
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 t
he

si
s

Fredrik Strupe

Probing the Armv8-A ISA for Hidden
Instructions through Processor Fuzzing

Master’s thesis in Computer Science

Supervisor: Rakesh Kumar

June 2020





Fredrik Strupe

Probing the Armv8-A ISA for Hidden
Instructions through Processor Fuzzing

Master’s thesis in Computer Science
Supervisor: Rakesh Kumar
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

The increasing societal dependence on computer systems strengthens the need for verifi-
cation and auditing of the systems in use, as a measure to ensure the absence of security
issues and unwanted features like backdoors. For software, this is largely enabled by a
wide range of available verification tools and a general drive towards open-source soft-
ware. However, the underlying processor executing said software is more often than not
regarded as a trusted black box, with little to no possibility for end users to verify the ab-
sence of secret functionality. Moreover, what research is available on such black-box pro-
cessor verification mostly concerns the x86 instruction set architecture. In response to this,
we present armshaker: a software-based fuzzer that can systematically uncover hidden in-
structions in the widely used Armv8-A instruction set architecture. Inspired by previous
work, armshaker works by executing instructions that are undefined in the processor’s
reference manual and subsequently checking whether the execution result is as expected,
with deviating behavior potentially indicating hidden instructions. Using this fuzzing ap-
proach, we identify multiple hidden instructions resulting from bugs in the commonly used
QEMU emulator and the Linux kernel. However, none of the hidden instructions identified
can be attributed to hardware, indicating that the tested processors do not include hidden
instructions of the type identified by our approach. Nevertheless, the diversity of Arm
processors available makes the presence of hidden instructions in certain models still a
possibility. Consequently, we make our fuzzer freely available as open-source software to
enable users to audit their own systems.
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Sammendrag

Samfunnets økende bruk av datamaskiner forsterker behovet for å kunne verifisere og
kontrollere systemer som tas i bruk, som et tiltak for å forsikre seg om at systemene ikke
inneholder sårbarheter eller bakdører. For programvare tilrettelegges dette i stor grad gjen-
nom allerede tilgjengelige verktøy og en generell tendens mot bruk av programvare med
åpen kildekode. Den underliggende prosessoren som faktisk eksekverer denne program-
varen regnes derimot ofte som en svart boks med få muligheter for sluttbrukere til å kunne
verifisere at den ikke inneholder hemmelig funksjonalitet. Videre, tilgjengelig forskning
innenfor slik verifikasjon tar stort sett for seg x86 instruksjonssettarkitekturen. Som et
svar til dette presenterer vi armshaker: en programvarebasert fuzzer som kan systema-
tisk avdekke skjulte instruksjoner i den mye brukte Armv8-A instruksjonssettarkitekturen.
Inspirert av tidligere verk fungerer armshaker ved å eksekvere instruksjoner som er ude-
finert i prosessorens referansemanual og deretter sjekke om resultatet av eksekveringen
var som forventet, der avvikende resultater potensielt indikerer skjulte instruksjoner. Ved
bruk av en slik fuzzing-basert metode avdekker vi flere programvarefeil i den mye brukte
QEMU-emulatoren og i Linux-kjernen. Imidlertid kan ingen av de skjulte instruksjonene
vi identifiserer attribueres til maskinvare, noe som indikerer at prosessorene vi testet ikke
inneholder skjulte instruksjoner av den typen som kan avdekkes gjennom vår metode.
Dette utelukker likevel ikke at slike instruksjoner finnes i visse prosessormodeller, etter-
som det finnes et stort antall ulike modeller. Vi tilgjengeliggjør derfor fuzzeren vår med
åpen kildekode slik at brukere kan teste egne systemer.
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Chapter 1
Introduction

Computers and digital systems have become an integral part of modern life, and something
both individuals and societies as a whole rely on to a great extent. This augments the
importance of cybersecurity in those systems, as a security breach can have potentially
disastrous consequences. There has therefore been an increasing focus in recent years
on cybersecurity measures like software testing and verification, penetration testing, new
security standards, making code open-source and so on.

However, these measures largely focus on verifying software, with the underlying
hardware that actually executes the software regarded as a trusted black box with few
to no options for end user verification. While open-source hardware [2] would mitigate
the issue somewhat, it is nowhere as common as open-source software and doesn’t solve
the problem of auditing already manufactured hardware. Instead, a great amount of trust
is put into the hardware designers and manufacturers, in that the hardware functions ex-
actly as documented with no hidden or undocumented behavior. This is different from
software in that even closed-source software can be audited to some extent through binary
analysis methods and black-box testing. Even when assuming no malicious intent though,
security issues can still be present in hardware as a result of design mistakes [3, 4, 5] or
manufacturing faults [6].

An example of such a processor-based security issue was made known by Christopher
Domas in 2018 [7], when he revealed the presence of a secret coprocessor in a particular
x86 processor model that could be accessed by executing a certain combination of ma-
chine instructions. The research was based on an earlier work of his where he developed
a tool to search through the x86 instruction set and detect undocumented instructions [8]
– that is, instructions that are not documented in the processor manual but still executes
successfully on the physical hardware. However, apart from Domas’s work, most pub-
lished research on processor verification concerns correctness and formal verification –
often from the designers’ point of view – with no particular focus on security or hidden
behavior. Furthermore, what research has been published with this focus primarily con-
cerns the x86 instruction set architecture (ISA), without regarding other common ISAs
like Arm and MIPS. Arm is a particularly interesting target because of its widespread use

1



Chapter 1. Introduction

– ranging from low-powered embedded devices to state-of-the-art super computers – with
a particular prevalence in smart phones and a corresponding security impact potential.

In response to this, we develop an open-source processor fuzzer – codenamed arm-
shaker [9] – targeting the latest version of the Arm ISA, namely Armv8-A. armshaker
works in essence by exhaustively searching through the whole instruction space of the
three instruction sets in Armv8-A (A64, A32 and T32), executing instructions that are
undefined in the ISA specification. If an undefined instruction executes without faults,
it is marked as a hidden instruction and logged for further analysis. As Armv8-A itself
is an architectural specification, the fuzzer strictly speaking tests implementations of the
ISA. It is therefore not limited to testing only physical processors, but can also fuzz virtual
(emulated) implementations.

Formally, the research goal of this thesis is to investigate the presence of hidden in-
structions in Armv8-A implementations. To that end, we implement and apply a processor
fuzzer with the intention of answering the following research questions:

Research Question 1 (RQ1). Are there hidden instructions in particular implementations
of the Armv8-A ISA?

Research Question 2 (RQ2). Are there hidden instructions spanning all implementations
of the Armv8-A ISA?

The distinction between the two research questions is important because of Arm’s
licensing model. Instead of manufacturing processors themselves, Arm (the company)
licenses their processor designs to other companies which – depending on the license –
can either produce them without change or with custom additions [10]. This implies that
if a hidden instruction is found in all instances of a particular processor model or every
processor model, it was likely a part of Arm’s core design. On the other hand, if a hid-
den instruction is only present in a model from a particular manufacturer or third-party,
it was likely introduced by the particular licensee or manufacturer. Naturally, this does
not apply to implementations not originating from Arm, so RQ2 primarily concerns im-
plementations based on Arm’s designs – which encompasses the vast majority of available
implementations, with the QEMU emulator being a notable exception.

1.1 Contributions
We make the following key contributions:

• armshaker: We design and implement a portable, open-source processor fuzzer –
available on GitHub [9] – targeting the Armv8-A ISA, enabling a wide range of
processors to be tested. armshaker automatically identifies divergent behavior of
undefined instructions.

• No Hardware-Based Hidden Instructions: We run armshaker on a variety of
Armv8-A-based systems, finding no hidden instructions that can be attributed to
the underlying hardware processor. This indicates that the tested systems do not
implement hidden instructions of the type identified by our fuzzing approach.

2



1.2 Outline

• Software-Based Hidden Instructions: We use armshaker to identify software-
induced hidden instructions resulting from bugs in the Linux operating system ker-
nel and the QEMU processor emulator. We also find bugs in the disassembler used,
which is a part of libopcodes in GNU binutils.

• Software Improvements: We identify the root causes of the found software bugs
and submit patches to Linux, QEMU and GNU binutils – enabled by all of them
being open-source. Our patches were subsequently accepted and included in the
respective projects.

1.2 Outline
The rest of the thesis is organized as follows. Chapter 2 covers the background informa-
tion required to fully understand the research questions, fuzzer implementation and results.
Specifically, it begins with an introduction to the Armv8-A ISA, followed by a definition
of hidden instructions and how they relate to fuzzing and disassembly. Chapter 3 covers
related work and how some of it influenced this project. In Chapter 4 the design and imple-
mentation of the armshaker fuzzer is described, first with an overview and subsequently
in more detail. Chapter 5 presents the experimental methodology of the thesis, containing
a description of the target systems to be tested and how the implemented fuzzer can be
used on each of them. Next, in Chapter 6, the results from fuzzing the target systems are
presented, together with an analysis of the results. Chapter 7 discusses the implications of
the results in relation to the research questions and how they fit in a broader security per-
spective, together with some limitations of our approach. Finally, the thesis is concluded
in Chapter 8.
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Chapter 2
Background

To be able to identify hidden instructions, we must first establish exactly what a hidden
instruction is and how it relates to the underlying ISA. An understanding of basic fuzzing
approaches will also be beneficial in understanding the working principles of armshaker.

In this chapter we therefore first give an overview of the Armv8-A ISA – with a par-
ticular focus on the encoding of its three instruction sets (A64, A32 and T32) – and how
behavior deviating from the ISA reference manual can be identified as stemming from
hidden instructions. We then give a brief introduction to fuzzing, how it relates to our
methodology, and how disassemblers can be used during fuzzing to identify deviations
from the ISA specification.

2.1 Armv8-A ISA
Armv8 is the latest version of the Arm architecture, designed by Arm Holdings [11]. It
uses a reduced instruction set computer (RISC) architecture, as apposed to a complex in-
struction set computer (CISC) architecture like in the x86 ISA. An essential part of RISC
architectures is a smaller instruction set compared to CISC architectures, where each in-
struction typically is easier to implement in hardware and more applicable to pipelining,
lowering the amount of processor cycles per instruction. Despite this, incremental changes
over the years and an intention of using the architecture in everything from microcon-
trollers to supercomputers has made Arm a relatively extensive ISA.

As a way to cater to the different needs of such a diverse user base, Armv8 comes
in three different architecture profiles, as denoted by the character following the architec-
tural version and described as follows. The microcontroller (M) profile targets low-energy
embedded systems; the real-time (R) profile targets real-time systems; and the application
(A) profile targets mostly everything else where processing performance is a concern. The
A profile is the profile we focus on in this work, and we therefore refer to the ISA as
Armv8-A.

Armv8-A uses a 64-bit architecture, in contrast to the 32-bit architecture in earlier ver-
sions. However, to provide backward compatibility with Armv7-A, Armv8-A introduced

5



Chapter 2. Background

the concept of execution states – of which there are two – each with their own instruction
sets and processing environment:

• AArch64: The new 64-bit execution state, supporting the A64 instruction set.

• AArch32: The backward compatible 32-bit execution state, supporting the A32 and
T32 instruction sets. The instruction set in use depends on a particular bit (the T or
Thumb bit) being set or not in the Current Program Status Register (CPSR). This
execution state is almost identical to Armv7-A, with some minor differences.

It is important to realize that an instruction set and instruction set architecture are not
equivalent, but rather that an instruction set makes up a part of an instruction set archi-
tecture in addition to other aspects like the memory model. Consequently, even though
Armv8-A has three different instruction sets, it is still only a single instruction set archi-
tecture.

2.1.1 Instruction Sets
In general, an instruction set specifies the interface for executing instructions on a given
processor and is an integral part of the ISA. At the lowest level, this interface consists
of certain bit patterns with corresponding functions, like arithmetic or memory operations.
The mapping between bit patterns and operations as understood by the processor is decided
by the processor designers, and documented for the users of the processor in the respective
architecture’s reference manual.

However, instructions in the form of different bit patterns are difficult for humans to
keep track of. It is therefore customary for instructions to have certain textual mnemonics,
which act as aliases for the bit patterns. These mnemonics then make up a part of the as-
sembly language that can be used to program the processor, as further discussed in Section
2.4. While a mnemonic and bit pattern often can be considered to be equivalent, we some-
times want to make a distinction between them. In such cases we might call the mnemonic
an assembly instruction or sometimes simply an instruction, while the bit pattern is called
a machine instruction or instruction encoding.

There are in total three instruction sets available in Armv8-A, of which only a subset
can be used at any given time depending on the current execution state. The most relevant
part of the instruction sets to our work is the instruction encoding and how it relates to
functionality in the processor, as opposed to the actual functionality available and how to
use the instructions. Thus, we will consider the encodings of the three instruction sets next
and discuss some of the differences between them.

A64

The A64 instruction was first introduced in Armv8-A and is used in the AArch64 execution
state. It uses a significantly different instruction encoding compared to the instruction
sets in earlier versions of the Arm architecture, as opposed to more incremental changes
which had the been the case in earlier architectures. Nevertheless, most of the available
instructions are the same as before. Furthermore, the instruction length is fixed at 32 bits
like previous instruction sets.

6



2.1 Armv8-A ISA

Consider Figure 2.1 for an example of an instruction encoding in A64, namely for the
ADD (immediate) instruction. The extended mnemonic would be ADD Rd, Rn, #imm12,
where Rd and Rn represent registers and #imm12 represents an immediate (constant) value,
with the functionality being that #imm12 is added to Rn and stored in Rd.

We can see that although ADD (immediate) represents a distinct operation, it will have
many different instruction encodings depending on the values of its operands and options.
The non-changing part of the encoding that uniquely identifies the particular operation is
called the opcode (operation code) part, which in the case of Figure 2.1 are the bits marked
with binary values instead of placeholder labels, namely bit 30 to 23.

sf 0 0 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S

Figure 2.1: A64 encoding of the ADD (immediate) instruction, as documented in the Armv8 Archi-
tecture Reference Manual [11].

A32

A32 is one of the two instruction sets available in AArch32 (together with T32) and is
in many ways similar to the Arm instruction set in Armv7-A and older versions. It is
functionally similar to A64 and has the same fixed instruction length of 32 bits, but differs
significantly in its encoding. Of particular importance is the presence of a condition code in
most instructions, which indicates whether the instruction should execute or not depending
on certain bits in the Current Program Status Register.

Comparing the A32 encoding of the ADD (immediate) instruction in Figure 2.2 with
the A64 encoding of the same instruction in Figure 2.1, we can see differences in the op-
code value, register indicator lengths (resulting from A32 having fewer available registers),
operand ordering and the presence of the condition code.

!=1111 0 0 1 0 1 0 0 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

Figure 2.2: A32 encoding of the ADD (immediate) instruction, as documented in the Armv8 Archi-
tecture Reference Manual [11].

T32

T32 is the other instruction set available in AArch32 and is equivalent to the Thumb in-
struction set in Armv7-A; in other words, the Thumb instruction set was renamed to T32
in Armv8-A. The primary difference between T32 and A32 is that T32 uses a variable-
length instruction encoding, as opposed to a fixed-length one. This is intended to reduce
code size and improve cache utilization, especially for resource-constrained systems. T32
instructions are expanded to the equivalent A32 instructions in the processor’s instruction
decoder at runtime, and otherwise share the same execution environment.

7



Chapter 2. Background

The Thumb instruction set originally used a 16-bit fixed-length encoding, which re-
sulted in each instruction having a length of one half-word as the architectural word size
in all Arm architectures is 32-bit. However, because of the limited instruction space, an
extension was later added to support certain 32 bit long instructions, making the instruc-
tion set variable-length. This was implemented by having the upper five bits of a half-word
indicate whether an instruction is 16-bit or 32-bit, and in the case of it being 32-bit, a sec-
ond half-word is fetched, making up the lower half of the 32-bit instruction. Specifically,
a 32-bit T32 instruction is indicated by the upper five bits in the upper half-word having a
value greater than or equal to 0b11101 (where the 0b prefix denotes a binary number).

The 16-bit T32 encoding of the ADD (immediate) instruction can be seen in Figure 2.3,
with the corresponding 32-bit T32 version in Figure 2.4. Note that some T32 instructions
like ADD (immediate) have both 16-bit and 32-bit encodings, while others are exclusively
16-bit or 32-bit.

0 0 0 1 1 1 0 imm3 Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0

Figure 2.3: 16-bit T32 encoding of the ADD (immediate) instruction, as documented in the Armv8
Architecture Reference Manual [11]. Note that an alternative encoding also exists where Rn and Rd

is the same register, allowing for a larger immediate value.

1 1 1 1 0 i 0 1 0 0 0 S !=1101 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn

Figure 2.4: 32-bit T32 encoding of the ADD (immediate) instruction, as documented in the Armv8
Architecture Reference Manual [11]. It can be identified as a 32-bit instruction by the upper five bits
of the upper half-word (0b11110) being greater than 0b11101. Like the 16-bit version, an alternative
encoding also exists.

2.1.2 Unallocated Instructions

The total size of an instruction set’s instruction space is determined by the number of
available bits in the instruction encoding. Since A64 and A32 both are fixed-length in-
struction sets with 32-bit instructions, their resulting instruction spaces have a size of 232 =
4,294,967,296 instructions. In other words, the maximum amount of unique instruction
encodings is a little over four billion. The instruction space of T32 is a bit smaller be-
cause of its variable-length instructions, having a size of 29

32 ·2
16 + 3

32 ·2
32 = 402,712,576

instructions. The fractions come from whether the upper five bits of the upper half-word
indicate a 16-bit or 32-bit instruction.

An important observation is that none of the instruction sets utilize all of the available
instruction space. Rather, there are blocks of unallocated instructions in each instruction
space, resulting from their encoding not being assigned a function in the Armv8 Architec-
ture Reference Manual. These unallocated blocks vary from spanning whole instruction
groups (like in Figure 2.5) to particular operand values or options for certain instructions
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2.1 Armv8-A ISA

– for example, the ADD (shifted register) instruction in A64 is unallocated if the 2-bit
shift option is set to 0b11.

Table C4-1 Main encoding table for the A64 instruction set

Decode fields
Decode group or instruction page

op0

0000 Reserved

0001 Unallocated.

0010 SVE instructions. See SVE on page A2-92

op0

31 29 28 25 24 0

Figure 2.5: Beginning of a table in the Armv8 Architecture Reference Manual documenting the
highest level of the A64 instruction set encoding [11]. We can see that all instructions with the bit
range [28:25] set to 0b0001 are unallocated.

A question then arises on how many instructions actually are unallocated. If we plot
the instruction space of the different instruction sets as two-dimensional maps and high-
light unallocated instructions, we get something like the maps in Figure 2.6. The details
of the figure is not important; rather, the takeaway is that we can see that a significant
portion of the total instruction space is unallocated. In fact, 64.3 % of the instructions in
A64 are unallocated, with the proportions being 12.2 % for A32 and 31.6 % for T32. The
reason for the big difference between A64 and A32 is primarily that the condition code
in the A32 encoding effectively duplicates most of the defined instructions, reducing the
amount of unallocated instructions. T32 in turn has a higher percentage than A32 stem-
ming from its lack of condition codes, but lower than A64 as it has a smaller instruction
space. Strictly speaking, these percentages come from the number of undefined instruc-
tions as determined by the libopcodes disassembler (more details in Section 2.4), but it is
a reasonable estimation.

Unallocated instructions as defined by the Armv8 Architecture Reference Manual can
be further divided into the following three classes:

• UNDEFINED: Generates an undefined instruction exception upon execution. All
unallocated encodings not belonging to a particular instruction are in this class, like
the block in Figure 2.5.

• UNPREDICTABLE: The resulting state after execution is unpredictable and cannot
be reasoned about. In practice, most UNPREDICTABLE instructions in Armv8-A are
CONSTRAINED UNPREDICTABLE.

• CONSTRAINED UNPREDICTABLE: The execution result is constrained to a list of
possible outcomes, which depends on both the instruction being executed and the
particular ISA implementation. One outcome is generating an undefined instruction
exception, but others like executing as a no-operation are also possible. In contrast to
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[24:0]

[3
1:

25
]

(a) A64

[24:0]

[3
1:

25
]

(b) A32

[9:0]

[1
5:

10
]

(c) 16-bit part of T32

[19:0]

[3
1:

20
]

(d) 32-bit part of T32

Figure 2.6: Instruction space maps with black marks indicating unallocated instructions. The maps
have a certain number of bits increasing from top to bottom along the y-axis indicating the most
significant bits in each instruction – corresponding somewhat to the opcode portions of the respective
instruction set encodings – with the remaining instruction bits increasing left to right along the x-
axis. Note that the maps are not completely accurate because of their small scale, but does give an
adequate overview.
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2.1 Armv8-A ISA

the UNDEFINED class, instructions in this class usually stem from an invalid combi-
nation of instruction operands or options, in addition to incorrect should-be-one and
should-be-zero bits. For example, the STR (immediate) instruction in A64 (storing
a register value at a memory address contained in another register) is CONSTRAINED
UNPREDICTABLE if the value and address registers are the same register.

Strictly speaking, the Armv8 Architecture Reference Manual refers to the above classes
(in SMALL CAPITAL letters) as particular behaviors that can be assigned to instructions
(both allocated and unallocated), as opposed to unallocated instruction classes per se. For
example, disabling a particular instruction encoding at runtime will make it UNDEFINED,
even though it might otherwise be defined in the specification. Still, we refer to a group
of instructions sharing one of these behaviors as an instruction class. To make a dis-
tinction between the UNDEFINED instruction class and the more loosely defined term of
undefined instructions – that is, instructions without a particular definition – we use the
“UNDEFINED” notation when referring directly to ISA reference manual, and “undefined”
otherwise. Nevertheless, the two can in most cases be regarded as interchangeable.

In A32 and T32, the majority of instructions in the CONSTRAINED UNPREDICTABLE
class stem from incorrect should-be-one (SBO) and should-be-zero (SBZ) bits. These are
bits in an instruction encoding that should have a particular value, but is not UNDEFINED
if the value is incorrect, but rather CONSTRAINED UNPREDICTABLE. While this might
seem like a peculiarity, it does make separating UNDEFINED and CONSTRAINED UNPRE-
DICTABLE instructions slightly more complicated, as we will see later. An example of an
instruction with SBO/SBZ bits can be seen in Figure 2.7.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 0

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

Figure 2.7: A32 encoding of the NOP instruction, as documented in the Armv8 Architecture Refer-
ence Manual [11]. (1) and (0) indicate SBO and SBZ bits, respectively.

Another subtlety is that a subset of the UNDEFINED instructions class is the perma-
nently UNDEFINED instructions. These differ from the other UNDEFINED instructions in
that they are guaranteed by the ISA specification to always result in an undefined instruc-
tion exception when executed, instead of as a consequence of being unallocated. In other
words, they can be thought of as being defined as undefined. Yet another subset within
the permanently UNDEFINED instructions is the instruction encodings mapping to the UDF

instruction mnemonic, which can be used in assembly language to trigger an undefined
instruction exception. The intention behind these instructions is that operating systems or
other software running on the system can trap these instructions and use them for some-
thing else – like implementing a custom instruction – without affecting the behavior of
defined instructions.

The takeaway of all of this is that there is not a clear distinction between defined and
undefined instructions, as some instructions that are defined in the Armv8 Architecture
Reference Manual can result in undefined instruction exceptions when executed, depend-
ing on their definition. This is one of the main complicating factors of detecting hidden
instruction as defined next.
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Chapter 2. Background

2.2 Hidden Instructions

The instruction set architecture for a processor makes up its user-facing interface, and is
what enables it to be programmed externally. Consequently, the known capabilities of
a processor depends heavily on its ISA specification, as it otherwise can be considered
as a black box whose inner workings are unknown. One therefore has to trust the ISA
documentation to faithfully reflect the actual functionality of a given processor, such as
what instructions it supports. However, what if some supported instructions are omitted
from the documentation? In that case, the processor can be said to have a number of
undocumented or hidden instructions – terms that we regard as interchangeable in this
work.

In other words, we can in general terms define a hidden instruction as a particular
instruction encoding that successfully executes on a processor without generating an ex-
pected fault, while at the same time not being officially documented or documented as
unallocated or non-functional. Such instructions were historically common in the 1970’s
and 1980’s in older processors like the MOS 6502 [12] and Zilog Z80 and were a conse-
quence of simplifications in the processor design, but became less common as manufac-
turing techniques improved, enabling a higher amount of transistors and wires at a smaller
scale. Still, examples of hidden instructions in modern processors do exist, but then as a
result of bugs or intentional features as opposed to side-effects of design simplifications.
A famous example is the Pentium F00F bug [3] in some Intel processors in the 1990’s that
caused a complete system halt upon execution of certain instructions. Another example is
a hidden instruction in certain VIA x86 processors that activates an undocumented copro-
cessor, as revealed by Domas [7]. However, to the best of our knowledge, there have been
no public reports of hidden instructions in Arm processors.

As this work focuses on Armv8-A processors in particular, we can apply the previously
discussed ISA details to the general definition above to produce the following definition
of hidden instructions in Armv8-A.

Definition 1 (Hidden Instruction). A hidden instruction in an Armv8-A implementation
is an instruction that according to the Arm Architecture Reference Manual for Armv8 i)
belongs to the UNDEFINED class of instructions and ii) does not generate an undefined
instruction exception when executed on the particular implementation.

Notably, the definition does not include the UNPREDICTABLE and CONSTRAINED UN-
PREDICTABLE instruction classes. The reason for this is that although those instructions
may generate an undefined instruction exception when executed, whether they actually do
so or not is up to the particular implementations to decide. As such, their behavior is
deliberately implementation defined and can’t really break or contradict the official ISA
specification.

Another point worthy of note is that the definition does not concern any defined in-
structions (i.e., not UNDEFINED) or their documented behavior. This means that we don’t
consider a defined instruction deviating from its defined behavior to be a hidden instruc-
tion, although it certainly is an inaccuracy in the documentation. Such issues relate to the
broader field of processor verification and is outside the scope of this work.
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2.3 Fuzzing

Software testing is an important aspect of verifying the proper functioning and stability
of an application, with many different techniques in existence ranging from unit testing
of particular software components to application-wide system testing. A particular testing
technique is fuzzing – typically performed by a fuzzer – which is based on the concept
of providing an application with random (and often invalid) input data and subsequently
recording whether the application behaved unexpectedly, like whether it crashed or not
[13]. Unexpected behavior for certain input values might be indicative of a bug in the pro-
cessing of that value, which can then be further analyzed and fixed. Because of its reliance
on exceptions like crashes, memory leaks and different program failures, the method is
often used to find incorrect handling of edge cases and potential security issues in applica-
tions resulting from such exceptions.

Albeit a simple concept, the technique has shown to be effective in finding bugs in a
wide range of applications [14], some of which have been critical from a software security
point of view. Different fuzzing methods exist, ranging from the simpler cases of provid-
ing purely random or semi-random input data (like randomizing a field in an otherwise
structured input), to more elaborate techniques like mutating the input data based on code
execution paths taken in the target application. What particular method to use primarily
depends on the desired results and the characteristics of the fuzzing target, like what kind
of inputs it takes and to what extent it can be analyzed during execution.

While fuzzing is mainly used for testing software applications, the technique can be
extended to other areas too, with the fundamental requirement being that the system to
be tested has to take some input that will subsequently change the system’s state in an
observable manner. Translating this general specification to the field of processor fuzzing,
the input can be instructions provided to the processor (in the form of bit patterns of a
given length), with the observable state change being changes in register values, memory
values and generated exceptions.

When testing a system – either through fuzzing or other techniques – one would ideally
like to have 100 % test coverage, meaning that all possible test combinations have been
tested. This is not feasible in many cases, as the test space will be too big to be searched
exhaustively within a reasonable time frame. To combat this, certain assumptions can be
made about the input to be generated, in a way such that even though the coverage of
the total search space is low, the coverage of the actually relevant or interesting test cases
is high. As an example, instructions in x86 are variable-length and can have a length
of up to 15 bytes [15], making it infeasible to test all possible enumerations. However,
using the observation that changes to the opcode part of an instruction often changes its
length (as perceived by the processor), while operand changes seldom does, the fuzzer can
be directed by skipping over parts of the search space that do not change the instruction
length. With the presumption that what we’re actually interested in is opcode enumeration
(as opposed to operand enumeration), this greatly speeds up the search while still covering
much of the interesting parts of the search space. This particular method was devised by
Christopher Domas and used in his x86 fuzzer [8].
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2.4 Disassembly

Disassembly is an integral part of our fuzzer, where it is used to identify undefined instruc-
tions. A similar technique is also used for instruction filtering, which will be discussed in
Chapter 4. In this section we therefore give an overview of what disassembly is, how a
disassembler works internally and how it can be used to find undefined instructions.

A processor fundamentally operates on binary numbers and has a binary machine lan-
guage interface, with no concept of the human-readable code most often used to program
it. Because writing code directly in machine language quickly becomes very laborious, it
is customary to have a human-readable equivalent to the given machine language, namely
an assembly language. The name stems from the act of converting the human-readable
form to the machine language form, called program assembly and performed by an assem-
bler. In practice, most compiled programming languages are first compiled to assembly
language (or a similar low-level representation) and then assembled.

Likewise, converting an instruction in a machine language representation to the human-
readable assembly representation is called disassembly and performed by a disassembler.
As a general rule, the disassembler performs the inverse operation of an assembler (cf.
Figure 2.8), though most assembly languages contain some additional features not present
in the assembled code, like labels and macros, intended to make assembly programming
a bit easier. Disassemblers are commonly used for static analysis of compiled programs
[16], for example with the intention of reverse engineering an application or evaluating
performance-critical code sections.

NOP 0xd503201f

assembly

disassembly

Figure 2.8: Relation between an assembly language NOP (no operation) instruction mnemonic and
its corresponding machine language representation (in hexadecimal, denoted by the 0x prefix) in the
A64 instruction set.

Seeing as there generally is a one-to-one mapping between machine and assembly lan-
guage instructions, most disassemblers work by successively taking a bit string from the
program to be disassembled (representing a single machine instruction) and using it to
retrieve the assembly representation from a pre-made lookup table. To reduce the lookup
table into a manageable size, a bit mask is applied to the machine instruction before the
lookup, which makes the table entries independent of the instruction’s operands – essen-
tially isolating the opcode part of the machine instruction. When the correct assembly
instruction has been fetched, the operands can be extracted from the machine instruction
directly and inserted into the assembly instruction, with the operand sizes and positions
being hard coded in the disassembler. If no match is found, the instruction is marked as
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undefined. See Figure 2.9 for an illustration of this process.

0xd2800020

( inst & mask ) == value ? return string

{0x7f800000, 0x52800000, "MOV %s, #%d"},
{0x7f800000, 0x72800000, "MOVK %s, #%d"},

...
...

...
{0x00000000, 0x00000000, "UNDEFINED"}

Figure 2.9: The machine instruction input 0xd2800020 (MOV X0, #1 in A64) gets a mask from the
lookup table applied to it (using a bitwise AND) – effectively removing the two operands X0 and
#1 from the instruction – before being compared with the instruction value in the lookup table. In
the case of a match, the corresponding assembly representation (with generic operands) is returned.
Otherwise the process repeats for the next table entry, until the catch-all entry at the end is reached.

The entries in the disassembler’s lookup table are made from reading the reference
manual of the respective ISA and constructing corresponding masks, values and disassem-
bly strings for each instruction. As such, using a disassembler on a single instruction can
be compared to an automated reference manual lookup, replacing the need for looking up
an instruction by hand. This also implies that if a particular instruction encoding is not
present in the disassembly table, then it likely is undefined or unallocated according to
the reference manual. Consequently, disassemblers can be used as a source of truth on
whether an instruction is defined or not, and by extension to identify hidden instructions
as defined in Definition 1.
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Chapter 3
Related Work

There is not much prior work on processor fuzzing for detecting hidden instructions, apart
from a few important publications. Nonetheless, related fields like general fuzzing, pro-
cessor verification and emulator testing share many similarities to processor fuzzing. Pro-
cessor security has also gained more attention recently as a result of the Meltdown [4]
and Spectre [5] vulnerabilities. Accordingly, in this chapter we go through the publica-
tions available on processor fuzzing together with relevant work from the related research
fields.

The inspiration for this thesis came from Chrisopther Domas’s work on an x86 fuzzer
(codenamed sandsifter) [8] and his subsequent usage of the fuzzer in uncovering a hard-
ware backdoor in a particular VIA x86 processor [7]. Although the identified backdoor
already appeared to be documented [17, p. 82], it still proved the efficacy of using fuzzing
in uncovering security issues in processors. More importantly, his work on sandsifter and
the techniques used made significant contributions to the field of processor fuzzing, which
until then had seen little research except for more general research in the field of processor
verification.

Processor verification is concerned with verifying the correct functioning of processor
implementations and is a critical aspect of developing modern processors, as their com-
plexity makes the introduction of bugs unavoidable. Such verification is generally done
using either formal methods – like using mathematics to prove a specification’s correctness
– or more commonly functional methods like executing instructions and verifying that the
result is correct. The maturity of the field combined with a goal in many ways similar to
ours makes it an important source of information.

Of especial relevance to our work is the work of Reid et al. [18, 19] on verifica-
tion of Arm processors. Using a sort of hybrid approach between formal and functional
verification, their method revolves around parsing the ISA specification to generate exe-
cutable code snippets whose execution results are then compared with the expected result
as described by the same specification. Additionally, they test the execution of randomly
generated instruction streams [20] – a method widely used in the industry [21] and very
much similar to fuzzing. While it does seem like they test some undefined instructions, it
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is not clear whether they tested the whole instruction space as their focus is more on the
correct execution of defined instructions.

Another closely related field to processor verification is processor emulator testing,
which focuses on finding potential discrepancies between software-implemented proces-
sor emulators and their corresponding hardware implementations. In their seminal paper,
Martignoni et al. [22] describe a fuzzing framework for testing processor emulators based
on the idea of detecting state differences in the execution traces of randomly generated
instruction streams. Even though the paper’s focus is on emulator testing, it does highlight
the efficacy of instruction-based fuzzing.

In relation to emulator testing, there is a relatively large amount of available research
on emulator detection [23] for Arm-based processor emulators [24, 25, 26], primarily
stemming from its relevance to malware analysis on the Android platform, which is mostly
used by smart phones housing Arm processors. More specifically, much of the research
is concerned with how applications can detect the presence of emulators in order to evade
dynamic analysis, which can be discovered through various emulator testing techniques.
Particularly relevant to us from this area is a publication by Sahin et al. [26], where they
compare execution traces of randomly generated Armv7-A instruction sequences between
the QEMU emulator and a more accurate emulator developed by Arm. The approach used
is based on fuzzing, but like most of the other works discussed there is not a particular
focus on detecting hidden instructions.

Finally, during the later stages of the work on this thesis a set of theses by Göebel [27]
and Dofferhof [28] were published, describing how they searched for hidden instruction in
Armv8-A and RISC-V processors. The theses share many similarities with the methodol-
ogy used in this thesis, most notably with regard to the fuzzer implementation. However,
their work differers from ours in only testing the A64 instruction set (in addition to RISC-
V), having a bigger focus on fuzzing performance and with differing end results. Like us,
they found no hardware-based hidden instructions in A64, but they did detect a number of
hidden instructions in QEMU – all of which appear to have been fixed in the most recent
release of QEMU.
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Chapter 4
Fuzzer Implementation

We use a fuzzing approach in order to answer the research questions posed in the intro-
duction on the existence of hidden instructions. Accordingly, a fuzzer is needed to do the
fuzzing in an automated manner. However, existing solutions are either made for very
particular use cases – like Domas’s x86 fuzzer [8] – or focus on testing software as op-
posed to hardware, and with that provide a set of functionality different from what we
require. Consequently, we implement a fuzzer for our specific use case of fuzzing Armv8-
A processors, supporting all three instruction sets available in Armv8-A. In this chapter we
describe the implementation of our resulting fuzzer, starting with an architectural overview
before detailing its constituent parts.

4.1 Overview
Our fuzzer is written in C and intended to run on the Linux operating system kernel [1],
both of which are widely supported on most Armv8-A-based systems. Having the fuzzer
run on Linux not only eases development as a result of the features provided by Linux,
but also enables a wide range of systems to be fuzzed without requiring any special hard-
ware setup or software configuration. In the same manner, we have taken care to use as
few external dependencies as possible and generally avoid operating system features not
universally available, to increase operability across platforms.

Conceptually, the execution flow of armshaker can be divided into a set of repeated
stages, as shown in Figure 4.1. First, some initialization code is run before entering the
main fuzzing loop. Upon entering the loop and on every successive iteration, a new in-
struction to be tested is generated. The generated instruction is then disassembled using
an external disassembler, and the resulting disassembly is checked. If the disassembly was
successful – implying that the instruction is defined – the loop is cut short and continues
with the next instruction. Otherwise – in the case of it being undefined according to the
disassembler – it is run through a filter intended to remove certain false positives, pri-
marily caused by CONSTRAINED UNPREDICTABLE instructions. If the instruction passes
the filter, it is finally executed, and its result is checked. If an illegal instruction signal
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(SIGILL) was received, then the loop is repeated as this is the expected behavior. However,
if another signal or no signal at all was received, the instruction is marked as a hidden
instruction and subsequently logged, before moving on to the next instruction.

Initialize
fuzzer

Generate
instruction

Disassemble
instruction

Successful
disas.?

On filter
list?

Execute
instruction

Received
SIGILL?

Log
result

Yes

No

Yes

No

Yes

No

Figure 4.1: Execution flow of the fuzzing loop.

Although the fuzzing loop is conceptually simple, there are quite a few details that
have to be taken into account in order to get a reliable fuzzer able to achieve both high
test coverage and precision – all while supporting three different instruction sets. In the
following sections we go through the implementation details of the different stages in the
above fuzzing loop, highlighting the most important parts.

20



4.2 Initialization

4.2 Initialization

The initialization stage does primarily two things. First, it processes the options passed
to the fuzzer on the command line and sets the respective internal configuration variables.
Then, it sets up the infrastructure needed for the following stages. This involves configur-
ing the disassembler, clearing log files, initializing the instruction execution environment
and so on. More details on the initialization particular to certain stages are provided in the
description of the respective stages where relevant.

In contrast to the other stages, the initialization stage is run only once. This means that
only program-wide initialization is done in this stage, while more local initialization like
partially resetting the execution environment is done in the respective fuzzing loop stages.

4.3 Instruction Generation

In order to test the available instruction sets, we need to first generate the particular instruc-
tions to be tested. Since instructions have a 32-bit fixed-length encoding (16-bit for certain
T32 instructions), this amounts to simply creating a bit string of the respective length with
a certain combination of bits, and sending it to the next stage in the fuzzing loop.

However, as mentioned in Section 2.3, an exhaustive fuzzing search is often infeasible
because of the size of the search space. Still, we have also seen that the search space
size for each instruction set in Armv8-A – equivalent to the instruction space size – has
an upper bound of 232 ≈ 4.3 · 109 instructions, which is not infeasibly large for modern
processors. This means that we can in fact exhaustively search the whole instruction space
– covering all possible instruction encodings – within a reasonable time frame, and is
consequently what we do. As such, the fuzzer has a relatively simple instruction generation
logic, linearly incrementing an initial instruction encoding until a terminal instruction has
been reached. In the case of an exhaustive search, the initial instruction encoding would
be 0x00000000 (all zeros), while the terminal instruction would be 0xffffffff (all ones).

Since one also might want to test a non-contiguous subsequence of the instruction
space – for example, operand variations on a particular instruction – masked increment is
also supported. That is, when a search mask is applied, only bits in the instruction encoding
matching the particular mask are incremented, with the remaining bits left unchanged.
This option is particularly useful when analyzing results from an exhaustive search.

Another use of masked increment is for the variable-length T32 instruction set. Recall
that T32 instructions with the upper five bits being lower than 0b11101 are 16-bit, while the
remaining ones are 32-bit. To capture both lengths in a single search, all instructions are
stored in a 32-bit variable internally, with 16-bit instructions having the lower two bytes
set to 0 – equivalent to the lower half-word being zero. When incrementing an instruction,
the upper five bits are first checked, and if they indicate a 16-bit instruction, a masked
increment is performed on the upper half-word, leaving the lower half-word unchanged.
For 32-bit instructions on the other hand, no mask is applied. This ensures a smooth
transition from 16-bit to 32-bit instructions.
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4.4 Disassembly
If the generated instructions were executed directly, we would in effect execute every
single instruction in the whole instruction space. However, since we are only interested
in executing undefined instructions, we want to skip generated encodings that correspond
to defined instructions. Moreover, even if we did execute every instruction, we need to
be able to verify whether an undefined instruction exception was expected or not for the
particular instruction. Both of these problems are handled by the disassembly stage in the
fuzzing loop.

In this stage, the generated instruction is passed to an external disassembler and the
result is checked. If the disassembly is successful – indicating that the particular instruc-
tion is in fact defined – the remainder of the loop is skipped and the fuzzer moves on to
the next instruction. Otherwise, in the case of the disassembler failing to disassemble the
instruction – indicating an undefined instruction – the instruction is sent to the filtering
stage. Since the disassembly is done before executing the instruction, it implies that every
instruction that eventually ends up being executed is expected to be undefined, effectively
solving both of the problems mentioned above at once.

As discussed in the background, using a disassembler in this way makes it a source of
truth for checking whether an instruction is defined or not – like an automated reference
manual lookup – with the fundamental assumption that it is a faithful representation of
the reference manual. However, this is in fact a false assumption for even the most com-
monly used Arm disassemblers. There are several reasons for this, with the most common
ones being bugs in the disassemblers, unsupported ISA extensions and inaccuracies in the
interpretation of the ISA specification.

For instance, our initial implementation used the Capstone disassembler [29] for disas-
sembly, which is a framework using disassemblers from the LLVM project in the back-end.
Unfortunately, a lack of full Armv8-A support combined with large amounts of instruc-
tions incorrectly being marked as undefined made it unsuitable for our needs. Whether this
was caused by Capstone itself or the use of an older LLVM back-end was not investigated.
Instead, we opted for the Arm disassembler in libopcodes – a part of the GNU binutils
project [30] – which is the same disassembler employed by the widely used objdump util-
ity. Specifically, the code for the Arm disassembler and its internal dependencies were
extracted from libopcodes and bundled with our fuzzer – as permitted by its license – to
avoid having to separately compile and install libopcodes on every system to be tested.

The disassembler in libopcodes had a high accuracy compared to Capstone, possibly
related to the fact that Arm was actively contributing to its development, but was still
not without faults. Some instruction disassemblies were simply incorrect and caused by
bugs, but those were few and could be readily fixed given the open-source nature of the
disassembler. The biggest contributing factor to inaccuracies was related to the disassem-
bly of CONSTRAINED UNPREDICTABLE instructions, as discussed in Section 2.1.2. More
specifically, instructions with incorrect SBO/SBZ bits would be marked as undefined by
the disassembler, when we want them instead to be marked as defined or unpredictable.
This happens because these bits are included in the instruction value for many entries in
the disassembly table, effectively making them a part of the instruction opcode.

Whether marking CONSTRAINED UNPREDICTABLE instructions as undefined is a bug
or not is arguable, as the usage of such instructions should generally be avoided and might
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very well result in undefined instruction exceptions when executed. However, many in-
structions in this group can be executed without faults in practice, which makes them
incorrectly being marked as hidden in our case. As such, we want to make a distinction
between instructions in the CONSTRAINED UNPREDICTABLE and UNDEFINED groups.
Since these discrepancies in practice are caused by incorrect SBO/SBZ bits in most cases,
it was proved to be sufficient to filter out these particular instructions as discussed in the
next section.

Finally, there is the question of whether permanently UNDEFINED instructions as de-
scribed in Section 2.1.2 should pass as undefined in the disassembly stage or not, as these
instructions can in some sense be thought of as being defined to generate undefined in-
struction exceptions when executed. However, recall that a subset of the permanently
UNDEFINED instructions map to the UDF instruction mnemonic, which makes it more log-
ical for software that wish to trap permanently UNDEFINED instructions to use encodings
with the UDF mnemonic instead of an encoding with no mnemonic. We therefore consider
UDF instructions to be defined like any other instruction, while the remaining permanently
UNDEFINED instructions are considered as undefined and passed to the next stage.

4.5 Filtering
Arising from a wish to skip certain instructions in spite of them being marked as undefined
by the disassembler, an extra filtering stage was added after the disassembly stage. In this
stage, the instruction to be tested is compared against a set of instruction filters and skipped
if it matches any of them. Filtering single instructions or small instruction groups like this
is relatively simple as individual rules can be added manually, and is what was done for
certain inaccuracies in the disassembler.

However, manually creating filters for instructions with incorrect SBO/SBZ bits is la-
borious and error-prone, as a significant amount of disparate instruction groups in A32 and
T32 contain such bits. As a solution, a mechanism similar to disassembly with disassem-
bly tables as discussed in Section 2.4 was developed – based on code from libopcodes –
but with the addition of a should-be-bit mask in each table entry. When iterating through
the table, the inverted should-be-bit mask is applied to both the instruction mask and value,
and if a match is made, the instruction with the should-be-bit mask applied is compared to
the one without. If the two don’t match, it indicates the presence of incorrect SBO/SBZ
bits as the instructions would otherwise be identical.

An example of such a filter table entry can be seen in Figure 4.2. The entry is similar
to the disassembly table entries in Figure 2.9, but with the addition of a new should-be-
bit (SB-bit) mask. Although it would be possible to change the existing instruction masks
instead of introducing new should-be-bit masks, adding a separate mask has some benefits.
First, it makes the job of manually converting encodings in the ISA reference manual to
should-be-bit masks quicker and less error-prone. Second, it makes it possible to separate
instructions with incorrect SBO/SBZ bits from otherwise undefined instructions.

When an instruction has passed through the filter without being rejected, it is fairly
certain that the instruction is in fact undefined according to the ISA specification, as op-
posed to a defined instruction falsely identified as an undefined one. Consequently, we can
move on to executing the instruction.

23



Chapter 4. Fuzzer Implementation

{ 0x0320f000 , 0x0fffffff , 0x0000ff00 , "nop%c" }

Instruction value Existing mask New SB-bit mask Disassembly

Figure 4.2: Filter table entry for the NOP instruction in A32. We know from the Armv8 Architecture
Reference Manual entry in Figure 2.7 that the second least significant byte in the encoding consists
of should-be-bits, which correspond to the bits set in the should-be-bit mask.

4.6 Execution
In the execution stage, the given instruction is executed on the processor to check whether
its execution results in an undefined instruction exception. If an undefined instruction
exception indeed is generated – manifested as the executing process receiving an illegal
instruction signal (SIGILL) from the kernel – the fuzzing loop is repeated as receiving
such a signal is the expected behavior for undefined instructions. On the other hand, if a
different or no signal is received – indicating a hidden instruction – the instruction is sent
to the next stage for logging.

Executing an arbitrary instruction can have a wide range of different side-effects, po-
tentially corrupting the fuzzer itself. It is therefore important to isolate the instruction
execution from the rest of the fuzzing process to the extent where the probability of an
instruction corrupting the fuzzer’s execution environment is sufficiently low. Thankfully,
this is greatly simplified by the fact that we only execute expectedly undefined instruc-
tions as opposed to all possible instructions, which means that as long as proper signal
handling is in place, only side-effects from hidden instructions will potentially affect the
system. Nevertheless, some protections should be in place such that hidden instructions
can be executed without corrupting the fuzzer. For this we support two different execution
techniques, namely page-based and ptrace-based execution, each with their own level of
isolation and corresponding pros and cons, as discussed next.

4.6.1 Page-Based

The first execution isolation technique, which we call page-based execution, works by
executing the instruction in the same process environment as the fuzzer, but from a dy-
namically allocated memory page with some boilerplate code. This is the same method
used by Domas [8] in his x86 fuzzer. First – in the initialization stage of the fuzzer – an ex-
ecutable memory page is allocated on the heap with the mmap() system call in Linux, with
some boilerplate code loaded onto it for for storing and restoring register values on entry
and exit, resetting register values before execution, and a placeholder for the instruction to
be tested. Next, a signal handler is set up, triggering every time a signal is received from
the kernel and containing code to store the signal in a particular variable when triggered.
Then, in every iteration of the fuzzing loop, the instruction to be tested is written over
the placeholder in the executable page, the page is jumped to and subsequently executed
before jumping back to the main loop. Whether the execution triggered the signal handler
or not can then be determined by reading the variable set by the signal handler on every
trigger, representing the signal value in the case of a trigger and zero otherwise. If the
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value of the signal variable is anything other than the value of SIGILL, it indicates a hidden
instruction. For an illustration of this process, see Figure 4.3. Note that each timeline in
the figure corresponds to a particular code region in the same process.

The isolation in this technique is primarily provided by the boilerplate code and hav-
ing the executable page separate from the rest of the fuzzer code. Specifically, storing
and restoring all register values mitigates corruption of register values that should stay un-
altered according to the calling convention used, and resetting all register values to zero
before execution somewhat reduces side-effects while also ensuring deterministic results.
Furthermore, having the boilerplate code and test instruction in an executable page allo-
cated on the heap while keeping the fuzzer code in read-only pages reduces the risk of
corrupting the fuzzer’s address space.

A somewhat obscure but important detail to be aware of for this method to work is that
the first-level instruction and data caches in the Arm architecture are not coherent, mean-
ing that an update to either of them does not necessarily propagate to the other. This means
that self-modifying code like described above – that is, repeatedly writing to and execut-
ing a page – might lead to only the data cache being updated, with the instruction cache
containing an older instruction. The result is then that the fuzzer will not execute the most
recent instruction, but rather whatever instruction was in the page when the instruction
cache was last updated, which will effectively skip over some instructions.

An illustration of this can be seen in Figure 4.4. The processor core first loads the
instruction to be executed (MOV R0, #42) from main memory, which will update the in-
struction cache. It then at a later point overwrites the instruction with a new one (MOV R1,

#999), which will only update the data cache. Since the instruction and data caches are not
coherent, a subsequent fetch from the same location in the instruction cache will return
the old instruction instead of the new one, which is not what we want. The solution to this
problem is to write the new data cache contents back to main memory and invalidate the
relevant location in the instruction cache, such that the instruction cache is updated on the
next instruction fetch. This can conveniently be done with the __clear_cache() function
in GCC, which under the hood executes a set of cache management instructions.

While the page-based execution method works in most cases and performs well, the
isolation it provides is relatively weak. For example, any hidden instruction changing the
program counter or certain system registers will corrupt the fuzzer if executed. While this
rarely happened in practice for our tests, it was in fact an issue for certain instructions (as
discussed in the results). As a solution to this problem – combined with a wish to make the
fuzzer work in as many scenarios as possible – a second method was implemented, based
on process tracing functionality available in Linux.
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Main Loop Heap Page Signal Handler

Allocate

Write boilerplate

Initialize

Instruction generation, disassembly, filtering

Write instruction
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Store and clear registers

Execute instruction

Context switch
Set sig

Update program counter
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AltAlt [Undefined instruction exception]

Restore registers

Return

Log instruction as hidden

AltAlt [sig != SIGILL]

LoopLoop

Figure 4.3: Page-based execution.
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Figure 4.4: Cache coherence issue.
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4.6.2 Ptrace-Based
The second execution isolation technique, which we call ptrace-based execution, is as
the name suggests based on the ptrace() system call in Linux. With ptrace, a process
(the tracer) can trace another process (the tracee), enabling the tracer to alter the tracee’s
register content, memory content and execution flow. Such tracing is often utilized by
debuggers and instrumentation tools, but is also useful in our particular case. Concretely,
the technique works by letting a separate child process execute the instructions to be tested,
with the main fuzzer process using ptrace to modify the child’s state on every iteration of
the fuzzing loop. This means that if an instruction corrupts the child process, its state can
simply be reset or the process restarted without interrupting the fuzzer.

The ptrace-based execution technique is illustrated in Figure 4.5 and works more
specifically as follows. First – in the initialization stage – the fuzzer uses the fork()

system call to create an identical copy of itself, which becomes the child process to be
traced. The child process then jumps to a function with an infinite loop like in Listing
4.1, made with inline assembly code to ensure precise control over the generated code.
The loop contains three instructions: a breakpoint instruction that stops execution until
resumed by the tracer (A64 and A32/T32 use different breakpoint instructions, hence the
preprocessor directive), a placeholder instruction that will be replaced with the instruction
to be tested, and a branch instruction that jumps back to the breakpoint instruction.

void child_loop(void)

{

asm volatile(

"1: \n" // Label 1

#ifdef __aarch64__

" brk #0 \n" // A64 breakpoint

#else

" bkpt \n" // A32/T32 breakpoint

#endif

" nop \n" // Instruction placeholder

" b 1b \n" // Jump backward to label 1

);

}

Listing 4.1: The child process’s execution loop.

After the initialization and at the beginning of every iteration of the main fuzzing loop,
the child will be in a stopped state and open for modification by the main process. The
main process then resets all of the child’s registers (including the program counter), writes
the instruction to be tested at the memory location of the instruction placeholder, and
resumes the child process. The child will subsequently continue to the new test instruction
and execute it. If executing the instruction generates a signal (like SIGILL), the child will
stop and notify the main process. Otherwise, it will continue to the branch instruction,
jump back to the breakpoint instruction and stop again (also notifying the main process).
The main process can then retrieve the generated signal to determine whether a SIGILL
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Figure 4.5: Ptrace-based execution.
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signal was generated or not and take appropriate action, before continuing with the main
fuzzing loop.

The ptrace-based execution method provides great isolation between the fuzzer and
the instruction execution environment, owing to the inter-process isolation implicitly pro-
vided by Linux. It also has the added benefit of making it easier to set and retrieve the
state of the system before and after executing an instruction, which can help in analyzing
the behavior of hidden instructions. However, the frequent use of ptrace() system calls
adds significant overhead to the total execution time of the fuzzer, with the instruction
per second performance becoming an order of magnitude lower on most of the systems
tested. Consequently, ptrace-based execution is intended to be used primarily when page-
based execution has proved to fail for a given system or when analyzing a subset of the
instruction space.

4.7 Logging
If the execution of an instruction resulted in anything other than a SIGILL signal, the in-
struction is marked as hidden and subsequently logged. This is done in the final logging
stage and intended to both convey the presence of hidden instructions (assuming no false
positives) and to give an overview of the state changes caused by executing the respective
instructions.

An example of the log format used can be seen in Listing 4.2. The log uses a plain
comma-separated values (CSV) format, with each line corresponding to a single instruc-
tion. The first entry in each line indicates the instruction, with the second entry indicating
the group it belongs to (hidden is the only group implemented). Then follows the signal
generated by executing the instruction, represented as a numeric signal value correspond-
ing to the values in the Linux manual (seen by running the command man 7 signal), with
a zero indicating no signal generated. After the signal value a variable number of entries
follows, each representing a register value change in the state before and after executing
the instruction, in the format <register name>:<value before>-<value after>.

eaa0b650,hidden,0,pc:116ca-116c8

eaa0b658,hidden,0,pc:116ca-116c8,cpsr:30-230

Listing 4.2: Excerpt from a log file generated by the fuzzer.

As a working example, consider Listing 4.2 again. We can see that none of the instruc-
tions generated a signal (indicated by the signal value being zero), and that the program
counter (pc) decreased as a result of the branch instruction following the test instruction,
as seen in Listing 4.1. However, for the second instruction the value of the Current Pro-
gram Status Register (cpsr) changed, indicating that this instruction had an observable
side-effect as opposed to just executing as a NOP instruction. Further analysis can then
be done by hand, like correlating encodings and looking up the ISA reference manual for
instructions similar in behavior or encoding. In the case of a large amount of different
hidden instructions detected, it might be helpful to also use some kind of automatic in-
struction classification tool like what Domas used in his rosenbridge project [7], but that
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proved to not be necessary in our case. More information on our analysis methods can be
found in the results.

4.8 User Interface
Interaction with the fuzzer is done through a command-line interface as shown in Listing
4.3. In that particular example, the fuzzer filters away disassembler inaccuracies as indi-
cated by the -f1 option; full documentation of available options can be found in Appendix
A. We can also see that the fuzzer prints some status information, which is periodically
updated.

$ ./fuzzer -f1

insn: 0x00583000, checked: 33536, skipped: 5500160, filtered: 245760,

hidden: 0, ips: 55387

Listing 4.3: Example of running the fuzzer from the command line.

However, the status information shown is rather limited and not particularly readable.
More critically though, the fuzzing is done sequentially without exploiting the fact that
executing a given instruction is fully independent from executing any other instruction.
In other words, great performance improvements can be had by running multiple fuzzing
processes simultaneously. As a solution to these two issues we implemented another text-
based interface in Python – which we call the fuzzer front-end – that uses the fuzzer
command-line interface behind the scenes. An example of this front-end in action can
be seen in Figure 4.6.

The front-end automatically starts a number of fuzzer processes corresponding to the
number of processor cores available on the running system – giving each process its own
instruction range to fuzz – and periodically aggregates status data from each of them. Both
the raw and aggregated information can then be seen in a text-based user interface. Ad-
ditionally, statistics like the number of instructions per second tested (ips) and estimated
time of completion (eta) are shown. The idea is that the front-end can be used for wide
and potentially time-consuming searches, while the command-line interface is used for
analyzing single instructions or smaller instruction ranges as it supports a wider range of
options intended for analysis.
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╔═ Summary ════════════════════════════════════════════════════════════════════════════════╗
║ checked: 1,425,408 ips: 225,175 ║
║ skipped: 175,416,192 progress: 4.495% ║
║ filtered: 16,198,784 elapsed: 0.27hrs ║
║ hidden: 0 eta: 5.1hrs ║
╚══════════════════════════════════════════════════════════════════════════════════════════╝

╔═ Worker 0 ════════════════════════════════╗ ╔═ Worker 1 ════════════════════════════════╗
║ insn: 02e42000 ║ ║ insn: 42d68000 ║
║ cs_disas: N/A ║ ║ cs_disas: N/A ║
║ opc_disas: rsceq r2, r4, #0 ║ ║ opc_disas: sbcsmi r8, r6, #0 ║
║ checked: 356,352 ║ ║ checked: 356,352 ║
║ skipped: 44,098,784 ║ ║ skipped: 43,205,856 ║
║ filtered: 4,049,696 ║ ║ filtered: 4,049,696 ║
║ hidden: 0 ║ ║ hidden: 0 ║
║ ips: 57,338 ║ ║ ips: 55,736 ║
╚═══════════════════════════════════════════╝ ╚═══════════════════════════════════════════╝
╔═ Worker 2 ════════════════════════════════╗ ╔═ Worker 3 ════════════════════════════════╗
║ insn: 82ef5000 ║ ║ insn: c2d7a000 ║
║ cs_disas: N/A ║ ║ cs_disas: N/A ║
║ opc_disas: rschi r5, pc, #0 ║ ║ opc_disas: sbcsgt sl, r7, #0 ║
║ checked: 356,352 ║ ║ checked: 356,352 ║
║ skipped: 44,831,968 ║ ║ skipped: 43,279,584 ║
║ filtered: 4,049,696 ║ ║ filtered: 4,049,696 ║
║ hidden: 0 ║ ║ hidden: 0 ║
║ ips: 57,937 ║ ║ ips: 54,164 ║
╚═══════════════════════════════════════════╝ ╚═══════════════════════════════════════════╝

Figure 4.6: Fuzzer front-end showing information during an exhaustive search with four separate
fuzzer processes (workers).
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With the fuzzer implementation in place, we can experimentally investigate the research
questions posed in the introduction. Since both questions extend beyond single ISA im-
plementations, it’s crucial to test a wide range of implementations in the form of different
processor models and manufacturers in order to get reliable results. Consequently, we be-
gin this chapter by listing the target systems that were tested, with a discussion of why they
were chosen. Next, we discuss the fuzzer configuration for the various systems and how
some of them require different options as a result of implementation-defined behavior.

5.1 Targets
While one ideally would like to test as many systems as possible, we are limited by the
hardware available at our disposal. Fortunately, Armv8-A is widely used in consumer elec-
tronics and thus not particularly difficult to procure. In addition to hardware-implemented
processors we also target a selection of Armv8-A emulators, which can be regarded as
software implementations of the ISA.

The full list of target systems can be seen in Table 5.1. The first column lists the
particular target systems, followed by the respective chipset manufacturers in the second
column. The chipset manufacturer is relevant because it usually indicates the manufacturer
of the processor, with potentially differing implementation details. Finally, we see the
processors models used for the particular systems. Even though they all implement the
same Armv8-A ISA, different models have different microarchitectures (corresponding to
the ISA implementation) which makes it desirable to test different models.

Each of the target systems can be briefly described as follows. The Raspberry Pi
4 Model B and Orange Pi Lite 2 are single-board computers, essentially concentrating
a complete computer into a single credit card-sized circuit board. The Huawei P8 Lite
and Motorola Moto G5S are both Android-based smartphones. The Oculus Quest is a
head-mounted display (virtual reality headset) that runs Android and is very similar to
a smartphone, the user interface notwithstanding. QEMU [31] is a widely used open-
source emulator capable of emulating a wide range of systems, many of which are Arm-
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based. In our particular tests we use version 5.0.0 and emulate a Raspberry Pi 3, but
the underlying Armv8-A implementation is shared across all emulated systems and thus
the particular system is not that important. Finally, we have the Arm Base Fixed Virtual
Platform (FVP) which is a proprietary emulator developed by Arm, intended to be used
for software development. There are various FVPs available emulating different processor
models, but the one we use is the Base FVP that emulates a generic processor as opposed
to a particular model.

System Model Chipset Manufacturer Arm Processor Model
Raspberry Pi 4 Model B Broadcom Cortex-A72
Orange Pi Lite 2 Allwinner Cortex-A53
Huawei P8 Lite HiSilicon Cortex-A53
Motorola Moto G5S Qualcomm Cortex-A53
Oculus Quest Qualcomm Cortex-A73
QEMU 5.0.0 (RPi3) N/A (virtual) Generic Armv8-A
Arm Base FVP N/A (virtual) Generic Armv8-A

Table 5.1: Target systems.

5.2 Fuzzer Configuration
For all the target systems, we use armshaker to perform an exhaustive search of all three
instruction sets (A64, A32 and T32) with filters enabled for disassembler inaccuracies.
This amounts to simply first compiling the fuzzer with make and then running the fuzzer
front-end like in Listing 5.1, where armshaker.py is the name of the fuzzer front-end exe-
cutable. The start and end terminals of the search will automatically be set to 0x00000000

and 0xffffffff, respectively.

$ make

...

$ ./armshaker.py -f1

Listing 5.1: Starting a multiprocessed exhaustive search with the fuzzer front-end.

Notably, starting the fuzzer like this requires access to a command-line interface which
is not readily available on Android systems. Nevertheless, Android allows developers to
execute native code (as opposed to Java bytecode) through its Native Development Kit,
which in turn can be used to implement terminal emulators. We therefore use such a
terminal emulator application to run our fuzzer – specifically, we use the open-source
application Termux [32].

There is another issue that manifests itself in the ISA implementations used in the
Oculus Quest and QEMU, which is caused by a particular implementation-defined behav-
ior in Armv8-A – that is, behavior that can legally differ between implementations of the
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same ISA. Recall that many instructions in A32 are conditional, meaning they won’t be
executed if the specified condition doesn’t match certain status bits in the Current Program
Status Register. A particular implementation-defined behavior concerns what to do in the
case of executing an undefined instruction with an unmatched condition. On most of the
tested implementations, executing such an instruction results in an undefined instruction
exception regardless of the condition. However, it is also legal for implementations to skip
the instruction like if it was a defined instruction with an unmatched condition, essentially
executing it as a NOP instruction instead. The latter behavior – which is seen in the Oculus
Quest and QEMU – results in the fuzzer generating a lot of false positives as it expects all
undefined instructions to fail. As a solution to this, we introduce an option (-c) that for
every instruction makes the fuzzer set certain bits in the Current Program Status Register
such that the condition of the current (undefined) instruction is matched, making it always
execute. This allows for full instruction space coverage without reducing the accuracy of
the results.

Finally, a feature of Armv8-A is that a kernel running in the AArch64 execution state
(using the A64 instruction set) can execute user-space applications in the AArch32 exe-
cution state, enabling them to use the A32 and T32 instruction sets. This means that if
we have a kernel running in AArch64, we can test all three instruction sets on the same
running system. However, this is not the case the other way around – i.e, a kernel running
in AArch32 cannot execute A64 applications. For our particular targets, this is an issue for
the Motorola Moto G5S as the Android distribution it uses runs on a 32-bit kernel, which
makes us unable to test the A64 instruction set on this particular device. All other devices
have 64-bit kernels available, and thus do not have this issue.
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Results

In this chapter we present and analyze the results obtained through fuzzing the target sys-
tems. We begin by listing the number of hidden instructions marked for each system,
followed by an analysis of the respective instructions. We also discuss a novel disassem-
bler bug that was discovered during the development of the fuzzer and fixed before fuzzing
the target systems.

6.1 Fuzzer Output
The number of hidden instructions found for each target system can be seen in Table
6.1. We can see that all systems had some instructions marked as hidden by the fuzzer,
with some systems having more hidden instructions than others. Note however that one
instruction corresponds to a unique instruction encoding, meaning that both the opcode
and operands are included. Consequently, an instruction with variable operands or options
may be marked multiple times.

Target Hidden Instructions
A64 A32 T32

Raspberry Pi 4 Model B 0 15 0
Orange Pi Lite 2 0 15 2,184
Huawei P8 Lite 0 15 0
Motorola Moto G5S N/A 15 736
Oculus Quest 0 15 2,184
QEMU 5.0.0 (RPi3) 0 69,647 69,632
Arm Base FVP 0 45 738

Table 6.1: Hidden instructions detected in the target systems.

After obtaining the raw results, the next step is to determine the exact behavior and
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root cause of the hidden instructions. To do this, we start with the log output generated by
the fuzzer and use methods like looking for patterns shared between hidden instructions,
encoding similarities to existing instructions as documented in the Armv8 Architecture
Reference Manual, execution side-effect analysis, inspection of the underlying operating
system or emulator source code and so on. The results of these efforts are discussed next.

6.2 Hidden Instructions
Our root cause analysis were largely successful and managed to account for all of the
hidden instructions listed in Table 6.1. We found that all instructions except for the ones
in QEMU can be attributed to bugs and backward compatibility measures in the Linux
kernel. For QEMU, the hidden instructions are a result of bugs in its underlying Arm
instruction decoder. In other words, none of the hidden instructions can be attributed to
the underlying hardware. Nonetheless, it does show that hidden instructions as perceived
by the user of a system can be induced by the software running on the system.

The revealed bugs and how they induce the hidden instructions are described next. To
the best of our knowledge, all of the identified bugs have been unknown until found and
subsequently reported as a result of our fuzzing efforts.

6.2.1 Linux
Most of the hidden instructions found can be attributed to three bugs and one backward
compatibility measure in Linux, all of which are related to instruction hooking or trapping
done by the kernel. Understanding the root cause of the bugs requires some knowledge of
how Linux handles undefined instructions, which is described next.

When an executed instruction causes the processor to generate an undefined instruction
exception, execution is transferred to the kernel which can then perform actions based on
the exception generated. In the case of undefined instruction exception, Linux compares
the instruction that caused the exception to a set of undefined instruction hooks, which
when matched indicates that some particular action should be performed in the form of
a function call – effectively trapping the instruction. An example of such an undefined
instruction hook can be seen in Listing 6.1, where the masks and values are used for
matching much like the previously discussed disassembly procedure. Critically – as we
will see – the masks and values are always 32-bit unsigned integers. If none of the hooks
match, Linux will instead send a SIGILL signal to the offending process before transferring
execution back to it.

Hooks like these have different purposes, but are primarily used for debugging and
instruction emulation by Linux when using the Arm architecture. The debugging hooks
enable certain UDF instructions to be used as breakpoints or for other debugging proce-
dures like tracing, where UDF is an instruction in Armv8-A that is defined as permanently
UNDEFINED with the intention of allowing operating systems to hook on such instructions
without affecting the execution of other instructions, as discussed in the background. The
emulation hooks are used to provide support for certain deprecated instructions without
executing them directly in hardware, which is done by executing an equivalent stream of
instructions instead.
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// Source file: arch/arm/kernel/ptrace.c

static struct undef_hook thumb2_break_hook = {

.instr_mask = 0xffffffff,

.instr_val = 0xf7f0a000,

.cpsr_mask = PSR_T_BIT,

.cpsr_val = PSR_T_BIT,

.fn = break_trap,

};

Listing 6.1: Example of an undefined instruction hook in the Linux source code [1].

All of the hidden instructions induced by Linux are the result of incorrect masks being
used in various undefined instruction hooks. Specifically, the masks used for emulating
the deprecated SETEND (set endianness) instruction, certain breakpoint traps in A32 and
T32 and a set of Uprobe traps (providing tracing support) all have too wide masks, making
Linux match more instructions than intended. The details of each of these bugs are as
follows.

T32 SETEND Emulation

A particular instruction that Linux can emulate is the SETEND instruction, which is depre-
cated in Armv8-A. The instruction can be used to set the endianness of the system – in-
dicating the byte-order used when operating on multi-byte variables – but was superceded
by setting a bit in the Current Program Status Register instead. For T32, the encoding for
SETEND is exclusively 16-bit and equals 0xb650 for the little-endian option and 0xb658 for
big-endian.

If we consider the T32 hook for SETEND in the Linux source code – shown in Listing
6.2 – we can see that that the instruction value and mask seem to match what we expect,
and the hook only matches when the T bit is set as enforced by the pstate mask and value
(corresponding to the CPSR). However, recall that the masks and values are 32-bit un-
signed integers, regardless of the instruction set used. When combined with the fact that
T32 is variable-length, we can see that a 32-bit T32 instruction will get the upper half-
word masked out because of the leading zeros in the highlighted mask. Since the hooks
are always compared against undefined T32 instructions regardless of their length, this es-
sentially makes all undefined 32-bit T32 instructions with the lower half-word equal to the
16-bit encoding of SETEND work as SETEND instructions, regardless of the upper half-word.

As an example, consider the T32 instruction encoding 0xeaa0b650. This instruction is
a 32-bit instruction as indicated by the upper five bits. However, looking up this particu-
lar encoding in the Armv8 Architecture Reference Manual reveals that it is unallocated.
Nevertheless, Linux will execute it as a SETEND instruction, since applying the instruction
mask to it yields 0xeaa0b650 & 0x0000fff7 = 0x0000b650 – which matches the instruc-
tion value in the hook – while it also has the T bit set, passing the pstate test.

This incorrect matching accounts for all of the 2184 hidden instructions found in T32
for the Orange Pi Lite 2 and Oculus Quest. The reason that only these systems are affected
and not the others is that SETEND emulation has to be enabled when compiling the kernel
– or by setting the /proc/sys/abi/setend file to 1 at runtime – which were the case only
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// Source file: arch/arm64/kernel/armv8_deprecated.c

static struct undef_hook setend_hooks[] = {

...

{

/* Thumb mode */

.instr_mask = 0x0000fff7, // Should be 0xfffffff7

.instr_val = 0x0000b650,

.pstate_mask = (PSR_AA32_T_BIT | PSR_AA32_MODE_MASK),

.pstate_val = (PSR_AA32_T_BIT | PSR_AA32_MODE_USR),

.fn = t16_setend_handler,

},

{}

};

Listing 6.2: SETEND hook in the Linux source code [1] with comments added.

for these two systems. The other systems were not affected simply because they didn’t
have SETEND emulation enabled. Furthermore, the bug only affects 64-bit Linux kernels
(running in AArch64), as the 32-bit versions don’t support SETEND emulation.

Luckily, all that is needed to fix the bug is to correct the highlighted mask. Specifi-
cally, it should be changed to 0xfffffff7, which makes it include the upper half of the
instruction value. Further inspection of the Linux source code reveals that these bits are
always zero for 16-bit T32 instructions, which makes the new mask fix the bug without
affecting the intended behavior. We submitted a patch with this fix to the Linux kernel
which was subsequently included in both the official mainline kernel and older versions
with long-term support.

T32 Breakpoint Traps

We saw above how a too wide mask (that is, a mask that captures too many instructions)
can cause certain 32-bit T32 instructions to be unintentionally matched, when the intention
was to only match 16-bit instructions. The exact same problem is present for certain
breakpoint hooks too, where a breakpoint is an instruction that generates a SIGTRAP signal
upon execution. In particular, consider the code in Listing 6.3, which is used to make
the UDF #1 instruction (with encoding 0xde01) work as a breakpoint instruction. Since
the underlying mask variable is 32-bit, the mask is essentially equivalent to 0x0000ffff,
which has the same problem as for SETEND emulation with matching undefined 32-bit T32
instructions where the lower half-word is equal to 0xde01 regardless of the upper half-
word, making them work as breakpoints too.

Notably, this bug is only present in the 32-bit version of Linux, as the 64-bit version
uses a direct comparison without masking instead. It therefore only appears on the Mo-
torola Moto G5S and Arm Base FVP where it accounts for 736 of the hidden instructions.
When testing the Arm Base FVP we used 32-bit and 64-bit kernels separately as opposed
to running everything with a 64-bit kernel, which is why the bug appears for the Arm Base
FVP but not the other systems with 64-bit kernels.

Like the SETEND bug, this bug is fixed by extending the instruction mask of the hook to
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// Source file: arch/arm/kernel/ptrace.c

static struct undef_hook thumb_break_hook = {

.instr_mask = 0xffff, // Should be 0xffffffff

.instr_val = 0xde01,

.cpsr_mask = PSR_T_BIT,

.cpsr_val = PSR_T_BIT,

.fn = break_trap,

};

Listing 6.3: T32 breakpoint hook in the Linux source code [1] with comments added.

0xffffffff, which captures only the one intended instruction. We also submitted a patch
with this fix to the Linux kernel which was subsequently included in the official mainline
kernel.

A32 Breakpoint Traps

The two bugs above applied only to T32, with A32 and A64 unaffected. However, similar
effects exist for breakpoint hooking in A32 too. Specifically, consider the hook code in
Listing 6.4, which makes the UDF #16 instruction in A32 – with encoding 0xe7f001f0 –
work as a breakpoint. As we can see, the first four bits of the instruction encoding are
masked out, corresponding to the bits in the condition code and indicating that the instruc-
tion is to be matched regardless of the condition. Yet, the Armv8 Architecture Reference
Manual explicitly states that UDF is not conditional, meaning that having a condition code
other than 0xe is unallocated. In other words, the instruction mask and value should seem-
ingly be 0xffffffff and 0xe7f001f0, respectively. This affects both 64-bit and 32-bit
kernels, and accounts for 15 of the hidden instructions in A32.

However, a further inspection of related parts in the Linux source code indicates that
this behavior is intentional and not the result of some mistake. This was confirmed through
correspondence on the Linux Kernel Mailing List [33], where it was made apparent that
the behavior is in fact a backward compatibility measure for Armv6 and earlier versions,
where instruction encodings corresponding to conditional UDF instructions were legal. Fur-
thermore, even though the conditional UDF instructions are unallocated in Armv8-A, they
still belong to the permanently UNDEFINED instruction class, so trapping them is not really
incorrect as that is what the class is intended to be used for.

Still, when describing the disassembly stage of the fuzzer in Section 4.4 we estab-
lished that we expect permanently UNDEFINED instructions without a corresponding UDF

mnemonic to not be trapped – not because it’s illegal, but rather that hidden instructions
very well could be placed in this space. The detected instructions also pass our definition
of hidden, as they belong to the UNDEFINED class of instructions. However, their presence
cannot be regarded as incorrect or breaking the ISA specification. This highlights that a
hidden instruction stemming from the ISA implementation is not necessarily equivalent to
one induced by software when considering user-level correctness of the ISA.
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// Source file: arch/arm/kernel/ptrace.c

static struct undef_hook arm_break_hook = {

.instr_mask = 0x0fffffff, // Should be 0xffffffff

.instr_val = 0x07f001f0, // Should be 0xe7f001f0

.cpsr_mask = PSR_T_BIT,

.cpsr_val = 0,

.fn = break_trap,

};

Listing 6.4: A32 breakpoint hook in the Linux source code [1] with comments added.

Uprobe Traps

Finally, there is a bug in Linux related to a set of Uprobes hooks. Uprobes is a user-
level tracing feature offered by Linux – similar to ptrace – with two UDF instructions used
for breaking and single-stepping. In A32, the instructions have the same behavior as the
breakpoint instructions above in that the condition code is ignored as indicated in the first
two highlights in each of the structs in Listing 6.5, which together account for an additional
30 hidden instructions. But as discussed above, this cannot be considered a bug.

However, there is an actual bug in this code that affects T32. Namely, the status register
masks (cpsr_mask) do not include the T bit, which makes the hooks apply to T32 too (in
addition to A32). This is incorrect as the UDF instruction encoding differs between A32
and T32, and by pure coincidence two unallocated T32 instructions (which are not in
the permanently UNDEFINED instruction space) are matched, turning them into tracing
instructions. Furthermore, the Uprobes source code mentions that Thumb (T32) is not
supported, indicating that it shouldn’t be triggered from T32 in the first place.

// Source file: arch/arm/probes/uprobes/core.c

static struct undef_hook uprobes_arm_break_hook = {

.instr_mask = 0x0fffffff,

.instr_val = (UPROBE_SWBP_ARM_INSN & 0x0fffffff),

.cpsr_mask = MODE_MASK, // Should be (MODE_MASK | PSR_T_BIT)

.cpsr_val = USR_MODE,

.fn = uprobe_trap_handler,

};

static struct undef_hook uprobes_arm_ss_hook = {

.instr_mask = 0x0fffffff,

.instr_val = (UPROBE_SS_ARM_INSN & 0x0fffffff),

.cpsr_mask = MODE_MASK, // Should be (MODE_MASK | PSR_T_BIT)

.cpsr_val = USR_MODE,

.fn = uprobe_trap_handler,

};

Listing 6.5: A32 Uprobes hooks in the Linux source code [1] with comments added.
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This bug accounts for the remaining two hidden instructions in T32 for the Arm Base
FVP. Out of all the tested systems, it is only present in the Arm Base FVP simply because
it was the only system with a kernel compiled with Uprobes support. It can be fixed by
adding the T bit to the status register mask, which ensures that the T bit has to be unset for
the hook to be matched. We submitted a patch with this fix to the Linux kernel that at the
time of writing has yet to be reviewed.

6.2.2 QEMU

If we remove the hidden instructions induced by Linux in the QEMU result, we end up
with both A32 and T32 having 69,632 hidden instructions. Analysis of the side-effects of
the hidden instructions combined with reference manual correlation revealed that the hid-
den instructions correspond to VMUL (floating-point) and VQDMULL instructions – both
used to perform vector (SIMD) multiplication. Further analysis of the QEMU source code
revealed that the root cause of the hidden instructions is a pair of bugs in the Arm in-
struction decode logic in QEMU that makes it regard certain instruction encoding bits in
VQDMULL and the floating-point variant of VMUL as instruction options when they in fact
should be a part of the opcode. This essentially reduces the opcode bit count while in-
creasing the option bit count, which in turn makes certain unallocated instructions map to
VMUL or VQDMULL instructions.

For the VMUL (floating-point) bug, consider the encoding in Figure 6.1. It’s ap-
parent that bit 20 exclusively indicates the operand size option (sz). However, QEMU
includes bit 21 as a part of the size option too, effectively executing the instruction even
when bit 21 is 1, which is unallocated.

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

Figure 6.1: A32 encoding of the VMUL (floating-point) instruction, as documented in the Armv8
Architecture Reference Manual [11].

Likewise, consider the encoding in Figure 6.2 for the VQDMULL bug. For certain vector
instructions, bit 24 is used for the U option, indicating whether the instruction operates on
signed or unsigned numbers. For VQDMULL however, this bit should always be 0, with 1
being unallocated. In spite of this, QEMU still executes the instruction as normal when U

is 1.

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 1 0 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

Figure 6.2: A32 encoding of the VQDMULL instruction, as documented in the Armv8 Architecture
Reference Manual [11].

The bugs are present in both A32 and T32 as a result of the two sharing much of
the same vector decode logic, with the main encoding difference being in the uppermost
opcode bits. For VMUL the location of the bit triggering the bug is the same for both A32 and
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T32. For VQDMULL on the other hand, the bit triggering the bug is bit 28 (alternatively, bit
12 of the upper half-word) in T32 as opposed to bit 24 in A32, but the effect is otherwise
identical.

We identified the root cause of both bugs and submitted corresponding patches to
QEMU. At the time of writing, the VQDMULL patch has been included directly in the of-
ficial development version of QEMU, set to be a part of a future release. The VMUL patch
on the other hand has been included indirectly by the QEMU developers as part of an
ongoing refactoring of the relevant code.

6.3 Disassembler Bug
When discussing the disassembly stage of the fuzzer in Section 4.4, it was mentioned that
some bugs in the disassembler used – that is, the Arm disassembler in libopcodes – lead
to incorrect results, making the fuzzer end up falsely identifying certain instructions as
hidden. Most of these are not clear-cut bugs, but rather inconsistencies in marking UN-
PREDICTABLE instructions, similar to the issue with instructions with incorrect SBO/SBZ
bits. However, we did identify a more clear-cut bug related to the disassembly of condi-
tional VDUP instructions, which we fixed before fuzzing the target systems. We describe
this bug next.

In A32 and T32, most vector instructions either don’t have a condition code or are UN-
PREDICTABLE if the condition code is anything other than 0b1110 (always execute), which
in practice makes them unconditional. However, this is not the case for VDUP (that dupli-
cates a general-purpose register into a vector register), which can legally be conditional.
Yet, libopcodes failed to correctly disassemble conditional VDUP instructions, disassem-
bling them instead as unconditional VDUP instructions or undefined instructions.

For a demonstration of this incorrect disassembly, consider Listing 6.6 which shows
the result of disassembling a file containing VDUP machine instructions with different con-
dition codes, using the objdump utility (which uses libopcodes internally). In contrast, the
correct disassembly result can be seen in Listing 6.7. Comparing the two, it is apparent
that only the last instruction disassembled by objdump (before the fix) is correct.

The problem here is in fact twofold. First, libopcodes marks some (but not all) condi-
tional VDUP instructions as undefined, stemming from erroneous instruction masks in the
internal disassembly table. Second, the machine instructions that actually are disassem-
bled to VDUP instructions miss the condition in the resulting instruction mnemonic, simply
because this was not implemented in libopcodes for vector instructions. Accordingly, we
fixed these issues and submitted a patch to GNU binutils (which libopcodes is a part of),
which at the time of writing has been included in the official development version of GNU
binutils and set to be a part of a future release.
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$ objdump -b binary -m arm -D vdups.bin

...

00000000 <.data>:

0: 0e800b10 vdup.32 d0, r0

4: 1e800b10 ; <UNDEFINED> instruction: 0x1e800b10

8: 2e800b10 vdup.32 d0, r0

c: 3e800b10 ; <UNDEFINED> instruction: 0x3e800b10

10: 4e800b10 vdup.32 d0, r0

14: 5e800b10 ; <UNDEFINED> instruction: 0x5e800b10

18: 6e800b10 vdup.32 d0, r0

1c: 7e800b10 ; <UNDEFINED> instruction: 0x7e800b10

20: 8e800b10 vdup.32 d0, r0

24: 9e800b10 ; <UNDEFINED> instruction: 0x9e800b10

28: ae800b10 vdup.32 d0, r0

2c: be800b10 ; <UNDEFINED> instruction: 0xbe800b10

30: ce800b10 vdup.32 d0, r0

34: de800b10 ; <UNDEFINED> instruction: 0xde800b10

38: ee800b10 vdup.32 d0, r0

Listing 6.6: Incorrect disassembly of conditional VDUP instructions.

00000000 <.data>:

0: 0e800b10 vdupeq.32 d0, r0

4: 1e800b10 vdupne.32 d0, r0

8: 2e800b10 vdupcs.32 d0, r0

c: 3e800b10 vdupcc.32 d0, r0

10: 4e800b10 vdupmi.32 d0, r0

14: 5e800b10 vduppl.32 d0, r0

18: 6e800b10 vdupvs.32 d0, r0

1c: 7e800b10 vdupvc.32 d0, r0

20: 8e800b10 vduphi.32 d0, r0

24: 9e800b10 vdupls.32 d0, r0

28: ae800b10 vdupge.32 d0, r0

2c: be800b10 vduplt.32 d0, r0

30: ce800b10 vdupgt.32 d0, r0

34: de800b10 vduple.32 d0, r0

38: ee800b10 vdup.32 d0, r0

Listing 6.7: Correct disassembly of conditional VDUP instructions.
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Discussion

Fuzzing the target systems revealed a number of different hidden instructions, as presented
in the results. In this chapter we discuss how the obtained results relate to the research
goal of this thesis, followed up by a discussion of the potential security implications of the
findings and some limitations to our approach.

7.1 Research Goal
The research goal of this thesis was to probe for hidden instructions in Armv8-A imple-
mentations, as formulated with the two research questions in the introduction. Although an
Armv8-A processor can be implemented either in software or hardware, the vast majority
of implementations are hardware-based, with software implementations primarily being
used as a compatibility or development tool when hardware is not available. Consequently,
our primary focus were on fuzzing hardware implementations – especially because of their
black-box nature.

As presented in the results, the fuzzing efforts did not uncover any hidden instructions
that could be attributed to hardware. This indicates that there are no hidden instructions
present in the processors tested that can be revealed by executing undefined instructions –
see the Limitations section below for a further discussion on this. However, the instructions
identified in QEMU can in fact be categorized as hidden if we follow the definition we
formulated in Section 2.2 in the background. They also differ from the Linux bugs in that
they are caused by the underlying ISA implementation – which happens to be software-
based – as opposed to being caused by the software running on the implementation.

We can therefore say that the QEMU result answers Research Question 1 (concerning
particular implementations) in the positive, even though the instructions were caused by
bugs and naturally not intentional. Research Question 2 (concerning all implementations)
on the other hand has been answered in the negative, simply as a result of at least one of
the ISA implementations tested not having any identified hidden instructions.

However, the fuzzing results did reveal an interesting aspect of the relation between
the underlying ISA implementation and the operating system or software running on the
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implementation. Namely, the operating system can induce hidden instructions in the sys-
tem that from a user’s perspective will be indistinguishable from hidden instructions based
in hardware, as is the case for Linux.

7.2 Security Implications
We indicated in the introduction that hidden instructions can lead to security issues on the
affected systems. At the same time, our fuzzing efforts revealed hidden instructions in
QEMU and bugs in Linux resulting in software-induced hidden instructions. A natural
question is then to what extent the found bugs can compromise the security of the affected
systems. Accordingly, we discuss the security implications of the QEMU and Linux bugs
next.

The bugs in QEMU allowed us to execute certain undefined instructions as VMUL or
VQDMULL instructions. This can in fact be used by programs to detect that they are being
emulated with QEMU, by checking whether executing the particular instructions result in
undefined instruction exceptions or not. Such emulator detection is a common dynamic
analysis evasion technique as discussed in Chapter 3, and is exacerbated by the fact that
QEMU is by far the most commonly used Arm emulator and form the basis of several
Android malware analysis solutions. Although there in practice are many other ways to
detect emulation too – ranging from reading system information to detecting performance
traits particular to emulators – only executing a single test instruction is significantly faster
and stealthier. For a proof of concept of this technique using one of the hidden instructions,
see Appendix B.

The hidden instructions induced by Linux on the other hand are probably not as criti-
cal. Although they could be used to detect the presence of Linux and determine whether
the Linux version in use was released before or after the corresponding bug fixes, much
simpler methods for doing that exist, making the approach moot. However, the hidden
SETEND instructions could potentially be used as part of an obfuscation scheme where the
endianness of a program is changed at runtime using seemingly undefined instructions,
making static analysis slightly more difficult.

On a related note, the issue disassemblers have with instructions with incorrect should-
be-one/should-be-zero bits could also be used for obfuscation. For example, one could
randomize the SBO/SBZ bits for each instruction in a program binary, making most of
the instructions appear to be undefined when disassembled while still executing without
faults. In fact, a proof of concept of this has already been made by Eric Davisson with his
ARMaHYDAN tool [34].

7.3 Limitations
There are some limitations to the approach we have chosen in finding hidden behavior in
processor implementations. Most importantly, the definition we use of hidden instructions
only concern the direct execution of undefined instructions, without taking state variables
like register contents into account. This means that our results don’t rule out all kinds
of hidden behavior, but rather only one method of hiding functionality in the processor.
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For example, the hardware backdoor revealed by Domas [7] required a bit in a certain
register to be set for the backdoor to be activated, although the complementary activation
instruction required in that particular case was found through a method similar to ours.
Other examples of methods for hiding behavior can be through interacting with certain
memory addresses, executing particular streams of instructions, timing differences and
so on. It is also conceivable that certain instructions have undocumented side-effects in
addition to generating undefined instruction exceptions, which would not be detected by
our fuzzer.

Another issue that can affect the instruction space coverage we achieve is a particular
type of disasssembler inaccuracies. Through the use of filters we made sure that defined
instructions are not mistaken as undefined ones, but not the other way around. That is, it
is possible that bugs in the disassembler make certain instructions incorrectly disassemble
to defined instructions when they in fact should be undefined and subsequently tested by
the fuzzer. Although such instructions likely are low in numbers or don’t exist – as they
otherwise would have been noticed by users of the disassembler – their existence is still
a possibility; proving otherwise would require verification of every entry in the internal
disassembly table.

Finally, the number of tested systems is relatively low, despite our efforts to make it
as high as practically possible. There are not many Armv8-A emulators available, so the
emulator coverage is fairly good, but the number of Armv8-A implementations in the form
of a combination of processor models and manufacturers far exceed what we have tested.
We can therefore not fully exclude that Armv8-A-based systems with hidden instructions
exist.
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Chapter 8
Conclusion

The goal of this thesis was to investigate the existence of hidden instructions in Armv8-
A processors, arising from a general lack of available research on security verification of
black-box ISA implementations. To enable this investigation, we developed the armshaker
fuzzer that can exhaustively search the instruction space of the A64, A32 and T32 instruc-
tion sets in the Armv8-A ISA and detect hidden instructions. The detection is done by
executing presumably undefined instructions and then comparing the signal generated by
the execution with the expected signal, utilizing techniques like instruction filtering and
sandbox execution to achieve high search coverage, precision and stability. Using arm-
shaker, we found two groups of hidden instructions in QEMU caused by a pair of decode
bugs in its Arm implementation – which we subsequently fixed and submitted patches for –
with the result of incorrectly executing certain undefined instructions as VMUL or VQDMULL
instructions. We also identified various hidden instructions induced by the Linux oper-
ating system kernel – as opposed to the underlying ISA implementation – caused by the
usage of incorrect instruction masks when trapping certain instructions. These instructions
had side-effects ranging from debug breaking to the introduction of a novel 32-bit SETEND
instruction in the T32 instruction set. However, despite fuzzing a variety of Armv8-A im-
plementations in the form of different processor models and manufactures, we found no
hidden instructions that could be attributed to the underlying hardware implementation of
the tested systems.

Our armshaker fuzzer is open-source [9] and able to fuzz most Armv8-A-based sys-
tems capable of running Linux. The intention behind this is twofold. First, we want to
let users audit their own systems for hidden instructions and raise awareness of the black-
box nature of contemporary processors. Second, we hope that our efforts can serve as a
basis for future work in the field of processor fuzzing. Next steps could be to extend the
fuzzer to other instruction set architectures like MIPS or RISC-V, testing a wider range of
systems, and developing techniques to detect more advanced types of hidden instructions.
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Appendix A
Fuzzer Options

$ ./fuzzer -h

Usage: ./fuzzer [option(s)]

General options:

-h, --help Print help information.

-q, --quiet Don’t print the status line.

Search options:

-s, --start <insn> Start of instruction search range (in hex).

[default: 0x00000000]

-e, --end <insn> End of instruction search range, inclusive (in

hex). [default: 0xffffffff]

-i, --single-exec Execute a single instruction (i.e., set end=start).

-m, --mask <mask> Only update instruction bits marked in the supplied

mask. Useful for testing different operands on a

single instruction. Example: 0xf0000000 -> only

increment most significant nibble.

Execution options:

-n, --no-exec Calculate the total amount of undefined

instructions, without executing them.

-x, --exec-all Execute all instructions (regardless of the

disassembly result).

-f, --filter <level> Filter away (skip) certain instructions that would

otherwise be executed and might generate false

positives. Supports the following levels, where

each level includes the numerically lower ones:

1: Inaccurate disassemblies, primarily caused

by SBO/SBZ bits.

2: Hidden instructions induced by Linux
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as a result of bugs or backwards

compatibility measures.

-p, --ptrace Execute instructions on a separate process using

ptrace. This will generally make execution slower,

but lowers the chance of the fuzzer crashing in

case hidden instructions with certain side-effects

are found. It also enables some additional options.

-c, --cond On AArch32: Set the condition flags in the CPSR to

match the condition code in the instruction

encoding. This ensures that undefined instructions

with a normally non-matching condition code won’t

be skipped, as is the case in some ISA

implementations.

Logging options:

-l, --log-suffix Add a suffix to the log and status file.

-d, --discreps Log disassembler discrepancies.

Ptrace options (only available with -p option):

-t, --thumb Use the thumb instruction set (only available on

AArch32). Note: 16-bit thumb instructions have the

format XXXX0000. So to test e.g. instruction 46c0,

use 46c00000.

-r, --print-regs Print register values before/after instruction

execution.

-z, --random Load the registers with random values, instead of

all 0s. Note that the random values are generated

at startup, and remain constant throughout the

session.

-g, --log-reg-changes For hidden instructions, only log registers that

changed value.

-V, --vector Set and log vector registers (d0-d31, fpscr) when

fuzzing.

Listing A.1: Command-line options for the fuzzer.
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$ ./armshaker.py -h

usage: armshaker.py [-h] [-s INSN] [-e INSN] [-c] [-w NUM] [-p] [-n]

[-f LEVEL] [-t] [-z] [-g] [-V] [-c]

fuzzer front-end

optional arguments:

-h, --help show this help message and exit

-s INSN, --start INSN

search range start

-e INSN, --end INSN search range end

-d, --discreps Log disassembler discrepancies

-w NUM, --workers NUM

Number of worker processes

-p, --ptrace Use ptrace when testing

-n, --no-exec Don’t execute instructions, just disassemble them.

-f LEVEL, --filter LEVEL

Filter certain instructions

-t, --thumb Use the thumb instruction set (only on AArch32).

-z, --random Load the registers with random values, instead of all

0s.

-g, --log-reg-changes

For hidden instructions, only log registers that

changed value.

-V, --vector Set and log vector registers (d0-d31, fpscr) when

fuzzing.

-c, --cond Set cpsr flags to match instruction condition code.

Listing A.2: Command-line options for the fuzzer front-end.
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Appendix B
QEMU Detection Proof of Concept

Listing B.1 shows a C program that when run detects whether it is being emulated or not,
applicable to QEMU version 5.0.0 and lower. It works as follows. First, a function that
sets a particular variable upon being called is installed as a signal handler for the SIGILL

signal. Then an undefined instruction that maps to VMUL in QEMU is executed. In a
correct ISA implementation, this will result in a SIGILL signal being sent to the process,
which subsequently calls the signal handler and sets the handler_activated variable. In
QEMU however, the undefined instruction will execute as a VMUL instruction instead, with
no signal being generated. Consequently, if the handler_activated variable is not set
after executing the undefined instruction, it means the current process is being emulated
with QEMU.
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#include <stdio.h>

#include <signal.h>

#include <ucontext.h>

volatile sig_atomic_t handler_activated = 0;

void sigill_handler(int sig_num, siginfo_t *sig_info, void *uc_ptr)

{

handler_activated = 1;

// Skip the illegal instruction

ucontext_t* uc = (ucontext_t*) uc_ptr;

uc->uc_mcontext.arm_pc += 4;

}

int main()

{

struct sigaction s = {

.sa_sigaction = sigill_handler,

.sa_flags = SA_SIGINFO

};

sigfillset(&s.sa_mask);

sigaction(SIGILL, &s, NULL);

// ’VMUL.F32 D0, D0, D0’ with bit 21 set.

asm (".inst 0xf3200d10");

if (handler_activated == 0) {

printf("I’m being emulated.\n");

} else {

printf("I’m not being emulated.\n");

}

return 0;

}

Listing B.1: QEMU detection code.
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