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Abstract

The Norwegian government has decided that as of 2021, programming will be
added to the physics curriculum at Norwegian upper secondary schools (USS).
Teachers have been able to attend ProFag1 and other initiatives to learn how to
implement programming in their respective courses. Thus, developing tools to aid
in this transition could be essential for success in advanced courses like physics.

However, there is a lack of tools specifically made for introducing programming
in introductory physics courses. Also, the available tools for introducing
programming generally lack the functionality of creating custom tasks.

To attempt to help solve these problems, a design science research (DSR)
process was conducted. By designing a tool, an online learning platform (OLP),
that could introduce programming in an introductory physics course, it was
possible to identify which elements that were important in such a tool. The OLP
was also designed to allow the user to create programming tasks. This made it
possible to find out how a user interface (UI) could be designed to benefit the
physics teachers. In order to get a justified answer on both of these problems, the
OLP was further designed and evaluated on three different audiences: university
students (pilot), experts working with this field (expert), and physics teachers
with no prior expertise in this field (main).

A total of 18 elements were found to be crucial in the design of a tool that
attempts to introduce programming in an introductory physics course. It was
also found that when creating a UI for creating programming tasks suited for
introductory physics, it was important to have the option to hide any distracting
code and to be able to test the task in a realistic environment while creating.
Additionally, making the UI support the way task creators usually create tasks was
also important. It was also found that physics teachers are more interested in using
premade tasks than creating them themselves. However, they were interested in
modifying existing tasks.

Besides what was found during the evaluation, the OLP that was made also
aims to inspire work on research and development of tools explicitly made for
introducing programming in specific topics. The OLP artifact designed and
developed during the work with this thesis is available as an online demo2 and
source code3.

1Programmering for Fagenes skyld: https://www.mn.uio.no/kurt/livslang-lering/

profag
2https://master-thesis-artifact.now.sh
3https://github.com/niklasmh/master-thesis-artifact
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— Alan Perlis
but certain when you can program”

even more when you can teach,
are more sure when you can write,

“You think you know when you can learn,
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Chapter 1

Introduction

It has been decided that programming will be included in introductory physics
courses at Norwegian upper secondary schools (USS) in 2021 (UDIR, 2020d). This
means that pupils are not that far away from being enabling to explore the world
of physics through a new way of thinking. This is a really good thing as it also
opens up for new and exciting material, but it is important to be careful. Just
adding programming to a course that is not about computer science, in general,
could remove attention from the actual material itself.

ProFag1 and other initiatives have already been preparing teachers for this
transition since 2016. They have focused on how the teachers can implement
programming in their own courses, including how to teach programming in a
classroom setting. But it is important to note that this solution was the fastest
solution to get all the teachers on board the programming train on short notice,
meaning it may not be enough to prepare all the teachers with the set of skills
that they need to teach their classes. They also lack scientific research support
in teaching programming for the sake of the courses, simply because this has not
happened before in Norwegian schools. In turn, this leads to a proposal for a tool
that can help ease some of this work that is currently ongoing as well as increasing
the chance for making the transition a success.

Today there exist several tools that can support teachers in introducing
programming. However, only a few of them are made for introducing programming
in introductory physics, specifically. After interviewing three experts working with
programming and physics teaching, four tools2 were found to be good alternatives
when introducing programming in an introductory physics course. However,
only one of them, Tychos, was actually made for introducing programming in
introductory physics — which proves that this topic is relevant, but it also
proves that there have been too few attempts to make this work. The other
alternatives were general-purpose environments that could teach multiple fields of
sciences as well as just programming. They were also designed for effective use by
professional scientists, meaning they lack the ability to introduce programming in
a good way — which other tools can3. Brown and Wilson (2018) also adds that

1Programmering for Fagenes skyld: https://www.mn.uio.no/kurt/livslang-lering/

profag/
2Jupyter, Spyder, Tychos, and Trinket.
3Codecademy and Khan Academy

1
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https://www.mn.uio.no/kurt/livslang-lering/profag/


Chapter 1. Introduction

it is important to remember that novices are not experts and, therefore, need
different tools as they programs differently.

There is also another problem with the available tools today. Most tools
created for specific tasks do not make it possible to create tasks. This forces
the teachers to choose tasks that may not fit with their teaching. This can be
an issue as the learners then may need to learn a part of programming that is
not necessarily needed for introductory physics, e.g., arrays and loops. Having an
option to create or modify programming tasks such that they can skip right to the
programming material that is important may be beneficial for both the teachers
and the learners. Research also suggests that teaching programming material
that is relevant for the learner makes programming easier to learn (Claypool
et al., 2004; Guzdial and Naimipour, 2019). This means that customizing the
programming material could play an essential role in making programming success
in an introductory physics course.

1.1 Motivation

1.1.1 Personal Motivation

I chose this topic as I once was fiddling around with programming in the physics
course at USS. I definitely got more into physics for that reason and understood
some of the concepts more thoroughly. While I was programming in the physics
course, I also got more interested in creating games and simulations using what I
had learned, which in turn made me more interested in physics. I even ended up
creating a dummy physics engine4.

I also created a few more advanced creations in GeoGebra5, but GeoGebra was
primarily made for doing math with equations and could not handle interaction
and advanced behavior (if and else statements) in an easy way . In this thesis, I
have decided to go more in-depth on how we can make programming a part of a
USS physics course.

1.1.2 General Motivation

There is also another motivation that needs to mentioned, which also plays an
important role in this thesis: the curriculum in Norwegian schools is in the middle
of a transition (UDIR, 2020c). The reason why this is a motivation factor is that
it could not have happened at a better time. We are just in time for thinking
new about the whole introductory physics course. This research could even have
a positive impact on how physics is taught in Norwegian schools.

1.2 Research Questions

To help find answers to the problems identified in the beginning, this research
question is posed:

4http://nikkapp.com/physics4.html
5GeoGebra: https://www.matematikksenteret.no/nyheter/geogebra
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1.2 Research Questions

Research Question (RQ1) How can we design an OLP that supports teachers
with teaching programming to pupils in the introductory physics course at
Norwegian USS?

An OLP, or Online Learning Platform, is a tool where teachers can create and
share material with pupils in one single place. A more thorough description of OLP
is given in subsection 4.3.1. Anyway, by using an OLP, the teachers automatically
get advantages like automatic grading, control over pupil’s and content, and
tracking of pupils progress. More advantages are described in Table 4.1.

1.2.1 Sub Research Questions

Before answering the research question (RQ1), more information about the topic
will be needed. A few sub research questions that can help us find this information
have therefore been created.

Research Question 1.1 (RQ1.1) What phenomena in physics can be programmed
in the introductory physics course?

To design an OLP that supports teachers with teaching programming in physics,
it is essential to know what will be taught. In RQ1.1, the goal was to find the
phenomena in the current introductory physics course that is well suited for being
programmed with no prior programming experience.

Historically, programming has not been a part of the physics curriculum.
However, that may change in 2021 as the latest draft of the new physics curriculum
(see section 2.2) has added it as one of the learning goals. More specifically,
programming has now been suggested to explore problems with non-constant
acceleration (UDIR, 2020b). Anyway, it was still a draft, as of the time writing,
meaning RQ1.1 still focused on all areas of physics in the introductory physics
course, not dependent on what was sketched in the drafts, even though it was a
good indicator.

Research Question 1.2 (RQ1.2) What elements does an OLP need to teach
pupils to use programming in the introductory physics course?

In RQ1.2, the focus is on how the pupils perceive the OLP used by the teachers
to teach them. The teachers today are assumed to use Spyder or Jupyter (see
section 4.1.2) to teach programming, according to ProFag6. Nevertheless, these
tools may not contain what is needed for a good learning experience for a first-time
programmer and a first-time physicist — and that is what this question is asking
to find out, specifically. E.g., does loops need to be involved in the tool, or
should they be abstracted? Is graphics beneficial, or does it make the tasks more
complex?

Research Question 1.3 (RQ1.3) How can we design a user interface for
creating programming tasks in the introductory physics course that supports
the teachers?

6First presentation: https://www.mn.uio.no/kurt/livslang-lering/profag/

presentasjoner/
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Chapter 1. Introduction

At last, RQ1.3 is focusing on how teachers should create programming tasks
for the pupils. More specifically, how should a user interface (UI) for creating
programming tasks be designed. Designing a UI that makes it possible to create
programming tasks may enable teachers to adapt the programming part to their
teaching. This may also engage teachers in learning programming, which in turn
makes them able to help their pupils and make programming more interesting.
Teachers are already a great resource, and involving them more could lead to
better learning outcomes for both them and their pupils. However, this may also
be too much work, even if the design for creating programming tasks is perfect,
and it could, therefore, be that teachers would rather choose from a collection of
premade tasks instead. It may also be a mix where teachers want to choose from
a collection, then modify the task for their purpose.

1.3 Research Method

To find the answers to the research questions, a design science research (DSR)
process was used. DSR is a methodology that makes it possible to develop an
artifact, or an OLP in this case, in a new and innovative way (Hevner et al., 2004,
p. 75). After the artifact is created, it is then possible to test it on the real users,
checking if the artifact meets its requirements.

It is important to state the fact that DSR is “the science of the artificial”, or
design science, and not natural science. That is, the design science focuses on
understanding elements or phenomena that are man-made, while natural science
focuses on understanding elements or phenomena from nature. The difference is
described more in-depth in Simon (1996). It is also worth noting that physics
is a natural science in itself. It is, therefore, important to differentiate between
the process of learning physics and learning physics. This thesis will focus on the
process of learning physics, thus the goal is to learn physics.

Figure 1.1: Design Science Research Cycles (Hevner, 2007, p. 88)

The methodology is usually described using a three cycle view: relevance cycle,
design cycle and rigor cycle. See figure 1.1. It is said “that these three cycles must
be present and clearly identifiable in a DSR project,” (Hevner, 2007, p. 88). This
research first started with the rigor cycle, by finding literature, related work, and
previous attempts. To make sure that what was found was useful to the artifact,
four expert interviews were conducted. This belongs to the relevance cycle. Next,
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1.4 Results

the artifact was initially designed using requirements that were created based on
the two earlier cycles. This was done in the design cycle. When the artifact
was ready to be tested, it was first tested by a pilot group. This goes back to
the relevance cycle. The artifact was then further developed based on feedback
from the pilot group, which is done in the design cycle. The last two cycles were
repeated two more times until the requirements were met, and the project was
able to conclude.

1.4 Results

This master thesis contributes with:

• Interviews with experts in this field, giving an idea of what the situation
was when writing this thesis. See chapter 3.

• List of tasks that are suited for being taught in introductory physics using
programming. See chapter 5.

• List of elements that should exist in a tool that attempts to introduce
programming in an introductory physics course. See Table 11.2.

• Description of how an UI for creating tasks should be designed. See
section 9.4, section 10.4, and section 11.4.

1.5 Report Outline

The thesis starts with problem elaboration in chapter 2 and expert interviews
in chapter 3, noting the relevance of the topic. It then moves onto a literature
review in chapter 4 to find grounding. Based on the previous chapters, it was
then possible to find the answer to RQ1.1, which got its chapter: chapter 5. Next,
a set of requirements needed to be made; this was done in chapter 6. When the
requirements were done, it was possible to design the initial OLP in chapter 7.
This design was further implemented in chapter 8. The next three chapters,
chapter 9, chapter 10, and chapter 11, consists of testing, discussion and further
changes to the OLP. The thesis ends with the conclusion in chapter 12.
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Chapter 2

Problem Elaboration

This chapter further elaborates on the environment that this thesis works with.
The first part of this chapter described how the Norwegian upper secondary school
(USS) works, including the physics course. The second part describes the changes
that are about to happen to their curriculum.

2.1 The Environment

It is important to know the school system in Norwegian USS that surrounds
the physics course in further reading. It is also essential for understanding the
environment that the pupils learn in.

2.1.1 Upper Secondary School

In Norway, a pupil usually starts at USS right after ten years of ground education.
Pupils are generally between 15 and 16 years old when beginning such an
education.

2.1.2 The Physic Course in Norwegian USS

In the Norwegian USS, the introductory physics course is an elective course for
the pupils to enroll in the second year. There also exists an intermediate course
that comes after the introductory course, but that course is not the main focus of
this thesis. However, since the physics course at the second year, the pupils are
expected to know some mathematics from the first year.

In the future (from 2021), the pupils taking this course will probably already
have an introduction to programming from other STEM courses in the first year.
This means that the level of programming expected in physics does not need to
be necessarily introductory, but it is not safe to aim for that yet as it could be
optional, and some pupils may need some introduction anyway. The change in
the curriculum is more thoroughly described in the next section.
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Chapter 2. Problem Elaboration

2.2 The New Physics Curriculum

As mentioned in the introduction of the report, a new curriculum for the physics
course is in development and will be ready in 2021 (UDIR, 2020d). This new
curriculum will be crucial for introducing programming into the physics course
as most teachers are dependent on the curriculum when they are prioritizing
activities in the classroom (interviewee D). This means that if the physics
curriculum does not contain any programming, most of the interest in teaching it
will be gone. However, the current results from hearings of the drafts of the new
curriculum show that there is a great interest in teaching programming already.
This further may imply that it will stay in the final version as well.

2.2.1 Development of The New Curriculum

The new physics curriculum has been developed in parallel with other curriculums,
as all Norwegian curriculums are going through a comprehensive change (UDIR,
2020c). This new change aims to make the school system more in line with the
future workforce. To develop these new curriculums, UDIR — which has been
given the main responsibility for the development, has held a few hearings on
drafts of each of the new curriculums. These hearings make it possible for teachers,
universities, and others interested in telling UDIR what they think about them
and giving suggestions. Then, after each hearing, UDIR goes through the feedback
and iterate further on the drafts. In the end, a new curriculum should have been
developed.

2.2.2 First Hearing of The New Physics Curriculum

So far, as of before August 2020, there have been two hearings of the new physics
curriculum. The first hearing was about the first draft of the physics curriculum
that was released 30th of October 2019 (UDIR, 2019c). In this hearing, there was a
lot of positivity around programming. Of 53 answers, 11 of them commented that
they were positive to programming, and no one was against it, at least not in the
comments. Table 2.1 gives a short summary of how the answers were distributed
across the stakeholders. The 11 answers that were positive to programming either
wanted to know more specifics or came with suggestions of what the programming
part should contain, like air resistance, simulations, and micro-controllers. The
rest who did not comment on the programming part may not have had any strong
opinions about the topic. Alternatively, as the first draft was not that specific in
general, they could also be waiting for more specifics as there was not much to
comment on.

2.2.3 Second Hearing of The New Physics Curriculum

The second hearing was about the second draft of the new physics curriculum that
was released on the 27th of February 2020 (UDIR, 2020b). In the new version,
UDIR was more specific on how programming was going to be used in the physics
course. For the first physics course, the students should use programming to
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2.2 The New Physics Curriculum

Stakeholder Answers For Against No comment

Universites 5 1 - 4
Schools 35 8 - 27
Researchers 1 - - 1
Teachers 12 2 - 10

Sum 53 11 - 42

Table 2.1: Summary of the first hearing (UDIR, 2019b) with focus on programming.

model and explore movement that had non-constant acceleration. For the second
physics course, which is not the target of this project, they included programming
to explore and model movements in two dimensions.

Interestingly, in this hearing, there was almost a doubling in the discussion
about the programming part. Of 83 answers, 23 of them had something to say
about it, which is a 34% increase in interest. However, this time, there were three
against having programming in the course. How the answers were distributed
among the stakeholders can be found in Table 2.2. The ones that were positive
to having programming in the physics course had a wide range of answers. This
time, some argued that the curriculum was too specific, as opposed to last time.
Others argued that programming should have taken more space in the course and
being included other topics.

On the other hand, the ones against including programming argued that
it would take too much time or that non-constant acceleration would be too
difficult to understand for the pupils. Overall, it was a great interest in including
programming in the physics course. This may, in turn, result in actually including
programming in the physics course in the final version in 2021.

Stakeholder Answers For Against No comment

Organizations 3 - 1 (+2) -
Public sector 1 - - 1
Universites 3 1 (+1) - 1
Schools 46 13 2 (+1) 31
Companies 1 - - 1
Other 1 1 - -
Private persons 2 (+1) - - 3
Teachers 26 5 - 21

Sum 83 (+1) 20 (+1) 3 (+3) 58

Table 2.2: Summary of the second hearing (UDIR, 2020a) with focus on programming.
Numbers in parentheses are duplicate answers.
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Chapter 3

Expert Interviews

Since before the delivery of this project, there has been limited information on how
the physics teachers should include programming in their courses (see section 2.2).
To get more insight, it was decided to conduct interviews with some of the teachers
and researchers involved in this process.

3.1 Participants

The aim was to interview teachers and researchers that had experience with the
physics course in general. After a few mail exchanges, seven qualified people
were contacted, and four agreed to have an interview. The participants ranged
from fulltime physics teachers to full-time researchers, including participants doing
both.

3.2 Process

There was used a semi-structured format on the interviews, doing the interview
more like a conversation. This was done to gather as much information from the
respondents as possible while having a few questions to guide the conversation.

Two interviews were done in person, one was done over a video, and one
was done using text-exchanges. The two in person and the one over video were
recorded using a sound recorder provided by NTNU. The recordings were later
transcribed and anonymized, then deleted.

All of the respondents that were interviewed had also consented to a
non-disclosure agreement from NSD1 telling that everything that they say in
the interview may be used this master thesis, but also that they are free to
remove their consent or some of the information later. The consent is added to
Appendix A.

1https://nsd.no
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3.3 Interview Guidelines

The interview had three parts; (a) background, (b) their experience with
computers and programming in the physics course, and (c) what ideas they might
have about the future of the physics course. The last part was added to get more
of their creative mind to imagine how programming could work in the future
classrooms, as it did not yet do.

The questions are listed below:

3.3.1 Part (a):

• Do you have any experience with programming?

• What is your experience with physics?

• Have you worked with anything related to education?

3.3.2 Part (b):

• How do your students use computers in the classroom? Or are they allowed
(if not, why)?

• What is your experience with computers in the classroom?

• Do you know what “computational thinking” (algoritmisk tenking) means?

• Have you ever used any form of programming/computational thinking in a
physics course?

– If yes, I would like to know your experience with that.

– If no

∗ Why not?

∗ How would you think you would have used it?

∗ Do you know any students that have used programming in physics?

3.3.3 Part (c):

• In the future (10-20years), how do you think the physics course is going to
be then?

• But first steps first, what do you think we can do today to reach that state?

• How would you create an ideal environment for learning physics, using
programming/CT as a part of it?

The interviewer elaborated on all the answers with new questions. By using this
method, it was possible to get a lot more information from the interviewees.
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3.4 Results

3.4 Results

3.4.1 Backgrounds

ID Profession

A Teacher and researcher
B Researcher
C Teacher and researcher
D Teacher

Table 3.1: The interviewees.

All the interviewees had different backgrounds, which made it possible to
gather a broad area of experience and knowledge. See Table 3.1.

Interviewee A had experience with programming. The interviewee originally
had a chemistry background, thus has since moved on to be a teacher in chemistry,
physics, and natural sciences. The interviewee also made a course for programming
and modeling in their school, meaning the interviewee already had some knowledge
of implementing programming in schools from before.

Interviewee B had a background in physics and had done a lot of scientific
programming in the past. Currently, the interviewee was doing research full-time,
but also had field experience as a physics teacher, thus at a higher level than USS.
The interviewee’s research was in the direction of computational essays, a popular
technology among physicists.

Interviewee C was originally a physics teacher for around 15 years, thus has
since moved onto doing more research and talking publicly. This interviewee has
been active in implementing programming into the physics curriculum and had a
lot of insight into what was currently happening on this topic. This interviewee
had previously learned to program in school but told that it was nearly forgotten
since it was such a long time ago. Thus, the interviewee was newly introduced
to programming for the second time and had from there refreshed the memory of
programming.

The last interviewee, interviewee D, had been a physics teacher for the last
16 years in a variety of schools, both USS and higher level. The interviewee also
had nearly forgotten programming as of the time that had passed. Thus, the
interviewee had also newly been introduced to programming for the second time
and was, therefore, having programming fresh in memory too.

3.4.2 Use of Computers in The Physics Course

All of the interviewees had allowed the use of computers in their physics courses
at some point. Thus they were cautious about using it unless there was a good
reason. Mainly, the computers were used to write down results from experiments
such that you could analyze the data, but apart from that, it did not bring much
value to the course. Thus, none of them had any issues with using computers.
Interviewee B also argued that even if the students were using computers and
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other devices in the class, it was not a problem as it is “(...) just how students
operate these days.”

3.4.3 Use of programming in The Physics Course

Neither of the interviewees had used programming in their physics course at
Norwegian USS. Interviewee A said that there was a strict time constraint in
the current course plan that did not make it feasible. However, that constraint
would hopefully be removed in the new curriculum. Interviewee D pointed out
that they always did an evaluation of activities that were relevant to include in
the course, and that programming was never considered relevant enough as it was
not included in the curriculum.

Interviewee C mentioned that there are two reasons that programming has not
been used in the current physics course: First of all, many physics teachers do
not know how to use it. Even though if they have previous experience with it, it
is not the same when teaching a physics course. The second reason is that the
current tradition is profoundly affected by analytical approaches — not numerical
ones. This means that the teachers will find it hard to teach; they will also not
find any material that covers these kinds of topics.

3.4.4 Use of CT in The Physics Course

Computational thinking (CT), or, more specifically, “algoritmisk tenking” (AT,
see next section), was, according to interviewee A, C, and D, a process that
already was used in the physics course. The most typical problem described was
how the pupils need to decompose problems in terms of motion. For example,
separating the motion in the x and y-axis makes it possible to get two equations
that are simpler to solve than a single equation for both. Interestingly, this is
also something that the pupils see, meaning CT is not something that necessarily
needs to be taught — it may come when seeing the relevance (see subsection 3.4.10,
interviewee B).

3.4.5 The Norwegian CT is Not The Same as The Original
CT

Interviewee C strongly noted that the original definition of computational thinking
(CT) is different from the Norwegian CT, “algoritmisk tenking”, which is closer
to algorithmic thinking (AT). The reason is that it was hard to find a better
Norwegian translation for CT. Interviewee C was actually involved in this process,
together with UDIR — the main responsible for the new curriculum and all parts
involved in this decision knew this. However, UDIR has made a definition on
their website, UDIR (2019a), such that teachers searching for the term can see its
definition and not mix it with the English algorithmic thinking.

The main problem with this “unfortunate” translation is that it is missing
the “computational” part, meaning it does not suggest that it can be used on a
computer, the interviewee said. Thus, the original CT and the Norwegian CT is
not that different in terms of definition, making it maybe the best choice of words

14



3.4 Results

yet. In the future, this may also change, meaning the current definition could
change to, for example, “algoritmisk tenking 2020” instead, to mark that it is the
old definition.

3.4.6 Problems with Defining CT

Interviewee B, on the other hand, was very into the definition of CT, and told that
its definition is not final yet, and might never be. There is a lot of disagreement
about what exactly the definition is. This may also be because people with
different experiences focus on different aspects, making it a relative term based
on the field it is used. This brings us to having to define CT in terms of physics,
or use another term.

3.4.7 Focus on Modeling in Physics may be a Good Idea

According to interviewee A, adding more modeling (which is a part of CT) to
the course could be beneficial. Usually, the pupils get a very mechanical relation
to the calculations; they get a few formulas, then compose them. Instead, the
pupils should be able to model phenomena, as physics should be more about
understanding, not doing. The interviewee thinks the reason for the pupils doing
this is that the course tradition has been this way for a long time. Thus, just by
adding programming as a part of the course, modeling suddenly makes sense to
do. The interviewee also mentioned that they had tried adding modeling to the
physics course once in the past, but after trying it, they saw that it did not reach
that far as they had hoped. This was mostly because the rest of the course did not
fit with using modeling, and none of the pupils had any relation to programming
from before.

3.4.8 Loops are The Most Difficult in Programming

Interviewee C suggested that loops are one of the hardest concepts to learn as
a beginner programmer, using themselves as an example. When the interviewee
was learning programming for the second time after 20 years, the interviewee
noted that there was much easier to understand loops than the first time. The
interviewee also observed that others, learning the exact same thing, had much
more of a struggle and could not wrap their heads around the concept. The
interviewee had also experienced this later when teaching others to program for
the first time as well.

Functions are also a concept that is hard to learn for the first time. Thus it is
not essential in the beginning or at any time, meaning it is mostly left out when
introducing programming in non-programming courses.

Rich et al. (2018) also suggests that loops are hard to learn for beginners,
thus distinguishes between how loops with conditions are more challenging to
learn than loops with no condition, also known as forever-loops. Evidence also
suggests that forever-loops are more favorable too among beginners learning
Scratch (Maloney et al. (2010) and Guzdial (2020b), slide 47).
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3.4.9 Some Pupils Have Used Programming in The
Physics Course

Interviewee A, C and D had all experienced pupils that had used programming in
the physics course at some point in their career, even though the pupils were not
instructed to do so. Mostly, this was done to simulate a phenomenon, visualize,
or automate a task. How this affected the pupils is unknown, but it made them
explore the physics field on their own, which is something the physics teachers
should encourage pupils to do.

3.4.10 The Future of The Physics Course

As the interviewees had very long answers to this part of the interview, this section
is divided into one section for each interviewee and a summary section.

Interviewee A

Interviewee A envisioned that the pupils, in 10 years maybe, may already know
some level of programming before enrolling in the physics course at USS. This
would result in making the course more exploratory — not limited by the math
that they are dependent on today. The interviewee also pointed out that the
focus should be more on the models, as that is closer to reality, and that this will
be easier if the pupils already know some programming. Thus, the interviewee
claims that the course tradition, as mentioned earlier, could be an obstacle if these
should be the future of the course.

However, to get to this future, the interviewee said that after-education of
teachers would be essential. Also, to get programming into the course, one could
start implementing it into oral exams as they do not require any major changes
in the exam format. One should also start with courses for pupils so that they
can learn some programming basics before using it in the physics course. The
interviewee also claimed that if the pupils do not know some basic programming
they will “(...) just see syntax.”

Interviewee B

Interviewee B divided the future into three scenarios: best-case, likely-scenario,
and worst-case. The worst-case was that programing would die out, and nothing
changes, and this could happen in reality in some places. The interviewee spoke
from experiences from universities in the US, claiming that some places will be
very resistant to changes. The best-case scenario would be that computational
literacy (CL) will become widespread. The interviewee was also pushing towards
this in their research, such that “(...) computation is going to become an essential
skill, just like reading and writing and sort of basic mathematics. And that
every student will be able to write a for-loop. Every student will be able to
assign a variable. Every student will understand the bare minimum of what a
program is in the form of step-by-step instruction, what an algorithm is.” Thus,
the middle scenario — what the interviewee expects to happen — is that one

16



3.4 Results

will see interesting things with computation, and some universities will push this
forward, and others will look similar to what they are doing right now.

To get to the best case, the interviewee had a lot of ideas. Firstly, it is
important to publicize why it is important to become CL. One would always need
some level of hype to make people understand the reason. Secondly, one would
need good computational tools that are free, easy to access and work with, and
that everybody can use. Thirdly, teachers should know how to teach computation
and not teach computation, as there are a few caveats. Lastly, the interviewee
pointed out how making computation relevant is essential for success. By making
enough computational tools, one could cover enough angles into computation such
that people with any background would find it relevant.

Interviewee C

Interviewee C hoped that would at least have included air resistance by the time of
10-20 years into the future. The interviewee also hoped that one would use more
models with discrete values such that not everything had to be solved analytically.
Another effect of this would be that more pupils would like the physics course,
not only the pupils who are very skilled in the analytical part. The best-case was
that pupils choose the physics course because it is a course where pupils can play
with computers to explore concrete examples. On the other hand, the worst-case
is that the teachers do not engage in this transition and that the programming
examples given will be created because “(...) it had to be done.” And that there
would be fewer pupils taking the course. Thus, the interviewee thinks the physics
course will end up in the middle of these two cases, arguing that it is likely going
to be a course for more pupils as programming will open up new ways to learn
physics, implying that more pupils will fit in.

However, to get to the best case, as told by the interviewee, one would need to
get “(...) how to teach programming in physics (...)” into the teacher education.
It will not be fine just to learn Python; the teachers need to learn to teach it.
The interviewee also added that it would also help if the pupils learned basic
programming earlier, thus to succeed, the teachers would need to know how to
teach this.

Interviewee D

Interviewee D also used the best-case, middle-case, and worst-case approach.
The best-case was that programming would be more integrated into the physics
course. Programming should be used to simulate, model, solve more realistic
problems, and encourage pupils to explore. Additionally, the pupils have some
basic understanding of programming from before. The middle-case would be that
the pupils would have a varying level of knowledge in programming, resulting
in varying outcomes. The last case, and the worst, would be that the teachers
lack the ability and motivation to make a real change. For the transition to
have a positive outcome, it needs to be a reasonable way to assess programming
competence in a written exam — else it will not be taken seriously by the schools.
As quoted from the interviewee, “Many schools and teachers need a powerful
push.”

17



Chapter 3. Expert Interviews

However, for this change to be a reality, the interviewee said that programming
needs to be included in the lower levels of education. Further, the schools need to
know what the universities are currently doing — how they are teaching Python
and how they create programming tasks. Also, methods in physics are more
dependent on programming today, which teachers should learn from. Moreover,
one could “sell in” the programming activity to the physics teachers by having
workshops.

Summary

• The best case for the future is that programming comes into the physics
course, such that the pupils can explore more realistic phenomena, and
achieve more modeling. This could also result in more diversity among
pupils enrolling in the course as it becomes less analytical.

• The worst case is that schools will continue to do the same as they do today,
in the future.

• To get to the best case, there were multiple suggestions:

– After-educate teachers. (This is already being done in ProFag; thus
one may be needed to educate specifically for the physics course too.)
(suggested by A, B, C, and D)

– Pupils need to learn basic programming before the physics course.
(suggested by A, C, and D)

– Teachers need to learn how to teach programming in the physics course.
Not only learn how to program. (suggested by B and C)

– Make teachers include programming in oral exams. (suggested by A)

– Publicize why programming is important. (suggested by B)

– Have good tools that are free and make it easy to access, use, and work
with using programming. (suggested by B)

– Teachers should learn how to not teach programming. (suggested by
B)

– Focus on making programming relevant for all. (suggested by B)

– The schools need to learn from universities, as they already have
experience with programming in physics education. (suggested by D)

– Could “sell in” programming activities through workshops. (suggested
by D)
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Chapter 4

Literature Review

This chapter goes through theory, background, and related work in this field. The
theory section (4.1) consists of how humans learn and how teachers should teach
programming in physics. Next, the background goes through early work on this
field and how that applies to the field today. At last, the related work section (4.3)
covers the state-of-the-art in this field with recent research over the last decade.

4.1 Theory

The theory has been divided into three parts: learning (subsection 4.1.1),
learning environments (subsection 4.1.2), and programming in physics education
(subsection 4.1.3). The learning part contains definitions of terms that are used
when discussing learning. The learning environment part focuses on

4.1.1 Learning

There are a few theories about learning that are important to mention in this
thesis.

Constructivism

Constructivism is a cognitive theory, invented by Jean Piaget, and an educational
philosophy that is often used to describe how learners construct their own meaning
for everything that is learned (Cakir (2008); On Purpose Associates (2011)). The
difference between the theory and philosophy is that the educational philosophy
also specifies that learners construct their own unique meaning (Guzdial, 2018),
meaning no one ever will have the exact same construction of the same meaning.
Thus, despite the precise definition, the general idea is that it is tough, or even
impossible, to recreate the same meaning from a teacher’s mind to their learners.
This also implies that more methods are needed for teaching new concepts, such
that the teaching is more adapted to how the learners construct new meanings.
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Constructionism

Constructionism (note the difference) is another term that is used throughout
educational literature. The term was invented by Seymour Papert and is more of
an education method that is built upon the constructivism cognitive theory. He
believes that if learners will be more engaged in their learning if they construct
something that others will notice and give feedback on, which in turn will make
them willing to solve problems and learn as they get motivated by their own
construction (Guzdial, 2018).

In Guzdial (2020a), Guzdial argues that he is convinced that constructionism
is not the way to use computing in education anymore. One argument he uses is
that the inventor of the term only focused on a small group of people interested
in code and mathematics, and excluded the teachers. Therefore, it is preferred
to use the constructivism theories instead of the constructionism method in this
thesis, as the teachers are included.

Active learning

Active Learning is based on constructivism, which is defined above and aims to
make the learners their own creators of their own understanding, or intellectual
structures, as Seymour Papert puts it in his book, Papert (1980). Cambridge
Assessment International Education (2018) also gives modern and a more detailed
overview of what active learning is, suggesting that it is a process that focuses on
how the learners learn, and not just what they learn. Moreover, they claim that
the teachers should be the ones giving this opportunity to their learners. They
also link this theory with relevance, which is defined next.

Relevance

Bernard (2010) suggests that making lessons relevant is crucial for learners. The
learner’s brain is more capable of learning new knowledge based on what they have
from before; they are also more likely to remember it. An alternative to making
the lessons relevant, which is much used, is to use a method that some refer to
as drill-and-kill; the teacher makes the learner repeat a task until their curiosity
is killed. Some would argue that repetition still is important, and evidence shows
that it works, but combining it with relevance has shown to be truly powerful in
learning (Claypool et al., 2004).

4.1.2 Learning Environments

Learning environments are important for adding context and relevance to the
learners. This part defines a few terms that are used in this thesis when describing
such an environment.

Programming Environments

A programming environment (PE) is a closed system that attempts to make it
easier to use programming for specific tasks, providing the user with all the tools
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they need to solve the task (Steven P. Reiss, 1994). To make programming easier,
the PE abstracts parts of the computer’s inner workings such that the focus is on
the task that the PE helps to solve.

Task-Specific Programming Environments

A “Task-Specific Programming Environment” (TSPE) is a PE that is tailored for
a specific task in a domain (Guzdial, 2019). An example could be a PE that is
only able to solve matrices or modify sound. The TSPE does not make it possible
to do other tasks, like a general-purpose PE would do, which is described in the
next definition.

However, the term should not be mixed with “Domain-Specific Programming
Environment” (DSPE), which is close to the definition of Domain-Specific
Languages defined in Kosar et al. (2012). The difference between TSPE and
DSPE is that DSPE covers a whole domain — like physics — while TSPE covers
only a specific task in that domain. DSPE cannot focus on a single task, meaning
it cannot focus on a single task, making it closer to a general-purpose PE.
Guzdial and Naimipour (2019) and Guzdial et al. (1997) also attempts to define
Task-Specific Languages, which are programming languages that are tailored for
a specific task. This could have been relevant to use in this thesis as well, but the
Norwegian USS has indirectly decided to use the Python programming language
by using it in all the new material that will be used in the new curriculum
(interviewee C and 1).

General-Purpose Programming Environments

A “General-Purpose Programming Environment” (GPPE) is a PE that is usually
used by today’s developers. The PE is different for each developer, depending on
what they program, but the essence is that the developers can solve any problem
using this PE. The downside of using a PE like this is that this way of working
needs some knowledge of computers beforehand and may not, therefore, be not
a good choice for first-time programmers that should focus on learning a specific
task.

Computational Essays

A “Computational Essay” (CE) is a PE that is mostly used by today’s scientists
(Hannay et al., 2009). CEs make it possible to mix code with documentation in
a linear fashion, creating a story — or an essay.

One of the most popular CEs is Jupyter Notebook (see more in section 4.3),
formerly known as IPython Notebook, which makes it possible to write
documentation using Markdown2, LaTeX3, or just plain text, and add code

1UiO Recommending Python: https://www.uv.uio.no/forskning/satsinger/

fiks/kunnskapsbase/realfaglig-programmering/5.-undervisning-i-realfaglig-

programmering/
2Markdown syntax: https://github.com/adam-p/markdown-here/wiki/Markdown-

Cheatsheet
3LaTeX syntax: https://en.wikibooks.org/wiki/LaTeX/Basics
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blocks that can run Python in between. The code-blocks also transfer the
program’s state to the next code block, making it behave like a single python
file. The code blocks can also deliver outputs in different formats, like text and
images. The PE is also able to export the content, including the output from
each code block, in multiple file formats. This feature makes it possible to share
the results with other people. This is also what makes it useful for scientists
working with computation.

4.1.3 Programming in Physics Education

Programming has been used in a higher level of physics education over the last
past 50 years (Martin, 2016, p. 1). This has resulted in many theories regarding
how to correctly teach programming in the physics course as well as how it is
introduced initially.

Differential equations: the problem

Usually, when doing a higher level of physics, it is not possible to avoid differential
equations (DE) to solve a problem if you tend to solve the problems analytically. It
is not important to know exactly what a DE is in this thesis, but a short version
is that it is a single equation that handles multiple functions and derivatives.
Usually, this is used in physics as it is well suited for describing phenomena in the
physical world.

At Norwegian USS, the pupils do not learn how to use DEs to find formulas for
different phenomena. Instead, they receive the results from different DE solutions.
This means they get premade equations for all cases they need in the physics
course. While this makes it much easier for the pupils to use, they are limited by
not expanding into more complex phenomena. This has also shaped the physics
course into certain directions, leaving out friction and other realistic scenarios,
that may be relevant to the pupils.

Thus, since the physics course is now able to use computers in its teaching, it is
possible to use a different method for solving the exact same problems that enable
the physics course to include ”(...) the more fun parts of physics,” as quoted from
interviewee A.

Euler’s method: the solution

One of the methods that have been revolutionizing the field of programming in
physics education is Euler’s method. There are other methods like this as well that
extends this approach. These are categorized as the Runge-Kutta4 methods. The
other methods may be more precise, but from an educational perspective, Euler’s
method is much easier to learn and use, and reduces the cognitive overload in the
learning process (de Jong, 2010).

By using this method, it is possible to translate any problem that depends on
a single variable, e.g., t for time, into a form that makes it solvable by a computer
through many iterations. For example (see Equation 1), to calculate a position,

4The Runga-Kutta family: https://en.wikipedia.org/wiki/Runge-Kutta_methods
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s, that changes based on an arbitrary function, v, the result would be to end up
with a quite complex problem — maybe even an unsolvable problem. It depends
on what v is. On the other hand, if the problem was solved using Euler’s method,
it only needs to change the form into Equation 2, where it is not needed to know
what the v function is. The method only requires the learner to decide the initial
conditions, which is essential in both methods, and ∆t, which is the time step
deciding how many iterations that need to be done.

s′(t) = v(t) (1)

s(ti+1) = s(ti) + v(ti) ∗∆t (2)

The side effects of using this approach are that you may get a lot of errors5, and
will get an approximate solution — not exact as the analytical version would, but
by making the computer use millions of iterations, you can get really close to the
exact solution. The methods is also quite intuitive and make it easy to simulate
a phenomenon, creating understanding more effectively (Flannery, 2019).

4.2 Background

This section presents early work that has shaped this field from the beginning.
This section also introduces some terms as well as new ideas that are used
throughout this thesis.

4.2.1 Using Computers to Learn

In the 1960s, the computers had just started to be used for learning (e.g., LOGO
in 1967, Papert (1980)). The computers were not very available at the time,
but with a growing interest and future imagination, a few foresaw the potential
of using computers as learning machines. There was especially one researcher,
Seymour Papert, who envisioned the potential. He did a lot of work on this topic
leading to a programming language, or a microworld (EduTech Wiki, 2020), as he
also coined the term to be, which closely resembles a programming environment
(PE). This microworld was called LOGO and is still very much alive today6. In
the 1980s, he released a book that he called Mindstorms (Papert, 1980) that
became quite popular (over 14000 citations in 2020). Educational researchers are
even still recommending reading this book. Even I, personally, got recommended
this book by one of the interviewees. Anyway, in this book, he goes through his
mindset of how the future will be, especially with focusing on using computers
as an educational tool. Surprisingly, his predictions were pretty accurate, which
it is possible to read more about in Resnick (2012). He also describes how he
wanted the learners to be “(...) the active builders of their own intellectual
structures” (Papert, 1980, p. 19). He then argues that computers are an important

5An error, like in: valueapproximate + error = valueexact
6For example, Turtle graphics: https://docs.python.org/3.3/library/turtle.html?

highlight=turtle
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step towards this, and how a microworld can contribute to this type of learning.
LOGO was a result of this idea and proved that children could be their own
creators of intellectual structures. Interestingly, he mentions how the LOGO
microworld is built upon mathematics, physics, and linguistics, teaching children
about Newtonian physics in a natural fashion (Papert, 1980, .p 27), among other
concepts. As of this property of the microworld, the learners are then able to learn
more advanced topics as they have a microworld where it makes sense to learn it.
This idea is something that is still useful today when designing educational tools
for physics and mathematics.

There are also two other researchers that are worth mentioning from this
period: Andrea diSessa and Hal Abelson. They were both into the same idea
as Papert, but decided to create an alternative to LOGO that they called the
Boxer Programming Environment, DiSessa and Abelson (1986). The difference is
that their “microworld” is built based on graphical elements. While LOGO was
purely based on ASCII characters, Boxer created a mental model of the program
using, as its name suggests, ”boxes”. See Figure 4.1. DiSessa argues that Boxer
is better for beginners than LOGO in many ways7, with one of them being that
Boxer is much faster to learn than LOGO. To summarize this part of the story,
having a mental model of how the program works in the environment could be
really beneficial.

Figure 4.1: LOGO (left) VS. Boxer (right).7

This was before 1990. It would seem like research had understood a lot about
learning and how humans could use computers to learn better, but what has
been done since then? According to Resnick (2012), the children did not become
fluent with new technologies as Papert envisioned. However, Resnick’s research
group saw this as a problem and started developing a new microworld, or what
they called: a visual programming environment, named Scratch8(Maloney et al.,
2010). As the LOGO and the Boxer microworlds both got less used, and failed
to explore ”powerful ideas” the way Papert wanted (Resnick, 2012, p. 1), Scratch
made a huge step forward. Scratch expanded on the idea of Boxer, using even
more graphical and logical elements. Though, it was even more inspired by LEGO
and LEGO Mindstorms (actually named after Paperts book, Mindstorms: Papert
(1980)). The research group got the inspiration from how children were able to
start tinkering with LEGO without learning and be their own creators of their

7Twenty Reasons Why You Should Use Boxer (Instead of Logo)*: https://eurologo.web.
elte.hu/lectures/dis.htm

8Scratch website: https://scratch.mit.edu/
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own intellectual structures. Scratch was therefore built to resemble LEGO bricks
(Resnick, 2012, p. 1-2).

Personal experience with Scratch

Scratch is very much used today. I, myself, must admit that I was also tinkering
with Scratch from around the year 2007 to 2011, making me a product of the
microworld itself. It made me especially good at some more advanced math
topics, like trigonometry and Newtonian motion involving gravity, even though
the calculations were not scientifically correct. Though, I got the idea and interest,
which later made me choose a more scientific path. It is also important to note
here that I saw the relevance of learning physics before actually learning it formally
in school. I became an active learner creating my own intellectual structures to
understand more of the world. And this is exactly some of what Seymour Papert
was trying to make children achieve.

4.2.2 Using Programming in Physics Education

Programming in physics has been taught in education even as far back as 1962
(Martin, 2016, p. 2), thus mostly on a higher level of education through initiatives
of eager physics teachers. At that time, computers were less accessible, and only
a few universities owned one.

Later, around the 1990s, as computers became more accessible. Programming
began to appear in broader parts of the physics education community. Some
universities even offered computational physics degrees — also called dual degrees
Martin (2017).

After the 2000 shift, computation became an essential part of physics
education. It was even seen as a research methodology at the same level
as theory and experiment (Martin, 2017). However, using programming in
introductory physics has not grown at the same pace. As of the tools developed
in the previous effort of joining computers in physics, it has been difficult to see
the need for new tools suited for novices.

4.3 Related Work

This section discusses related work that has been done over the last decade in this
field. How the information was found is described in section 4.4. The section is
divided into three parts. The first part, subsection 4.3.1, is about PEs that can
introduce programming or is able to teach physics using programming. The second
part, subsection 4.3.2, focuses on the programming that is taught in education and
what the best practices are when doing so. At last, subsection 4.3.3, focuses on
the creation of tasks. The last part is based on studies on how to create tutorials.

4.3.1 Programming Environments

Over the last decade, there has been an increase in PEs that focuses on
different uses of programming. However, only a few PEs focuses on introducing
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programming in introductory physics. Of the time writing, Tychos was the only
option that was found. And due to the lack of studies on Tychos, finding related
work in the form of projects or studies that overlaps with this field was necessary
to find enough information. This information was found from two fields: OLPs
that use PEs to introduce programming, and conceptual PEs used to teach
physics (not necessarily on an introductory level).

OLPs that introduces programming

Before looking into these OLPs, it is important to know what an OLP is and
why they should be used to teach programming. OLPs are usually browser-based
frameworks that can provide tools and information to teachers, learners, and other
stakeholders in an educational environment9. According to Albashaireh and Ming
(2018), which has done a study of seven OLPs, there are several advantages and
disadvantages of using OLPs. Some of these are listed in Table 4.1. By using
an OLP, the teachers do only need to find suitable programming tasks for their
learners. They then do not need to rely on their teaching skills in programming
to be successful.

There was found a number of OLPs that contained PEs for introducing
programming. To start out, there is Codecademy10. Codecademy is an OLP
that only teaches programming. This means they do not teach other domains
at the same time, like physics, even though they might have the right tool to
do so. However, looking from a teacher’s point of view, this might be hard to
use. Firstly, it is not possible to monitor the learner’s progress. At least not
for free. Secondly, it is not possible to modify their tasks. As every teacher
has their own way of teaching, modifying the programming courses to fit their
teaching might be preferable. Thus, besides their disadvantages, they also have
the same advantages as a general OLP. They also provide a PE that is specific
to the programming they are teaching, making learning programming very easy.
Looking more into how they do that, it is possible to note what elements they
are using in their PE: (a) they provide instructions on the left side, (b) have a
code editor in the middle, and (c) output on the right side, including graphical
output or textual output, depending on the task and programming language.

Next out is Khan Academy11. Khan Academy is almost the same as
Codecademy, but with a wider variety of tasks — not only programming. But in
this case, the focus will still be on the programming task — another difference is
that they are more focused on the school curriculum and the classroom setting.
I.e., compared to Codecademy, Khan Academy is teacher-friendly. They have
even a full integration with Google Education12 such that teachers can have their
students at one place, and just give them assignments through Khan Academy.
But there is one catch; teachers cannot create nor modify tasks that are given
to their learners. This means that if the Khan Academy does not have the
topic the teachers are looking for, they must avoid that topic or find solutions

9https://eliterate.us/what-is-a-learning-platform/
10https://www.codecademy.com
11https://www.khanacademy.org
12https://edu.google.com
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Advantages Comment

Enables automatic grading. Giving feedback to the learner as soon they have
done a task makes them more likely to learn
from their mistakes. Teachers can also see what
the learners are failing on faster, being more
able to correct the learners understanding of
specific topics before moving on.

Learners may be more
involved.

OLP makes the learners active users and in
control of their learning.

Content management can
be integrated.

Teachers do not have to deal with documents
nor create their own system. The system
supports the teachers by making it both easy
and systematic.

Can integrate tools that
creates assignments and
track progress of learners.

Support teachers with tedious tasks. This
benefit has a lot of potentials. This is usually
where the OLPs are unique.

Createable and sharable
content

Enables teachers to quickly share content they
have made, in any setting, making it fit with
their teaching.

Content accessible
anywhere

Enables learners to learn how they prefer,
not limiting them in any way as long they
have access to a computer with a browser and
internet.

Disadvantages Comment

Requires internet. This can be partly solved by making the OLP
runnable offline with downloadable content.

Current OLPs does not
personalize.

This can be solved using more modular parts,
making the teacher more in control of the
system.

Due to scalablility, the
teacher cannot give realtime
feedback to everyone.

This will may not be possible to solve until we
make artificial intelligence suited for this task.

Table 4.1: Some advantages and disadvantages of using OLPs (Albashaireh and Ming,
2018, p. 632) combined with our comments on them.

elsewhere. Besides from that catch, they provide a really good solution for
learning programming. Not only do they give (a) instructions, (b) have an editor,
and (c) a graphical output, but they can also have (d) audio that goes through
how to code while changing the code in the editor. This enables the students
to pause, change the code from that was instructed so far, and check if their
understanding was correct, then resume. It will not keep the code, as it works
as a video, but it makes it easier to get hands-on experience with coding while
seeing how the instructors live code, which is a lot of learning in itself (Brown
and Wilson, 2018, tip 3, p. 2).

Last out, there is a more scientific related project that has more focus on
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sharing PEs: Jupyter Notebook. This is, as mentioned in the theory section
(section 4.1), a computational essay (CE). This is a highly modular programming
environment that works more like a document rather than an OLP. It intertwines
text and runnable code blocks together in a linear fashion. However, by adding
a plugin, called nbgrades (Blank et al. (2019); Hamrick (2016)), you can turn
this powerful document into a fully working OLP, with an automatic assessment
of code blocks and options for personalized feedback. This plugin has become
quite popular among teachers13. This may show that making it easy for teachers
to create programming tasks, and give them control of their learners, is a good
idea. The unique thing with Jupyter, which none of the other OLPs have, is that
creators can order the content any way they want. They do not require a specific
format or structure. And with nbgrader, teachers can assess anything in the code
blocks. There are still a few disadvantages, though. First of all, it is not optimized
for beginner coders. Teachers can create CE tasks that are easy, but the CE in
itself is not made for beginners like Codecademy and Khan Academy is. Both
Codecademy and Khan Academy uses its own workforce to tailor new courses
such that the programming environment is optimized for beginners. Secondly, if
the school does not create an easy-to-access Jupyter Notebook, like JupyterHub14

enables, all the learners have to download Jupyter themselves. This is very often
the case in Norwegian USS (told by interviewee A). Anyway, this comes with
several technical challenges, like installing Python and Pip or Conda15, dealing
with the filesystem (verified by interviewee A), and having to transfer Jupyter
CEs from teacher to their own environment as it cannot be shared through the
hub.

Conceptual programming environments that teaches physics

Through the SLR process, described in section 4.4, it was possible to find a few
conceptual PEs that had physics teaching as their main goal. The reason for
naming these conceptual PEs, it that they do not have a published version of
their prototype. But their PEs are well documented in papers, making it easy to
study how they work and what their goal with their approach was.

Kitagawa et al. (2019) created a PE named STEPP that was aiming to teach
modeling and simulation in 1D and 2D. Their goal was to introduce modeling and
CT into high-school physics. Their approach was to create a PE that could model
finite state machines (FSM) through visual programming that could be transferred
into solving different problems. The FSM could then animate the movements of
objects. I.e., they included simulations of graphics. They also provided the option
to show graphs of different variables. Their animation is also scaled to finish in a
reasonable time. They use a client-server architecture for their OLP, but the PE
is running on the client-side — not communicating with the server.

Hutchins et al. (2019) also uses visual programming to achieve their goal, which
is also to introduce CT in physics. As opposed to STEPP, the PE used in this
study, C2STEM, uses Scratch to model. Their approach is to use customized

13Over 10’000 projects on GitHub (Blank et al., 2019).
14https://jupyter.org/hub
15How to install Jupyter: https://jupyter.org/install
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blocks16 that are domain-specific, e.g. “simulation step”. They have named
this new version of the Scratch programming language domain-specific modeling
language (DSML). This behaves like a programming language, but with special
functions running, e.g., every tick in the physical time. Further, they enable the
use of graphics and graphs to visualize the phenomena that are created.

Orban et al. (2018), Orban et al. (2017), and Orban (2017) have the same
goal as the two previous papers, except for that they focus on programming
instead of CT. They also have an approach that involves textual programming of
simulations instead of visual programming for modeling. To achieve programming
of simulations, they use skeleton code that the learners should write code into.
The code is written in JavaScript using a library called p5.js 17 to abstract having
to use advanced JavaScript to create graphics as well as not handling time to
simulate phenomena. To organize the code, they have focused on having areas in
the skeleton code that serve different purposes. At the top, they specify initial
conditions, like time steps and constants. Below, a draw function is run every time
the simulation is updated as of time. In that draw function, the learners should
first update physical properties, then check for user interactions and make a change
depending on that. At last, in the draw function, it is possible to add graphics.
This structure is not enforced but rather recommended for the learner. However,
they have observed that there is a downside of updating physical properties first
and then checking for user interactions, as learners tend not to understand that
the draw function passes the state of the variables into each iteration. The same
structure was also found to be used in Caballero et al. (2012), p. 4, thus without
user interaction. As Caballero et al. (2012) did not mention the implications of
their structure, the rest of the structure without user interaction may be a good
approach when designing a PE suited for teaching physics.

Programming environments that teaches physics

At last, it is important to mention Tychos. This OLP contains a PE that closely
resembles what is trying to be achieved in this thesis. Their approach was to design
their own programming language that is specifically made for physics. In other
words, this programming language is a domain-specific programming language
(DSPL, see section 4.1.2). Further, they have added graphics as their main element
in the design, with graphs on the side, if the code enables them. They also have
two code editors. These code editors enforce the same structure as Caballero
et al. (2012) by having one for initial conditions that run initially, then an editor
that is run for every delta time. This means that they abstract the creation of
loops. They also abstract time steps, dt, and time duration by not requiring them
to be set in code. They are set in the settings instead. Moreover, they support
tables, inbuilt physical objects (like particles), vector representation of properties
of physical objects (like velocity and acceleration), and custom drawings.

16Scratch blocks: https://en.scratch-wiki.info/wiki/Blocks
17https://p5js.org
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4.3.2 Teaching Programming

To get an overview of how to teach programming in an educational context, this
part is divided into two areas. The first area focuses on how programming is
taught in computer science (CS), as that is a well-documented area. The second
area focuses on how programming is taught in introductory physics, specifically,
though it may include higher levels of physics.

Programming taught in computer science

Over the last decade, there has been an increased effort to teach programming on
a lower level. This has, in turn, led to studies and suggestions on how teaching
programming should be done.

Brown and Wilson (2018), summarizes the last decade with ten quick tips for
teaching programming. In tip 6, “Use worked examples with labeled subgoals”,
they explain that a step-by-step guide with worked examples is a good way to guide
the learners. Long step-by-step guides may make it hard to learn the content.
Usually, some instructions are repeated across multiple guides as well in the same
guide. By adding labeled subgoals, the content is grouped into sections that are
a logical set of instructions. This has further been proved to enable the learners
to recognize patterns that are isomorphic in a long step-by-step guide, making it
easier to learn (Margulieux et al., 2012; Morrison et al., 2015, 2016).

In tip 7, they suggest that the schools should stick to one language. This is
because: “Attempting to force transference too early — e.g., requiring them to
switch from Python to JavaScript in order to do a web programming course early
in their education — will confuse learners and erode their confidence.” (Brown
and Wilson, 2018).

In tip 8, it is suggested that to make learners engaged in learning programming,
it is important to abstract code that is not relevant to the task. The faster the
learner can get to the goal, the more enjoyable the tasks are. In other words, do
not make the learners write all the code themselves unless there is a library that
can help them achieve quicker results.

At last, in tip 9, they found a recurring issue that beginners are treated as
experts. The reason why this is an issue is that beginners program differently than
experts. To solve this issue, a set of tools and approaches suited for beginners
should be made. This suggests that creating a customized PE could be beneficial
when learning to program in physics too.

Freeman et al. (2014) suggests that active learning (see section 4.1.1) is more
valuable than lecturing in CS. This may suggest that designing an OLP with a
PE could be better than having a teacher explain programming.

Programming taught in introductory physics

When it comes to teaching programming in an introductory course in physics,
there was found a few attempts.

Bensky and Moelter (2013) attempted to teach programming in physics
using a bead on a wire. They decided upon this phenomenon as it could be
solved numerically, but also had some analogies with the traditional analytical
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approaches that are usually taught in introductory physics. The phenomenon
could also be justified to be harder on the numerical part, or harder on the
analytical side. This was done by changing the wire to either have sharp edges or
smooth edges. By having a smooth edge, the task had to be solved numerically
as it required a lot of calculations.

In Orban et al. (2018), there was created a PE that taught introductory
physics. However, their creation was in collaboration with PICUP18: Partnership
for Integration of Computation into Undergraduate Physics. PICUP attempts to
unite the understanding of how to teach programming in physics courses. What is
interesting with their website is that they provide exercise sets from all around the
world in a single collection. This makes it easier for physics teachers. However,
the tasks added to the collection are made in a typical file format and do not
divide the tasks into smaller tasks that can guide the learners. This means that
PICUP is not meant for novice programmers. And as stated in section 4.3.2,
novices need tools suited for them. Anyway, PICUP can still be an inspiration.
The tasks just need some modifications such that they can be run in a PE suited
for novices.

Marciuc et al. (2016) found that using GeoGebra for mathematical modeling,
then VPython for numerical modeling, made students “(...) understand some
abstract concepts, like force, speed or acceleration, (...)” and increased
the student’s motivation for learning. They also found that working with
computer models of what they modeled through abstract mathematical equations
contributed to “(...) deepening of the student’s knowledge and helped them
discover the physical significances (...)”. This means that it may be an idea to
divide modeling into an analytical and a numerical part.

Flannery (2019) explains how physics education has a missing potential that
can come from using computers, and that Euler’s method is the way to go to enable
this potential. They also demonstrated planets that moved in inhomogeneous force
fields, and how easy the numerical approach could be.

Further, there were found a few projects that were attempted in introductory
physics courses. These are introduced with references in chapter 5.

4.3.3 Creation of Programming Tasks

When attempting to find information about how to create tasks for PEs, there
were no studies that included creating tasks in specific PEs. Most attempts on
designing tasks, like PICUP (Orban et al., 2018), does only include skeleton codes
with no extra steps explaining and helping the learners. To find literature on
this topic, it was possible to find studies on how tutorials were made. Tutorials
are carefully thought through step-by-step instructions that guide the learner.
As suggested in Morrison et al. (2015), worked examples with step-by-step
instructions is a good approach for teaching programming, meaning it may be
transferrable to the topic of teaching programming in physics.

Kojouharov et al. (2004) made an Eclipse plugin that they called JTutor.
JTutor is a PE that makes it possible to follow a tutorial that is built up by

18https://www.compadre.org/PICUP
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steps and substeps. The tutorial may even change the code the learner has,
depending on what the next task is. But to get to the point of this study, they
have also created JTCreator. This is a tool for creating these tutorials as they
can be cumbersome and time-consuming to create. Their approach is to create
a “creation and replay” environment for the task creator. This means that the
creator code as they are used to, and JTCreator records their actions. When the
creator is done with a substep or a step, they can take a snapshot of their actions
and code and associate them with instructions. On the receiving part that sees
the tutorial, their user interface (UI) consists of a list of the steps, as well as an
own list with substeps in the current step. There is also a code editor that changes
and contains highlights of important code that needs focus. This is very similar
to how Codecademy and Khan Academy works. However, it was not possible to
test JTCreator as it is yet to be published.

Zhang et al. (2009) proposes Smarttutor, another approach for creating
tutorials. Like Kojouharov et al. (2004), they also use an “creation and replay”
technique. Thus they have named it “editable replay” instead. It also only
works in Eclipse. The minor difference is on the part of the receiver. Instead
of providing a whole PE, they only provide a list of tasks that can float over
the PE that the user has themselves. The list can also do actions in the PE,
depending on if the user wants it to autocomplete the task. To create the task,
they provide a UI that includes a list of actions and a list of steps. The list of
steps is associated with a title, description. The UI is supposed to be aside with
their normal Eclipse environment, making it not affect the creator’s PE.

Later, Zhang et al. (2010) again proposes an approach for creating tutorials,
but this time, it is automated. The reason for this is to make it easier to
create tutorials, but also make it possible to generate many possible step-by-step
instructions, as all tutorials can branch into multiple paths. They use a “record
and replay” technique, which again is the same as in Kojouharov et al. (2004),
just with a different name, and combines it with mining comments and actions
from experts. The mining is done by looking at sub-tasks of many tutorials and
mix them with the associated actions. From the receiver’s part, they will do the
tutorial like described in Zhang et al. (2009), but they also get recommended for
new paths while in the process. The UI for creating tasks is also similar to what
is proposed in Zhang et al. (2009), but it also adds new paths after the creation
is done.

4.4 Method

To attain the information in the related work section above, a specific method
called Structured Literature Review (SLR) was used. SLR, as defined by
Kofod-Petersen (2015), is defining a process for finding related literature in a
structured manner. It was first used in medical science; this was later adopted
by other sciences as well, including computer science. The benefit of using
this process for finding literature is that it makes the review reproducible while
discovering a lot of research on the topic that may else have been missed.

Thus, it must also be mentioned that even though it was found many studies
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in the field, a lot of valuable material was missed too. There have, therefore, been
used both references from the SLR studies and used other search strategies to find
a broader set of information. This is explained in subsection 4.4.2.

4.4.1 Structured Literature Review: How It Was Done

In SLR, it is first important to define a protocol that is going to be used in the
search phase. This includes defining which terms to use and where to find the
information. Then, a lot of articles will then be collected using this protocol. If
there are too many articles, it may be preferable to add more specificity in the
search. Then, the filtering begins. This is done by removing one by one until only
the relevant results are left. In the end, the classification of quality and inclusion
criteria is done on the left results.

Defining the search protocol

To perform the search, there were chosen three key terms; physics, computational
thinking, and secondary school. The main idea here is to find articles that overlap
with physics, CT, or programming, and all kinds of education that introduce
physics for the first time. It was also preferable to include a fourth element, teacher
created tasks, in this thesis, but as it was hard to find any results, including this,
it was left out intentionally as it returned too few results. Figure 4.2 attempts to
explain what that was trying to be achieved.

Figure 4.2: Our keywords and their relation in the search.

Based on these key terms, it was essential to find synonyms for each of them.
This is done in table 4.2. It was also chosen only to find results that were published
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between January 2010 and January 2020. The search was only performed on
abstracts, titles, and author keywords.

Group 1 Group 2 Group 3

Term 1 physics computational thinking introductory
Term 2 algorithmic thinking beginner
Term 3 programming secondary school
Term 4 coding high school
Term 5 pre-university
Term 6 STEM education
Term 7 K-12

Table 4.2: Terms and synonyms (groups) used in query. Table structure inspired by
Kofod-Petersen (2015).

More specifically, the query is defined like a boolean search:

”physics” AND (”computational thinking” OR ”algorithmic thinking”
OR ”programming” OR ”coding”) AND (”introductory” OR
”beginner” OR ”secondary school” OR ”high school” OR ”pre-university”
OR ”STEM education” OR ”K-12”)

By using quotes around all terms (””), it was possible to avoid that search
engines will stem the search terms. I.e. “beginner” will not match with
“beginning” and “begin” if quotes are added.

Retrieving the literature

For this SLR, five different databases were used: ACM Digital Library19, IEEE
Xplore Digital Library20, Science Direct21, Scopus22, and Web og Science23.

The search in each database required different syntax to achieve the same
query. For reproducibility, a list of links has been provided to each of the databases
specifying all the criteria that were defined in the search protocol, in the table
below. The table also contains the number of results that were returned as of
January 2020.

Database Query Results

ACM Digital Library Link to query 22
IEEE Xplore Digital Library Link to query 12
Science Direct Link to query 32
Scopus Link to query 136
Web of Science Link to query 83

Total 285
19https://dl.acm.org
20https://ieeexplore.ieee.org
21https://www.sciencedirect.com
22https://www.scopus.com
23https://apps.webofknowledge.com
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Selection of primary studies

After retrieving the literature using the protocol specified earlier, there was
received 285 matches in total. Thus, as only studies from five separate databases
were retrieved, many of the studies were duplicated. After removing duplicates,
only 212 unique matches were left.

A lot of the studies were not relevant. It was, therefore, possible to remove
the most obvious ones. This resulted in excluding 130 studies, reducing down to
82 potentially relevant studies.

Study quality assessment

In this step, a more thorough study of the studies needed to be done. All of them
had some level of common ground with the field that was searched for, but only
the studies that were thematically relevant should be included. To achieve that,
it was needed to create a few criteria that defined what to look for in each study.
The ones that did not match any of the criteria, or matched the excluding ones,
were excluded.

The criteria, defined in table 4.3, were divided into quality criteria (QC),
inclusion criteria (IC), and exclusion criteria (EC). The inclusion criteria were
then again divided into primary and secondary groups, where the primary group
contained the studies that were spot on the topic, and the second group contained
the studies that had some important elements that were preferred.

Criteria ID Criteria

IC1 Learning introductory physics using CT or programming

IC2 Focuses on learning physics (less focus on CT or programming)
IC4 Uses a introductory physics course in their evaluation

EC1 Focuses on learning CT or programming (not physics)
EC2 Focuses on higher level physics courses
EC3 Does not contain CT or programming
EC4 Learning introductory physics using other approaches

QC1 (t24=0.5) Is there a clear statement of the aim of the research?
QC2 (t=1.0) Is the study results reproducible?
QC3 (t=0.5) Does the study compare their approach with other approaches?

Table 4.3: Inclusion and quality criteria. Inspired by Kofod-Petersen (2015).

First, the results left went through all the inclusion and exclusion criteria. It
started with a different set of criteria initially, but after seeing that the criteria
were too vague, they got refined step by step, as well as more exclusion criteria,
were added. It is possible to see the ending criteria in Table 4.3. However, this
resulted in having nine studies left.

At last, it needed to evaluate them on quality. This was done by giving quality
points based on the specific quality criteria. If a quality criterion was not filled,
they got 0 points. If it matched, they got 1 point. If they partly matched, they

24Points that are needed to pass the quality criterion threshold (t).
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got 0.5 points. A threshold was then set for each criterion that decided which
studies that should pass or not, based on their points on that given criterion. See
the t-values at the bottom of Table 4.3. Thus, after evaluating all the studies,
they all passed the quality test.

Final studies

The studies that were included in the end result can be found in Table 4.4.

Title Reference Year

C2STEM: a System for Synergistic Learning of
Physics and Computational Thinking

Hutchins
et al. (2019)

2019

Scaffolded Training Environment for Physics
Programming (STEPP)

Kitagawa
et al. (2019)

2019

A hybrid approach for using programming exercises
in introductory physics

Orban et al.
(2018)

2018

A novel approach for using programming exercises in
electromagnetism coursework

Orban (2017) 2017

Developing students’ creativity by Physics lessons Marciuc and
Miron (2017)

2017

Using GeoGebra and Vpython software for teaching
motion in a uniform gravitational field

Marciuc et al.
(2016)

2016

The effect of computer science on physics learning in
a computational science environment

Taub et al.
(2015)

2015

Computational problems in introductory physics:
Lessons from a bead on a wire

Bensky and
Moelter
(2013)

2013

Implementing and assessing computational modeling
in introductory mechanics

Caballero
et al. (2012)

2012

Table 4.4: The studies that were included after the final selection phase in the SLR.

4.4.2 Alternative Search Strategies

As mentioned at the beginning of section 4.4, the search was also expanded for
studies by using less precise methods. This was because this field of research lacks
common terms, as opposed to medical studies with a lot of unique terms for what
they want to express. This may also be because DSR is the study of the artificial,
not the natural. Studies using DSR usually create new concepts or ideas and
have a hard time agreeing upon a good name. For example, researchers do not
exactly know what computational thinking (CT) is yet (interviewee B), resulting
in studies that have interpreted it differently, and excluding results that have the
same idea but do not think CT is the right term to use. By using alternative
search-strategies for attaining the results was therefore necessary for finding the
state-of-the-art in the field, or at least the related work.

Another reason for including these strategies is that it was not possible to
include the fourth search element: teacher created tasks, without the search
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excluding too many of the good results. Using these strategies if was possible to
find information on this field as well as in other fields nearby.

The reference strategy

The first alternative strategy was to use references from the studies that were
found to explore more of the field.

Title Reference Year

A Game-Centered, Interactive Approach for Using
Programming Exercises in Introductory Physics

Orban et al.
(2017)

2017

Table 4.5: Studies found using references from SLR studies.

The Google strategy

The last alternative strategy is based on using different terms than the ones used
in the SLR so far. For example, there were found many relevant studies that do
not include the physics part, which was a crucial part in the SLR query.
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Title Reference Year

nbgrader: A Tool for Creating and Grading
Assignments in the Jupyter Notebook

Blank et al.
(2019)

2019

The Coming Revolution in Physics Education Flannery
(2019)

201

A survey of online learning platforms with initial
investigation of situation-awareness to facilitate
programming education

Albashaireh
and Ming
(2018)

2018

A Principled Approach to Designing Assessments
That Integrate Science and Computational Thinking

Basu et al.
(2018)

2018

Ten quick tips for teaching programming Brown and
Wilson (2018)

2018

Modeling a Pendulum’s Swing Is Way Harder Than
You Think

Allain (2016) 2016

Novice programmers & the problem description effect Bouvier et al.
(2016)

2016

Creating and Grading IPython/Jupyter Notebook
Assignments with NbGrader

Hamrick
(2016)

2016

Subgoals help students solve Parsons Problems Morrison
et al. (2016)

2016

Subgoals, context, and worked examples in learning
computing problem solving

Morrison
et al. (2015)

2015

Active learning increases student performance in
science, engineering, and mathematics

Freeman
et al. (2014)

2014

Subgoal-labeled instructional material improves
performance and transfer in learning to develop
mobile applications

Margulieux
et al. (2012)

2012

Towards Automated Synthesis of Executable Eclipse
Tutorials

Zhang et al.
(2010)

2010

Smarttutor: Creating IDE-based interactive tutorials
via editable replay

Zhang et al.
(2009)

2009

Understanding The High Performance Computing
Community: A Software Engineer’s Perspective

Basili et al.
(2008)

2008

Software development environments for scientific and
engineering software: A series of case studies

Carver et al.
(2007)

2007

When software engineers met research scientists: A
case study

Segal (2005) 2005

JTutor: An Eclipse Plug-in Suite for Creation and
Replay of Code-based Tutorials

Kojouharov
et al. (2004)

2004

Table 4.6: Studies found using the google strategy.
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Answering Research Question 1.1

By studying recent work and interpret interviews and hearings, it is possible to
find an answer to RQ1.1: “What phenomena in physics can be programmed in
the introductory physics course?”. This research question will make sure that the
artifact focuses on programming the right phenomena in the introductory physics
course. In turn, this will guide what elements that are needed in RQ1.2 and what
tasks that are made in RQ1.3.

This section has been divided into eight types of typical phenomenon taught
in introductory physics and has been proven to be possible to program. Thus,
some of these phenomena are not necessarily suited for an introductory course
in physics or first-time programmers. Therefore it is important to find what is
required from the pupils to program each task. For example, some tasks may
require loops, which are very though to learn (see subsection 3.4.8), for even the
simplest version of the task. Others, on the other hand, may only require a loop
when the problem is evolved.

As interviewee B mentioned, a great metaphor that is used when evaluating
whether a computational task is good or not is that it needs to have a low floor,
such that anyone can make an entry. Then the tasks need to have high ceilings,
such that the learner can come a long way. Finally, it needs many windows,
such that the learner can come from any angle. Therefore, each phenomenon will
be evaluated by how the problem can be in its simplest form, avoiding as much
knowledge of programming and physics as possible, such that anyone can make
an entry. The evaluation will also consider how the phenomena can evolve into
a harder problem, giving more challenges and higher learning outcomes for the
pupils. In the last part, with many angles to entry, the phenomenon will not be
evaluated. Thus a higher ceiling may automatically provide more windows, as
more additional elements are added.

5.1 Falling Object

In this phenomenon, an object with a mass is usually either placed mid-air or
thrown from the ground. The object is also typically affected by the constant of
gravity1. This phenomenon is further described in Marciuc et al. (2016). Thus,

1g ≈ 9.81m/s2

39



Chapter 5. Answering Research Question 1.1

this constant does not need to be constant, nor does it need to be alone. Other
forces like air resistance and wind can affect the object, too, and the shape of
the object. There are many configurations to this phenomenon, making it one of
the simplest phenomena (Figure 5.1a), to one of the hardest to solve analytically
(Figure 5.1d).

(a) (b) (c) (d)

Figure 5.1: Example evolutions of the falling object phenomenon: (a) falling ball in
1D, (b) thrown ball in 2D, (c) thrown ball with air resistance, and (d) thrown ball with
air resistance and bounce.

This phenomenon is quite popular to program and has been mentioned by
interviewee A and C, as well as in Marciuc et al. (2016) and Orban et al. (2017).
Thus, usually, when this phenomenon should be programmed, air resistance is
accounted for. The reason for this is that without air resistance, the phenomenon
is easily solvable analytically through a single equation, see Equation 5.1. To get
a better idea of how this equation works, see Figure 5.1a and Figure 5.1b.

y′′ = g

⇒ y′ = g ∗ t + v0

⇒ y =
1

2
∗ g ∗ t2 + v0 ∗ t + y0

(5.1)

However, when air resistance is added into the phenomenon, a drag force, D, must
be added to the equation. See Equation 5.2. This makes the equation much more
tricky to solve, leading to less focus on physics and more focus on mathematics.
This issue is also described in section 4.1.3.

y′′ = g − D

m

⇒ y′ = g ∗ t + v0 −
∫

D

m
dt

⇒ y =
1

2
∗ g ∗ t2 + v0 ∗ t + y0 −

∫∫
D

m
dtdt

(5.2)

Thus, by using a computer, one can instead use the numerical approach, or Euler’s
method, in this case, to simulate the motion in each time step, ∆t. This will turn
Equation 5.2 into Equation 5.3, where the drag force, D, is only applied once and
does not need to be calculated further.

ay(ti+1) = g − D

m
vy(ti+1) = vy(ti) + ay(ti+1) ∗∆t

sy(ti+1) = sy(ti) + vy(ti+1) ∗∆t

(5.3)
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Now, by using the numerical approach and a computer, the phenomenon becomes
quite easy to simulate for all cases described in Figure 5.1. This is why this
phenomenon is well suited for being programmed in the introductory physics
course. And with a few minor modifications, all the other phenomena below can
be programmed this way as well.

Moreover, the phenomenon can be transferred to multiple domains, adding
more elements. For example, when throwing a ball outdoors, it is likely that some
(a) wind will affect the motion of the ball. And when the ball hits the ground,
it will likely (b) bounce a few times before it stops, because of friction (c). It
may even (d) roll a little further after that, creating even more complexity to the
phenomenon.

Considering how simple the task can start, and how complex it can evolve
without adding unrealistic elements, this may be the safest phenomenon to teach
in an introductory physics course.

5.2 Pendulum

The next phenomenon is describing an object with a mass that swings around a
joint on a rod, keeping a constant distance from the joint. The phenomenon was
mentioned by Marciuc et al. (2016). It is not an easy task to begin with. The
reason is that it involves more forces than the gravitational pull. The extra force,
which is from the pull of the rod, is also changing constantly, making it hard to
model. These issues have also been described in Allain (2016).

Also, the phenomenon does not evolve that much, meaning when the learner
finally has managed to get the dynamics working, there are not many easy
additions that add much learning value. However, these four additions can be
made: (a) air resistance, (b) multiple linked pendulums, (c) spring-loaded rod,
and (d) a sudden change in rod length. The first and last additions are easy to
add, the others can be very hard as it requires a solid control over the physical
system, which in turn requires a lot of programming experience.

5.3 Block Down a Slope

This phenomenon is about a block that slides down a slope. In its simplest form,
it is a block with no friction on a straight slope. The only force acting on the block
is the gravitation. When evolving this phenomenon, one can add four elements:
(a) friction between block and slope, (b) an uneven slope, (c) a ball instead of
a block, and (d) a pulley with another object pulling it on the other side with
gravity.

It is possible to consider the whole phenomenon as an extension to a falling
object, as gravity is the only force working on the block. The only tweak is added
when one has to account for the angle of the surface.

Considering how easy it is to start with, and how many ways it can evolve,
this is a reasonable phenomenon to program in the introductory physics course.
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(a) (b)

Figure 5.2: Example evolutions of the block down a slope: (a) simplest form, and (b)
with friction.

5.4 Bead on a Wire

This phenomenon was inspired by Bensky and Moelter (2013) where they argue
that a numerical approximation to this phenomenon gives much more in return
to the learners than an analytical approach. The phenomenon itself is in general
terms defined as an object that is constrained to move along a curved path.

The simplest form of this phenomenon is just like the previous block down
a slope, but with an arbitrary curved path. This means that the learner must
know how to constrain an object to a defined path. According to Bensky and
Moelter (2013), this can be done through a mathematical function or a list of
points. Anyway, this makes the phenomenon a bit more challenging to start with.

To evolve the phenomenon, there are at least two elements that can be added:
(a) friction, and (b) measurement of energy, which gives a lot of understanding to
the learners, according to Bensky and Moelter (2013). To add even more elements
to the phenomenon, one can detach the bead from the wire; thus, the phenomenon
is closer to the block down a slope phenomenon, and that breaks with the logic
of calling it a bead on a wire.

5.5 Ball Collisions

This phenomenon is moving into another area in physics that is not only about
acceleration, velocity and position, but also impulse, which is acceleration applied
in a short time period, also known as a collision. The simplest version of this
problem consists of two balls, with equal mass, colliding with each other once.
There are no other forces that are constantly involved, like in all the previous
examples. However, what may make this phenomenon hard to start with is that
is involves an if-statement, checking whether or not the balls are colliding. Thus,
only one collision check is needed for the simple version.

When evolving the phenomenon, there are about ten elements that can be
added: (a) two dimensions, (b) multiple balls, (c) walls, (d) friction between balls,
(e) rotation, (f) different masses, (g) different sizes, (h) gravity, (i) inelasticity,
and (j) forces between each of the balls, like planets, have.

The phenomenon may be for an intermediate level as it involves an
if-statement, but it should not be too hard as the other parts are very easy
to understand. However, this phenomenon has quite a few additions that can
make the problem interesting for all learners.
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5.6 Electron on Uniform Magnetic Field

There are also a few interesting phenomena that can be simulated at the atomic
level of physics. Many of the laws of physics at this scale may be hard to
understand as they are more abstract and not visible to the naked eye; thus,
visualizing them may make the learner better understand the concepts.

This phenomenon has been mentioned in both the hearing of the first draft
of the new curriculum, by Orban (2017), and by Marciuc and Miron (2017),
p. 474-476. In general, an electrically charged particle moves through a uniform
magnetic field. Thus, when the particle is inside this field, depending on the
velocity, the charge, and the field, the particle will be forced to move along a
specific path.

To set up this phenomenon, only one object is needed, and that is the particle.
It is a very simple problem if the learner already knows physics. However, to get
a better understanding of the particle’s movement, it is important to see the third
dimension as well. This may make the problem more dependent on visualization
tools, but it should not be much harder to program.

There are also not many additional elements to add to the phenomenon. Thus
one could change the parameters while simulating.

5.7 Planet Orbits

This phenomenon focused on describing the motion of the planets in the universe
and was mentioned by Caballero et al. (2012), p. 4. It consists of at least two
objects with a mass. These objects are attracted to each other, making them
affect each other. The most simple version of this phenomenon would be that
both object have the same mass and is equally pulling on each other. The most
simple version could also be in one dimension, but it is much more rewarding
when the objects go around each other in two dimensions.

To evolve this phenomenon, four additional elements could be added: (a)
different masses, (b) multiple objects, (c) collisions joining two objects into a
more massive one, (d) the third dimension.

5.8 Asteroids Game

This last phenomenon is a game that uses the same physical laws that is taught in
an introductory physics course. The phenomenon was proposed by Orban et al.
(2017), which pointed out that no forces are affecting the objects in space, making
it possible to illustrate Newton’s laws without any gravitational pull. The simplest
version of the phenomenon is to add a spaceship and an asteroid. To make it a
working game, the spaceship must be able to move and shoot, leading to a third
object — the bullet. The game may not be that simple to start with, and requires
if-statements for the collisions, but the path towards a fully working game is not
that hard. However, by giving the learner a skeleton code, where the structure is
defined, it may be easy to make the learner understand what is going on.
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As it is a game, five elements can be added from a physics perspective: (a)
multiple asteroids, (b) multiple bullets, (c) multiplayer, (d) asteroids splitting into
multiple small asteroids when shot at, (e) pull from gravity from asteroids.

5.9 Conclusion

This section has given a brief introduction to eight physics phenomena that are
typically introduced in introductory physics and discussed how each could be
programmed.

Now, to answer RQ1.1, one must consider how each of these physics phenomena
could be in their simplest form, and what that simple form requires from the
learner. If the simplest form requires the need for if-statements, it may be hard
to understand for a beginner learner. Requiring two dimensions also sets a basis
for how the problem must be modeled in order to work. Table 5.1 gives a brief
overview of what is required from each of the phenomena. The phenomena have
also been marked as “introductory level” if they have a simple form that does not
involve functions or loops of any kind. The amount of additional elements has
also been noted to show how much potential each of the phenomena has when
starting from the simplest form. This may also be a good indicator of which
phenomena can give the most learning outcomes, as the learner can start with a
simple concept and then use it as a foundation for learning new concepts.

To conclude, there were six phenomena that were the introductory level. Thus
only four of them were easy (E) to start with, did not require much programming
skills, and had at least two or more additional elements to add. These are marked
with green in the table.
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Falling object E 1 1 3 M 2 3 1 4
Pendulum H 2 1 H 2 2 4
Block down
slope

E 1 1 3 M 2 3 3 1 4

Bead on a wire M 2 3 1 H 2 3 3 1 2
Ball collisions E 1 3 2 3 H 2 3 3 3 2+ 10
Electron on
uniform
magnetic field

M 2 1 3 M 3 1 1

Planet orbits E 1 2 3 H 3 3 3 3 2+ 4
Asteroids game M 2 3 3 3 H 2 3 3 3 3+ 5

Table 5.1: Evolution of programmable physics phenomena. There are three levels
of difficulty: Easy (E), Medium (M), and Hard (H). The ones marked with green are
the ones that were considered as simple enough to program in the introductory physics
course, having at least a few additional elements to build upon the phenomena.
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Chapter 6

Requirements

By using the work from the previous chapters, a set of requirements could be
defined. This chapter is going through these requirements.

Requirements are important in this project as they make sure that the artifact,
that is being designed, answers the research questions (defined in section 1.2). The
requirements also plays a vital role in the design of the artifact as well, such that
the artifact is reproducible. More detailed, the artifact is designed in an iterative
fashion having an evaluation after each iteration cycle checking if the requirements
are met (Hevner, 2007, p. 4). If the requirements are not met, a new iteration
takes place. Else, the artifact is performing well enough and the project can
conclude, or the requirements need a refinement as they were incomplete.

The requirements have been listed in Table 6.1. A discussion about each
requirement is provided next. In the table, there are a few requirements that are
adapted (marked with *). These were found from other studies. Their sources are
given in the discussion.
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ID Requirement

From Research Question 1.1
R11 Users should, through programming, be able to explore tasks that have

non-constant acceleration
R12 Teachers should be able to create falling object tasks
R13 Teachers should be able to create block down a slope tasks
R14 Teachers should be able to create ball collision tasks
R15 Teachers should be able to create planet orbit tasks

To Answer Research Question 1.2
R21 Each task UI should contain at least one code editor*
R22 Each task UI should contain at least one instruction*
R23 Each task UI should contain at least one output (in form of graphical or

textual)*
R24 Each task UI should be able to give feedback in form of motivation or

help*
R25 Each task UI should have a code editor to specify initial

conditions*
R26 Each task UI should have a code editor to put code that should be

updated on each delta time. This editor is also divided into variable
updates and visual updates.*

R27 Each task UI should make it possible to see current variable
values*

R28 Each task UI instruction should be divided into sections and
subtasks*

R29 Each task UI should make it possible to add graphs*

To Answer Research Question 1.3
R31 Each task creation UI should be able to start from scratch
R32 Each task creation UI should be able to start from existing tasks
R33 Each task creation UI should give help at each step in the creation

process
R34 Each task creation UI should make sections and subtasks logical to

use
R35 Each task creation UI should make it possible to give feedback in form

of motivation or help
R36 Each task creation UI should make it possible to abstract code from the

learners
R37 Each task creation UI should make it possible to automatically test

each subtask with Python 3 code to verify its completion
R38 Each task creation UI should make it possible to test each subtask as

the learners would such that the teachers can verify that the subtask
works as intended

R39 Each task creation UI should make repeating tasks, like writing
description and tests, less repetative

Table 6.1: List of requirements. The adapted requirements are marked with *.
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6.1 Discussion of Requirements

This section will discuss each of the requirements to clarify where they come from
and their purpose. This section has also been divided into logical splits, making
it easier to follow the context of each of them.

6.1.1 Research Question 1.1

The first sub research question was: “What phenomena in physics can be
programmed in the introductory physics course?”. This requirement already has
an answer in the previous chapter (see Table 5.1). However, it affects RQ1.2 and
RQ1.3 by specifying what types of problems that should be focused on.

Requirement 11 (R11) Users should, through programming, be able to explore
tasks that have non-constant acceleration

The first requirement, R11, is focusing on what currently has been decided upon in
the new curriculum (see section 2.2). This has to be added such that all tasks that
are created can support this exploration. Just by using a programming language
in general, it is possible to validate this requirement.

Requirement 12 (R12) Teachers should be able to create falling object
tasks

Requirement 13 (R13) Teachers should be able to create block down a slope
tasks

Requirement 14 (R14) Teachers should be able to create ball collision
tasks

Requirement 15 (R15) Teachers should be able to create planet orbit
tasks

The next four requirements are close to the first one; thus in these, it is important
to note that the teacher should be able to create these tasks. This means that
they need to get sufficient with scaffolding along the way. These requirements
also set a few new implicit requirements to the artifact, like that it needs to be
able to visualize certain elements, speed up time, and zoom out.

6.1.2 Research Question 1.2

The second sub research question was: “What elements does an OLP need to teach
pupils to use programming in the introductory physics course?”. To get an answer
to this question, a set of elements has been identified from the previous chapters.
These elements have then been added as requirements, such that the elements can
be evaluated individually. The next paragraphs discuss how these requirements
were formed based on previous knowledge.

With regards to the user-interface (UI), there has been found that all
programming environments that teach programming, or have programming as a
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part of a task, have at least three parts: code editor, instructions, and a graphical
output or textual output, depending on the task. Apart from the common parts,
there are also some creative variations, like having audio that tells how to proceed
while also coding in the editor (Khan Academy), or making it possible to add
multiple code editors (or blocks) with instructions around them (Jupyter). Also,
Codecademy and Khan Academy both give the learners motivating feedback and
help based on the situation. Multiple requirements have been created from these
designs:

Requirement 21 (R21) Each task UI should contain at least one code
editor

Requirement 22 (R22) Each task UI should contain at least one instruction

Requirement 23 (R23) Each task UI should contain at least one output (in
form of graphical or textual)

Requirement 24 (R24) Each task UI should be able to give feedback in form
of motivation or help

When going more into programming environments for physics, there are a few
specific parts that affect the UI. By looking at Orban et al. (2018), Caballero
et al. (2012), and Tychos1, they all have the same separation of code that is ran
one time, and code that should be ran for each delta time. Tychos even has
its own code editor for each of them. This is also something that makes much
sense as all phenomena in physics has some initial starting point, and from that
starting point, a new state can be derived based on delta time. Based on this,
these requirements were added:

Requirement 25 (R25) Each task UI should have a code editor to specify initial
conditions

Requirement 26 (R26) Each task UI should have a code editor to put code
that should be updated on each delta time. This editor is also divided into
variable updates and visual updates.

Moreover, Orban et al. (2018) and Caballero et al. (2012), p. 4, suggested that the
code that should be run for each delta time should also be divided into at least two
sections: (a) update of the physics variables and (b) update of the visualizations
based on the physics variables. Orban et al. (2018), p. 835, also further added (c)
user input as another section, thus was not sure if it should be placed before (a)
and (b), between or after. But as (c) cannot be placed without some side effects,
this will not be required as a section. Also, user input is not needed as a part
of the tasks that should be created either; however, it may be a useful addition
later research. Anyway, section (a) and (b) were incorporated into R26 due to
recommendations from these studies.

1https://www.tychos.org
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Another requirement was added due to a conversation that happened earlier
that was about the use of seeing the current state of the variables. As interviewee
A could verify from the conversation later, one of the reasons to use Spyder over
Jupyter was because of this feature. It was not an essential feature, but it was
beneficial, and therefore it was added such that is would be possible to evaluate
its importance.

Requirement 27 (R27) Each task UI should make it possible to see current
variable values

By looking at studies about tutorials, it is unanimous that the instructions
should be divided into steps, then substeps, in a two-level hierarchical fashion.
Margulieux et al. (2012), p. 72 describe the benefits of this structure, where
they argue that the steps of the task become isomorphic across several tasks.
E.g., how to define variables have the same patterns, just with minor changes in
the variable names. This prevents cognitive overload in future learning as the
learners can recognize patterns of certain steps. But, away from the benefits of
a two-level structure, none of the studies have agreed upon what to call these
levels. Kojouharov et al. (2004) has used “steps” and “substeps”. Zhang et al.
(2009) has used “steps” and “sub-steps”. Zhang et al. (2010) has used “sub-task”
and “steps”. Margulieux et al. (2012) has used “subgoals” and “steps”. As there
is no clear solution to this naming, “section” and “subtask” were used. This was
because it was logical to have the “task” as the whole phenomenon, with a lot
of “subtasks”. Then, to divide the subtasks into groups, or labeled subgoals as
Margulieux et al. (2012) suggested, there were added sections — each with their
own label and instructions.

Requirement 28 (R28) Each task UI instruction should be divided into
sections and subtasks

A useful element included in most PEs that teaches physics (see section 4.3.1),
is graphs. This element has been used to visualize changes in physical property
over time. This is especially useful when learning about non-constant acceleration
as it is hard to detect changes in acceleration through an animation. As of the
usefulness of the element, it has been added in R29.

Requirement 29 (R29) Each task UI should make it possible to add graphs

6.1.3 Research Question 1.3

The third sub research question was: “How can we design a user interface for
creating programming tasks in the introductory physics course that supports the
teachers?”. To answer this question, these requirements were added:

The first two requirements were added such that the teachers could both create
tasks and modify existing ones. This way, the design is forced to be able to do
both.

Requirement 31 (R31) Each task creation UI should be able to start from
scratch
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Requirement 32 (R32) Each task creation UI should be able to start from
existing tasks

The next requirement will test how important help is for creating a task. It may
be that it is too much or that it is only needed once.

Requirement 33 (R33) Each task creation UI should give help at each step in
the creation process

As discussed for requirement R28, the tasks should be divided into two levels:
sections and subtasks. This has to be incorporated into the design of the task
creation UI such that it makes sense. Else the teachers could structure the task
in a way that makes it less beneficial.

Requirement 34 (R34) Each task creation UI should make sections and
subtasks logical to use

It could be beneficial to have the option to tell the learners about typical mistakes
that can be made in their own task, and not rely on typical error messages only.
Also, having the option to give motivation could be beneficial, too, as Codecademy
and Khan Academy have done as mentioned earlier with R24.

Requirement 35 (R35) Each task creation UI should make it possible to give
feedback in form of motivation or help

To make the learners focus on the actual physics, it should be possible to abstract
code in the code editor. This way, the learners cannot be stuck on trying to
understand code that is not important for the problem. As interviewee A told,
“beginners just see syntax,” noting the importance of just showing essential code.

Requirement 36 (R36) Each task creation UI should make it possible to
abstract code from the learners

Automatic assessment of code is a feature that most interactive programming
platforms have today. However, only a few of them, e.g., Tychos and Jupyter
with nbgrader plugin, make it possible to create these as regular teachers. This
feature is also essential as it is a part of an OLP as described in Table 4.1. Else,
the system would not have benefited from being scalable and giving feedback in
real-time.

Requirement 37 (R37) Each task creation UI should make it possible to
automatically test each subtask with Python 3 code to verify its completion

Having an option for the teacher to actually test the task they are currently
creating, together with tests they have created, may be beneficial. This is closely
related to the previous requirement as it is about getting feedback early, before a
big mistake is made.
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Requirement 38 (R38) Each task creation UI should make it possible to test
each subtask as the learners would such that the teachers can verify that
the subtask works as intended

At last, when creating tasks, it may be many repeating steps. This may be
cumbersome and unnecessary. Having the option to generate parts of a description
or a test that is typically written, may then be beneficial.

Requirement 39 (R39) Each task creation UI should make repeating tasks,
like writing description and tests, less repetative
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Chapter 7

Design of The Initial Artifact

This chapter describes the process of designing the initial artifact with a focus on
how it should help answer RQ1.2 and RQ1.3. The list of requirements defined in
the previous chapter (chapter 6).

7.1 RQ1.2: Designing The Task UI

Based on the requirements listed in Table 6.1, it is possible to discuss what
elements that are needed in the design of the task UI in the initial artifact. These
have been discussed below:

7.1.1 Elements Included from Requirements

A code editor (R21)

As required by R21, a code editor needs to be included. However, as Orban et al.
(2018) and Caballero et al. (2012) suggests, the editor needs to have two separate
sections for defining initial conditions (R25) and code that runs every delta time
(R26). To solve this, the code editor was split into two elements in the design:

Code editor for initial conditions (R25)

The main purpose of this editor is to define constants and objects that will be
used throughout the task. The code in this editor is intended only to be executed
once per new simulation.

Code editor for code that updates each delta time (R26)

This editor is an extension of the first code editor and works as an abstraction. The
reason for abstracting code that runs every delta time is because there are mainly
two approaches when dealing with time in Python: for-loops (see Listing 7.1)
and loop functions (see Listing 7.2), where both of them requires some level of
understanding of programming (see subsection 3.4.8). Also, in Python, they both
require some indentation knowledge, making the code prune to more errors by the
learner. By using this extra code editor, there will be no indentation errors, nor
do the learners need to learn for-loops or functions.
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1 dt = 0.1

2 t = 0

3 while t < 10:

4 t = t + dt

5 # Run loop code here

Listing 7.1: For-loops

1 def loop(t):

2 # Run loop code here

3

4 # Then the actual running of the loop is hidden from the user

Listing 7.2: Loop functions

Instructions (R22)

To present the content of the task to the learners, at least one instructional
element is needed (R22). However, as found by Morrison et al. (2015), dividing
the instruction into groups (or sections) that are then divided into subtasks (R28)
was found the be beneficial when learning to solve computing problems. Two new
elements were therefore included in the design:

Section instructions (R28)

Each section instruction should focus on a single goal at a time. For example:
define constants, create an object, or make an object fall with gravity. As
mentioned earlier, this also enables the sections to be isomorphic with other
sections across different tasks.

Subtask instructions (R28)

Each section is divided into subtasks, where each subtask focuses on a simple and
testable change in the code editors.

Textual output (R23)

Further, to give feedback to the learners, a textual output is included (R23). The
textual output can then give different feedback elements:

Feedback from teacher (R24)

Through the textual output, teachers can give automated feedback to the learners
(R24) trough tests. These can be in the form of motivation or help.

Feedback from the system (R23)

However, when the learners make mistakes, like syntax errors, and if the task does
not focus on that mistake, specifically, the system should give default feedback
that can help the learners move forward.
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Graphical output (R23)

To get a graphical representation of the physical phenomenon, R23 was included.
This can help the learners understand physical concepts, how their code works,
and what the values in the calculations mean. It can even make them able to
detect logical errors that the system cannot detect. A graphical representation
can also make the learners understand what needs to be done in a subtask if the
instructions are unclear. To make all this possible, two graphical elements were
added:

Graphical output from current code (R23)

This graphical output is the most important one as the learner should be able
to visualize their results and make sense of their current values. Moreover, to
make this graphical output less of a problem, it should be designed to scale with
the elements that it contains. This means the learners should not need to draw
nor place the objects on the graphical output, as those are the main issues with
graphics (stated by interviewee A), but rather get a well-positioned and scaled
image of the phenomenon instead. The graphics should also contain a grid showing
the scale and positioning of the objects, as well as the direction of the x and the
y-axis.

Graphical output from solution of the subtask (R23)

The next element that is included is a duplicate of the previous element, but
instead of displaying the current state of the learner’s results, it should display the
solution of the subtask. As stated previously, this can help explain the instructions
if they were unclear to the learner and be an alternative to the instructions.

See the current variable state (R27)

The second last requirement is the possibility to see the current state of each
variable. This can help understand the flow of the programming as they then can
see the visual changes together with the variable values.

Graphs (R29)

The last requirement (R29), which is closely related to R27, adds the option to
see changes of a variable over time.

7.1.2 Elements Included Due to Design Choices

A few choices where made during the design phase. These were either choices
that came naturally to the design, or choices that could be useful as previously
seen in other similar designs.
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Task title and description

These seemed to come naturally to the task as it introduces the phenomenon
before the instructions.

Automatic testing

This was not mentioned for the task UI specifically, but as mentioned in the OLP
description (see Table 4.1) and the requirements for RQ1.3.

Preexisting code in editor

After sketching a few tasks, it was noticed that having the option to add new code
to the code editor could be beneficial. This could also remove the errors done by
the learners previously, cleaning up their code.

Outline

The supervisor mentioned this during a meeting. This was thought of earlier and
was included in most PEs, but none of the studies mentioned its effect. Anyway,
by adding an outline, it is possible to evaluate the effect of this element and get
a better overview of the task and its goals.

See progress

By having the option to see the progress, may motivate the learners. But that is
not tested, so it is not known to have an effect yet. Thus, by adding checkmarks
to the outline on what is done, what is failed, and what is not done, it is possible
to see the progress.

Underline on syntax errors

To point out the error to the learner, it is typical to underline the line. Maybe
even the position at that line. How detailed the underline will depend on what is
possible in the implementation.

Autocomplete in code editor

In programming, there is a lot of repetition. This may lead to too much focus
on writing and not on the learning. This also makes the learner prune to writing
errors. Having the option to autocomplete will fix some of these issues.

Get solution after X attempts

The task may be wrong, or the tests are too precise, meaning even if the tasks are
done correctly, it is impossible to complete. This resulted in adding this element
such that it is possible to complete it to the next task. It may also be that the
learner cannot figure out the task. Adding this option may make it too easy to
complete, but not having it could result in impossible tasks for some.
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7.1.3 Summary

To summarize the elements that were added to the design, they can be seen listed
in Table 7.1. The IDs are referred to later in the implementation chapter and the
evaluation chapters.

ID RID Element

E01 Task title
E02 Task description
E03 R28 Subtask title
E04 R21 Code editor
E05 R23 Graphical result output
E06 R28 Section title
E07 R28 Section level instructions
E08 Automatic tested subtasks
E09 Preexisting code in editor
E10 R23 Understandable error feedback
E11 R28 Subtask level instructions
E12 Outline
E13 See progress
E14 R26 Separate code editor for initial conditions and loop
E15 R24 Textual feedback from teacher through tests
E16 Underlines on syntax errors
E17 Autocomplete in code editor
E18 R23 Textual output
E19 R23 Graphical solution output
E20 R27 Current variables
E21 R29 Graphs
E22 Get solution after X attempts

Table 7.1: Initial elements placed in the design of the task UI in the initial artifact.
RID is the ID of the requirement.

7.2 RQ1.3: Designing The Task Creation UI

The design of the task creation UI was based on the requirements found in
Table 6.1.

Start from scratch and existing tasks (R31 and R32)

The design contains a button for creating tasks, making it possible to start from
scratch and with an empty UI. To modify an existing task, it is possible to press
a button in the task UI that tells to modify the task.
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Help at each step (R33)

To make it possible to help at each step, a help bubble is added to each of the
elements. New help bubbles may be added or removed based on feedback from
the evaluations.

Structure of the UI (R34)

As the task has a two-level structure with sections and subtasks, the UI follows
the same structure. It is not proven that this UI will be beneficial nor less
beneficial. To find out, this structure was used for the initial artifact. However,
new structures could be made after suggestions from feedback.

Providing feedback to learners (R35)

The UI contains a testing field for each subtask. In this testing field, it is possible
to give different feedback through unit tests. This way, the teacher can provide
both help and motivation based on what the learner has done in their code.

Abstracting code from the learner (R36)

There has been added “hidden code” fields on three different levels on the UI.
The first is on the task level, where it is possible to add code that the learner does
not see for the whole task. This could be useful when including libraries that are
used across all sections and subtasks. Next, a “hidden code” field is added on the
section level. The code in this field is running in all subtasks in the section. At
last, a “hidden code” field is added for each subtask. Each “hidden code” field
contains a code field for both initial code, and code that runs every delta time.
The codes are also run before the learner’s code such that the learner can make
use of functions, variables, and objects that the teacher has made on beforehand.

Testing the learners code (R37)

To verify each subtask, at least one test needs to be made. To make this possible,
a code field for adding unit tests was made. This field made it possible to test
variable values and simulate the learner code X seconds into the future so that
the variables could be tested at those points.

However, it is hard to test numerical results over time using numbers. To
resolve this issue, a solution code was added, making it possible to test the learner’s
code against the solution code, which produces the same numbers. This also made
it possible to simulate the solution graphically, as added in the task UI design.

Testing the subtasks (R38)

To test the subtask that is worked on along the way, the task UI was added to the
task creation UI. This was to make it possible to test the subtasks in the exact
same environment as the learner would experience.

60



7.3 General Design Choices

Make repeating tasks less repetative (R39)

To complete this requirement, buttons for adding different elements into the
description was added close to the input fields.

This is also a problem when creating tests. However, this problem was solved
using a less static method. Using information from the solution of the task, it is
possible to guess what variables and what values will be tested. Based on this
information, the buttons could change the content. E.g. if the solution contained
”g = 9.81”, a button with “Test if g equals 9.81” could be generated.

7.3 General Design Choices

To make the evaluation of the two systems resemble a realistic environment, two
choices that do not directly impact the evaluation was made:

Build both UIs into the same OLP system

Instead of building the two UIs separately, they were incorporated into a single
project. To make this possible, a home page was added such that it was possible
to choose to either do a task or create a task. The home page also makes it
possible to choose tasks.

Make it possible to log in

To raise the threshold of creating tasks and other content, a login functionality
was added as a part of the design. This is to both avoid bots and mark content
that is created with user IDs so that they get an owner.
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Chapter 8

Implementation of The Initial
Artifact

The OLP design was described in the previous chapter, but the design does not
necessarily describe the OLP that was developed and evaluated. This chapter aims
to give a detailed description of how the OLP ended up looking and working as well
as its limitations. A running demo of the initial OLP can be found here: https:
//master-thesis-artifact-e08k1qmx7.now.sh. If the OLP is not running, the
source code for setting up the initial version can be found here: https://github.
com/niklasmh/master-thesis-artifact/tree/release/pilot-evaluation.

8.1 Technical Choices

During the implementation phase, the selection of technologies had to be made.
These are mentioned below:

8.1.1 Web Technology

One technology choice which opens up for more choices is using web technology.
Web technology also makes it possible to avoid installation of software, making it
sharable, which is one of the main benefits of an OLP (see Table 4.1). Further,
there has been a huge effort to make web development easier over the last decade,
making this a safe choice for the OLP.

8.1.2 User Interface

To develop the UI, a popular library named React1 was used. This library was
created, maintained, and used by Facebook2, and is a reliable option when creating
UIs for the web.

1React JS: https://reactjs.org
2Facebook: https://facebook.com
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8.1.3 Storing Data

When tasks are added to the system, they need to be stored somewhere. To make
it possible to add tasks to the system dynamically, without having to add tasks
through the code, Firebase3 was used. This is a product owned by Google4, which
makes it a reliable database as they have a lot of customers.

Other reasons for using Firebase it that they provide a number of useful
features for startup projects. This includes using their database for free until a
reasonable transaction quota per month5. Firebase also consists of unstructured
JSON6 documents, meaning the structure does not need to be decided upon before
adding data to it. This also means that they are using JSON as a storage format,
meaning they support nested data — which is optimal for the section and subtask
structure. See how the data was stored in Listing 8.1.

1 {
2 "title": "Falling Ball",

3 "description": "...",

4 "author": "...",

5 "hiddenCode": "import numpy as np",

6 "image": "...",

7 "sections": [

8 {
9 "title": "Define constants",

10 "description": "Like this:\n\n‘‘‘a = 1.23‘‘‘",

11 "hiddenCode": "",

12 "subtasks": [

13 {
14 "title": "Set g to 9.8",

15 "description": "",

16 "hiddenCode": "",

17 "predefinedCode": "g = ...",

18 "solutionCode": "g = 9.8",

19 "testCode": "assert g == 9.8, ’Set g to 9.8’"

20 },
21 ... // More subtasks

22 ]

23 },
24 ... // More sections

25 ]

26 }

Listing 8.1: Format of the tasks stored in Firebase

3Firebase: https://firebase.google.com
4Google: https://google.com
5The quote at the time writing was 55000 transactions per month.
6JSON: https://www.json.org
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8.2 Task UI

8.1.4 Running Python 3

Usually, the learners install Python 3 on their computers. But as this artifact
aims to prevents the need for installing software, which usually takes time from
the teachers, a solution for playing it in the browser had to be found.

To run Python 3 in the browser, there are two main methods. The first method
is to send the code to a server, make the server execute the code using Python 3,
and then return it to the browser. The second method is to find a library that
runs a Python 3 version in the browser that is good enough to be used. After
thorough testing and research it was found that there were two problems with the
first method: (a) it took time to send a request to the server and get the result,
making it hard to animate, and (b) it had too many security vulnerabilities that
needed to be considered, like protecting the server for hacking and DDoS attack
(Zargar et al., 2013). It would be possible to overcome these problems using
a sufficient amount of time and skills, but since that was too risky, the second
method was better suited.

There existed a lot of libraries that used the second method, making it hard
to find the best option. But after testing a few of the options, one of the libraries
was definitely the best suited for this task: Pyodide7. This library was actually
recently developed by Mozilla8, which aimed at making it possible to create CEs
in the browser running Python 3 code for scientific purposes. This is much like
what the Jupyter Notebook has achieved, with the difference that it all works on
the client-side — not having to run the code on a server. They have even made it
possible to import most scientific libraries, which none of the investigated options
made possible.

8.1.5 Writing Python 3 Code

When it comes to writing code, there are a few tools that make that easier. One
of the tools that have been quite popular in the last years is Monaco Editor9. This
is the editor engine that is used Visual Studio Code10, which in turn is maintained
and developed by Microsoft11. As of the huge effort used to develop this tool to
be fast and reliable, it was chosen to be used in the UI. The tool can add syntax
colors to Python3 as well as it makes it possible to add functionality — like red
underlines below errors and code completion12.

8.2 Task UI

This section displays how the elements ended up looking like in the initial task UI
after the implementation. To make it easier to see the context of all the elements,

7Pyodide: https://github.com/iodide-project/pyodide
8Mozilla: https://www.mozilla.org/nb-NO
9Monaco Editor: https://microsoft.github.io/monaco-editor

10Visual Studio Code: https://code.visualstudio.com
11Microsoft: https://www.microsoft.com
12IntelliSense: https://code.visualstudio.com/docs/editor/intellisense
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an image of the task UI is provided in Figure 8.1 with a list of all the elements.
An unmodified image of the task UI can be found in Appendix B.

8.2.1 List of All Elements in Figure 8.1

1 Task title (E01)

2 Task description (E02)

3 Outline (E12)

4 See progress (E13): Note the red 7-mark on the side denoting it the task
has been made or not. The text is also highlighted denoting progress.

5 Section title (E06): The section instruction (E07) was not used in the current
section in the task, but it looks similar to the subtask instruction (7).

6 Subtask title (E03)

7 Subtask instruction (E11)

8 Code editor for initial conditions and preexisting code in editor (E04, E09,
E14): This area also contains the underlines on syntax errors element (E16)
as well as autocomplete functionality (E17), but they were not visible when
the screenshot was taken.

9 Code editor for code that runs every delta time (E04, E14)

10 Current variables (E20)

11 Textual output, system output and feedback from tests (which are created
by the teacher) (E10, E15, E18)

12 Graphical result output (E05)

13 Graphical solution output (E19)

- Get solution after X attempts (E22): This element was not visible at the
snapshot but will appear at an option when the task is attempted three
times.

Due to difficulties with implementing graphs, it was intentionally left out.
However, the use of graphs is mentioned to the participants. If multiple
participants find it essential, it will be included as an important element.
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Figure 8.1: The initial task UI with highlighted elements.

8.3 Task Creation UI

This section displays how the initial task creation UI was looking after the
implementation. As the UI ended up being very tall, due to the structure, it is
therefore separated into three images: Figure 8.2, Figure 8.5, and Figure 8.6. Two
more images are provided as of hidden collapsed functionality. The unmodified
images can be found in Appendix C.
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8.3.1 Describing Figure 8.2

In Figure 8.2 there are seven highlighted areas. In area (1), it is possible to
add both task title and task description. In area (2), there is a help bubble
that displays help to the user. It can be seen in opened in Figure 8.3. In area
(3), it is possible to provide hidden code. Next, area (4) is the beginning of a
section. Inside the section, there is a section title (5), section description (6), and
a section specific hidden code field (7). The full section description UI can be
found in Figure 8.4, where it is possible to see the buttons for generating text
that is seen as repetitive.

8.3.2 Describing Figure 8.5

Figure 8.5 displays seven more areas. Area (8) is marking around what is called a
subtask. Inside, there are the same areas (9), (10) and (11) with title, description,
and hidden code, just at a subtask level. Inside area (12) there is the starting
code editor. This is the code that the learner starts with when starting on the
subtask. Next, area (13) displays the solution code for the task. This makes it
easier to create tests and to check if their code is actually working. At last, area
(14) contains the tests for the subtask. Also, note that there are five buttons in
this area. The orange ones was generated based on finding the y variable in “y =

0” in the solution code. It also found that the variable was set to 0, suggesting to
create a test checking for value 0. The blue ones were added because there is code
in the second editor that surrounds changes over time. It then suggests buttons
for stepping one second into the future or one step in the test. At last, the green
button makes it possible to add feedback to the learner. More tips for creating
tests are provided in the help bubble.

8.3.3 Describing Figure 8.6

The last figure, Figure 8.6, displays the bottom of the task creation UI. After
creating a subtask, it is possible to test the task by pressing the button in area
(15). The screen then moved down with the arrow and initialized the subtask
with all the previous information.
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Figure 8.2: The top of the initial task creation UI.

Figure 8.3: An open help bubble in the initial task creation UI.
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Figure 8.4: The descriptions of the initial task creation UI.
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Figure 8.5: The middle of the initial task creation UI.
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Figure 8.6: The bottom of the initial task creation UI.
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8.4 Alternative Task Creation UI

To create a discussion with the participants, an alternative task creation UI was
made. This new UI used an approach based on how typical developers work:
using text editors only. By developing a language that could build a task using
the same structure as in the first task creation UI, it was possible to create tasks
using this technique. The UI also had buttons for generating typical elements,
like hidden code sections, such that the user did not have to write everything and
remember the syntax. The actual implementation can be seen in Figure 8.7.

More specifically, the language uses Markdown13 with a special structure.
Markdown is a lightweight markup language that is used by many professional
developers to document their code. Thus, by interpreting the structure of the
Markdown code in realtime, the UI generates the task elements side by side with
the actual code.

The benefit of using this alternative UI is that it is transferrable to any PE.
By using a Markdown editor with syntax colors on the code sections, it is possible
to get close to the same experience as one does with this UI. The structure is also
close to how tasks are made using CEs, which may make CE users familiar with
this UI.

Figure 8.7: Alternative task creation UI based on Markdown syntax.

13Markdown: https://en.wikipedia.org/wiki/Markdown
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8.5 Limitations

8.5.1 Missing Graphs

Due to the lack of time to implement, it was hard to add graphs to the system.
Graphs were initially added to the design of the task UI, and were supposed to
look like in Figure 8.8.

Figure 8.8: Conceptual design of graphs.

8.5.2 Slow Loading Time

As mentioned about Pyodide (see subsection 8.1.4), it has a slow startup time.
Depending on the machine that is running the OLP, it can take from 1 second
and up to 20 seconds. However, when Pyodide is loaded, it runs very fast and has
no troubles. This loading time will hopefully be fixed in the future by the Mozilla
team.

8.5.3 Incorrect Line Numbers on System Errors

When the user gets an error, there is a chance that the system does not find the
correct line number. This is because it is hard to interpret the error message
from Python 3. This could be fixed in the future by making the PE more
systematically.
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Chapter 9

First Evaluation: Pilot

To start the evaluation process of the artifact, a pilot evaluation was conducted.
The main reason to use a pilot evaluation first was to test the evaluation itself and
to find errors in the artifact that may remove focus from what is being evaluated.
The evaluation’s feedback can also be used to contribute to answering the research
questions, but that is not the main goal.

9.1 Participants

In a pilot evaluation, the participants do not need to be in the target group, nor
do they need to have the same qualifications. However, the closer the participants
are to the target group, the more realistic feedback will be given.

To pick the participants for this evaluation, four students at NTNU were
selected. They will be referred to as E, F, G, and H from now on. All of the
students had some knowledge of physics and programming beforehand. Two of
them, E and F, also had some experience with being teaching assistants.

9.2 Method

9.2.1 Preparation Routine

Before each interview, a new preparation routine was developed. This was to
ensure that the routine was working as intended before executing it on the expert
and main evaluation participants.

To start out, the plan was to first give the users a link to Zoom. Then,
they were welcomed to the interview. Next, they were told that this was not
being recorded as it was a pilot evaluation. After that, they would receive a
link to the latest version of the artifact that was online. Here is the link that was
sent to the participant over the Zoom chat: https://master-thesis-artifact-
e08k1qmx7.now.sh/. At last, before the actual evaluation would start, they were
told to think aloud and focus on what they think of the system — not the task
content, as that was irrelevant.
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9.2.2 Process Routine

A process routine for the evaluation itself was also developed before each
evaluation.

The initial routine was to first tell that the evaluation consisted of two parts:
task UI and task creation UI. They were also told that each of the parts would take
around 30 minutes. However, that was just an estimation based on the previous
expert interviews. Then, they were told to open their browser and paste in the
link sent over Zoom.

In the first part, the task UI part, they were first told to choose one of the
four tasks. When they opened a task, they were again told to think aloud and tell
what they initially thought of the system. Next, they were instructed to do 2-3
subtasks. After some more experience with the system, they were again asked to
tell what they thought about the system. At last, they could choose to continue
to solve the task or move forward to the next part.

In the second part, the task creation UI part, they were first instructed to log
in. Then, they were instructed to create a task. When the task creation UI was
opened, they were again going to tell about their first impressions. They then
were told to create a subtask. After creating a subtask, they were supposed to
tell about what they thought about the system. In the end, they could finish what
they had started on, or just save the task and leave.

At the end of the second part, an alternative version of the task creation UI
was shown. As they had been exposed to creating tasks already, they were now
familiar with what was needed to do so, however, exposing them to yet another
way to create tasks could make them more aware of the possibilities. Then, the
plan was to get a discussion resulting in what they found to be important in such
a system.

9.3 First Part: Task UI

9.3.1 Results

Feedback from the first part is described in Table 9.1. Each feedback has an ID
with an FPF (First Pilot Feedback) prefix, a participant ID labeled as PID, and
a feedback description that may also have a suggestion.

Aside from the feedback that was listed, there were also a few comments on
what that worked. E, F, and G thought it was easy to see where the code should
be written. E and F also noted that the subtask instructions were good, e.g., with
code examples. E thought it was simple to understand for non-programmers. F
told that it was good to focus on only a small part of the code, as this system
does. At last, F found it motivating to see their progress in the outline.

9.3.2 Discussion

The first part of the evaluation was supposed to find an answer to RQ1.2. However,
as this was a pilot evaluation, the main focus was to find errors in the artifact and
the evaluation method.
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ID PID Feedback Fixed

FPF01 E,F,G Suggestion: Remove “run loop code” button. 3

FPF02 E,F,H Did multiple subtasks before running the code.
Suggestion: Either run code automatically or make
“run code” button more visible.

3

FPF03 E,F,H Suggestion: Place code editor in the middle. 3

FPF04 E,F Loop code button did not run the new loop code. 3

FPF05 E,G Using ”,” for decimal does not give an understandable
error.

3

FPF06 E,G Suggestion: Make it possible to change variables in the
variable listing.

3

FPF07 F,G Some section titles was too long resulting in a layout
bug. Suggestion: Require short titles.

3

FPF08 F,G Outline looks more important than it should. Also too
many elements in the text. Suggestion: Move the
outline out of the main content.

3

FPF09 G,H Suggestion: Instructions and error messages about
variables should first mention the name, then the
value, not value, then name.

3

FPF10 G,H Task typos. 3

FPF11 E Hard to see when section instructions are changing.
Suggestion: Use different colors or highlight changes
for a second.

3

FPF12 E Confusion auto-zoom. Suggestion: Make zoom more
static.

FPF13 E Suggestion: Do not change code between subtasks.
FPF14 F Hard to see where to write the code. Suggestion:

Highlight where to input.
3

FPF15 F Suggestion: Make it possible to navigate between tasks. 3

FPF16 F Suggestion: Add hints.
FPF17 F Suggestion: Do not duplicate info in the task title and

description.
FPF18 F Suggestion: Collapse outline sections. 3

FPF19 F Suggestion: Show hidden code. Use collapsible fields in
the editor.

FPF20 H Hard to see where to look. Suggestion: More pointers
and highlighters.

3

FPF21 H Suggestion: Have an initial tutorial for the task UI.

Table 9.1: Feedback from the first part of the pilot evaluation.

Errors in the artifact

Given the feedback listed in Table 9.1, a few of them pointed out errors in the
artifact. Two participants found a logical error with the “run loop code” button
(FPF04). However, as three participants already suggested that the “run loop
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code” button should have been removed (FPF01), it got removed, also resolving
FPF04. Two of the participant also tried to use ”,” instead of ”.” for decimals.
This resulted in a not understandable error for the user (FPF05). Due to the
nature of Python, this type of error is very hard to detect. To resolve this error,
the code editor was modified to convert all numbers with ”,” into numbers with
”.” automatically. As this feedback was never brought up again after this change,
it would seem to work. However, this change may cause side effects as the learners
may get used to writing ”,” and getting an automatic correction.

Method

The first interviews were more unstructured than the last ones. This was due to
getting more experience with both the preparation and process routine. Thus,
overall, the routines worked as they were supposed to.

Elements

To begin answering RQ1.2, Table 9.2 contains all the elements that were placed in
the artifact on purpose as well as elements that were suggested or not implemented
on purpose. Those who did not exist in the artifact at the time were marked
with ”-” in the “Used by” column. Each element has either been placed in the
“Should be included” section or the “Optional” section, based on whether they are
important to include in an OLP used to introduce programming in an introductory
physics course. If they received a complaint, the complaint was noted in the
“Feedback” column. As it is important to know if the element was useful for the
tasks, they were either noted with “ALL” in the “Used by” column, for being
used by all, or with “SOME”, for being used by one or more participants, but not
all. If it was noted with “NONE”, none of the participants used it.

For an element to be included in the “Should be included” section, the element
must be used by all and be told to be beneficial by more than one participant.
However, if the element was not implemented in the artifact, it must have been
suggested by more than one participant.

Changes

The main change that needed to be done was to make it the focus of the task
clearer, including removing elements that proved to distract the participants from
the task at hand. All the changes can be seen in Table 9.3.
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ID Element Used by Feedback

Should be included
E01 Task title ALL
E02 Task description ALL
E03 Subtask title ALL
E04 Code editor ALL Hard to find the first

time
E05 Graphical result output ALL
E06 Section title ALL Too long
E07 Section level instructions ALL Hard to see changes
E08 Automatic tested subtasks ALL
E09 Preexisting code in editor ALL
E10 Understandable error feedback ALL

Optional
E11 Subtask level instructions ALL
E12 Outline SOME
E13 See progress SOME
E14 Separate code editor for initial

conditions and loop
ALL

E15 Textual feedback from teacher
trough tests

NONE Hard to spot

E16 Underlines on syntax errors SOME
E17 Autocomplete in code editor SOME
E18 Textual output SOME
E19 Graphical solution output SOME
E20 Current variables NONE No use cases
E21 Graphs - -
E22 Get solution after X attempts ALL
E23 Navigate between tasks - Wanted
E24 See hidden code - Wanted
E25 Change variables in variable list - Wanted
E26 Highlight where to look - Wanted
E27 Initial tutorial for task UI - Wanted
E28 Save progress, continue later - Wanted

Table 9.2: Feedback on specific elements from the pilot evaluation. The yellow ones
were added from suggestion.
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ID Change

FPF01 Removed “run loop code” button.
FPF02 “Run code” button only appears when a change is

done as well as not listing the next subtask titles. See
Figure 9.1a.

FPF03 Placed code editor in the middle.
FPF04 Removed “run loop code” button.
FPF05 Automatically correct ”,” in numbers to ”.” in the

code editor.
FPF06 Make it possible to click a variable to change it.

Display a text that it is changeable on mouse hover.
FPF07 Shorten long section titles as well as make the titles

wrap.
FPF08 Move outline to the whole left side of the screen. See

Figure 9.2.
FPF09 Change all occurrences where value comes before the

variables name. Also changed the task creator UI to
generate feedback with this format too. See Figure 9.3.

FPF10 Changed tasks.
FPF11 Highlight section for a second when it changes. See

Figure 9.4.
FPF12 Not fixed as it has benefits as well. Needs a better

solution.
FPF13 Not fixed as teachers may want different dynamics of

their tasks. Thus, it was a reasonable suggestion.
FPF14 Pulsating highlight around code editor when the user

approaches a new task. See Figure 9.1b.
FPF15 Suggestion: Make it possible to navigate between tasks.
FPF16 Not fixed.
FPF17 Changed tasks.
FPF18 Collapse outline to only show subtasks belonging to

the current section. See Figure 9.2.
FPF19 Not fixed.
FPF20 Fixed by FPF02, FPF08, FPF11, and FPF14.
FPF21 Not added. Thus, it was a reasonable suggestion to

add.

Table 9.3: Changes from feedback in Table 9.1.
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(a) Fix for FPF02.

(b) Fix for FPF14.

Figure 9.1: Fixes for code editor.

Figure 9.2: Fixes for FPF08 and FPF18.

(a) Before change, in teacher feedback. (b) After change, in teacher feedback.

(c) After change, in instructions.

Figure 9.3: Fix for FPF09.
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Figure 9.4: Fix for FPF11.
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9.4 Second Part: Task Creation UI

9.4.1 Results

In the last part of the evaluation, there was a discussion about how a user interface
(UI) for creating tasks could be designed. The participants were first presented
with a potential example of how such UI could be, and then they had a look at
another potential way of creating a task creation UI.

The first VS. the second task creator UI

In general, the participants had mixed thoughts of which UI was the best. E and
G thought that the first UI they were presented to was the best, but F thought
the second UI was better as it could make the users more efficient in the long run.

More specifically, the first UI made it possible to get help on all steps
throughout the process, through help areas placed on each element. All
participants found that having this option was essential to understand what
content goes where and what their possibilities were.

On the contrary, the second UI had no help at all except for buttons that
could generate elements in the task. F preferred this way of making a task as the
participant had a lot of experience with coding in text editors. F also told that
having the option to save it in a single file and having the option to modify the
task in a human-readable format was a benefit.

Creating tests

All of the participants found that having buttons to generate tests made creating
tests easier and more fun than writing them themselves. Also, having the option
to compare the learner’s results with their own solution after n seconds was also
found useful by the participants.

Creating instructions

All of the participants agreed that having buttons for generating instructions
was a useful tool. F pointed out that just having the buttons for generating
elements in the instructions also helped with understanding what was possible to
write. H suggested that having the option to generate a whole section, including
instructions, code, and tests, would be beneficial as some sections would be
repeated across many tasks.

Trying out the task

The last benefit that stood out had the option to test the task in a realistic
environment while making the task. All of the participants found testing to be
useful when creating a task. H also pointed out that expanding the option to test
the whole task with titles, sections, and instructions could be even more useful as
the teachers can then see the task in its full form.
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9.4.2 Discussion

So far, even though the participants only had some level of understanding in
physics, and no experience with making programming tasks in physics, it was
possible to discuss a few interesting results.

Examples may be very important

Even though the task’s layout was forcing the participants to follow a certain
flow, the examples given in the help areas were told to be of much more help
when shaping the task, according to the participants. This could indicate that
examples are very important in a task creation UI.

Make testing simple may be important

From the results, the participants understood how to make tests in the first task
creation UI. Since this feature stood out from many other features, this may be a
key feature when designing a task creation UI.

Trying out the task is important

Being able to try out the task seemed to be important for all of the participants.
Making it easy to test the task at any point may also make the process of creating
tasks faster and weed out bugs in an early phase.

Changes

There were no notable errors in the task creation UI that made the discussion
of the design of the UI harder. However, as H suggested that having the option
to populate a whole section with a button automatically, this was added as an
option. See Figure 9.5.

Figure 9.5: Automatically populate section button.
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Second Evaluation: Expert

The main reason for having an expert evaluation between the pilot and the main
evaluation was to get realistic feedback from experienced physics teachers that
already had experience with programming in the physics course. Feedback from
this phase is then used to polish the final version of the artifact.

10.1 Participants

The participants had to be teachers with experience in programming. It was also
important that they had experience with programming in a physics context.

To find the participants, contacts from previous interviews were used. Four
participants wanted to participate as experts. Among these, two of the earlier
interviewees were interested in joining: A and B, as well as two new participants:
I and K. A and I were both physics teachers and had worked with programming
in ProMod X on their own schools. This means they had a lot of experience with
teaching Python programming to pupils. As ProMod X is an elective course aside
with physics, most pupils who choose ProMod X also choose physics, according
to A, which makes feedback from teachers of ProMod X very valuable. K was
also a teacher, but did not teach programming to the pupils, however, K had a lot
of programming experience from being an engineering student at NTNU. B was
not currently a teacher, but had a lot of experience with programming as well as
having knowledge from being a researcher researching how to use programming
in more advanced physics courses.

All of the participants that were interviewed had also consented to a
non-disclosure agreement from NSD1 telling that everything that they say in
the interview may be used this master thesis, but also that they are free to
remove their concent or some of the information later. The concent is added to
Appendix D.

1https://nsd.no
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10.2 Method

10.2.1 Preparation Routine

The routine from the pilot evaluation was working great, so no elements were
removed, changed, or added to the routine as of errors in the previous one, but
as this evaluation was being recorded, sending a consent document aside with the
Zoom link on a mail was added.

10.2.2 Process Routine

The process routine was the same as the one that was developed through the pilot
evaluation, but there is a minor change in the process. As the artifact was being
developed in between each interview, a new version of the artifact was tested on
each of the participants. To be clear, these links were sent to I, B, A and K (in
that order):

Participant I: https://master-thesis-artifact-8gva387m9.vercel.app

Participant B: https://master-thesis-artifact-np1y158al.vercel.app

Participant A: https://master-thesis-artifact-5ylplth7u.vercel.app

Participant K: https://master-thesis-artifact-r0pd8q18m.vercel.app

Each of the links has a different version of the artifact, thus the changes are
minor and does not introduce big changes to the system.

10.3 First Part: Task UI

10.3.1 Results

Feedback from the first part of the evaluation is listed in Table 10.1. Each feedback
ID is prefixed by FEF (First Expert Feedback) denoting it is feedback from the
first part of the expert evaluation.

Again, aside from the feedback in the table, there were some positive comments
about the task UI. I found the outline with checkmarks to be beneficial for seeing
progress and to get an overview. B noted that automatic code completion in the
code editors were nice to have as well as having to press “run code” instead of
the code running automatically once in a while. B also noted that it was good to
get a big green goto button when completing a task, as “(...) that made me feel
like I did something right.” A were positively surprised by a pulsating “run code”
button, as it made it clear that the code needed to be run.

Observations

There were a few interesting observations to note from this evaluation. As opposed
from the previous evaluation, none of the participants had any complaints on the
outline (FPF08), changing section instructions (FPF11), using comma in decimal
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10.3 First Part: Task UI

numbers (FPF05) anymore. None of the participants continued doing subtasks
before running them as well.

Observations of changes in evaluation

As some changes were added between each of the participants in this evaluation,
it was possible to observe the effect of these changes on the participants that
were left. This included FEF03, that was changed between I and B, where a
green area was highlighted around where the user should input (see Table 10.3).
None of the participants had trouble knowing where to input the code after that
change. Between B and A, FEF13 was changed by flipping the coordinate system
to point the y-axis upwards. This change made none of the participants react to
the coordinate system as they had earlier.

10.3.2 Discussion

They did not go that much into the details of the artifact as the participants in
the pilot evaluation. However, they was

Get data from various sources

Interviewee I and K wanted to get data from various sources. This option was
not included intentionally as it does not simulate a phenomenon. However, the
interviewees said this might be a demanding area in introductory physics as it is
highly relevant, and can only be solved by computers. This also teaches modeling
skills to the learners.

Do not call it Euler’s method

Interviewee B and A said that using a name on Euler’s method that was more
descriptive could be more understandable, as well as more correct. As Euler’s
method is not a part of the curriculum at Norwegian USS and the general
definition does not include time steps — which may lead to confusion of the
method, it should not be used. Thus, adding a link to Euler’s method would
be fine, as then the most curious ones could explore. However, describing the
method as frames in a movie, or using the motion equations, could be better for
the understanding.

Elements

Besides from the previous list of elements, the updated version (see Table 10.2)
contains five new elements: E29-E33. It has also moved five elements into the
“Should be included” section from the “Optional”. These included E11, as subtask
instructions was told to be useful by multiple participants. The outline, E12, was
told to make it easier to see the progress as well as what is going to be done
next. Graphs, E21, were suggested by almost all the participants and was clearly
important for learning purposes. As I said, graphs are important for interpreting
non-constant acceleration as an animation makes it difficult to tell the exact
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ID PID Feedback Fixed

FEF01 I,B,A,K Issues with tasks as well as bad formulations.
FEF02 I Suggestion: Be consistent when telling the user to run

the code. E.g. Do not use “test the code”.
3

FEF03 I Hard to see where to write the code. Suggestion:
Highlight exactly where to input.

3

FEF04 I,K Suggestion: Use X*10**Y instead of XeY. 3

FEF06 I Test failed with comparing e.g. 2*10**24 and 2e24.
FEF07 I Wrote looping code in the initial condition code editor.

Suggestion: Make initial condition code not writable
when it should not be used.

FEF08 I Hard to understand when to use objects and when to
use variables. Suggestion: Use objects only.

FEF09 I Suggestion: Have an initial tutorial for the task UI.
FEF10 I Hard to see changes in non-constant acceleration.

Suggestion: Add graphs.
FEF11 I,A Using “section” for sections and “subtasks” for

subtasks was confusing. Suggestion: Use “subtask” for
sections and “step” for subtasks (from I), or “task” for
sections and “a,b,c...” for subtasks (from A).

FEF12 I,K Want to get data from various sources. Suggestion:
Make it easy to import datasets.

FEF13 B Learners are used to having the y-axis pointing
upwards. Suggestion: Flip the y-axis to point upwards.

3

FEF14 B Too many visible elements at the same time.
Suggestion: Make variable view, text output and
solution graphics optional.

FEF15 B,A Need to explain time steps better. Avoid naming it
Euler’s method. Suggestion: Use intuitive
explanations, like frames in a movie like Tychos does
(from B). Or use the motion equations (from A).

FEF16 B Setting a variable to itself in a loop may be confusing
as the equal sign behave different in programming and
mathematics. Participant I disagrees.

FEF17 B Add free body diagrams.
FEF18 A Avoid using the absolute time variable. Suggestion:

Use delta time only.
FEF19 K Learners may not understand “ax” and “vx”.

Suggestion: Explain “ay” and “vy”.
FEF20 K Hard to see the flow of the variable values. Suggestion:

Add state of each variable in code editor.

Table 10.1: Feedback from the first part of the expert evaluation.

acceleration at any given time. E24 were moved as of the participants were missing
seeing the hidden code behind the scenes. After testing E26, the participants that
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did not have any pointer to were to write the code were suggesting a highlight of
where to write the code. However, when the element was implemented, none of the
participants had any complaints regarding finding where to write — suggesting
that it worked. This moved E26 up. E29 was moved up as two of the participants
suggested it was better to have the coordinate system to points upwards. The rest
had no strong opinions regarding that. Thus, an argument for pointing it upwards,
unlike what it normally used in computer graphics, it that trigonometric functions
does not need to be inverted as the angles then goes in the correct mathematical
direction. And, as physics are prioritizing mathematics over computer graphics,
pointing the y-axis upwards was a reasonable choice.

Changes

Many changes that were suggested by the participants needed a lot of changes
that required too much effort to implement. However, the conclusion is taking
these into account when the research questions are answered.

Anyway, a few changes were made in the task UI. This included being
consistent with using “run the code” (FEF02), not attempting any variations,
like “test the code” - which is correct from a technical perspective, but not
necessarily understandable for a learner. All the tasks were also modified to use
X*10**Y instead of XeY, which is the same, but could confuse learners that are
used to the first form.

Figure 10.1: Fix for FEF03.
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ID Element Used Feedback

Should be included
E01 Task title ALL
E02 Task description ALL
E03 Subtask title ALL
E04 Code editor ALL
E05 Graphical result output ALL
E06 Section title ALL
E07 Section level instructions ALL
E08 Automatic tested subtasks ALL
E09 Preexisting code in editor ALL
E10 Understandable error feedback ALL
E11 Subtask level instructions ALL
E12 Outline ALL
E21 Graphs - Important for learning
E24 See hidden code - Highly wanted
E26 Highlight where to look ALL
E29 y-axis pointing upwards ALL Should be consistent with

what is taught in physics

Optional
E13 See progress SOME
E14 Separate code editor for initial

conditions and loop
ALL Should be optional

E15 Textual feedback from teacher
trough tests

SOME Hard to spot

E16 Underlines on syntax errors SOME
E17 Autocomplete in code editor SOME
E18 Textual output SOME
E19 Graphical solution output SOME
E20 Current variables SOME
E22 Get solution after X attempts ALL
E23 Navigate between tasks SOME
E25 Change variables in variable list NONE
E27 Initial tutorial for task UI - Wanted
E28 Save progress, continue later -
E30 Call sections for “subtask” or

“task”, and call subtasks for
“steps” or “a,b,c...”

- Wanted

E31 Get data from various datasets - Wanted
E32 Optionally show variables,

textual output and graphical
output

- Wanted

E33 See state of each variable in code
editor

- Wanted

Table 10.2: Feedback on specific elements from the expert evaluation. The green rows
contains elements that was moved into the inclusion area. The yellow are new ones
added by suggestions
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ID Change

FEF01 Changed tasks.
FEF02 Changed tasks.
FEF03 Highlighted three dots or three questionmarks in a row

with a green area, making them very visible. See
Figure 10.1.

FEF04 Changed tasks.
FEF05 Not fixed.
FEF06 Not fixed.
FEF07 Not fixed.
FEF08 Not fixed.
FEF09 Not fixed.
FEF10 Not fixed.
FEF11 Not fixed.
FEF12 Not fixed.
FEF13 Flipped the y-axis to point upwards.
FEF14 Not fixed.
FEF15 Not fixed.
FEF16 Not fixed.
FEF17 Not fixed.
FEF18 Not fixed.
FEF19 Not fixed.
FEF20 Not fixed.

Table 10.3: Changes from feedback in Table 10.1.
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10.4 Second Part: Task Creation UI

10.4.1 Results

The results in this part were slightly different from the previous result as the
experts were more focused on the use cases of the artifact in actual teaching.

The first VS. the second task creation UI

All participants found the first UI to be more suited for beginners, and the second
to be better for advanced users. This is the same result as with the previous
result. However, they did not find any of the choices to be the best choice. This
was due to the lack of how those who made programming tasks in physics were
normally working. This led to the development of a third UI.

The third task creation UI

Interviewee I, which was the first expert participant, thought the first and the
second task creation UI were not made to think with:

“I felt that the UI that you currently have is what you need when you already
have created the task. It did not feel like a tool that I was able to think in.” (quoted
by I, translated from Norwegian)

The interviewee was then eager to show how they usually created tasks
for programming in physics. To summarize, they made a file, either in a
computational essay (e.g., Jupyter) format or in a Python file format. Then
they added skeleton code, which was not necessarily working but had fields, or
lines, that had to be filled out. They also used functions to abstract complex
mathematics. However, they were visible at all times, as none of the formats
supported hiding them. To plot or to visualize behavior over time, an array was
appended with updates in either a for or a while loop, then plotted onto a graph
with time being on the x-axis. The learners were then supposed to expand the
skeleton code to explore and solve tasks.

From all of the suggestions by interviewee I, a third UI was created. It was
not a working prototype, but the essential UI elements were placed, including the
editor, title, and the tool section on the right side. See Figure 10.2. The design’s
essence was to make the experience mimic the experience the teachers had when
they created programming tasks in physics. In the third UI, they were able to
input code in a single file like they were used to, but they could also take snapshots
of the code along the way, dividing the task into several sections and subtasks.
The code editor also contained areas with hidden code such that the user could
hide any distracting code, as this was a suggestion by I as well (see next section).

This way of creating tasks has also been suggested by Kojouharov et al. (2004),
Zhang et al. (2009) and Zhang et al. (2010), but was not considered before the
feedback from interviewee I as it was targeting programming tutorials only and
therefore may not be relevant.

The prototype was finished before the next evaluations and was therefore
tested on participant B, A, and K. To summarize their feedback, they preferred
this way of working over the two others. The UI was familiar with what they had
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experience with before, but it also made intuitive sense. More specifically, K told
that it was beneficial to not having to justify the code to the tool.

Figure 10.2: Third task creation UI.

Hiding any distracting code

Interviewee I was first to point out that hiding code was one of the main advantages
with a system like this. However, it should have been possible to hide code before
and after both initial condition code and loop code, as well as in the middle of
them. B also found that to be a useful feature and told that tasks that were made
in Trinket, which is an editor where all code is visible, had to contain: “Do not
look at this” or “Do not play with this,” in code comments to avoid learners to
modify code that should not have been visible. Thus B also added that Tychos
had this as one of their main features when you create tasks there as a teacher.

No participants created a subtask

None of the participants in this evaluation was interested in finishing creating a
task. As all of the participants in the pilot evaluation created at least one subtask,
as opposed to this evaluation, this was considered as a result.
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10.4.2 Discussion

Hiding code is essential

As noted by I and B, hiding code is an essential part of a good learning tool.
However, it is also important that the code should be visible to the learner if they
want, but that should not be the default behavior.

First UI was hard to think with

As said by I, the first UI was “hard to think with.” This may be because the UI
was forcing the user to come with information in a specific order, and in portions
that the user was not expecting. It may have a beneficial structure but was not
good to develop a task with.

If this was found earlier on, the third UI would have been developed so that
the participants could test if they were thinking better with the new UI. However,
that was not possible. Anyway, the concept of the third UI was preferred over the
first UI by the experts.

No participants created any subtasks

None of the experts finished creating a subtask, and two of them did not even start
creating a subtask. This may be because the experts were detailed in their tasks,
which the pilot group was not, leading to using too much time at the beginning
of the task. This could also be because the experts found it hard to create tasks
in the system as it was hard to think with, as noted previously. It may be hard
to determine why they did not go further, but it may be a sign that the first UI
did not meet the needs of the more experienced users.

Changes

No notable changes were made to the task creation UI except for creating the
third task creation UI, described in section 10.4.1.
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Third Evaluation: Main

This is the final evaluation where the artifact will be tested on the typical physics
teacher who does not know much about programming beforehand. As this is the
final evaluation, the artifact will not be changed based on feedback. Thus the
feedback is being accounted for in the conclusion chapter.

11.1 Participants

The participants are physics teachers that have not worked with this topic earlier,
and therefore does represent the typical user of the system that is designed in this
thesis.

Earlier contacts were used to find participants. One participant was found
through an earlier interview. This was interviewee D. The last participant, J,
was found through suggestions by earlier contacts. Both D and J had some
programming experience from before, but that was mostly from ProFag initiatives
that prepared the teachers for the new curriculum. They were not as experienced
as experts. However, they were both current physics teachers and had experience
creating physics tasks, but not programming tasks.

All of the participants that were interviewed had also consented to a
non-disclosure agreement from NSD1 telling that everything that they say in
the interview may be used this master thesis, but also that they are free to
remove their consent or some of the information later. The consent is added to
Appendix D.

11.2 Methods

11.2.1 Preparation Routine

There were no change in the preparation routine.

1https://nsd.no
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11.2.2 Process Routine

Again, as the artifact was being developed in between each interview, a new
version of the artifact was tested on each of the participants. To be clear, these
links were sent to D and J (in that order):

Participant D: https://master-thesis-artifact-c1215tvry.vercel.app

Participant J: https://master-thesis-artifact-5ylplth7u.vercel.app

Each of the links has a different version of the artifact. Thus the changes are
minor and do not introduce big changes to the system.

11.3 First Part: Task UI

11.3.1 Results

The final feedback from the first part of the evaluation is listed in Table 11.1.
Feedback that were considered as a success was not included. However, interviewee
D found the auto-fix of comma misspelling and autocompletion to ne beneficial,
as well as the outline. Interviewee D also found having not to deal with loops to
be a beneficial as well, but J disagreed and said that it could be essential in some
cases. On the other side, J found the instructions to be easy to follow and the
current variables to be beneficial. The interviewee also thought the use of objects
and not just variables was good, as well as highlighting of where to input the code.

11.3.2 Discussion

Abstracted loop code (E14) should be optional

J argued that it could be necessary to run for-loops and while-loops when teaching
specific topics. Especially when using Euler’s method. B also mentioned that
loops could be beneficial for understanding of physics, and could make it easier in
the future. A and I have both introduced loops to pupils enrolled in physics class.
All this points to is that loops may be needed. However, J and B also argues that
it depends on the material that is taught. It loops are not directly relevant; it
could be abstracted.

Thus, as almost all participants found it hard to find the loop code when it
first appeared, this suggests that the abstracted loop may need a better design.

Tasks should go forward faster

Both D and J found the pace of the tasks to be a bit slow. This means that
the tasks used too many steps to come to the goal. This also makes sense from
the literature, as Brown and Wilson (2018) suggested that the tasks are more
enjoyable if they come to the point fast. The tasks that were tried out in the OLP
did not come to the point fast. They even made a little detour when attempting
to describe the problem analytically.
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ID PID Feedback

FMF01 D,J Suggestion: Have an initial tutorial for the task UI.
FMF02 D,J Suggestion: Graphs
FMF03 D,J Too slow, move to the actual material faster.
FMF04 D,J Want to get data from various sources. Suggestion:

Make it easy to import datasets.
FMF05 D,J Suggestion: Graphs.
FMF06 D,J Fills in the initial condition code when it is loop code.

Suggestion: Tell it in the instructions or block the
initial condition field for writing.

FMF07 D Coordinates looks wrong as the objects are above the
numbers. Suggestion: Draw grid above the objects.

FMF08 D Hard to test code. Suggestion: Want to automatically
test code (Thus, participant B disagrees).

FMF09 D Hard to understand ”create gravitation constant and
set it to 9.81”. Suggestion: ”define a constant g that
equals 9.81”

FMF10 D Suggestion: Show coordinates above elements in
graphics.

FMF11 D Suggestion: Give control to teachers, such that they
can choose the pace while the pupils are in the
classroom.

FMF12 J Need to explain time steps better. Avoid naming it
Euler’s method.

FMF13 J Add free body diagrams.
FMF14 J Want to see the whole code. Suggestion: Make it

possible to see the whole code. Maybe use collapsible
fields in the code editor.

FMF15 J Radians should not be included. There is a chance that
the pupils have not learned it yet. Suggestion: Explain
it better or use degrees.

FMF16 J Too much programming in explanation. Suggestion:
Explain using physics, and show examples using code.
Avoid code until it is necessary.

FMF17 J Abstracted loops are a problem when teaching Euler’s
method. Suggestion: Depending on what needs to be
learned, abstract the main loop.

Table 11.1: Feedback from the first part of the main evaluation.

According to D, the tasks should focus on the problems that are not solvable
using pen and paper. However, the task was solvable using pen and paper
about 80% of the time (4 of 5 sections). To minimize the gap between the
pen-and-paper-enabled tasks and the programming-only enabled tasks, the tasks
should rather jump directly on the core of the problem. J also supports this
argument by saying that the learners should get a skeleton code that just needs
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to fill in the gaps.
What can be taken away from this argument is that the code should jump-start

into the code of the problem, avoiding slow starts.

Update acceleration-first or position-first

When it comes to which order the physical variables should be run, it was
different answers. Interviewee J argued that acceleration should come first as it
is usually the first analytically. Interviewee I agreed, but on a different basis: the
mathematically correct answer is to use position-first, as the position updates
based on the previous velocity, but the corrected version of Euler’s method makes
it right anyway. This means that it actually may be more correct to use the
acceleration-first approach, even though it is not mathematically correct.

Another argument that was for acceleration-first was in Orban et al. (2018).
In their work, they argued that learners found it difficult to understand variables
that continued into the next iteration of the loop. This means that if the learners
use the position-first approach, they will get lost when the previous velocity is
used on the position as it has not been set yet. This means that it is also the
best option in a learning context. However, it was a more advanced course. The
position-first approach could be better if the mathematical correctness mattered.

Thus, all three arguments point to having the acceleration-first approach,
meaning that acceleration is updated first. Then the velocity is updated based on
the acceleration that was just set. At last, the position is updated based on the
velocity that was just updated.

11.3.3 Implications For The Design

As this was the final evaluation, the artifact was not changed. However, it is
possible to describe the implications that the feedback would have on the design.

First of all, graphs (E21) would have been added such that learners could see
changes in variables over time. This would, in return, make it possible to interpret
non-constant acceleration that is currently not possible.

Next, an initial tutorial (E27) should have been made. This would ensure that
the first time users were suited for using the task UI.

An element that was requested by many interviewees was making it possible
to get data from various sources. This could also make it possible to expand the
variance of tasks. However, this could cause major changes as the current UI is
focused on phenomena, where the goal is to simulate based on equations, and not
on modeling based on reality. This means that the UI would need more elements,
like tables. Thus, this was the only focus of the UI; it could be that it had fewer
elements than the current selection.

One last modification that would have been reasonable to do is to enable
looping with code and to use the abstracted loop (E14). This way, if the point of
the task is to learn using loops, the learners are free to do so.
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ID Element Used Feedback

Should be included
E01 Task title ALL
E02 Task description ALL
E03 Subtask title ALL
E04 Code editor ALL
E05 Graphical result output ALL
E06 Section title ALL
E07 Section level instructions ALL
E08 Automatic tested subtasks ALL
E09 Preexisting code in editor ALL
E10 Understandable error feedback ALL
E11 Subtask level instructions ALL
E12 Outline ALL
E21 Graphs - Important for

learning
E24 See hidden code - Highly wanted
E26 Highlight where to look ALL
E27 Initial tutorial for task UI - Wanted
E29 y-axis pointing upwards ALL Should be

consistent with
what is taught
in physics

E31 Get data from various datasets - Highly wanted

Optional
E13 See progress SOME
E14 Separate code editor for initial conditions

and loop
ALL Should be

optional
E15 Textual feedback from teacher trough tests SOME Hard to spot
E16 Underlines on syntax errors SOME
E17 Autocomplete in code editor SOME
E18 Textual output SOME
E19 Graphical solution output SOME
E20 Current variables SOME
E22 Get solution after X attempts ALL
E23 Navigate between tasks SOME
E25 Change variables in variable list NONE
E28 Save progress, continue later -
E30 Call sections for “subtask” or “task”, and

call subtasks for “steps” or “a,b,c...”
-

E32 Optionally show variables, textual output
and graphical output

-

E33 See state of each variable in code editor -

Table 11.2: Feedback on specific elements from the main evaluation.
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11.4 Second Part: Task Creation UI

11.4.1 Results

As the participants has a lack of interest in creating tasks, it were not many results
to get with regard to the task creation UI.

No participants created a subtask, again

None of the participants in this evaluation was interested in even starting to create
a subtask this time, as opposed to the expert evaluation.

Make it possible to modify templates

Both interviewees suggested that it should be possible for task creators to create
tasks from finished templates.

11.4.2 Discussion

Only a few teachers want to create programming tasks

During the evaluations of the task creation UI, it was possible to note that the
teachers were uncomfortable with creating tasks, even when they were presented
with the third UI – which J also preferred. However, interviewee D found it
hard to understand why a teacher should create programming tasks in the first
place. Further suggesting that the teachers should find tasks, as they usually do.
And if they should create programming tasks, they should start from an existing
template where it is easy to make modifications.

The first task creation UI is still not wanted

A hypothesis that most of the experts had was that the first task creation UI was
suited for beginners. However, it was now shown that the beginners did not want
to start, making the first UI less useful. As mentioned above, the teachers wanted
to modify tasks. This indicates that having an easy UI is not good enough; it also
must contain templates of working tasks.
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Conclusion

This research has attempted to support teachers with introducing programming
in physics courses through an Online Learning Platform (OLP). This has made
a few contributions to the scientific community: (a) A list with programmable
phenomena that are well suited for introductory physics courses, (b) a list of
elements an OLP needs to teach programming in the physics course, and (c) how
a user interface (UI) for creating programming tasks in physics could be designed.

12.1 Answering The Research Questions

To wrap up the conversation, a concluding answer to each of the research questions
has been included, starting with the main research question.

Research Question 1 (RQ1) How can we design an OLP that supports
teachers with teaching programming to pupils in the introductory physics
course at Norwegian USS?

To support teachers with teaching programming in an introductory physics
course, it is important to remove any unnecessary distractions from their teaching.
This includes avoiding spending time on the setup of computers in the classroom
and not having to think about different operating systems or folder structures.

Next, the OLP should enable active learning in programming. It has been
found that tools that engage the learners with programming tasks is more efficient
than lecturing about the same content. It also is more memorable. It does not
matter if the code is written, or dragged and dropped, by making the learners
active, they learn programming better.

By using an OLP, there are also a few advantages over traditional teaching
methods. Among these, the tasks can be shared, the teacher gets full control
over their class, and it is possible to achieve automatic assessment of tasks. More
benefits can be found in Table 4.1. By taking advantage of these features, it is
possible to support the teachers such that they can prioritize their time on their
learners.

Research Question 1.1 (RQ1.1) What phenomena in physics can be programmed
in the introductory physics course?

101



Chapter 12. Conclusion

It is also important to teach relevant material. In the new curriculum at
the Norwegian upper secondary school, they have specified how programming is
going to be used in the physics courses. More specifically, they have stated that
the focus should be on tasks with non-constant acceleration. After studying eight
phenomena with non-constant acceleration, four of them were found to be fit to
introduce in an introductory physics course. These included falling objects with
air resistance, block down a slope, ball collisions, and planet orbits. These were
further tested in the evaluations, and it was found that falling object with air
resistance and block down a slope was good tasks to include. Ball collisions and
planet orbits, on the other hand, did not get enough data as they were only
attempted by one user each. Thus, they did not receive any complaints about
being too difficult to solve, meaning they may be good candidates to include in
an introductory physics course as well.

However, it is important to note that this is not a complete list of programming
tasks to teach in the introductory physics course. This list does only include
phenomena that can be simulated through time and space based on an existing
model. It does not include tasks that are creating models based on patterns. E.g.,
programs that find a model through a dataset. In retrospect, this should have
been included as it is relevant for the introductory physics course, but it could
also be that the artifact would be too general if modeling from datasets would
have been accounted for.

Research Question 1.2 (RQ1.2) What elements does an OLP need to teach
pupils to use programming in the introductory physics course?

The final list of elements can be found in Table 11.2. The list contains
all the elements that were either found through literature or suggested by the
participants. Not all elements were implemented, but by discussing potential
elements and their importance, it was possible to note their importance in the
artifact. Anyway, the list is divided into two parts; the ones that should be
included and the ones that should be optional.

The ones that should be included were found to be important for doing the
tasks that were given in RQ1.1. The ones that should be optional were not seen
as a necessity by the majority. However, all of the elements were good to include
in the artifact, but it is important to prioritize the space on the screen to the ones
that are important for introducing programming in introductory physics.

The list is not complete. More elements could be added. For example, having
interactive videos could be a great tool or being able to choose multiple endings of
the task based on interest. However, these were too time-consuming to implement
and would drastically change the whole concept. More research in this area would
be interesting to see.

Research Question 1.3 (RQ1.3) How can we design a user interface for
creating programming tasks in the introductory physics course that supports
the teachers?

Teachers are an essential resource when it comes to guiding, teaching, and
motivating pupils. Research has shown that the engagement of the teacher is
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essential for engaging the pupils as well. As an attempt to make teachers be more
engaged in introducing programming in the physics course, a tool for creating
programming tasks was designed such that the teachers would want to create
programming tasks for their pupils. Hypothetically, they would then also be more
engaged in introducing programming to their pupils as they would invest time in
creating tasks.

However, that was not the case. The teachers who had not created
programming tasks earlier, or the target group, was not interested in creating
anything new. They would instead want to pick and choose from a list of already
existing programming tasks in physics. They would also like to spend time going
through the material, but not create it.

On the other side, the teachers who already had some experience creating
programming tasks were interested in a user interface (UI) that made it easier
to create programming tasks, even though they already had a working workflow.
After testing the different UI concepts, the third UI, which mimics the work
environment of a professional programmer, was preferred by all the participants
who tested it. This was because it had a single code editor where the users could
hide any distracting code, which was a problem that was not solvable with the
workflow they had currently. It also had a tool section on the right side of the
editor that could add instructions and specific elements to the task. To divide
the task into sections and subtasks, which is a typical format to divide a task
into, it was conceptually possible to take snapshots of the code while working
with the task as they were used to. This concept was also proposed in JTCreator
(Kojouharov et al., 2004, p. 30), which focused on creating programming tutorials
as they found them to be cumbersome and time-consuming to create. JTCreator
was not developed and finished. However, tools like this could be a great idea
for creating programming tasks in physics or even all fields that can be combined
with programming.

12.2 Future Work

This thesis did not cover all the research that should have been done to create a
programming task UI specifically for physics. It also just scratched the surface of
how a UI for creating programming tasks in physics could be made.

Concerning development, more concepts should be developed. Currently, there
has only been developed one concept that is based on popular programming
tutorial environments. Other concepts, like video tutorials, or interactive video
tutorials, could be a good choice too as they may make it easier to follow while
providing good examples. They may also be easier to make for the task creators.
Tasks that can change goals based on interest would also be an idea. However,
that would require much more effort to work.

With regard to testing, it could be interesting to test the task UI on pupils
in a realistic classroom setting. Testing should also be done in groups, where
each group gets a unique concept. Further, testing actual working prototypes
and measuring their effect over a long time could also be useful in finding more
information on this topic.
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With technical advancements in computer software, it could be easier to
create programming environments and programming languages specific to certain
tasks, including introductory physics. This could potentially lead to discoveries,
motivating research on this topic.
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Vil du delta i forskningsprosjektet

 ”Introduce computational thinking in introductory physics courses:
A custom python environment”?

Dette er et spørsmål til deg om å delta i et forskningsprosjekt hvor formålet er å introdusere 
algoritmisk tenking i fysikk på videregående. I dette skrivet gir vi deg informasjon om målene for 
prosjektet og hva deltakelse vil innebære for deg.

Formål
Algoritmisk tenking har fått mer fokus i den Norske skole og er muligens på vei inn i en rekke realfag,
blant annet matematikk og fysikk. Dette gjøres fordi skolen skal være fremtidsrettet og det er mange 
jobber i dag som drives av denne tankegangen. Formålet med dette forskningsprosjektet er å 
undersøke hvordan den Norske skole kan innføre denne tankegangen i fysikkfaget på videregående 
uten at det går utover læringen av pensum.

Med dette intervjuet har vi som mål å få svar på hvordan dagens skole fungerer og hvordan man kan 
implementere denne tankegangen på en god måte. Samtidig vil vi også høre litt om dine tanker og 
ideer som du eventuelt har tenkt eller kommer på i farten. Svarene vi får fra intervjuet brukes så videre
i forskningsprosjektet.

Hvem er ansvarlig for forskningsprosjektet?
Niklas Molnes Hole er ansvarlig for prosjektet.

Hvorfor får du spørsmål om å delta?
Dette er et eksperintervju hvor vi vil hente ut meninger fra forskere og lærere med en bakgrunn i 
fysikk.

Hva innebærer det for deg å delta?
Hvis du velger å delta i prosjektet, innebærer det at du deltar på et intervju over Skype eller ansikt til 
ansikt, om mulig. Dette intervjuet kan ta opp til ca. 45 minutter. Intervjuet inneholder blant annet 
spørsmål om din faglige bakgrunn, din erfaring med datamaskiner i klasserommet og hva slags tanker/
ideer du eventuelt har om algoritmisk tenking i fysikkfaget. Dine svar på intervjuet blir tatt opp med 
lydopptaker og senere skrevet ned. Lydopptaket blir deretter slettet fra enheten.

Det er frivillig å delta
Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke samtykke tilbake
uten å oppgi noen grunn. Alle opplysninger om deg vil da bli fjernet. Det vil ikke ha noen negative 
konsekvenser for deg hvis du ikke vil delta eller senere velger å trekke deg. 

Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger 
Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi behandler 
opplysningene konfidensielt og i samsvar med personvernregelverket.

 Den eneste som har tilgang til lydopptaket er studenten som utfører intervjuet.
 Lydopptaket blir slettet permanent etter det har blitt skrevet ned. Svarene du har gitt blir videre 

assosiert med en ID i masteroppgaven og vil ikke på noen måte kunne peke tilbake til deg.



Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet?
Prosjektet skal etter planen avsluttes 3. august 2020. Innen da skal alt av opplysninger om deg 
tilknyttet lydopptaket være borte.

Dine rettigheter
Så lenge du kan identifiseres i datamaterialet, har du rett til:

- innsyn i hvilke personopplysninger som er registrert om deg,
- å få rettet personopplysninger om deg, 
- få slettet personopplysninger om deg,
- få utlevert en kopi av dine personopplysninger (dataportabilitet), og
- å sende klage til personvernombudet eller Datatilsynet om behandlingen av dine 

personopplysninger.

Hva gir oss rett til å behandle personopplysninger om deg?
Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra Norges teknisk-naturvitenskapelige universitet (NTNU) har NSD – Norsk senter for 
forskningsdata AS vurdert at behandlingen av personopplysninger i dette prosjektet er i samsvar med 
personvernregelverket. 

Hvor kan jeg finne ut mer?
Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med:

 Student: Niklas Molnes Hole (xxxxxxxxxxxxxxx)
 Veileder: Monica Divitini (xxxxxxxxxx)
 NSD – Norsk senter for forskningsdata AS, på epost (xxxxxxxxxxxxxxxxxxxxxxxxxx) eller 

telefon: xxxxxxxxxx.

Med vennlig hilsen

Prosjektansvarlig  
(Forsker/veileder)
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Figure B.1: The task UI with no edits.
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Appendix C

Original Task Creation UI
Screenshots

Figure C.1: The task creation UI with no edits. (Top)
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Figure C.2: The task creation UI with no edits. (Middle)
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Figure C.3: The task creation UI with no edits. (Bottom)
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Vil du delta i forskningsprosjektet

 ”Introduce programming in introductory physics courses through
interactive learning platform”?

Dette er et spørsmål til deg om å delta i et forskningsprosjekt hvor formålet er å introdusere 
programmering i fysikk på videregående. I dette skrivet gir vi deg informasjon om målene for 
prosjektet og hva deltakelse vil innebære for deg.

Formål
Programmering har fått mer fokus i den Norske skole og er muligens på vei inn i en rekke realfag, 
blant annet matematikk og fysikk. Dette gjøres fordi skolen skal være fremtidsrettet og det er mange 
jobber i dag som drives av denne måten å jobbe på. Formålet med dette forskningsprosjektet er å 
undersøke hvordan den Norske skole kan innføre denne måten å jobbe på i fysikkfaget på 
videregående uten at det går utover læringen av pensum.

Under dette forskningsprosjektet har det blitt utviklet en prototype av en læringsplatform på internett 
som har som hensikt å hjelpe lærere med å både lage programmeringsoppgaver i fysikk samt gjøre 
oppgavene bedre for elevene. Med dette intervjuet har vi som mål å få svar på hvordan dette systemet 
fungerer for deg, og om det passer med dine forventninger av et slikt system.

Hvem er ansvarlig for forskningsprosjektet?
Niklas Molnes Hole er ansvarlig for prosjektet.

Hvorfor får du spørsmål om å delta?
Vi undersøker bruksmønstere fra fysikklærere, så om du er kommende, nåværende eller tidligere 
fysikklærer, er du kvalifisert.

Hva innebærer det for deg å delta?
Hvis du velger å delta i prosjektet, innebærer det at du deltar på et intervju over Zoom. Dette intervjuet
kan ta opp til ca. 45 minutter. Under intervjuet vil du bli spurt om litt bakgrunn for å vite hva du kan 
om temaet fra før, resten handler om dine meninger om systemet. Dine svar på intervjuet blir tatt opp 
med lydopptaker og senere skrevet ned. Lydopptaket blir deretter slettet fra enheten.

Det er frivillig å delta
Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke samtykke tilbake
uten å oppgi noen grunn. Alle opplysninger om deg vil da bli fjernet. Det vil ikke ha noen negative 
konsekvenser for deg hvis du ikke vil delta eller senere velger å trekke deg. 

Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger 
Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi behandler 
opplysningene konfidensielt og i samsvar med personvernregelverket.

 Den eneste som har tilgang til lydopptaket er studenten som utfører intervjuet.
 Lydopptaket blir slettet permanent etter det har blitt skrevet ned. Svarene du har gitt blir videre 

assosiert med en ID i masteroppgaven og vil ikke på noen måte kunne peke tilbake til deg.



Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet?
Prosjektet skal etter planen avsluttes 3. august 2020. Innen da skal alt av opplysninger om deg 
tilknyttet lydopptaket være borte.

Dine rettigheter
Så lenge du kan identifiseres i datamaterialet, har du rett til:

- innsyn i hvilke personopplysninger som er registrert om deg, og å få utlevert en kopi av 
opplysningene,

- å få rettet personopplysninger om deg, 
- å få slettet personopplysninger om deg, og
- å sende klage til Datatilsynet om behandlingen av dine personopplysninger.

Hva gir oss rett til å behandle personopplysninger om deg?
Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra Norges teknisk-naturvitenskapelige universitet (NTNU) har NSD – Norsk senter for 
forskningsdata AS vurdert at behandlingen av personopplysninger i dette prosjektet er i samsvar med 
personvernregelverket. 

Hvor kan jeg finne ut mer?
Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med:

 Student: Niklas Molnes Hole (xxxxxxxxxxxxxxxxxxx)
 Veileder: Monica Divitini (xxxxxxxxxxxxxx)
 Vårt personvernombud: Thomas Helgesen (xxxxxxxxxxxxxxxxxxxxx) eller xxxxxxxxxx.

Hvis du har spørsmål knyttet til NSD sin vurdering av prosjektet, kan du ta kontakt med: 
 NSD – Norsk senter for forskningsdata AS, på epost (xxxxxxxxxxxxxxxxxxxxxxx) eller 

telefon: xxxxxxxxxxx.

Med vennlig hilsen

Prosjektansvarlig  
(Forsker/veileder)

Samtykkeerklæring 

Jeg har mottatt og forstått informasjon om prosjektet Introduce programming in introductory physics 
courses through interactive learning platform, og har fått anledning til å stille spørsmål. Jeg samtykker 
til:

 å delta i intervju

Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet

(Signert av prosjektdeltaker, dato)
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