(#18)

260.0
(#18)

47.91%
(#17)

Table 12: Hyperparameter search, top three and bottom two results sorted on the sum of
ranks. “#” in the Mean MAPE, Mean MAE, Mean MSE and Mean DA denotes the rank of
the result. The model with the best mean MAPE will have MAPE #1, the model with the
second best mean MAPE will have MAPE #2, etc. The table is sorted by the sum of ranks
for every metric in each row. See all results in Table 57

From the results in Table 12, and from all the results in general, some observations can be
made.

Observing the number of units, it seems that models with a higher number of hidden units
perform better overall in terms of overall ranking, seeing that the top performer has 160
units while the next two have 128 units. This makes sense as increasing the number of
hidden layers increases the ability to solve complex tasks. However, this increase can also
increase the chance of overfitting, which should be kept in mind when analyzing the results
in later parts of the experimentation.

Table 12 shows that the top two performing models have zero dropout rate, while the bottom
two performing models have dropouts of 0.5. This suggests that in order to achieve the best
scores in terms of the evaluation metrics, the dropout rate should be kept as low as possible.
However, since 0.0 dropout increases the risk of overfitting on the training data, this should
be kept in mind if this dropout rate is going to be used.

Lastly, in relation to the loss function, the top six performing models use MAE as can be
seen in Table 57. Observing this table, the best mean MAE score that is reached when
using MAE as a loss function is 3.314 while the best mean MAE score when using MSE

87

8.4 Issues with the bidirectional implementation

as a loss function is 3.671. Even when observing the mean MSE scores, using MSE as loss
function is inferior; the best mean MSE being 70.91, while it is 57.52 when using MAE as
the loss function.

Overall, the results from the hyperparameter search seem to suggest that a model with
lower dropout rate and a higher number of hidden units will result in the best performance
in terms of the evaluation metrics. This was the basis of the model experimented with in
the later parts. Specifically, a model with no dropout, the number of hidden units set to
160, and MAE as the loss function.

8.4 Issues with the bidirectional implementation

The bidirectional LSTM model was experimented with, but the exceptionally poor results,
presented in Table 58 in the Appendix, indicated major flaws in the implementation. The
issues seemed to originate from a configuration unfit for the bidirectional LSTM model.
Since the bidirectional model has a layer that processes the data backwards, during training,
the model has access to information on the price of the next day when predicting the price of
the next day. This makes the model tune the weights as if the model will have access to this
information from the future. When predicting following the process described in Section
6.2.7, the model does not receive future information that the weights have been tuned to
focus on. The model is therefore unable to predict accurately, as the configuration has made
it incapable of handling the situation at prediction time. A solution is to instead implement
a bidirectional model using sliding window: for each time step to predict the next price,
the current and previous x features, where x is the sliding window size, are used. The
bidirectional model processes these current and past features both forward and backward
in order to predict the next price. In this way, the model never retrieves information from
the future. This approach is similar to the approach of Althelaya, El-Alfy & Mohammed
(2018). Due to the time constraints, moving in this direction was decided against, and
further experimentation with the bidirectional LSTM model was abandoned.

8.5 Feature analysis, predicting price

First and foremost, this section will present comparisons between the different models;
vanilla LSTM with 160 hidden units and stacked LSTMs, one with two layers consisting of
[80,80] hidden units and one with three layers consisting of [54,53,53] hidden units. The
hyperparameters are chosen based on Section 8.3. Secondly, this section will present com-
parisons between the different feature subsets in order to locate any valuable information
in relation to the research questions.

88

8.5 Feature analysis, predicting price

The results related to the models and all the selected feature subsets are presented in Table
13.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

price 1.352%
(#1)

3.157
(#2)

52.52
(#2)

52.47%
(#2)

Vanilla
[160]

price, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.353%
(#2)

3.155
(#1)

52.63
(#3)

52.58%
(#1)

Vanilla
[160]

price, trendscore 1.354%
(#3)

3.158
(#3)

52.18
(#1)

51.78%
(#5)

Stacked
[80, 80]

price, trendscore 1.382%
(#6)

3.257
(#4)

54.87
(#4)

52.04%
(#3)

Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.393%
(#7)

3.307
(#7)

58.76
(#8)

51.04%
(#11)

Stacked
[54, 53, 53]

price 1.415%
(#10)

3.498
(#10)

64.17
(#10)

51.73%
(#6)

Vanilla
[160]

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.396%
(#8)

3.314
(#8)

57.52
(#7)

50.76%
(#13)

Table 13: Feature search using vanilla LSTMs and stacked LSTMs. All results related to
the vanilla LSTM are shown, and the best result related to each of the stacked LSTMs.

One observation is that there seems to be a general pattern related to the number of layers
in the model. The top three models only have one layer with 160 units while the next three
have two layers with 80 units in each layer. Of the bottom five results, as seen in Table 59
in the Appendix, four of them have three layers of sizes 54, 53 and 53. It is clear that in
this experiment, the vanilla LSTM is superior to the stacked LSTMs. This indicates that
the added complexity the models gain by adding layers is not beneficial.

Another observation is related to the metric results. It seems that MAPE, MAE and MSE

89

8.5 Feature analysis, predicting price

are correlated. The rankings of these results for each feature subset are usually very close,
e.g. the rankings of the top result’s MAPE is #1, MAE is #2 and MSE is #2, and the trend
seems to continue with the subsequent results. The DA ranking, however, does not seem
to follow the same trend to the same degree as the three other metrics, but it still seems
to be a connection there as overall better performance in MAPE, MAE and MSE resulted
in a relative high rank in DA. This can be seen in the top four configurations, which have
relative high ranks in the three first metrics, but also a relative high rank with regards to
DA.

Model Features MAPE MAE MSE DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

price 1.351% 3.134 51.83 52.61%

Vanilla
[160]

price, positive_prop, nega-
tive_prop, neutral_prop

1.343% 3.141 52.35 52.44%

Vanilla
[160]

price, positive, negative,
neutral

1.346% 3.139 52.15 52.0%

Vanilla
[160]

price, volume, direction,
change

1.344% 3.137 53.32 53.05%

Vanilla
[160]

price, open, high, low 1.351% 3.191 54.75 51.19%

Table 14: Showing the best of 10 individual runs for the different feature subsets. The row
with yellow background is extracted from Table 59.

With regards to feature subsets, there are some interesting observations that can be made.
The vanilla LSTM using only price is superior to the vanilla LSTMs using price in addition
to other features. This is an indication that the LSTM has been overfitted and is finding pat-
terns in noise when looking at the other features. One solution is to add regularization. Reg-
ularization in the form of a dropout layer was added in the hyperparameter search in Section
8.3 and did not seem to improve the model. Another solution is to reduce the number of
features. Several of the feature subsets contain relatively many features. Price + trading
data contains [“price”, “open”, “high”, “low”, “volume”, “direction”, “change”], price +
sentiment data contains [“price”, “positive”, “negative”, “neutral”, “positive_prop”, “neg-
ative_prop”, “neutral_prop”]. In order to reduce the risk of overfitting, it might be worth
it to divide these feature subsets into smaller subsets, such as [“price”, “open”, “high”,
“low”], [“price”, “volume”], [“price”, “change”, “direction”], [“price”, “positive”, “nega-

90

8.5 Feature analysis, predicting price

tive”, “neutral”] and [“price”, “positive_prop”, “negative_prop”, “neutral_prop”]. Dividing
these into even smaller feature subsets does not seem to be feasible in terms of time and this
was therefore not explored further. Table 14 shows the results when dividing the feature
subsets in the described way, using a LSTM with one layer and 160 hidden units, as this
configuration was the one showing most potential. The table presents the best results from
10 different runs, contrary to Table 13 where the average of 3 runs was shown. Even when
dividing the larger feature sets into smaller subsets, the results in Table 14 show that no
model was clearly superior to the model using only “price”.

In Table 59 in the Appendix it can be seen that having “trendscore” in addition to “price”
yielded MAE and MSE score superior to the baseline model in two of the three runs. This
is an interesting case, as experimentation with the ridge regression model in Section 8.1.5
suggested that including “trendscore” lead to worse performance. The results on the LSTM
model indicate that “trendscore” can improve performance, and that the relationship might
be non-linear. Chapter 9 will discuss this matter further. Because of the results, “trend-
score” in addition to price was examined closer. These two subsets were run 10 times each
and the best results are presented in Table 15.

Model Features MAPE MAE MSE DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

price, trendscore 1.347% 3.119 51.15 53.9%

Vanilla
[160]

price 1.346% 3.129 52.66 52.57%

Table 15: Optimising model related to each feature subset 10 times. The table shows the
best individual run for each feature subset.

Table 15 shows that adding “trendscore” to “price” yielded slightly better results. This is an
indication that “trendscore” does give some valuable information in relation to stock price
prediction. On the other hand, it might also be because of random variations as a result
of the random nature of LSTMs. It is possible that running the same experiment on only
“price” for 100 times would yield better results. This is based on the observation that hav-
ing “trendscore” in addition to “price” does not consistently result in greater performance
compared to using “price” alone.

91

8.5 Feature analysis, predicting price

Comparing the predicted prices to the actual prices

To analyse the performance of the LSTM models on this task the plots generated by the
results were analysed closer, which revealed some points that will be described in the up-
coming paragraphs and discussed further in Chapter 9.

When inspecting the graphs initially, it seems like all models are able to generate predic-
tions that are close to the actual values. This is illustrated in Figure 34. However, inspecting
the graphs closer reveals that this is not true.

(a) INTC (b) KO

(c) NFLX (d) NVDA

Figure 34: Predicted prices vs actual prices of the stocks INTC, KO, NFLX and NVDA,
generated by the vanilla LSTM with all features

92

8.5 Feature analysis, predicting price

In all of the graphs, the predicted price seems to be almost the same as the true price shifted
one step to the right as can be seen in Figure 35, which is generated by the vanilla LSTM
model that uses all features. This is especially apparent when comparing directly with the
naive model, for instance in Figure 35b or Figure 35c where the similarities between the
LSTM predictions and the naive model are clear. In other words it seems that the model
predicts the next price to be the current price plus some value that the results seem to
suggest are noise probably caused by the additional features or the high number of weights
that are being tuned during training.

(a) INTC (b) KO

(c) NFLX (d) NVDA

Figure 35: Predicted prices vs actual prices of the stocks INTC, KO, NFLX and NVDA,
generated by the vanilla LSTM with all features, zoomed in on the 25 first predictions

The HD stock was analysed further to gain insight and to comment on the situations where

93

8.5 Feature analysis, predicting price

the model seems to predict accurate values. It can be seen in Figure 36 that the model at
multiple time steps seemingly produces accurate predictions of the price. Some examples
are at time step 2, at time step 9, at time step 13, at time step 16, at time step 18. Many
of these can be explained by the model being shifted one step to the right in relation to the
actual prices and that the actual price from one step to the next did not change much. But in
some cases, the model accurately predicted the price even though the actual price changed
noticeably from the day before. One example is at time step 28, another example, although
to a lesser degree is at time step 18. This can be explained either by randomness or that
the model actually has some predictive powers. The former explanation seems to be the
most probable, as can be seen if the predicted graph is shifted to the left. The prediction
is heavily influenced by the current price, and the seemingly accurate predictions appear
to be due to coincidences. As the current price and next day prices are really close in
most situations, there will be cases where the prediction and actual value will coincide. As
the predictions constantly lag behind the actual value, financial gain is difficult, which is
emphasized by the low DA scores.

Figure 36: The vanilla LSTM model predictions on validation set for HD, zoomed in on
the 50 first predictions.

94

8.6 Introducing the context module

Summarizing the observations

Generally, it is evident that the predicted next day price is very close to the actual price
the day before, suggesting that the models are not able to make use of the additional in-
formation to offset this overdependence on the current price. This was also something that
was an issue with the baseline models. However, there are some results that indicate that
including some additional information could be beneficial, at least to somewhat outperform
the simple 1-step-behind model, as can be seen in Table 16. The experimentation was con-
tinued with the context module in Section 8.6, to see if this observation would persist, and
to examine what would happen with such a configuration.

Model Features MAPE MAE MSE DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

price, trendscore 1.347% 3.119 51.15 53.9%

Table 16: The best model found when predicting the next price

8.6 Introducing the context module

As the results in Section 8.5 indicated that adding additional layers only improved complex-
ity of the model without improving the performance, experimentation with these models
was not carried further.

The averaged results of the experiments on the vanilla LSTM with context module are
presented in Table 17. All results can be found in Table 62 in the Appendix. From the
results in Table 17 and Table 62, and from associated plots (exemplified with Figure 37),
it can be observed that there are several similarities with the results in Section 8.5. This
makes sense, as the vanilla LSTM with context module is an extension of the vanilla LSTM
without.

95

8.6 Introducing the context module

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

price, trendscore 1.347%
(#1)

3.129
(#1)

51.6
(#1)

52.53%
(#2)

Vanilla
[160]

price, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.351%
(#3)

3.149
(#2)

53.06
(#3)

52.65%
(#1)

Vanilla
[160]

price 1.349%
(#2)

3.162
(#3)

52.81
(#2)

51.96%
(#3)

Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.373%
(#4)

3.237
(#4)

57.18
(#4)

49.98%
(#5)

Vanilla
[160]

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.42%
(#5)

3.449
(#5)

62.76
(#5)

50.42%
(#4)

Table 17: Predicting the next price using the context module.

First, it can bee seen that all the metrics seem correlated, meaning that the top configu-
rations usually have a high rank in all metrics. With the three regression metrics MAPE,
MAE and MSE, this is intuitive as all three metrics measure the regression performance.
It is interesting that the DA score also follows this behavior, raising the question whether
a better regression score consistently will result in better direction accuracy, or whether
this is purely coincidental. As the results in Section 8.5 also exhibit similar tendencies,
the former can not be ruled out yet. It should be noted that all DA scores hover around
50%, possibly facilitating this behavior. It is also possible that a better regression score
results in a model more similar to the 1-step-behind model, causing models that achieve
this to have improved performance compared to a model not able to mimic this to the same
sufficient degree since this ultimately makes the model more similar to the random guess-
ing model (see Section 8.1.1) in terms of DA. If this is the case, it would indicate that the
LSTM model with context module is not able to extract useful information from the other
features, at least in terms of DA, or that it is too difficult for the model to include the other

96

8.6 Introducing the context module

features sufficiently due to the high correlation between the output and “price”.

A second point is that similar to the models in Section 8.5, the vanilla LSTM model with
context module appeared to approximate the naive model, resulting in the model consis-
tently lagging behind the actual value by one step. Figure 37 illustrates this, showing
the plots of the stock DIS both on the whole validation set and zoomed in on the 25 first
days, generated by the model trained on “price” and sentiment data. Examining Figure 37b
closely, it can be observed how closely related the LSTM predictions are to the naive model
predictions, despite including other features than “price”.

(a) DIS on the whole validation data set (b) DIS zoomed in on the 25 first days

Figure 37: Predicted prices vs actual prices of the stock DIS, generated by the vanilla
LSTM with context moduel on Price + Sentiment data

In terms of feature subsets, the results from the vanilla LSTM with context module seem
to indicate that there could be some merit in using additional features. As was seen in
Table 17, both the combination of “price” and trendscore data and “price” and sentiment
data produced results that were overall better than only “price”. To investigate whether this
would consistently hold true, runs with all of these combinations were done, each of them
10 times. The results of the best runs, respectively, are shown in Table 18, with all the
results presented in Table 63 in the Appendix.

97

8.6 Introducing the context module

Model Features MAPE MAE MSE DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

price, trendscore 1.343% 3.116 51.39 51.88%

Vanilla
[160]

price 1.345% 3.125 51.93 53.17%

Vanilla
[160]

price, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.352% 3.138 51.58 52.2%

Table 18: Optimising model related to each feature subset 10 times. The table shows the
best individual run for each feature subset.

Analysing the results in Table 18 and Table 63, it seems that including “trendscore” resulted
in a better performance overall compared to using “price” as the only feature. Using only
“price” resulted in a best run with better DA compared to adding “trendscore”, however,
when looking at the averaged scores, adding “trendscore” resulted in better performance
on all metrics. It should be noted that the improvements are marginal and not enough to
solve the issue with the model lagging one step behind the actual values.

Summarizing the observations

Overall, adding the context module did not seem to improve performance, with the model
exhibiting similar issues and tendencies as the models experimented with in Section 8.5.
This includes the fact that the model seems to approximate the simple 1-step-behind model,
thus constantly predicting one day behind, but also that “trendscore” again resulted in the
model that achieved the best overall performance. One point that was made clear in this
part of the experiments was that improved regression metrics do not always translate to a
better direction accuracy, which is also illustrated in Table 19.

The lack of sufficient improvements could be due to the underlying issues related to the
experimental setup. The experimental setup was therefore modified in Section 8.8.

98

8.7 Predicting price by optimising on price and direction

Model Features MAPE MAE MSE DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

price, trendscore 1.343% 3.116 51.39 51.88%

Table 19: The best model found when using context

8.7 Predicting price by optimising on price and direction

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

price 1.355%
(#1)

3.161
(#1)

53.08
(#2)

52.05%
(#1)

Vanilla
[160]

price, trendscore 1.361%
(#2)

3.188
(#2)

52.64
(#1)

52.0%
(#2)

Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.385%
(#3)

3.378
(#3)

61.12
(#3)

50.61%
(#4)

Vanilla
[160]

price, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.42%
(#4)

3.538
(#4)

67.34
(#5)

50.79%
(#3)

Vanilla
[160]

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.437%
(#5)

3.546
(#5)

66.67
(#4)

49.56%
(#5)

Table 20: Predicting price and direction.

Before modifying the experiment to predict price change instead of the price, an experiment
where the LSTM model is trained to output both the next direction and the next day price

99

8.8 Additional experiment: Predicting price change

was conducted. This experiment was entirely for experimental purposes, to see whether
training on direction as well would lead to increased DA scores.

Table 20 presents the results from this experiment. From these results, it is observable that
this change in configuration does little to improve the performance. Analysing the results
in both Table 20 and Table 64 in the Appendix, it can be argued that the changes made
actually make the model worse. For instance, comparing the MSE of this model and the
results from the previous sections reveals that this configuration more frequently obtains
scores in the 60s. The decrease in performance is probably due to the added complexity
without bringing sufficient positive contributions to compensate for this. In short, it seems
to be more challenging to predict two outputs compared to one, which can be analogous to
real life where learning multiple things at the same time often is more difficult compared
to focusing on one thing.

Summarizing the observations

The results indicated that improvements would not be feasible with this configuration,
which seemed to derive mostly from the additional complexity with prediction of multi-
ple outputs as done in this experiment. With these evidences at hand, investigating this
configuration further was decided against.

8.8 Additional experiment: Predicting price change

As the experimentation in Section 8.5 and 8.6 revealed difficulties with good performance
on the initial setup, the setup was changed to accommodate these challenges. Instead of
predicting the next day price, the task was altered to predict the price change.

8.8.1 Predicting price change without using context

Presented in Table 21 are the top 5 averaged results when predicting price change using
the same feature subsets as in the previous experiments. Additionally, Table 22 shows the
best run from selected feature subsets. Together with associated plots (examples provided
in Figure 38), this produces some noticeable observations and tendencies. Results from all
runs can be found in Table 65 in the Appendix.

100

8.8 Additional experiment: Predicting price change

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.356%
(#1)

3.128
(#1)

52.38
(#1)

51.95%
(#2)

Vanilla
[160]

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.358%
(#2)

3.161
(#2)

53.64
(#2)

52.0%
(#1)

Vanilla
[160]

price, trendscore 1.923%
(#3)

4.498
(#3)

109.6
(#3)

51.38%
(#5)

Vanilla
[160]

price 1.927%
(#5)

4.62
(#4)

119.9
(#4)

51.41%
(#4)

Vanilla
[160]

price, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.925%
(#4)

4.725
(#5)

125.1
(#5)

51.42%
(#3)

Table 21: Price change prediction without context module.

Model Features MAPE MAE MSE DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.348% 3.104 51.74 53.09%

Vanilla
[160]

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.356% 3.125 52.89 53.01%

Table 22: The best individual runs for each selected feature subset.

101

8.8 Additional experiment: Predicting price change

One observation related to the results presented in Table 21 is that the models that use all
trading features have relatively low MAEs compared to the other models. This can also be
seen in Table 22, which depicts the best run for these feature subsets. Both results achieved
higher scores compared to the baseline model based on the naive model, suggesting that
there could be some benefits to using the additional trading data. In terms of the other
metrics, this configuration does not consistently beat the baseline model, and in terms of
MAPE it always performs worse than the baseline model.

The model using only price yielded relatively bad results, implying that the LSTM model
has difficulties extracting information from the current price in order to predict the next
change. This is especially evident when compared to the previous experiments conducted.
Analysing the results further suggested that this configuration seemed to be stuck in bad
local optima in all runs. To gain better understanding on how to utilize the trading data, the
trading data was divided into smaller subsets in order to recognize the features that lead to
the favorable results as seen in Table 21 and Table 22. The trading features were divided
into groups of similar features; [“change”], [“price”, “open”, “high”, “low”], [“volume”]
and [“direction”].

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.356% 3.128 52.38 51.95%

Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.374%
(#1)

3.18
(#1)

53.93
(#2)

51.3%
(#3)

Vanilla
[160]

change 1.386%
(#2)

3.189
(#2)

53.81
(#1)

49.32%
(#5)

Vanilla
[160]

price, open, high, low 1.957%
(#4)

4.851
(#3)

135.0
(#3)

51.72%
(#1)

Vanilla
[160]

volume 1.951%
(#3)

5.07
(#4)

156.4
(#4)

50.91%
(#4)

Vanilla
[160]

direction 4.316%
(#5)

8.737
(#5)

293.1
(#5)

51.69%
(#2)

Table 23: Predicting price change, analysing different subsets of the trading data. The
results in the yellow row are extracted from Table 21.

Table 23 (all results are in Table 66 in the Appendix) shows that even with the same fea-
tures, the results can differ relatively much. The mean MAEs were 3.128 and 3.180 in two

102

8.8 Additional experiment: Predicting price change

different runs. This must be taken into consideration when judging the results. Since the
results are not consistent, one run does not necessarily determine whether the model per-
forms well or not. Differing results between runs related to using only trading data can be
seen in Table 24.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.356% 3.128 52.38 51.95%

Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.374% 3.18 53.93 51.3%

Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.355% 3.139 52.69 51.74%

Table 24: The metric result variations using the same features; trading data

Another observation that can be made from the results in Table 23 is that using only
“change” yields almost as good mean results as “change” in addition to the other trad-
ing features. Also, runs without “change” seem to perform noticeably worse, especially
evident when looking at the MSE scores, as omitting “change” results in MSE in the 100s
compared to MSE in the 50s. Because the model is predicting the next change, it makes
sense that the current change is a more favorable feature than price. In Table 25 (the rest of
the results are in Table 70 in the Appendix) the model using only price is compared against
the model using only change, illustrating the described behavior.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Vanilla
[160]

change 1.368%
(#1)

3.176
(#1)

53.71
(#1)

49.27%
(#2)

Vanilla
[160]

price 1.9%
(#2)

4.541
(#2)

114.7
(#2)

51.23%
(#1)

Table 25: Comparing using only price to using only price change when predicting the next
change.

103

8.8 Additional experiment: Predicting price change

As it is clear that “change” is a more relevant feature than price when predicting price
change, the experiment was redone with “change” as the main feature instead of “price”.
The generated results are presented in Table 26, with results from all the runs shown in
Table i 67 in the Appendix.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.356% 3.128 52.38 51.95%

Vanilla
[160]

change, open, high, low,
volume, direction, price,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.364%
(#3)

3.137
(#1)

52.34
(#1)

51.85%
(#1)

Vanilla
[160]

change, open, high, low,
volume, direction, price

1.355%
(#1)

3.139
(#2)

52.69
(#2)

51.74%
(#2)

Vanilla
[160]

change, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.361%
(#2)

3.167
(#3)

53.52
(#3)

50.59%
(#3)

Vanilla
[160]

change, trendscore 1.416%
(#4)

3.204
(#4)

55.21
(#5)

49.64%
(#4)

Vanilla
[160]

change 1.467%
(#5)

3.211
(#5)

54.34
(#4)

49.44%
(#5)

Table 26: Price change prediction without context module.

The results presented in Table 26 show that using the “change” as the main feature resulted
in more stable performance in general. The mean MAPE is always in the range [1.364%,
1.467%], the MAE in [3.137, 3.211] and the MSE in [52.34, 55.21], whereas when always
including price, the MAPE was in the range [1.356%, 1.927%], the MAE in range [3.128,
4.725] and the MSE in the range [52.38, 125.1]. This is an indicator that “change” is
necessary in order to be able to compete with the baseline model. What is interesting
is that using any combination of additional data resulted in an improvement over using
“change” alone, suggesting that including this data improves the prediction capabilities.
However, compared to the baseline model, none of the feature subsets seems to be able

104

8.8 Additional experiment: Predicting price change

to outperform this model convincingly, suggesting that including these additional features
is not enough to improve the performance sufficiently. Even when analysing the feature
subset showing the most potential, trading data, further by dividing into smaller subset, the
results do not deviate from this tendency. The results from this analysis are shown in Table
27, with Table 68 in the Appendix presenting more details. The results indicate that some
sort of combination of all the trading features is necessary to achieve the best performance
achievable with this configuration, as none of the smaller subsets matched the performance
of them combined.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

change, open, high, low,
price

1.434%
(#3)

3.2
(#2)

54.32
(#1)

50.06%
(#1)

Vanilla
[160]

change, volume 1.395%
(#2)

3.196
(#1)

54.36
(#3)

49.87%
(#2)

Vanilla
[160]

change, direction 1.389%
(#1)

3.207
(#3)

54.35
(#2)

49.8%
(#3)

Table 27: Splitting up the trading features in order to identify patterns.

105

8.8 Additional experiment: Predicting price change

(a) AMZN results (b) AMZN results, 25 first predictions

(c) AMZN price change predictions

Figure 38: LSTM without context module predicting price change on the stock AMZN,
using all trading data

Examining the related plots highlights the underlying reasons to why the LSTM model
seems to not be able to convincingly outperform the naive model. Figure 38 depicts plots
related to the AMZN stock, generated by the LSTM model utilizing trading data. It should
be noted that Figures 38a and 38b are from the same run, while Figure 38c is from a
different run. This is due to a rerun of this particular experiment that overwrote the previous
plots, making them unavailable. Nonetheless, they illustrate the overall tendencies that
are present both for this stock individually and for all stocks in general. From the plots,
especially when examining Figure 38c, it can be seen that the model is not able to accurately
predict the actual price changes. Most predictions hover around 0 or the mean value, which
also seems to be close to 0, and are rarely close to the true value. In most cases where the

106

8.8 Additional experiment: Predicting price change

model predicts larger values, it seems that the predictions are wrong and do not capture
the trend of that period. This translates to the model behaving close to the baseline model
when adding the predicted price change to the current price, as shown in Figures 38a and
38b. This might also be the reason for the reduced DA scores when looking at averages, as
the predicted price changes introduce randomness, which was shown earlier to not perform
as well as the 1-step-behind model.

8.8.2 Predicting price change using context

As experimentation in Section 8.8.1 showed that “change” was necessary to produce sta-
ble and better results, experimentation with this was extended to the LSTM model with
context module. This was to see whether introducing context and making the model able
to specialize would mitigate the issues found in the previous section. Table 28 shows the
averaged results from this part of the experiments. Table 69 in the Appendix presents all
the results.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

change, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.347%
(#1)

3.127
(#1)

52.08
(#1)

51.81%
(#1)

Vanilla
[160]

change, open, high, low,
volume, direction, price,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.366%
(#3)

3.153
(#2)

52.92
(#2)

51.02%
(#2)

Vanilla
[160]

change, open, high, low,
volume, direction, price

1.364%
(#2)

3.165
(#3)

53.3
(#3)

50.63%
(#3)

Vanilla
[160]

change 1.412%
(#5)

3.17
(#4)

53.33
(#4)

50.33%
(#5)

Vanilla
[160]

change, trendscore 1.401%
(#4)

3.184
(#5)

54.48
(#5)

50.51%
(#4)

Table 28: Price change prediction with context module.

107

8.8 Additional experiment: Predicting price change

As with other experiments, the results in Table 28 seem to suggest that the regression score
is correlated with the direction accuracy score, meaning that better regression scores sug-
gested better DA scores. Likewise, the results seem to suggest that the current configuration
might also exhibit the same issue as with former experiments, which was being too similar
to the naive model. The results also suggest that including some additional features lead to
improved performance compared to using “change” only, which is a result similar to those
achieved in Section 8.8.1. Despite the improvements, only the configuration using senti-
ment data managed performance comparable or surpassing the performance of the baseline
model. The performance is only marginally better, and it should be noted that in terms of
MAPE and DA, the naive model consistently performs better. This is an indication that
the model is not able to make use of the additional data properly, or that information in
the available data that can be utilized to improve prediction might not exist. Another pos-
sibility is that the feature subsets might consist of too many features, with some features
having positive impact while other contribute negatively. This was examined further in
Section 8.8.3. However, when examining the related plots, the former theory seems to be
the more likely one. Figure 39 depicts the LSTM model with context module predicting
the price change of the FB stock, using trading data. This figure illustrates the general
trend across all stocks and feature subsets, and shows that the LSTM with context module
exhibits issues similar to the model without.

Figure 39: LSTM with context module predicting price change on the stock FB, using
trading data

108

8.8 Additional experiment: Predicting price change

An interesting point that could be observed from the associated plots was that overall (ex-
amples found in Section B.6 in the Appendix), the predicted price change values tend to
be positive more often than not, suggesting that the mean of the actual values seems to be
slightly above 0, indicating an overall positive growth of the market over time. This holds
true with real world evidence, as over time, the market has had the tendency to increase in
value overall.

8.8.3 Examining additional data further

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

change, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.347% 3.127 52.08 51.81%

Vanilla
[160]

change, positive, negative,
neutral

1.346%
(#1)

3.123
(#1)

52.16
(#1)

51.33%
(#2)

Vanilla
[160]

change, positive_prop, neg-
ative_prop, neutral_prop

1.364%
(#2)

3.145
(#2)

52.96
(#2)

51.26%
(#3)

Vanilla
[160]

positive, negative, neutral 1.407%
(#3)

3.238
(#3)

55.2
(#4)

51.53%
(#1)

Vanilla
[160]

positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop

1.418%
(#4)

3.241
(#4)

55.17
(#3)

51.18%
(#4)

Vanilla
[160]

positive_prop, nega-
tive_prop, neutral_prop

1.486%
(#5)

3.338
(#5)

60.02
(#5)

51.0%
(#5)

Table 29: Identifying how much each feature subset contributes to the configuration that
yielded the best results in Table 28.

In order to identify more specifically which features contribute to the improved results
compared to using “change” alone, the features were divided into smaller subsets, and
trained on the LSTM model with context module. The features investigated further were
the sentiment data based on the results in Section 8.8.2, with “trendscore” and trading
data added for experimental purposes, and were at first divided into the following subsets:
[change + sentiment], [change + sentiment proportion], [sentiment], [sentiment + sentiment

109

8.8 Additional experiment: Predicting price change

proportion] and [sentiment proportion]. This was primarily to see what features contributed
to improved performance, and what features contributed negatively, but also to investigate
whether this would consistently hold true. The results are shown in Table 29, with Table
71 in the Appendix giving a more detailed view of the results.

Table 29 shows that the combination of change and sentiment scores yielded virtually as
good results as the combination of change and all sentiment related features and is the
only configuration that yielded better MAE and MSE than the naive model. These results
seem to imply that sentiment proportion features are less suitable when predicting the price
change compared to the other features, indicating that any improvements made including
sentiment data did not stem from these features. The results also suggest that examin-
ing these features further could be interesting, thus the features were again divided into
even smaller feature subsets: [change + positive], [change + negative], [change + neutral],
[change + positive + negative], [change + positive + neutral], [change + neutral + negative].
The produced results are presented in Table 30. All results from this experiment are shown
in Table 72 in the Appendix.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

change, positive, negative 1.346%
(#1)

3.126
(#1)

52.13
(#1)

51.85%
(#1)

Vanilla
[160]

change, positive 1.347%
(#2)

3.129
(#2)

52.14
(#2)

51.34%
(#3)

Vanilla
[160]

change, positive, neutral 1.349%
(#3)

3.131
(#3)

52.46
(#3)

51.61%
(#2)

Vanilla
[160]

change, negative 1.361%
(#4)

3.144
(#4)

52.95
(#5)

50.92%
(#4)

Vanilla
[160]

change, neutral 1.398%
(#6)

3.155
(#5)

52.70
(#4)

50.49%
(#5)

Vanilla
[160]

change, negative, neutral 1.367%
(#5)

3.162
(#1)

53.33
(#6)

50.09%
(#6)

Table 30: Identifying how much each feature subset contributes to the configuration that
yielded the best results in Table 29.

In Table 30, it can be observed that the “positive” feature seems to be included in all the
feature subsets that overall achieved the best performance, suggesting this feature to be

110

8.8 Additional experiment: Predicting price change

the main reason for the improvement over other feature subsets, and the reason to an im-
proved MAE and MSE compared to the baseline model. Although “positive” seems to give
metric improvements in terms of MAE and MSE, it still does not seem to be meaningful
improvements, which is emphasized by the inferior DA scores and the related plots (ex-
amples provided in Section B.6 in the Appendix) that seem to exhibit similar issues as the
previous experiments when predicting price changes. Just for experimental purposes, the
“positive” feature was combined with trendscore data and trading data. Results from these
runs are presented in Table 31 and Table 32. Results from all runs from these experiments
are present in Table 73 and Table 74, both in the Appendix. None of the runs seemed to
yield any positive results or improvements, giving indication that these features might not
be the answer to outperforming the baseline model and producing result applicable to real
world usage.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Vanilla
[160]

change, positive 1.347% 3.129 52.14 51.34%

Vanilla
[160]

change, positive, trendscore 1.351% 3.134 52.34 51.45%

Table 31: Introducing trendscore.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Vanilla
[160]

change, positive 1.347% 3.129 52.14 51.34%

Vanilla
[160]

change, positive, volume,
direction

1.349%
(#1)

3.134
(#1)

52.64
(#1)

51.1%
(#1)

Vanilla
[160]

change, positive, open,
high, low, price, volume,
direction

1.381%
(#2)

3.233
(#2)

55.79
(#2)

50.37%
(#2)

Vanilla
[160]

change, positive, open,
high, low, price

1.393%
(#3)

3.247
(#3)

55.84
(#3)

49.4%
(#3)

Table 32: Introducing trading data

111

8.8 Additional experiment: Predicting price change

8.8.4 Experimenting with feature engineering

The previous experiments displayed that the LSTM models might have issues with utilizing
the currently available features, especially when attempting to predict price changes. In an
effort to advance the performance on this task, several additional features were created. As
the “change” feature seemed to have had the most impact on this task, the newly created
features were all related to value changes in some way. These features, previously described
in Section 4.2.1, represented the change between “price” and the price related features
“open”, “high” and “low”. Additionally, the feature “trendscore_change” was created to
represent the change of search popularity between days. All results can be found in Table
75 in the Appendix, while the averaged results are presented in Table 33.

Model Features MAPE MAE MSE DA

1-step-
behind

1.342% 3.153 52.42 52.61%

Vanilla
[160]

change,
open_close_change,
high_close_change,
low_close_change

1.36%
(#1)

3.179
(#2)

55.85
(#3)

51.16%
(#1)

Vanilla
[160]

change, trendscore_change 1.375%
(#2)

3.155
(#1)

52.97
(#1)

50.36%
(#3)

Vanilla
[160]

change, open, high,
low, volume, direction,
price, open_close_change,
high_close_change,
low_close_change

1.38%
(#3)

3.186
(#3)

54.54
(#2)

50.64%
(#2)

Table 33: Using price differences between open, low and high, and close price or trendscore
change.

As can be seen from the results in Table 33, it is evident that the newly created features do
not have a positive impact on performance. The metric results are not as high as the highest
ranked configurations in previous experiments, while the plots (examples are provided in
Section B.6 in the Appendix) show little to no change, suggesting that these features did not
contribute with any useful information. A detail that is interesting from this experiment is
that “trendscore_change” had little impact on predictive performance, indicating either that
a change in popularity does not affect the price of the stock, or that representing popularity
using search popularity in the way done in this project is not the correct way of doing it.

112

8.9 Additional experiment: Predicting next price change using several time steps

Summarizing the observations

Looking through the experiments and results in this section, there is an adequate amount of
evidence demonstrating that the LSTM model has issues finding meaningful information in
the available features, making the model unable to predict the next price change accurately
or more accurate than the baseline model. As Table 34 illustrates, some configurations of
the model did outperform the baseline model in terms of MAE and MSE, although only
marginal. However, as MAPE and (especially) DA were not improved, it was clear that the
LSTM model did not perform better overall, which was highlighted by the plots showing
insignificant change compared to the plots produced by the naive model. This ultimately
meant that the LSTM model predictions were one step behind compared to the actual value.

As the LSTM model was not able to utilize available features in the current time step to
produce accurate predictions, Section 8.9 experimented with adding lagged variables to see
how this would affect the performance.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla [160]
Without con-
text

price, open, high, low, vol-
ume, direction, change

1.356% 3.128 52.38 51.95%

Vanilla [160]
With context

change, positive 1.347% 3.129 52.14 51.34%

Table 34: The selected feature sets for the models with and without context module. Ex-
tracted from Table 21 and Table 30

8.9 Additional experiment: Predicting next price change using several
time steps

Lagged variables, meaning features from earlier time steps, were introduced to see whether
this would give the necessary information to assist in price change prediction. The results
from this experiment are presented in Table 35 (see all results in Table 76 in the Appendix).
The notation of the features is changed slightly, to reflect that earlier time steps are included.
“change[0-2]” means that the “change” feature from the current time step (0), the previous
time step (1) and the time step before that again (2) is used.

113

8.9 Additional experiment: Predicting next price change using several time steps

As is observable in Table 35, introducing the lagged variables had insignificant effect on
performance. Similar to previous results, this configuration managed to achieve marginally
better MAE and MSE scores, but worse MAPE and MSE. Again, this suggests that the
model is not available to extract useful information to increase overall performance over the
baseline model. The associated plots (examples provided in Section B.7 in the Appendix)
exhibit similar issues as with previous findings, showing predictions that indicate minimal
or no improvements over the prior experiments.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

change[0-2], open[0-
2], high[0-2], low[0-2],
volume[0-2], direction[0-
2], price[0-2], positive[0-2],
negative[0-2], neutral[0-
2], positive_prop[0-
2], negative_prop[0-
2], neutral_prop[0-2],
trendscore[0-2]

1.353%
(#2)

3.126
(#1)

52.23
(#2)

51.33%
(#1)

Vanilla
[160]

change[0-2], open[0-
2], high[0-2], low[0-2],
volume[0-2], direction[0-
2], price[0-2]

1.354%
(#3)

3.135
(#2)

51.8
(#1)

50.95%
(#2)

Vanilla
[160]

change[0-2], positive[0-2] 1.35%
(#1)

3.142
(#3)

52.51
(#3)

49.86%
(#5)

Vanilla
[160]

change[0-2], positive[0-2],
negative[0-2], neutral[0-
2], positive_prop[0-
2], negative_prop[0-2],
neutral_prop[0-2]

1.363%
(#4)

3.167
(#4)

53.49
(#4)

50.61%
(#3)

Vanilla
[160]

change[0-2], trendscore[0-
2]

1.386%
(#5)

3.185
(#5)

53.66
(#5)

49.91%
(#4)

Table 35: Using several time steps

114

8.9 Additional experiment: Predicting next price change using several time steps

A quick experiment was conducted on the price predictions as well, with the results imply-
ing similar issues with that configuration, further strengthening the assumption of a lack of
useful information in the available data.

Summarizing the observations

The best result is presented in Table 36, compared against the baseline model. The results
highlight the issues that have been a common theme across all experiments, including this,
which is the fact that no configuration is able to sufficiently deviate from, and outperform,
the naive model.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla
[160]

change[0-2], open[0-
2], high[0-2], low[0-2],
volume[0-2], direction[0-
2], price[0-2], positive[0-2],
negative[0-2], neutral[0-
2], positive_prop[0-
2], negative_prop[0-
2], neutral_prop[0-2],
trendscore[0-2]

1.353%
(#2)

3.126
(#1)

52.23
(#2)

51.33%
(#1)

Table 36: Best results using several time steps, extracted from Table 35

Since all previous additions and changes to the model and configurations did not yield any
significant improvements, the subsequent experiments took a step back and focused on
simplifying the scope, in an effort to understand the root of the issues better and to locate
the source of the problem. This starts with Section 8.10, which conducts experiments on
one stock at a time.

115

8.10 Additional experiment: Predicting price change for one stock at a time

8.10 Additional experiment: Predicting price change for one stock at
a time

The scope was simplified to analyze whether the issues present in earlier experiments orig-
inated from a much lower level, or emerged from the complexity introduced due to the
model having to predict multiple stocks at the same time. The experimentation started out
with the stock AAPL (the stock of Apple), chosen simply because it was the first on the list
of stocks, with the initial results motivating extending the individual analysis to two more
stocks; FB (the stock of Facebook) and HD (the stock of Home Depot). FB was chosen to
represent the stock of another highly recognizable company with a stock often mentioned
in different media, similar to what the AAPL stock experiences, while HD was chosen to
represent a stock that does not get as much media coverage as the two other stocks. Addi-
tionally, the HD stock is traded in lower volumes compared to the two other stocks, which
reflects the position of HD in the stock market.

8.10.1 Experimenting on AAPL

Results are presented in Table 37. The rest of the results are presented in Table 77 in the
Appendix. The feature subsets are similar to the ones used in earlier experiments, with
additional runs including lagged variables.

From the results in both Table 37 and Table 77 in the Appendix, one observation is par-
ticularly interesting. The LSTM model seems to consistently be able to outperform the
baseline model in terms of DA. This is interesting since it is unprecedented in this project.
The best runs, done with “change” and “trendscore” and all features with lagged variables,
managed DA scores of 58.79% and 56.97%, respectively, which are significantly better than
the baseline model at 48.48%. Even the averaged scores on these feature subsets managed
to outperform the baseline with a noticeable margin.

116

8.10 Additional experiment: Predicting price change for one stock at a time

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.025% 1.777 5.888 48.48%
Vanilla
[160]

change 1.023%
(#1)

1.772
(#1)

5.843
(#1)

49.09%
(#6)

Vanilla
[160]

price[0-2], open[0-2],
high[0-2], low[0-2],
volume[0-2], direction[0-
2], change[0-2], positive[0-
2], negative[0-2], neutral[0-
2], positive_prop[0-
2], negative_prop[0-
2], neutral_prop[0-2],
trendscore[0-2]

1.024%
(#3)

1.774
(#2)

5.876
(#3)

54.14%
(#1)

Vanilla
[160]

change, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.024%
(#2)

1.775
(#3)

5.858
(#2)

49.9%
(#5)

Vanilla
[160]

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.031%
(#4)

1.787
(#4)

5.893
(#4)

51.11%
(#4)

Vanilla
[160]

change, trendscore 1.036%
(#5)

1.796
(#5)

5.924
(#5)

53.13%
(#2)

Vanilla
[160]

change, open, high, low,
volume, direction, price

1.044%
(#6)

1.809
(#6)

6.091
(#6)

51.31%
(#3)

Table 37: Feature search on the AAPL stock

117

8.10 Additional experiment: Predicting price change for one stock at a time

Figure 40: Predicting the next price change for the stock AAPL, using the trading data only

Even though most of the plots look similar to previous experiments, with marginal move-
ment from the mean, as exemplified in Figure 40, there were some that exhibited move-
ments indicating that the model was able to make use of the features for improved pre-
dictions. This is depicted in Figure 41, which are the plots related to using “change” and
trendscore data. Although not as large movements compared to the true value, the plots
still exhibit movements larger than previously seen. However, not all movement seems to
be in the general direction of the true value. As can be seen in Figure 41b, the predictions
seem to mainly move in the opposite direction of the actual values, which is particularly
visible around prediction 0 to 10. At other times, the model seems to be able to follow the
general trend, as illustrated in Figure 41c, where the predicted price change dips together
with the true value, and later increases and hovers around a value that looks similar to the
mean of that time frame (40 to 50). It should be noted that the predictions are not fully
accurate, which is reflected by DA scores that still are below 60%.

118

8.10 Additional experiment: Predicting price change for one stock at a time

(a) Results for the stock AAPL (b) Results zoomed in on the first 25 predictions

(c) Results zoomed in on prediction 25 to 50

Figure 41: Predicting the next price change for the stock AAPL, using “change” and trend-
score data

The results seem to imply that the LSTM model is able to utilize the additional data to
improve direction accuracy. Specifically “trendscore” seemed to have a major impact, as
this feature was present in both feature subsets that managed to achieve significant improve-
ments over using “change” alone, and even the baseline model. Additional experimentation
with using the “trendscore” feature alone was conducted to examine the extent of the per-
formance increases by this feature. The results are presented in Table 38 and in Table 77 in
the Appendix, indicating that this feature had the most impact on DA scores for the AAPL
stock with an average DA of 57.37% and a best score of 61.21%, compared to the 48.48%
of the baseline model. The changes in regression metrics scores are much lower when com-
paring to the baseline results, indicating little actual movement in value from the baseline,

119

8.10 Additional experiment: Predicting price change for one stock at a time

but this goes to show how the DA and the regression metrics can be independent of each
other, which has for the most part not been the case in previous experiments.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.025% 1.777 5.888 48.48%
Vanilla
[160]

trendscore 1.025% 1.777 5.832 57.37%

Table 38: Using only “trendscore” on the AAPL stock

To investigate this further, and see whether this tendency was present with other stocks as
well, some additional experiments were conducted, presented in the following sections.

8.10.2 Experimenting on FB

Results from experimenting with the FB stock are shown in Table 39. The results seem
to again suggest that it is possible to improve prediction when introducing certain features
or information. With the FB stock, “trendscore” did not seem to have large impact on
performance as it did with the AAPL stock, as including it did not result in any noticeable
improvements over the baseline model and using “change” alone. This seems to suggest
that different features and additional data can have varied impact on prediction, meaning
that not all stocks will see the same benefit in including “trendscore” for instance. What
seems to have positively influenced the performance the most has been sentiment data,
highlighted by the top DA result of an average of 61.82%, which improved the average
by over 4% compared to having “change” only. Using the feature “change” alone lead to
formidable results compared to earlier, resulting in measurements exceeding or rivaling the
baseline models on all metrics. Achieving consistent results like these, as can be seen in
Table 78 in the Appendix, suggests that for the FB stock, the next day price change has a
stronger relationship with the current price change than experienced with other experiments
in this project. Again, this suggests that different stocks have different features that can
assist in prediction. Another interesting point is that adding lagged variables did not seem to
improve performance, but rather decrease it noticeably, even though “change” is included.
Combining “change” with certain features seemed to also decrease the score significantly,
which seems to be due to either the noise added, because the features do not contribute any
useful information for prediction, or due to the complexity due to the additional features
added. A combination of both seems more likely when examining all the results. The
results indicate that the model struggles to find good optima due to the added features that

120

8.10 Additional experiment: Predicting price change for one stock at a time

are noise, for instance “trendscore” or other trading data, just occasionally being able to
move out of the less optimal as with the results using all features (found in Table 78 in the
Appendix), where the model reached a DA of 56.36% on one run compared to 51.52% and
53.33% on the two others. All regression scores seem to remain stable, however.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.307% 2.328 10.62 52.12%
Vanilla
[160]

change 1.288%
(#1)

2.292
(#1)

10.58
(#3)

57.17%
(#2)

Vanilla
[160]

change, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

1.288%
(#2)

2.293
(#2)

10.57
(#2)

61.82%
(#1)

Vanilla
[160]

change, trendscore 1.301%
(#4)

2.312
(#4)

10.6
(#4)

52.53%
(#5)

Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

1.298%
(#3)

2.31
(#3)

10.8
(#7)

53.13%
(#4)

Vanilla
[160]

trendscore 1.304%
(#5)

2.321
(#5)

10.47
(#1)

50.3%
(#7)

Vanilla
[160]

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

1.307%
(#6)

2.326
(#6)

10.75
(#5)

53.74%
(#3)

Vanilla
[160]

price[0-2], open[0-2],
high[0-2], low[0-2],
volume[0-2], direction[0-
2], change[0-2], positive[0-
2], negative[0-2], neutral[0-
2], positive_prop[0-
2], negative_prop[0-
2], neutral_prop[0-2],
trendscore[0-2]

1.317%
(#7)

2.342
(#7)

10.77
(#6)

50.71%
(#6)

Table 39: Feature search on the FB stock

121

8.10 Additional experiment: Predicting price change for one stock at a time

Since most regression scores remained stable, although the DA scores improved by a sig-
nificant margin, it seems like there is not a large deviation from the baseline model in terms
of predicted values, implying that there is little information in the data that can be used
to predict actual price change values. Examining the plots suggests the same. Figure 42
depicts the predicted price changes using “change” and sentiment data, generated by the
model that achieved the best results on this configuration. This figure exemplifies how the
majority of predictions looked like.

Figure 42: Predicting the next price change for the stock FB, using the “change” feature
and sentiment data

Observable in Figure 42 is that the predictions are relatively close to 0, suggesting little
useful information in the features, despite apparently having information to improve direc-
tion accuracy. In terms of regression performance, the LSTM model seems to therefore
still not perform noticeably better than the baseline model, at least not to a degree where
the regression scores can be used as a guiding tool for accurate price change predictions.
It is, however, an interesting discussion whether accurate regression scores are necessary if
the DA is relatively high. The discussion of this matter will be expanded on in Chapter 9.

122

8.10 Additional experiment: Predicting price change for one stock at a time

8.10.3 Experimenting on HD

Analysis of the HD stock is present to include analysis on a stock and company that typ-
ically does not get much media coverage, especially compared to the two other stocks,
AAPL and FB. The results are presented in Table 40 and in Table 79 in the Appendix.

Model Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 0.9482% 1.749 5.934 54.55%
Vanilla
[160]

price, open, high, low, vol-
ume, direction, change

0.9411%
(#1)

1.735
(#1)

5.924
(#2)

54.34%
(#3)

Vanilla
[160]

price[0-2], open[0-2],
high[0-2], low[0-2],
volume[0-2], direction[0-
2], change[0-2], positive[0-
2], negative[0-2], neutral[0-
2], positive_prop[0-
2], negative_prop[0-
2], neutral_prop[0-2],
trendscore[0-2]

0.9413%
(#2)

1.735
(#2)

5.92
(#1)

55.76%
(#2)

Vanilla
[160]

change 0.9429%
(#3)

1.738
(#3)

5.927
(#3)

53.94%
(#4)

Vanilla
[160]

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, nega-
tive_prop, neutral_prop,
trendscore

0.944%
(#4)

1.74
(#4)

5.972
(#4)

58.99%
(#1)

Vanilla
[160]

change, trendscore 0.9454%
(#5)

1.743
(#5)

5.978
(#5)

50.71%
(#5)

Vanilla
[160]

change, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop

0.954%
(#6)

1.761
(#6)

6.053
(#6)

49.49%
(#6)

Vanilla
[160]

trendscore 0.9595%
(#7)

1.767
(#7)

6.082
(#7)

50.71%
(#5)

Table 40: Feature search on the HD stock

123

8.10 Additional experiment: Predicting price change for one stock at a time

Similar to the two other stocks, experimenting on the HD stock also produced results
that indicated that there are possibilities for improved DA scores compared to the base-
line model. In this case, the results did not indicate that combining “change” with either
“trendscore” or sentiment data improved performance, but rather decreased them to a large
degree, and adding the additional trade data did not seem to improve the direction accu-
racy. What is interesting, however, is when all the features are combined, the DA actually
increases by some margin, suggesting that in some cases, the benefits are only present
when features are combined, which in turn implies that there are non-linear relationships
in the data that can be exploited by a model able to capture non-linear relationships. Since
all three runs with this configuration achieved noticeably better DA scores than the base-
line and most other configurations (see Table 40), this indicates that improvements can be
made with the right feature subset. As mentioned previously, the results seem to suggest
that different stocks have different relationship with the features and combination of these
features.

As with most other experiments, the results imply that in terms of regression, not much
improvement is made. Most predictions of price change are close to 0, regardless of the
improvements in DA.

Summarizing the observations

Experimenting with one stock at a time has generated results that implied it being possible
to improve prediction performance in terms of DA compared to the baseline model, and
some results that indicated some additional data to be contributing to this performance in-
crease. Although the regression metrics also saw some improvements, they were mostly
marginal, and far from being accurate enough to be used as investment guidelines. The
marginal improvements resulted in predictions that did not deviate far away from the base-
line model predictions. There were, however, some results that depicted price change pre-
dictions considerably larger than 0, as with the AAPL stock, which had not been the case in
earlier experiments. The results strengthen the assumptions that the results from the earlier
experiments were partly due to the complexity of predicting multiple stocks. Additionally,
the results seem to imply that each stock is affected by the features differently, only adding
to the complexity of predicting multiple stocks at the same time.

Even though increases in DA were achieved in these experiments, it should still be noted
that the DA scores are not considered as high or impressive in the grand scheme of things,
and have yet to be tested on the test set for proper evaluation and to confirm that the reason
is not due to the favorable circumstances not applicable elsewhere.

124

8.11 Summary and evaluation on the test set

8.11 Summary and evaluation on the test set

The previous sections have only tested the LSTM models on the validation sets, in order
to prevent peeking and unfairly optimizing performance on the test set. This section will
present the results of selected feature subsets tested on the test set, chosen based on the
observations made in the experiments. The evaluation is divided into two parts, the first part
evaluating configurations analyzing all stocks, while the second part presents the evaluation
on experiments running on some stocks individually. When deciding upon which model
out of the three possible for each configuration to test on, the model that achieved the best
results on the validation set was chosen.

8.11.1 Experiments on all stocks

Model meta Features Mean
MAPE

Mean
MAE

Mean
MSE

Mean
DA

Baseline 1.342% 3.153 52.42 52.61%
Vanilla [160]
Without context
Predicting price
Best of 13 results

price, trendscore 1.347% 3.119 51.15 53.9%

Vanilla [160]
With context
Predicting price
Best of 13 results

price, trendscore 1.343% 3.116 51.39 51.88%

Vanilla [160]
Without context
Predicting price change
Mean result

price, open, high,
low, volume, di-
rection, change

1.356% 3.128 52.38 51.95%

Vanilla [160]
With context
Predicting price change
Mean result

change, positive 1.347% 3.129 52.14 51.34%

Table 41: Most important results. Extracted from Tables 16, 18 and 34

This section starts with a brief summary of the results deemed most important, presented
in Table 41, and the selected feature configurations to be evaluated, presented in Table 42

125

8.11 Summary and evaluation on the test set

and Table 43. Only the vanilla LSTM was examined, due to the stacked LSTM showing
no potential of improving performance. The corresponding test results on the validation set
can be found in Section B.9 in the Appendix. To generate the results in this section, LSTM
models were trained from the beginning again, as not all configurations had already trained
models that could be tested on the test set. The process of training and prediction in this
part is similar to the process of the experiments conducted, and described in Chapter 6 and
Chapter 7.

Features
price
price, trendscore
price, open, high, low, volume, di-
rection, change
price, positive

Table 42: Selected feature subsets when predicting price.

Features
change
change, trendscore
price, open, high, low, volume, di-
rection, change
change, positive

Table 43: Selected feature subsets when predicting price change.

The results using the LSTM model without the context module, predicting the next price,
are presented in Table 44. Results from the corresponding model predicting price change
instead are presented in Table 45. Similar models with the context module were also tested,
one predicting price and one predicting price change, as presented in Table 46 and Table
47, respectively.

126

8.11 Summary and evaluation on the test set

Model Run Features MAPE MAE MSE DA
Baseline 1.657% 4.428 143.2 51.47%
Vanilla
[160]

1 price, trendscore 1.695% 4.578 152.1 51.72%

Vanilla
[160]

0 price, positive 1.691% 4.627 149.5 51.64%

Vanilla
[160]

1 price 1.669% 4.469 143.5 51.52%

Vanilla
[160]

0 price, open, high,
low, volume, direc-
tion, change

1.679% 4.584 148.9 53.98%

Table 44: Predicting next price without context on the test set. See all results in Table 81

Model Run Features MAPE MAE MSE DA
Baseline 1.657% 4.428 143.2 51.47%
Vanilla
[160]

1 change 1.666% 4.447 145.7 50.79%

Vanilla
[160]

2 change, positive 1.661% 4.438 143.7 51.68%

Vanilla
[160]

2 change, trendscore 1.667% 4.441 144.5 50.26%

Vanilla
[160]

2 price, open, high,
low, volume, direc-
tion, change

1.706% 4.519 151.2 51.84%

Table 45: Predicting next price change without context on the test set. See all results in
Table 83

127

8.11 Summary and evaluation on the test set

Model Run Features MAPE MAE MSE DA
Baseline 1.657% 4.428 143.2 51.47%
Vanilla
[160]

2 price, trendscore 1.664% 4.457 142.4 52.77%

Vanilla
[160]

2 price, positive 1.668% 4.461 142.5 50.79%

Vanilla
[160]

2 price 1.662% 4.451 143.3 50.18%

Vanilla
[160]

0 price, open, high,
low, volume, direc-
tion, change

1.694% 4.621 156.9 52.53%

Table 46: Predicting next price using context on the test set. See all results in Table 85

Model Run Features MAPE MAE MSE DA
Baseline 1.657% 4.428 143.2 51.47%
Vanilla
[160]

2 change, positive 1.668% 4.452 144.0 50.3%

Vanilla
[160]

2 change, trendscore 1.672% 4.465 145.0 50.71%

Vanilla
[160]

0 change 1.668% 4.458 145.7 50.22%

Vanilla
[160]

1 price, open, high,
low, volume, direc-
tion, change

1.68% 4.504 149.0 50.14%

Table 47: Predicting next price change using context on the test set. See all results in
Table 87

Overall, the performance is comparable to the baseline model, if not slightly worse, which
was not unexpected based on the performance on the validation set. There are some cases
where a LSTM configuration is able to marginally beat the baseline model in terms of
MSE and DA, but none are able to achieve the same or outperform the naive model in
terms of MAPE. Additionally, only one model was able to achieve better MSE and DA at
the same time (the LSTM with context module predicting next price with features “price”
and “trendscore”), resulting in the baseline model outperforming the LSTM model in most

128

8.11 Summary and evaluation on the test set

metrics in most cases. As the results were similar to the results on the validation set, the
same points of discussion are still viable with these results. These points will be deliberated
further in Chapter 9.

8.11.2 Experiments on individual stocks

The results deemed as the most important from the experiments with stocks individually
are presented in Table 48. The results are from the run that achieved the best performance
on the validation set. All results are from experimenting with predicting price change.
As each stock had different responses to different feature subsets, each stock had different
feature subsets that were tested. Each stock was tested on two different feature subsets, also
shown in Table 48. Since the part of the experiments analyzing stocks individually only
investigated using a model predicting price change, only configuration on price change was
tested upon. All results on the test set can be found in Section B.9 in the Appendix.

Model meta Features MAPE MAE MSE DA

Baseline AAPL 1.025% 1.777 5.888 48.48%
Vanilla [160]
On AAPL
Run 0

price[0-2], open[0-2], high[0-
2], low[0-2], volume[0-2],
direction[0-2], change[0-2],
positive[0-2], negative[0-2],
neutral[0-2], positive_prop[0-
2], negative_prop[0-
2], neutral_prop[0-2],
trendscore[0-2]

1.014% 1.756 5.808 56.97%

Vanilla[160]
On AAPL
Run 1

trendscore 1.005% 1.743 5.743 61.21%

Baseline FB 1.307% 2.328 10.62 52.12%
Vanilla[160]
On FB
Run 1

change 1.287% 2.292 10.58 57.58%

Vanilla[160]
On FB
Run 1

change, positive, negative,
neutral, positive_prop, nega-
tive_prop, neutral_prop

1.287% 2.29 10.56 64.24%

Baseline HD 0.9482% 1.749 5.934 54.55%

129

8.11 Summary and evaluation on the test set

Vanilla[160]
On HD
Run 1

price[0-2], open[0-2], high[0-
2], low[0-2], volume[0-2],
direction[0-2], change[0-2],
positive[0-2], negative[0-2],
neutral[0-2], positive_prop[0-
2], negative_prop[0-
2], neutral_prop[0-2],
trendscore[0-2]

0.9384% 1.73 5.882 57.58%

Vanilla[160]
On HD
Run 0

price, open, high, low,
volume, direction, change,
positive, negative, neutral,
positive_prop, negative_prop,
neutral_prop, trendscore

0.9423% 1.737 5.951 59.39%

Table 48: Most important results related to predicting prices for individual stocks. Ex-
tracted from Tables 77, 78 and 79

Table 49 and Table 88 in the Appendix show the results on the AAPL stock. While the
LSTM model achieved results that were better in terms of all metrics compared to the
baseline model, the same model achieved significantly worse performance when tested on
the test set. The most evident difference is the decrease in DA scores for the configuration
with lagged variables on all features. That specific configuration achieved a best DA score
that was over 8% higher than the baseline, while having the same metric 16% lower on the
actual test set. The baseline model outperformed this configuration on all metrics as well.
The configuration using “trendscore” also achieved meager results compared to what the
results on the validation set were indicative of. These results suggest that an improvement
on one specific time period will not necessarily translate to an improvement on another
time period.

130

8.11 Summary and evaluation on the test set

Model Run Features MAPE MAE MSE DA
Baseline 1.486% 2.798 15.46 56.36%
Vanilla
[160]

0 price[0-2], open[0-
2], high[0-2],
low[0-2], volume[0-
2], direction[0-
2], change[0-2],
positive[0-2],
negative[0-2],
neutral[0-2],
positive_prop[0-2],
negative_prop[0-2],
neutral_prop[0-2],
trendscore[0-2]

1.491% 2.813 15.56 42.42%

Vanilla
[160]

1 trendscore 1.488% 2.798 15.76 54.55%

Table 49: Predicting next price change on the test set for AAPL stock

Results from testing on the FB stock are depicted in Table 50 and Table 89 in the Appendix,
showing another case of performance that does not compare to what the results on the
validation set suggested. The model using “change” and sentiment data as features did,
however, achieve results that managed to outperform the baseline model on all metrics,
just by a lower margin compared to testing on the validation set. Again, this suggests that
performance on one time period does not automatically lead to similar performance on
another time period.

Model Run Features MAPE MAE MSE DA
Baseline 1.705% 2.675 21.26 48.48%
Vanilla
[160]

1 change 1.709% 2.684 21.29 52.73%

Vanilla
[160]

1 change, positive,
negative, neutral,
positive_prop,
negative_prop,
neutral_prop

1.697% 2.664 21.05 52.73%

Table 50: Predicting next price change on the test set for FB stock

131

8.11 Summary and evaluation on the test set

The results on the HD stock, presented in Table 51 and Table 90 in the Appendix, seem
to suggest the same points that could be observed from the results of the two previous
stocks. The HD stock seemed to produce results similar to the FB stock, as results on both
stocks did not show nearly as good results as the validation set implied, but still managed
to outperform the baseline model marginally on most metrics (with the model using all
features).

Model Run Features MAPE MAE MSE DA
Baseline 0.977% 1.802 6.176 47.88%
Vanilla
[160]

1 price[0-2], open[0-
2], high[0-2],
low[0-2], volume[0-
2], direction[0-
2], change[0-2],
positive[0-2],
negative[0-2],
neutral[0-2],
positive_prop[0-2],
negative_prop[0-2],
neutral_prop[0-2],
trendscore[0-2]

0.9873% 1.822 6.320 48.48%

Vanilla
[160]

0 price, open, high,
low, volume, direc-
tion, change, posi-
tive, negative, neu-
tral, positive_prop,
negative_prop, neu-
tral_prop, trendscore

0.9761% 1.801 6.234 49.69%

Table 51: Predicting next price change on the test set for HD stock

Overall, the predictions did not seem to deviate from the baseline model predictions sig-
nificantly, even less than when predicting on the validation set. However, some evidence
suggest that marginal improvements can still be made, as can be seen in both the FB results
and the HD results. As for the reasons to why the performance differences were so no-
ticeable, the following two seem possible: the first being that features have different effect
on different time periods, meaning that a feature being effective on one time period is not
as effective on a different time period, the second being that the impressive performance
on the validation set derived from the fact that the models are basing the early stopping

132

8.11 Summary and evaluation on the test set

on testing on the validation set, resulting in the performance being more optimized on the
validation set, thus making it not applicable on the test set. The discussion of these points
will be elaborated further in Chapter 9.

133

9 Discussion

This chapter discusses the findings and analysis done in Section 8, highlighting and elab-
orating on these further. Additionally, the work and results are discussed in relation to
the research questions presented in Section 1. The research questions that influence the
discussion in this chapter, as well as the project as a whole, are:

I) Are there some patterns in the trading data, sentiment data and search popu-
larity data gathered in this project that can facilitate price prediction?

II) Will a model based on LSTMs outperform the baseline models in predicting the
next day prices of stocks?

III) Will introducing a context module improve prediction?

IV) Can one of the models with configurable parameters in this project outperform
the baseline models in predicting stock prices, using the same set of parameters
for every stock in this project?

9.1 Using different data to improve prediction

To answer research question I), experimental investigations to analyze how different input
features contributed to the prediction performance were conducted. The results provided
insights and observations that not only answer research question I), but also provide points
for further investigation.

Starting with the initial data analysis, it was evident that only those features related to
price, such as “open”, “high” and “low”, exhibited a linear relationship with the price.
A linear model, exemplified by the baseline models, is unable to capture any non-linear
relationships that might exist in the data. This became evident when experimenting with
the baseline models, specifically the linear regression model and ridge regression model.
The difference between the simple 1-step-behind (naive) model and these aforementioned
models is that they take features other than price into consideration when building a model.
Results have shown that the 1-step-behind model performs better compared to the other
baseline models in terms of the evaluation metrics, suggesting that models that can not
capture non-linear relationships in the data are not suitable for this task. This is due to
these models being forced to take into consideration features that essentially are regarded
as noise for them, leading to worse performance. The initial results from the baseline
models indicate that there are little or no linear relationships in the trading data (except for
price related data), sentiment data and search popularity data utilized in this project that
can aid in price prediction. Experimenting with the different values for the α parameter

134

9.1 Using different data to improve prediction

in the ridge regression model also suggested this, where a larger value for α lead to worse
performance, implying that the model does not gain from increasing the weighting of the
other features.

It should be noted that the ridge regression results discussed above are with the same value
for α across all stocks. Further experimenting implied that having an individual α for each
stock could improve performance compared to the 1-step-behind model. With the limited
experimenting in this part of the project, there are no guarantees that this will hold for all
stocks, or across all timelines, and could be due to optimizing on the data tested upon. A
simple check suggested this assumption to hold true. When applying the same α value that
achieved optimized performance for the ridge regression model in Table 11 on the another
time frame from the AAPL stock (using the first 80% of the data as training, the following
10% for testing, and leaving the rest out), the performance was worse compared to the
simple 1-step-behind model. This indicates that the performance increases that models
such as linear regression and ridge regression achieve by using additional data are only
circumstantial, and not the general truth.

Which leads to the question of whether there are non-linear relationships in the data that
can be recognized and utilized to assist in prediction performance. LSTM models are
example of models that can capture such non-linear relationships, which is why several
configurations have been experimented with in this project. Looking at how these have
performed during the experiments reveal some interesting points of discussion.

The results from when predicting the next day price showed an overwhelming indication
of the model not being improved with the included data. Results during experiments
suggested that some improvements with regards to MAE, MSE and DA could be made;
however, these were marginal and are most likely insignificant in the grand scheme of
things. The naive model seemed to consistently outperform the LSTM models in terms
of MAPE, and did overall perform better compared to most feature subset configurations.
There were some additional data features that in various cases indicated improvements over
using “price” alone, such as the configuration including “trendscore”.

The results where “trendscore” showed potential in improving performance was an inter-
esting case, as experimentation earlier with the ridge regression model suggested that the
feature negatively impacted performance rather than improving it. These results seemed to
suggest that the LSTM model was able to capture a weak link between “trendscore” to the
next day price, when evaluating on the validation set. However, applying the same con-
figuration on the test set did not produce results that indicated entirely the same. With the
LSTM model without context module, results implied that including “trendscore” resulted
in noticeable decrease in performance in terms of regression metrics, with a marginal im-
proved direction accuracy compared to using “price” alone, resulting in an overall worse
performance. What seems to be the case is that the models arrived on a set of weights that

135

9.1 Using different data to improve prediction

worked well with using “trendscore” on the validation set, that were not applicable or not
as effective on the test set. Similar occurrences were present with the evaluation on the
individual stocks, which showed in several cases that additional features were less effective
or negatively impacted performance on the test set even though they increased performance
on the validation set. Continuation of this point of discussion is further below.

The same can be said of combining “price” with other features, such as “positive” and
trading data, where these configurations resulted in worse regression metrics. Marginal
improvements did occur with regards to DA using “positive”, while a more significant im-
provement was achieved using trading data, suggesting that additional data can give small
improvements in direction accuracy when included. When taking the validation set results
into consideration, however, things become less clear, as the same feature subsets that im-
prove DA scores do not consistently exhibit this behavior. Overall, including additional
data seemed to not assist in better regression scores, but rather decrease performance. This
is likely due to the additional data containing little information that can aid in this task,
instead introducing more noise and complexity, ultimately leading to worse performance.
With regards to DA, adding additional data does show some improvements, but not consis-
tently across time frames, suggesting that this increase is not applicable in every situation of
every time frame. This is not desirable, at least not when the signs of when this works and
does not work are unclear. Additionally, the improvements are insignificant in the grand
scheme, and would probably not have yielded any financial gains over time.

The LSTM model with context module produced results suggesting tendencies similar to
the LSTM model without context module. Generally, the LSTM with context showed
marginal improvements using specific additional data, such as trend data, when evaluat-
ing on the validation set compared to not using it. The same improvements were not
reflected on the evaluation on the test set to the same degree, with “price” alone achiev-
ing the best performance in terms of MAPE and MAE. The LSTM with context module
did seem to achieve better performance with regards to MSE and DA, both when adding
“trendscore” and when adding “positive”, showing that limited improvements can be made.
These improvements are so small, however, that it will make little difference from a prac-
tical standpoint. Combined with the inconsistencies with achieving better results with the
additional data, the LSTM model with context module predicting price did not produce
results that convincingly showed that additional data could improve performance, similar
to the model without context module. Plots seemed to also support this, as the majority
of plots generated deviated little from the plots generated when having “price” as the only
feature (examples of plots can be found in Section C.1 in the Appendix).

Changing the configuration to predicting the next day price change instead of price seemed
to reveal further insights on trying to improve prediction with the additional data. Evalu-
ating on the validation set suggested small improvements could be made with additional

136

9.1 Using different data to improve prediction

trading data on the model without context, and with sentiment data on the model with con-
text module. Examining the results on the test set did again show how inconsistent the
improvements could be. While the results with the model without context on the valida-
tion set using trading data had the overall highest score, the same configuration actually
achieved a noticeable worse performance on the test set of the selected feature subsets in
terms of regression metrics. Using “positive” on the test set with both with and without
context module did seem to give small improvements, but again, this was not enough to
convincingly conclude that adding this feature will help in predicting the next day price
change. The small improvements and changes to the predictions indicate that the models
are not able to properly utilize information in the available data to make accurate predic-
tions. Most predictions were values close to 0, illustrating the challenges the models faced
translating the data into price change predictions. What seems to be the reason for these
results is the combination of weak signals in the available data together with the complex-
ity of the configuration. Since multiple stocks are being predicted at the same time, it is
difficult to find weights that work well on all stocks. This is illustrated by the individual
results that are inconsistent. Table 52 depicts on example of this, where the results on the
AMD stock showed widely different scores, especially noticeable with the DA with almost
a 5% difference. Even though the configurations are exactly the same, the results differ by
a noticeable margin, indicating the model’s incapability of achieving stable results when
predicting all of the stocks at the same time.

Model Run Features MAPE MAE MSE DA
Vanilla
[160]

0 price, open, high,
low, volume, direc-
tion, change, posi-
tive, negative, neu-
tral, positive_prop,
negative_prop, neu-
tral_prop, trendscore

2.258% 0.273 0.130 50.30%

Vanilla
[160]

1 price, open, high,
low, volume, direc-
tion, change, posi-
tive, negative, neu-
tral, positive_prop,
negative_prop, neu-
tral_prop, trendscore

2.471% 0.301 0.148 45.45%

Table 52: Inconsistent results on the AMD stock

137

9.1 Using different data to improve prediction

Moving to experimenting with one stock at a time gave some indication of how the com-
plexity affected the results negatively, and revealed one additional issue with processing
all stocks simultaneously. When processing one stock only, results seemed to be more sta-
ble, and improvements were experienced on the stock analyzed, at least during evaluation
on the validation set. What seemed to be the case was that each stock was affected dif-
ferently by different features. For instance, the AAPL stock seemed to react positively to
“trendscore”, while the FB stock experienced the opposite since the performance decreased
compared to using “change” as the only feature. Improving performance seems therefore
to require that each stock is examined separately, as the available data do not have informa-
tion that work across all stocks. A theory to what the causes this is that since the additional
data used are mostly data related to public opinion (sentiment and trend/popularity), and
stocks have different reactions to what the public opinion is on the particular stock or the
particular company. Take AAPL as an example, that often experiences scrutiny and skepti-
cism among the public, somewhat due to the size and market control the company inherits.
Investors might not react as strongly to negative sentiments on this stock, as negative sen-
timent might be business as usual and that it has been observed over time that the company
has an extraordinary loyal user base that would not change over to the competition easily.
Additionally, the data only show some simple quantitative measures, such as with senti-
ment where only the amount of each category is registered, and do not contain details on
what kind of events causes the different sentiment amounts. A more detailed categorization
of sentiments, as done in the works of Bollen, Mao & Zeng (2011) (who categorized into
different moods such as calm, alert, kind and happy), might therefore prove more useful on
this task.

The results did, however, change during evaluation on the test set. These results revealed
one more possible reason to why improving prediction using additional data is so chal-
lenging. Even though results on the validation set seemed promising, results on the test
set indicated that such promising results do not necessarily carry over and are applicable
across all time frames. With the AAPL stock, for instance, “trendscore” showed potential
in improving direction accuracy of the predictions on the validation data, where the feature
alone could result in over 8% increase in DA compared to only using “change”. Combining
“trendscore” and “change”, however, decreased the DA with 4% compared to using “trend-
score” only, suggesting “change” to not be a positive contributor. The configuration using
lagged variables did also display improved performance over using “change” alone. This
configuration managed to outperform the 1-step-behind model, which only had informa-
tion on the current price for prediction, on all metrics, while the configuration using only
“trendscore” showed significant improvements with regards to DA. However, none of the
models managed to outperform the 1-step-behind model on any metrics during prediction
on the test set, with the configuration utilizing lagged variables achieving a DA score of
almost 14% below the 1-step-behind model. It should be mentioned that the best model

138

9.2 Comparing of the LSTM models to the baseline models

using “change” as the only feature only managed 50.90% DA (a result close to random
guessing), meaning that “trendscore” still did outperform this configuration in terms of
DA. All regression metrics were similar or differed by a small enough margin to be consid-
ered insignificant. However, the configuration using lagged variables still performed much
worse with regards to DA, illustrating the challenges with prediction across different time
frames. Reasons for this might be that different time frames can have different factors that
are effective in performance improvements. One time frame can have next day prices that
are heavily correlated with the previous prices and trend information, for instance, while
another might not exhibit the same properties. This is also backed up by the non-stationary
behavior which seems to be the case with stock prices, based on the initial data analy-
sis from Section 4.3, indicating, among other things, that the mean of one time frame is
different than the mean of another.

Another factor causing the less promising results on the test set can be the model deciding
early stopping point based on the validation set, meaning that the results on the validation
set are more optimized. The weights used to predict on the validation set are not as effective
on the test set, which might be due to the issues with different time frames having different
properties, as discussed in the previous paragraph, but can also be due to overfitting on the
validation set, meaning that weights are tuned to be overly effective on the validation time
frame while worse at other time frames. This will be further elaborated in Section 9.5.2.

To summarize, it seems that the general models predicting all stocks at the same time, both
predicting price and price change, do not benefit much from the additional data. This seems
to be due to the complexity such a configuration adds, and that different stocks react differ-
ently to the features. With the configuration analyzing each stock individually, additional
data seem to in some cases improve prediction, at least in terms of DA, noticeably. The
improvements are, however, not guaranteed to be as effective, or effective at all, on other
time frames. It should be noted that the performance, improved or not, is far from being
appropriate for practical usage as of yet.

That the additional data do not yield any significant improvements compared to using
“price” or “change” only does not necessarily mean that none of the gathered data are
helpful at all in terms of prediction. Section 9.2 mainly discusses research question II), but
contains elements and insights related to research question I), such as comparisons against
a random model and a model consistently lagging one step behind.

9.2 Comparing of the LSTM models to the baseline models

Research question II) was introduced to give insight into how well the LSTM models per-
formed compared to less complex models. In order to answer this question, the focus was

139

9.2 Comparing of the LSTM models to the baseline models

on the test set as there was no peeking done on this set. It is therefore as much as practically
possible stripped of any bias, whereas the validation set results could have been affected
by the writers’ own biases as well as the bias related to early stopping. As the naive 1-
step behind model generally was superior to the other baseline models, the LSTMs will be
compared to this model.

Related to the general model, optimising on all stocks simultaneously, there can be seen
some improvements over the naive model in the metrics MSE and DA on the test set. The
best MSE observed on the test set was 142.4 while the MSE related to the naive model was
143.2. The best DA observed was 53.98% in comparison to the baseline DA of 51.3%. In
order to examine the statistical significance of the results, the random model was run 1000
times. Each next price prediction was the current price with a random value in the range
[-0.005, 0.005] which was added before normalization in order to scale the prediction to fit
the individual stocks and make the results comparable in the other metrics than DA as well.
In order to decide whether a model is statistically significant, the results are compared to
the top percentile of random models that yielded better results.

The DA results related to the random model, seen in Table 91 (Page 227) shows that the best
DA found was 52.96%. This means that the best DA in relation to the LSTMs is statistically
significant, as it has less than 0.1% chance of happening by chance if predictions have a
50% chance of being positive and 50% chance of being negative. Other DAs that were
found to be statistically significant were related to predicting next price using context, seen
in Table 46 (Page 128), where price and trendscore yielded 52.77%, which is in the top
0.3% percentile of the random models and where all current trading data yielded 52.53%,
in the top 0.6% percentile.

The MSE results related to the random model, seen in Table 92 (Page 228) tell a different
story where 10.8% of the results are superior to the best MSE found by the LSTMs on
the test set. This shows that the best MSE results that the LSTM-models produced are not
statistically significant.

Related to the model that optimizes on individual stocks, some observations are relevant.
Related to the Facebook stock, the LSTM reached better metric scores in all metrics in rela-
tion to the naive model. 21.3% of the random models had a superior DA to the best LSTM
model, as seen in Table 93 (Page 230) rendering the improvement statistically insignificant.
11.6% of the random models had a better MAPE than the best related to LSTM, seen in
Table 96 (Page 233), 11.3% in relation to MAE, seen in Table 95 (Page 232) and 10.5%
in relation to MSE, seen in Table 94 (Page 231). None of the LSTM results in relation to
the Facebook stock were statistically significant. The same analysis was done on the Home
Depot stock, leading to an equivalent conclusion.

As the only result that was found to be statistically significant is related to the DA of the

140

9.2 Comparing of the LSTM models to the baseline models

general model; the focus should therefore be on this result. One interesting observation
is that the same LSTM yielded worse results on the validation data set, 51.03%, seen in
Table 80 (Page 210) compared to the baseline DA of 51.47%. This could be an indicator
that the random model was not a good reference model to measure statistical significance.
This could be because the random model decided direction with a probability of 50% while
the true price moves upwards 51.47% of the time. A random model where the prediction
has a 51.47% chance of predicting the next price to be higher than the current and 48.53%
chance of predicting lower could therefore be a better reference model when measuring
statistical significance. Seen in Table 97 (Page 234), the results show that the best result of
1000 runs for this random model is 53.37%, a little higher than the worst of the three runs of
the LSTM configuration, 53.09%. This random model did not generally yield much better
results than the other, and the other DAs that were found to be significant in relation to the
first model were also found to be significant when compared to this random model. This
is another indication that reaching 53.98% is highly unlikely to happen by chance. The
evidence points to another reason for the relatively poor results on the validation set; that
the model learned something significant that was not expressed on the validation set that
emerged only on the test set. One evidence that points to this hypothesis is that the variance
of the test set is generally closer to the training set than the variance of the validation set
is. Four stocks have a validation set variance closer to the training set variance compared
to the test set and training set, while 11 stocks have a test set variance closer to the training
set variance compared to the validation set and training set. The variance is shown in Table
53. It seems that the stocks generally behave more similar when comparing the training set
to the test set than when comparing the training set to the validation set.

Stock Training set Validation set Test set
AAPL 728.4 69.89 649.9
AMD 13.69 3.076 19.16
AMZN 6.111e+04 3.68e+04 2.341e+04
BIDU 1.738e+03 188.9 990.6
DIS 413.8 14.48 9.469
FB 1.866e+03 105.8 416.3
HD 945.5 100.9 166.2
INTC 30.63 16.19 5.25
KO 6.106 2.563 2.609
NFLX 2.244e+03 4.485e+03 1.579e+03
NVDA 2.213e+03 425.9 2.9e+03
PFE 9.357 0.5578 4.19
QCOM 78.01 27.76 49.58

141

9.3 Including context module

TSLA 7.625e+03 568.5 787.9
WMT 36.19 52.46 18.4

Table 53: Variance of the different stock in the different data partitions. Bold text signifies
that the variance is the closest one to the training set variance for the same stock.

From this, the evidence points to the conclusion that there is an LSTM configuration that is
superior to the naive model in terms of DA while there is no evidence that points to any of
the LSTM configurations being significantly superior in the other metrics.

9.3 Including context module

From Section 9.2 it was found that both the LSTM with and without context, predicting
next price yielded DAs that were significantly better than the naive model, seen in Table 44
(Page 127) and Table 46 (Page 128). The context model that was found to generally be
the best one was the model using price and trendscore, predicting next price. There were
no other models that were found to be significantly better than this one in terms of MAPE,
MAE or MSE. This could be seen as an indicator that including the context module im-
proves the model. A counter argument is that none of the regression metrics related to
this model were found to be significantly better than the naive model in Section 9.2. One
possible explanation is that the data do not contain information that can be used to create
an LSTM based model that is significantly better than the naive model in these metrics.
This explanation is very hard to falsify as the number of possible LSTM configurations is
very large. Another explanation could be that there are some predictive patterns in the data,
but the context model in itself does not contribute significantly in order to express these
patterns.

142

9.3 Including context module

(a) Results for the AAPL stock (b) Results for the AAPL stock with context

(c) Results for the AMD stock (d) Results for the AMD stock with context

(e) Results for the AMZN stock (f) Results for the AMZN stock with context

Figure 43: The first 25 time steps on the training set

143

9.3 Including context module

(a) Results for the AAPL stock (b) Results for the AAPL stock with context

(c) Results for the AMD stock (d) Results for the AMD stock with context

(e) Results for the AMZN stock (f) Results for the AMZN stock with context

Figure 44: The first 25 time steps on the validation set

144

9.4 Using the same parameters across all stocks

Figure 43 shows the first 25 time steps on the training data for an LSTM model using price
and trendscore to predict the next price. The plots on the left are the results from a model
without context while the results on the rights are from a model with context. Here, one
effect of the context module is clear; In all of the plots related to the LSTM using context,
the first predicted price is virtually completely accurate in relation to the true price. This
means that the context module is trained to transform the stock identifier to a state that
makes the LSTM capable of accurately predicting the first price. It also seems that the
context module is superior when predicting the AMD stock until time step 14. When
observing the AMZN stock, the context model seems to be superior until time step 10, and
when observing the AAPL stock, the context model seems to only be superior until time
step 2. It seems that the context module only contained information that could be utilized
in the first time steps. This is augmented by the results in Figure 44 showing that this trend
did not continue on to the validation data set. As the validation data set started at the time
step 1328 there was no significant relationship between the context modules initial state
and the predictions in the validation data set. There was no significant relationship found
between the context module and the test set as well.

9.4 Using the same parameters across all stocks

Motivated by the investigation on whether stocks share similar characteristics that could
be exploited to create a flexible and scalable stock prediction model, research question
IV) was introduced. Additionally, this restricted the scope of this project into something
manageable in the allocated time.

While the idea seemed interesting, and the LSTM configurations predicting all stocks ac-
tually achieved one result in terms of DA that was a statistically significant improvement,
overall, this way of configuring the models did not produce results that were sufficient in
the grand scheme of things. The main reasons for the performance to be unconvincing, at
least in terms of actual usage, were the inconsistencies. The models predicting all stocks
at the same time showed indication of struggling with keeping the results stable, since
the individual results of each stock could vary significantly between runs, even when the
configuration was entirely the same, as discussed in Section 9.1. Additionally, the config-
urations that achieved statistically significant improvements in terms of DA on the test set
did not achieve the same on the validation set, showing another kind of inconsistency that
is present. Overall, making the model more general seemed to give insufficient improve-
ments when the cost of doing this, such as the increased complexity and time requirements,
is considered. Considering that the general model did not manage to improve significantly
on the regression metrics at all only adds reasons to this belief.

Experimentation with the ridge regression model suggested something similar, where the

145

9.5 Additional points

model was unable to use a universal α value on all stocks, producing results that were worse
than the results of the naive model. Experimenting with different values for α did not give
indication of improvements, only highlighting the challenges of attempting this.

The configurations examining each stock individually were not without flaws either. The
ridge regression model with optimized α on the AAPL stock achieved improved perfor-
mance over the naive model on the validation set, but failed to achieve the same on the test
set, again showing inconsistent results across different time frames. The LSTM model ex-
perienced similar results, and while most of the results on the test set were improvements
over the naive model, none were statistically significant over a random guessing model,
which was shown in Section 9.2.

What seems to be the main reason causing the issues mentioned above is that the models are
not able to extract information in the data that facilitates sufficiently accurate predictions
that are consistent across stocks and time frames. Without data containing such informa-
tion, configuring parameters, whether for a general model or a specialized model, does not
seem viable as a means to improve performance.

9.5 Additional points

9.5.1 Different variance

There were found some evidence that indicated that there was a lack of generalization
related to the general model. From Sections 9.1 to 9.4 it was found that the general model
did not generalize well over different time frames. Many of the models that yielded good
results on the validation set did poorly on the test set. This should be somewhat expected,
as early stopping was used on the validation set. What was more unexpected was that the
only model that was significantly better than the random models in relation to DA on the
test set was worse than the naive model on the validation set.

In addition to the generalization issues, the problem of accurately predicting prices seemed
to be very hard, as shown by the lack of convincing results. One aspect that can explain the
difficulty of the problem is the varying variances across different stocks and different time
frames, presented in Table 54.

Stock Training set Validation set Test set
AAPL 0.0568 0.005449 0.05067
AMD 0.07422 0.01668 0.1039
AMZN 0.07711 0.04644 0.02954

146

9.5 Additional points

BIDU 0.04855 0.005274 0.02766
DIS 0.07429 0.002601 0.0017
FB 0.06861 0.00389 0.0153
HD 0.06995 0.007464 0.0123
INTC 0.03981 0.02105 0.006823
KO 0.05121 0.0215 0.02188
NFLX 0.05901 0.118 0.04154
NVDA 0.05771 0.01111 0.07563
PFE 0.04892 0.002916 0.0219
QCOM 0.05225 0.01859 0.03321
TSLA 0.0592 0.004413 0.006116
WMT 0.03121 0.04524 0.01587
Variance of the vari-
ances

0.0001635 0.0008432 0.0007252

Table 54: Variance of the normalized prices. The bolded values are either the high-
est or lowest value in that column. The values in the bottom row are the vari-
ance of all values above. E.g. the value 0.0001635 related to the training set is
var(0.0568, 0.07422, ..., 0.03121)

Table 54 shows that the variance in price is relatively stable in the training set across all
stocks, the highest variance here being 0.07711 and the lowest being 0.03121. When look-
ing at the validation set and the test set the variances vary much more, as seen in the bottom
row. This can explain at least partly the difficulties associated with creating a general model
that works for all stocks. As the models that predicted prices individually also did not yield
results that were significantly better than the random guessing model, the difficulties seem
to be more because of varying variance across different time frames and less because of the
varying variances across the different stocks. As varying variances across different stocks
very well could be an issue, although not as clearly as varying variances between time
frames, it is recommended that further work should focus on single stocks or single stock
indexes instead of multiple.

9.5.2 Overfitting on the data

One factor that should not be overlooked is the way LSTM is configured in this project
does not make the models entirely resistant to overfitting. As were suggested from the

147

9.5 Additional points

results on the individual analysis of stocks, where the results on the validation set were
noticeably better than the results on the test set. A reason for this could be that since
the validation set is utilized to decide the early stopping point, a model could be more
optimized at predicting the validation set compared to predicting another time frame, such
as the test set. Essentially, the model is overfitted on the validation set. Another factor
could be that since the validation set directly follows the training set in terms of time, these
sets have more in common compared to the training set and the test set, making it easier
to predict more accurately at the validation set than the test set. However, this was shown
to not be the case in Section 9.5.1, at least not in terms of variance, as the variance in the
test set was found to be more similar to the variance in the training set compared to the
validation set. Another factor could be related to the lack of utilization of dropout, making
overfitting more likely, especially when predicting one stock at a time due to the complexity
being much lower compared to predicting all stocks at the same time.

9.5.3 Issues with lagging behind the actual values

Examining the plots together with the results, it became evident that the all models suffered
from the same problem; not being able to deviate away from the current price, essentially
meaning that the models did not perform far from what the 1-step-behind model was able
to achieve. The issue with a model possessing tendencies with constantly lagging behind
is that although the regression errors are relatively low, the direction accuracy of the pre-
dictions are rarely good enough for real life application. For instance, the naive model
consistently achieves around 50% DA, too close to what have been observed to be the DA
of random guessing. In short, such a model gives insufficient aids to investment strategies.
The reason for this challenge with lagging behind seems to originate from the price direc-
tion between the current day and the day before having a low correlation with the price
direction between the current day and the next day, suggesting the market to be extremely
efficient. A model that is excessively dependent on using the current price as a basis for the
predictions, and is not able to extract information from other data sources can therefore not
achieve adequate performance.

9.5.4 Observations related to the evaluation method used

Table 55 shows the results of the naive model when predicting the next price. The top row
has mainly been used in this thesis to evaluate the models, which is the averaged score of
that particular column. Related to the other rows, one important observation is that there
are often large disparities within the same metric for different stocks. This is especially
apparent when observing the MSE results. Here, AMZN has the largest value of 1782 while

148

9.5 Additional points

KO has the lowest value of 0.2959. The average MSE is much more affected by relative
changes related to the AMZN stock than the KO stock. If the MSE related to the AMZN
stock doubles, the average MSE will increase by 1782/15 = 118.8 while if the MSE related
to the KO stock doubles, the average MSE will only increase by 0.2959/15 = 0.01973. The
stocks that generally have higher prices will overshadow stocks that have low prices; there
is clearly a positive correlation between MSE and the max price. If one only looks at the
average MSE in order to evaluate the model, it is possible that multiple stocks that do very
well are overlooked, simply because of their low stock price. This also applies to MAE,
although to a lesser degree. The same correlation does not seem to exist between the max
price and MAPE, but even though MAPE is not correlated to the max price, MAPE still
varies, from AMD that has 3.377% to KO that has 0.7667%. This again means that KO
might be left in the shadow when focusing on the average MAPE.

Stock MAPE MAE MSE DA Max price
All 1.657% 4.428 143.2 51.47%
AAPL 1.486% 2.798 15.46 56.36% 232.07
AMD 3.377% 0.7443 1.113 53.33% 32.72
AMZN 1.786% 30.2 1782 54.55% 2039.51
BIDU 1.747% 3.436 19.19 43.03% 271.45
DIS 0.8984% 1.005 1.963 56.36% 118.9
FB 1.705% 2.675 21.26 48.48% 217.5
HD 0.9772% 1.802 6.176 47.88% 213.85
INTC 1.479% 0.7026 0.9314 51.52% 53.94
KO 0.7668% 0.3594 0.2959 54.55% 50.51
NFLX 2.302% 7.457 94.67 47.27% 418.97
NVDA 2.498% 4.735 47.16 51.52% 289.36
PFE 1.014% 0.4307 0.3119 54.55% 46.23
QCOM 1.187% 0.7195 1.133 54.55% 75.09
TSLA 2.728% 8.501 154.9 46.67% 379.57
WMT 0.9004% 0.8587 1.587 51.52% 105.56

Table 55: The naive model predicting the next price

The DA measure does not seem to be affected to the same degree as the other metrics,
mostly because the measure is not dependent on the magnitude of the prices. The takeaway
from these observations is that when evaluating the model, one solution is to focus on the
results related to the individual stocks rather than the averaged results. In relation to the

149

9.5 Additional points

metrics where the magnitude of the price plays a part, namely MAE and MSE, using the
average results on the normalized values is another solution as the normalization forces the
prices to be in the same magnitude.

9.5.5 Comparing against other works

As MAPE, MAE and MSE will vary significantly from stock to stock, a direct comparison
with these metrics to other works that explores different stocks or indexes is infeasible.
Therefore, the focus should be on direction accuracy.

Bollen, Mao & Zeng (2011) were able to predict the next Dow Jones Industrial Average
close price by measuring general Twitter mood with a DA of 87.6%. This is clearly superior
to the DA found in this thesis of 53.98%. This may be an indication that the general
mood is a much better predictor of future stock prices than sentiment and trendscore related
to specific stocks. The results may also indicate that the DJIA is more predictable than
the stocks selected in this thesis, or more generally that stock market indexes are more
predictable than individual stocks.

Jiahong Li, Bu & Wu (2017) achieved 50.71% direction accuracy when predicting the next
day close price of the Chinese index CSI300 using sentiment extracted from forum posts.
They achieved results similar to the results in this thesis even though they optimized direc-
tion accuracy. These results in addition to the results in this thesis provide evidence that
predicting stock prices using sentiment from users on platforms directed to the stock mar-
ket is a harder task than predicting prices using general mood. One possible explanation
is that there is much more information from which mood can be extracted. Another hy-
pothesis is that sentiment is decoupled from the traders own emotions and does not reflect
their true feelings because of their ulterior motives related to making money on the stock
market. People that own a stock have an incentive to motivate other people to buy the same
stock, as this will increase the value of the stock. People may know this and are therefore
not significantly affected by these sentiments. Further, Twitter is used for a vast number of
topics, the financial market only being one of many others. The tweeters may not have the
same ulterior motives when tweeting, and their tweets might to a higher degree reflect their
true feelings. Therefore, the mood that Bollen, Mao & Zeng (2011) measured might be a
more accurate representation of the users’ emotions and is therefore more valuable when
predicting the stock market.

Shynkevich, Coleman, Mcginnity & Belatreche (2015) reached a DA of up to 81.63% when
predicting stocks using the news database LexisNexis. Their results were much better than
the results presented in this thesis. It may be that it is the low credibility of tweets related to
stocks and the high credibility of news articles that lead to the disparity between the results

150

9.5 Additional points

presented in this thesis and the results presented by Shynkevich, Coleman, Mcginnity &
Belatreche (2015).

151

10 Conclusion

This project derived from the idea that combining different data sources could improve pre-
dictions of stock market prices, leading to a goal of investigating whether easily accessible
data could contribute to more accurate stock price predictions using machine learning. Four
research questions arose from this overarching goal, and the experiments conducted aimed
at answering these questions.

To answer all the research questions, especially research question I), data from several
sources were collected, analyzed and preprocessed as deemed necessary. Historical stock
data were gathered from Investing.com, to represent the trading and financial aspect. Data
provided by StockFluence were utilized to represent the sentiment aspect. Lastly, Google
Trends was used to get access to search popularity data, to represent another feature of the
market.

Generally, the results suggested that, in terms of practical usage and achieving consider-
ably better performance compared to random guessing, the data available contributed in-
sufficiently to boosting performance on stock market price predictions. All configurations
had issues, either with unconvincing results, inconsistent results, or that the improvements
were too small to be considered for real life application. If improvements could be made on
one time frame, there seemed to be no guarantee that similar results could be achieved on
another time frame. Also, a configuration showing improvements on one stock did not nec-
essarily mean that the same configuration would attain improved results on another stock.
In short, the data gathered in this project did not manage to facilitate accurate and usable
price predictions, at least not with the models experimented with. The main reason seemed
to be due to the differences, mainly between time frames, but also between stocks. A rep-
resentative measure for this issue is the variance, which showed that the variance between
stocks, and across time frames, could vary to a large degree.

Since the data did not contribute with usable data in terms of prediction, performance dif-
ferences between the models were small in terms of the quantitative evaluation metrics.
Although the LSTM model achieved one result that was significantly better than random
guessing in terms of direction accuracy, a feat that was not obtainable by the other models,
the inconsistent performance on different time frames makes it hard to recommend such
a model for practical application, as of now. The results suggested that there are LSTM
configurations that are able to outperform the baseline models in terms of the evaluation
metrics, but such configurations are not able to accomplish this consistently.

With an unfavorable starting point with the LSTM models exhibiting these particular is-
sues, including a context module did not seem to contribute in any meaningful way, with
improvements being marginal at best. What the context module did for the most part was

152

to improve the initial predictions on the training set, with little actual improvements on
the validation set and the test set. This again seems to happen as a result of the data not
providing information that can assist the model in deviating far enough away from the cur-
rent price when predicting the next price, or deviating enough from 0 (or the mean) when
predicting the price change. Overall, including the context module did little to improve the
issues the LSTM model was facing.

Lastly, discussing whether a more general model using the same parameters across all
stocks was challenging. The available data seemed to provide little positive impact on
prediction, as if the data did not contain information that could make the predictions usable.
This made it hard to confidently recommend one configuration over the other, as all models
and configurations exhibited similar tendencies with inconsistent performance. With the
data gathered in this project, it is, as of now, not possible to conclude that a model with the
same parameters across all stocks is able to outperform the baseline models. It is also not
possible to conclude whether a general model is better than a specialized model (that has all
parameters identical for every stock), as similar issues seem to affect both configurations.
What can be said is that the less general a model is, and the less complex, the easier it has
been to troubleshoot what the origin of the issues faced is.

The answer to the overarching goal of this project is that it is not possible to better the
accuracy of stock prices prediction with easily accessible data, at least not with the data
available in this project, and not with the machine learning models experimented with.
Improvements, if any, are not consistent across stocks and time frames, making real life
application challenging.

153

11 Future work

In this chapter, insights gathered throughout this project regarding further approaches on
this field are presented. These are based on the results presented in Chapter 8 and discussion
from Chapter 9, in addition to the challenges that were faced.

Predicting the volatility instead of the price

As the volatility of a stock reflects the risks related to the stock, being able to accurately
predict it is advantageous when financial gain is the goal. Investopedia.com, 2020 lists
multiple strategies to profit from high volatility.

Optimising direction accuracy

In order to improve the direction accuracy, optimizing the direction accuracy instead of the
regression metrics as done in this thesis seems to be a viable option.

Combine prediction with a realistic trading strategy

To better investigate the practical usability of the models implemented, including a realistic
trading strategy that can be used on the stock market or a simulation of a stock market
should be done. In this way, assessing if the models are able to achieve financial gain or
not, which ultimately is the goal, is possible. Also, it is possible to experiment with multiple
trading strategies to determine which one is more suitable for each model. Investigating the
practical usage of a model might also reveal some interesting behavior not otherwise visible
from performance measures or visualization alone.

Implement reinforcement learning

It could be interesting to see how reinforcement learning coupled with deep learning can
achieve in terms of financial success. Putting emphasis on your previous actions and learn
from them could make tasks easier to overcome. Predicting stock prices and achieving
monetary gain could be one of these task. Combine with the already mentioned points of
improvements, this could prove to be a viable option.

154

Investigate other data sources

Although the included data sources did not manage to significantly improve the perfor-
mance on this task, other data sources or combinations of other data sources could prove
to be more successful. As lots of data are already easily available, and more seem to be-
come available, this might be worth the investigation and resources required. Combined
with the previously mentioned suggestions for further work, some interesting information
or behavior can be revealed. Comparing performance improvements from publicly or eas-
ily available data to data that could be considered more exclusive, for instance data that are
only accessible with premium memberships or within closed groups, could most definitely
be an interesting investigation resulting in fascinating discoveries.

155

REFERENCES

References

[1] Jethin Abraham, Daniel Higdon, John Nelson & Juan Ibarra. «Cryptocurrency Price
Prediction Using Tweet Volumes and Sentiment Analysis» (2018).

[2] Abdulaziz M. Alayba, Vasile Palade, Matthew England & Rahat Iqbal. «A Com-
bined CNN and LSTM Model for Arabic Sentiment Analysis» (2018).

[3] Sivan Alon, Simon Perrigaud & Meredith Neyrand. «Predicting American Idol with
Twitter Sentiment» (2013).

[4] Khaled A. Althelaya, El-Sayed M. El-Alfy & Salahadin Mohammed. «Evaluation of
Bidirectional LSTM for Short- and Long-Term Stock Market Prediction» (2018).

[5] Julio Amador, Sofia Collignon-Delmar, Kenneth Benoit & Akitaka Matsuo. «Pre-
dicting the Brexit Vote by Tracking and Classifying Public Opinion Using Twitter
Data» (2017).

[6] Franz Bewerunge. Google Trends: How to acquire daily data for broad time frames.
2018. URL: https://medium.com/@bewerunge.franz/google-trends-how-to-acquire-
daily-data-for-broad-time-frames-b6c6dfe200e6 (visited on 04/20/2020).

[7] Johan Bollen, Huina Mao & Xiaojun Zeng. «Twitter mood predicts the stock mar-
ket». Journal of Computational Science 2.1 (2011), pp. 1–8. ISSN: 1877-7503. DOI:
https://doi.org/10.1016/j.jocs.2010.12.007. URL: http://www.sciencedirect.com/
science/article/pii/S187775031100007X.

[8] Salah Bouktif, Ali Fiaz, Ali Ouni & Adel Serhani. «Optimal Deep Learning LSTM
Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm:
Comparison with Machine Learning Approaches» (2018).

[9] Jason Brownlee. Gentle Introduction to the Adam Optimization Algorithm for Deep
Learning. URL: https://machinelearningmastery.com/adam-optimization-algorithm-
for-deep-learning/ (visited on 07/02/2020).

[10] Guillaume Chevalier. The LSTM cell.png. URL: https:/ /commons.wikimedia.org/
wiki/File:The_LSTM_cell.png#Licensing (visited on 07/07/2020).

[11] C. Cortes & V. Vapnik. Machine learning 20 (1995), pp. 273–297. URL: https://link.
springer.com/article/10.1007/BF00994018.

[12] Imane El Alaoui, Youssef Gahi, Rochdi Messoussi, Youness Chaabi, Alexis To-
doskoff & Abdessamad Kobi. «A novel adaptable approach for sentiment analysis
on big social data» (2018).

[13] Eugene F. Fama. «Efficient Capital Markets: A Review of Theory and Empirical
Work». The Journal of Finance 25.2 (1970), pp. 383–417. ISSN: 00221082, 15406261.
URL: http://www.jstor.org/stable/2325486.

[14] Thomas Fischer & Christopher Krauss. «Deep learning with long short-term mem-
ory networks for financial market predictions». European Journal of Operational
Research 270.2 (2018), pp. 654–669. ISSN: 0377-2217. DOI: https : / /doi .org /10 .

156

https://medium.com/@bewerunge.franz/google-trends-how-to-acquire-daily-data-for-broad-time-frames-b6c6dfe200e6
https://medium.com/@bewerunge.franz/google-trends-how-to-acquire-daily-data-for-broad-time-frames-b6c6dfe200e6
https://doi.org/https://doi.org/10.1016/j.jocs.2010.12.007
http://www.sciencedirect.com/science/article/pii/S187775031100007X
http://www.sciencedirect.com/science/article/pii/S187775031100007X
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png#Licensing
https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png#Licensing
https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
http://www.jstor.org/stable/2325486
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054

REFERENCES

1016/j.ejor.2017.11.054. URL: http://www.sciencedirect.com/science/article/pii/
S0377221717310652.

[15] Svitlana Galeshchuk, Oleksandra Vasylchyshyn & Andriy Krysovatyy. «Bitcoin Re-
sponse to Twitter Sentiments» (2018).

[16] Andre Gensler, Janosch Henze, Bernhard Sick & Nils Raabe. «Deep Learning for
Solar Power Forecasting – An Approach Using Autoencoder and LSTM Neural Net-
works» (2016).

[17] Ian Goodfellow, Yoshua Bengio & Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[18] C. W. J. Granger. «Investigating Causal Relations by Econometric Models and Cross-
spectral Methods». Econometrica 37.3 (1969), pp. 424–438. ISSN: 00129682, 14680262.
URL: http://www.jstor.org/stable/1912791.

[19] Jiawei Han, Micheline Kamber & Jian Pei. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2011.

[20] Internetlivestats.com. Internetlivestats.com. URL: https://www.internetlivestats.com/
google-search-statistics/ (visited on 06/17/2019).

[21] Investing.com. Investing.com - Stock Market Quotes & Financial News. URL: https:
//www.investing.com/ (visited on 02/13/2020).

[22] Investopedia.com. Investopedia.com. URL: https : / /www. investopedia .com/slide -
show/worlds-greatest-investors/ (visited on 06/21/2020).

[23] Bhumika M. Jadav & Vimalkumar B. Vaghela. «Sentiment Analysis using Support
Vector Machine based on Feature Selection and Semantic Analysis» (2016).

[24] Arti Jain, Shashank Tripathi, Harsh DwarDwivedi & Pranav Saxena. «Forecasting
Price of Cryptocurrencies Using Tweets Sentiment Analysis» (2018).

[25] Keras. Keras. URL: https://keras.io/ (visited on 07/24/2020).
[26] Diederik P. Kingma & Jimmy Lei Ba. «Adam: A Method for Stochastic Optimiza-

tion» (2015). URL: https://arxiv.org/pdf/1412.6980.pdf.
[27] John Kordonis, Symeon Symeonidis & Avi Arampatzis. «Stock Price Forecasting

via Sentiment Analysis on Twitter» (2016).
[28] Alex Krizhevsky, Ilya Sutskever & Geoffrey E Hinton. «ImageNet Classification

with Deep Convolutional Neural Networks». In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou & K. Q. Wein-
berger. Curran Associates, Inc., 2012, pp. 1097–1105. URL: http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[29] Gunjan Kumar. «Machine Learning for Soccer Analytics» (2013).
[30] Jiahong Li, Hui Bu & Junjie Wu. «Sentiment-Aware Stock Market Prediction: A

Deep Learning Method» (2017).
[31] Jian Li, Zhenjing Xu, Lean Yu & Ling Tang. «Forecasting oil price trends with sen-

timent of online news articles» (2016).

157

https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054
http://www.sciencedirect.com/science/article/pii/S0377221717310652
http://www.sciencedirect.com/science/article/pii/S0377221717310652
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.jstor.org/stable/1912791
https://www.internetlivestats.com/google-search-statistics/
https://www.internetlivestats.com/google-search-statistics/
https://www.investing.com/
https://www.investing.com/
https://www.investopedia.com/slide-show/worlds-greatest-investors/
https://www.investopedia.com/slide-show/worlds-greatest-investors/
https://keras.io/
https://arxiv.org/pdf/1412.6980.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

REFERENCES

[32] Burton G. Malkiel. «The Efficient Market Hypothesis and Its Critics». Journal of
Economic Perspectives 17.1 (Mar. 2003), pp. 59–82. DOI: 10.1257/089533003321164958.
URL: http://www.aeaweb.org/articles?id=10.1257/089533003321164958.

[33] Amir Mosavi, Pinar Ozturk & Kwok-wing Chau. «Flood Prediction Using Machine
Learning Models: Literature Review» (2018).

[34] Sima Siami Namin & Akbar Siami Namin. «Forecasting economic and financial
time series: ARIMA vs. LSTM» (2018).

[35] Patrick Andre Næss. «Investigation of Multivariate Freight Rate Prediction Using
Machine Learning and AIS Data» (2018).

[36] Peter Norvig & Stuart J. Russel. Artificial Intelligence: A Modern Approach. Pear-
son, 2016.

[37] NumPy. NumPy. URL: https://www.numpy.org/ (visited on 07/01/2020).
[38] Christopher Olah. Understanding LSTM Networks. 2015. URL: http://colah.github.

io/posts/2015-08-Understanding-LSTMs/ (visited on 11/11/2018).
[39] Christopher Olah. Understanding LSTM Networks. URL: https : / /colah .github. io /

posts/2015-08-Understanding-LSTMs/ (visited on 07/07/2020).
[40] Preety & Sunny Dahiya. «Sentinement Analysis Using SVM and Naive Bayes Al-

gorithm» (2015).
[41] Tobias Preis, Helen Susannah Moat & H. Eugene Stanley. «Quantifying Trading

Behavior in Financial Markets Using Google Trends». Scientific Reports 3 (Apr.
2013). URL: https://doi.org/10.1038/srep01684.

[42] Gabriele Ranco, Darko Aleksovski, Guido Caldarelli, Miha Grčar & Igor Mozetič.
«The Effects of Twitter Sentiment on Stock Price Returns». PloS one 10 (Sept.
2015), e0138441. DOI: 10.1371/journal.pone.0138441.

[43] David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams. «Learning represen-
tations by back-propagating errors» (1986).

[44] Pritee Salunkhe & Sachin Deshmukh. «Twitter Based Election Prediction and Anal-
ysis» (2017).

[45] Scientificamerican.com. Scientificamerican.com. URL: https://www.scientificamerican.
com / podcast / episode / computers - go - head - to - head - with - humans - on - face -
recognition/ (visited on 05/15/2020).

[46] Scikit-Learn. Scikit-learn. URL: https://scikit-learn.org/ (visited on 06/30/2020).
[47] Parul Sharma & Teng-Sheng Moh. «Prediction of Indian election using sentiment

analysis on Hindi Twitter» (2016).
[48] Yauheniya Shynkevich, Sonya Coleman, T.M. Mcginnity & Ammar Belatreche. «Stock

Price Prediction based on Stock-Specific and Sub-Industry-Specific News Articles».
In: July 2015. DOI: 10.1109/IJCNN.2015.7280517.

[49] Pedro M. Sosa. «Twitter Sentiment Analysis using combined LSTM-CNN Models»
(2017).

158

https://doi.org/10.1257/089533003321164958
http://www.aeaweb.org/articles?id=10.1257/089533003321164958
https://www.numpy.org/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1038/srep01684
https://doi.org/10.1371/journal.pone.0138441
https://www.scientificamerican.com/podcast/episode/computers-go-head-to-head-with-humans-on-face-recognition/
https://www.scientificamerican.com/podcast/episode/computers-go-head-to-head-with-humans-on-face-recognition/
https://www.scientificamerican.com/podcast/episode/computers-go-head-to-head-with-humans-on-face-recognition/
https://scikit-learn.org/
https://doi.org/10.1109/IJCNN.2015.7280517

REFERENCES

[50] Statista.com. Statista.com. URL: https : / / www . statista . com / statistics / 264810 /
number-of-monthly-active-facebook-users-worldwide/ (visited on 05/15/2020).

[51] statsmodels.org. statsmodels.org. URL: https://www.statsmodels.org/stable/index.
html (visited on 07/07/2020).

[52] Timo Stöttner. Why Data should be Normalized before Training a Neural Network.
URL: https : / / towardsdatascience .com/why- data- should- be- normalized- before-
training-a-neural-network-c626b7f66c7d (visited on 07/25/2020).

[53] StockFluence. StockFluence | Stock Sentiment Analysis. URL: https://www.stockfluence.
com/ (visited on 02/13/2020).

[54] TensorFlow. TensorFlow. URL: https://www.tensorflow.org/ (visited on 07/24/2020).
[55] Google Trends. Google Trends. URL: https://trends.google.com (visited on 03/05/2020).
[56] Ian H. Witten, Eibe Frank & Mark A. Hall. Data Mining: Practical Machine Learn-

ing Tools and Techniques. Morgan Kaufmann, 2011.
[57] Ruoxuan Xiong, Eric P. Nichols & Yuan Shen. «Deep Learning Stock Volatility with

Google Domestic Trends» (2016).
[58] Xin Yan & Xiao Gang Su. Linear Regression Analysis: Theory and Computing. 5

Toh Tuck Link, Singapore: World Scientific, 2009.
[59] Kristin Yeager. SPSS TUTORIALS: PEARSON CORRELATION. June 2020. URL:

https://libguides.library.kent.edu/SPSS/PearsonCorr.
[60] Lei Zhang, Shuai Wang & Bing Liu. «Deep Learning for Sentiment Analysis: A

Survey» (2018).

159

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://www.stockfluence.com/
https://www.stockfluence.com/
https://www.tensorflow.org/
https://trends.google.com
https://libguides.library.kent.edu/SPSS/PearsonCorr

A Details on all stocks

Appendix

A Details on all stocks

Stock Name Description
AAPL Apple A technology company focusing on

consumer electronics and software.
Founded in 1976.

AMD Advanced Micro
Devices

A technology company develop-
ing computer processors and related
technologies for both consumers
and businesses. Founded in 1969.

AMZN Amazon.com A technology company focusing on
e-commerce, cloud computing and
artificial intelligence. Founded in
1994.

BIDU Baidu A techonology company focus-
ing on artificial intelligence and
internet-related services and prod-
ucts. Founded in 2000.

DIS The Walt Disney
Company

A conglomerate focusing on mass
media and entertainment. Founded
in 1923.

FB Facebook A technology company focusing on
social media and social networking
services. Founded in 2004.

HD The Home Depot A retailer company focusing on
home improvement. Founded in
1978.

INTC Intel A technology company focusing on
manufacturing semiconductor chips
and related technologies. Founded
in 1968.

KO The Coca-Cola
Company

A company focusing on non-
alcoholic beverages. Founded in
1886.

NFLX Netflix A company focusing on providing
media services. Founded in 1997.

160

B Results

NVDA Nvidia A technology company focusing
on making of graphics processing
units and system on a chip units.
Founded in 1993.

PFE Pfizer A pharmaceutical company.
Founded in 1849.

QCOM Qualcomm A technology company focusing on
semiconductor and telecommunica-
tions equipment. Founded in 1985.

TSLA Tesla An automotive and energy com-
pany focusing on electric cars.
Founded in 2003.

WMT Walmart A retail corporation focusing on
hypermarkets, discount department
stores and grocery stores. Founded
in 1962.

Table 56: The stocks included in the project.

B Results

B.1 Hyperparameter search

{Dropout, Layer size, Loss } MAPE MAE MSE DA

0.0, [160], mae
0 1.388% 3.285 56.6 50.75%
1 1.399% 3.271 55.6 51.15%
2 1.399% 3.386 60.37 50.38%

Mean 1.396% 3.314 57.52 50.76%
Mean Rank 1 1 1 4
Sum rank 7

0.0, [128], mae
0 1.405% 3.331 58.43 50.34%
1 1.418% 3.365 58.82 49.01%
2 1.386% 3.291 57.75 51.52%

161

B Results

Mean 1.403% 3.329 58.34 50.29%
Mean Rank 2 2 2 6
Sum rank 12

0.2, [128], mae
0 1.412% 3.576 69.58 50.22%
1 1.417% 3.67 74.62 49.33%
2 1.389% 3.413 61.66 50.63%

Mean 1.406% 3.553 68.62 50.06%
Mean Rank 3 3 3 10
Sum rank 19

0.0, [32], mae
0 1.463% 3.966 89.39 50.95%
1 1.444% 3.392 57.2 51.6%
2 1.426% 3.42 59.5 49.33%

Mean 1.444% 3.593 68.7 50.63%
Mean Rank 7 4 4 5
Sum rank 20

0.2, [160], mae
0 1.419% 3.714 76.75 50.79%
1 1.388% 3.439 63.64 49.33%
2 1.427% 3.752 78.54 50.63%

Mean 1.411% 3.635 72.98 50.25%
Mean Rank 4 6 7 8
Sum rank 25

0.5, [160], mae
0 1.424% 3.625 71.11 49.41%
1 1.407% 3.51 65.66 50.06%
2 1.419% 3.665 72.79 49.98%

Mean 1.417% 3.6 69.85 49.82%
Mean Rank 5 5 5 13
Sum rank 28

0.0, [128], mse

162

B Results

0 1.447% 3.523 63.73 50.67%
1 1.46% 3.665 70.27 50.71%
2 1.453% 3.825 78.72 49.21%

Mean 1.454% 3.671 70.91 50.2%
Mean Rank 8 7 6 9
Sum rank 30

0.5, [128], mae
0 1.468% 4.034 94.61 49.74%
1 1.425% 3.716 75.23 49.74%
2 1.394% 3.417 61.78 50.42%

Mean 1.429% 3.722 77.21 49.97%
Mean Rank 6 8 8 11
Sum rank 33

0.0, [32], mse
0 1.475% 3.963 89.55 50.95%
1 1.468% 3.817 78.82 50.95%
2 1.493% 4.035 90.96 50.95%

Mean 1.478% 3.938 86.44 50.95%
Mean Rank 11 11 10 3
Sum rank 35

0.2, [128], mse
0 1.487% 4.184 107.0 50.59%
1 1.544% 4.434 123.1 51.03%
2 1.4% 3.328 59.19 51.92%

Mean 1.477% 3.982 96.42 51.18%
Mean Rank 10 12 12 1
Sum rank 35

0.0, [160], mse
0 1.495% 4.177 100.8 49.29%
1 1.477% 3.551 63.25 51.23%
2 1.472% 3.758 74.93 50.26%

Mean 1.481% 3.828 79.65 50.26%

163

B Results

Mean Rank 12 9 9 7
Sum rank 37

0.5, [128], mse
0 1.501% 4.321 115.2 49.54%
1 1.483% 4.086 97.0 50.02%
2 1.389% 3.26 54.77 50.22%

Mean 1.458% 3.889 88.98 49.93%
Mean Rank 9 10 11 12
Sum rank 42

0.2, [160], mse
0 1.54% 4.61 141.4 51.07%
1 1.477% 4.06 99.81 51.11%
2 1.528% 4.259 108.2 51.31%

Mean 1.515% 4.31 116.5 51.16%
Mean Rank 15 15 15 2
Sum rank 47

0.5, [160], mse
0 1.508% 4.363 117.4 49.58%
1 1.463% 3.964 89.68 49.58%
2 1.485% 4.166 103.0 50.63%

Mean 1.485% 4.164 103.3 49.93%
Mean Rank 13 13 13 12
Sum rank 51

0.2, [32], mse
0 1.617% 5.103 165.6 48.24%
1 1.427% 3.518 65.09 49.01%
2 1.499% 4.277 108.5 48.81%

Mean 1.514% 4.299 113.1 48.69%
Mean Rank 14 14 14 14
Sum rank 56

0.2, [32], mae
0 1.594% 5.014 164.2 48.48%

164

B Results

1 1.547% 4.614 130.4 48.57%
2 1.492% 4.253 106.6 48.04%

Mean 1.544% 4.627 133.7 48.36%
Mean Rank 16 16 16 15
Sum rank 63

0.5, [32], mae
0 1.805% 6.045 236.7 47.76%
1 1.867% 6.456 280.1 47.84%
2 1.63% 5.048 155.3 48.81%

Mean 1.768% 5.849 224.0 48.13%
Mean Rank 17 17 17 16
Sum rank 67

0.5, [32], mse
0 1.935% 6.862 329.8 48.48%
1 1.804% 5.852 207.2 47.84%
2 1.808% 6.091 242.9 47.39%

Mean 1.849% 6.268 260.0 47.91%
Mean Rank 18 18 18 17
Sum rank 71

Table 57: Full table: Hyperparameter search

B.2 Issues with the bidirectional implementation

Seed MAPE MAE MSE DA

price, open, high, low, volume, di-
rection, change, BidirLSTM, [54,
53, 53]
0 4.965% 7.984 582.5 49.44%
1 6.587% 9.831 642.0 49.57%
2 8.635% 11.35 680.3 48.72%

Mean 6.729% 9.721 634.9 49.25%
Mean Rank 16 16 16 16

165

B Results

Sum rank 64

price, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, BidirLSTM, [54, 53, 53]
0 5.985% 7.171 174.9 48.88%
1 11.26% 16.83 1331 47.39%
2 6.925% 11.7 1043 49.03%

Mean 8.055% 11.9 850.2 48.43%
Mean Rank 17 17 17 18
Sum rank 69

price, trendscore, BidirLSTM, [54,
53, 53]
0 4.667% 6.806 326.6 48.99%
1 15.79% 25.02 2707 47.09%
2 7.384% 12.1 1021 48.48%

Mean 9.28% 14.64 1351 48.19%
Mean Rank 18 18 18 19
Sum rank 73

price, BidirLSTM, [54, 53, 53]
0 4.108% 5.532 190.7 49.92%
1 4.993% 8.26 528.2 49.2%
2 21.46% 34.82 5059 47.16%

Mean 10.19% 16.2 1926 48.76%
Mean Rank 19 19 19 17
Sum rank 74

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
BidirLSTM, [54, 53, 53]
0 18.49% 29.01 3359 47.05%
1 11.2% 17.0 1485 47.37%
2 9.211% 13.16 1056 49.29%

166

B Results

Mean 12.97% 19.72 1966 47.9%
Mean Rank 20 20 20 20
Sum rank 80

price, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, BidirLSTM, [80, 80]
0 10.84% 16.0 1319 48.74%
1 18.37% 27.71 2818 47.36%
2 18.68% 28.88 3047 47.22%

Mean 15.97% 24.2 2395 47.77%
Mean Rank 21 21 21 21
Sum rank 84

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
BidirLSTM, [80, 80]
0 13.51% 18.93 1190 47.19%
1 24.4% 40.71 7401 47.05%
2 13.01% 19.54 1591 47.15%

Mean 16.97% 26.39 3394 47.13%
Mean Rank 22 22 22 22
Sum rank 88

price, trendscore, BidirLSTM, [80,
80]
0 27.98% 45.15 8362 47.03%
1 19.44% 30.28 3617 47.12%
2 16.97% 25.89 2833 47.2%

Mean 21.47% 33.77 4937 47.12%
Mean Rank 24 24 24 23
Sum rank 95

price, open, high, low, volume, di-
rection, change, BidirLSTM, [80,
80]

167

B Results

0 19.14% 29.03 3071 47.12%
1 22.41% 36.03 5407 47.03%
2 17.48% 25.89 2446 46.98%

Mean 19.68% 30.32 3641 47.04%
Mean Rank 23 23 23 28
Sum rank 97

price, BidirLSTM, [80, 80]
0 16.99% 25.62 2319 47.1%
1 33.99% 58.12 15707 47.05%
2 27.4% 45.98 9393 47.06%

Mean 26.12% 43.24 9140 47.07%
Mean Rank 25 25 25 26
Sum rank 101

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
BidirLSTM, [160]
0 24.47% 42.1 8860 47.16%
1 25.38% 43.49 9187 47.03%
2 29.2% 50.06 11842 47.05%

Mean 26.35% 45.22 9963 47.08%
Mean Rank 26 26 26 25
Sum rank 103

price, open, high, low, volume, di-
rection, change, BidirLSTM, [160]
0 30.37% 52.03 12605 47.08%
1 28.06% 48.48 11331 47.12%
2 28.51% 49.02 11333 47.08%

Mean 28.98% 49.84 11756 47.09%
Mean Rank 27 27 27 24
Sum rank 105

168

B Results

price, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, BidirLSTM, [160]
0 43.34% 74.6 26780 47.1%
1 40.3% 69.23 22951 47.06%
2 44.59% 76.62 28001 47.08%

Mean 42.74% 73.48 25911 47.08%
Mean Rank 28 28 28 25
Sum rank 109

price, trendscore, BidirLSTM,
[160]
0 41.96% 72.22 24804 47.06%
1 44.62% 76.64 27742 47.09%
2 44.66% 76.76 27768 47.05%

Mean 43.75% 75.21 26771 47.07%
Mean Rank 29 29 29 27
Sum rank 114

price, BidirLSTM, [160]
0 44.27% 76.15 27360 47.03%
1 43.28% 74.31 25923 47.03%
2 44.59% 76.7 27799 47.05%

Mean 44.05% 75.72 27027 47.04%
Mean Rank 30 30 30 29
Sum rank 119

Table 58: Bidirectional

B.3 Feature analysis, predicting price

Seed MAPE MAE MSE DA

price, [160]
0 1.352% 3.168 52.68 52.4%
1 1.351% 3.134 51.83 52.61%

169

B Results

2 1.353% 3.17 53.06 52.4%

Mean 1.352% 3.157 52.52 52.47%
Mean Rank 1 2 2 2
Sum rank 7

price, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.362% 3.163 52.58 52.57%
1 1.347% 3.141 52.78 52.69%
2 1.351% 3.16 52.55 52.48%

Mean 1.353% 3.155 52.63 52.58%
Mean Rank 2 1 3 1
Sum rank 7

price, trendscore, [160]
0 1.351% 3.137 52.15 52.57%
1 1.36% 3.2 52.94 50.95%
2 1.349% 3.137 51.43 51.84%

Mean 1.354% 3.158 52.18 51.78%
Mean Rank 3 3 1 5
Sum rank 12

price, trendscore, [80, 80]
0 1.412% 3.35 57.26 51.23%
1 1.365% 3.18 52.73 52.16%
2 1.369% 3.242 54.61 52.73%

Mean 1.382% 3.257 54.87 52.04%
Mean Rank 6 4 4 3
Sum rank 17

price, [80, 80]
0 1.387% 3.378 59.26 52.12%
1 1.363% 3.237 54.71 51.68%
2 1.375% 3.22 53.81 52.04%

Mean 1.375% 3.278 55.93 51.95%

170

B Results

Mean Rank 4 5 5 4
Sum rank 18

price, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [80, 80]
0 1.389% 3.34 58.4 51.84%
1 1.359% 3.219 55.02 51.52%
2 1.383% 3.312 56.75 51.8%

Mean 1.377% 3.29 56.73 51.72%
Mean Rank 5 6 6 7
Sum rank 24

price, open, high, low, volume, di-
rection, change, [160]
0 1.428% 3.411 61.22 50.75%
1 1.369% 3.252 57.55 50.55%
2 1.383% 3.259 57.51 51.84%

Mean 1.393% 3.307 58.76 51.04%
Mean Rank 7 7 8 11
Sum rank 33

price, [54, 53, 53]
0 1.39% 3.333 57.26 52.24%
1 1.424% 3.495 63.79 51.43%
2 1.431% 3.667 71.47 51.52%

Mean 1.415% 3.498 64.17 51.73%
Mean Rank 10 10 10 6
Sum rank 36

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 1.388% 3.285 56.6 50.75%
1 1.399% 3.271 55.6 51.15%

171

B Results

2 1.399% 3.386 60.37 50.38%

Mean 1.396% 3.314 57.52 50.76%
Mean Rank 8 8 7 13
Sum rank 36

price, open, high, low, volume, di-
rection, change, [80, 80]
0 1.411% 3.597 71.65 49.66%
1 1.381% 3.326 58.26 51.76%
2 1.395% 3.278 59.69 51.23%

Mean 1.396% 3.4 63.2 50.88%
Mean Rank 9 9 9 12
Sum rank 39

price, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [54, 53, 53]
0 1.518% 4.335 112.9 51.35%
1 1.461% 3.538 64.22 51.52%
2 1.503% 4.253 108.2 51.11%

Mean 1.494% 4.042 95.14 51.33%
Mean Rank 13 12 12 9
Sum rank 46

price, trendscore, [54, 53, 53]
0 1.519% 4.378 118.0 50.83%
1 1.473% 4.063 106.2 51.88%
2 1.458% 3.899 83.89 51.47%

Mean 1.483% 4.113 102.7 51.39%
Mean Rank 12 13 13 8
Sum rank 46

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[80, 80]

172

B Results

0 1.452% 3.856 84.34 51.03%
1 1.452% 3.807 80.1 50.18%
2 1.479% 3.834 77.9 49.66%

Mean 1.461% 3.833 80.78 50.29%
Mean Rank 11 11 11 15
Sum rank 48

price, open, high, low, volume, di-
rection, change, [54, 53, 53]
0 1.716% 5.638 235.6 50.59%
1 1.517% 4.126 98.26 51.88%
2 1.53% 4.343 114.7 51.39%

Mean 1.588% 4.703 149.5 51.29%
Mean Rank 14 14 14 10
Sum rank 52

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[54, 53, 53]
0 1.665% 5.267 194.6 49.86%
1 1.683% 5.597 229.4 50.87%
2 1.708% 5.502 218.9 50.38%

Mean 1.685% 5.456 214.3 50.37%
Mean Rank 15 15 15 14
Sum rank 59

Table 59: Full table: Feature search using vanilla LSTMs and stacked LSTMs

Seed MAPE MAE MSE DA

price, [160]
0 1.352% 3.141 52.43 52.81%
1 1.348% 3.146 53.03 52.48%
2 1.35% 3.141 53.19 52.85%

173

B Results

3 1.351% 3.151 52.78 52.44%
4 1.348% 3.153 53.17 51.52%
5 1.349% 3.141 52.33 52.32%
6 1.346% 3.129 52.66 52.57%
7 1.355% 3.169 52.41 52.4%
8 1.346% 3.133 52.72 52.28%
9 1.347% 3.136 52.39 52.36%

Mean 1.349% 3.144 52.71 52.4%
Mean Rank 1 1 2 1
Sum rank 5

price, trendscore, [160]
0 1.355% 3.175 52.73 52.04%
1 1.355% 3.139 51.65 52.0%
2 1.361% 3.188 53.56 52.36%
3 1.351% 3.156 52.46 52.4%
4 1.368% 3.243 54.97 51.68%
5 1.347% 3.119 51.15 53.9%
6 1.345% 3.118 51.9 52.53%
7 1.355% 3.162 52.63 52.32%
8 1.354% 3.122 51.11 52.12%
9 1.348% 3.133 51.79 51.76%

Mean 1.354% 3.155 52.4 52.31%
Mean Rank 2 2 1 2
Sum rank 7

price, open, high, low, volume, di-
rection, change, [160]
0 1.374% 3.245 57.63 50.67%
1 1.362% 3.225 57.55 50.91%
2 1.375% 3.289 58.7 49.25%
3 1.371% 3.236 57.68 49.29%
4 1.377% 3.238 57.48 50.55%
5 1.392% 3.305 56.67 51.92%
6 1.38% 3.275 58.19 50.79%
7 1.378% 3.24 58.78 51.31%

174

B Results

8 1.368% 3.228 56.16 51.07%
9 1.38% 3.335 60.32 50.06%

Mean 1.376% 3.262 57.92 50.58%
Mean Rank 3 3 3 3
Sum rank 12

Table 60: Full table: Trendscore in addition to price

Seed MAPE MAE MSE DA

price, positive_prop, nega-
tive_prop, neutral_prop, [160]
0 1.349% 3.139 53.06 52.77%
1 1.349% 3.156 53.41 52.73%
2 1.349% 3.184 53.89 52.36%
3 1.351% 3.162 53.96 51.8%
4 1.348% 3.144 52.94 52.36%
5 1.35% 3.19 54.58 51.19%
6 1.346% 3.141 53.33 53.01%
7 1.35% 3.188 54.05 52.4%
8 1.344% 3.144 53.22 52.65%
9 1.343% 3.141 52.35 52.44%

Mean 1.348% 3.159 53.48 52.37%
Mean Rank 1 1 2 1
Sum rank 5

price, positive, negative, neutral,
[160]
0 1.363% 3.214 53.73 51.52%
1 1.362% 3.233 54.74 52.04%
2 1.357% 3.234 54.9 51.88%
3 1.356% 3.138 51.72 52.32%
4 1.361% 3.184 52.55 52.0%
5 1.364% 3.166 51.42 53.17%
6 1.355% 3.149 52.24 50.51%
7 1.347% 3.133 52.21 51.8%

175

B Results

8 1.36% 3.206 53.67 52.36%
9 1.346% 3.139 52.15 52.0%

Mean 1.357% 3.18 52.93 51.96%
Mean Rank 2 2 1 2
Sum rank 7

price, volume, direction, change,
[160]
0 1.358% 3.17 52.63 51.64%
1 1.356% 3.149 51.9 50.95%
2 1.398% 3.354 59.42 52.28%
3 1.344% 3.137 53.32 53.05%
4 1.369% 3.393 64.57 51.52%
5 1.358% 3.241 55.83 52.08%
6 1.388% 3.326 57.54 52.24%
7 1.369% 3.371 61.6 52.77%
8 1.356% 3.145 52.87 51.6%
9 1.375% 3.182 54.48 50.99%

Mean 1.367% 3.247 56.42 51.91%
Mean Rank 4 3 3 3
Sum rank 13

price, open, high, low, [160]
0 1.37% 3.291 57.15 51.23%
1 1.384% 3.37 60.12 51.03%
2 1.362% 3.246 55.31 50.26%
3 1.361% 3.274 57.24 50.42%
4 1.364% 3.237 55.78 50.22%
5 1.351% 3.191 54.75 51.19%
6 1.363% 3.261 56.93 50.46%
7 1.364% 3.242 55.96 50.71%
8 1.368% 3.251 56.2 50.75%
9 1.365% 3.244 55.49 50.59%

Mean 1.365% 3.261 56.5 50.69%
Mean Rank 3 4 4 4
Sum rank 15

176

B Results

Table 61: Full table: Dividing into smaller feature sets

B.4 Introducing the context module

Seed MAPE MAE MSE DA

price, trendscore, [160]
0 1.347% 3.135 51.66 52.85%
1 1.348% 3.143 51.89 52.48%
2 1.345% 3.109 51.25 52.24%

Mean 1.347% 3.129 51.6 52.53%
Mean Rank 1 1 1 2
Sum rank 5

price, positive, neg-
ative, neutral, pos-
itive_prop, neg-
ative_prop, neu-
tral_prop, [160]
0 1.349% 3.157 53.32 52.08%
1 1.348% 3.143 52.91 53.05%
2 1.356% 3.148 52.94 52.81%

Mean 1.351% 3.149 53.06 52.65%
Mean Rank 3 2 3 1
Sum rank 9

price, [160]
0 1.347% 3.15 52.75 52.24%
1 1.348% 3.144 52.21 52.93%
2 1.352% 3.192 53.47 50.71%

Mean 1.349% 3.162 52.81 51.96%
Mean Rank 2 3 2 3
Sum rank 10

177

B Results

price, open, high, low,
volume, direction,
change, [160]
0 1.375% 3.224 56.94 50.26%
1 1.375% 3.247 57.45 49.86%
2 1.371% 3.238 57.15 49.82%

Mean 1.373% 3.237 57.18 49.98%
Mean Rank 4 4 4 5
Sum rank 17

price, open, high,
low, volume, di-
rection, change,
positive, negative,
neutral, positive_prop,
negative_prop, neu-
tral_prop, trendscore,
[160]
0 1.433% 3.367 59.51 51.52%
1 1.405% 3.396 59.99 49.62%
2 1.422% 3.585 68.79 50.14%

Mean 1.42% 3.449 62.76 50.42%
Mean Rank 5 5 5 4
Sum rank 19

Table 62: Full table: Predicting the next price using the context module.

Seed MAPE MAE MSE DA

price, trendscore, [160]
0 1.343% 3.126 51.36 51.68%
1 1.344% 3.124 51.69 51.6%
2 1.346% 3.148 52.03 51.72%
3 1.344% 3.122 51.68 52.97%
4 1.349% 3.158 52.25 52.4%
5 1.35% 3.159 52.32 52.0%

178

B Results

6 1.35% 3.172 52.8 51.56%
7 1.343% 3.116 51.39 51.88%
8 1.35% 3.157 52.79 52.44%
9 1.348% 3.144 51.71 52.57%

Mean 1.347% 3.143 52.0 52.08%
Mean Rank 1 1 1 1
Sum rank 4

price, [160]
0 1.349% 3.16 52.52 50.91%
1 1.354% 3.212 53.89 51.07%
2 1.345% 3.125 51.93 53.17%
3 1.346% 3.132 52.23 52.2%
4 1.35% 3.171 53.12 50.95%
5 1.347% 3.144 52.11 52.44%
6 1.351% 3.167 52.73 52.24%
7 1.349% 3.142 52.47 52.53%
8 1.347% 3.14 52.09 52.0%
9 1.344% 3.149 52.41 50.79%

Mean 1.348% 3.154 52.55 51.83%
Mean Rank 2 2 2 2
Sum rank 8

price, positive, neg-
ative, neutral, pos-
itive_prop, neg-
ative_prop, neu-
tral_prop, [160]
0 1.351% 3.162 53.25 51.47%
1 1.349% 3.169 52.91 52.36%
2 1.352% 3.217 54.62 52.08%
3 1.356% 3.18 52.96 51.07%
4 1.362% 3.156 52.27 52.12%
5 1.352% 3.152 52.33 51.11%
6 1.356% 3.213 54.68 52.36%
7 1.351% 3.143 53.09 51.6%
8 1.352% 3.138 51.58 52.2%

179

B Results

9 1.359% 3.183 53.17 51.52%

Mean 1.354% 3.171 53.09 51.79%
Mean Rank 3 3 3 3
Sum rank 12

Table 63: Full table: Optimising model related to each feature subset 10 times

B.5 Predicting price by optimising on price and direction

Seed MAPE MAE MSE DA

change, open, high, low, volume,
direction, price, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
prev_change_0, prev_open_0,
prev_high_0, prev_low_0,
prev_volume_0, prev_direction_0,
prev_price_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_trendscore_0,
prev_change_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_price_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1,
prev_trendscore_1, [160]
0 1.356% 3.136 52.31 51.03%
1 1.352% 3.119 51.95 51.23%
2 1.35% 3.122 52.44 51.72%

Mean 1.353% 3.126 52.23 51.33%

180

B Results

Mean Rank 2 1 2 1
Sum rank 6

change, open, high, low, volume,
direction, price, prev_change_0,
prev_open_0, prev_high_0,
prev_low_0, prev_volume_0,
prev_direction_0, prev_price_0,
prev_change_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_price_1, [160]
0 1.352% 3.135 51.83 49.98%
1 1.351% 3.131 51.95 51.52%
2 1.359% 3.139 51.61 51.35%

Mean 1.354% 3.135 51.8 50.95%
Mean Rank 3 2 1 2
Sum rank 8

change, positive, prev_change_0,
prev_positive_0, prev_change_1,
prev_positive_1, [160]
0 1.353% 3.167 52.78 48.12%
1 1.351% 3.137 52.52 50.87%
2 1.348% 3.123 52.22 50.59%

Mean 1.35% 3.142 52.51 49.86%
Mean Rank 1 3 3 5
Sum rank 12

181

B Results

change, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop,
prev_change_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_change_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1, [160]
0 1.363% 3.178 53.65 50.1%
1 1.361% 3.162 53.4 50.71%
2 1.365% 3.161 53.42 51.03%

Mean 1.363% 3.167 53.49 50.61%
Mean Rank 4 4 4 3
Sum rank 15

change, trendscore,
prev_change_0, prev_trendscore_0,
prev_change_1, prev_trendscore_1,
[160]
0 1.39% 3.211 54.84 49.9%
1 1.378% 3.159 52.81 49.74%
2 1.39% 3.183 53.33 50.1%

Mean 1.386% 3.185 53.66 49.91%
Mean Rank 5 5 5 4
Sum rank 19

Table 64: Full table: Predicting price and direction.

B.6 Additional experiment: Predicting price change

Seed MAPE MAE MSE DA

182

B Results

price, open, high, low, volume, di-
rection, change, [160]
0 1.371% 3.135 52.59 51.72%
1 1.348% 3.104 51.74 53.09%
2 1.348% 3.146 52.82 51.03%

Mean 1.356% 3.128 52.38 51.95%
Mean Rank 1 1 1 2
Sum rank 5

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 1.37% 3.228 55.46 50.91%
1 1.356% 3.125 52.89 53.01%
2 1.348% 3.129 52.57 52.08%

Mean 1.358% 3.161 53.64 52.0%
Mean Rank 2 2 2 1
Sum rank 7

price, trendscore, [160]
0 1.972% 4.328 98.53 51.52%
1 1.901% 4.676 122.0 51.15%
2 1.898% 4.489 108.2 51.47%

Mean 1.923% 4.498 109.6 51.38%
Mean Rank 3 3 3 5
Sum rank 14

price, [160]
0 1.931% 4.975 146.3 51.11%
1 1.951% 4.242 92.38 51.27%
2 1.9% 4.641 120.9 51.84%

Mean 1.927% 4.62 119.9 51.41%
Mean Rank 5 4 4 4

183

B Results

Sum rank 17

price, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.879% 4.445 106.8 51.68%
1 2.006% 5.245 159.3 51.8%
2 1.889% 4.485 109.0 50.79%

Mean 1.925% 4.725 125.1 51.42%
Mean Rank 4 5 5 3
Sum rank 17

Table 65: Full table: Price change prediction without context module.

Seed MAPE MAE MSE DA

price, open, high, low, volume, di-
rection, change, [160]
0 1.371% 3.173 53.57 51.96%
1 1.367% 3.218 55.34 50.91%
2 1.386% 3.15 52.9 51.03%

Mean 1.374% 3.18 53.93 51.3%
Mean Rank 1 1 2 3
Sum rank 7

change, [160]
0 1.357% 3.156 52.85 49.41%
1 1.42% 3.211 54.27 49.21%
2 1.381% 3.2 54.32 49.33%

Mean 1.386% 3.189 53.81 49.32%
Mean Rank 2 2 1 5
Sum rank 10

price, open, high, low, [160]
0 2.003% 5.517 180.0 52.32%
1 1.99% 4.859 134.5 51.03%

184

B Results

2 1.876% 4.177 90.33 51.8%

Mean 1.957% 4.851 135.0 51.72%
Mean Rank 4 3 3 1
Sum rank 11

volume, [160]
0 1.992% 5.253 166.1 50.34%
1 1.956% 5.068 156.0 50.71%
2 1.904% 4.89 147.0 51.68%

Mean 1.951% 5.07 156.4 50.91%
Mean Rank 3 4 4 4
Sum rank 15

direction, [160]
0 2.676% 5.835 157.3 51.39%
1 7.489% 12.24 378.8 50.91%
2 2.784% 8.137 343.4 52.77%

Mean 4.316% 8.737 293.1 51.69%
Mean Rank 5 5 5 2
Sum rank 17

Table 66: Full table: Predicting price change, analysing different subsets of the trading data

Seed MAPE MAE MSE DA

change, open, high, low, volume,
direction, price, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 1.352% 3.12 52.28 52.32%
1 1.383% 3.156 52.14 50.46%
2 1.357% 3.135 52.61 52.77%

Mean 1.364% 3.137 52.34 51.85%
Mean Rank 3 1 1 1
Sum rank 6

185

B Results

change, open, high, low, volume,
direction, price, [160]
0 1.354% 3.144 52.7 50.95%
1 1.348% 3.123 52.1 52.85%
2 1.363% 3.151 53.28 51.43%

Mean 1.355% 3.139 52.69 51.74%
Mean Rank 1 2 2 2
Sum rank 7

change, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.363% 3.163 53.55 49.82%
1 1.36% 3.17 53.36 51.11%
2 1.361% 3.168 53.64 50.83%

Mean 1.361% 3.167 53.52 50.59%
Mean Rank 2 3 3 3
Sum rank 11

change, trendscore, [160]
0 1.432% 3.196 54.24 48.85%
1 1.417% 3.207 55.54 50.3%
2 1.4% 3.209 55.86 49.78%

Mean 1.416% 3.204 55.21 49.64%
Mean Rank 4 4 5 4
Sum rank 17

change, [160]
0 1.481% 3.214 54.15 48.73%
1 1.511% 3.209 54.23 49.94%
2 1.409% 3.211 54.65 49.66%

Mean 1.467% 3.211 54.34 49.44%
Mean Rank 5 5 4 5
Sum rank 19

Table 67: Full table: Price change prediction without context module.

186

B Results

Seed MAPE MAE MSE DA

change, open, high, low, price,
[160]
0 1.377% 3.172 52.92 51.07%
1 1.463% 3.29 57.43 48.08%
2 1.461% 3.137 52.61 51.03%

Mean 1.434% 3.2 54.32 50.06%
Mean Rank 3 2 1 1
Sum rank 7

change, volume, [160]
0 1.374% 3.194 54.33 50.71%
1 1.411% 3.213 54.35 48.65%
2 1.401% 3.181 54.41 50.26%

Mean 1.395% 3.196 54.36 49.87%
Mean Rank 2 1 3 2
Sum rank 8

change, direction, [160]
0 1.382% 3.218 54.47 49.54%
1 1.394% 3.197 54.34 49.9%
2 1.391% 3.205 54.25 49.98%

Mean 1.389% 3.207 54.35 49.8%
Mean Rank 1 3 2 3
Sum rank 9

Table 68: Full table: Splitting up the trading features in order to identify patterns.

Seed MAPE MAE MSE DA

change, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.345% 3.123 51.92 51.52%

187

B Results

1 1.346% 3.126 51.92 51.96%
2 1.349% 3.133 52.41 51.96%

Mean 1.347% 3.127 52.08 51.81%
Mean Rank 1 1 1 1
Sum rank 4

change, open, high, low, volume,
direction, price, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 1.366% 3.17 53.35 50.18%
1 1.361% 3.126 52.06 52.53%
2 1.371% 3.165 53.36 50.34%

Mean 1.366% 3.153 52.92 51.02%
Mean Rank 3 2 2 2
Sum rank 9

change, open, high, low, volume,
direction, price, [160]
0 1.351% 3.183 53.85 49.45%
1 1.387% 3.165 52.76 50.87%
2 1.353% 3.146 53.28 51.56%

Mean 1.364% 3.165 53.3 50.63%
Mean Rank 2 3 3 3
Sum rank 11

change, [160]
0 1.417% 3.165 53.12 49.94%
1 1.413% 3.169 53.49 50.51%
2 1.407% 3.174 53.37 50.55%

Mean 1.412% 3.17 53.33 50.33%
Mean Rank 5 4 4 5
Sum rank 18

change, trendscore, [160]
0 1.421% 3.177 53.86 50.51%

188

B Results

1 1.39% 3.166 52.81 49.7%
2 1.392% 3.21 56.77 51.31%

Mean 1.401% 3.184 54.48 50.51%
Mean Rank 4 5 5 4
Sum rank 18

Table 69: Full table: Price change prediction with context module.

Seed MAPE MAE MSE DA

change, [160]
0 1.369% 3.184 53.89 49.21%
1 1.366% 3.187 53.95 49.09%
2 1.37% 3.158 53.28 49.49%

Mean 1.368% 3.176 53.71 49.27%
Mean Rank 1 1 1 2
Sum rank 5

price, [160]
0 1.952% 4.92 139.0 51.72%
1 1.919% 4.371 101.9 51.27%
2 1.828% 4.331 103.2 50.71%

Mean 1.9% 4.541 114.7 51.23%
Mean Rank 2 2 2 1
Sum rank 7

Table 70: Full table: Comparing using only price to using only price change when predict-
ing the next change.

Seed MAPE MAE MSE DA

change, positive, negative, neutral,
[160]
0 1.344% 3.116 52.24 50.95%
1 1.348% 3.134 52.28 51.84%

189

B Results

2 1.345% 3.118 51.96 51.19%

Mean 1.346% 3.123 52.16 51.33%
Mean Rank 1 1 1 2
Sum rank 5

change, positive_prop, nega-
tive_prop, neutral_prop, [160]
0 1.387% 3.153 53.1 50.51%
1 1.353% 3.14 52.74 51.6%
2 1.352% 3.142 53.05 51.68%

Mean 1.364% 3.145 52.96 51.26%
Mean Rank 2 2 2 3
Sum rank 9

positive, negative, neutral, [160]
0 1.451% 3.393 61.15 50.26%
1 1.377% 3.145 52.18 52.0%
2 1.392% 3.177 52.28 52.32%

Mean 1.407% 3.238 55.2 51.53%
Mean Rank 3 3 4 1
Sum rank 11

positive, negative, neutral, pos-
itive_prop, negative_prop, neu-
tral_prop, [160]
0 1.443% 3.279 55.66 50.38%
1 1.4% 3.158 52.92 51.6%
2 1.412% 3.286 56.95 51.56%

Mean 1.418% 3.241 55.17 51.18%
Mean Rank 4 4 3 4
Sum rank 15

positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.56% 3.426 64.83 50.59%
1 1.502% 3.34 58.89 50.95%
2 1.396% 3.249 56.33 51.47%

190

B Results

Mean 1.486% 3.338 60.02 51.0%
Mean Rank 5 5 5 5
Sum rank 20

Table 71: Full table: Identifying how much each feature subset contributes to the configu-
ration that yielded the best results in Table 28.

Seed MAPE MAE MSE DA

change, positive, negative, [160]
0 1.35% 3.134 52.4 51.92%
1 1.343% 3.115 51.96 51.92%
2 1.345% 3.128 52.05 51.72%

Mean 1.346% 3.126 52.13 51.85%
Mean Rank 1 1 1 1
Sum rank 4

change, positive, [160]
0 1.349% 3.132 52.29 50.95%
1 1.347% 3.126 52.13 51.96%
2 1.346% 3.127 51.99 51.11%

Mean 1.347% 3.129 52.14 51.34%
Mean Rank 2 2 2 3
Sum rank 9

change, positive, neutral, [160]
0 1.347% 3.131 52.2 50.99%
1 1.347% 3.127 52.52 51.76%
2 1.354% 3.135 52.67 52.08%

Mean 1.349% 3.131 52.46 51.61%
Mean Rank 3 3 3 2
Sum rank 11

change, negative, [160]
0 1.349% 3.135 51.9 51.39%
1 1.364% 3.152 53.63 50.51%

191

B Results

2 1.369% 3.144 53.33 50.87%

Mean 1.361% 3.144 52.95 50.92%
Mean Rank 4 4 5 4
Sum rank 17

change, neutral, [160]
0 1.41% 3.17 53.39 50.14%
1 1.434% 3.161 52.5 49.58%
2 1.35% 3.135 52.21 51.76%

Mean 1.398% 3.155 52.7 50.49%
Mean Rank 5 5 4 5
Sum rank 19

Table 72: Full table: Identifying how much each feature subset contributes to the configu-
ration that yielded the best results in Table 29.

Seed MAPE MAE MSE DA

change, positive, trendscore, [160]
0 1.356% 3.151 52.75 51.43%
1 1.349% 3.127 52.13 52.16%
2 1.349% 3.124 52.12 50.75%

Mean 1.351% 3.134 52.34 51.45%
Mean Rank 1 1 1 1
Sum rank 4

Table 73: Full table: Introducing trendscore.

Seed MAPE MAE MSE DA

change, positive, volume, direction,
[160]

1.345% 3.122 52.52 51.8%
1.355% 3.155 53.08 50.55%

192

B Results

1.347% 3.126 52.33 50.95%

Mean 1.349% 3.134 52.64 51.1%
Mean Rank 1 1 1 1
Sum rank 4

change, positive, open, high, low,
price, volume, direction, [160]

1.362% 3.249 56.45 50.91%
1.388% 3.204 54.69 50.63%
1.392% 3.247 56.22 49.58%

Mean 1.381% 3.233 55.79 50.37%
Mean Rank 2 2 2 2
Sum rank 8

change, positive, open, high, low,
price, [160]

1.434% 3.195 53.95 49.45%
1.374% 3.264 56.17 49.01%
1.37% 3.282 57.41 49.74%

Mean 1.393% 3.247 55.84 49.4%
Mean Rank 3 3 3 3
Sum rank 12

Table 74: Full table: Introducing trading data

193

B Results

(a) Results for the NVDA stock, using “change”
and trading data.

(b) Results for the NFLX stock, using “change”
and “trendscore”.

(c) Results for the KO stock, using “change”
only.

Figure 45: Examples showing the mean of the predictions to be slightly above 0.

194

B Results

(a) Results for the NVDA stock, using “change”
and “negative”.

(b) Results for the NFLX stock, using “change”,
“neutral” and “positive”.

(c) Results for the KO stock, using “change”,
“positive” and “negative”.

(d) Results for the DIS stock, using “change”
and “positive”.

Figure 46: Examples showing the added price changes making little difference in predic-
tion. Trained on sentiment divided into smaller subsets.

Seed MAPE MAE MSE DA

change,
open_close_change,
high_close_change,
low_close_change,
[160]
0 1.359% 3.188 56.8 51.15%

195

B Results

1 1.362% 3.172 55.19 52.12%
2 1.359% 3.178 55.55 50.22%

Mean 1.36% 3.179 55.85 51.16%
Mean Rank 1 2 3 1
Sum rank 7

change, trend-
score_change, [160]
0 1.375% 3.157 53.52 50.14%
1 1.403% 3.172 53.43 49.9%
2 1.348% 3.136 51.98 51.03%

Mean 1.375% 3.155 52.97 50.36%
Mean Rank 2 1 1 3
Sum rank 7

change, open, high,
low, volume, di-
rection, price,
open_close_change,
high_close_change,
low_close_change,
[160]
0 1.427% 3.223 55.85 49.41%
1 1.352% 3.136 53.44 51.84%
2 1.362% 3.199 54.32 50.67%

Mean 1.38% 3.186 54.54 50.64%
Mean Rank 3 3 2 2
Sum rank 10

Table 75: Full table: Using price differences between open, low and high, and close price
or trendscore change.

196

B Results

Figure 47: Using price differences between open, low and high, and close price or trend-
score change

B.7 Additional experiment: Predicting next price change using several time steps

Seed MAPE MAE MSE DA

197

B Results

change, open, high, low, volume,
direction, price, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
prev_change_0, prev_open_0,
prev_high_0, prev_low_0,
prev_volume_0, prev_direction_0,
prev_price_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_trendscore_0,
prev_change_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_price_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1,
prev_trendscore_1, [160]
0 1.356% 3.136 52.31 51.03%
1 1.352% 3.119 51.95 51.23%
2 1.35% 3.122 52.44 51.72%

Mean 1.353% 3.126 52.23 51.33%
Mean Rank 2 1 2 1
Sum rank 6

change, open, high, low, volume,
direction, price, prev_change_0,
prev_open_0, prev_high_0,
prev_low_0, prev_volume_0,
prev_direction_0, prev_price_0,
prev_change_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_price_1, [160]

198

B Results

0 1.352% 3.135 51.83 49.98%
1 1.351% 3.131 51.95 51.52%
2 1.359% 3.139 51.61 51.35%

Mean 1.354% 3.135 51.8 50.95%
Mean Rank 3 2 1 2
Sum rank 8

change, positive, prev_change_0,
prev_positive_0, prev_change_1,
prev_positive_1, [160]
0 1.353% 3.167 52.78 48.12%
1 1.351% 3.137 52.52 50.87%
2 1.348% 3.123 52.22 50.59%

Mean 1.35% 3.142 52.51 49.86%
Mean Rank 1 3 3 5
Sum rank 12

change, positive, negative,
neutral, positive_prop, neg-
ative_prop, neutral_prop,
prev_change_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_change_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1, [160]
0 1.363% 3.178 53.65 50.1%
1 1.361% 3.162 53.4 50.71%
2 1.365% 3.161 53.42 51.03%

Mean 1.363% 3.167 53.49 50.61%
Mean Rank 4 4 4 3
Sum rank 15

199

B Results

change, trendscore,
prev_change_0, prev_trendscore_0,
prev_change_1, prev_trendscore_1,
[160]
0 1.39% 3.211 54.84 49.9%
1 1.378% 3.159 52.81 49.74%
2 1.39% 3.183 53.33 50.1%

Mean 1.386% 3.185 53.66 49.91%
Mean Rank 5 5 5 4
Sum rank 19

Table 76: Full table: Using several time steps

Figure 48: Predicting next change when using change[0-2] and trendscore[0-2]

200

B Results

B.8 Additional experiment: Predicting price change for one stock at a time

Seed MAPE MAE MSE DA

trendscore, [160]
0 1.058% 1.836 6.024 56.36%
1 1.005% 1.743 5.743 61.21%
2 1.01% 1.752 5.729 54.55%

Mean 1.025% 1.777 5.832 57.37%
Mean Rank 4 4 1 1
Sum rank 10

change, [160]
0 1.019% 1.766 5.816 52.12%
1 1.027% 1.779 5.868 44.85%
2 1.023% 1.772 5.845 50.3%

Mean 1.023% 1.772 5.843 49.09%
Mean Rank 1 1 2 7
Sum rank 11

201

B Results

price, open, high, low, volume,
direction, change, positive, neg-
ative, neutral, positive_prop,
negative_prop, neutral_prop, trend-
score, prev_price_0, prev_open_0,
prev_high_0, prev_low_0,
prev_volume_0, prev_direction_0,
prev_change_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_trendscore_0,
prev_price_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_change_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1,
prev_trendscore_1, [160]
0 1.014% 1.756 5.808 56.97%
1 1.025% 1.775 5.859 51.52%
2 1.033% 1.791 5.961 53.94%

Mean 1.024% 1.774 5.876 54.14%
Mean Rank 3 2 4 2
Sum rank 11

change, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.021% 1.77 5.846 50.91%
1 1.025% 1.777 5.861 48.48%
2 1.025% 1.777 5.867 50.3%

Mean 1.024% 1.775 5.858 49.9%
Mean Rank 2 3 3 6

202

B Results

Sum rank 14

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 1.032% 1.79 5.894 51.52%
1 1.021% 1.77 5.85 53.94%
2 1.039% 1.801 5.934 47.88%

Mean 1.031% 1.787 5.893 51.11%
Mean Rank 5 5 5 5
Sum rank 20

change, trendscore, [160]
0 1.035% 1.794 5.907 49.7%
1 1.025% 1.777 5.839 50.91%
2 1.049% 1.818 6.027 58.79%

Mean 1.036% 1.796 5.924 53.13%
Mean Rank 6 6 6 3
Sum rank 21

change, open, high, low, volume,
direction, price, [160]
0 1.067% 1.85 6.314 52.12%
1 1.039% 1.8 6.008 50.3%
2 1.026% 1.778 5.951 51.52%

Mean 1.044% 1.809 6.091 51.31%
Mean Rank 7 7 7 4
Sum rank 25

Table 77: Full table: Feature search on the AAPL stock

Seed MAPE MAE MSE DA

change, [160]
0 1.288% 2.292 10.59 56.36%

203

B Results

1 1.287% 2.292 10.58 57.58%
2 1.288% 2.293 10.59 57.58%

Mean 1.288% 2.292 10.58 57.17%
Mean Rank 1 1 3 2
Sum rank 7

change, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.291% 2.298 10.6 61.21%
1 1.287% 2.29 10.56 64.24%
2 1.287% 2.291 10.56 60.0%

Mean 1.288% 2.293 10.57 61.82%
Mean Rank 2 2 2 1
Sum rank 7

change, trendscore, [160]
0 1.299% 2.308 10.46 53.94%
1 1.291% 2.295 10.43 53.33%
2 1.314% 2.334 10.9 50.3%

Mean 1.301% 2.312 10.6 52.53%
Mean Rank 4 4 4 5
Sum rank 17

price, open, high, low, volume, di-
rection, change, [160]
0 1.299% 2.311 10.79 52.73%
1 1.297% 2.307 10.85 53.33%
2 1.299% 2.311 10.77 53.33%

Mean 1.298% 2.31 10.8 53.13%
Mean Rank 3 3 7 4
Sum rank 17

trendscore, [160]
0 1.302% 2.318 10.38 48.48%
1 1.305% 2.323 10.56 52.12%
2 1.304% 2.321 10.48 50.3%

204

B Results

Mean 1.304% 2.321 10.47 50.3%
Mean Rank 5 5 1 7
Sum rank 18

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 1.305% 2.322 10.71 51.52%
1 1.304% 2.319 10.79 56.36%
2 1.313% 2.337 10.76 53.33%

Mean 1.307% 2.326 10.75 53.74%
Mean Rank 6 6 5 3
Sum rank 20

price, open, high, low, volume,
direction, change, positive, neg-
ative, neutral, positive_prop,
negative_prop, neutral_prop, trend-
score, prev_price_0, prev_open_0,
prev_high_0, prev_low_0,
prev_volume_0, prev_direction_0,
prev_change_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_trendscore_0,
prev_price_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_change_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1,
prev_trendscore_1, [160]
0 1.321% 2.35 10.71 51.52%

205

B Results

1 1.316% 2.341 10.61 50.91%
2 1.313% 2.336 10.98 49.7%

Mean 1.317% 2.342 10.77 50.71%
Mean Rank 7 7 6 6
Sum rank 26

Table 78: Full table: Feature search on the FB stock

Seed MAPE MAE MSE DA

price, open, high, low, volume, di-
rection, change, [160]
0 0.9412% 1.735 5.925 55.15%
1 0.9413% 1.735 5.923 53.94%
2 0.9408% 1.734 5.922 53.94%

Mean 0.9411% 1.735 5.924 54.34%
Mean Rank 1 1 2 3
Sum rank 7

206

B Results

price, open, high, low, volume,
direction, change, positive, neg-
ative, neutral, positive_prop,
negative_prop, neutral_prop, trend-
score, prev_price_0, prev_open_0,
prev_high_0, prev_low_0,
prev_volume_0, prev_direction_0,
prev_change_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_trendscore_0,
prev_price_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_change_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1,
prev_trendscore_1, [160]
0 0.9419% 1.736 5.913 55.76%
1 0.9384% 1.73 5.882 57.58%
2 0.9436% 1.738 5.965 53.94%

Mean 0.9413% 1.735 5.92 55.76%
Mean Rank 2 2 1 2
Sum rank 7

change, [160]
0 0.9477% 1.747 5.971 53.94%
1 0.9414% 1.735 5.907 54.55%
2 0.9397% 1.732 5.904 53.33%

Mean 0.9429% 1.738 5.927 53.94%
Mean Rank 3 3 3 4
Sum rank 13

207

B Results

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 0.9423% 1.737 5.951 59.39%
1 0.9445% 1.741 5.98 57.58%
2 0.9453% 1.742 5.985 60.0%

Mean 0.944% 1.74 5.972 58.99%
Mean Rank 4 4 4 1
Sum rank 13

change, trendscore, [160]
0 0.9455% 1.743 5.977 50.3%
1 0.9444% 1.741 5.964 49.7%
2 0.9464% 1.744 5.994 52.12%

Mean 0.9454% 1.743 5.978 50.71%
Mean Rank 5 5 5 5
Sum rank 20

change, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 0.9523% 1.759 6.054 48.48%
1 0.9506% 1.752 6.022 53.94%
2 0.9591% 1.77 6.082 46.06%

Mean 0.954% 1.761 6.053 49.49%
Mean Rank 6 6 6 6
Sum rank 24

trendscore, [160]
0 0.9483% 1.748 5.961 50.91%
1 0.9396% 1.733 5.881 56.36%
2 0.9907% 1.82 6.403 44.85%

Mean 0.9595% 1.767 6.082 50.71%
Mean Rank 7 7 7 5

208

B Results

Sum rank 26

Table 79: Full table: Feature search on the HD stock

B.9 Summary and evaluation on the test set

Seed MAPE MAE MSE DA

price, trendscore, [160]
0 1.356% 3.181 54.0 51.56%
1 1.348% 3.125 51.32 52.2%
2 1.358% 3.157 52.24 52.08%

Mean 1.354% 3.154 52.52 51.95%
Mean Rank 1 1 1 2
Sum rank 5

price, positive, [160]
0 1.352% 3.149 53.56 52.0%
1 1.357% 3.154 52.59 52.16%
2 1.359% 3.163 52.35 53.21%

Mean 1.356% 3.155 52.84 52.46%
Mean Rank 2 2 2 1
Sum rank 7

price, [160]
0 1.355% 3.202 53.43 51.88%
1 1.348% 3.14 52.49 51.92%
2 1.369% 3.332 58.2 50.75%

Mean 1.358% 3.225 54.71 51.52%
Mean Rank 3 3 3 3
Sum rank 12

price, open, high, low, volume, di-
rection, change, [160]
0 1.365% 3.257 56.57 51.03%
1 1.364% 3.257 58.38 50.71%

209

B Results

2 1.367% 3.268 60.15 52.4%

Mean 1.365% 3.26 58.37 51.38%
Mean Rank 4 4 4 4
Sum rank 16

Table 80: Full table: Predicting next price without context on the validation set

Seed MAPE MAE MSE DA

price, positive, [160]
0 1.691% 4.627 149.5 51.64%
1 1.693% 4.528 148.4 50.87%
2 1.68% 4.51 141.5 51.64%

Mean 1.688% 4.555 146.5 51.38%
Mean Rank 3 1 1 3
Sum rank 8

price, trendscore, [160]
0 1.684% 4.571 149.9 52.16%
1 1.695% 4.578 152.1 51.72%
2 1.684% 4.546 147.4 52.16%

Mean 1.688% 4.565 149.8 52.01%
Mean Rank 2 2 3 2
Sum rank 9

price, open, high, low, volume, di-
rection, change, [160]
0 1.679% 4.584 148.9 53.98%
1 1.695% 4.62 147.7 53.9%
2 1.71% 4.656 150.9 53.09%

Mean 1.695% 4.62 149.2 53.66%
Mean Rank 4 3 2 1
Sum rank 10

price, [160]
0 1.669% 4.546 146.1 50.34%

210

B Results

1 1.669% 4.469 143.5 51.52%
2 1.709% 4.938 169.0 50.87%

Mean 1.682% 4.651 152.8 50.91%
Mean Rank 1 4 4 4
Sum rank 13

Table 81: Full table: Predicting next price without context on the test set

Seed MAPE MAE MSE DA

change, [160]
0 1.355% 3.158 52.3 50.63%
1 1.348% 3.13 52.56 51.07%
2 1.352% 3.131 52.68 51.8%

Mean 1.352% 3.139 52.52 51.16%
Mean Rank 2 1 2 2
Sum rank 7

change, positive, [160]
0 1.346% 3.137 52.21 49.29%
1 1.348% 3.15 52.33 50.59%
2 1.344% 3.131 51.93 51.15%

Mean 1.346% 3.14 52.16 50.34%
Mean Rank 1 2 1 4
Sum rank 8

change, trendscore, [160]
0 1.407% 3.174 54.34 50.99%
1 1.348% 3.134 52.4 52.0%
2 1.352% 3.116 51.89 52.16%

Mean 1.369% 3.141 52.88 51.72%
Mean Rank 4 3 3 1
Sum rank 11

price, open, high, low, volume, di-
rection, change, [160]

211

B Results

0 1.363% 3.2 56.7 50.1%
1 1.371% 3.164 54.0 50.42%
2 1.341% 3.099 52.74 51.92%

Mean 1.359% 3.154 54.48 50.81%
Mean Rank 3 4 4 3
Sum rank 14

Table 82: Full table: Predicting next price change without context on the validation set

Seed MAPE MAE MSE DA

change, positive, [160]
0 1.665% 4.449 144.3 50.34%
1 1.666% 4.441 143.9 50.87%
2 1.661% 4.438 143.7 51.68%

Mean 1.664% 4.443 144.0 50.96%
Mean Rank 1 1 1 3
Sum rank 6

change, [160]
0 1.679% 4.451 143.6 50.51%
1 1.666% 4.447 145.7 50.79%
2 1.671% 4.456 145.5 50.63%

Mean 1.672% 4.451 145.0 50.64%
Mean Rank 2 2 2 4
Sum rank 10

change, trendscore, [160]
0 1.71% 4.531 150.1 51.35%
1 1.669% 4.54 151.1 51.6%
2 1.667% 4.441 144.5 50.26%

Mean 1.682% 4.504 148.6 51.07%
Mean Rank 3 3 3 2
Sum rank 11

212

B Results

price, open, high, low, volume, di-
rection, change, [160]
0 1.723% 4.762 170.2 50.87%
1 1.677% 4.445 143.4 51.39%
2 1.706% 4.519 151.2 51.84%

Mean 1.702% 4.575 154.9 51.37%
Mean Rank 4 4 4 1
Sum rank 13

Table 83: Full table: Predicting next price change without context on the test set

Seed MAPE MAE MSE DA

price, trendscore, [160]
0 1.347% 3.143 51.91 52.24%
1 1.347% 3.141 51.67 52.04%
2 1.346% 3.143 51.79 52.53%

Mean 1.347% 3.142 51.79 52.27%
Mean Rank 1 1 1 2
Sum rank 5

price, positive, [160]
0 1.355% 3.138 53.66 52.93%
1 1.349% 3.153 52.77 52.24%
2 1.347% 3.154 52.27 52.16%

Mean 1.35% 3.149 52.9 52.44%
Mean Rank 3 2 3 1
Sum rank 9

price, [160]
0 1.347% 3.166 52.8 51.84%
1 1.348% 3.163 52.79 51.31%
2 1.347% 3.158 52.48 51.72%

Mean 1.347% 3.162 52.69 51.62%
Mean Rank 2 3 2 3

213

B Results

Sum rank 10

price, open, high, low, volume, di-
rection, change, [160]
0 1.372% 3.197 55.0 50.67%
1 1.367% 3.233 58.21 50.06%
2 1.369% 3.225 58.13 50.14%

Mean 1.369% 3.218 57.12 50.29%
Mean Rank 4 4 4 4
Sum rank 16

Table 84: Full table: Predicting next price using context on the validation set

Seed MAPE MAE MSE DA

price, [160]
0 1.662% 4.45 143.0 51.68%
1 1.662% 4.468 143.1 50.38%
2 1.662% 4.451 143.3 50.18%

Mean 1.662% 4.456 143.1 50.75%
Mean Rank 1 1 1 4
Sum rank 7

price, trendscore, [160]
0 1.665% 4.473 145.3 50.91%
1 1.663% 4.449 141.9 52.36%
2 1.664% 4.457 142.4 52.77%

Mean 1.664% 4.459 143.2 52.01%
Mean Rank 2 2 2 2
Sum rank 8

price, positive, [160]
0 1.683% 4.523 148.2 51.72%
1 1.673% 4.479 141.2 51.52%
2 1.668% 4.461 142.5 50.79%

Mean 1.675% 4.488 144.0 51.34%

214

B Results

Mean Rank 3 3 3 3
Sum rank 12

price, open, high, low, volume, di-
rection, change, [160]
0 1.694% 4.621 156.9 52.53%
1 1.687% 4.521 151.3 53.45%
2 1.704% 4.671 161.2 53.49%

Mean 1.695% 4.604 156.5 53.16%
Mean Rank 4 4 4 1
Sum rank 13

Table 85: Full table: Predicting next price using context on the test set

Seed MAPE MAE MSE DA

change, positive, [160]
0 1.346% 3.122 52.58 52.16%
1 1.343% 3.112 51.84 51.68%
2 1.342% 3.121 51.51 53.01%

Mean 1.344% 3.118 51.98 52.28%
Mean Rank 1 1 1 1
Sum rank 4

change, trendscore, [160]
0 1.353% 3.132 51.95 51.15%
1 1.391% 3.177 54.96 50.38%
2 1.35% 3.126 51.61 51.88%

Mean 1.365% 3.145 52.84 51.14%
Mean Rank 3 2 3 2
Sum rank 10

change, [160]
0 1.349% 3.128 52.41 51.88%
1 1.415% 3.173 53.3 50.42%
2 1.353% 3.142 51.89 50.99%

215

B Results

Mean 1.372% 3.148 52.53 51.1%
Mean Rank 4 3 2 3
Sum rank 12

price, open, high, low, volume, di-
rection, change, [160]
0 1.36% 3.204 55.08 48.65%
1 1.349% 3.131 52.57 51.03%
2 1.377% 3.147 52.92 51.64%

Mean 1.362% 3.161 53.52 50.44%
Mean Rank 2 4 4 4
Sum rank 14

Table 86: Full table: Predicting next price change using context on the validation set

Seed MAPE MAE MSE DA

change, positive, [160]
0 1.667% 4.46 145.5 51.27%
1 1.665% 4.448 144.6 51.27%
2 1.668% 4.452 144.0 50.3%

Mean 1.667% 4.453 144.7 50.95%
Mean Rank 1 1 1 1
Sum rank 4

change, [160]
0 1.668% 4.458 145.7 50.22%
1 1.734% 4.499 145.7 50.67%
2 1.683% 4.453 144.1 50.18%

Mean 1.695% 4.47 145.2 50.36%
Mean Rank 3 2 2 4
Sum rank 11

change, trendscore, [160]
0 1.68% 4.464 144.6 49.78%
1 1.707% 4.536 150.3 50.67%

216

B Results

2 1.672% 4.465 145.0 50.71%

Mean 1.686% 4.488 146.6 50.38%
Mean Rank 2 3 4 3
Sum rank 12

price, open, high, low, volume, di-
rection, change, [160]
0 1.68% 4.526 146.6 49.66%
1 1.68% 4.504 149.0 50.14%
2 1.729% 4.447 144.1 51.84%

Mean 1.696% 4.492 146.6 50.55%
Mean Rank 4 4 3 2
Sum rank 13

Table 87: Full table: Predicting next price change using context on the test set

Seed MAPE MAE MSE DA

change, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.49% 2.806 15.57 53.33%
1 1.487% 2.799 15.5 52.12%
2 1.49% 2.805 15.56 51.52%

Mean 1.489% 2.803 15.54 52.32%
Mean Rank 1 1 1 2
Sum rank 5

change, [160]
0 1.491% 2.81 15.66 43.64%
1 1.494% 2.812 15.59 50.91%
2 1.49% 2.806 15.55 49.7%

Mean 1.492% 2.809 15.6 48.08%
Mean Rank 2 2 2 6
Sum rank 12

217

B Results

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 1.496% 2.821 15.72 48.48%
1 1.49% 2.807 15.62 53.94%
2 1.492% 2.817 15.63 53.33%

Mean 1.493% 2.815 15.65 51.92%
Mean Rank 3 3 3 3
Sum rank 12

change, trendscore, [160]
0 1.519% 2.856 16.66 55.15%
1 1.489% 2.805 15.82 53.33%
2 1.611% 3.007 18.22 51.52%

Mean 1.54% 2.889 16.9 53.33%
Mean Rank 6 5 6 1
Sum rank 18

218

B Results

price, open, high, low, volume,
direction, change, positive, neg-
ative, neutral, positive_prop,
negative_prop, neutral_prop, trend-
score, prev_price_0, prev_open_0,
prev_high_0, prev_low_0,
prev_volume_0, prev_direction_0,
prev_change_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_trendscore_0,
prev_price_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_change_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1,
prev_trendscore_1, [160]
0 1.491% 2.813 15.56 42.42%
1 1.542% 2.924 16.11 50.30%
2 1.496% 2.819 15.79 50.91%

Mean 1.51% 2.852 15.82 47.88%
Mean Rank 4 4 4 7
Sum rank 19

change, open, high, low, volume,
direction, price, [160]
0 1.623% 3.070 16.93 48.48%
1 1.493% 2.810 15.63 54.55%
2 1.498% 2.823 15.52 47.88%

Mean 1.538% 2.901 16.03 50.30%
Mean Rank 5 6 5 4
Sum rank 20

219

B Results

trendscore, [160]
0 1.754% 3.300 21.48 46.67%
1 1.488% 2.798 15.76 54.55%
2 1.557% 2.926 17.16 45.45%

Mean 1.6% 3.008 18.13 48.89%
Mean Rank 7 7 7 5
Sum rank 26

Table 88: Full table: Predicting next price change on the test set for AAPL stock

Seed MAPE MAE MSE DA

change, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 1.693% 2.657 20.98 55.15%
1 1.697% 2.664 21.05 52.73%
2 1.695% 2.66 21.01 50.91%

Mean 1.695% 2.661 21.01 52.93%
Mean Rank 1 1 1 1
Sum rank 4

change, [160]
0 1.713% 2.69 21.33 52.12%
1 1.709% 2.684 21.29 52.73%
2 1.713% 2.691 21.34 51.52%

Mean 1.712% 2.688 21.32 52.12%
Mean Rank 3 3 2 2
Sum rank 10

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 1.7% 2.667 21.4 50.91%

220

B Results

1 1.703% 2.669 21.32 53.94%
2 1.71% 2.681 21.47 50.3%

Mean 1.704% 2.673 21.4 51.72%
Mean Rank 2 2 3 4
Sum rank 11

price, open, high, low, volume, di-
rection, change, [160]
0 1.711% 2.684 21.51 49.7%
1 1.722% 2.7 21.7 48.48%
2 1.709% 2.68 21.44 50.3%

Mean 1.714% 2.688 21.55 49.49%
Mean Rank 4 4 4 5
Sum rank 17

price, open, high, low, volume,
direction, change, positive, neg-
ative, neutral, positive_prop,
negative_prop, neutral_prop, trend-
score, prev_price_0, prev_open_0,
prev_high_0, prev_low_0,
prev_volume_0, prev_direction_0,
prev_change_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_trendscore_0,
prev_price_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_change_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1,
prev_trendscore_1, [160]
0 1.728% 2.709 21.47 51.52%

221

B Results

1 1.756% 2.751 21.88 48.48%
2 1.694% 2.655 21.41 55.76%

Mean 1.726% 2.705 21.58 51.92%
Mean Rank 5 5 5 3
Sum rank 18

change, trendscore, [160]
0 1.776% 2.785 22.33 52.73%
1 1.8% 2.823 22.62 52.12%
2 1.726% 2.702 21.8 53.94%

Mean 1.767% 2.77 22.25 52.93%
Mean Rank 7 7 7 1
Sum rank 22

trendscore, [160]
0 1.755% 2.758 22.12 48.48%
1 1.714% 2.688 21.4 49.09%
2 1.721% 2.702 22.11 50.3%

Mean 1.73% 2.716 21.88 49.29%
Mean Rank 6 6 6 6
Sum rank 24

Table 89: Full table: Predicting next price change on the test set for FB stock

Seed MAPE MAE MSE DA

price, open, high, low, volume,
direction, change, positive, nega-
tive, neutral, positive_prop, nega-
tive_prop, neutral_prop, trendscore,
[160]
0 0.9761% 1.801 6.234 49.7%
1 0.9778% 1.804 6.253 49.09%
2 0.9751% 1.798 6.244 48.48%

Mean 0.9764% 1.801 6.244 49.09%
Mean Rank 1 1 2 4

222

B Results

Sum rank 8

price, open, high, low, volume, di-
rection, change, [160]
0 0.9862% 1.818 6.301 52.12%
1 0.9853% 1.817 6.299 52.73%
2 0.9828% 1.812 6.292 53.33%

Mean 0.9848% 1.816 6.297 52.73%
Mean Rank 3 3 4 1
Sum rank 11

change, trendscore, [160]
0 0.9789% 1.806 6.176 45.45%
1 0.98% 1.808 6.178 47.27%
2 0.9791% 1.806 6.19 47.27%

Mean 0.9794% 1.807 6.182 46.67%
Mean Rank 2 2 1 7
Sum rank 12

223

B Results

price, open, high, low, volume,
direction, change, positive, neg-
ative, neutral, positive_prop,
negative_prop, neutral_prop, trend-
score, prev_price_0, prev_open_0,
prev_high_0, prev_low_0,
prev_volume_0, prev_direction_0,
prev_change_0, prev_positive_0,
prev_negative_0, prev_neutral_0,
prev_positive_prop_0,
prev_negative_prop_0,
prev_neutral_prop_0,
prev_trendscore_0,
prev_price_1, prev_open_1,
prev_high_1, prev_low_1,
prev_volume_1, prev_direction_1,
prev_change_1, prev_positive_1,
prev_negative_1, prev_neutral_1,
prev_positive_prop_1,
prev_negative_prop_1,
prev_neutral_prop_1,
prev_trendscore_1, [160]
0 0.9827% 1.812 6.301 48.48%
1 0.9873% 1.822 6.320 48.48%
2 0.9864% 1.819 6.313 52.73%

Mean 0.9854% 1.818 6.311 49.9%
Mean Rank 4 4 5 3
Sum rank 16

change, [160]
0 0.9893% 1.823 6.259 50.91%
1 0.9915% 1.828 6.274 47.88%
2 0.988% 1.822 6.254 47.88%

Mean 0.9896% 1.824 6.262 48.89%
Mean Rank 5 5 3 5
Sum rank 18

224

B Results

change, positive, negative, neutral,
positive_prop, negative_prop, neu-
tral_prop, [160]
0 0.9986% 1.844 6.331 50.91%
1 0.9778% 1.803 6.238 52.73%
2 1.022% 1.883 6.589 47.27%

Mean 0.9994% 1.843 6.386 50.3%
Mean Rank 6 6 6 2
Sum rank 20

trendscore, [160]
0 0.9829% 1.814 6.224 49.69%
1 0.9968% 1.838 6.374 47.88%
2 1.06% 1.961 6.752 46.67%

Mean 1.013% 1.871 6.45 48.08%
Mean Rank 7 7 7 6
Sum rank 27

Table 90: Full table: Predicting next price change on the test set for HD stock

225

C Discussion

C Discussion

C.1 Using different data to improve prediction

(a) Using “price” only. (b) Using all trading data.

(c) Using “price” and “trendscore”.

Figure 49: Examples showing the LSTM model with context module predicting with dif-
ferent feature subsets on the INTC stock.

C.2 Comparing the LSTM models to the baseline models

DA

226

C Discussion

52.96%, 52.88%, 52.80%, 52.56%, 52.56%, 52.52%, 52.32%, 52.24%, 52.24%,
52.20%, 52.20%, 52.12%, 52.12%, 52.12%, 52.0%, 52.04%, 52.04%, 52.04%, 51.99%,
51.99%, 51.99%, 51.95%, 51.95%, 51.95%, 51.91%, 51.91%, 51.91%, 51.91%,
51.87%, 51.83%, 51.83%, 51.83%, 51.83%, 51.83%, 51.79%, 51.79%, 51.75%,
51.75%, 51.75%, 51.75%, 51.75%, 51.75%, 51.71%, 51.71%, 51.71%, 51.71%,
51.71%, 51.67%, 51.67%, 51.67%, 51.67%, 51.67%, 51.63%, 51.63%, 51.59%,
51.59%, 51.59%, 51.59%, 51.55%, 51.55%, 51.55%, 51.55%, 51.55%, 51.55%,
51.55%, 51.51%, 51.51%, 51.51%, 51.51%, 51.47%, 51.47%, 51.47%, 51.47%,
51.47%, 51.47%

Table 91: The top DA results related to the random model over 1000 runs. Only the results
that are superior to the baseline DA are selected

MSE
139.9, 140.2, 140.7, 140.7, 140.8, 140.9, 141.0, 141.0, 141.1, 141.2, 141.2, 141.3, 141.3,
141.3, 141.3, 141.3, 141.3, 141.3, 141.4, 141.4, 141.5, 141.5, 141.6, 141.6, 141.6, 141.6,
141.6, 141.6, 141.6, 141.7, 141.7, 141.7, 141.7, 141.7, 141.7, 141.7, 141.7, 141.7, 141.8,
141.8, 141.8, 141.8, 141.8, 141.9, 141.9, 141.9, 141.9, 141.9, 141.9, 141.9, 142.0, 142.0,
142.0, 142.0, 142.0, 142.0, 142.0, 142.0, 142.0, 142.0, 142.0, 142.1, 142.1, 142.1, 142.1,
142.1, 142.1, 142.1, 142.1, 142.1, 142.1, 142.1, 142.1, 142.2, 142.2, 142.2, 142.2, 142.2,
142.2, 142.2, 142.2, 142.2, 142.3, 142.3, 142.3, 142.3, 142.3, 142.3, 142.3, 142.3, 142.3,
142.3, 142.3, 142.3, 142.3, 142.4, 142.4, 142.4, 142.4, 142.4, 142.4, 142.4, 142.4, 142.4,
142.4, 142.4, 142.4, 142.4, 142.5, 142.5, 142.5, 142.5, 142.5, 142.5, 142.5, 142.5, 142.5,
142.5, 142.5, 142.5, 142.5, 142.5, 142.5, 142.5, 142.5, 142.6, 142.6, 142.6, 142.6, 142.6,
142.6, 142.6, 142.6, 142.6, 142.6, 142.6, 142.6, 142.6, 142.6, 142.6, 142.6, 142.6, 142.6,
142.6, 142.6, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7,
142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.7, 142.8,
142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8,
142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.8, 142.9, 142.9, 142.9,
142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9,
142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 142.9, 143.0, 143.0,
143.0, 143.0, 143.0, 143.0, 143.0, 143.0, 143.0, 143.0, 143.0, 143.0, 143.0, 143.0, 143.0,
143.0, 143.0, 143.0, 143.0, 143.0, 143.0, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1,
143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.1,
143.1, 143.1, 143.1, 143.1, 143.1, 143.1, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2,
143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2, 143.2,
143.2, 143.2, 143.2, 143.2

227

C Discussion

Table 92: The top MSE results related to the random model over 1000 runs. Only the
results that are superior to the baseline MSE are selected

DA
62.42%, 61.21%, 60.60%, 60.0%, 60.0%, 60.0%, 60.0%, 60.0%, 59.39%, 59.39%,
59.39%, 58.18%, 58.18%, 58.18%, 58.18%, 58.18%, 58.18%, 58.18%, 57.57%,
57.57%, 57.57%, 57.57%, 57.57%, 57.57%, 57.57%, 57.57%, 57.57%, 57.57%,
57.57%, 57.57%, 56.96%, 56.96%, 56.96%, 56.96%, 56.96%, 56.96%, 56.96%,
56.96%, 56.96%, 56.96%, 56.96%, 56.96%, 56.96%, 56.96%, 56.36%, 56.36%,
56.36%, 56.36%, 56.36%, 56.36%, 56.36%, 56.36%, 56.36%, 56.36%, 56.36%,
56.36%, 56.36%, 56.36%, 56.36%, 56.36%, 56.36%, 55.75%, 55.75%, 55.75%,
55.75%, 55.75%, 55.75%, 55.75%, 55.75%, 55.75%, 55.75%, 55.75%, 55.75%,
55.75%, 55.75%, 55.75%, 55.75%, 55.75%, 55.75%, 55.75%, 55.75%, 55.15%,
55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 55.15%,
55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 55.15%,
55.15%, 55.15%, 55.15%, 55.15%, 55.15%, 54.54%, 54.54%, 54.54%, 54.54%,
54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%,
54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%,
54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 54.54%, 53.93%, 53.93%,
53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%,
53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%,
53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%,
53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%, 53.93%,
53.93%, 53.93%, 53.93%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%,
53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%,
53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%,
53.33%,

228

C Discussion

53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%,
53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 53.33%, 52.72%,
52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%,
52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%,
52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%,
52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%,
52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.72%,
52.72%, 52.72%, 52.72%, 52.72%, 52.72%, 52.12%, 52.12%, 52.12%, 52.12%,
52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%,
52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%,
52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%,
52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%,
52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.12%,
52.12%, 52.12%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.51%, 51.51%, 51.51%, 51.51%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%,
50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%,
50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%,
50.90%, 50.90%, 50.90%, 50.90%

229

C Discussion

50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%,
50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%,
50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%,
50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.90%, 50.30%,
50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%,
50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%,
50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%,
50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%,
50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%,
50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%,
50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%, 50.30%,
50.30%, 50.30%, 50.30%, 50.30%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%,
49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%,
49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%,
49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%,
49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%,
49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%,
49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%, 49.69%,
49.69%, 49.69%, 49.69%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%,
49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%,
49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%,
49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%,
49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%,
49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 49.09%, 48.48%, 48.48%,
48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%,
48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%,
48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%,
48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%,
48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%, 48.48%,
48.48%, 48.48%, 48.48%, 48.48%, 48.48%

Table 93: The top DA results related to the random model over 1000 runs on the Facebook
stock. Only the results that are superior to the baseline DA are selected

MSE

230

C Discussion

20.36, 20.47, 20.48, 20.57, 20.64, 20.65, 20.67, 20.73, 20.73, 20.74, 20.74, 20.75, 20.75,
20.75, 20.76, 20.77, 20.77, 20.78, 20.78, 20.79, 20.79, 20.80, 20.81, 20.82, 20.82, 20.82,
20.83, 20.83, 20.83, 20.85, 20.86, 20.86, 20.86, 20.87, 20.88, 20.88, 20.88, 20.89, 20.91,
20.91, 20.91, 20.91, 20.91, 20.92, 20.92, 20.92, 20.92, 20.92, 20.92, 20.93, 20.93, 20.94,
20.95, 20.95, 20.95, 20.95, 20.95, 20.95, 20.96, 20.96, 20.96, 20.96, 20.96, 20.96, 20.96,
20.97, 20.97, 20.97, 20.97, 20.98, 20.98, 20.98, 20.98, 20.99, 20.99, 20.99, 20.99, 20.99,
20.99, 20.99, 20.99, 21.00, 21.00, 21.00, 21.00, 21.00, 21.00, 21.01, 21.01, 21.01, 21.02,
21.02, 21.02, 21.03, 21.03, 21.03, 21.03, 21.04, 21.04, 21.04, 21.05, 21.05, 21.05, 21.05,
21.05, 21.06, 21.06, 21.06, 21.06, 21.06, 21.07, 21.07, 21.07, 21.07, 21.08, 21.08, 21.08,
21.08, 21.09, 21.09, 21.09, 21.09, 21.09, 21.09, 21.09, 21.09, 21.10, 21.10, 21.10, 21.10,
21.10, 21.10, 21.10, 21.10, 21.11, 21.11, 21.11, 21.11, 21.11, 21.11, 21.11, 21.12, 21.12,
21.12, 21.12, 21.12, 21.12, 21.12, 21.12, 21.13, 21.13, 21.13, 21.13, 21.13, 21.13, 21.14,
21.14, 21.14, 21.14, 21.14, 21.14, 21.15, 21.15, 21.15, 21.15, 21.16, 21.16, 21.16, 21.16,
21.16, 21.16, 21.17, 21.17, 21.17, 21.17, 21.17, 21.18, 21.18, 21.18, 21.18, 21.18, 21.18,
21.18, 21.18, 21.18, 21.18, 21.19, 21.19, 21.19, 21.19, 21.19, 21.19, 21.19, 21.19, 21.19,
21.19, 21.19, 21.19, 21.20, 21.20, 21.20, 21.20, 21.20, 21.21, 21.21, 21.21, 21.21, 21.21,
21.21, 21.21, 21.21, 21.21, 21.21, 21.22, 21.22, 21.22, 21.22, 21.22, 21.22, 21.22, 21.23,
21.23, 21.23, 21.23, 21.23, 21.23, 21.23, 21.23, 21.24, 21.24, 21.24, 21.24, 21.24, 21.24,
21.24, 21.24, 21.24, 21.24, 21.25, 21.25, 21.25, 21.25, 21.25, 21.25, 21.25, 21.26, 21.26,
21.26, 21.26, 21.26, 21.26

Table 94: The top MSE results related to the random model over 1000 runs on the Facebook
stock. Only the results that are superior to the baseline MSE are selected

MAE

231

C Discussion

2.598, 2.602, 2.606, 2.609, 2.614, 2.614, 2.616, 2.617, 2.621, 2.623, 2.624, 2.626, 2.627,
2.629, 2.629, 2.631, 2.632, 2.633, 2.633, 2.634, 2.634, 2.635, 2.636, 2.636, 2.637, 2.637,
2.639, 2.639, 2.640, 2.642, 2.643, 2.643, 2.643, 2.643, 2.644, 2.644, 2.645, 2.646, 2.646,
2.647, 2.647, 2.647, 2.648, 2.648, 2.648, 2.649, 2.649, 2.649, 2.649, 2.650, 2.650, 2.650,
2.650, 2.651, 2.652, 2.652, 2.652, 2.652, 2.652, 2.653, 2.653, 2.653, 2.654, 2.654, 2.655,
2.655, 2.655, 2.655, 2.655, 2.655, 2.655, 2.655, 2.656, 2.656, 2.656, 2.656, 2.657, 2.658,
2.658, 2.658, 2.658, 2.658, 2.658, 2.658, 2.659, 2.659, 2.659, 2.659, 2.659, 2.659, 2.659,
2.659, 2.660, 2.660, 2.660, 2.660, 2.660, 2.660, 2.661, 2.661, 2.661, 2.662, 2.662, 2.663,
2.663, 2.663, 2.663, 2.663, 2.663, 2.663, 2.663, 2.664, 2.664, 2.665, 2.665, 2.665, 2.665,
2.665, 2.665, 2.666, 2.666, 2.666, 2.666, 2.666, 2.666, 2.666, 2.666, 2.667, 2.667, 2.667,
2.667, 2.667, 2.667, 2.667, 2.667, 2.667, 2.668, 2.668, 2.668, 2.668, 2.668, 2.668, 2.668,
2.668, 2.669, 2.669, 2.669, 2.669, 2.669, 2.669, 2.669, 2.669, 2.669, 2.669, 2.669, 2.669,
2.670, 2.670, 2.670, 2.670, 2.670, 2.670, 2.670, 2.670, 2.670, 2.670, 2.671, 2.671, 2.671,
2.671, 2.671, 2.671, 2.671, 2.671, 2.671, 2.671, 2.672, 2.672, 2.672, 2.672, 2.672, 2.673,
2.673, 2.673, 2.673, 2.673, 2.673, 2.674, 2.674, 2.674, 2.674, 2.674, 2.674, 2.675, 2.675,
2.675, 2.675, 2.675, 2.675, 2.675, 2.675, 2.675, 2.675

Table 95: The top MAE results related to the random model over 1000 runs on the Facebook
stock. Only the results that are superior to the baseline MAE are selected

MAPE

232

C Discussion

1.655%, 1.657%, 1.663%, 1.665%, 1.666%, 1.666%, 1.668%, 1.671%, 1.672%,
1.673%, 1.675%, 1.676%, 1.676%, 1.676%, 1.676%, 1.677%, 1.677%, 1.677%,
1.678%, 1.678%, 1.678%, 1.679%, 1.680%, 1.680%, 1.680%, 1.681%, 1.682%,
1.682%, 1.682%, 1.683%, 1.683%, 1.684%, 1.684%, 1.684%, 1.684%, 1.685%,
1.686%, 1.686%, 1.686%, 1.686%, 1.687%, 1.687%, 1.687%, 1.688%, 1.688%,
1.688%, 1.688%, 1.688%, 1.689%, 1.689%, 1.689%, 1.689%, 1.690%, 1.690%,
1.690%, 1.690%, 1.690%, 1.690%, 1.691%, 1.691%, 1.691%, 1.692%, 1.692%,
1.692%, 1.692%, 1.692%, 1.692%, 1.692%, 1.692%, 1.692%, 1.692%, 1.693%,
1.693%, 1.693%, 1.693%, 1.693%, 1.693%, 1.693%, 1.693%, 1.693%, 1.694%,
1.694%, 1.694%, 1.694%, 1.694%, 1.694%, 1.695%, 1.695%, 1.695%, 1.695%,
1.695%, 1.695%, 1.695%, 1.695%, 1.696%, 1.696%, 1.696%, 1.696%, 1.696%,
1.696%, 1.696%, 1.697%, 1.697%, 1.697%, 1.697%, 1.697%, 1.697%, 1.697%,
1.697%, 1.697%, 1.697%, 1.697%, 1.697%, 1.697%, 1.697%, 1.697%, 1.698%,
1.698%, 1.698%, 1.698%, 1.698%, 1.698%, 1.698%, 1.699%, 1.699%, 1.699%,
1.699%, 1.699%, 1.699%, 1.699%, 1.699%, 1.699%, 1.699%, 1.699%, 1.700%,
1.700%, 1.700%, 1.700%, 1.700%, 1.700%, 1.700%, 1.700%, 1.701%, 1.701%,
1.701%, 1.701%, 1.701%, 1.701%, 1.701%, 1.701%, 1.701%, 1.701%, 1.701%,
1.702%, 1.702%, 1.702%, 1.702%, 1.702%, 1.702%, 1.702%, 1.702%, 1.702%,
1.702%, 1.703%, 1.703%, 1.703%, 1.703%, 1.703%, 1.703%, 1.703%, 1.703%,
1.703%, 1.703%, 1.703%, 1.703%, 1.703%, 1.703%, 1.704%, 1.704%, 1.704%,
1.704%, 1.704%, 1.704%, 1.704%, 1.704%, 1.704%, 1.704%, 1.704%, 1.704%,
1.704%, 1.704%, 1.704%, 1.704%, 1.704%, 1.705%, 1.705%, 1.705%, 1.705%,
1.705%, 1.705%, 1.705%, 1.705%, 1.705%, 1.705%, 1.705%, 1.705%, 1.705%,
1.705%, 1.705%, 1.705%

Table 96: The top MAPE results related to the random model over 1000 runs on the Face-
book stock. Only the results that are superior to the baseline MAPE are selected

DA

233

C Discussion

53.37%, 53.01%, 52.80%, 52.76%, 52.68%, 52.64%, 52.60%, 52.48%, 52.48%,
52.40%, 52.36%, 52.36%, 52.36%, 52.32%, 52.28%, 52.28%, 52.28%, 52.16%,
52.12%, 52.12%, 52.12%, 52.12%, 52.12%, 52.08%, 52.04%, 51.99%, 51.95%,
51.95%, 51.95%, 51.95%, 51.95%, 51.95%, 51.91%, 51.91%, 51.91%, 51.91%,
51.87%, 51.87%, 51.87%, 51.87%, 51.83%, 51.83%, 51.83%, 51.79%, 51.79%,
51.79%, 51.75%, 51.75%, 51.75%, 51.75%, 51.75%, 51.71%, 51.71%, 51.71%,
51.67%, 51.67%, 51.67%, 51.67%, 51.67%, 51.63%, 51.63%, 51.63%, 51.63%,
51.63%, 51.59%, 51.59%, 51.59%, 51.59%, 51.59%, 51.55%, 51.55%, 51.55%,
51.55%, 51.55%, 51.55%, 51.55%, 51.51%, 51.51%, 51.51%, 51.51%, 51.51%,
51.47%, 51.47%, 51.47%, 51.47%, 51.47%, 51.47%, 51.47%

Table 97: The top DA results related to the random model with a 51.47% chance of pre-
dicting a higher price than the current over 1000 runs on the test set. Only the results that
are superior to the baseline DA are selected

234

Phi Thien H
oang &

 Jonas Laskem
oen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Phi Thien Hoang
Jonas Laskemoen

Predicting stock prices with Long Short-
Term Memory based models using a
combination of data sources

Master’s thesis in Computer Science

Supervisor: Prof. Björn Gambäck

August 2020

	Abstract
	Sammendrag
	Preface
	Introduction
	Background
	Essentials
	Sentiment analysis
	Prediction
	Time series
	Supervised learning
	Overfitting
	Linear Regression
	Ridge regression
	Artificial neural networks
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Bidirectional LSTM
	Encoder-Decoder architecture
	Adam
	Autocorrelation Function and Partial Autocorrelation Function
	Normalization
	Metrics

	Additional knowledge
	Logistic regression
	Support Vector Machines
	Naive Bayes
	K-Neareast Neighbors
	K-means
	Decision tree learning
	Random Forest
	Convolutional Neural Networks (CNNs)
	Pearson correlation and Granger causality
	Forecasting

	Tools
	statsmodels
	scikit-learn
	TensorFlow
	Keras

	Related work
	Sentiment analysis
	Prediction and forecasting
	Prediction of events with sentiment analysis
	Predicting stock market prices using sentiment
	Predicting and forecasting cryptocurrency values

	Data
	Data sources
	Investing.com
	StockFluence
	Google Trends

	Description of the data
	Historical trading data
	Stock sentiment data
	Trend data

	Initial data analysis
	Data preprocessing

	Architecture
	Context module
	Prediction module
	Multiple outputs

	Experimental setup
	Data related setup
	Normalization
	Dividing data into training, validation and test sets

	Model implementation
	Simple 1-step-behind model (naive model)
	Linear regression
	Ridge regression
	Random guessing
	Vanilla LSTM
	Stacked LSTM
	Bidirectional LSTM
	Context module
	How the LSTM models are combined with the context module

	Evaluation metrics rationale and implementation

	Experimental plan
	The essential parts of the experiments
	Experiments outline
	Initial experiments
	Additional experiments due to the initial results
	Evaluation on the test set

	Elaboration
	Hyperparameter search
	Multiple layers and bidirectional layers
	Feature analysis and feature subsets

	Evaluation

	Results
	Baseline models
	Evaluating DA when random guessing
	Simple 1-step-behind model
	Linear regression
	Ridge regression
	Extending the baseline experiments

	Analyzing the loss history
	Hyperparameter search
	Issues with the bidirectional implementation
	Feature analysis, predicting price
	Introducing the context module
	Predicting price by optimising on price and direction
	Additional experiment: Predicting price change
	Predicting price change without using context
	Predicting price change using context
	Examining additional data further
	Experimenting with feature engineering

	Additional experiment: Predicting next price change using several time steps
	Additional experiment: Predicting price change for one stock at a time
	Experimenting on AAPL
	Experimenting on FB
	Experimenting on HD

	Summary and evaluation on the test set
	Experiments on all stocks
	Experiments on individual stocks

	Discussion
	Using different data to improve prediction
	Comparing of the LSTM models to the baseline models
	Including context module
	Using the same parameters across all stocks
	Additional points
	Different variance
	Overfitting on the data
	Issues with lagging behind the actual values
	Observations related to the evaluation method used
	Comparing against other works

	Conclusion
	Future work
	References
	Appendix
	Details on all stocks
	Results
	Hyperparameter search
	Issues with the bidirectional implementation
	Feature analysis, predicting price
	Introducing the context module
	Predicting price by optimising on price and direction
	Additional experiment: Predicting price change
	Additional experiment: Predicting next price change using several time steps
	Additional experiment: Predicting price change for one stock at a time
	Summary and evaluation on the test set

	Discussion
	Using different data to improve prediction
	Comparing the LSTM models to the baseline models

