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Abstract

In recent years, Deep Learning has achieved great results in fields such as Com-
puter Vision and Human Activity Recognition. Within the medical domain, these
advances have opened new doors for how problems are addressed and the res-
ulting quality of the new solutions. The use of Computer-based methods for Gen-
eral Movement Assessment has already been proven to assist in early detection of
cerebral palsy, enabling earlier treatment that can reduce the effects the disorder
has on the affected infant.

We propose a method for predicting an infants risk of developing CP based on
movement information extracted from raw video recordings by a Human Pose
Estimation model. Taking advantage of attention based techniques such as Multi-
head Attention we are able to visualize what parts of a recording are deemed most
important when generating a prediction.

The proposed base model is able to achieve a F-measure score of 0.7206, suggest-
ing that it is able to learn patterns in the movement data related to CP Experiments
show that the model have issues converging and is unstable, expressing the need
for more research before it could be considered an essential part of a computer-
based system for early CP detection.



Sammendrag

Dyp laering har i de siste arene oppnadd gode resultater innen forskningsfelt som
datasyn og menneskelig aktivitets gjenkjenning. Innen medisin har disse gjennom-
bruddene dpnet nye dgrer for hvordan problemer blir lgst og den resulterende
kvaliteten pa de nye lgsningene. Bruk av datamaskinbaserte metoder for General
Movement Assessment har allerede vist seg & legge til rette for tidlig deteksjon av
cerebral parese, noe som muliggjgr tidligere behandling som kan redusere omfan-
get av pakjenninger og lidelser det bergrte barnet kan oppleve under oppveksten
og resten av livet.

Vi foreslar en metode for & predikere risikoen et spebarn har for & utvikle CP basert
pa bevegelsesinformasjon hentet ut fra videoopptak av en Human Pose Estimation
modell. Ved & benytte oss av attention baserte teknikker innen dyp leering som
Multi-head Attention, er vi i stand til & visualisere hvilke deler av videooptaket
som anses som viktigst nar det kommet til genereringen av prediksjonen.

Den foreslétte basismodellen er i stand til & oppné en F-score pa 0,7206, noe
som antyder at den er i stand til & laeere mgnstre i bevegelsesdata relatert til CP
Eksperimenter viser at modellen har problemer med & konvergere og er ustabil,
noe som gir uttrykk for behov for videre arbeid pa modellen fgr den kan betraktes
som en vesentlig del av et datamaskinbasert system for tidlig CP-deteksjon.
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Chapter 1

Introduction

1.1 Motivation and Background

Cerebral Palsy (CP) is a well recognized neurodevelopmental condition beginning
in early childhood and persisting throughout the patients lifespan [1]. The risk of
developing CP is particularly high for infants born prematurely. In a study from
2010 it was reported a prevalence of 9% in infants born between 24-32 weeks of
gestation, with varying degree of motion impairment [2].

Diagnosing CP is a challenging problem as current techniques are complex and
either dependent on expensive equipment, highly trained and specialized clini-
cians or both and resources like these are not available to everyone. One such
technique is the analysis of an infants movement of the arms, legs, head and
trunk for specific patterns and characteristics that could indicate a healthy infant.
An absence of these movements could indicate that the infant has a neurodevel-
opmental disorder, such as cerebral palsy [3]. This process of analysing infants
movements are performed bedside for up to 15 minutes with infants as young
as two months old, postterm, and can also be performed remotely. As the num-
ber of clinicians with specialized training and knowledge about this technique are
limited, a fully automated system for predicting infants risk of CP based on their
movements would open up new possibilities for remote evaluation.

First of all, such a system would aid clinicians in making an early diagnosis which
in turn would lead to infants receiving earlier and more efficient treatments. The
younger a patient is when receiving treatment the more effective it will be since
the brain has the highest plasticity when young, thus being more responsive to
the treatment and adapt to the damages easier. Secondly, the system would be
accessible to more people as detection of CP would be done in the comfort of
ones home rather than at a hospital. Consequently, this would free up a lot of
time for clinicians as few people have to visit them for such a procedure, letting
their competence and focus go to the patients that needs it the most. Finally, this
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is a less stressful and non intrusive way of diagnosing CB both for the parents and
the infants, as it does not involve using machines for CT scans, MRI or other forms
of tests.

1.2 Problem Statement

Currently there are no fully automatic computer-based methods for early detec-
tion of poor development of an infants neurosystem and the traditional methods
that are available are either intrusive, costly, time consuming or only accessible for
a small part of the population. Efforts that have been made to construct such a sys-
tem are often not reliable enough, depends on human influence or carefully con-
structed features by experts with substantial knowledge of the field. Techniques
that have been applied to the CP prediction step are traditional statistical meth-
ods such as regression models or methods from artificial intelligence and machine
learning, e.g. support vector machines [4].

In the last decade, deep learning has been shown to be a powerful tool with per-
formances that compete with and, more often than not, surpasses its traditional
counterparts regarding the methods precision and efficiency. It is because of this
that we are witnessing a rise in the application of deep learning in different med-
ical domains. However, deep learning is mostly applied when images from x-rays
and CT, to name a few, are used for further medical treatment and diagnosis and
there exists appropriate amounts of data or the data is easily collected.

The main goal of this project is to make use of the capabilities of deep learning and
create a model for the prediction step in a end-to-end deep learning system. This
system will be based on video recordings of the subjects and the prediction step
will use movement data of the subjects bodyparts extracted from the recordings
as a basis for its generated output. This system will let neural networks handle
processes such as feature extraction, embedding and everything that is needed to
produce an output of the subjects risk of developing CP and should aid clinicians
in diagnosing the disorder. In addition, such a method could be of great use and
serve as inspiration for the development and research of similar methods to be
used in other medical domains dealing with similar conditions or in problems
related to the elderly or even athletes.
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1.3 Research Questions

The goal of this master thesis is to develop a classification system for an infants
risk of developing CP by leveraging from a previous works success in extracting
skeletal joint data from raw video recordings. A deep learning model inspired by
recent advances in the field was developed and tested on the already generated
datasets. To make the model more explainable, different ways of presenting the
steps leading up to the prediction was explored as the more understandable in-
formation the model can provide to its user the more information could be used
in the diagnosis process leading to more accurate diagnoses.

With these goals in mind, the following research questions will be addressed in
this thesis:

RQ1: How can deep learning be used to solve the problem of predicting an infants
risk of developing Cerebral Palsy by using human skeleton time series data?

RQ2: How can said model aid the users in their evaluating of a patient? Can it
recognize the patterns of movement associated with Cerebral Palsy and visualise it to
better the users understanding of the prediction, thus making the model usable for
medical diagnosis?

RQ3: What are the advantages and disadvantages of such a model? Does it com-
pete with today’s methods of predicting Cerebral Palsy, such as General Movement
Assessment?

1.4 Research Method

Initially, this project started with a literature study to gather information and
knowledge about the state-of-the-art methods related to the problem as well as
different deep learning based methods. The data to be used was then analysed and
experimented on to define an appropriate representation which could be used for
the classification. A model architecture was then proposed, together with several
variations of it, based on an analysis of these methods and the data at hand, which
was theorised to suit the problem statement. Then a quantitative study was per-
formed where experiments are carried out on the model and its variations such
that a comparison based on their performance can be acquired. The project is then
concluded from the results of these experiments.
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1.5 Context

This project is part of the InMotion project, a larger research project at St. Olav
University Hospital in collaboration with the Norwegian University of Science and
Technology (NTNU) in Trondheim, Norway. It consists of researchers and clini-
cians from the Department of Neuromedicine and Movement Science, the De-
partment of Clinical and Molecular Medicine and the Department of Computer
Science. The overall goal of the project is to create a fully automated system for
predicting an infants risk of cerebral palsy based on its spontaneous movements.
This prediction will only be based on a video recording of said infant and be able
to be captured by the cellphones of the parents. Hence making this CP indicator
available to the masses.

1.6 Contributions

This thesis provides the InMotion team with valuable insight in the task of pre-
dicting a infants risk of CP based on skeletal data using a Deep Learning Model.
This developed model will make up the second part of a two part system for pre-
dicting CP based on raw video recordings. A second contribution is the ability to
visualize which parts of the recorded video are the ones the method bases its pre-
diction on. This visualization should aid users of the system in their diagnoses,
but should not be considered a diagnosis. In this way the thesis will contribute to
the medical field and the field of Deep Learning.

These insights are not only valuable for the InMotion team, but also next years
Master students at the Norwegian University of Science and Technology as they
will be tasked with continuing the development of this automatic CP prediction
system.



Chapter 1: Introduction 5

1.7 Thesis Outline
The thesis is structured as follows:

e Chapter 1: Introduction introduces the motivation and background for the
project, as well as the research questions and methods. The projects contri-
butions and relation to the InMotion research initiative it is involved in are
also explained.

e Chapter 2: Theoretical Background establishes the theoretical aspects that
are relevant for the project. An introduction to the medical domain relevant
to cerebral palsy is included, as well as concepts in deep learning and human
activity recognition.

e Chapter 3: Previous Work discusses the previous work within the InMo-
tion project, as well as state-of-the-art approaches and model architectures
related to the problem being addressed in this thesis.

e Chapter 4: Method describes the proposed method and the methodology
for predicting the risk of cerebral palsy in infants.

e Chapter 5: Results presents the results obtained from the experiments con-
ducted in th cores of /throughout the project.

e Chapter 6: Discussion Contains the final discussion where the results are
evaluated and the performance of the model is assessed in light of of its
applicability for medical use.

e Chapter 7: Conclusion and Future Work concludes this thesis and provides
thoughts and suggestions for future work.



Chapter 2

Theoretical Background

This chapter will provide some of the theoretical background needed for this
thesis. First, cerebral palsy and a technique for detecting infants with a high risk
of this condition is defined. Then an overview of deep learning and some of its
concepts is given, before theory relevant for time series classification and human
activity recognition is introduced.

2.1 Cerebral Palsy

Cerebral Palsy, or CP for short, is an umbrella term covering a group of non-
progressive, but often changing motor impairment syndromes secondary to le-
sions or anomalies of the brain arising in the early stages of development [5]. The
diagnosis is given to around 2 out of every 1000 live born children, but this pre-
valence rise to 8% and above for infants born 32 week or earlier after gestation [2,
6, 7]. Typical manifestations of CP include various degrees of motor dysfunction,
lack of dexterity, musculoskeletal issues, speech difficulties and mental impair-
ments.

Damages suffered by the brain during birth, pregnancy or after birth are usually
the reason for the development of CB Although CP cannot be cured, its outcome
can be improved by early detection and the proper treatments, giving the patient
fewer difficulties growing up. As a child’s brain is constantly changing and devel-
oping it is difficult predicting the outcome of any treatment. Given its plasticity
is the highest in the earlier years of life [3], the sooner treatment is started, the
more susceptible the brain is to change, making early detection crucial.
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2.2 General Movements

General Movements refer to the spontaneous movements of fetuses and infants not
generated or related to external stimuli. The quality of these movements has been
shown to accurately reflect the condition and development of the nervous system
of fetuses and infants [8]. These movements are described as gross movements
involving the whole body consisting of extension, flexion and rotations lasting
from a few seconds to a minute. Though gross in nature, combined they look
complex, varied and elegant. General movements shows up as early as when the
fetus is 9 to 12 weeks postmenstrual age and last until the infant is around 60
weeks postmenstrual age, 20 week postterm age.

2.2.1 Fidgety Movements

Fidgety movements typically refers to the general movements that appear from 9
weeks postterm age and last until the infant is 20 weeks postterm age. They are
described as small movements of moderate speed with variable acceleration of the
neck, truck and limbs in all directions [9]. They are only present when the infant
is awake and disappear if the infant is sleepy or crying. Fidgety movements have
been shown to have a strong link to an infants risk of developing CP [10].

2.2.2 General Movement Assessment

Detection of CP should be done as early as possible in order for the treatment to
be initiated as early as possible. Many common methods of detection cannot be
conducted early enough as the signs of CP they are looking for are not yet present.
But as explained above, general movements, or lack thereof, gives an impression
of the state of the infants nervous system and its developments.

Based on this, general movement assessment was proposed as a method for assess-
ing whether or not an infant produces these fidgety movements that are generally
accompanied with a healthy nervous system in development [11]. An essential
part of GMA is the evaluation of the quality and complexity of spontaneous move-
ments by the means of Gestalt perception [12]. Gestalt perception does not focus
on the basic and individual movements and pattern, but rather on the intensity
and complexity of the whole movement repertoire of the infant. In order to be
able to identify the presence or absence of fidgety movements with a high degree
of accuracy, clinicians need to train on video recordings of infants to be able to
recognize and evaluate the complexity of general movements.

In a systematic literature review Burger et al. [13] examined the predictive valid-
ity of general movements. They found that GMA generally shows great promise,
especially on infants in the fidgety movement age, with a majority of the stud-
ies included getting above 80% sensitivity and specificity. One paper to highlight
is Prechtl et al. [10] which achieved sensitivity and specificity of 95% and 96%
respectively. Sensitivity is a measure for how many positive cases are correctly
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identified among all positive cases, given by Equation (2.1). Specificity, on the
other hand, is a measure of how many negative cases are correctly identified from
all the negative cases, given by Equation (2.2).

tivit True Positive 2.1)
sensitivity = .
Y True Positive + False Negative

True Negative

specificity = (2.2)

True Negative + False Positive

The biggest advantage of GMs is that they can be used with great success as a
quick, cost-effective and non-invasive assessment method, but it has its limita-
tions. The accuracy of the method relies on the skill of the clinician conducting
the assessment. Clinicians with this kind of training might not be availed at every
hospital, making them a scarce resource. Also, this way of assessing movements is
highly subjective and depends on each clinicians individual interpretation, which
can be affected by bias or external factors like long work days or mental pres-
ence.

2.3 Deep Learning

As machine learning is a subfield of artificial intelligence so is Deep learning a
subfield of machine learning. It is concerned with models and algorithms that
take inspiration from the structure of the brain and its functions. One could argue
about who made the first contributions to this field, but the introduction of the
multilayered perceptron (MLP) [14] and backpropagation (BP) [15] may be said
to be the foundation that most of the field is built upon.

The constant decreasing in cost of computational power together with its increase
in availability and the ever growing accessibility of data has made deep learning as
in demand and popular as it is today. The fact that deep learning has significantly
improved the state-of-the-art for many problems that the Artificial Intelligence
and Machine Learning communities have faced, have also played a part for its in-
crease in popularity. Deep learning is being used to achieve these results includes
e.g. in fields such as Computer Vision, Natural Language Processing (NLP), Com-
puter Graphics and Human Activity Recognition (HAR), to mention a few. For this
reason we will be giving a brief introduction to neural networks and other relevant
concepts in deep learning in this section.

2.3.1 Neural Networks

In literature neural networks and MLP are often used interchangeably. This net-
work consist of nodes and edges connected to each other in such a way that they
form a computational graph where information flows in only one direction, from
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the input nodes and to the output nodes. These networks are used to discover and
learn patterns and relationships in the data presented to them to produce suitable
outputs. This process of generating outputs y by processing the input data x in in-
termediate layers between the input and output layers in the network is called the
forward pass and it consists of two different stages for each layer in the network.
In the first stage each output from the nodes in the previous layer is weighted to
determine how much they will contribute to the input values in the subsequent
layer by utilizing weights. Then a weighted input is produced by a sum of all the
weighted outputs from the prior layer. This operation can be performed and ex-
pressed as the matrix multiplication in Equation (2.3) and is often accompanied
by adding a bias to the result.

20 = =Dy ® 4 pO (2.3)

Here a1 is the activated output values from layer [—1, W is the weight matrix
of layer [ and b® is the bias vector of layer L.

In the second stage the weighted inputs of a layer, z(1); is passed through a non-
linear activation function a. The fact that the activation function is non-linear is
a major part of the reason to why neural networks are able to solve difficult tasks
other machine learning methods struggle with. The reason the activation function
should be non-linear is to make the neural network able to learn more complex
non-linear patterns in the data. The sigmoid and tanh activation functions have
been widely used in deep learning, but have been slowly replaced with functions
such as ReLU (Rectified Linear Unit) and Softplus [16] as these do not suffer from
the vanishing gradient problem.

Depending on the complexity of the problem at hand, the architecture of a neural
network can be designed in several different ways to suit our needs. The network
design is crucial for its performance and typical aspects of the network that needs
to be decided are the number of hidden layers, number of nodes in each hidden
layer and the activation function used in each node. Few hidden layers and less
hidden nodes makes the network faster and easier to train, but it is not complex
enough to learn the patterns in the data. Larger networks with more hidden layers
and more hidden nodes can solve this problem of underfitting, but will make
the model slower and more difficult to train as the process of optimization gets
harder with an increasing number of parameters resulting in lower performance.
Each design choice comes with its own trade-off. Nevertheless, this flexibility of
the design of neural networks makes them suitable to overcome most problems
where the data is able to be represented in a way the network can understand.
Figure 2.1 shows an example of a neural network which generates two output
values by taking three input values and passing them through one hidden layer
with five nodes.

For a neural network to be able to learn, a process called backpropagation is used.
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Hidden

Figure 2.1: A simple fully connected neural network

Given a neural network and a loss function the backpropagation algorithm works
by calculating the gradient of the loss function with respect to the weights of the
neural network and then updating the weights in the opposite direction of the
gradient, thereby reducing the loss of the models future output and optimizing
the weights. Since a target y and a predicted output y is needed to quantify the
loss, backpropagation is most useful when dealing with supervised learning, i.e.
we have a target value corresponding to each input vector. During this optimiz-
ation process the learnt patterns and relationships from the data will be realised
in the weights between nodes in the connected layers. As these weights are up-
dated, so are the importance of the different connections between each layer. This
embedding of knowledge in the network allows it to able to solve complex tasks,
but also makes it difficult to comprehend exactly why it behaves as it does when
presented with an input vector. When optimized, a neural network should be able
to generalize upon the data it has been presented with, but for this to be possible
the data should be of such diversity that the network is able to experience as much
of this domain as possible. As such, many examples are required for the data to
be able to represent this diversity.

The optimization algorithm described above is most commonly know as Stochastic
Gradient Decent (SGD) [17] and is widely used. Another popular optimizer is the
Adam optimizer [ 18]. It computes adaptive learning rates for each parameter that
are based on the exponentially decaying average of past gradients and squared
gradients. Specifically, the algorithm calculates an exponential moving average of
the gradient and the squared gradient. Adam is a competitor to SGD as it is shown
to converge effectively and achieves good results fast.
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Figure 2.2: A simple 1 dimensions convolutional layer

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNN) are neural networks that works particularly
well when dealing with signal and image data. The idea for these neural networks
goes all the way back to 1980 and a proposed computational model for visual
pattern recognition called the neocognitron model [19] and gained a surge in
popularity in 2012 when the winner of the ImageNet challenge achieved state-of-
the-art performance with a CNN called AlexNet [20]. In this section we will be
focusing more on the CNNs for signal processing.

CNN differs from regular neural networks in the way that the input values for the
next layer is computed during a forward pass. A node is connected to a subset
of the nodes in the previous layer and thus only receives information from these
nodes. The region from which a node receives its inputs is referred to as its recept-
ive field. This local connection between layers makes an important concept of a
convolutional layer possible, namely weight sharing. Weight sharing makes use of
the same set of weights to calculate the output of a convolutional layer based on
the receptive fields. This output is called a feature map as one set of weights only
look for one specific feature or pattern and one set of weights is referred to as a
kernel. To be able to detect more than one pattern in a signal it is common to use
multiple kernels, this will in turn create multiple feature maps and increase the
dimensionality of the signal. This process is illustrated in Figure 2.2 where three
kernels of size 3x1 generates three feature maps of size 3x1. CNNs usually comes
with a pooling layer following the convolutional layer. This is to reduce the resol-
ution of the feature maps and is effective in the sense that it stores information by
using less space. The most common forms of pooling layers are max pooling and
average pooling and both highlights different aspects of the feature maps.

CNN s are well suited for deep learning as the weight sharing of the convolutional
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layers and reduction of information by the pooling layers lets them scales quite
good as they require fewer parameters than their fully connected counterparts as
fewer parameters makes them easier to optimize.

2.3.3 Transfer Learning

As previously stated, for a neural network to be able to learn properly it has to be
presented with a divers set of examples representing the variety of the domain.
This makes the performance of deep learning strongly dependent on large dataset,
which in turn creates a problem if the training data is insufficient. Collecting the
data needed can be complex, expensive and time demanding making it difficult
to a large high quality dataset. The idea behind transfer learning is to transfer the
already learnt knowledge form a deep learning model, trained on a source domain,
to a new related problem and re-purpose it for the benefits of improvement in
learning and generalization. The data domain of the related problem is called
target domain. This will allow for a significant reduce in training time and the
demand for training data by taking advantage of already existing models and
datasets.

Reusing a part of or the whole network structure in conjunction with its weights
is referred to as network-based transfer learning [21]. A model whose weights
and structure is used for transfer learning is know as a pre-trained model. When
reusing parts of such a pre-trained model its common to use earlier layers of the
model as a starting point for the new model. This can be viewed reusing the pre-
trained model as a feature extractor and is useful as deep learning models tends
to learn features which can be beneficial across multiple domains. Huang et al.
[22] divided their neural network into two parts where the first layer acted as a
language independent feature extractor and the last layer as language depend-
ent classifier. This feature extractor was then trained on the whole domain, thus
containing knowledge from all the languages, while the classifiers where only
presented with the language specific domains.

During training the weights of a pre-trained model can be set to be fixed or just
used as initial weights. The decision of whether to tune these weights together
with the rest can depended on how similar the domains are or how large the
target domain is. Earlier layers of the pre-trained model can aid in the feature
extraction from the target domain. If there are few examples from this domain,
keeping the earlier layers fixed while tuning the later or new layers might be the
best strategy, as the earlier layers of a deep learning model contains more generic
features and later layers progressively contain more specific features of the classes
contained in the source domain [23]. Fine tuning can still be performed with this
approach, but this should be done during a separate tuning step as the parameters
of the feature extractor must be adjusted very precisely.



Chapter 2: Theoretical Background 13

2.3.4 Attention Mechanisms

There exists multiple ways of trying to explain how and why CNNs works and how
they perceive images presented to them [24]. These approaches are quite success-
ful when dealing with 2d convolution and images, as images are more often than
not trivial for humans to understand and interpret, but not as good for sequential
data. When using recurrent neural networks (RNN) for machine translation the
problem of capturing long range dependencies arose as information about earlier
tokens in the source sentence had to accumulate in a fixed-length hidden state
vector, generated by an encoder, which in turn would be used to generate the tar-
get sentence by a decoder. As the hidden state vector receives new information
about later tokens in the sentence it has to give up some of the information about
earlier tokens.

To solve this an attention mechanism [25] was proposed to help each predicted
token in the target sequence selectively attend to all tokens in the source sequence.
In other words, this mechanism allows each new token generated search for a set
of position in the source sequence where the most relevant information is con-
centrated. This freed the model from having to solely base its predictions on a
fixed-length hidden state vector regardless of the length of the source sequence,
but it also added a computational increase to the model. As an additional bene-
fit to this mechanism, the model was now able to show what parts of the source
sequence it directed its attention to and considered more important when gen-
erating to target sequence through its global attention weights. Figure 2.3 shows
the attention matrix for a machine translation of an English sentence to French.
When translating the words European Economic Zone its is clear that the model
is able to apply its attention to these words in a way that represents the way it
is written in French and align its context vector to represent the importance it
has given the source sentence. The attention matrix shows that this mechanisms
greatly enhances the interpretability of the inner workings of the model and how
it produces its predictions, a quality that is very desirable in deep learning.

For the attention mechanism to be able to know which parts of the source se-
quence to attend to, a context vector needs to be generated. The context vector
is generated as given by Equation (2.4). Here the context vector ¢, for token t in
the target sequence is computed as a weighted sum of the source sequence, with
a length of n tokens.

n
¢ = Z at,iﬂi 2.4
i=1

The attention weights of @, is computed by Equation (2.5) which is a softmax
of some predefined alignment score function, score(h,, h). The alignment score
function computes how well a hidden state h, and a token from the source se-
quence h; match.
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Figure 2.3: Attention matrix for a English to French translation

exp(score(h,, ES))
> exp(score(h,, hy))

a; = align(h,, Es) = (2.5)

In other words, the attention mechanism attends to the source sequence based on
how similar the alignment function finds each of the source tokens to be to the
target token ts hidden state. Figure 2.4 illustrates this process.

Bahdanau et. al [25] proposed an alignment function based on a neural network
which is jointly trained together with the rest of the models components. This
function can be mathematical described as Equation (2.6) where VZ and W, are
network weights.

score() = VZ tanh(W,[h,; h_s]) (2.6)

Other alignment functions have been proposed, such as the dot-product score and
general score by Luong et al. [26]

Figure 2.4 shows an attention mechanism which takes the whole source sequence
in to consideration when computing the attention weights. This is known as global
or soft attention. Two alternatives to this procedure is hard and local attention.
The former was proposed by Xu et al. [27] and was used for machine generated
captions from images where a patch of the image are selected and attended to at a
time. The later was proposed to take advantage of hard attentions less expensive
computational cost and be easier to train. This is achieved by selecting an aligned
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Figure 2.4: Attention mechanism

position p, and generating the context vector from all source tokens a distance
D from this point. The simplest way of choosing the aligned point is by setting it
equal to the target tokens position in the sequence, p, = t. Note that a predictive
way of choosing p, exists and is explained in [26].

All attention mechanisms explained so far has been using a source and a target
sequence which were inherently different when aligning the source tokens to a
target token. Removing the target sequence and making the source sequence at-
tend to itself is the basis behind self attention. A key idea here is to use attention
to include the relationships between tokens in the same sequence. This concept
was proposed by Cheng et al. [28] for their paper on machine reading.

2.4 The Transformer

Attention mechanisms as described in the section above are limited to being util-
ized together with recurrent neural networks. While attention aided with the chal-
lenge of capturing long range dependencies, the underlying sequential nature of
these networks still gave rise to challenges during training and optimization. Due
to how RNNs process one element at a time they are slow to train and causes them
to struggle with vanishing and exploding gradients [29].

To solve these problems Vaswani et al. proposed the Transformer [30], a model that
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entirely relies on an attention mechanism and which takes the whole sequence as
input, removing the sequential aspect RNNs are restrained by. The ability to not
have to handle the input in a sequential matter allows for more parallelization
which in turn lowers the time needed for the model to converge. A consequence
caused by feeding the whole sequence to the model at once is that it looses the
notion of each elements relative position in the sequence and the order of the
sequence. As the order of elements in sequential data matters, information about
this ordering must be added to the sequence in order for the model to be able
to make use of it. This is achieved by adding positional encodings to the input
sequence before it is presented to the model, Equation (2.7).

PEpos, 2i = sin(pos /100003 dmoder)

PE, 45, 9141 = c0s(pos/100002!/dmodcr) @7
The idea behind the positional encoding is that by adding these vectors with a
specific pattern it will aid the model in determining the sequence order of ele-
ments and the spatial difference between elements, i.e. the distance between the
two in the sequence. This can be viewed as adding a binary number of the same
dimension as the embedded input to the elements and increasing it by one for the
next element, but rather than being discrete values the sinusoids in Equation (2.7)
produce continuous values which are contained in the interval [-1, 1]. The posi-
tional encoding has the same dimension as the embedded sequence so that it can
be generated beforehand and added to the input embedding. Keep in mind that
this positional encoding is a fixed one and that learned positional encodings ex-
ists. Fixed positional encoding have an advantage over learned ones as they allow
the model to extrapolate to sequence lengths longer than the ones encountered
during training.

Figure 2.5 illustrates the transformer model and give a great overview of its ar-
chitecture. The transformer is made up of two components, an encoder and a
decoder. Both of these components attention mechanisms is the multi-head atten-
tion, which consist of multiple scaled dot-product attention units.

2.4.1 Scaled dot-product attention

The input to the scaled dot-product attention, Equation (2.8), consists of queries
(Q) and keys (K) of dimension d; and values (V) of dimension d,, where the
attention weights are given by an inner product of Q and K. Every element in
Q is matching every element in K. Since a large sequence would perform many
inner products which could grow to be large in magnitude, the resulting weights
are scaled by the square root of the number of dimensions in the embedded in-
put. This is to prevent the softmax function to get pushed into regions where the
input value is really large or very small and the gradients are extremely small.
After applying the softmax an output is produced by performing an inner product
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Figure 2.5: Transformer architecture

with V, thereby routing information from QKT to V of every element attended
to. This can be viewed as Q and K constructing the relationships in the sequence
and V summarizes all of these relationships to produce a output reflecting the
relationship between one element and all others.

QKr
e

Attention(Q, K, V) = softmax( 1% (2.8)

2.4.2 Multi-Head Attention

The relationship between two elements in two different sequences might be very
different based on the location of the two in the sequence and the distance between
them, here the two elements are thought to be the same in the two sequences. In
other words, there might exist multiple different relations between elements and
these relations should not be treated equally. Multi-head attention, Equation (2.9),
tackles this problem by creating multiple attention matrices in parallel in different
heads h.

MultiHead(Q, K, V) = Concat(head;, ..., head,)W®° (2.9)

Each head attend to information from a different representation of the sequence,
where head; = Attention(QW2, Kwf, vwY) and Wl.Q € Rimoder* I, WK € Rimode*
WiV € Rmoder*dy and WO e Rémode*hdy Gince each attention head outputs an atten-
tion matrix the result of concatenating all of them needs to be reduced to match
the original shape of the input. This is done by a linear projection with weight
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matrix WO. The weight matrices to be tuned together with the rest of the model
during optimization are Wl.Q, WiK , W, and WO. The memory and time complexity
of the multi-head attention computation is O(n? - d), where n is the length of the
sequence and d is the number of dimensions per element.

The multi-head attention layer does not learn representations based on all other
elements in the sequence, it is solely a way to weight each element by its similar-
ities to other elements. To create a new representation of the input embeddings
weighted by the similarity score a feed-forward network is used. Its output is the
new embeddings which are passed to the subsequent layer.

The multi-head attention component and feed forward component, which is made
up from two linear layers increasing the dimensionality of the sequence to dy¢
for then to reduce it back to d,,,4.; again, makes up the two sublayers used in
the transformer. After each of the sublayers a residual connection is made which
adds the input to the sublayer to its output, this in turn makes the training of
deep learning models easier [31]. Subsequently layer normalization is performed,
which normalizes the inputs on a per datapoint basis over all features [32]. At last
dropout is performed for regularization purposes before the residual connection
and normalization layer.

All of this combined lets the transformer find three types of relationships in the
data presented to it. These are the relationships inside the source sequence, the
relationships between the source and target sequence and the relationships in-
side the target sequence. In comparison, the attention mechanisms explained in
Section 2.3.4 are only able to find relationships between the source and target
sequence.

While the transformer is made up from an encoder and decoder when used on
sequence to sequence problems, the encoder alone could be used for transforming
an input sequence and using only the relationships found within itself, e.g. for
question answering [33, 34]. It has also been shown that transfer learning is a
technique that possesses a lot of potential when used for deep learning models
adopting the transformer architecture and fine tuning these pre-trained models
can yield very successful results [34, 35].

2.5 Human Activity Recognition

Human Activity Recognition, HAR, can be defined as the task of classifying sequen-
tial data from a given set of predefined actions and it is a part of the field of time
series classification. The data used for time series classification share the same
main characteristic as data used in NLP and speech recognition tasks, namely the
sequential aspect, hence resulting in these fields being closely connected. The data
is typically collected using sensors captured by video cameras, sensors carried by
the subjects such as gyroscopes and accelerometers or both. There are three main
problems that makes HAR a challenging problem. The first problem is that the use
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of these kinds of low-level sensor data poses a lot of challenges as there is no ob-
vious way to extract high-level knowledge about human movements from them
[36]. Furthermore, the recorded data also consists of variations as each action
performed by a subject may be performed with a lot variations from recording
to recording. Lastly the sheer volume of data that needs to be collected and pro-
cessed poses a problem itself, sensors or cameras capture data with a frequency of
around 30Hz or higher so a 30 second recording can easily be composed of 900
or more elements.

If a model is tasked with classifying multiple actions within a single recording we
are not only concerned with a recognition problem, i.e. what action is preformed,
but also with a localization problem, i.e. where in the recording are the different
actions acted out. Human activities can be categorized into six different categories
[37]. These categories are (1) gestures, (2) atomic actions, (3) human-to-object
or human-to-human interactions, (4) group actions, (5) behaviors and (6) events.
Movements corresponding to a high risk of CP would be classified as human beha-
vior as this category refers to physical actions that are associated with emotions,
personality and the psychological state of the subject.

As an activity can be composed of more than one movement and last for any-
where from a couple of seconds to multiple minutes, the case of classifying a
sequence of movements as indicating a high risk of CP can be considered a HAR
problem.

2.5.1 Deep Learning Based Approaches

Conventional machine learning approaches are based on fixed size windows and
machine learning which requires hand crafted features. This kind feature engin-
eering is difficult and an expertise in the field is vital for coming up with favorable
features. As deep learning requires little to no feature engineering and is able to
learn patterns and relationships in data, it is a natural competitor to traditional
approaches.

Deep learning based HAR networks are often based on convolutional or recur-
rent neural networks or a combination of both [38]. Sensor data from body worn
sensors or from tracked skeleton joints from video recordings are able to utilize
the self-attention mechanism from Section 2.4. Since a goal of this project is using
skeleton joint data extracted from video recordings to predict the risk a subject
has of developing CB the HAR approach to time series classification is well suited.
Self-attention will allow the network to provide meaningful insights to clinicians,
which is a requirement for intelligent computer-based systems being used to aid
medical diagnoses.
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Previous Work

The upcoming chapter will show how ideas from HAR and GMA are used and in-
corporated in existing computer-based methods designed to solve these two prob-
lems. Section 3.1 will give an overview of the progress made by the InMotion team.
Following this, Section 3.2 presents existing methods for computer-based GMA
and the challenges they have faced. This section is then ended with Section 3.3
which provides an overview of deep learning methods used for HAR.

3.1 InMotion

InMotion is an ongoing research project at St. Olav’s University Hospital led by
Lars Adde. As described in Section 2.2.2 conventional GMA approaches has its lim-
itations, mainly the need for trained clinicians and the subjective nature of assess-
ment method. InMotion aims to overcome these challenges by utilizing computer-
based GMA for CP risk assessment based on video recordings of patients. Adde et
al. [39] have already showed that it is feasible for the prediction of CP to be
provided by computer-based video analyses and that these video recordings can
be used for qualitative and quantitative analysis of FM [40]. Such a method would
make GMA available to people in places where there are no trained profession-
als and it would aid clinicians with their diagnoses, as the system would provide
valuable information. Since the prediction of this system will be computer-based,
clinicians should not consider it a diagnosis as the model do not provide valid
clinical reasons for the predictions, but rather consider it as part of the results
that forms a diagnosis together with his own observations and results from other
clinical tests.

As this system would be based on video recordings, a set-up for the recording
process was created. This set-up, shown in Figure 3.1a, included a camera with a
stand, a mattress and a suitcase for storage was then distributed to different hos-
pitals around the world, including hospitals such as University of Chicago Medical

20
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Figure 3.1: Set-up and view for video recordings of infants

Center (UoC) and Life Care Hospital in Indore, India (LCH), were they have col-
lected recordings of both low- and high-risk infants.

In 2018 Aurlien and Groos [41] developed Human Pose Estimation (HPE) model,
called CIMA-Pose, which would track seven points on an infants body as part of
their master thesis, visualized in Figure 3.1b. This would be used as a first step
in the process of predicting CP by extracting the joint location of the subject to
be used further for Computer-based Infant Movement Assessment and CP predic-
tion. The generated skeleton data from this model would be collected into the
CIMA-7 dataset consisting of 513 recordings in total. Groos et al. [42] would in
2020 improve upon this work by introducing EfficientPose a model which outper-
formed OpenPose [43], the most commonly used HPE method used in real-world
application, in terms of accuracy and computational efficiency. The data gener-
ated by EfficienPose would result in the CIMA-19 dataset, a dataset made up of
377 recordings, each with 19 bodyparts tracked.

3.2 Computer-Based GMA

There have been developed multiple different approaches for performing computer-
based GMA designed to overcome the challenges present by common methods,
by only considering video recording of the patients. One of these approaches are
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the previously mentioned method of Adde et al. [39, 40] where information of
the infants movements are extracted through a process called frame differencing.
With frame differencing movement information is represented as motion images.
These motion images are the difference between a frame and the succeeding frame
and represents the change of each pixel between two frames. Several quantitative
measures are calculated from these motion images, e.g. the mean and standard
deviation of the two measures quantity of motion and centroid of motion which
are the mean of pixels that changed and the center point of movement respectively.
The centroid of movement were found to identify infants with fidgety movements
with a sensitivity and specificity of 84% and 71% by comparing its standard devi-
ation with a threshold. Low standard deviation values for the centroid of motion
may reflect all the small movements of the whole body, thus supporting this defini-
tion of fidgety movements. Although being a simple approach for computer-based
GMA it has its drawbacks. Its results are dependent on the quality of the video re-
cordings as noise such as a change in the lighting, movements other than the ones
the infants produces or occlusions will give motion images with areas not related
to the infants movement highlighted. This was partly solved by the use of filters
such as a low pass filter.

A second method proposed by Rahmati et al. [44] utilizing tracked motion tra-
jectories as a foundation for representing the motion data. These trajectories are
tracked with a motion segmentation based tracker which computes these traject-
ories based on the average of all trajectories in one segment of the infants body
[45] between consecutive frames of the recording. The trajectories contained in
each segment are obtained using optical flow which extracts information about
the speed and direction of objects in the recording. The final trajectories are com-
parable to the trajectories found in the CIMA datasets as they represents the move-
ment of different bodyparts. One downside of this approach is that the final traject-
ories are generated iteratively, hence the need for manually initializing the point
of a trajectory. Following this step, frequency-based features are then extracted
by applying a fast Fourier transform (FFT) on the trajectories which results in the
magnitude of the frequency components which will be presented to the following
CP prediction step, which is performed by partial least square regression (PLSR).
This approach of predicting CP gave a sensitivity and specificity of 86% and 92%.
In addition to the already mentioned downside of having to manually initialize the
start of each of the final trajectory the calculation of the optimal flow introduces
a computational expensive cost to the method.

These two approaches handles the movement extraction and CP prediction in very
different ways, resulting in different performance and complexity. Yet, common
for both of them is that these approaches consist of two different steps to complete
the whole process. Firstly, the movement data are extracted from the raw video
recordings. This step is then followed by a CP prediction process which bases
its predictions on the movement data generated by the first step. This first step
is already been created and thoroughly tested by the InMotion team. With the
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skeleton data generated by CIMA-Pose and EfficientPose a natural next step for
reaching InMotions goals would be to develop an automatic CP classifier for the
second step of the Computer-based Infant Movement Assessment.

3.3 Deep learning-based HAR

Traditionally, CNNs and RNNs have been the two main neural networks used when
it comes to Time Series Classification (TSC). They are also frequently used for
Human Activity Recognition and given the strong similarities between the two, it
is natural that a majority of HAR methods are based on the same architectures
and ideas as TSC.

CNNs are used for capturing temporal signal structures from sequential data within
a given window of the sequence with a low memory overhead as the weights
between all windows are shared. Zeng et al. [46] developed a model using CNNs
to capture the local dependencies in signal data captured with body-worn sensors
from datasets such as Opportunity [47] and Skoda [48]. They introduced a weight
sharing scheme where the traditional scheme of CNNs are relaxed such as the
range of the weight sharing and the window is affected, naming it partial weight
sharing. Separate input convolutional and max pooling lasers whose outputs where
concatenated before fed to the classification layers was also used, i.e. each axis of
the signal data. The combination of these additions to the CNN architecture resul-
ted in their model outperforming the then current state-of-the-art approaches.

Yeng et al. [49] also leveraged from the automatic feature learning capabilities of
CNNs to produce state-of-the-art results on the Opportunity dataset. By following
alternating convolutional and max pooling layers with a parametric-concatenation
which feed its output to a classifier they managed to achieve an accuracy of
87.7%, 83.0% and 86.7% for subject 1 through 3 respectively. The parametric-
concatenation layer is a fully connected layer for unifying the feature maps cre-
ated by the convolutional layers. Both Yeng and Zengs results illustrates CNNs
potential to learn feature extraction when dealing with time series data.

One approach using RNNs for HAR was proposed by Murad et al. [50]. By using
RNNs, specifically LSTMs, on a window of the sequence they generated an activity
prediction for each time step of the data which is then aggregated in order to
produce a prediction for the data within the window. This approach yielded a
result of 92.0% F1 score on the Opportunity dataset. Despite these promising
results the application of pure RNNs for HAR has been more limited than CNNs.
It is more common to see the two used in conjunction (? together) than alone
benefiting from CNNs potential to learn features and RNNs ability to combine
temporal information. The CNN will in this case act like a feature extractor, much
like it did for Ordonez et al. [51]. They attached a LSTM network to a CNN and let
it interpret the extracted features over several time steps. They also removed the
pooling layers that usually accompany every CNN, stating that it interfered with
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the CNNs ability to extract features as it downsamples the data sequence. With
this setup a F1 score of 91.5% was achieved on the Opportunity dataset.

3.3.1 Attention based HAR

Early approaches from deep learning-based HAR based their prediction on the
ability of CNNs to perform feature extraction from sequences of movement data.
Because of this the temporal context used during feature extraction is fixed. This
is not ideal as the activities are of different lengths and some might fit within
the context window, while others might not. The publication of Vaswani et al.
[30] Attention Is All You Need has inspired more recent models to incorporate self-
attention, as described in Section 2.4, after the feature extraction step allowing
the model to consider and attend to all time steps of a sequence of data .

One such model was introduced by Murahari et al. [53]. They constructed an
attention model for HAR by adding attention layers to the model proposed by
Ordonez et al. [51] which consisted of CNN and LSTM layers. Hence, instead
of using the LSTM cells outputs to perform their prediction they would be fed
into the attention mechanism, whose output would be the basis for the classi-
fication. One key difference between this attention mechanism and the one pro-
posed by Vaswani is that instead of letting every element in the sequence attend
to every other element, they restrict the attention span of one element to the 7
elements that came before it in the sequence. This creates a form of masking effect
not letting elements in the sequence look into the future nor too far back in the
past.

Sun et al. [54] proposed a model with a fully self-attentive layer mapping a query
and a set of key-value pair to an output. However, the CNN layer that is found
in many of the other deep learning-based HAR methods was replaced by a LSTM
network to model the sequential data. This causes the attention layer to stay put
until the LSTM layer have finished its computation, this is also the case for pre-
vious mentioned model. This inherently sequential nature of the LSTM cells pre-
cludes parallelization within training examples, which becomes more critical the
longer the sequences are. To combat this they impose a sliding window strategy
with an overlap of 50%.

An approach exclusively based on a CNN for the feature extractor was proposed
by Zhang et al. [55], overcoming the parallelization issue of the previously men-
tioned methods. Rather than relying on skeletal data of the subject, this method
used raw images as input and the pre-trained VGG-16 network as a feature ex-
tractor [56]. as a feature extractor. Using images also allowed them to perform
HAR in scenes containing multiple subjects whose action depends and affects

IThere exists Sequence-to-Sequence models for HAR which makes use of the attention mechan-
isms proposed by Bahdanau and Luong too, e.g. Tang et al. TSC model [52]. Since we are focusing
on self-attention this will not be explained further, but will be mentioned as inspiration for the next
master students who will tackle this problem.
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each other. A interpretable visualisation of the attention distributions was also
developed, but is not too relevant to this project as we do not deal with image
data. It is, however, a good display of how the model attends to different parts of
the input sequence and objects in the scene.

None of the mentioned methods have relied only on skeletal data and taken ad-
vantage of the parallelizable properties of networks such as CNNs over RNNss illus-
trating the need for such a model. As the attention mechanism gave the Natural
Language Processing field an easily understandable visualization for what parts
of the input sequence was given the most importance, making the model output
more interpretable. This visualization will get increasingly harder to interpret as
the sequence length grows, showing the need for a new method of visualization
in HAR if we want to gain any insight from the predictions.
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Method

In the upcoming chapter we propose a model for classification of time series data.
The model will utilize deep learning in combination with attention to predict if
an infant is at high or low risk for developing CP We will start of by going into
detail about the different datasets used to train and evaluate the proposed model.
Then the model itself will be described in detail followed by proposed ablations
to the model. Subsequently, the training procedure used for optimizing the model
as well as data preprocessing and preparation is described. Then, a description of
the different evaluation metrics and procedures are presented, wrapping up this
chapter.

4.1 Datasets

To test how well the proposed model generalizes to other problems than CP risk
prediction it was decided to train it on two different datasets used for Human
Activity Recognition. With the model already trained on other similar dataset, it
could serve as a pre-trained model to see if transfer learning could give similar
performance gains as it has done in fields like computer vision.

In the area of Human Activity Recognition (HAR) there exists multiple datasets
that can be used as benchmark datasets [57]. Since HAR is seldom restricted to
solely using skeleton data extracted from video recordings, the datasets often con-
tains only the video recordings of the different actions performed by the subjects.
This makes most of these datasets not suitable for use in training a model with
our restrictions. Luckily for us there exist datasets that have extracted the skeleton
data from video recordings with Human Pose Estimation models or specialized
hardware, e.g. Xbox Kinect, and presented them together for use of HAR prob-
lems like active and assisted living for the elderly [58]. These datasets have the
added benefit of containing 3 axis of movement (x, y, z coordinates) compared to
the two that the CIMA datasets contain (X, y coordinates), thus containing more

26
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Dataset Subjects Actions Joints Fps Avg. seq. Length  Size
CIMA-7 391 2 7 24/29/30 7726 513
CIMA-19 377 2 19 24/29/30 7967 377
UTD-MHAD 8 27 20 30 68 861
KARD 10 18 15 30 118 540

Table 4.1: Comparison of the CIMA, UTD-MHAD and KARD datasets. Average
sequence length in frames per second.

information about the subjects poses and movements. A summary of the different
datasets listed below can be found in Table 4.1.

4.1.1 CIMA datasets

The CIMA datasets consists of skeleton data containing 7 and 19 different joints,
grouped into their own respective datasets that we will refer to as CIMA-7 and
CIMA-19. The skeleton data for CIMA-7 has been extracted by CIMA-pose [41]
where as for CIMA-19 EfficientPose [42] was used. The different bodyparts tracked
by CIMA-pose and EfficientPose can be seen in Figure 4.1. CIMA-pose performance
varies quite a bit from video to video. There are in essence two main problems the
skeleton data from CIMA-7 suffers from;

e The model mistakenly assigns one joint to the wrong bodypart, e.g. right
wrist is assigned to the left wrist

e The model is not able to assign a specific joint to any bodypart and ends up
assigning it a location close to the boarder of the image or an object located
close to the image boarder.

These errors can be seen in Figure 4.2 together with an example of an in par-
ticularly unlucky attempt of tracking a sequence. These tracking errors will not
be dealt with when CIMA-7 is used for training, as they are nearly none existent
in CIMA-19 thanks to EfficientPose and CIMA-19 will be used as the main CIMA
dataset in this thesis.

Both CIMA datasets roughly contain the same subjects, but CIMA-7 has 14 subjects
more making the total number of subjects 391 compared to CIMA-17’s 377. CIMA-
7 also contain skeleton data from multiple video recordings of the same subjects
making its total size 513, where as CIMA-17 size is 377, i.e. one recording per
subject. This difference of 136 sequences is a result of CIMA-7 containing multiple
recordings of the same subjects, either captured during one or multiple visits to the
hospital. This is not considered to have a significant impact on the data as a subject
will end up with the same diagnosis regardless of when the video recordings where
made, hence if a subject is associated with more than one recording all of them will
be present in the dataset and not removed to only have one recording per subject.
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Target Fps Size Fraction Target Fps Size Fraction
0 24 67 13.06% 0 24 38 10.08%
0 29 356 69.4% 0 29 274  72.68%
0 30 28  5.46% 0 30 24 6.37%
1 24 25 4.87% 1 24 13  3.45%
1 29 34  6.63% 1 29 25 6.63%
1 30 3 0.58% 1 30 3 0.79%

Table 4.2: Distribution of target and fps values for the CIMA datasets, Non-CP
cases have been given the target value 0 and CP cases target value 1. (Left) CIMA-
7, (Right) CIMA-19

Fraction CP non-CP
Train 0.61% 25 (0.11%) 212 (0.89%)
Validation 0.20% 8 (0.10%) 71 (0.90%)
Test 0.19% 8 (0.11%) 67 (0.89%)

Table 4.3: Distribution of subjects into training, validation and test set, CIMA-7

Since mostly the same recording where used, CIMA-7 has a shortest, longest and
average sequence length of 1501, 12555 and 7726 frames while these values are
1919, 12556 and 7967 for CIMA-19.

Not all of the video recordings have been captured with the same amount of
frames per second. Table 4.2 shows the distribution of target and fps values. From
this table we can see that the majority of recordings was captured with a fps of 29,
roughly 74% and 79% for CIMA-7 and CIMA-19 respectively. We can also see that
the distribution of target values is approximately 90/10 for non-CP and CP making
prevalence of CP in both datasets 10%. As the data is skewed towards the non-CP
case the method of splitting it into a train, validation and test set was chosen with
this in mind. The In-Motion team decided on 75 subject ids to be used in the test
set resulting in a 80-20 split between the train and test sets with both sets con-
taining 90% non-CP and 10% CP subjects. The training set was then further split
into a train and validation set using a stratified sampling approach ensuring an
equal distribution of target values in both datasets. Table 4.3 and Table 4.4 gives
and overview of the datasets with respect to both CIMA datasets.

4.1.2 HAR datasets

To test how well the proposed model generalizes, it was trained on two different
HAR datasets. These datasets where chosen based on the amount of recordings
they consisted of and the length of the individual sequences. If the performance
on recognizing everyday human actions and interactions are reasonable, then we
hope that the recognition of movement pattern specific to healthy and CP affected
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Fraction CP non-CP
Train 0.60% 25 (0.11%) 201 (0.89%)
Validation 0.20% 8 (0.11%) 68 (0.89%)
Test 0.20% 8 (0.11%) 67 (0.89%)

Table 4.4: Distribution of subjects into training, validation and test set, CIMA-19

s
right_hip
right_knee
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(a) CIMA-7 (b) CIMA-19

Figure 4.1: Visualization of the different features contained in the CIMA-7 and
CIMA-19 datasets.

Figure 4.2: Different tracking errors in the CIMA-7 dataset. (Left) Left wrist jumps
to the position of right wrist and upper chest. (Middle) Left wrist jumps away from

the subject. (Right) Example of a poorly tracked subject.
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infants can be recognized and determined.

Another motivating factor for evaluating the model on datasets other than the
CIMA datasets is the possibility of leveraging the boost in performance Transfer
Learning could provide by using the pre-trained model as a starting point for the
final model trained on the CIMA datasets, as described in Section 2.3.3. Since the
CIMA datasets contains one less axis of joint position only the x and y positions
will be used from these dataset as to make them as similar as possible.

UTD Multimodal Human Action Dataset

The UTD Multimodal Human Action Dataset, UTD-MHAD [59], is a dataset that
was collected by the Department of Electrical Engineering at the University of
Texas, Dallas, for research on human action recognition. UTD-MHAD is a fusion
of 4 different datasets consisting of RGB-video data captured at 30 frames per
second, depth and skeleton data collected with a Xbox Kinect camera and inertial
sensor data collected by two wearable sensors. The skeleton data was extracted
with the publicly available software Kinect SDK, which tracks 20 different skeleton
joints and their 3D spatial positions. This dataset consists of 27 different actions
ranging from simple actions like swipe right and squat to more complex actions
like pick up and throw and bowling. In total there are 8 subjects (4 males and 4
females) that are performing each action in a total of 4 times bringing the size of
the dataset to 864 data sequences. However, since 3 data sequences are corrupted
the true size is 861. During filming each subject were standing upright facing the
camera when performing each action.

This dataset does not suffer from the same imbalance between classes as the CIMA
datasets does, hence the reason a leave-one-subject-out strategy was selected when
splitting the data into train, validation and test set. This strategy is similarly to
the splitting strategy for the CIMA datasets as it validates and tests the model on
sequences of actions performed by subjects not yet seen during training. The main
difference is that the validation and test sets only contain one subject each. This
leave-one-subject-out strategy resulted in a split of 645-108-108.

The recording lengths vary from 41 to 125 frames. With 30 frames captured per
second this results in a shortest sequence just shy of 1.5 seconds and just more
than 4 seconds for the longest sequence. The average length of one recording is 68
frames or just less than 2.3 seconds. KARD was chosen as one of two datasets to
be used because of these properties. The shorter sequence length means that we
are able to perform more experiments on model architecture and hyperparamet-
ers setups as the models require less time to train than with the longer sequences
of the CIMA datasets. The frequency of which the recordings where captured and
the amount of joints present in the data also played a part in the decision as they
were similar to the CIMA datasets. Lastly, the small to medium sized pool of differ-
ent classes present was also important as it reflects more simplistic actions. More
complex actions like cooking dinner would require longer recordings, increasing
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the training time for each model.

Kinect Activity Recognition Dataset

The second HAR dataset used was the Kinect Activity Recognition Dataset, KARD
[60]. This dataset was created to validate a proposed activity recognition method
on a new dataset as well as the well-known publicly available dataset CAD-60
[61]. KARD consists of a dataset for RGB-video data captured at 30 frames per
second, depth map and skeleton joint positions in real world and screen coordin-
ates all captured with the use of a kinect. In total there are 15 different 3D joint
coordinates extracted from the video recordings. There are a total of 2160 data
sequences but given that the CIMA datasets contains screen coordinates, only the
screen coordinates will be considered. This results in 540 sequences used for fur-
ther testing. These 540 sequences are divided over 10 subjects (9 males and 1
female) performing each of the 18 actions 3 times each. One important difference
between KARD and UTD-MHAD is that the subject does not always face the cam-
era when performing the actions, e.g. during the walk action the subject starts
facing the camera but turns 90 degrees exposing the subjects side before starting
to walk.

An alternate version of the leave-one-subject-out was applied when splitting KARD
into train, validation and test set. Instead of leaving one subject out for the valid-
ation and test set we left two out, still making the model validated and tested on
previously not seen subjects as for UTD_MHAD. This resulted in a 324-108-108
split.

KARD contains recordings as short as 42 frames, just shy of 1.5 seconds. This
makes the shortest sequences almost the same length as UTD-MHADs shortest, but
KARD contain sequences up to 310 frames, 10.33 seconds. The presence of longer
sequences makes the average length 118 frames. The same reasoning applies for
our reason for choosing KARD as an additional dataset as for UTD-MHAD.

4.2 Transformer Model

The use of deep learning for fidgety movement detection and computer-based
GMA has not been explored in depth yet. Neither has the transformer architecture
been used with self-attention’s promising success in fields dealing with sequenced
data such as Natural Language Processing been used to perform HAR. For these
reasons we decided to explore such a model utilizing the transformers encoder
part, as described in Section 2.4. First the general architecture of the model will
be introduced, followed by a description of ablations performed and hyperpara-
meters explored. The same model architecture will be used regardless of what
dataset it is trained on. The proposed model will be referred to as CIMA-Attend,
as it the model that will follow the CIMA-Pose in the full video-to-CP prediction
pipeline.
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The general architecture of CIMA-Attend can be seen in Figure 4.3. This model
take advantage of the transformers encoder, one out of two parts making up the
transformer architecture [30], to extract spatial and temporal information from
the embedded sequences without the use of RNNs. This is done iteratively N times
after the input has been embedded and positional encoding has been added. Then
the final step for producing the classification is to classify the input based on the
features extracted.

Positional
H Encoding

Multivariate __ Input
Time Series |~ | Embedding

Classifi

Stacked N times

' o H §

' o i
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Figure 4.3: Network architecture of the Transformer Model

4.2.1 Model Parts

CIMA-Attend consists of three parts. These parts are, in order, the input embedder,
attention encoder and classifier. These three parts will be explained in this section
together with different variations testes during the experimentation phase of this
project. The results of the proposed CIMA-Attend model and its variations will be
evaluated in Chapter 5.

Input Embedder

The first part is concerned with learning a new representation of the input data
which the rest of the model can use for generating an output prediction. To in-
crease the dimensionality of the input sequences a learned embedding was used in
the first part of CIMA-Attend. This converts the input vectors to vectors of d,,,; 4,1
dimensions. This projection to a higher dimensional space will allow the embed-
der to express the data in a latent space with more expressive power than the
original data space. As the weights are initialized randomly this embedding has
to be optimized together with the rest of the CIMA-Attend’s parameters. For the
base model, a linear embedder was used with a value of d,,,,4.,; = 128. Figure 4.4a
illustrates a linear embedder, this can be regarded as the same as a convolutional
embedder with a kernel size of 1.

As the transformer encoder do not use any recurrence to express the order of
which the elements are positioned in the sequence we need to add some inform-
ation about this relative or absolute position into the sequence for it to be able
to make use of the sequential nature of the data. This is done adding a positional
encoding to the input embeddings. A fixed positional encoding was chosen over a
learned one as it will allow CIMA-Attend to generalize to sequences longer than
those it has encountered during training.
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Figure 4.4: Changed made to the data at the input layer

The positional encoding used for the proposed model is given by Equation (2.7)
and has already been explained in Section 2.4. Figure 4.4b shows an illustration
of a sinusoidal positional encoding for data of length 100 and a dimensional-
ity of 64. An implementation of the positional encoding using torch is shown in
Code listing 4.1. Here seq_len is the length of the input sequence x on the form
[batchsize, sequence length, features]and d,,q,.; is the number of features per
feature vector.

Code listing 4.1: Implementaion of the Dense Interpolation

import torch

pe = torch.zeros(seq len, d model,dtype=torch.double)

position = torch.arange(0, seq len, dtype=torch.double).unsqueeze(1)

div_term = torch.exp(torch.arange(0, d model, 2).double() * /
(-math.log(10000.0) / d model))

pe[:, 0::2] = torch.sin(position * div_term)

pe[:, 1::2] = torch.cos(position * div_term)

pe = pe.unsqueeze(0)

x += self.pe[:, :x.size(1l)].requires grad (False)

Attention Encoder

The attention encoder in the second part will be using the embeddeder output
to allow each elements to attend to all other elements in the given sequence.
This is achieved by utilizing multi-head attention as described in Section 2.4.2. In
order for the network to encode these relationships into the sequence the attention
encoding step is repeated N times. This iterative process is expressed in Figure 4.3.
Each feed-forward network are equal in the sense of how they process the data,
i.e. they expand the dimensionality from d,;,o4,; to df¢ before reducing it back to
dmodel, Dut they are initialized with their own unique set of weights. For the base
model, we used a value of d;; = 512 for the feed-forward network and N = 3 for
the number of attention encoder layers.
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Figure 4.5: Information flow from one attention layer to the next

Attention

This encoding of a sequence inner relationships by using attention can be viewed
as letting information from one layer flow to an element in the next layer with
a rate defined by the attention mechanism. Figure 4.5 illustrates this flow by the
thickness of each line. Element t- in layer i attends more to element t,, t, and tg
than the rest from layer i — 1.

Classifier

The third and final part of CIMA-Attend is the classifier. It consists of three steps for
producing an output prediction based on an encoded sequence, a dense interpol-
ation layer, a linear feed-forward layer and a softmax layer to get the probabilities
of the low and high risk for developing CP classes.

The simplest approach to represent a sequence as a single vector while maintain-
ing order in the data is to concatenate every time step. This works well for short
sequences, but when dealing with longer sequences like data from the CIMA data-
sets it will lead to a very high-dimensional representation not suitable for further
processing. E.g. a sequence of length 870 with 128 features will lead to a vector
of length 111.360. Trask et al. [62] proposed a dense interpolation embedding
for embedding the structure of a sequence, which proved useful for detecting syn-
tactic features. We hope that this embedding will capture the temporal structure
of the movement data required for an accurate prediction of CP Dense interpol-
ation will reduce a sequence of any length down to a size of M x d,;,,4.;, Where
M is known as the dense interpolation factor, which is an useful property for
classification of sequences with varying lengths. Code listing 4.2 shows an imple-
mentation of the dense interpolation algorithm in python by utilizing the torch
library and batch matrix multiplication. Here seq_len is the length of the input
sequence x on the form [batchsize, sequence length, features] and M is the
dense interpolation factor. By caching W into a buffer one could save valuable
time by not recomputing it for every input, seq_len should be the length of the
longest sequence the model will be presented with. The same is true for the po-
sitional encoding explained above. For the base model, a factor of M = 8 was
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used.

Code listing 4.2: Implementaion of the Dense Interpolation

import torch

W = torch.arange(1l, seq len + 1, dtype=torch.float) * factor / seq len
= W.repeat((factor, 1))

tmp = torch.t(torch.arange(1l, factor + 1, dtype=torch.float).repeat((seq len, 1)))
= torch.pow(l - torch.abs(W - tmp) / factor, 2)

W.repeat(x.shape[0], 1, 1).requires grad (False)
torch.bmm(w[:, :, :x.shape[ll], x)

x
o

Dense interpolation has been used for clinical prediction task such as in hospital
mortality prediction and phenotyping by Song et al. [63], but it is performance
for our classification task needs to be evaluated.

After dense interpolation is performed, each feature vector is concatenated before
being fed into a feed-forward network for classification. This network consists
of two linear and ReLU activation layers in alternating sequence followed by a
final linear layer. The output of this layer is passed through a softmax function to
produce the probabilities for each class in the dataset. Each linear layer reduces
the dimensionality down to 256, 32 and 2 respectively.

4.2.2 Ablation Studies

As there has not been conducted a lot of research into deep learning-based GMA it
is hard to tell if the proposed base model will achieve the wanted results. During
this project an ablation study have been performed where parts of the model has
either been removed, replaced or repeated to gain insights on their effects on the
overall performance.

Input Embedding variations

Data embedding can be performed in multiple different ways. There exists fixed
embeddings, e.g. dense interpolation as described above, and learned embed-
dings. In this project, we focused on learned embeddings for the model’s input
and the base model used a linear embedder consisting of a feed-forward layer
projecting each time step feature vector to a feature vector with 128 dimensions.
This can be viewed as a convolutional layer performing the projection with a ker-
nel size of length 1. It is because of this a second input embedder consisting of a
convolutional and a transposed convolutional layer are proposed. This embedder
will use a kernel size of a length larger then 1, hence shrinking the length of any
sequence it is applied to. The transposed convolution will increase the sequence
back to it is original length, but will no increase of decrease the feature space. I.e.
the convolutional layer will increase the feature dimensionality to d,,,4.; and the
transposed convolution will keep it at d,,4.;- This convolutional embedder will
be utalizing a kernel size of 15 when used.
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Attention Encoder variations

As the base model has 3 stacked attention encoders the amount of stacked en-
coders is a natural variation of the model to study. As the number of encoders
in the network increases so does the depth. As the depth increases, so does the
computational path resulting in more processing per sequence, i.e. it takes longer
to train the model. Another side effect is that the model takes up more space in
memory, limiting the space for use for training data. The goal of this ablation is
to study the trade off between precision and time and space complexity. In this
project it has been experimented with an encoder stack made up of 1 to 6 stacked
encoders.

Classifier variations

The base model uses dense interpolation to reduce the length of a sequence down
to a common size, before classification. The reasoning behind this was that the
model could handle sequences of varying lengths, but it also depends on the in-
terpolations ability to represent and capture the relationships found in the se-
quence by the preceding layers. To study the power of dense interpolation a con-
volutional layer will replace it for reducing the length of the sequence. By using
convolutional layers instead the model will not be able to be used on sequences
of different lengths as the feature vectors of the output will be concatenated res-
ulting in different lengths. This convolutional classifier will be made out of three
convolutional layers all with a kernel size of 15. The second layer will use a dila-
tion with a value of 2 and stride of 2 and the third layer will use a stride of 3 and
dilation of 1. In between each layer is a ReLU layer. This output is then fed to a
similar linear classifier as in the base model, but with a different input dimension
given by the convolutional layers.

4.3 Training

When training a deep learning model it is important to have a clear and well
defined training strategy. Not only for a better understanding of the systems pipeline,
but also for the purpose of reproducibility. Several aspects of the system should be
taken into consideration, like the data that will be presented as input to the model
and the optimization process. In this section the training strategy used when run-
ning the different experiments is described. The full pipeline of the training and
evaluation process is illustrated in Figure 4.6

4.3.1 Data Preprocessing and Preparation

We will draw a distinction between data preprocessing and data preparation as
the action of permanently augmenting the data and making non-lasting augment-
ations to the data respectively. The distinction is necessary as some changes to the
data needs to be done in advance as they are only needed to be done once or need
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Data preprocessing and Preparation
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more time to run to completion, while other can be done on the fly right before
the data is presented to the model.

CIMA

Only one preprocessing step was needed for the CIMA datasets. From Table 4.2
we saw that there are few recordings captured at 24 fps compared to 29 fps so
these will have to be resampled to make these sequences resemble sequences cap-
tured at 29 fps as not to confuse the model with data captured at 4 to 5 frames
per second less than the rest. We will not be resampling sequences captured at 29
or 30 fps as given a sequence from four and a half minutes of video will have a
length difference of only 274 timesteps, or 9 seconds. As four and a half minutes is
the average sequence length of the recordings used we will argue that the gain of
resampling 29 fps recording to 30 fps would do more harm than good as it would
alter a substantial amount of the datapoints. We will also argue that resampling
the other way around, from 30 to 29 fps, also would not be worth doing as this
downsampling could cause loss of information as timesteps are removed and not
added to the data sequence. The only difference between the data preprocessing
between CIMA-7 and CIMA-19 is that the last 100 frames are removed from each
sequence in CIMA-19 due to an issue with the way the batches are created during
tracking causing the last batch to suffer from some inconsistencies. These pre-
processing steps of this pipeline can be seen in Figure 4.6 together with the data
preparation steps, the model architecture and evaluation steps.

The fact that deep learning requires huge amount of data to succeed is well known.
This has forced researchers to make an effort to make models trained on less data
perform on par with models trained on large amounts of data. E.g Hu et al. [64]
managed to achieve state-of-the-art results with their model trained on 10.000
images, compared to models trained on 500.000 images for human face recogni-
tion. The fact the CIMA datasets contain 513 and 377 data sequences each makes
data preparation a necessity for any model wanting to produce any results worth
noting. One way of achieving this is by applying random transformations to the
data before presenting it to the model. For the CIMA datasets this process, called
data augmentation, includes rotation around the center of the hip of the subject,
flipping the data around the y-axis and adding noise from a normal distribution
with a mean of 0.0 and a std of 0.001 to each joint position at every timestep.
These random transformations are performed on the data with a probability of
30% each and are only applied to the data in the training set. After augmentation
we perform one out of two normalization procedures to scale the data to a com-
mon scale. The first normalization procedure scales the data from one range to
another, commonly known as min-max normalization or rescaling. Equation (4.1)
shows the mathematical formulation of this normalization where a and b is the
minimum and maximum values of the range the data will be scaled to, [a, b], and
X' is the rescaled data. When min-max normalization is used when running ex-
periments the values a = —1 and b = 1 will be used, scaling the data to the range
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[—1, 1]. This normalization is not done feature-wise but rather on the whole data-
point making the min(X) and max(X) the minimum and maximum value of all
the features in one sequence.

, (X—min(X))(b—a)
X =a+ max(X) — min(X) “4.1)

The second normalization procedure normalises the each feature based on the
distance between the pelvis and thorax for CIMA-19 and hip center and upper
chest for CIMA-7. If we consider a skeleton to be composed of P joints then each
timestep i = 1,2,...,N in a sequence will be on the form s; = [jg,j1,---,jpl-
Looking at CIMA-19 and Equation (4.2) [58] describing the normalization, each
distance vector between the joints and jj,, the pelvis, will be normalized by the
distance between j, and j,, the thorax.

Ji—Jo

= T . i:1,2,...,P (42)
lli2 —Joll

1
Each of the d; features will be invariant to the position of the skeleton within each
frame of the video recording and the now normalized sequence will contain one
less feature as shown in Equation (4.3) due to the fact that we can not normalize
the distance vector between j, and j,, pelvis and pelvis. For the base mode, min-
max normalization was used.

fi = [dlidZ)“')dP] (4-3)

Now that the data have been augmented and normalized it could have been
presented to the model, but since the sequences vary in length we will make sure
to present the model with sequences of the same length during training and eval-
uation. Even though a fixed sequence length is used for training and evaluation,
the nature of the Transformer model ensures that its inputs can be of different
lengths if desired. We create sequences of the same length by randomly slicing
the input sequence at two timesteps exactly a given sequence length apart. This
sequence slicing will, in a way, act like a process to creating more data points that
we originally have. This is because a sequence of length 7967 will produce 6467
unique sequences if sliced with a sequence length of 1500 at all possible positions.
It might be a little to generous to call all these different slices unique datapoints
as the movements in the first 100 frames will differ by only 3.5 seconds, but given
an overlap of only 50% Figure 4.7 shows that this sequence of length 7967 will
contain 9 sequences that could be considered to be unique. As 7967 is the aver-
age sequence length of CIMA-19, it can be thought of as the dataset contains 9
times more than the original amount datapoints. A result of the sequence slicing is
that it will us to batch multiple sequences together, resulting in one optimization
step considering more than one sequence as they are all the same length. For the
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Figure 4.7: Illustration of sequence slicing

base model, a sequence length of 870 was used, this translates to 30 seconds for
sequences captured at 29 fps.

KARD and UTD_MHAD

For KARD and UTD_MHAD there is no need of any form of data preprocessing
as both datasets have been captured at 30 fps and the sequences does not suf-
fer from any tracking errors like the last 100 frames of CIMA-19. The same data
augmentation procedures have been used as with the CIMA datasets except that
the rotation have been left out as the subjects are not laying down, but standing
and/or walking while performing an action. The same normalization techniques
have also been utilized.

Since the data sequences are quite a lot shorter than the ones in the CIMA datasets
and the fact that each only contain data about one action, sequence slicing has
been replaced with a data padding procedure. This is also due to the fact that one
sequence only contains information about that one action it is meant to represent.
Removing a part of the sequence will leave us with an incomplete picture of the
action, which is inadequate when trying to classify the sequence and might lead
to wrongly classified actions. E.g. if the only data in a sequence is of the subject
starting to raise its hand, he could either end up just raining the hand or throw
something depending on what comes next. This data padding ensures that all
sequences presented to the model will have the length of the longest sequence and
no information will be left out. The padding is performed by extending the start
and the end of a sequence a random amount resulting in equally long sequences
where the subjects will look like they are frozen in time during the padded parts
of the sequences.

4.3.2 Data Sampling

Table 4.3 and Table 4.4 shows that the CIMA datasets suffer from an overrep-
resentation of non-CP diagnosed subjects. When trained on imbalanced datasets
deep learning models have the tendency to be biased towards the majority classes,
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which in turn will lead to a higher misclassification rate in the classes that are
in a minority. Buolamwini et al. [65] highlights one example of this problem in
gender classification. They analyzed the accuracy of commercial gender classific-
ation products across light and dark skinned males and females and showed that
they performed better on males and light skinned people compared to females
and dark skinned people. So, instead of having the model deal with the imbal-
ance, we can attempt to balance the class frequencies. To ensure a prevalence of
approximately 50% of subjects diagnosed with CP in the data presented to the
model during training we will add each of these sequences to the list of sequences
n times such that the amount of CP subject is roughly the same as the amount of
non-CP subjects. E.g. we can see from Table 4.4 that CIMA-19 contains 25 subjects
diagnosed with CP and adding each of them to the training set 8 times will result
in 200 CP datapoints which is close the amount of healthy subjects.

4.3.3 Optimization

Adam was chosen to optimize the model during the optimization process. The
parameters used was f3; and 3, of 0.9 and 0.98 and € of 1e-9. The learning rate
was varied throughout the whole training process by following Equation (4.4).

—0.5
model

0.

Ir=y-d -min(step_num %%, step_num-warmup_steps™ ') 4.4)

Here d_model is the dimensionality of the data after it has passed through the
embedder, num_step is the current step number, warmup_steps is the amount of
steps to use for a warm up period and y is a scalar used for scaling the learning
rate. A step in this context is one optimization step, i.e. if our dataset consists of
400 datapoints and a batch size of 20 is used it will take 20 steps to complete
one epoch. This results in a learning rate that not only changes after every epoch,
but within one epoch too. This learning rate equation will correspond to a linear
increase in the learning rate for the first warmup_steps steps, subsequently de-
creasing it proportionally to the inverse square root of the step number for the
rest of the training procedure.

When using the CIMA datasets the batch size was 15 and the warmup period was
set to 100 epochs, resulting in a warmup_step value of ?? and 2700. For the base
model, the factor y was set to between 0.1 and the number of steps per epoch
multiplied by 100 epoch was used for the warm_up value. Some learning rates
are visualized in Figure 4.8 with a variation of d_model, y and warmup_steps
values. For KARD and UTD_MHAD a warmup period of 600 epochs was used
together with a y of 0.25.

Cross-entropy loss was used as the loss function. It is defined by Equation (4.5)
and it is useful when training a classification problem with C classes, such as for
HAR with KARD and UTD_MHAD, but it is also useful when C is equal to 2 as with
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Figure 4.8: Illustration of the learning rate used during training. Legend is on
the form d_model:factor:warmup_step

the CIMA dataset. In the equation for cross-entropy loss x is a vector containing
representing the probability distribution over all possible classes.

loss(x, class) =—x[class]+ log(z exp(x[jD) (4.5)
J

4.3.4 Regularization

For regularization we apply dropout to the sum of the input embeddings and posi-
tional encoding, (and) to the output of the multi-head attention and feed-forward
network before it is added to the input and normalized and to the output of the
convolutional part of the classifier (but this should be mentioned in the model
variations). The reason we chose to employ dropout is to prevent overfitting of the
training data. For the base model, a dropout rate of Py,.qp0,c = 0.1 is used.

4.3.5 Training the model

All base model, optimizer and dataset parameters has been stated above, but they
can also be found in Table 4.5, Table 4.6 and Table 4.7. The number of epochs used
for training each model has also been added to Table 4.7 where the optimizer’s
parameters are listed.

Data data length batchsize flip rotation noise normalization
CIMA-7 870 15 v v v min-max
CIMA-19 870 15 v v v min-max
UTD_MHAD 125 35 X X v min-max
KARD 310 35 X X v min-max

Table 4.5: Summary of data parameters
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Model dmoget dfg N h M kernel size  Pgropout
CIMA-7 128 512 3 8 8 1 0.1
CIMA-19 128 512 3 8 8 1 0.1
UTD_MHAD 128 512 6 8 8 1 0.1
KARD 128 512 6 8 8 1 0.1

Table 4.6: Summary of model parameters

Model Y warmup epochs
CIMA-7 0.1 3600 200
CIMA-19 0.1 2700 200
UTD_MHAD 0.25 11400 1000
KARD 0.25 6000 1000

Table 4.7: Summary of optimizer parameters

In general, the data preparation is performed as described in Section 4.3.1. How-
ever, when a pre-trained network is utilized one more step is performed before the
data can be presented to a model. The use and performance benefits of transfer
learning in computer vision are well tested and documented. There exists models
trained on millions of examples for object localization and classification task like
VGG [56] and DenseNet [66] which can be used as a starting point or backbone
for other computer vision tasks. Such pre-trained models does not exist for Hu-
man Activity Recognition. An effort has been made to experiment with transfer
learning as it has had such success in other fields. When used in computer vision,
all inputs have the same amount of channels, one red, green and blue one for
colored images. These channels corresponds to each axis of movement for each
joint in out data. I.e. movement data from KARD, which has 15 joints, contains 45
channels, while UTD_MHAD and CIMA19 contains 60 and 38 respectively. Since
both HAR datasets contain 3 axis of movements and CIMA only 2, the depth axis
will be removed flattening the 3 dimensional data down to 2 dimensions. Further-
more, the dimensionality of UTD_MHAD and CIMA19 is reduced to the amount of
dimensions in the flattened KARD data. This is done by removing the joints least
similar to the ones tracked in KARD. CIMA7 was chosen to not be included when
testing transfer learning as the CIMA19 dataset is the main CIMA dataset used
in this project. Additionally, the order of which these channels appear in matter.
Joints which as the same or similar should appear in the same channel as it did in
the data used for the pre-trained model. This is because the embedder learn the
embedding weights and if channels appear in different order from data to data
the knowledge embedded in the embedder weights is of no use.

As mentioned VGG and DenseNet are trained on over a million datapoints, thus
needing little to no optimization when training the network using them as a
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backbone or feature extractor. Our models trained on UTD MHAD and KARD are
trained on less than 500 datapoints and will not generalize as well as VGG and
DenseNet does to new data. Based on this, when weights from pre-trained models
are used they will be updated together with rest of the weights using the same
learning rate. The pre-trained model will in this case only act as a starting point
for the new model, hopefully increasing its performance and helping with the
convergence and stability.

4.3.6 Implementation Details and Hardware

The proposed model have been developed with Pytorch [67], which is a deep
learning library for Python. Training was performed on a NVIDIA Tesla V100 PCIE
GPU with 32 GB of memory when using the CIMA datasets and on a NVIDIA Tesla
P100 PCIE with 16 GB of memory when UTD_MHAD or KARD was used.

4.4 Model Evaluation

A key step in any machine learning pipeline is the training of the model. However,
an equally important aspect that should be considered is how well the model
generalizes on unseen data. This is important as we need to be able to trust the
predictions it makes and make sure that it actually works. Do the model make
good classification predictions on future subjects, or subjects that it have not seen
before, or is it merely memorizing the subjects it is presented with? So in order to
evaluate the precision of the model a set of evaluation metrics will be defined as
well as the way these metrics are used during the evaluation.

4.4.1 Evaluation Metric

A way to quantify a models performance is with the use of evaluation metrics
and the choice of such metrics depends on the machine learning task at hand. As
we are performing binary and multi-class classification we are going to be using
evaluation metrics leveraging from the values of the confusion matrix.

Accuracy

Accuracy is the measure of the number of correct predictions out of the total num-
ber of predictions, i.e. the ratio of number of correct predictions. It is a simple
measure and it works well when there is an equal number of samples belonging
to each class, as is the case for the HAR datasets. If the data is skewed towards one
or more of the class labels it doe not work as well as if 90% of samples belongs to
one class and the last 10% belongs to the other class any model could easily get
an accuracy of 90% by labeling all samples to belong to the first class. So, it makes
sense to use this measure for models trained and evaluated on the HAR datasets,
but not on the CIMA datasets as the prevalence of CP is around 10%.
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Sensitivity and Specificity

Sensitivity, also called recall, is a measure of the true positive rate, i.e. the amount
of actual positives that are correctly classified as such. On the other hand, Spe-
cificity is a measure of the true negative rate, i.e. the proportion of actual negative
cases that are correctly classified as negative. Sensitivity and specificity is given
by Equation (2.1) and Equation (2.2). So, in our case sensitivity measures the
percent of subjects that are correctly identified as having a high risk of CP and
specificity does the same, but for subjects with a low risk of CP

F-Measure

Since sensitivity represents the avoidance of false negatives and specificity does
the same for false positives there will often be a trade off between the two where
in order to gain a higher sensitivity score the specificity will be affected. To take
both the sensitivity and specificity into consideration when evaluating the model
the harmonic mean of them both will be used. The harmonic mean is also known
as the F; measure, Equation (4.6) and is commonly used in conjunction with pre-
cision and sensitivity.

sensitivity -specificity

Fg=(1+p%- (4.6)

p2-sensitivity +specificity

This F-measure will value both specificity and sensitivity equally as neither false
positives nor false negatives can be said to be more important to minimize the
presence of than the other. L.e. predicting the an infant has a high risk of de-
veloping CP when it does not is as bad as that it does not have a high risk of
developing CP when it does. With that being said, it is possible to value one more
than the other by setting 3 to any positive real number. Two other commonly
used F-measures are the F, measure, which weights specificity higher than sens-
itivity, and the F,; measure, which will put more emphasis on sensitivity than
specificity.

Equation (4.6) will be used when evaluating models trained on the CIMA datasets
as sensitivity and specificity are terms generally used together with binary clas-
sification, hence it is not useful when evaluating multi-class classification mod-
els. When evaluating models trained on UTD_MHAD and KARD the F-Measure
given by Equation (4.7) will be used instead. In this equation precision has taken
the place of specificity. Precision is the measure for the amount of elements re-
trieved among all the relevant elements, i.e. the amount of true positive predic-
tions among the true positive and false negative. All actions will be associated
with its own F-measure and the final score will be the mean of the F-measures
from all actions.
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sensitivity - precision
Fp=(1+p2)- TP

4.7
P2 -sensitivity + precision “.7)

4.4.2 Classification

During training each datapoint was into a continuous sequence of N consecutive
timesteps. Each subject with CP was also represented multiple times in the training
set to make it more balanced. When evaluating the model each subject will be
represented only once and the data sequences will be split into sequences of N
consecutive timesteps with an overlap of 50%, like it is visualised in Figure 4.7.
We will present each sequences of length N to the model to get an independent
predictions for each of them, instead of just one sequence. This will be referred
to as Classification per Sequence and will give us multiple predictions for each
subject. A consequence of this is that different sequences from a recording of one
subject might end up with different predicted classes. To obtain a final prediction
for each subject a majority vote is used. This final prediction will be referred to as
Classification per Subject and is the accumulated prediction of a subjects risk of CP
from every sequence the recording was split into. It is also the only classification
used for the HAR datasets.

4.4.3 Visualization

To better understand what parts of a sequence is attended to during the prediction
process its attention can be visualized. The attention is on the form of a matrix with
sides equal length to the input sequence length. The visualisation of this matrix is
intuitive and easy to understand when used in fields like NLB where each timestep
represents one word and the sentences aren’t too long, but not when dealing with
sequences close to 1000 elements long. A better visualization was created for cases
dealing with long sequences. The mean of each timestep in the attention matrix
is calculated to create a vector containing how much each timestep was attended
to. Visualizing this attention vector is more intuitive to understand as each frame
of the recording is associated with a attention value, i.e. which frame the model
gave the most weight during the generation of a prediction. Such a visualisation
could also be paired with a playback of the recording giving the user a better
understanding of which frames that has the highest attention value and contain
the movements the model deemed most important for its prediction.
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Results

The upcoming chapter will present the results obtained from the training process
and proposed model outlined in Chapter 4.

Section 5.1 will present the results from experiments using the HAR datasets
UTD_MHAD and KARD. In Section 5.2 and Section 5.3 results obtained from
initial testing on the CIMA-7 dataset and more rigorous testing on the CIMA-19
dataset are evaluated. All evaluations are performed on a test set which have been
keep apart from the training and validation sets. Evaluation matrices are used as
described in Section 4.4.1 This chapter ends by visualizing different attentions
matrices and vectors produced during the evaluation phase.

5.1 Human Activity Recognition Results

The upcoming section evaluates the proposed model on the two datasets UTD_MHAD
and KARD. The models are compared using the evaluation metrics accuracy and
F-measure as described in Section 4.4.1

5.1.1 UTD_MHAD

Table 5.1 contains the results of the models trained on the UTD MHAD dataset.
The best accuracy and F-score for each normalization process is highlighted in
bold. Classifier, Normalization and Convolutional has been shortened to Clf, Norm
and Conv for consistency purposes. The effects of replacing the embedder and
classification parts of the model are represented in this table. One can also notice
that models trained on UTD_MHAD performs better on data normalized with the
minmax technique.

Figure 5.1 show the improvement of the best model for each normalization tech-
nique. It is worth noticing that both validation losses starts to oscillate around

47
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Model Embedder CIf Norm Accuracy F-score

Base linear linear minmax 0.7963 0.7625
conv conv minmax 0.9259 0.9214
linear conv minmax 0.7685 0.7517
conv linear minmax 0.9444 0.9426
Base linear linear torso 0.7315 0.6906
conv conv  torso 0.8704 0.8621
linear conv  torso 0.6759 0.6168
conv linear torso 0.8981 0.8827

Table 5.1: Results for models trained on UTD_MHAD, Classification per Subject

Training loss
Validation loss
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(a) Loss curve of best UTD_MHAD model, minmax normalization
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(b) Loss curve of best UTD_MHAD model, torso normalization

Figure 5.1: Loss curve of the two best best models trained on UTD_MHAD. Loss
is measured by the Cross Entropy Loss between the predicted and the true action
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epoch 200, and never seem to steadily improve after this point. These models
took on average one and a halt to two hours to train.
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5.1.2 KARD

Results for models trained on the KARD dataset is shown in Table 5.2. The best
accuracy and F-score for each normalization process is highlighted in bold. Three
of the four models trained on minmax normalized KARD data achieves the same
accuracy, but they differ in the F-score. Scores on the KARD dataset are very even,
with four out of eight models getting the highest accuracy of 0.9537. The loss
over all epochs for the models with the highest F-scores are show in Figure 5.2.
These models took on average one and a half to two hours to train, much like the
UTD_MHAD models.

Model Embedder CIf Normalization Accuracy F-score

Base linear linear minmax 0.9537 0.949
conv conv  minmax 0.9537 0.952
linear conv  minmax 0.9537 0.9508
conv linear minmax 0.9352 0.9304

Base linear linear torso 0.9537 0.9523
conv conv  torso 0.9167 0.9063
linear conv  torso 0.8889 0.8683
conv linear torso 0.9167 0.8993

Table 5.2: Results for models trained on KARD, Classification per Subject

— Training loss
Validation loss
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(a) Loss curve of best KARD model, minmax normalization

Training loss
Validation loss
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(b) Loss curve of best KARD model, torso normalization

Figure 5.2: Loss curve of the two best best models trained on KARD. Loss is
measured by the Cross Entropy Loss between the predicted and the true action
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5.2 CIMA-7 Results

51

Table Table 5.3 and Table 5.4 shows the results of the experiments trained on the
CIMA-7 dataset. The best score for models trained with the different normalization
techniques are shown in bold. Figure 5.3a shows the loss improvement for the
model with the F-score in bold. Figure 5.3b shows the same models F-score over

all epochs.

Model Embedder CIf Normalization Accuracy Specificity F-Score

Base Linear Linear minmax 0.6737 0.6788 0.6762
Conv Conv  minmax 0.3368 0.7719 0.469
Linear Conv  minmax 0.7053 0.7117 0.7085
Conv Linear minmax 0.5632 0.7327 0.6368

Base Linear Linear torso 0.6632 0.6732 0.6681
Conv Conv  torso 0.4105 0.8768 0.5592
Linear Conv  torso 0.4632 0.816 0.5909
Conv Linear torso 0.5316 0.8013 0.6391

Table 5.3: Results for CIMA-7, Classification per Sequence

Model Embedder CIf Normalization Sensitivity Specificity F-Score

Base Linear Linear minmax 0.6923 0.6889 0.6906
Conv Conv  minmax 0.2308 0.8222 0.3604
Linear Conv  minmax 0.7692 0.7667 0.7679
Conv Linear minmax 0.5385 0.7667 0.6326

Base Linear Linear torso 0.6923 0.7333 0.7122
Conv Conv  torso 0.4615 0.9444 0.6201
Linear Conv  torso 0.3846 0.8556 0.5307
Conv Linear torso 0.6154 0.9 0.731

Table 5.4: Results for CIMA-7, Classification per Subject
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Training loss
‘ Validation loss

(b) F-score curve of best CIMA-7 model

Figure 5.3: Loss and F-score cure for the best model trained on CIMA-7. Loss is
measured by the Cross Entropy Loss between the predicted and the true label

5.3 CIMA-19 Results

Table 5.5 and Table 5.4 show the results for classification per sequence and sub-
ject, respectively, for the models trained on the CIMA-19 dataset. The best F-score
for each normalization process is highlighted in bold. In addition, the result of
the big model is highlighted because__. Transfer learning was only performed with
KARD models with the same Embedder, Classifier and Normalization, as described
in Section 4.3.5. These tables shows the difference between the base model, mod-
els tested in the ablation study, a) and b), models utilizing transfer learning, c¢) and
models trained on data of a different sequence length, d). Models where a part of
the base model has been replace are labeled with a) and models where parts of
the base model are removed or replicated are labeled b). N denotes the number
of attention encoder layers and Seq len the length of the sequences presented to
the models. The average training time is 5 hours.

Figure 5.3a shows the loss improvement for the model with the bold F-score. Fig-
ure 5.3b shows the same models F-score over all epochs. Not that then validation
F-score curve varies a lot and doesn’t converge like the training F-score curve does.
This is true for the plots of the F-score for all model trained on the CIMA-19 data-
set.
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Model N Embedder ClIf Norm Transfer SeqLen Sensitivity Specificity F-Score
Base 3 Linear Linear minmax X 870 0.5294 0.7817 0.6313
a) 3 Conv Conv  minmax X 870 0.563 0.7319 0.6364
a) 3 Linear Conv  minmax X 870 0.4874 0.8759 0.6263
a) 3  Conv Linear minmax X 870 0.5294 0.8143 0.6417
b) 1 Linear Linear minmax X 870 0.5882 0.798 0.6772
b) 2 Linear Linear minmax X 870 0.5882 0.7672 0.6659
b) 4  Linear Linear minmax X 870 0.6555 0.74 0.6952
b) 5 Linear Linear minmax X 870 0.6134 0.7998 0.6943
b) 6 Linear Linear minmax X 870 0.563 0.8098 0.6642
c) 3 Conv Conv minmax 870 0.605 0.6504 0.6269
c) 3 Linear Linear minmax v 870 0.4622 0.8514 0.5991
Base 3 Linear Linear torso X 870 0.5966 0.8786 0.7107
a) 3 Conv Conv  torso X 870 0.5714 0.837 0.6792
a) 3 Linear Conv  torso X 870 0.479 0.8759 0.6193
a) 3 Conv Linear torso X 870 0.5294 0.8379 0.6488
b) 1 Linear Linear torso X 870 0.7143 0.8524 0.7772
b) 2 Linear Linear torso X 870 0.5966 0.8324 0.6951
b) 4  Linear Linear torso X 870 0.3866 0.9049 0.5417
b) 5 Linear Linear torso X 870 0.7311 0.692 0.711

b) 6 Linear Linear torso X 870 0.5798 0.7572 0.6568
c) 3 Conv Conv  torso v 870 0.3866 0.8442 0.5303
c) 3 Linear Linear torso v 870 0.5294 0.8741 0.6594
d) 3 Linear Linear torso X 290 0.4948 0.7843 0.6068
d) 3 Linear Linear torso X 1450 0.3971 0.9088 0.5527

Table 5.5: Results for models trained on CIMA-19, Classification per Sequence

5.4 Attention Visualisation

In the following section the attention matrices produced by the models and their
corresponding attention vectors are visualized. Figure 5.5 shows the attention
from attention encoder layer 1, 3 and 5 from a model trained on the UTD MHAD
dataset. The attention from the same layers from a model trained on the KARD
dataset is shown in Figure 5.6. Lastly attention matrices and vectors from attention
encoder layer 1 and 3 from a model trained on the CIMA-17 dataset is shown in

Figure 5.7.
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Model N Embedder CIf Norm Transfer SeqLen Sensitivity Specificity F-Score
Base 3 Linear Linear minmax X 870 0.625 0.8507 0.7206
a) 3 Conv Conv  minmax X 870 0.625 0.7463 0.6803
a) 3 Linear Conv  minmax X 870 0.5 0.8955 0.6417
a) 3  Conv Linear minmax X 870 0.5 0.8955 0.6417
b) 1 Linear Linear minmax X 870 0.5 0.8657 0.6339
b) 2 Linear Linear minmax X 870 0.5 0.791 0.6127
b) 4  Linear Linear minmax X 870 0.625 0.7463 0.6803
b) 5 Linear Linear minmax X 870 0.5 0.8806 0.6378
b) 6 Linear Linear minmax X 870 0.5 0.8358 0.6257
c) 3  Conv Conv minmax v 870 0.625 0.6567 0.6405
c) 3 Linear Linear minmax v 870 0.5 0.9254 0.6492
Base 3 Linear Linear torso X 870 0.625 0.9104 0.7412
a) 3 Conv Conv  torso X 870 0.625 0.8806 0.7311
a) 3 Linear Conv  torso X 870 0.5 0.9403 0.6528
a) 3 Conv Linear torso X 870 0.5 0.8657 0.6339
b) 1 Linear Linear torso X 870 0.75 0.9403 0.8344
b) 2 Linear Linear torso X 870 0.5 0.8955 0.6417
b) 4  Linear Linear torso X 870 0.375 0.9851 0.5432
b) 5 Linear Linear torso X 870 0.75 0.7313 0.7406
b) 6 Linear Linear torso X 870 0.5 0.8209 0.6215
c) 3 Conv Conv  torso v 870 0.5 0.9254 0.6492
c) 3 Linear Linear torso v 870 0.625 0.9701 0.7602
d) 3 Linear Linear torso X 290 0.5 0.8358 0.6257
d) 3 Linear Linear torso X 1450 0.3750 0.9254 0.5337

Table 5.6: Results for models trained on CIMA-19, Classification per Subject
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(a) Loss curve of best CIMA-19 model, minmax normalization
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(b) F-score curve of best CIMA-19 model, minmax normalization

Figure 5.4: Loss and F-score cure for the best model trained on CIMA-19 with

minmax normalization. Loss is measured by the Cross Entropy Loss between the
predicted and the true label
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Figure 5.5: Attention matrices and vectors for attention encoder layer 1, 3 and 5
in a UTD model. Action was Draw X
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in a KARD model. Action was Bend



Chapter 5: Results

Attnetion encoder Layer 1

-0015
0012

. -I_‘-

0006

0003

0000

Attnetion encoder Layer 3
- 00016

00012
00008
00003
00000

Figure 5.7: Attention matrices and vectors for attention encoder layer 1 and 3 in
a CIMA-19 model. Target value was 0, no CP




Chapter 6

Discussion

The upcoming chapter will discuss the results presented in Chapter 5. Section 6.1
will asses the processing performed on the datasets Subsequently, Section 6.2
will discuss the results of the base model, as well as results obtained during the
ablation study and effects of transfer learning on the model. Section 6.3, assesses
the optimization process and its effect on the models ability to learn movement
patterns corresponding to CP This is followed by a discussion about the atten-
tion visualisation in Section 6.4. Finally, in Section 6.5 the research questions are
answered based on the results obtained during the project.

6.1 Datasets

During this project the proposed CIMA-Attend model has been tested on 4 differ-
ent datasets as described in Section 4.1. One reason for this was to see how well
the model performs on different datasets. Another reason was to see how well
knowledge could be transferred from one problem to the other. Deep learning is
known for requiring vast amounts of data to perform well, something we didn’t
have for this project. The preparation and augmentation process described in Sec-
tion 4.3.1 increased the amount of unique data sequences we are able to create
from these datasets, further increasing the performance of the models.

From the results presented in the previous chapter, it is hard to determine which
normalization technique is the dominant one. When torso normalization is used
on KARD it doesn’t seem to affect the performance of the model. The contrary is
true when used in conjunction with UTD_MHAD, the F-score drops by nearly 6%
from the best model trained on data normalized with the minmax technique. The
same is seen for the CIMA datasets too. Models trained on the CIMA-7 dataset
prefers the minmax normalization, while models trained on CIMA-19 seems to
favor the torso normalization. This difference in performance can be caused by the
tracking errors in CIMA-9, described in Section 4.1.1, as minmax normalization
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will perform a scaling based on the minimum and maximum values present in the
sequence while torso normalization will scale each features based on it’s distance
to the hip and the distance between the hip and the chest. Sudden jumps and
tracking errors of the joints will then be more affected by the torso normalization,
making it less preferred by CIMA-7 models. The use of different sequence length
didn’t seem to have a positive effect on the performance of the model with both
a sequence length of 290 and 1450 showed worse results that the base sequence
length of 870.

6.2 Model

6.2.1 Base Model

As described in Section 4.2 the base model consist of a linear embedder, atten-
tion encoder layers, a dense interpolation layer and a linear classification layer.
This model architecture performed well in conjunction with both minmax and
torso normalization on CIMA-19. This suggests that considering each times step
separately during embedding and using dense interpolation to capture the tem-
poral structure of the movement data works reasonably well for the classification
task at hand. It is interesting to notice the rather large differences between the
F-score for classification per sequence and per subject. This indicates that when
the model makes a wrong prediction it does so by assigning a larger part of the
sub-sequences used in evaluation to the same target label causing more false pos-
itives or negatives than when a majority vote is used to decide the assigned target
label of a sequence.

By looking at the F-score curve in Figure 5.4b of the base model trained on minmax
normalized CIMA-19 data, we can see that the validation F-score is very unstable
and doesn’t seem to converge as the training F-score does. This can be a result
of a poor optimization process or data with a rather compacted relationship the
target label and will be discussed more in Section 6.3.

6.2.2 Ablation Study

The reason behind exploring the different variations proposed to the model is to
search for the best performing model architecture. As described in Section 4.2.2
the variations to the model consists of replacing the input embedder layer, the
classification layer or both and increasing or decreasing the number of attention
encoder layers used. In total, eight model variation was experimented with, all
using both minmax and torso normalization, but only on CIMA-19. In general
all ablations to the model regarding any combination of embedder and classi-
fier performed worse than the base model in regards to classification per subject.
When minmax normalization were used the F-score dropped by as much as 8%
and by more than 10% for models trained on torso normalized data. These results
would suggest that dense interpolation is able capture the temporal structure of
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the movement data better than a series of convolutional layers. This is rather sur-
prising as convolutional layers are know for their ability to capture the spatial and
temporal relationships in sequential data. The results also suggests that a linear
embedding layer is better suited for embedding the input sequences one time step
at a time, than a convolutional embedder taking 15 time steps into account when
performing the embedding. This is also quite surprising as the thought behind
this embedder was to better the amount of information used when the embed-
ding was performed. Never the less, based on these results the choice of using the
base model for further testing during the ablation study was made.

An other ablation made to the model was regarding the number of attention en-
coder layers used. results from these tests are inconclusive as study doesn’t find
any relationship between the number of layers and the F-score. A result worth
noting is the F-score of 0.8344 when one layer is used together with torso nor-
malization. It’s the odd one out, in a positive way, compared to the rest of the
results. Comparing it the the F-score of the corresponding model trained on min-
max normalized data it is 20% higher, which is an substantial increase and can be
explained by a lucky weight initialization, a series of lucky optimization steps or
both.

6.2.3 Transfer Learning

Transferring the weight from models trained in UTD_MHAD and KARD had the
reverse effect than it was intended to have. Instead of speeding up training and
giving better performance, it made the models using a pre-trained model as a
starting point perform worse than the base model. It decreased by as much as 4%
and 5% for the base models trained on minmax and torso normalization respect-
ively. This could be the cause of using pre-trained model which hadn’t been able
to generalize well enough. Model used for transfer learning in this project were
also trained on a small amount of data, only seeing the movements and specific
actions existing within the sequences of the respective dataset. This is far from the
quality and amount of data pre-trained models used for transfer learning in com-
puter vision is trained on. Using these models as a starting point for training has
shown how powerful and well generalized they. This is not the case for the pre-
trained models we trained on different human activity recognition datasets. The
fact that the KARD models have seen 18 actions out of all the thinkable actions a
human can perform repeated three times by six subjects makes their possibility to
generalizes well enough equal to zero.

If their had existed models pre-trained on a HAR dataset equivalent to the Im-
ageNet dataset for computer vision it probably would have had a greater impact
on the performance of the models utilizing transfer learning. With that being said,
there exists larger dataset made for HAR than UTD _MHAD and KARD, e.g. NTU
RGB+D and NTU RGB+D 120, but they were not obtainable during this pro-
ject.
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6.3 Optimization Process

The optimization process used in was based on the Adam optimizer and used
a learning rate that would change for each optimization step, described in Sec-
tion 4.3.3. The learning rate was purposely set really low as to give the models
time to warm up and lower the effects of accidentally update the weights too
much and jump over a local minimal. The fact that this is a very complicated op-
timization problem is reflected in Figure 5.3b and Figure 5.4b. Here we can see
the F-score jump from O to the 0.8 in a matter of a few epochs before going down
to the lower scores again. This is a sign of a unstable learning process caused by
the complex problem at hand and it will not converge. As mentioned in the start
of this chapter, deep learning requires large amount of data to succeed, without
it the model will generalize poorly and make errors when presented with pre-
viously unseen data. Such is the case with these models. They perform well on
UTD_MHAD and KARD as they consists of rather short sequences and of clearly
defined actions to be classified. We can see variation in validation F-score for these
models too, but to a lesser extent. As the data that makes up the CIMA datasets
is everything but this, the optimization fails to converge and we are left with a
model that might perform well if we initialize the weights with favorable weights,
hit a series of lucky optimization steps or both.

The time each model is let to train compared to the training time of the Trans-
former Model first proposed, 12 hours to 3.5 days, might also be a reason for why
convergence is never achieved. Unfortunately, due to time constraints the train-
ing of a model over 1000 epochs was dropped. This model would have taken 24
hours to train and it would have been exciting to see if if would have helped on
the convergence problem.

6.4 Attention Visualization

The attention aspect of the model was interesting as it could be used to make
more sense out of the predictions of the model. The developed attention vector
representation of the attention encoders matrix representation of the attention
was created such that it could be paired up with the recording of a subject in such
a way that each frame was given an attention score. This way of visualizing the
attention was thought to be able to give the user of the model a deeper insight in
what parts of the recording that were weighted the most and thus played a bigger
role in the generation of the prediction. Unfortunately, we weren’t able to test this
idea and have the annotated recordings review by an expert in GMA due to time
constraints.
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6.5 Answering Research Questions

The research questions this project were based on were presented in Section 1.3.
From these research questions the project was conducted to evaluate the possib-
ility of prediction CP by the use of a deep learning model in a way that accurate
enough to be used for aiding medical diagnoses. During this discussion we have
seen that problem comes with a great number of challenges, and as of now we
are not confident enough in the proposed model to argue that it is capable of this
yet. For the rest of this section we will answer each research question.

RQ1: How can deep learning be used to solve the problem of predicting an infants
risk of developing Cerebral Palsy by using human skeleton time series data?

Starting with the proposed base model, it seemed that deep learning would be
able to predict the risk of Cerebral Palsy by using human skeleton time series
data. However, as further testing on different model variation showed this model
might not be the best architecture to use on this problem. There were no pattern
clear pattern in the model variations and their corresponding evaluation score. By
testing the model on different datasets for similar problems, hope was restored
for the models ability to accurately predict an infants risk of CP The amount of
data available to train the deep learning model is not enough for assuring stable
training and convergence, making the results depend on the available data as well
as the model architecture.

Given the results, we can report that the proposed model does not sufficiently
address this research question. We do, however, have faith in the proposed model
ability to accurately predict the risk of CP if given more training data .

RQ2: How can said model aid the users in their evaluating of a patient? Can it
recognize the patterns of movement associated with Cerebral Palsy and visualise it to
better the users understanding of the prediction, thus making the model usable for
medical diagnosis?

A visualization of the attention score for each frame in a recording was created,
but due to time constraints we didn’t have the opportunity to test it on experts in
the field of GMA. Thus, this research question is not sufficiently addressed in this
thesis to be able to be answered at the time of writing.

RQ3: What are the advantages and disadvantages of such a model? Does it com-
pete with today’s methods of predicting Cerebral Palsy, such as General Movement
Assessment?

Currently used methods of predicting CP either require access to a trained clini-
cian or relies on carefully crafted features or manual interaction to work. The
proposed method only relies on features extracted from raw video recordings by
a pose estimator. However, it relies on large amounts of data to be able to learn
relationships corresponding to CP in the data. Such a model as the one proposed
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would be able to be used by everyone without any form of training or knowledge
about how the system works, bringing GMA to the masses.

When it comes to the accuracy, the model is beaten by the professionals as well as
by other models currently available. It would still need some work before it can
overtake the currently used methods of assessment.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis we have explained the importance and effects of a fully automatic
Cerebral Palsy risk assessment method. We have presented some theory behind CP
and its development in the human brain as well as current methods for detecting
infant with a high risk of developing the disorder and the reasons why it is so
important to detect them as early as possible. The experts who conduct the tests
to determine the risk of CP uses Gestalt Perception and GMA. These techniques
require manual work and highly trained professionals and it is with this in mind
we present the relevant theoretical background knowledge in Deep Learning and
Human Activity Recognition which will be used to create the proposed model. This
model is inspired by resent advances in other fields concerned with sequential data
such as Natural Language Processing. The proposed model utilizes skeletal data
extracted from raw video recordings by an other deep learning model trained for
Human Pose Estimation. Models trained on this data were shown to not be as
stable as first hoped and showed difficulties in converging and the model was
beaten by currently existing techniques in CP detection.

In light of these results, we are not confident in concluding that the model resolves
our research questions. We are, however, optimistic in the models abilities as it
performs well on other datasets similar to the CIMA datasets and believe that with
more data and time it can beat existing methods for computer-based GMA.

65



Chapter 7: Conclusion and Future Work 66

7.2 Future Work

Based on the conclusion, we suggest some improvements to the existing parts of
the project.

7.2.1 Dataset

To make the model able to generalize better and learn new movements relation-
ships related to CB a larger and more diverse dataset should be developed. Such a
dataset would be beneficial for both the tracker and CP prediction Model.

7.2.2 Tracker Model

By performing tracking in 3 dimensions of movement instead of 2, the increased
accuracy of movements could help further improve the CP prediction model by
leveraging on movements represented in higher dimensions. Such models already
exist and have achieved remarkable results when it comes to predicting depth
from a 2 dimensional image. !

7.2.3 CP prediction Model

By performing transfer learning with models trained on much larger HAR data-
sets, we could maybe start seeing some improvements in the performance on the
model. Two such larger than normal HAR datasets are NTU RGB+D and NTU
RGB+D 120 [69]

The optimization process is crucial for a good result. Experimenting more with the
models trained over more epochs could lead to models that will start to converge.
One possible alteration is to shrink the learning rate by a factor y every x epoch
to move the model into a fine-tuning stage.

The world of Deep Learning moves incredibly quickly and other transformer ar-
chitecture like the Reformer [70], Longformer [71] and Linformer [72] have been
proposed. Utilizing the advances these models have made could be the next step
in the work of the CP detection model.

1One such model is proposed by Luo et al. [68]



Bibliography

[1]

[2]

[3]

[4]

(5]

(6]

[7]

(8]

[9]

P Baxter, C. Morris, P Rosenbaum, N. Paneth, A. Leviton, M. Goldstein, M.
Bax, A. Colver, D. Damiano, H. Graham et al., ‘The definition and classific-
ation of cerebral palsy’, Dev Med Child Neurol, vol. 49, no. s109, pp. 1-44,
2007.

G. Beaino, B. Khoshnood, M. Kaminski, V. Pierrat, S. Marret, J. Matis, B.
Ledesert, G. Thiriez, J. Fresson, J.-C. ROZE et al., ‘Predictors of cerebral
palsy in very preterm infants: The epipage prospective population-based
cohort study’, Developmental Medicine & Child Neurology, vol. 52, no. 6,
el19-e125, 2010.

M. Hadders-Algra, ‘General movements: A window for early identification
of children at high risk for developmental disorders’, The Journal of pediat-
rics, vol. 145, no. 2, S12-S18, 2004.

A. Stahl, C. Schellewald, @. Stavdahl, O. M. Aamo, L. Adde and H. Kirk-
erod, ‘An optical flow-based method to predict infantile cerebral palsy’,
IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20,
no. 4, pp. 605-614, 2012.

P Rosenbaum, ‘Cerebral palsy: What parents and doctors want to know’,
Bmj, vol. 326, no. 7396, pp. 970-974, 2003.

M. Bosanquet, L. Copeland, R. Ware and R. Boyd, ‘A systematic review of
tests to predict cerebral palsy in young children’, Developmental Medicine
& Child Neurology, vol. 55, no. 5, pp. 418-426, 2013.

T. M. O’Shea, ‘Diagnosis, treatment, and prevention of cerebral palsy in
near-term/term infants’, Clinical obstetrics and gynecology, vol. 51, no. 4,
p. 816, 2008.

H. E Prechtl, ‘Qualitative changes of spontaneous movements in fetus and
preterm infant are a marker of neurological dysfunction.’, Early human de-
velopment, 1990.

C. Einspieler, R. Peharz and P B. Marschik, ‘Fidgety movements—tiny in
appearance, but huge in impact’, Jornal de Pediatria, vol. 92, no. 3, S64—
S70, 2016.

67



Bibliography 68

[10] H.E Prechtl, C. Einspieler, G. Cioni, A. E Bos, E Ferrari and D. Sontheimer,
‘An early marker for neurological deficits after perinatal brain lesions’, The
Lancet, vol. 349, no. 9062, pp. 1361-1363, 1997.

[11] C. Einspieler and H. E Prechtl, ‘Prechtl’s assessment of general movements:
A diagnostic tool for the functional assessment of the young nervous sys-
tem’, Mental retardation and developmental disabilities research reviews, vol. 11,
no. 1, pp. 61-67, 2005.

[12] M. Hadders-Algra, ‘The assessment of general movements is a valuable
technique for the detection of brain dysfunction in young infants. a review’,
Acta Paediatrica, vol. 85, pp. 39-43, 1996.

[13] M. Burger and Q. A. Louw, ‘The predictive validity of general movements—a
systematic review’, European journal of paediatric neurology, vol. 13, no. 5,
pp. 408-420, 2009.

[14] D.E.Rumelhart, G. E. Hinton and R. J. Williams, ‘Learning internal repres-
entations by error propagation’, California Univ San Diego La Jolla Inst for
Cognitive Science, Tech. Rep., 1985.

[15] P J. Werbos, ‘Applications of advances in nonlinear sensitivity analysis’, in
System modeling and optimization, Springer, 1982, pp. 762-770.

[16] X. Glorot, A. Bordes and Y. Bengio, ‘Deep sparse rectifier neural networks’,
in Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, 2011, pp. 315-323.

[17] J. Kiefer, J. Wolfowitz et al., ‘Stochastic estimation of the maximum of a
regression function’, The Annals of Mathematical Statistics, vol. 23, no. 3,
pp. 462-466, 1952.

[18] D.PKingma and J. Ba, ‘Adam: A method for stochastic optimization’, arXiv
preprint arXiv:1412.6980, 2014.

[19] K. Fukushima and S. Miyake, ‘Neocognitron: A self-organizing neural net-
work model for a mechanism of visual pattern recognition’, in Competition
and cooperation in neural nets, Springer, 1982, pp. 267-285.

[20] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Tmagenet classification with
deep convolutional neural networks’, in Advances in neural information pro-
cessing systems, 2012, pp. 1097-1105.

[21] C. Tan, E Sun, T. Kong, W. Zhang, C. Yang and C. Liu, ‘A survey on deep
transfer learning’, in International conference on artificial neural networks,
Springer, 2018, pp. 270-279.

[22] J.-T. Huang, J. Li, D. Yu, L. Deng and Y. Gong, ‘Cross-language knowledge
transfer using multilingual deep neural network with shared hidden lay-
ers’, in 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, IEEE, 2013, pp. 7304-7308.



Bibliography 69

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. Yosinski, J. Clune, Y. Bengio and H. Lipson, ‘How transferable are features
in deep neural networks?’, in Advances in neural information processing sys-
tems, 2014, pp. 3320-3328.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra,
‘Grad-cam: Visual explanations from deep networks via gradient-based loc-
alization’, in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 618-626.

D. Bahdanau, K. Cho and Y. Bengio, ‘Neural machine translation by jointly
learning to align and translate’, arXiv preprint arXiv:1409.0473, 2014.

M.-T. Luong, H. Pham and C. D. Manning, ‘Effective approaches to attention-
based neural machine translation’, arXiv preprint arXiv:1508.04025, 2015.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel and Y.
Bengio, ‘Show, attend and tell: Neural image caption generation with visual
attention’, in International conference on machine learning, 2015, pp. 2048—
2057.

J. Cheng, L. Dong and M. Lapata, ‘Long short-term memory-networks for
machine reading’, arXiv preprint arXiv:1601.06733, 2016.

R. Pascanu, T. Mikolov and Y. Bengio, ‘On the difficulty of training recurrent
neural networks’, in International conference on machine learning, 2013,
pp. 1310-1318.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser and I. Polosukhin, ‘Attention is all you need’, in Advances in neural
information processing systems, 2017, pp. 5998-6008.

K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recog-
nition’, in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770-778.

J. L. Ba, J. R. Kiros and G. E. Hinton, ‘Layer normalization’, arXiv preprint
arXiv:1607.06450, 2016.

A. W.Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi and Q. V. Le,
‘Qanet: Combining local convolution with global self-attention for reading
comprehension’, arXiv preprint arXiv:1804.09541, 2018.

J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, ‘Bert: Pre-training of
deep bidirectional transformers for language understanding’, arXiv preprint
arXiv:1810.04805, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and I. Sutskever, ‘Language
models are unsupervised multitask learners’, OpenAI Blog, vol. 1, no. 8, p. 9,
2019.

C. Jobanputra, J. Bavishi and N. Doshi, ‘Human activity recognition: A sur-
vey’, Procedia Computer Science, vol. 155, pp. 698-703, 2019.



Bibliography 70

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

M. Vrigkas, C. Nikou and I. A. Kakadiaris, ‘A review of human activity re-
cognition methods’, Frontiers in Robotics and Al, vol. 2, p. 28, 2015.

S. Wan, L. Qi, X. Xu, C. Tong and Z. Gu, ‘Deep learning models for real-
time human activity recognition with smartphones’, Mobile Networks and
Applications, pp. 1-13, 2019.

L. Adde, J. L. Helbostad, A. R. Jensenius, G. Taraldsen, K. H. Grunewaldt
and R. Stgen, ‘Early prediction of cerebral palsy by computer-based video
analysis of general movements: A feasibility study’, Developmental Medicine
& Child Neurology, vol. 52, no. 8, pp. 773-778, 2010.

L. Adde, J. L. Helbostad, A. R. Jensenius, G. Taraldsen and R. Stgen, ‘Using
computer-based video analysis in the study of fidgety movements’, Early
human development, vol. 85, no. 9, pp. 541-547, 2009.

K. Aurlien and D. Groos, ‘Infant body part tracking in videos using deeplearn-
ing: Facilitating early detection of cerebral palsy’, Master’s thesis, Norwe-
gian University of Science and Technology, 2018.

D. Groos, H. Ramampiaro and E. Thlen, ‘Efficientpose: Scalable single-person
pose estimation’, arXiv preprint arXiv:2004.12186, 2020.

Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei and Y. Sheikh, ‘Openpose: Realtime
multi-person 2d pose estimation using part affinity fields’, arXiv preprint
arXiv:1812.08008, 2018.

H. Rahmati, H. Martens, O. M. Aamo, @. Stavdahl, R. Stgen and L. Adde,
‘Frequency analysis and feature reduction method for prediction of cerebral
palsy in young infants’, IEEE Transactions on Neural Systems and Rehabilit-
ation Engineering, vol. 24, no. 11, pp. 1225-1234, 2016.

H. Rahmati, R. Dragon, O. M. Aamo, L. Van Gool and L. Adde, ‘Motion
segmentation with weak labeling priors’, in German Conference on Pattern
Recognition, Springer, 2014, pp. 159-171.

M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P Wu and J. Zhang,
‘Convolutional neural networks for human activity recognition using mo-
bile sensors’, in 6th International Conference on Mobile Computing, Applic-
ations and Services, IEEE, 2014, pp. 197-205.

D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Forster, G. Troster, P
Lukowicz, D. Bannach, G. Pirkl, A. Ferscha et al., ‘Collecting complex activ-
ity datasets in highly rich networked sensor environments’, in 2010 Seventh
international conference on networked sensing systems (INSS), IEEE, 2010,
pp. 233-240.

P Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini and G.
Troster, ‘Activity recognition from on-body sensors: Accuracy-power trade-
off by dynamic sensor selection’, in European Conference on Wireless Sensor
Networks, Springer, 2008, pp. 17-33.



Bibliography 71

[49] J.Yang, M. N. Nguyen, P P San, X. L. Li and S. Krishnaswamy, ‘Deep con-
volutional neural networks on multichannel time series for human activity
recognition’, in Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[50] A.Murad and J.-Y. Pyun, ‘Deep recurrent neural networks for human activ-
ity recognition’, Sensors, vol. 17, no. 11, p. 2556, 2017.

[51] EJ.Ordéiez and D. Roggen, ‘Deep convolutional and Istm recurrent neural
networks for multimodal wearable activity recognition’, Sensors, vol. 16,
no. 1, p. 115, 2016.

[52] Y. Tang, J. Xu, K. Matsumoto and C. Ono, ‘Sequence-to-sequence model
with attention for time series classification’, in 2016 IEEE 16th International
Conference on Data Mining Workshops (ICDMW), IEEE, 2016, pp. 503-510.

[53] V. S.Murahari and T. Pl6tz, ‘On attention models for human activity recog-
nition’, in Proceedings of the 2018 ACM International Symposium on Wear-
able Computers, 2018, pp. 100-103.

[54] B. Sun, M. Liu, R. Zheng and S. Zhang, ‘Attention-based lstm network for
wearable human activity recognition’, in 2019 Chinese Control Conference
(CCC), IEEE, 2019, pp. 8677-8682.

[55] Y. Zhang, X. Li, K. Huang, Y. Wang, S. Chen and I. Marsic, ‘Tri-axial self-
attention for concurrent activity recognition’, arXiv preprint arXiv:1812.02817,
2018.

[56] K.Simonyan and A. Zisserman, ‘Very deep convolutional networks for large-
scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.

[57] H. Liu, R. Feris and M.-T. Sun, ‘Benchmarking datasets for human activity
recognition’, in Visual Analysis of Humans: Looking at People, T. B. Moeslund,
A. Hilton, V. Kriiger and L. Sigal, Eds. London: Springer London, 2011,
pp- 411-427, 1sSBN: 978-0-85729-997-0. DOI: 10.1007/978-0-85729-997-
0 20. [Online]. Available: https://doi.org/10.1007/978-0-85729-997-
0_20.

[58] E. Cippitelli, S. Gasparrini, E. Gambi and S. Spinsante, ‘A human activity
recognition system using skeleton data from rgbd sensors’, Computational
intelligence and neuroscience, vol. 2016, 2016.

[59] C.Chen, R. Jafari and N. Kehtarnavaz, ‘Utd-mhad: A multimodal dataset for
human action recognition utilizing a depth camera and a wearable inertial
sensor’, in 2015 IEEE International conference on image processing (ICIP),
IEEE, 2015, pp. 168-172.

[60] S. Gaglio, G. L. Re and M. Morana, ‘Human activity recognition process us-
ing 3-d posture data’, IEEE Transactions on Human-Machine Systems, vol. 45,
no. 5, pp. 586-597, 2014.


https://doi.org/10.1007/978-0-85729-997-0_20
https://doi.org/10.1007/978-0-85729-997-0_20
https://doi.org/10.1007/978-0-85729-997-0_20
https://doi.org/10.1007/978-0-85729-997-0_20

Chapter 7: Conclusion and Future Work 72

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

J. Sung, C. Ponce, B. Selman and A. Saxena, ‘Unstructured human activ-
ity detection from rgbd images’, in 2012 IEEE international conference on
robotics and automation, IEEE, 2012, pp. 842-849.

A. Trask, D. Gilmore and M. Russell, ‘Modeling order in neural word em-
beddings at scale’, arXiv preprint arXiv:1506.02338, 2015.

H. Song, D. Rajan, J. J. Thiagarajan and A. Spanias, ‘Attend and diagnose:
Clinical time series analysis using attention models’, in Thirty-second AAAI
conference on artificial intelligence, 2018.

G. Hu, X. Peng, Y. Yang, T. M. Hospedales and J. Verbeek, ‘Frankenstein:
Learning deep face representations using small data’, IEEE Transactions on
Image Processing, vol. 27, no. 1, pp. 293-303, 2017.

J. Buolamwini and T. Gebru, ‘Gender shades: Intersectional accuracy dis-
parities in commercial gender classification’, in Conference on fairness, ac-
countability and transparency, 2018, pp. 77-91.

G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, ‘Densely con-
nected convolutional networks’, in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 4700-4708.

A. Paszke, S. Gross, E Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., ‘Pytorch: An imperative style, high-
performance deep learning library’, in Advances in neural information pro-
cessing systems, 2019, pp. 8026-8037.

X. Luo, J.-B. Huang, R. Szeliski, K. Matzen and J. Kopf, ‘Consistent video
depth estimation’, arXiv preprint arXiv:2004.15021, 2020.

J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan and A. C. Kot, ‘Ntu
rgb+d 120: A large-scale benchmark for 3d human activity understanding’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. DOI:
10.1109/TPAMI.2019.2916873.

N. Kitaev, L. Kaiser and A. Levskaya, ‘Reformer: The efficient transformer’,
arXiv preprint arXiv:2001.04451, 2020.

I. Beltagy, M. E. Peters and A. Cohan, ‘Longformer: The long-document
transformer’, arXiv preprint arXiv:2004.05150, 2020.

S. Wang, B. Li, M. Khabsa, H. Fang and H. Ma, ‘Linformer: Self-attention
with linear complexity’, arXiv preprint arXiv:2006.04768, 2020.


https://doi.org/10.1109/TPAMI.2019.2916873

@ NTNU

Norwegian University of
Science and Technology



	Abstract
	Sammendrag
	Preface
	Acknowledgement
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Motivation and Background
	Problem Statement
	Research Questions
	Research Method
	Context
	Contributions
	Thesis Outline

	Theoretical Background
	Cerebral Palsy
	General Movements
	Fidgety Movements
	General Movement Assessment

	Deep Learning
	Neural Networks
	Convolutional Neural Networks
	Transfer Learning
	Attention Mechanisms

	The Transformer
	Scaled dot-product attention
	Multi-Head Attention

	Human Activity Recognition
	Deep Learning Based Approaches


	Previous Work
	InMotion
	Computer-Based GMA
	Deep learning-based HAR
	Attention based HAR


	Method
	Datasets
	CIMA datasets
	HAR datasets

	Transformer Model
	Model Parts
	Ablation Studies

	Training
	Data Preprocessing and Preparation
	Data Sampling
	Optimization
	Regularization
	Training the model
	Implementation Details and Hardware

	Model Evaluation
	Evaluation Metric
	Classification
	Visualization


	Results
	Human Activity Recognition Results
	UTD_MHAD
	KARD

	CIMA-7 Results
	CIMA-19 Results
	Attention Visualisation

	Discussion
	Datasets
	Model
	Base Model
	Ablation Study
	Transfer Learning

	Optimization Process
	Attention Visualization
	Answering Research Questions

	Conclusion and Future Work
	Conclusion
	Future Work
	Dataset
	Tracker Model
	CP prediction Model


	Bibliography

