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Abstract

Roads are susceptible to pavement distress including cracks and potholes, and
an uneven surface is a potential hazard to vehicles. Manual road inspection has
the disadvantage of being time-consuming, hazardous due to traffic and weather,
subjective and dependent on the experience of the personnel. This thesis aims
to assist road maintainers in prioritising interventions and performing preventive
maintenance.

We propose a pipeline for asphalt quality prediction with automated com-
puter vision assessment, called the ALPACA pipeline, which uses time series
forecasting to predict future states of pavement distress from smartphone videos
of roads in Trondheim. The ALPACA pipeline is able to run on a conventional
8GB GPU, making this technology accessible on limited budgets. Furthermore,
we build an annotated dataset for object detection of pavement distress in urban
environments containing challenging seasonal and lightning variations, as well as
an annotated dataset for semantic segmentation of pavement distress in smart-
phone images. Finally, we present experimental results evaluating each stage of
our pipeline. Despite our pipeline being far from ready to be used in a real setting,
our work offers some insight into how various computer vision, image process-
ing and time series forecasting methods can be integrated to forecast pavement
quality from smartphone videos or images.
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Chapter 1

Introduction

Roads are susceptible to pavement distress including cracks and potholes, and
an uneven surface is a potential hazard to vehicles. Manual road inspection has
the disadvantage of being time-consuming, hazardous due to traffic and weather,
subjective and dependent on the experience of the personnel. Using computer
vision to automate the road inspection process may alleviate these issues. Al-
though prior work has been done on pothole and crack detection from images [38]
[3] [43] [26] [6] [28], few studies have utilised this information to forecast when a
crack or pothole will reach an unacceptable condition. One reason for this might
be a lack of models able to accurately distinguish between a variety of pavement
distress types. In this master’s thesis, we will evaluate a variety of possible solu-
tions for predicting future severity of pavement distress using various computer
vision and time series forecasting methods.

This thesis was an initiative from Trondheim municipality with the goal of
making technology accessible for the public, even with limited budgets. For
computer vision, this means enabling the models to run on an affordable GPU.
Furthermore, we explore the possibility of using a standard smartphone for data
collection. We have developed a pipeline which is able to run on a conventional
8GB GPU, and released two annotated datasets for public use 1.

1The datasets will be available on Github: github.com/AlpakkAn/

pavement-distress-datasets

1

github.com/AlpakkAn/pavement-distress-datasets
github.com/AlpakkAn/pavement-distress-datasets
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1.1 Goals and Research Questions

The overall goal of this thesis is:

Goal Develop a pipeline to predict future states of pavement distress from videos
of roads in Trondheim.

Our goal is to predict future states of pavement distress in order to assist road
maintainers in prioritising which roads to fix. The first stages of the pipeline
should be able to accurately localise and classify pavement distress in videos,
as well as quantify distresses. The last stage should use this quantification of
pavement distress at various points in time to predict future states of pavement
distress. We achieve our goal through answering the following set of research
questions:

Research question 1 Which existing computer vision and image processing meth-
ods are suitable for detecting pavement distress in this application?

Research question 2 How can pavement distress be quantified?

By pavement distress detection, we mean the task of localising and classifying
pavement distress in images 2. By quantification of pavement distress, we mean
determining its severity. As the pipeline should be able to be reused by munic-
ipalities with limited budgets, we require methods that can detect and quantify
objects on an affordable GPU such as an NVIDIA Jetson TX2. Additionally, we
require methods that are able to extract information from low-resolution smart-
phone images.

Research question 3 Which approach is suitable for predicting future states of
pavement distress?

Research question 4 Which features can be used for predicting future states of
pavement distress in Trondheim?

We require an approach that is able to utilise multiple time series. Furthermore,
we explore the usage of various traffic and weather-related features.

2The literature is inconsistent in its usage of the term pavement distress detection, sometimes
referring to the task of object detection of pavement distress, and other times to semantic
segmentation of pavement distress. In this thesis, we adopt the term pavement distress detection
to refer to the task of object detection of pavement distress, sometimes only referred to as
detection, and the term pavement distress segmentation for the task of semantic segmentation
of pavement distress.
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1.2 Research Method

The research questions will be answered through three phases of this thesis. In
the first phase, a structured literature review is conducted, where we review
existing computer vision methods for detection and quantification of pavement
distress. Furthermore, we review existing methods for pavement performance
prediction. In the second phase, we select methods for developing our pipeline
and test the selected detection and quantification methods on an NVIDIA Jetson
TX2 to determine whether to go further with them in phase three. In the third
phase, we conduct experiments around the remaining methods to see how they
perform on each task of the pipeline: pavement distress detection, quantification
and forecasting. The experiments are designed in such a way that each stage of
the pipeline is evaluated separately.

1.3 Contributions

The main contributions of this thesis are as follows:

• We proposed a pipeline to predict future pavement distress severity from
videos or images, which is able to run on a conventional 8GB GPU.

• We presented a quantitative evaluation of each stage of our pipeline. Fur-
thermore, we performed an analysis of the features used for the last stage
of our pipeline, pavement distress forecasting, to evaluate the importance
of various features related to traffic and weather.

• We built an annotated dataset for object detection of pavement distress
in urban environments containing challenging seasonal and lightning vari-
ations to be further used for training and evaluating new models. We also
provided an annotated dataset for semantic segmentation of pavement dis-
tress in low-resolution smartphone images. We made these datasets openly
available.

1.4 Thesis Structure

In the next chapter, Chapter 2, we cover the necessary background on different
types of pavement distress and their causes of formation, as well as give a brief
overview of the fields of object detection, semantic segmentation and time series
forecasting. In Chapter 3, we review previous work related to our research ques-
tions. Chapter 4 presents our proposed pipeline, which is based on the findings
from the prior chapter, and describes its rationale. In Chapter 5, we present the
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results of our experiments with the different components of our pipeline. Finally,
we evaluate the experimental results with respect to our research questions, dis-
cuss the limitations of our work, and provide pointers for future work in Chapter
6.



Chapter 2

Background Theory

This chapter presents the background theory for this thesis. First, we cover
various common types of pavement distress and their individual causes. Then,
we will review different tasks in computer vision, eventually focusing on the You
Only Look Once (YOLO) algorithm. Further, we briefly touch on segmentation,
focusing on semantic segmentation. Finally, we describe time series forecasting.

2.1 Types of Pavement Distress and Causes of
Formation

There exists a variety of different pavement distresses, each distress having dif-
ferent factors influencing its formation and life cycle. Potholes are depressions
in the road surface, often caused by moisture weakening the underlying soil of
a pavement section, thus facilitating breaking of the unsupported road surface
by traffic [44]. Freeze-thaw cycles can further accelerate this process, causing
frost heaving which damages pavement and allow further moisture to seep in
[7]. Alligator cracks are a precursor to pothole formation, which develops under
repeated traffic loading, causing the interconnected cracks resembling the back
of an alligator seen in Figure 2.1. Alligator cracks usually start as a series of
longitudinal cracks, cracks that occur parallel to the centerline of the pavement.
Causes of longitudinal cracks also include low temperatures, daily temperature
cycling, and poor lane joint construction [ast]. In the latter case, the resulting
cracks often occur in the middle of two lanes, sometimes referred to as lane lon-
gitudinal cracks [28]. Transverse cracks occur perpendicular to the centerline of
the pavement, and their causes are similar to those of longitudinal cracks. Both
longitudinal and transverse cracks can also be caused by reflective cracks, which

5
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are again caused by various cracks underneath the surface layer. Block cracks
are interconnected cracks that look similar to alligator cracks, but the cracks are
shaped like rectangular pieces instead of many-sided pieces. Block cracks are
primarily caused by asphalt concrete contraction and daily temperature cycling
[ast].

Figure 2.1: Alligator cracks containing moisture, which can be a symptom of a
weakend soil underneath. ”Asphalt deterioration” by Bidgee is licensed under
CC BY 3.0.

2.2 Object Detection

Object detection is the task of predicting where objects are located and to what
class each object belongs to in a given image. With the advances in hard-
ware driving renewed interest in deep learning, Convolutional Neural Networks
(CNNs) have been increasingly leveraged for object detection. CNN-based ob-
ject detectors can primarily be divided into Region Proposal-Based Frameworks
and Regression/Classification-Based Frameworks [49]. Region Proposal-Based
Frameworks were first introduced in 2013 through Regions with CNN features

https://commons.wikimedia.org/wiki/File:Asphalt_deterioration.jpg
https://commons.wikimedia.org/wiki/User:Bidgee
https://creativecommons.org/licenses/by-sa/3.0/deed.en


2.2. OBJECT DETECTION 7

(R-CNN) [11], later followed by Fast R-CNN [10] and Faster R-CNN [37]. The
main idea of Region Proposal-Based Frameworks is to produce a set of region
proposals from the input image, selecting only a few windows as opposed to iter-
ating over all windows. Although improving upon the then-state-of-the-art, they
were not able to perform real-time detection. Regression/Classification-Based
Frameworks, also known as one-stage detectors, You Only Look Once (YOLO),
Single Shot MultiBox Detector (SSD) and RetinaNet being some notable ones,
allow for real-time detection by enabling the bounding boxes and class proba-
bilities to be mapped directly from the image pixels [49]. Not long ago, region
proposal-based methods in general performed better than one-stage detectors in
terms of accuracy [49]. Now, one-stage detectors such as RetinaNet and YOLOv4
claim to be on par with region proposal-based methods while running at faster
speeds [24] [4].

For the rest of this section, we will first describe various metrics for object
detection. Afterwards, we describe the incremental improvements leading to
YOLOv4.

2.2.1 Metrics for Object Detection

Intersection over Union (IoU) is used to evaluate the localisation performance of
an object detection algorithm, and is defined as:

IoU(A,B) =
A ∩B
A ∪B

(2.1)

where A is set of pixels in the predicted bounding box and B the set of pixels in
the ground truth bounding box.

If the IoU between a predicted bounding box and ground truth bounding box
is above a threshold (usually 0.5, 0,75 or 0.95), the prediction is regarded as a
True Positive (TP). If the IoU is below the threshold, it is a False Positive (FP).
A ground truth that is not detected is regarded as a False Negative (FN).

Precision is the percentage of correct positive predictions:

Precision =
TP

TP + FP
(2.2)

Recall is the percentage of true positive predictions among all ground truths:

Recall =
TP

TP + FN
(2.3)

Average Precision (AP) approximates the area under the Precision x Recall
curve. Before 2010, this was done in the Pascal VOC challenges by applying
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11-point interpolation:

AP =
1

11

∑
rε{0,0.1,...,1}

pinterp(r) (2.4)

where
pinterp(r) = max

r̃:r̃≥r
p(r̃) (2.5)

and p(r̃) is the precision at recall r̃.
From 2010, the Pascal VOC challenges measured the AP by interpolating

through all the points:

AP =

1∑
r=0

(rn+1 − rn)pinterp(rn+1) (2.6)

where
pinterp(rn+1) = max

r̃:r̃≥r
p(r̃) (2.7)

The mean Average Precision (mAP) is the mean of all APs over all classes in
the dataset:

mAP =
1

|classes|
∑

cεclasses

APc (2.8)

2.2.2 YOLO

YOLO is a one-stage object detection framework aimed for real-time detection.
The first version, YOLOv1, was introduced in [34], with incremental improve-
ments later being made in YOLOv2 [35], YOLOv3 [36] and YOLOv4 [4].

YOLO divides the image into an SxS grid, where each cell in the grid predicts
one object whose center lies in that grid cell, as well as predicting a fixed number
of bounding boxes. For each bounding box, a box confidence score is predicted,
reflecting the likelihood of the box containing an object and how accurate the
bounding box is. In addition, conditional class probabilities (the probability that
a detected object belongs to a class given that the grid cell contains an object) are
calculated for each grid cell. To remove duplicate detections for the same object,
YOLO uses non-maximal suppression (NMS), removing all generated bounding
boxes that have a class probability less than a given threshold and all bounding
boxes where the IoU with the highest probability bounding box are above a
certain threshold. Figure 2.2 shows the YOLOv1 architecture.

Despite being suitable for real-time processing, YOLOv1 lacked in accuracy
compared to SSD and region-based methods and did not detect small objects
close to each other well, as each grid cell can only have one class and predict a
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Figure 2.2: The YOLOv1 network design, consisting of 24 convolutional layers,
which are followed by two fully connected layers. To reduce the feature maps
from preceding layers, 1x1 reduction layers are used in some convolutional layers.
The network outputs a (7, 7, 30) tensor. Figure source: Redmon et al. [34].

fixed number of bounding boxes. YOLOv2 was an improvement both in terms of
accuracy and speed. There were many improvements added, one of them incorpo-
rating anchor boxes. By starting from a set of anchor boxes shaped like everyday
objects and predicting offsets for these, initial training is more stable compared
to arbitrarily initialising the bounding boxes. In addition, batch normalization
and a higher-resolution 448x448 classifier was added, as well as multiple network
design modifications. For instance, the last two fully connected layers were re-
moved, and Darknet-19 was used as the backbone, the architecture of which can
be seen in Figure 2.3. Additionally, class prediction was moved to the bounding
box level.

Improvements in YOLOv3 increased performance significantly, making YOLOv3’s
performance on MS COCO on par with SSD in terms of accuracy, but three
times faster. Furthermore, YOLOv3 has improved in detecting small objects. In
YOLOv3, the Darknet-19 backbone is replaced by Darknet-53, shown in Figure
2.4, consisting of 53 convolutional layers. In addition, multi-label classification
has been added to allow for object classes that are not mutually exclusive, i.e.
“alpaca” and “animal”.

YOLOv4 showed even greater improvements, claiming an accuracy of 43.5%
AP for the MS COCO dataset with around 65 FPS inference speed on Tesla
V100. In addition, it can be trained and used on a GPU with 8-16 GB-VRAM
[4]. Some of the things that increase YOLOv4’s accuracy while keeping inference
speed high is its Bag of freebies and Bag of specials.
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Figure 2.3: Darknet-19 architecture. For the object detection task, the last
convolutional layer is replaced by three 3x3 convolutional layers with 1024 out-
put channels, followed by a 1x1 convolutional layer with the number of outputs
needed. Figure source: Redmon and Farhadi [35].

Bag of freebies are additions during training that do not impact inference
speed, of which YOLOv4 among others incorporate CutMix and Mosaic data
augmentation and class label smoothing. CutMix is a data augmentation method
which cuts out a region of an image, places it on top of another image and adjusts
the labels accordingly, as illustrated in Figure 2.5. This prevents the model
from being overconfident on some particular features while keeping the same
amount of information in the image, as opposed to Cutout data augmentation
where a part of the image is cut out. Mosaic data augmentation encourages
objects to be detected outside their typical context by combining four images
into one during training, as shown in Figure 2.6. Class label smoothing helps
prevent overconfidence and overfitting by replacing the hard 1.0 upper bound
classification targets with a lower value (0.9 for instance) [13].

Bag of specials lower inference speed slightly, but increase performance con-
siderably in return, of which YOLOv4 among others utilise mish activation and
DIoU-NMS. Mish is a smooth and non-monotonic activation function, and is de-
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Figure 2.4: Darknet-53 architecture, consisting of 53 convolutional layers. Figure
source: Redmon and Farhadi [36].

fined as f(x) = x · tanh(ln(1 + ex)). Mish is similar to the widely used activation
function Swish, but outperforms both Swish and other activation functions in
many deep networks across various datasets [30]. DIoU-NMS uses Distance-IoU
(DIoU) as a factor when deciding to remove bounding boxes during NMS [50].
The DIoU of two bounding boxes B and Bgt is defined as

RDIoU =
ρ2(b, bgt)

c2
, (2.9)

where b and bgt are the central points of B and Bgt, ρ(·) is the Euclidean distance,
and c is the diagonal length of the smallest box covering the two boxes. By using
the DIoU with the highest probability bounding box as a factor in bounding box
suppression, DIoU-NMS helps when objects are occluded, as it also takes the
central point distance between two boxes into account.
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Figure 2.5: CutMix data augmentation. Figure source: Yun et al. [46].

2.3 Segmentation

Object detection methods cannot precisely trace the shape of an object, as they
only aim to fit a bounding box around the object. Instead of predicting bound-
ing boxes, semantic segmentation classifies each pixel into one of a fixed number
of classes, creating segmentation masks of the classes. However, semantic seg-
mentation does not distinguish between different instances of an object category.
Instance segmentation, however, classifies each pixel into one of a fixed number
of classes, but also determines if it makes up a different object instance.

For the rest of this section, we will first describe common metrics for se-
mantic segmentation. Afterwards, we describe guided filtering, a method for
post-processing the semantic segmentation results.

2.3.1 Metrics for Semantic Segmentation

Pixel accuracy measures the percentage of pixels correctly classified in an image.
Although this metric is simple to understand, it does not work well for segmen-
tation tasks with class imbalances, as a model that classifies all image pixels as
the majority class will still have a high pixel accuracy.

Intersection over Union (IoU) in segmentation is, similarly to object detection,
defined as

IoU(A,B) =
A ∩B
A ∪B

, (2.10)
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Figure 2.6: Mosaic data augmentation. Figure source: Bochkovskiy et al. [4].

where A is the set of pixels in the predicted segmentation and B the set of pixels
in the ground truth segmentation.

F1 score is defined as

F1 =
2TP

(TP + FP ) + (TP + FN)
(2.11)

2.3.2 Guided Filtering

Several post-processing methods can be used to refine the outputs from semantic
segmentation, one of which includes guided feathering, based on guided image
filtering [15]. Guided filtering is an image processing technique which performs
edge-preserving smoothing on an input image by using a second image, either the
input image, a different version of the input image, or an entirely different image,
as a guide to perform filtering. Guided feathering performs guided filtering on a
binary mask as the input image, using the original image as guidance to refine
the mask edges, as illustrated in Figure 2.7.

2.4 Time Series Forecasting

A time series is a sequence of observations ordered in time, often decomposed into
individual patterns: trend, seasonality and cycle. Trends are characterised by a
long-term rise or fall in the data, seasonality by the effect of seasonal factors (i.e.
weekday or time of the year), and cycle by increases and decreases in the data
without any fixed frequency. An additive decomposition is written as the sum of
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Figure 2.7: Guided feathering. A binary mask p is refined using a guidance image
I. Figure source: He et al. [15].

these components, where the trend and cycle is merged into a single component:

yt = St + Tt +Rt, (2.12)

where yt is the data at period t, St the seasonal component, Tt the trend-cycle
component, and Rt the remainder component [17].

In this thesis, we consider multiple multivariate multi-step time series fore-
casting, meaning that we model multiple time series at the same time, each
having multiple variables, as well as predicting multiple time steps into the fu-
ture. In the rest of this section, we describe the Näıve method. Then we describe
cross-validation. Lastly, we describe some metrics commonly used in time series
forecasting.

2.4.1 Näıve Method

The Näıve method is one of the simplest time series forecasting methods, and is
often used as a baseline. The Näıve method sets all predictions to the value of
the last observation:

ŷT+h|T = yT , (2.13)

where ŷT+h|T is the estimate of yT+h based on a series of observations y1, ..., yT .

2.4.2 Cross-validation

K-fold cross-validation is commonly used to evaluate machine learning models.
In K-fold cross-validation, the dataset is split into K groups and training and
testing is done K times, where each time a different group is used as the test
set while the remaining are used for training. Standard K-fold cross-validation
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has been shown to fail for some time series models [33]. The approach to cross-
validation often used in time series forecasting is evaluation on a rolling forecast
origin. In this approach, the test sets consist of a single observation, while earlier
observations are used as the corresponding training data, so that no future data
are used in the prediction [17]. Figure 2.8 shows evaluation on a rolling forecast
origin for multi-step time series.

Figure 2.8: Cross-validation for multi-step time series. Figure source: Hyndman
and Athanasopoulos [17].

Although K-fold cross-validation is not valid for some time series models, [2]
argue that it is a valid approach for purely autoregressive models with uncorre-
lated errors, which includes many machine learning methods.

2.4.3 Metrics

The accuracy of a time series forecasting method can be measured through
its forecast errors, which is the difference between a forecast and the actual
value. Two commonly used scale-dependent error metrics are Mean absolute
error (MAE) and Root mean squared error (RMSE):

MAE = mean(|et|), (2.14)

RMSE =
√
mean(e2t ). (2.15)

Although MAE is easier to interpret, RMSE is useful when it is important to
penalise large errors more.
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Chapter 3

Related work

In this chapter, we describe closely related work to our research questions. First,
we describe our structured literature review protocol. Then, we present the
findings from our literature review.

3.1 Structured Literature Review Protocol

This section describes our structured literature review protocol. First, we present
the research questions guiding our literature review. Then, we describe the search
terms, selection of primary studies and inclusion criteria.

3.1.1 Research Questions

The following research questions (RQ) were guiding for our literature review:

RQ1 Which machine learning methods have been applied to pavement perfor-
mance prediction?

RQ2 Which features have been used in pavement performance prediction?

RQ3 Which computer vision methods have been used to detect pavement dis-
tress?

RQ4 Which computer vision methods have been used to quantify pavement
distress?

RQ5 Has semantic segmentation been used on pavement distress?

RQ6 Has instance segmentation been used to detect and quantify pavement
distress?

17
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RQ7 Have image based analysis techniques been used to quantify pavement
distress for input to a pavement performance prediction model?

3.1.2 Identification of Research

The following two searches were conducted to answer RQ1-7. Google Scholar was
searched, and at least the first five pages of each search were reviewed.

Search 1

RQ1, RQ2 and RQ7 was explored through the search terms in Table 3.1.

Group 1 Group 2 Group 3 Group 4

Term 1 preventive maintenance predict asphalt computer vision
Term 2 crack growth forecast pavement visual based
Term 3 crack propagation road image based
Term 4 pavement performance machine learning
Term 5 pavement distress

Table 3.1: Search terms for RQ1 and RQ6.

Search 2

RQ3-6 was explored through the search terms in Table 3.2.

Group 1 Group 2 Group 3

Term 1 pavement distress quantify
Term 2 asphalt defect semantic segmentation
Term 3 road crack instance segmentation
Term 4 pothole detect
Term 5 object detection

Table 3.2: Search terms for RQ3-6.

3.1.3 Selection of Primary Studies

The set of returned primary studies were limited by removing:

1. Duplicates (kept the highest ranking source),



3.2. DISTRESS DETECTION AND QUANTIFICATION 19

2. The same study published in different sources (kept the highest ranking
source),

3. For Search 3, studies published before 2015,

4. Studies not focusing on pavement distress in asphalt,

5. Studies using models, datasets or frameworks which are not open source.

In the following sections, we present our findings from the literature review,
grouped by the tasks of distress detection and quantification, distress segmenta-
tion, and distress forecasting.

3.2 Distress Detection and Quantification

Most studies attempting to detect pavement distress have only focused on a small
number of distress types, some detecting potholes only [38] [3], while others have
focused on sealed cracks [20] [48]. [43] utilised Local Binary Pattern (LBP) cas-
cade classifiers from the OpenCV library to classify potholes and fatigue cracks,
as well as longitudinal and transverse cracks as one class. [26] detected pavement
distress from smartphone images using SSD, defining six classes related to as-
phalt defects and two classes related to crosswalk and white line blur. However,
this study defined different types of pavement distress as one class (e.g. rutting,
bump, pothole and separation as one class). Although this makes it easier to
achieve a high object detection accuracy, it does not take into account that dif-
ferent distress types have different causes and life cycles, making this approach
unsuitable for our pipeline which predicts future states of pavement distress. In
[6], YOLOv3 was used to detect seven distress types, and in [28], YOLOv2 and
Faster R-CNN models were trained for detection of the nine distress types the
authors claim affect pavement quality the most: reflective; transverse; block; lon-
gitudinal; alligator; lane longitudinal; sealed reflective; and sealed longitudinal
cracks; and potholes.

We did not find any studies employing instance segmentation on pavement
distress. Most previous studies using computer vision for distress detection or
quantification have treated them as separate problems. [27] attempted to develop
a hybrid model consisting of YOLOv2 and U-Net pretrained on retina vessel im-
ages, which detects asphalt defects and quantifies the defects’ severity in parallel
before merging the two results. Although this was the only study we found that
attempted to detect and quantify defects simultaneously, the U-Net model was
evaluated only on mean squared error (MSE), which is not commonly used as
a metric for semantic segmentation, making it difficult to compare with other
segmentation models. Furthermore, the study lacked a discussion of how the
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U-Net model performed on pothole segmentation, as it is unclear whether there
is a pothole equivalent in retina vessel segmentation.

3.3 Distress Segmentation

Although extensive research has been carried out on crack segmentation, we did
not find any studies which account for other types of pavement distress such
as potholes. Earlier attempts at crack segmentation used hand-engineered fea-
tures, such as CrackForest [40], a crack segmentation framework based on struc-
tured random forest which outperformed the then-state-of-the-art crack segmen-
tation methods. In recent times, CNNs have been utilised for crack segmenta-
tion, achieving good results. DeepCrack [25], a deep hierarchical CNN, achieved
state-of-the-art performance. However, the models were only evaluated on the
authors’ own proposed benchmark dataset. Feature Pyramid and Hierarchical
Boosting Network (FPHBN) [45] outperformed the state-of-the-art methods, in-
cluding CrackForest, in terms of generalisability and accuracy on a variety of
crack datasets.

3.4 Distress Forecasting

Although research has been carried out on computer vision for pavement distress
detection and quantification, we found no studies using image based analysis
techniques to quantify pavement distress for input to a model predicting future
states of pavement quality. There is, however, extensive research on pavement
performance prediction, prediction of various pavement performance indicators,
the earlier attempts including utilising Markov chains [23]. In addition, neural
networks have been used extensively [47] [21] [9] [19], including in combination
with other methods such as Long Short-Term Memory [5], Support vector ma-
chine (SVM) [42] and Random forest [8]. Other pavement performance prediction
methods include Gradient boosted trees and K-nearest neighbour [18], SVM [51]
[39] [21] [9] and Random forest [29] [12]. However, despite the extensive research
on pavement performance prediction, most of these studies only make long-term
forecasts, ranging from 2 to 10-year horizons. From a road maintenance perspec-
tive, shorter forecast horizons might be more useful.

A variety of different features have been used for pavement performance pre-
diction models, some common ones being previous pavement performance val-
ues, pavement age, pavement thickness, traffic, pavement structure and various
weather-related features [12] [39] [29] [18] [8].



Chapter 4

Architecture

This chapter first presents a high-level overview of the proposed architecture and
describes its rationale. Then, we describe in detail its individual components for
detection, quantification and forecasting.

4.1 Overview and Rationale

Figure 4.1 provides an overview of our proposed pipeline, its three stages and their
contents. We name our pipeline the Asphalt Quality Prediction with Automated
Computer Vision Assessment (ALPACA) pipeline. The first stage of the pipeline
performs object detection, predicting where pavement distress is located in a
given video frame and to which of nine different distress types each distress
belongs to. The second stage performs semantic segmentation of the detected
distresses to quantify severity, classifying each pixel in a video frame as “crack”
or “non-crack”, thus generating a mask of the pavement distress. The third stage
applies time series forecasting to predict future severity with a time horizon of 3,
6 and 9 weeks.

Predicting masks within bounding boxes, as is the task performed in the first
and second stage of our pipeline, is usually done with an instance segmenta-
tion model such as Mask R-CNN [14]. However, as we did not find any previ-
ous work employing instance segmentation on pavement distress, detecting and
quantifying pavement distress in one instance segmentation stage would require
rigorous mask annotations of a variety of pavement distress types. As there are
relatively large datasets available on the separate tasks of object detection and
semantic segmentation of pavement distress, where the object detection dataset
is expert-annotated, we choose to instead perform these tasks in two separate
stages, partly inspired by [27]. Our architecture differs from [27] in respect to the

21
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semantic segmentation model used, as we use DeepCrack [25] instead of a U-Net
model implemented for retina blood vessel segmentation, and YOLOv4 instead
of YOLOv2 for object detection.

4.2 Detection

The pavement distress detection stage of our pipeline classifies pavement distress
from video frames using an object detection model. We require a model that
can operate on a Jetson TX2. With this in mind, we reviewed current open-
source models for object detection. We choose YOLOv4 based on state-of-the-
art performance on the MS COCO dataset, ease of implementation and ability
to perform real-time detection on a conventional 8GB GPU [4]. The model is
trained on a Tesla V100.

As the data the model will be working with when deployed consists of low-
resolution smartphone images, as well as being different to the training data
with respect to camera pitch angle and number of urban objects, we perform
some image pre-processing steps prior to object detection, including contrast en-
hancement, cropping and padding. After object detection, the detected pavement
distresses are cropped for input to the quantification stage.

4.3 Quantification

The pavement distress quantification stage of our pipeline assigns a severity level
to each detected pavement distress based on distress type and pixel count of the
binary mask, which is obtained using semantic segmentation. We reviewed open-
source models for semantic segmentation of pavement distress, initially choosing
FPHBN [45] for its state-of-the-art performance in terms of generalisability and
accuracy on a variety of crack datasets. However, FPHBN ran out of memory
on the Jetson TX2 even when reducing the batch size to 1. We therefore settled
on DeepCrack [25], a deep hierarchical CNN achieving state-of-the-art perfor-
mance on the authors’ own proposed benchmark dataset. Figure 4.2 shows the
DeepCrack architecture.

4.4 Forecasting

The pavement distress forecasting stage of our pipeline uses the assigned severity
levels of detected distresses and their associated distress types, combined with
traffic and weather data retrieved from the Norwegian Meteorological Institute’s
Frost API and the Norwegian Public Roads Administration’s NVDB API, to
forecast future severity levels of the detected pavement distresses. We implement
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this stage for two models: Random forest for its ability to perform relatively
well with default hyperparameters, and XGBoost for its automatic handling of
missing values, in addition to both models providing feature importances.

4.5 Summary

Figure 4.3 provides a summary of which models were evaluated for the three
stages of our pipeline, and which of the models were selected. In the next chap-
ters, we describe our experiments with the components of the pipeline and eval-
uate whether the proposed architecture can provide satisfactory answers to our
research questions presented in Section 1.1.
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Figure 4.1: Our proposed ALPACA pipeline and its three stages: detection,
quantification and forecasting.
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Figure 4.2: DeepCrack architecture. Figure source: Liu et al. [25]

Figure 4.3: Our proposed ALPACA pipeline with the models evaluated for the
three stages above the dashed line. Models marked in green were selected for the
final pipeline.
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Chapter 5

Experiments and Results

This chapter presents the experiments and results. First, we describe our exper-
imental setup. Then, we present the results of our experiments.

5.1 Experimental Setup

In this section, we first describe the different datasets we use to train and evaluate
the various components of our pipeline. Further, we present the experimental
plan and describe the relationships between our planned experiments, pipeline
components and research questions. Finally, we describe our data pre-processing
steps.

5.1.1 Datasets

To test the detection, segmentation and pavement distress forecasting models’
performance on Trondheim roads, we collect video footage from seven road trips
using a smartphone. The road trips are spaced approximately 3 weeks apart,
taking place between January 15 and April 16. The video files vary in angle,
light and weather conditions, and shakiness. The observed route is marked in
Figure 5.1. We focus on this route as it contains a variety of pavement distress
types in large quantities, as well as variations in amount of traffic between the
different road segments.

We extract 1 frame per second of video and manually label them with bound-
ing boxes and binary segmentation masks. If a pavement distress is present in
multiple consecutive frames, we add one of the frames to the test set. As neither
the bounding boxes nor segmentation masks are labeled by an expert, the test

27
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Figure 5.1: The observed route through all seven trips.

sets may contain errors. In addition, it is sometimes difficult to determine pave-
ment distress type from the low-resolution images, in particular distinguishing
between sealed and non-sealed cracks. We adopt the following standard: Dark,
smooth cracks and cracks with a lighter area inside are labeled as sealed.

Detection

We use a combination of the PID dataset [28], a pothole dataset [31] [32] and
half of the Trondheim dataset for training and validating our object detection
model. The PID dataset consists of 7,237 images taken with a pitch angle of -70
degrees and expert-annotated into nine pavement performance-critical distresses.
However, as can be seen from Figure 5.2, this dataset is imbalanced, as there are
few potholes relative to reflective, lane longitudinal and sealed longitudinal cracks.
To account for this, we undersample the majority classes slightly and increase the
minority class samples by using a variety of data augmentation methods, which
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Figure 5.2: The class distribution of the original PID dataset. R=Reflective,
T=Transverse, B=Block, L=Longitudinal, A=Alligator, SR=Sealed reflective,
LL=Lane longitudinal, SL=Sealed longitudinal, P=Pothole.

are further described in Section 5.2.1. As each image can contain a variety of
different pavement distresses, we found it difficult to balance the dataset further
while ensuring the augmentation of a variety of different images so that overfitting
does not occur.

As potholes are especially critical for pavement performance, we add addi-
tional potholes from another dataset (from [31] and [32]). In the final under-
sampled and combined dataset, we use a dataset split of 80:20 for training and
validation, selected with a fixed random seed. The final class distribution can be
seen in Figure 5.3.

To evaluate additional approaches such as data augmentation on data that is
representative to the data the model will be working on when deployed, containing
motion blur, shadows, different weather, etc., we add 50% of the Trondheim
dataset to the validation set. The remaining 50% will be used for evaluating the
final model. Table 5.1 shows the number of images used for training, validation
and testing, distributed between the different datasets used.
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Figure 5.3: The final class distribution after undersampling, data augmentation
and pothole addition. R=Reflective, T=Transverse, B=Block, L=Longitudinal,
A=Alligator, SR=Sealed reflective, LL=Lane longitudinal, SL=Sealed longitudi-
nal, P=Pothole.

Dataset PID Potholes Trondheim
Training 4,472 3,281

Validation 1,118 820 95
Testing 96

Table 5.1: Number of images in the training, validation and test set, distributed
between the different datasets used.
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Quantification

The test set consists of 10 annotated images, comprised of a variety of pavement
distress types: longitudinal cracks, sealed longitudinal cracks, alligator cracks and
potholes. Some images are challenging, containing pavement marks or unclear
potholes.

Forecasting

Table 5.2 presents the dataset variables used for time series forecasting of pave-
ment distress. We use severity levels of 0-2, corresponding to a low-medium-high
assessment, as the outcome variable to be predicted. The severity of pavement
distress is assessed manually. As two of the trips were subject to weather condi-
tions where it was hard to assess severity (i.e. large amounts of water covering the
distresses), we only consider the remaining five trips. We pick out 12 pavement
distresses that are not obscured in any of the remaining video footage and man-
ually assess their severity over the five trips, using the PCI method of assessing
individual pavement distresses [ast]. Figure 5.4 displays the resulting severity lev-
els of the 12 pavement distresses over the period of observation 1. Each individual
distress is assigned a distress id, which identifies that specific time series.

Variable Type

severity Outcome, lagged

distress id Group

distress type Static

yearly daily traffic (YDT) Static

YDT, percentage of long vehicles Static

total precipitation Lagged

maximum temperature Lagged

minimum temperature Lagged

freeze-thaw cycles Lagged

month Dynamic

Table 5.2: Dataset variables.

The Norwegian Public Roads Administration’s NVDB API is used to retrieve
properties of road segments containing the observed pavement distresses, such as

1Images of the observed pavement distresses over the five trips can be found on our Github:
github.com/AlpakkAn/pavement-distress-datasets

github.com/AlpakkAn/pavement-distress-datasets
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Figure 5.4: Severity levels of the 12 observed pavement distresses over the period
of observation.

yearly daily traffic and percentage of long vehicles. In addition, total precipita-
tion, maximum and minimum temperature and number of freeze-thaw cycles in
the period between observations is retrieved using the Norwegian Meteorological
Institute’s Frost API. The number of freeze-thaw cycles are calculated based on
the method in [16]. As the method uses pavement temperature data which are
not available for the observed areas, we use the temperature conversion equations
in [22] to convert from air temperatures to pavement temperatures 2.

5.1.2 Experimental Plan

Figure 5.5 describes the relationships between the planned experiments and our
pipeline components, as well as which research questions (RQ) they aim to an-
swer. The research questions are repeated below for clarity:

Research question 1 Which existing computer vision and image processing meth-
ods are suitable for detecting pavement distress in this application?

2The resulting data table containing 60 rows can be downloaded from our Github: github.

com/AlpakkAn/pavement-distress-datasets

github.com/AlpakkAn/pavement-distress-datasets
github.com/AlpakkAn/pavement-distress-datasets
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Research question 2 Which existing computer vision and image processing meth-
ods are suitable for quantifying pavement distress?

Research question 3 Which approach is suitable for predicting future states of
pavement distress?

Research question 4 Which features can be used for predicting future states of
pavement distress in Trondheim?

Figure 5.5: Relationships between experiments, pipeline components and research
questions.

Experiment 1: Class Balancing

Potholes are the most influential pavement distress in respect to pavement perfor-
mance, being hazardous and highly contributing to the degradation of pavements
[ast]. However, they also naturally constitute only a small proportion of most
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pavement distress datasets. To alleviate this class imbalance problem, we un-
dersample the majority classes slightly and combine the PID dataset [28], with
another dataset [31] [32] containing only South African potholes. Furthermore,
we increase the other minority class samples by using a variety of data augmen-
tation methods, comparing the methods’ resulting accuracy on the Trondheim
validation set.

Experiment 2: Contrast Enhancement

In order to make the fine patterns of pavement distress more distinguishable from
the pavement in low-resolution images, we perform different levels of global con-
trast enhancement on the validation images, comparing the validation accuracy
of each level.

Experiment 3: Evaluation of Final Components

We evaluate the final components from Experiment 1 and 2 on the Trondheim
test set.

Experiment 4: Image Processing and Effects on Segmentation Accu-
racy

As the cropped distresses can benefit from local contrast improvement, we think
Contrast Limited Adaptive Histogram Equalization (CLAHE) can improve the
contrast significantly, thereby improving DeepCrack’s segmentation accuracy on
the low-resolution images. Furthermore, as DeepCrack achieved good results
when applying guided filtering as a post-processing step to refine the final output
[25], we compare the segmentation accuracies of different combinations of CLAHE
and guided filtering.

Experiment 5: Comparing Random Forest and XGBoost to a Näıve
Baseline

In order to perform road maintenance, one-step forecasts may not be enough, as
road maintainers may need forecasts for multiple steps ahead. Additionally, we
would like to explore whether different traffic and weather features can be utilised
in making forecasts, as well as model each observed pavement distress as indi-
vidual time series. Therefore, we model our problem as a multiple multivariate
multi-step time series forecasting problem, making the simplifying assumption of
no human intervention. We train XGBoost and Random forest for direct time
series forecasting with forecasting horizons of 3, 6 and 9 weeks and compare them
to a baseline Näıve forecast.
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To utilise as much of the data we have as possible, we use cross-validation for
the machine learning methods, following [2], splitting our dataset into three vali-
dation windows of size 1, 2 and 2. As Näıve forecast is not a purely autoregressive
model with uncorrelated errors, making cross-validation an invalid approach, we
evaluate it on a rolling forecast origin for each forecast horizon. Since being
off by two severity levels is more than twice as bad as being off by one level,
the forecasting models are evaluated on Root mean squared error (RMSE), as it
penalises large errors more.

Experiment 6: Determining Important Features

To determine important features for predicting future states of pavement distress
severity, we analyse the feature importances of the Random forest and XGBoost
models from Experiment 5. We remove features with the lowest importance and
evaluate the final models.

5.1.3 Data Preprocessing

Detection

As only the part of the image containing asphalt is important for pavement dis-
tress detection, the top half of the images in the detection test set are cropped out.
This has the additional advantage of reducing inference time. As our YOLOv4
model is trained on resized 416x416 images, we pad the top with zeros to produce
a square image. We do not resize the image further, as we need higher resolu-
tions of the detected pavement distresses for quantification and as we need to
detect relatively small objects. The resulting size for the images in the test set
is 1920x1920.

As the pothole dataset has pixel resolutions of 3680x2760, we hypothesise that
our object detection model might have a hard time detecting smaller potholes if
trained on this dataset. In order to better detect potholes of varying sizes as well
as reduce the number of unlabeled cracks in the pothole dataset, we crop out the
image edges so that only the parts of the image containing potholes are included.
We found no unlabeled cracks in the resulting dataset. The resulting size for the
images in the pothole dataset varies between 214 and 3680 pixels in width, and
202 and 748 pixels in height.

Forecasting

As Random forest does not handle missing values, we impute the missing lagged
values using MissForest [41].
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5.2 Results

5.2.1 Detection

In the following pavement distress detection experiments, YOLOv4 pretrained
on the MS COCO dataset is trained for 18,000 iterations with a batch size of 64
and learning rate of 0.001, on a Tesla V100. Furthermore, all reported AP values
are for IoU > 0.5.

Experiment 1: Class Balancing

Table 5.3 shows the Trondheim validation results from the initial training of
YOLOv4 on the PID dataset alone. Although the AP is low for most classes, it
is relatively high for block and longitudinal cracks. The 0 % AP for reflective and
sealed reflective cracks can be explained due to there not being any instances of
these distresses in the Trondheim validation set, as seen in Figure 5.6. However,
despite the relatively high occurrence of potholes in the validation set, the AP
for potholes is at 0 %. We hypothesise that this is due to the imbalanced training
dataset.

Distress type AP@0.5

Reflective crack 0.00 %

Transverse crack 4.76 %

Block crack 33.33 %

Longitudinal crack 17.94 %

Alligator crack 0.75 %

Sealed reflective crack 0.00 %

Lane longitudinal crack 9.72 %

Sealed longitudinal crack 1.25 %

Pothole 0.00 %

mAP@0.5: 7.53 %

Table 5.3: Validation AP for each pavement distress type. The last row shows
the validation mAP over all distress types.

During the initial training, we found the highest number of false positives for
sealed longitudinal cracks. Furthermore, the model failed to detect any potholes
despite constituting 26 samples of the validation set. To alleviate this, we in-
corporate additional potholes (from [31] and [32]) to the training set, as well as
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Figure 5.6: The class distribution of the Trondheim validation set. R=Reflective,
T=Transverse, B=Block, L=Longitudinal, A=Alligator, SR=Sealed reflective,
LL=Lane longitudinal, SL=Sealed longitudinal, P=Pothole.
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undersample the majority classes slightly. Furthermore, we increase the minority
class samples by using a variety of data augmentation methods.

Although YOLOv4 itself performs a variety of data augmentation methods to
reduce overconfidence and overfitting, we choose to experiment with additional
data augmentation methods in order to balance our dataset. As the deployed
model will work on data potentially containing motion blur, winding roads and
different light and weather conditions, we experiment with horizontal flipping,
rotation between -30 and 30 deg., gaussian and motion blur, flipping and rotating,
flipping and blurring, and weather augmentation. A summary of the results of
each of these data augmentation strategies, combined with undersampling and
the addition of potholes, can be seen in Table 5.4, and detailed results for the
augmentation strategy yielding the highest mAP are in Table 5.5.

As can be seen from the lower AP for most distress types in Table 5.5, it
may seem like the undersampling does more harm than good by leaving out
necessary data, while not contributing much to pothole accuracy as potholes and
the majority classes, reflective, lane longitudinal and sealed longitudinal cracks,
have relatively different features. Furthermore, the addition of new potholes does
not affect the AP for potholes, perhaps due to the potholes in the South African
dataset containing different features from those in the Trondheim validation set.

Data augmentation mAP@0.5
No augmentation 7.53

Flip 3.78
Rotation 2.66

Gaussian and motion blur 4.62
Flip and rotation 1.23

Flip and blur 4.35
Weather augmentation 4.43

Table 5.4: Data augmentation techniques, combined with undersampling of ma-
jority classes and the addition of potholes, and their respective validation mAP.

Experiment 2: Contrast Enhancement

We hypothesise that the low accuracy may be due to the model not being able to
distinguish the fine patterns of pavement distress from pavement in low-resolution
images. We therefore experiment with different levels of global contrast enhance-
ment on the images in the Trondheim validation set. As seen in Table 5.6, there
seems to be an optimal level between 100 and 125.

As can be seen from Table 5.7, which compares the validation results of level
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Distress type AP, blur AP, initial

Reflective crack 0.00 % 0.00 %

Transverse crack 0.62 % 4.76 %

Block crack 16.67 % 33.33 %

Longitudinal crack 20.24 % 17.94 %

Alligator crack 0.00 % 0.75 %

Sealed reflective crack 0.00 % 0.00 %

Lane longitudinal crack 1.03 % 9.72 %

Sealed longitudinal crack 3.02 % 1.25 %

Pothole 0.00 % 0.00 %

mAP@0.5 4.62 % 7.53 %

Table 5.5: Comparison of validation AP for blur augmentation and initial training
for each pavement distress type.

100 contrast enhancement and initial training for each distress type, the high
increase in mAP is primarily due to the one block crack in the validation set
being detected correctly. Nevertheless, we see an increased AP for most distress
types, most notably a 15 and 16 percentage point increase for sealed longitudinal
and alligator cracks, respectively.

Level 0 50 75 100 125 150

mAP 7.53 % 8.95 % 9.42 % 18.32 % 17.25 % 5.29 %

Table 5.6: Influence of image contrast enhancement levels on Trondheim valida-
tion mAP, ranging from level 0 (no contrast enhancement) to 150.

Experiment 3: Evaluation of Final Components

The final components, the YOLOv4 model trained only on the PID dataset, com-
bined with level 100 contrast enhancement, is evaluated on the Trondheim test
set. Table 5.8 compares the results on the validation and test sets. The signifi-
cantly lower mAP on the test set can be partly attributed to the one block crack
in the test set (Figure 5.7), but overall the results indicate that the components
are unable to generalise to new pavement distresses.
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Distress type AP, level 100 contrast AP, initial

Reflective crack 0.00 % 0.00 %

Transverse crack 1.39 % 4.76 %

Block crack 100 % 33.33 %

Longitudinal crack 22.43 % 17.94 %

Alligator crack 16.48 % 0.75 %

Sealed reflective crack 0.00 % 0.00 %

Lane longitudinal crack 8.68 % 9.72 %

Sealed longitudinal crack 15.89 % 1.25 %

Pothole 0.00 % 0.00 %

mAP@0.5 18.32 % 7.53 %

Table 5.7: Comparison of validation AP for level 100 contrast and initial training
for each pavement distress type.

Distress type AP, test AP, validation

Reflective crack 0.00 0.00 %

Transverse crack 0.00 1.39 %

Block crack 20.00 100 %

Longitudinal crack 4.75 22.43 %

Alligator crack 2.06 16.48 %

Sealed reflective crack 0.00 0.00 %

Lane longitudinal crack 6.67 8.68 %

Sealed longitudinal crack 2.20 15.89 %

Pothole 0.00 % 0.00 %

mAP@0.5 3.96 % 18.32 %

Table 5.8: Comparison of test and validation AP for level 100 contrast for each
pavement distress type.
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Figure 5.7: The class distribution of the Trondheim test set. R=Reflective,
T=Transverse, B=Block, L=Longitudinal, A=Alligator, SR=Sealed reflective,
LL=Lane longitudinal, SL=Sealed longitudinal, P=Pothole.
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5.2.2 Quantification

Experiment 4: Image Processing and Effects on Segmentation Accu-
racy

Table 5.9 compares the results of applying DeepCrack to the original Trondheim
dataset and the dataset with improved contrast using CLAHE, as well as com-
paring the results of refining both segmentation outputs using guided filtering.
For guided filtering, we use the parameters radius = 10 and ε = 50. CLAHE
improves the mean IoU and F1 score by 6.7 and 21.5 % from the original images,
respectively. Likewise, performing guided filtering on the CLAHE segmentation
output improves the mean IoU and F1 score by 3.3 and 6.3 %, respectively.

Best threshold Mean IoU F1 score

Original 0.02 0.5568 0.3576

Original + GF 0.47 0.5830 0.3956

CLAHE 0.04 0.5941 0.4346

CLAHE + GF 0.49 0.6136 0.4618

Table 5.9: A comparison of applying or not applying CLAHE and guided filtering
and their corresponding mean IoU, F1 score and best threshold for F1 score.

Figure 5.8 shows some examples of applying DeepCrack with CLAHE and
guided filtering to the Trondheim test set. As illustrated by the last row of
images, the initial results from applying DeepCrack to potholes are not very
good.

5.2.3 Forecasting

Experiment 5: Comparing Random Forest and XGBoost to a Näıve
Baseline

We train XGBoost and Random forest models for direct time series forecasting
with forecasting horizons of 3, 6 and 9 weeks and compare them to a baseline
Näıve forecast. The evaluation of the Random forest and XGBoost models are
done using 3-fold cross-validation, while the Näıve forecast is evaluated on a
rolling forecast origin. We use feature lags of 1 for Random forest as this produces
the best total RMSE, as can be seen in Table 5.10. Although the best total
RMSE for Xgboost is achieved with no lagged features, we choose to incorporate
feature lags of 3 in order to study the feature importance of different lags later in
Section 5.2.3. Figure 5.9 shows a comparison of the RMSE of the three models
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collapsed across all validation windows and direct forecast horizons, for each of
the 12 observed pavement distresses. Table 5.11 summarises the total RMSE for
the three models. Random forest and XGBoost outperform the Näıve forecast
slightly with a 32.79 and 32.34 % decrease in forecast error, respectively.

Number of lags Random forest XGBoost

0 0.540 0.408

1 0.453 0.540

2 0.677 0.456

3 0.842 0.456

Table 5.10: Influence of number of lags on total RMSE for Random forest and
Xgboost.

Figure 5.10 shows the forecast error of Random forest and XGBoost for each
of the three direct forecast horizons collapsed across validation windows.

Model RMSE

Näıve 0.674

Random forest 0.453

XGBoost 0.456

Table 5.11: Summary of total RMSE for Näıve forecast, Random forest and
XGBoost.

Experiment 6: Determining Important Features

As seen from Figure 5.11 and 5.12, the severity lags seem to be important features
for the models. Severity lags from 3 weeks prior (severity lag 1 ) has the highest
importance for the 3-week forecast horizon in both models. Furthermore, severity
lags from 6 weeks prior (severity lag 2 ) has the highest importance for the 6-week
forecast horizon in XGBoost, and 9-week severity lags (severity lag 3 ) the second
highest importance for the 9-week horizon. The distress id feature seems to be
important, which might be attributed to that we did not perform target encoding
on this feature. Distress type seems to be moderately important for both models.
Yearly daily traffic (ydt) and month are moderately important for the Random
forest models.
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The percentage of long vehicles (ydt long) and weather-related features seem
to have little importance for both models. By removing these features, we get
the total RMSE as seen in Figure 5.13, corresponding to a 43.6 % decrease in
forecast error for Random forest compared to Näıve.
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Figure 5.8: Some results of applying DeepCrack to the Trondheim dataset.
The first column contains the contrast-enhanced images, the second column the
ground truth binary mask, and the third column the prediction.
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Figure 5.9: Comparison of RMSE of Näıve, Random forest and Xgboost across
validation windows and forecast horizons.
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Figure 5.10: Comparison of RMSE of Random forest and Xgboost by forecast
horizon. Horizon 1 = 3 weeks, Horizon 2 = 6 weeks, Horizon 3 = 9 weeks.
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Figure 5.11: Comparison of increase in node purity for different Random forest
features, using feature lags of 1.

Figure 5.12: Comparison of gain for different XGBoost features, using feature lags
of 3. Features with negligible gain, e.g. some or all lags of minimum temperature,
maximum temperature, total precipitation and number of freeze-thaw cycles, are
not shown.
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Figure 5.13: Comparison of total RMSE after feature selection.
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Chapter 6

Discussion and Conclusion

6.1 Evaluation

In this section, we discuss our results with respect to the research questions
introduced in Section 1.1. Then, we discuss the limitations of our work. Finally,
we summarise our main contributions and describe potential extensions for future
work.

Research question 1 Which existing computer vision and image processing meth-
ods are suitable for detecting pavement distress in this application?

Table 5.6 and 5.7 suggest that contrast enhancement could be a viable approach
to improve detection accuracy in low-resolution images. However, with our small
validation set of 95 images, caution must be applied. Furthermore, as Table 5.8
shows, there is a large discrepancy between the validation and test accuracy, indi-
cating that our trained YOLOv4 model is unable to generalise to new pavement
distresses in the Trondheim test set. A possible explanation for these results may
be the lack of adequate training samples for Trondheim roads, as the training
set we used is different from the test data in respect to occurrences of urban ob-
jects and seasonal conditions. Additionally, different distress types can visually
be very similar, only minor features differentiating them, further amplifying the
need for larger, more diverse datasets.

Research question 2 How can pavement distress be quantified?

The results in Table 5.9 suggest that CLAHE and guided filtering are viable
approaches to improve semantic segmentation accuracy of cropped-out distresses
in low-resolution images. However, these findings may be somewhat limited by
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the small test set size. As Figure 5.8 illustrates, DeepCrack performs relatively
well for certain distresses, but not quite as well for potholes and thinner cracks.

Furthermore, our pipeline assigns each pavement distress a severity level based
on the distress type and segmentation mask pixel count. However, existing stan-
dards for manual inspection are based on crack width or, in the case of alligator
cracks, the width of the whole damaged area. Additionally, potholes are assessed
based on diameter and depth [ast]. It is not clear what the best approach to
distress quantification is. As existing standards are developed for manual inspec-
tion, they might not transfer well to automated assessment. Further experiments
in collaboration with domain experts are needed to determine a suitable approach
to severity assignments based on the obtained segmentation masks.

Research question 3 Which approach is suitable for predicting future states of
pavement distress?

Figure 5.13 shows an RMSE reduction of 43.6 % and 32.3 % from the baseline for
the final Random forest and XGBoost models, respectively, with default hyper-
parameters. We have only compared machine learning methods, which allows us
to take advantage of k-fold cross-validation on our limited dataset. However, fur-
ther experiments are needed with a more extensive set of methods, comprised of
both a variety of statistical and machine learning models, to be able to establish
the comparative suitability of our chosen methods to others.

Research question 4 Which features can be used for predicting future states of
pavement distress in Trondheim?

Figure 5.11 and 5.12 indicate that severity lags are the most important fea-
tures for each forecast horizon, while some traffic- and weather-related features
are less important. In particular, the percentage of long vehicles, minimum and
maximum temperature, total precipitation and number of freeze-thaw cycles have
low importance. When removing these features, we see a decrease in RMSE for
the Random forest model, while the XGBoost RMSE stays the same. These
findings are contrary to [18] and [12], but consistent with that of [29], which
found that their pavement performance prediction model was most sensitive to
previous values of pavement condition, while not being sensitive to the removal
of other features such as annual average precipitation, temperature, freeze index,
humidity or daily truck traffic. However, contrary to [29], our XGBoost model
achieved the lowest RMSE using no feature lags. The reason for this is not clear,
but a possible explanation could be overfitting due to the short time series or lit-
tle hyperparameter tuning. Furthermore, although our results show a relatively
moderate importance for the distress type feature, this finding may be somewhat
limited by our dataset comprising only 12 distresses.



6.2. DISCUSSION 53

6.2 Discussion

Our work is limited by the absence of a domain expert not only to verify our
approach, but also to verify our test set annotations. In particular, it is difficult to
distinguish between sealed and non-sealed cracks from the images. Our standard
for labeling sealed cracks, defined in Section 5.1.1, might cause non-sealed cracks
to be mislabeled as sealed when there is a combination of moisture filling the
cracks and certain lightning. Furthermore, the manually labeled segmentation
masks may contain inaccuracies due to the difficulty in distinguishing between
crack and non-crack pixels from the low-resolution images. In addition, variations
in car height and weather conditions might have influenced severity assessments.
A more top-down angle might have resulted in a higher severity assessment as
more of the pavement distress fills the image. Furthermore, the combination of
sunlight and moisture filling the cracks makes the cracks more noticeable, possibly
leading to a higher severity assessment, requiring more data points to reduce this
noise.

Another limitation of our work is that a significant amount of pavement dis-
tresses in the validation and test set for object detection are the same, but in
various weather conditions and different points in time, possibly making the fi-
nal evaluation results slightly more optimistic. To alleviate this issue, multiple
different driving routes should be included for data collection for distress detec-
tion. The increase in accuracy for guided filtering of the segmentation mask may
also be too optimistic. As we had very few annotated images, we did not use
a validation/test set split, and used the best test set threshold to perform the
filtering.

A weakness of the quantification stage of our ALPACA pipeline is that it crops
around the bounding boxes of detected distresses prior to performing semantic
segmentation. Although this approach reduces computation and noise from other
objects, it is also dependent on accurate bounding boxes in order to ensure ac-
curate quantification. Another issue that was not addressed in our work was
whether our pipeline component that assigns severity levels can produce similar
assessments as domain experts.

Furhermore, the five remaining data points for observation after the removal
of corrupted data, taking place between January 15 and April 8, is not enough
to capture seasonality in the forecasting models. This makes our models less
generalisable across seasons. In addition, some of the traffic-related features
retrieved from the NVDB API, e.g. yearly daily traffic and percentage of long
vehicles, are partly based on discretion.
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6.3 Contributions

Despite its exploratory nature, this thesis offers some insight into how various
components can be integrated to predict future pavement distress severity from
smartphone videos or images. In summary, the main contributions of this thesis
are as follows:

• We proposed a pipeline to predict future pavement distress severity from
videos or images, which is able to run on a conventional 8GB GPU.

• We presented a quantitative evaluation of each stage of our pipeline. Fur-
thermore, we performed an analysis of the features used for the last stage
of our pipeline, pavement distress forecasting, to evaluate the importance
of various features related to traffic and weather.

• We built an annotated dataset for object detection of pavement distress
in urban environments containing challenging seasonal and lightning vari-
ations to be further used for training and evaluating new models. We also
provided an annotated dataset for semantic segmentation of pavement dis-
tress in low-resolution smartphone images. We made these datasets openly
available.

6.4 Future Work

This section presents suggestions for improvement and possible extensions to the
ALPACA pipeline, as well as other directions for further research.

6.4.1 Suggestions for Improvement

As indicated by our evaluation and discussion in Section 6.1 and 6.2, further
experiments with an extensive set of methods, using more collected data and
additional features, should be conducted in order to assess the methods’ compar-
ative performance, as well as explore other sets of features. Although the roads
we observed did not have any structural data on pavements available, some of
the larger roads provide such data, i.e. pavement thickness, mass consumption
and pavement age.

Furthermore, as our evaluation and discussion indicated, further research in
collaboration with domain experts is needed to determine a suitable approach to
severity assessments based on segmentation masks. To improve object detection
of pavement distress, calculating new anchors based on common pavement dis-
tress shapes could be done. Other improvements include hyperparameter tuning
and feature selection for the forecasting models, target encoding the distress id
feature, as well as using top-down images for more accurate quantification.
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6.4.2 Forecasting Pavement Section Quality

For road maintainers, forecasts for particular pavement distresses might not be
as useful as forecasts for whole pavement sections, which may make it easier to
plan maintenance interventions. Further research might explore this direction,
computing an index based on the forecasted severity levels of each distress type
for a particular pavement section, which can be used to prioritise interventions.
Development within this direction could be beneficial to road maintenance and
potentially other infrastructures, as such distress prediction could lead to a focus
on damage prevention instead of repair.

6.4.3 Building an Instance Segmentation Dataset

As indicated by our literature review in Chapter 3, we found no prior studies
using instance segmentation to detect and segment multiple types of pavement
distress. A reason for this could be that building such a dataset for instance
segmentation would be time-consuming, requiring manual labeling of thousands
of fine masks for each distress type. One solution for this could be to use our
pipeline, or a similar multi-stage approach, to partly generate this dataset. Per-
forming distress detection and segmentation with instance segmentation would
not only be more computationally efficient than our approach, but also remove
the pipeline’s dependence on accurate bounding box predictions from the prior
stage.
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[42] Tabatabaee, N., Ziyadi, M., and Shafahi, Y. (2013). Two-stage support vec-
tor classifier and recurrent neural network predictor for pavement performance
modeling. Journal of Infrastructure Systems, 19(3):266–274.



BIBLIOGRAPHY 61

[43] Tedeschi, A. and Benedetto, F. (2017). A real-time automatic pavement
crack and pothole recognition system for mobile android-based devices. Ad-
vanced Engineering Informatics, 32:11–25.

[44] Wilson, T. P. and Romine, A. (2001). Materials and procedures for repair of
potholes in asphalt-surfaced pavements–manual of practice. Technical report.

[45] Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., and Ling, H. (2020).
Feature Pyramid and Hierarchical Boosting Network for Pavement Crack De-
tection. IEEE Transactions on Intelligent Transportation Systems, 21(4):1525–
1535.

[46] Yun, S., Han, D., Chun, S., Oh, S. J., Choe, J., and Yoo, Y. (2019). CutMix:
Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE International Conference on Computer Vision, volume
2019-Octob, pages 6022–6031.

[47] Zeiada, W., Dabous, S. A., Hamad, K., Al-Ruzouq, R., and Khalil, M. A.
(2020). Machine learning for pavement performance modelling in warm climate
regions. Arabian Journal for Science and Engineering, pages 1–19.

[48] Zhang, K., Cheng, H., and Zhang, B. (2018). Unified approach to pave-
ment crack and sealed crack detection using preclassification based on transfer
learning. Journal of Computing in Civil Engineering, 32(2):04018001.

[49] Zhao, Z. Q., Zheng, P., Xu, S. T., and Wu, X. (2019). Object Detection
with Deep Learning: A Review.

[50] Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D. (2019). Distance-
IoU Loss: Faster and Better Learning for Bounding Box Regression.

[51] Ziari, H., Maghrebi, M., Ayoubinejad, J., and Waller, S. T. (2016). Predic-
tion of pavement performance: application of support vector regression with
different kernels. Transportation Research Record, 2589(1):135–145.



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

An Thi Nguyen

ALPACA: Asphalt Quality Prediction with
Automated Computer Vision
Assessment

Master’s thesis in Computer Science

Supervisor: Pinar Øzturk

July 2020


	Introduction
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Types of Pavement Distress and Causes of Formation
	Object Detection
	Metrics for Object Detection
	YOLO

	Segmentation
	Metrics for Semantic Segmentation
	Guided Filtering

	Time Series Forecasting
	Naïve Method
	Cross-validation
	Metrics


	Related work
	Structured Literature Review Protocol
	Research Questions
	Identification of Research
	Selection of Primary Studies

	Distress Detection and Quantification
	Distress Segmentation
	Distress Forecasting

	Architecture
	Overview and Rationale
	Detection
	Quantification
	Forecasting
	Summary

	Experiments and Results
	Experimental Setup
	Datasets
	Experimental Plan
	Data Preprocessing

	Results
	Detection
	Quantification
	Forecasting


	Discussion and Conclusion
	Evaluation
	Discussion
	Contributions
	Future Work
	Suggestions for Improvement
	Forecasting Pavement Section Quality
	Building an Instance Segmentation Dataset


	Bibliography

