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Abstract

This Master’s Thesis explores the combination of two artificial intelligence tasks: the
challenge of music emotion recognition (MER), and the automatic composition of new
music by using the emotion-annotated music as its basis. Methods for music emotion
classification and emotion taxonomies are explored, and used as the foundation for
automatic music composition based on emotion-annotated music data.

For emotion classification, a deep neural network is used on a 900-sample dataset of
popular music. Music is processed as raw waveforms, without any pre-processing of
specific music features. Emotions are categorized within four quadrants in the X/Y plane
of valence and arousal.

For music composition, a self-attention-based generative model named the Pop Music
Transformer is used. Music is represented as sequences of MIDI-like events, facilitating
for long-range coherence, rhythmic patterns and local tempo changes. Training is done
on the MAESTRO dataset, a dataset consisting of classical piano pieces, containing both
MIDI and MP3 file formats of each sample.

Between the classification model and the composition model, an automatic pipeline
taking a desired emotion as input is set up. The emotion classification system is used
to predict emotions on the MAESTRO dataset. In testing, the system could mostly
only predict music belonging to low-energy quadrants, due to the naturally lower energy
overall in the classical piano genre compared to pop music overall.

The classification system reaches testing accuracy of between 50 and 60% in di�erent
experimental setups described in this thesis. Music composition is evaluated by the use of
a survey with 101 participants, with the main purpose of discovering whether the intended
emotions were indeed conveyed by the composed music. Survey results proved that the
composed music did not adhere directly to the intended quadrants. However, valence
levels proved somewhat distinguishable in the music composed, proving the system’s
ability to learn characteristic features of valence in emotions.

Keywords: Music emotion recognition, computational creativity, automatic composi-
tion, deep neural network
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Sammendrag

Denne masteroppgaven utforsker gjenkjenning av følelser i musikk, og automatisk kom-
ponering av ny musikk ved bruk av den følelse-klassifiserte musikken som grunnlag.

For klassifisering av følelser brukes et dypt nevralt nettverk på et datasett bestående av
900 sanger innenfor populærmusikksjangeren. Musikken prosesseres som rene lydbølger,
uten preprosessering av eksplisitte overordnede trekk ved musikken. Følelsene som brukes
til klassifisering er kategorisert som fire kvadranter i et X/Y plan over valens og energi.

For musikkomponering brukes en generativ modell basert på kunstig relativ selv-
bevissthet kalt Pop Music Transformer. Musikken representeres som sekvenser av MIDI-
lignende hendelser. Dette fasiliterer for sammenheng over lengre tid i musikken, rytmiske
mønstre og lokale tempoendringer. Trening gjøres på MAESTRO-datasettet, et datasett
som består av klassisk pianomusikk i både MIDI- og MP3-format.

I skjæringspunktet mellom klassifiseringsmodellen og komposisjonsmodellen er det
satt opp en automatisk sammenkobling som tar inn en ønsket følelse som parameter.
Klassifiseringsmodellen ble brukt til å predikere følelsene uttrykt i MAESTRO-datasettet.
Systemet klarte i hovedsak kun å bruke de to lav-energi-kvadrantene i denne klassifi-
seringen, grunnet den naturlige lavere energien man i hovedsak finner i pianomusikk
sammenlignet med popmusikk generelt.

Klassifiseringsmodellen nådde testnøyaktighet på mellom 50 og 60% i en rekke eksperi-
mentelle oppsett beskrevet i denne masteroppgaven. Musikkomponeringen ble vurdert
ved hjelp av en spørreundersøkelse, som hadde som hovedmål å undersøke hvorvidt
den ønskede følelsen virkelig ble formidlet i den komponerte musikken. Resultatene fra
spørreundersøkelsen viste at den komponerte musikken ikke svarte til tersklene for de
ønskede kvadrantene. Allikevel var det mulig å til en viss grad skille resultatene for de
ulike kvadrantene, særlig innenfor valensaksen, noe som viser systemets evne til å lære
seg særtrekk for hva som utgjør høy og lav valens i musikken.
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1. Introduction

Music is all around us every day, and so are the technologies driving its development.
From the first synthesizer (Pinch and Trocco, 1998) to the first artificial holographic
artists (Johnston, 2008), technology is a driving force within defining what music is and
can be.

Musical Computational Creativity is a field within Artificial Intelligence (AI) which
has seen considerable growth within the last decades (Dannenberg, 2006). Within the
field, algorithmic composition of music first came to existence in the 1950s, initially
with the Illiac Suite (described by Hiller and Isaacson, 1958). Since then, a plethora of
solutions and architectures have been proposed to understand and synthesize music and
other forms of art, and often with impressive results. Technology can contribute as an
instrument not only to the performer or audio technician, but also to the composer, as
a creative partner or even as an autonomous agent (Saunders, 2012). In this thesis, I
explore automatic composition in the context of emotion, by attempting to understand
emotions conveyed by music and using that information to compose new music in line
with those emotions.

1.1. Background and Motivation

The notion of creativity, though a feature of human intelligence in general, is a fundamental
challenge for artificial intelligence (Boden, 1998). Rather than following strict rules,
creativity is what allows the connecting elements that are known, but hitherto considered
unconnected, in new and novel ways. A creative process can depend on a great number of
cognitive aspects (Lubart, 2001), such as personality (Wolfradt and Pretz, 2001), cultural
background (Bruch, 1975), personal preferences (Houtz et al., 2003), and analogical
thinking (Dahl and Moreau, 2002).

Boden (1998) distinguishes three forms of creativity. The first is “combinational”
creativity: the novel combinations of familiar ideas and concepts. The second is “ex-
ploratory” creativity: the generation of new ideas within the exploration of already
structured conceptual spaces. The third is “transformational” creativity, closely related
to exploratory creativity, but with such results that new conceptual spaces arise. Cases
of the latter form are often considered the “revolutions” or paradigm shifts within a
field; one example being the transition from analogue to digital music production and
performance. With the rise of artificial intelligence, one such paradigm shift in the future
could be the automated composition of music in such a fashion that it is indistinguishable
to that composed by humans.

Within creativity, AI has often come to a loss (Rowe and Partridge, 1993). Strict
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1. Introduction

and elegant algorithms are often not enough to discover the perfect trade-o� between
that which is considered genuinely novel or creative (Grace and Maher, 2019), and that
which pleases an audience. In music, the individual listener may have widely di�erent
preferences depending on their mood, location or even time of the day. This Master’s
Thesis will be exploring the very notion of music that feels just right for the listener by
the classification of emotion within music. This means exploring how AI models can
“learn” which emotions are conveyed by music, and using that information to compose
new music which hopefully can express the same emotion.

1.2. Goals and Research Questions

Goal: Classify emotion in music and use the classifications in automatic music composi-

tion.

The goal for this project is to explore methods of interpreting and generating music in
accordance with a given emotion or mood, often referred to as Music Emotion Recognition
(MER), as a subfield of Music Information Retrieval (MIR). To reach this goal, the state-
of-the-art within the field will be identified, and experiments will be conducted in order
to compare di�erent methods and benchmark criteria.

The exploration will focus on the intersection between:

1. The process of computer-based “understanding” of the emotions expressed in music.

2. The process of synthesizing new music based on the acquired understanding.

Research question 1 What are suitable methods for computer-based classification of

emotion in music?

This research question involves understanding how this task has been performed using
di�erent technical approaches, as well as comparing existing work to new approaches
used in similar fields.

Research Question 2 What are sets of emotion categories that are comprehensible and

e�ective for machine learning use?

What labels or categories are used in the classification of music can greatly impact the
results; happy might su�ce as a category in some regards, but sub-categories such as
exhilarated or peaceful may be very di�erent things. Categories of emotion can be both
broad and narrow, and it is important to explore how the choice of categories a�ect the
quality of the classification process. This research question mainly involves exploring
di�erent opinions in the field of emotion psychology, and addressing their potential
usability in a machine learning context.

Research Question 3 What are relevant and e�cient methods for creating emotion-based

computer-generated music, and evaluating it?
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1.3. Research Method

This research question explores di�erent novel methods used for the computer-based
composition of music. This includes fully automatic composition, as well as composition
based on specific input such as a given emotion, or musical data conforming to that
emotion. In evaluating the output by a mood-based digital composer, the human opinion
is naturally important. However, human evaluation is slow, labour-intensive and possibly
prone to bias (Hashimoto et al., 2019). Di�erent human evaluation methods, as well as
automatic evaluation measures, perhaps in combination, should be compared.

Whether and how the goal, and subgoals in the research questions, have been achieved
are summarized in Chapter 7.

1.3. Research Method

The three research questions require somewhat di�erent methods. All include research on
the state-of-the-art. Also, the conclusions of each RQ influence the answer of the others;
if one set of emotion categories proves clearly superior to others, it should be expected to
see that set used in work regarding MER.

In answering RQ1, an experimental approach will be taken. Experiments will be
conducted on creating a emotion classification system for music, which creates results
that can be compared to some approaches in the state-of-the-art, for example, by using
common data sets. Di�erent configurations with regards to data representation and
machine learning architecture will be explored.

RQ2 is a research question which will take a more analytic approach, in the intersection
between emotional psychology and computer science. This involves exploring di�erent
opinions in the field of emotional psychology, and attempting to uncover common ground
in what is considered reasonable categories that can be used in classifying emotions.
Finally, promising alternatives will be viewed in the context of usability within machine
learning, namely how well the categories can be expressed in a technical context.

For RQ3, the objective is to discover existing methods of generating music, and how
they can be implemented (if they are not already) to learn what constitutes emotions
within music. This may mean training separate models to understand di�erent moods, or
more explicitly determining rules for di�erent moods in music. An experimental approach
will be taken here as well, by using classification results discovered in RQ1 to train a
model to compose new music based on the created classification. To evaluate the results
of the composed music, a survey will be performed where participants will be involved
in determining whether the music played does indeed conform to the intended emotion.
Also, musical quality overall will be assessed with the same method.

1.4. Contributions

This section describes the contributions made to the field of musical computational
creativity, and Music Emotion Recognition in particular, which can be found in this
thesis.
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1. Introduction

1. A Structured literature review (SLR), data extraction and synthesis studying the
state-of-the-art within musical computational creativity related to emotion and
mood understanding.

2. A comparison of sets of emotion categories, and their features and drawbacks with
regards to use in machine learning.

3. A study of relevant machine learning methods and data sources for the task of
understanding mood in a music data set, and an experimental system for classifying
emotions in music, created to compare performance with relevant approaches.

4. An implementation of a system architecture producing music in accordance with
some given emotion, and a survey designed and conducted to uncover to which
extent the emotion is recognized in the newly composed music.

1.5. Thesis Structure

• Chapter 2 introduces background theory useful for the readers, both related to
music and to relevant technologies.

• Chapter 3 presents reviewed related work within the field, as well as the protocol
for a Structured literature review (SLR).

• Chapter 4 presents a system architecture suited for experiments to provide answers
to the research questions posed.

• Chapter 5 presents the conducting of the experiments, and a survey designed and
conducted for evaluation of the composed music.

• Chapter 6 discusses the results, their strengths and weaknesses, possible improve-
ments, and possible sources of bias.

• Chapter 7 presents the conclusion and final answering of the research questions,
and a description of future work.
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2. Background Theory

This chapter introduces some important concepts that are used in related work and
throughout this thesis. Section 2.1 presents basic musical concepts. Section 2.2 presents
some technologies that are or have been used in the understanding, classification or
composition of music.

2.1. Musical Background Theory

This section is intended for the reader with limited familiarity with musical concepts and
terms, providing a basic framework required for the discussions in this project.

Notes
Music is made up of notes, each one with a given pitch and duration (Strayer, 2013).

A pause is the absence of pitch for a given duration. A pitch is the frequency of the
sound wave emitted, and the pitch is higher with higher frequency, and vice versa. Select,
discrete pitches (notes) are named in the scale pattern A, B, C, D, E, F, G, A, where the
return to the starting note constitutes an octave. However, the frequency has doubled,
meaning that the two notes are distinct. This is named in the pattern A1, A2, and so on.
As audio frequency is a continuous measure, semitones can be found halfway between
the standard tones. As an example, a semitone between A and B is denoted as B˜. Even
smaller intervals are denoted as microtones (Botros et al., 2002).

Chords
A chord is the combination of three (triad) or more notes played simultaneously. One

of the notes is denoted as the chord root, and the other two (in a common triad) are
most often two and four steps above the chord root in the scale.

Musical key
The key of a piece indicates the chord that forms the basis of the music. In most

Western, popular music, music starts and comes to rest in one key, while notes and chords
other than the initial key creates tension and variation. A more permanent change of
key within a song is called a modulation. A key is in a mode, most commonly major or
minor mode. In Figure 2.1, a chord in C major is presented, followed by a chord in C
minor.

Duration and measures
As previously mentioned, all notes and pauses have a duration. To denote this, the

concepts of beats and measures are used. A note’s duration is represented as a fraction,
most often 1

1 , 1
2 , 1

4 , 1
8 , 1

16 and 1
32 . The notes can be combined to form more complex

durations.
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2. Background Theory

Figure 2.1.: A chord in C major, followed by a chord in C minor.

Figure 2.2.: The theme for The White Stripes’ Seven Nation Army.

A measure, or bar, is a segment of time corresponding to a certain number of beats.
A time signature is a notational convention specifying the number of beats contained
in one measure, and which note value is equivalent to a beat. In Figure 2.1, the time
signature is 4

4 . The numerator indicates that there are 4 beats in one measure, and the
denominator indicates that a 1

4 note is equivalent to one beat.
The tempo of a song is measured in the number of beats per minute (bpm), e.g. a

tempo of 60 bpm indicates that there is one beat per second.
Music structure
Music varies greatly in structure, but some common themes exist. Popular music most

often contains one or more verses and choruses/themes which repeat, and build and
release tension throughout the music. Repetition and variation upon familiar themes
is an integral part of musical structure, and is often what sounds familiar with music
one has heard before. A widely known example, from the song Seven Nation Army by
The White Stripes, can be found in Figure 2.2. This two-measure figure is repeated
throughout the song using di�erent instruments and fortitude, adding structure and
coherence to the music.

2.2. Technical Background Theory

For the task of classification within Artificial intelligence (AI), the number of approaches
that can be taken is almost unlimited. This section introduces some of the most used
distinct architectural approaches.

2.2.1. Artificial Neutral Networks

Artificial neural network (ANN) architectures are networks of nodes and weights between
them, architecturally inspired by the brain (McCulloch and Pitts, 1943). The network is
designed to “learn” some task given training with data examples. Three main components
are defined, namely an input layer, a hidden layer and an output layer, which interact
in determined ways so that “patterns” in the network form during training based on
correcting the errors made (Dreyfus, 1973), allowing the network to continue performing
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2.2. Technical Background Theory

Figure 2.3.: A simple ANN with input, hidden and output nodes.

the task on its own when training is complete. Many di�erent ANN designs exist, suited
to di�erent tasks such as image (LeCun et al., 1989) or audio recognition (Sak et al.,
2014), classification (Sengupta et al., 2016) or generative models (Goodfellow et al., 2014).

The nodes and weights in an ANN are designed as a way to form “paths” in the
network for certain inputs (Minsky and Papert, 2017). In some ways, the design can
resemble a decision tree, or a directed and weighted graph (Zell et al., 1994), where one
chooses branches along the tree depending on certain features of the input. However,
there are two distinct di�erences. First and foremost, there is no direct representation
of what a single weight in the network tells you – meaning that at first, the network
will make arbitrary decisions. However, and secondly, the weights change importance
as more information is learned. If a single “path” in the network is always correct, it
will learn to almost always go that way (Zell et al., 1994). When the network makes a
wrong decision in training, the weight of the path taken is reduced according to the error
by backpropagation (Goodfellow et al., 2016), making it more likely to make another
decision the next time. The goal is to ensure that the network can correctly di�erentiate
di�erent features of the input, but also that it can handle variations in novel input data
by making more general assumptions where possible (i.e., avoiding overfitting the model
to the training data). During training, the network essentially guesses predictions in the
beginning. The accumulated error, or loss, is used as an indicator as to “how wrong” the
network predicts overall (Dreyfus, 1973). This error can be seen as a point on a field
of gradient descent, as visualized in Figure 2.4.1 The goal for an ANN is to move to a
global “error minimum”, where weights are configured just right so that error is as low
as possible.

1
Source: https://en.wikipedia.org/wiki/Gradient_descent
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2. Background Theory

Figure 2.4.: Example of gradient descent.

Optimizing an ANN: Adam Optimizer
For an ANN, many di�erent parameters are adjustable to create a network that is

well-suited for the problem at hand. One crucial parameter in this regard is the learning
rate. For the gradient descent plane in Figure 2.4, the learning rate indicates how large
“jumps” should be made in the plane (Li et al., 2009), i.e. how much weights in the
network should change given the error. If the learning rate is very high, one risks that a
global minimum is skipped. If the learning rate is too low, one might get stuck in local
minima, and never move far enough to discover the global minima. Thus, finding the
optimal learning rate is a di�cult task.

The Adam Optimizer (Kingma and Ba, 2015) is a di�erent approach to the optimization
of network weights. Instead of the gradient descent approach with a single learning
rate, the Adam algorithm maintains separate learning rates for each network weight
(parameter), which are adjusted individually as training progresses. The adaptation is
not only done based on overall error, but also the momentum of which the gradients for
one parameter has been changing recently. Bias-correcting is performed automatically
by using both the first moment (the mean) and the second moment (the uncentered
variance) of the gradients separately.

In practice, Adam is a highly e�ective optimization algorithm which adapts the learning
rate to the problem at hand directly. It is used in the system described in Chapter 4.

2.2.2. Deep Learning

Deep learning is a term used for networks designed for representation learning; that is,
learning not only what some input is, but higher-level features such as what it represents

(Bengio et al., 2013). The motivation comes from the massive amounts of information in
our world that is naturally unstructured, often lacking specific, discrete or measurable
features, and therefore not suited for simpler, more straight-forward networks.
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2.2. Technical Background Theory

As an architecture, deep learning builds on the ANN architecture, but is distinguished
in the use of multiple layers in the network (Schmidhuber, 2015). The process of extracting
higher-level features is done by using these multiple layers with the purpose to serve
many di�erent tasks. As an example, with image processing, one layer may identify
edges, while another identifies basic shapes, and yet another may identify faces. These
long chains of processing between the input and output are what constitutes the “deep”
property.

2.2.3. Support Vector Machines

Support Vector Machine (SVM) architectures are supervised discriminatory learning
models used for classification and regression analysis (Cortes and Vapnik, 1995). In the
SVM model, input samples are represented as a point in a space, mapped so that separate
labels or categories are as far away from each other as possible. When a new sample is
tested, it is placed in the space based on similarity to other samples, and classified to the
category to which it is the closest.

2.2.4. Fuzzy Logic

Fuzzy logic, or fuzzy sets, is a term used for classification where truth values of a variable
may be any real number between 0 and 1, inclusive (Zadeh, 1965). It handles the notion
of partial truth, and for classification, this implies that a sample can (partially) belong
to several classes.

For music emotion classification, this could mean that a sample can be classified both
as, e.g. sad and tired, or energetic and joyful.

2.2.5. Evolutionary Algorithms

Evolutionary algorithms (EA) is an optimization approach which mimics evolution
observed in the living world (Vikhar, 2016). When considering a problem, a population

of solutions is produced. The solutions are ranked against a given fitness function, and
the N least fit solutions are discarded. This is done repeatedly for many generations,
often incorporating various sorts of mutation. Mutations could be allowing some weak
solutions to continue to the next generation, or by direct mutations on the solutions such
as gene swapping or crossover, namely scrambling parts of the solution either within one
solution or between di�erent solutions.

2.2.6. Evaluating a Classification Model

When developing a model for classification, several measures can be used to determine
the quality of the model. This section presents a selection of benchmark measures used
both in related work, and to evaluate the systems developed for this thesis.

Loss
The loss, simply put, is a function which describes “how wrong” the model is in its

predictions (Dreyfus, 1973). Many di�erent loss functions exist, while some are more
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2. Background Theory

common. The loss function is used throughout the training. The most straightforward
loss functions add up all errors (i.e., how far away the prediction was from the actual
label) and take the average of them. Another approach is the Mean Squared Error
(MSE), which squares the errors before taking the mean, punishing severe error far more
(Lehmann and Casella, 2006). A third approach is the Cross-Entropy function, which
measures the di�erence between two probability distributions: the true distribution and
the predicted distribution.

The goal in a loss function is, naturally, to minimize loss. A loss of 0 would indicate
that the model predicts every case perfectly. However, a loss of 0 is mostly not desirable,
as it would indicate that the network is tuned specifically to the input it gets, with no
mutations or exceptions. In turn, this may indicate that the model has not developed
the ability to generalize. Thus, the loss can not be viewed as a success measure alone.

Testing set accuracy
When training a model on a data set, a segment of the data should be kept out from the

training progress, constituting a testing set. When the model has trained, its predictions
on the testing set is a test of whether the model has developed knowledge applicable to
other data than its own training set. For accurate results, it is crucial that the model
does not get to train on the testing set, so that the testing set serves its purpose for all
epochs of training.

Determining testing set accuracy can be done in multiple di�erent ways. If the model
is trained using a set of discrete labels, one can simply measure how many predictions
were correct out of the total. For continuous or more complex labels, quality can be
measured more similarly to loss computation.

F-measure
The F-measure is a weighted combination of two values of classification performance

(Derczynski, 2016), namely:
1. Precision: how many of the classifications of class X, actually belonged to class X.
2. Recall: how many of the samples belonging to class X were classified as X.
The F-measure is then expressed as the harmonic mean of precision and recall:

F1 = 2 ◊ Precision ◊ Recall
Precision + Recall

In total, this measure measures both how many samples were accurately classified, and
how many samples should have been returned for each class.

Confusion Matrix
A confusion matrix, or an error matrix (Stehman, 1997), is a table which can be used

to identify which labels are often mislabeled by the model, or “confused”, in a visual
manner.

In the confusion matrix in Figure 2.1, 5 cats were predicted to be cats, while 3 cats
were predicted to be dogs. 1 dog was predicted to be a cat, while 4 dogs were correctly
predicted to be dogs. In total, there were 8 cats and 5 dogs. From this matrix, it can
seem that our classifier does quite well at recognizing dogs, but struggles to determine
whether a cat is a dog or a cat.

10
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Actual class
Cat Dog

Predicted Cat 5 1
Dog 3 4

Table 2.1.: Example of a confusion matrix.

2.2.7. Tools and Frameworks for Machine Learning

Machine learning involves computationally heavy tasks, with the use of mathematical
and statistical models which can be separated from the user interface. This is done
by using frameworks, which to a larger or smaller extent, simplify the task of setting
up a network or defining training procedures. Many such frameworks exist, and this
subsection presents a few.

PyTorch
PyTorch is a machine learning framework based on the framework Torch (Ketkar,

2017a), with a Python interface (C++ also available). Tensor computing, which is a
large part of the work done in an ANN, can be accelerated by performing calculation on
GPU devices. PyTorch provides a very easy-to-use interface to enable such acceleration.
Another feature is its use of automatic di�erentiation (Paszke et al., 2017), meaning that
operations performed are recorded, and subsequently replayed backwards to compute
weights. This is a powerful and time-saving feature in neural networks, as di�erentiation
of the parameters is a computation-intensive task performed repeatedly in training.

TensorFlow
TensorFlow is a machine learning framework for numerical computation, built by Google

(Abadi et al., 2016). TensorFlow uses static data flow graphs for computations, and is
slightly nearer to the machine than PyTorch, by features such as sessions and placeholders
which more directly allocate resources to computation. It provides functions for several
di�erent layers of mathematical abstraction, where the highest level of abstraction is the
Keras API.

Keras
Keras is a machine learning API with a high level of abstraction of tasks, building

directly on TensorFlow, with a Python interface (Ketkar, 2017b). Its main feature is
its low entry level, with many high-level built-in functions requiring little knowledge for
anyone to experiment. However, TensorFlow features can also be utilized directly.

Scikit-learn
Scikit-learn is a machine learning and data analysis framework for Python (Pedregosa

et al., 2011). It provides built-in tools for data processing, model selection and many
more detailed features. Functions from Scikit-learn can be used in combination with other
machine learning frameworks, or combined to create models directly, building directly on
scientific computing packages such as NumPy, SciPy and Matplotlib.
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2.2.8. Musical Composition

In music composition today, digital tools are virtually inevitable. Many instruments
are fundamentally digital, such as digital synthesizers, where the audio output can be
manipulated entirely. Many other acoustical instruments have digital counterparts, such
as electrical drum kits, where sound is produced digitally based on physical input.

In order to record, process and produce music digitally, a Digital Audio Workstation
(DAW) is used (Leider, 2004). Typically, many di�erent audio tracks are combined in the
DAW and edited to fit together. Waveforms can be manipulated directly, or a variety of
tools can be used to achieve the desired sound.

Generative Modeling
In machine learning, two main approaches are discriminative (such as SVM or per-

ceptrons) and generative models (Jebara, 2012). Generative models work on joint
probability distributions on an observable variable X and a target variable Y . The
generative model views the conditional probability of the observable variable X, given
the target variable Y , P (X|Y = y).

This means that the generative model can “generate” new instances of X in relation
to the target variable Y (Jebara, 2012). This is exploited in architectures such as the
Generative Adversarial Network (GAN), where instances of output variables are generated
in a way which has no apparent relationship to probability distributions over potential
samples of input variables. The generative model learns from mapping a latent space,
i.e. variables that are not directly observed, but rather inferred from other observed
variables, to a desired data distribution, e.g. an input dataset.

Another generative model is the Variational Autoencoder (VAE) (An and Cho, 2015;
Khobahi and Soltanalian, 2019). An autoencoder is in fact two connected networks, an
encoder and a decoder. The encoder network takes an input sample, encoding it to a
smaller, dense representation. The decoder network followingly takes the representation,
decoding it back to the original input. The encoder and decoder are trained in pairs,
being evaluated on the ability to reconstruct the original input flawlessly. This teaches
the decoder to keep important information and discard less important information.

The variational autoencoder uses continuous latent spaces to create outputs that are
di�erent from the original input. The VAE uses the means and standard deviations of the
input, along with random sampling in the continuous latent space, in order to generate
results that interpolate between di�erent classes of inputs.

Generative models can be trained by discriminative models, where the generative
model attempts to create new input that appears indistinguishable from the remaining
possible inputs, while the discriminative model evaluates the attempts (Kingma and
Welling, 2019).

Generative models are used for many purposes today, such as generating images or
audio based on existing data. Related work for this is presented in Section 3.3.5. This is
the basis for the di�erent music composition methods addressed in this thesis.
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2.2.9. File Formats

For digital music composition and editing, many di�erent file formats exist. Most formats
are used to encode audio data, where all instruments in an ensemble are stored on the
same file. These formats can be uncompressed, with the most common format being WAV
(Pan, 1993). These retain high quality, but naturally come with a large file size. Due to
this, compressed file formats are commonly used, with some quality being compromised
towards smaller file sizes. MP3 is an example of a file format using “lossy” compression.

The Musical Instrument Digital Interface (MIDI) is an industry standard defining notes
in a musical system. It does not store audio data directly, but rather the information
needed to play the audio. The MIDI format is widely used in all digital music composition,
because information can be transmitted between instruments and music composition
software, preserving all information (Cataltepe et al., 2007). Many di�erent instruments
can play in the same MIDI file, and they are entirely distinguishable, making it suitable
for editing in a DAW.
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3. Related Work

In exploring the state-of-the-art within musical computational creativity, a Structured
literature review (SLR) was conducted. This chapter documents the research method
applied and the following results. Section 3.1 introduces the methods applied in research-
ing related work. Section 3.2 presents the conduction of the SLR method. Section 3.3
presents the results of the literature review, with subsections ordered by topic relevant
to the di�erent research questions.

3.1. Introduction

The SLR method is applied to ensure rigour and thoroughness in researching literature
in a given field. The main motivations for applying such a rigorous method within the
literature review are assisting in identifying existing solutions, helping identify bias and
avoiding duplicating e�orts made elsewhere in the academic community. It also helps the
reader reproduce the steps taken to discover the exact set of papers used in this thesis.

The concrete process of conducting the SLR performed in this thesis is based on
the guide from Kofod-Petersen (2018). However, not all articles used in this thesis are
discovered by the SLR method, but rather they were provided by the project supervisor
and others at the IDI institute. This set of papers will be described as the Starting
set. There are also a number of other articles discovered by the “snowballing” method,
i.e. starting with a given set of papers and following their listed sources to learn more
on a topic. This method, as presented by Wohlin (2014), is not opposing to the SLR
method, but rather one of many tools used to perform a systematic literature review
while mitigating the drawbacks of using only one search string which does not guarantee
finding all relevant articles within a topic. The complete review protocol is found in
Appendix A.

The SLR was conducted as an introductory method for the exploration of RQ1,
meaning that the search revolved around the emotion classification task. For related
work regarding RQ2 and RQ3, such a rigorous process was not documented. For RQ2,
articles were mainly provided by the project supervisor, and the snowballing method
proved very useful in exploring di�erent and opposing opinions. Moreover, many articles
on emotion classification explore this subject themselves. For RQ3, articles were also
mainly provided by the project supervisor. Also, a suiting search string could not be
determined, as many existing music composition tools use a product name, making it
challenging to develop a search discovering a significant amount of the progress made.
Thus, the snowballing method was also applied for this research question.
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3.2. Review Method

In this section, the process of the Conducting phase of the SLR review protocol, described
by Kofod-Petersen (2018), is presented. The Planning and Reporting phases can be seen
in Appendix A.

1. Identification of research.
A set of search terms is defined to correspond to the research questions (see Section

1.2). The development process for the search terms can be seen in Appendix A.
The search string used was:

("Music" OR "Musical") AND ("Mood" OR "Ambiance" OR "Emotion") AND
("Classification" OR "Detection") AND ("Artificial Intelligence" OR
"Machine Learning").

Google Scholar was chosen as the preferred search engine. Google Scholar aggregates
results from several sources, many corresponding to recommended reading from the
project supervisor.

The search was performed with a temporal limit of only viewing articles written in 2016
or later. This choice was made to reduce the number of resulting articles and prevent
outdated results. However, articles coming from the Starting set or any snowballing
“children” were not limited by publishing date, as a way to explore some of the fundamental
milestones in the field’s years of existence.

The search resulted in a staggering 16,000 results, indicating the variety of work already
done within this field. As this amount was too large for a scope such as a Master’s
Thesis, the screening process used the first 50 articles from each search ranked “most
relevant” by Google Scholar, ignoring duplicates within the search. The requirements for
the “most relevant” ranking is not clearly presented, but some indicators are the number
of citations and the search terms’ frequent use within an article. Many of the displayed
articles were non-technical but rather within fields such as psychology or medicine, so a
large number was filtered out.

2. Selection of primary studies.
A set of primary and secondary inclusion criteria is formulated. The primary criteria

focused on the studies’ title and abstract and their relations to the goals of this thesis,
ensuring the main concern is musical computational creativity, its relation to mood or
emotion, and presenting empirical results.

The studies passing these criteria were evaluated using the secondary inclusion criteria,
evaluating the entire text on aspects such as disregarding lyrics processing, and that the
study should discuss the implementation of an application. The criteria definitions are
documented in Appendix A. In the starting set, 15 articles passed primary inclusion
criteria and 12 the secondary inclusion criteria. In the SLR set, 22 articles passed primary
inclusion criteria and 12 the secondary inclusion criteria.

3. Study quality assessment.
When primary studies are selected, a set of inclusion criteria developed by Kofod-

Petersen (2018) were used to assess the quality of each paper. For each criterion, each
paper is ranked by whether it met the criteria; Yes (1 point), Partly (0.5 points) or No (0
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points). The papers with a sum of less than 6 points were considered of not su�ciently
high quality, leaving a total of 20 relevant papers for data extraction, monitoring and
synthesis.

4. Data extraction.
In order to ensure extraction of similar types of information from all studies, a set of

data points was defined for manual extraction from each study. The data from all articles
are then assembled in a table, with each data point in one column, and data points for
one study within one row. The data points used for this extraction are documented in
Appendix A.

5. Data synthesis.
From the extracted data, di�erent approaches and solutions are compared. Another

point of study is what di�erent approaches use as performance markers, in order to
ensure that this project uses some performance indicator relevant for comparison and
recognised in the community.

3.3. Results

This section presents the results of the performed literature review. Section 3.3.1 presents
the selected studies, and an overview of their main findings, while the remaining sections
present results sorted by topic. Even though the search focused on emotion classification,
many articles touched on topics relevant to all research questions.

Section 3.3.2 presents the results for methods of emotion classification, addressing RQ2,
and establishes a vocabulary used in the following sections. Section 3.3.3 presents how
di�erent architectures represent musical data. Section 3.3.4 presents di�erent architectures
used for emotion classification, directly related to RQ1 and used as a foundation for the
architecture presented in Chapter 4. Section 3.3.5 presents di�erent architectures used for
music composition, including some commercial products that, while showing impressive
results, unfortunately are not transparent with regards to the system architecture. Section
3.3.6 describes and compares a variety of musical datasets used in training, laying the
foundation for selecting a dataset for training in Chapter 4.

3.3.1. Selected Studies

The selected studies which met the Quality Assessment (QA) criteria cover a range of
di�erent topics. Most studies found in the SLR search present architectures used for the
MER task.

The selected studies meeting the QA criteria are listed in a table format. The format
is in accordance with the data points listed for data extraction in Appendix A. The
selected articles are presented in two tables; Table 3.1 for the starting set of articles and
Table 3.2 for articles from the SLR. The QA accumulated score is also listed. Studies
that did not meet the required QA score are omitted, explaining some “holes” in the ID
numbering.
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The studies selected in this literature review are presented and grouped by topic in
the following subsections.
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ID Authors Title Year Algorithm Dataset Findings and conclu-

sions
QA

SS1 Li, Ogihara Detecting Emotion in
Music

2003 Multi-label
SVM

499 30-sec
segments

50% precision, many
borderline cases

7

SS2 Yang, Liu, Chen Music emotion classific-
ation: A fuzzy approach

2006 Fuzzy nearest-
mean classifier

243 25-sec
segments

78% precision, track
variation throughout a
song

7

SS3 Roberts, En-
gel, Ra�el,
Hawthorne, Eck

A Hierarchical Latent
Vector Model for Learn-
ing Long-Term Struc-
ture in Music

2018 VAE 1.5M MIDI
files; Lakh
MIDI Data-
set

Successful long-term
structure in music

9

SS4 Boenn, Brain,
de Vos

Computational Music
Theory

2012 ANTON:
Answer-Set
Programming

Musical
rules

Successful with local
structure

7

SS5 Bozhanov Computoser – rule-
based, probability-
driven algorithmic
music composition

2014 Rule-
based/probability-
based hybrid

500+ pieces Loosely defined musical
rules by composers give
good results. Manual
feedback

7.5

SS7 Huang, Vaswani,
Uszkoreit, Shaz-
eer, Simon,
Hawthorne,
Dai, Ho�man,
Dinculescu, Eck

Music Transformer:
Generating Music with
Long-Term Structure

2018 Autoregressive
model

MAESTRO
Dataset

Self-attention and relat-
ive timing are crucial
factors to long-term co-
herence

9

SS9 Engel, Ho�man,
Roberts

Latent Constraints:
Learning to Generate
Conditionally from Un-
conditional Generative
Models

2018 VAE, com-
pares to GAN

Audio
and image
samples

Can do conditional
sampling from an un-
conditional model, i.e.
eliminating need to
re-train for a query

8.5
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ID Authors Title Year Algorithm Dataset Findings and conclu-
sions

QA

SS10 Fox, Khan Artificial Intelligence
Approaches to Music
Composition

2013 MAGMA:
Markov chains
+ routine plan-
ning + genetic
algorithms

MIDI pop
songs

Stochastic algorithms do
not follow music the-
ory, sounds "overly ran-
dom" at times. Imposed
verse/chorus structure
can improve on this

6

SS11 Freitas,
Guimarães

Melody Harmonization
in Evolutionary Mu-
sic Using Multiobjective
Genetic Algorithms

2011 Genetic al-
gorithm

Single
melody

Highly explicit musical
rules and preferences,
provide many feasible
suggestions. Two styles:
Simplicity and disson-
ance

7

SS12 Roberts, Engel,
Mann, Gillick,
Kayacik, Nørly,
Dinculescu,
Radebaugh,
Hawthorne, Eck

Magenta Studio: Aug-
menting Creativity with
Deep Learning in Ab-
leton Live

2019 VAE MIDI files
or user in-
put

User-ready plugins to
utilize in music software
to enable creativity

8.5

Table 3.1.: Data extraction and QA score, Snowballing Starting Set of articles.
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QA

S6 Chen, Zhao,
Xin, Qiang,
Zhang, Li

A Scheme of MIDI Music Emo-
tion Classification Based on
Fuzzy Theme Extraction and
Neural Network

2016 Fuzzy pattern
matching, su-
pervised ANN

180 MIDI
pieces

78% precision, genre-
independent. Can find
“theme” of a song

6

S9 Seo, Huh Automatic Emotion-Based
Music Classification for
Supporting Intelligent IoT
Applications

2019 SVM MP3 files 77% precision. Sound
quality has large impact.
Good survey and exper-
iment structure

7.5

S10 Bai et al Music emotions recognition by
cognitive classification meth-
odologies

2017 Compares
SVM, KNN,
NFNC, FKNN,
Bayes, LDA

MediaEval SVM, FKNN and LDA
perform well. Good fea-
ture extraction

7

S16 Liu, Chen, Wu,
Liu, Liu

CNN based music emotion
classification

2017 Deep Convolu-
tional neural
network

CAL500,
CAL500exp

Uses only audio spectro-
gram

8.5

S21 Lin, Liu,
Hsiung, Jhang

Music emotion recognition
based on two-level support vec-
tor classification

2016 SVM 300 songs Two level classification:
Genre and mood. At-
tribute estimators by Re-
liefF

6

S23 Mo, Niu A Novel Method Based on OM-
PGW Method for Feature Ex-
traction in Automatic Music
Mood Classification

2017 OMPGW,
SVM, BLSTM-
RNN

Soundtracks,
MIREX-T,
MTV, Me-
diaEval
2015

Thorough feature ex-
traction is useful for
higher resolution and ac-
curacy

8.5

S24 Zhang, Meng,
Li

Emotion extraction and recog-
nition from music

2016 Random forest
classifier,
decision tree

APM data-
base

Stereo-level feature ana-
lysis, adding EEG data
slightly improves accur-
acy

8
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S27 Rosli, Rajaee,
Bong

Non Negative Matrix Factoriz-
ation for Music Emotion Clas-
sification

2016 Non-negative
matrix factor-
ization (NMF),
ANN

500 samples Separate music into
instrumental and vocal
components: Vocal
timbre is more e�ect-
ive for distinguishing
emotion

6.5

S28 Kartikay,
Ganesan,
Ladwani

Classification of Music into
moods using musical features

2016 Compares
Naïve Bayes,
LDA, de-
cision trees,
multi-class
SVM

1000
samples

FMA Linear classifica-
tion, bad results with
SVM.

6

S30 Patel,
Chouhan,
Niyogi

Using Crowd Sourced Data for
Music Mood Classification

2018 ANN, SVM,
decision trees

16527 songs ANN outperforms SVM
and decision trees. Us-
ing crowd-sourced labels
reduces bias.

8.5

S46 Shahmansouri,
Zhang

An empirical study on mood
classification in music through
computational approaches

2016 Compares
Bayes, Mul-
tilayer Per-
ceptron, De-
cision Tree and
more

Million
Song
Dataset,
Last.FM
dataset

Current classification al-
gorithms are lacking in
performance, very pre-
cise feature extraction is
needed

7.5

Table 3.2.: Data extraction and QA score, SLR Articles.
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3.3. Results

3.3.2. Emotion Categorization

Music Emotion Recognition (MER), or the understanding of mood or emotion in general,
can intuitively be perceived as a highly subjective topic. Sources of contextual variation
are plentiful, such as cultural or national belonging, personality, musical preferences or
even time of day or the weather outside. Even though there are many ways to extract
features from music and assigning them emotional meaning, the results will surely be
victim to some bias. The reason for this is that in one way or another, a human notion
of emotion or mood will be inserted into the system. This could be in, e.g., the naming
of features, the labelling procedure, or in evaluating results. This subsection presents
some e�orts to model emotion in comprehensive ways.

In the psychology of emotion, an important issue is understanding whether and how
emotions can be considered a universal concept. Ekman (2016) presents a view originating
from Darwin, namely that emotions are indeed discrete and distinguishable, as well as
being a universal human trait. This was explored by studying remote tribes excluded
from the rest of the world – their smile represented happiness just as much as one’s
own smile does. Ekman, Darwin and many others thus view emotions more or less as a
universal concept, and that the emotions’ triggers and expressions are universal as well.

To further explore subgroups of emotions, Ekman presents the Atlas of Emotions.
The atlas presents Ekman’s hypothesized main emotion categories, namely enjoyment,
sadness, anger, disgust and fear. Some of the emotions share some overlap, such as anger
and disgust, or disgust and fear.

Within each emotion, many subgroups are presented. One example is the feeling of
enjoyment. The subgroups are ordered by intensity, where enjoyment such as sensory
pleasure is the least intense, and excitement and ecstasy are the most intense. The atlas
in a visual manner can be found with the Paul Ekman Institute.1

In relation to machine learning, this system can seem to fit into a system of fuzzy

logic. That is, categories of emotions can overlap, and a human can feel more than one
feeling at once. In the classification problem, this can mean that one music sample can be
classified into more than one class, and that estimated classifications can be considered
partially correct.

Thayer (1990) presents the Model of Mood, another approach to mapping emotions,
here in a two-dimensional plane. The two axes are those of valence and arousal, i.e., the
positive or negative nature of the emotion, and its energy or intensity, as seen in Figure
3.2 (Yang et al., 2006). The two-dimensional plane has been used in music classification
studies such as by Bai et al. (2017), Kartikay et al. (2016) and Mo and Niu (2019). The
plane can also be viewed as a set of four quadrants, for each corner of the plane, as used
by Panda et al. (2018).

Palmer et al. (2013), and later Whiteford et al. (2018), suggest that for music, people
mostly agree on the understanding of what the music is trying to express. This is found
through experiments of colour, by having survey participants assign a colour to music
samples. The labelling from Whiteford et al. (2018) can be seen in Figure 3.1. Colour

1
http://atlasofemotions.org
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Figure 3.1.: Survey participants’ colour assignment by genre. Reproduced with permis-
sion.

associations were also studied in relation to underlying musical features such as loudness,
harmony or distortion. Whiteford et al. (2018) argue that the measure of Valence and
Arousal (VA) su�ce to express the emotions in the music, and also that the music-colour
associations have a strong correlation with related emotions, e.g. faster music in the
major mode would produce more saturated, lighter colours. In contrast, slower music in
the minor mode would produce darker, bluer colour choices.

One advantage of using Thayer’s model of mood is that the dimension of energy or
arousal is quite simple to estimate by amplitude measures. Liu et al. (2003) exploit this
advantage, and present a hierarchical framework for understanding acoustic data, arguing
that a hierarchical system is required to reduce ambiguity in relevant categories. In the
first level of the hierarchy, energy levels are distinguished into high or low. The second
level distinguishes high and low valence, in total producing four emotion categories.

If the amplitude and therefore, energy, is low, the data is classified into group 1
(Contentment or Depression). Then, other features categorize the sample into one of the
two subcategories. An advantage in favour of the hierarchical approach is that results more
often can be achieved with sparse data sets (McCallum et al., 1998). A significant merit
of this model is that the X/Y axes are simple to express on a computer, and all emotions
fit into this continuous plane. However, in some cases, it may be an over-simplified
model. For example, viewing the model as four emotional quadrants, anxiousness and
anger would be placed in the same quadrant (high arousal, low valence). Clearly, the
two emotions are very di�erent. In conclusion, the VA plane and the quadrant system
serve a very useful purpose, especially in the context of computer-based understanding,
but should not be used without considering the dangers of over-generalization. Due to
this taxonomy’s ease of expression in a digital sense, and its ability to view emotions as
concrete points in a two-dimensional space, this taxonomy is used in the architecture
presented in Chapter 4.

One natural feature of emotion classification is that music can fit within several labels
(e.g., a song can be both happy and relaxed, or both happy and upbeat), as seen in
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Figure 3.2.: Valence-Arousal (VA) plane. Reproduced with permission.

the Atlas of Emotion (Ekman, 2016). As such, mood and emotion classification may
be perceived as a multi-label classification problem. Li and Ogihara (2003) worked on
music in such a regard, treating the multi-label classification problem as a set of binary
classification problems using Support Vector Machines. Categories of emotion originated
from Farnsworth (1958), with some additions, see Table 3.3.

For music, Cowen et al. (2020) argue that music makes us feel 13 distinct emotions,
with a large survey with participants from the United States and China. Participants
reported both on specific emotions (e.g., “angry” or “dreamy”) and in the valence-arousal
plane. The results show that specific emotions are better preserved across the two cultures
than levels of valence and arousal. Cowen et al. state: “People from di�erent cultures can
agree that a song is angry but can di�er on whether that feeling is positive or negative”.
The results converged on 13 distinct emotions, as visualized in Figure 3.3.2

3.3.3. Digital Music Representation

There are many ways to “listen” to music, and which methods we choose can a�ect what
we understand from the music. In computing, Celma et al. (2006) describe the Music

Semantic Gap, i.e. the problem of understanding both the low-level audio signals and
the higher-level features of music. From audio, the computer can understand signal
features such as loudness, contrasts and pitch, as well as “content objects” such as

2
https://www.ocf.berkeley.edu/~acowen/music.html
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Figure 3.3.: Cowen’s map of musical emotions. Reproduced with permission.

A: cheerful,gay,happy H: dramatic, empathic
B: fanciful,light I: agitated, exciting

C: delicate, graceful J: frustrated
D: dreamy,leisurely K mysterious,spooky
E: longing, pathetic L: passionate
F: dark,depressing M: bluesy
G: sacred, spiritual

Table 3.3.: Adjective groups (Li and Ogihara, 2003) in describing musical emotion.

26



3.3. Results

harmony, rhythm and even genre. The “semantic gap” is the road from there to the
human understanding of music, relating to individual emotions, opinions and memories.
Machine learning is described as one fundamental way to bridging the gap, combined
with many other elements such as text understanding, music theory and computational
neuroscience.

In the discovered related work, music is represented in a large variety of ways. Some
use only raw, acoustic data (formats such as MP3 or WAV). This has been presented as a
suitable method for deep convolutional neural networks, as a way to analyze higher-level
musical features, as by Dai et al. (2017) within the recognition of urban sounds. Others use
the MIDI file format to access musical content from various instruments more accurately,
although this may limit the amount of available data as music seldom is released in such a
format. Music can also be mapped visually using spectrograms, as with Liu et al. (2017)
and seen in Figure 3.4. No single optimal method for music representation is established
in the reviewed literature. However, there is often a number of explicit representations
of musical features such as rhythm, mode, tonality and dynamics, extracted in advance
with dedicated functions for each type of feature, on which an algorithm trains explicitly.

3.3.4. Emotion Classification Algorithms

Fuzzy Logic Classifiers

As music can often express a variety of emotions, there is a natural “borderline” nature to
the mood classification problem. Yang et al. (2006) addressed the issue using fuzzy logic

classifiers, utilizing Thayer’s model of Mood as a two-dimensional emotion space (2DES),
to classify the mood of waltzes into clusters. With such an approach, one can not only
indicate belonging to more than one emotional category; the strength of each emotion can
also be indicated. Bai et al. (2017) use the Fuzzy K Nearest Neighbour (KNN) method
with accuracy as high as 83% with a similar 2DES and Gaussian function as the fuzzy
function. Chen et al. (2016) use fuzzy pattern matching from musical temporal features
to extract a theme from a song, and an Artificial neural network (ANN) to identify
emotion within the music.

In the composition of music based on emotions, the indication of several measures of
mood could be to an advantage, rather than having only one classification for each music
sample. This way, musical data may be used for music in di�erent emotions, if the fuzzy
score is high for more than one emotion.

Evolutionary methods

As a way of optimizing for some novel optimization task where both the experimental
and the familiar are important, evolutionary or genetic algorithms can be a suiting choice.
Freitas and Guimarães (2011a) use genetic algorithms to find a melody harmonization,
given an input melody. Genetic operators are concrete musical operations, such as pitch
mutation, musical crossover and measure swapping. The evaluation is performed by
comparing experimental results to human judgment, and a small tendency was found
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Figure 3.4.: Spectrogram of a male voice saying “nineteenth century”.

between some evaluation measures and the human input.

Support Vector Machines (SVM)

Seo and Huh (2019) apply the SVM architecture to create areas in a vector plane used
for the classification of emotions in music. The evaluation was performed towards survey
participants. However, for results to represent the individual variations, classification
match rates were divided into “All”, “Most” and “Least” cases, where “All” cases were
songs where all of the survey participants agreed on the classification. For “Most” cases,
the classification hit the most popular response from (internally divided) participants,
and for “Least”, at least one participant had given the response for one emotion. Overall,
precision reached 73.96%, outperforming deep neural network, random forest and K-
nearest neighbour classifiers.

Lin et al. (2016) use acoustic features of sound directly with a two-level SVM clas-
sification system, analyzing both music genre and music features. The algorithm uses
automatic tools for feature weighting, so that the weighting impact both analysis level
and their likelihood for di�erent classifications.

Artificial Neural Networks (ANN)

In terms of music, ANNs (and many other approaches) have the disadvantage that the
input data must be uniform, which music is not in the sense that it varies in length. Liu
et al. (2017) propose a deep Convolutional Neural Network (CNN) on music spectrograms,
transforming music into a “heat map” of the audio signal in the axes of time and intensity.
See an example of a spectrogram in Figure 3.4. This approach avoids much of the complex
feature extraction which is often needed with music, and the convolution can operate on
di�erent temporal locations as one would in a song to classify emotion.

Patel et al. (2018) propose an ANN where a song’s metadata come from crowd sourced
annotations from the music website Last.fm3 as well as the online music streaming service
Spotify. 4 Here, music is “tagged” by users on measures such as valence, instrumentalness,
danceability, mood and much more. The algorithm fetches “top tracks” from the Last.FM
API for mood terms, and then fetches track metadata from Spotify resources. As such,

3
https://last.fm

4
https://spotify.com
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a wide range of metadata tags can be of help in the classification task, but should
also be noted as a possible source of bias in the unregulated nature of crowd sourced
contributions. The algorithm employs a Multi-Layer Perceptron with backpropagation,
with a sigmoid activation function for all layers, reaching an F-measure of 86%.

Rosli et al. (2016) utilize non-negative matrix factorization in an e�ort to distinguish
vocals from instruments in music. The results indicate that voice is a better indicator of
mood than instruments, but voice and instruments combined within the classification
proves even more useful.

Hybrid Systems

Some hybrid systems have the goal of comparing performance between di�erent ap-
proaches. Kartikay et al. (2016) compares Support Vector Machines, Naïve Bayes, Linear
Discriminant Analysis and Decision Trees, rating LDA as the overall must accurate
classifier. However, their results display that accuracy varies for di�erent classes; the
SVM implementation has a 87.5% classification accuracy for happy songs, and only 22.6%
for peaceful songs. There can be many reasons for this, such as the method for feature
extraction, or how the classes were initially defined from song metadata.

3.3.5. Music Composition Systems

Generative Modeling
In order to e�ectively label and model data, and retrieving from the trained model,

Engel et al. (2018) propose the learning of latent constraints. On a trained model, latent
constraints are value functions which identify areas in the trained latent space with
desired attributes. The advantage of this is that an unconditionally trained model does
not need re-training when performing conditional sampling, such as generating music in
accordance with some user-specified input. A Variational Autoencoder (VAE) is trained,
with a focus on being able to reconstruct its encoded and decoded input. An actor-critic
pair, similarly to the role of the encoder and decoder, is used to discriminate between
encodings of actual data, latent vectors and transformed samples. A “realism” constraint
is imposed to address the trade-o� between the quality of reconstructed vectors and
sample quality. The actor-critic pair in latent space can generate samples that satisfy
user-specified constraints with a high reconstruction quality.

A known weakness of many compositional systems is the lack of long-term coherence
and structure in the produced music. Roberts et al. (2018) propose the aforementioned
Latent Vector Model for the issue of long-term structure. Huang et al. (2019) present the
Music Transformer, and suggest that temporal self-attention could be an essential aspect
of achieving the essential quality of great timing. An approach to representing relative
positional information is presented, as opposed to previous solutions using absolute
or pairwise distance, as well as quadratically increasing sequence length. Using an
autoregressive generative model, self-attention is incorporated into each layer before a
feed-forward sublayer. The both local and global attention of the algorithm allows for

29



3. Related Work

creating continuations with repeated motifs and variations on a given input, or merely
the existing model.

The Music Transformer original source code, while seeming a suitable architecture for
the purpose of automated music composition, is not fully available. The authors have
released a platform for working with the project as a Colab Notebook.5 However, on this
platform, some “model checkpoints and auxiliary data” are not included with the code,
only copied from Google Storage. As this data is not available for extraction, the system
is di�cult to verify and reproduce. However, while not a scalable solution, the Colab
Notebook accepts one MIDI file as melody conditioning, which could serve the simple
purpose of the composition of music based on one sample annotated with mood.

Several e�orts have been made to reproduce the Music Transformer in reproducibility
challenges. Koh et al. (2019) implement the proposed memory-e�cient relative attention
transformer. However, results could not be reproduced, namely in the form of a higher
loss, as well as the evident lack of long term structure in produced results. The proposed
architecture varied only from the original in that PyTorch was used as a framework,
rather than Google Brain’s own Tensor2Tensor. The results could be verified as complete
code is available online.6 As of yet, no other viable, complete, and freely available
implementation producing similar results has been discovered throughout this project.

Building on the work of Huang et al. (2019), Huang and Yang (2020) present the
Pop Music Transformer. This work perceives musical scores as sequences of Revamped
MIDI-Derived Events (REMI), providing a more explicit metric structure for rhythmic
and harmonic structure. Also, the model facilitates several instruments, such as the
piano, bass and drums. The goal is both to compose music based on both conditioned
and unconditioned models, and to represent music in a more similar fashion to how
music is read and understood by humans. Furthermore, the Pop Music Transformer can
fine-tune an existing model on a particular subset of data, making it highly suitable for
the mood-adjustment purposes desired in this thesis.

Another multi-instrument composer, also building on the Transformer architecture,
is the LakhNES, presented by Donahue et al. (2019), which composes music based on
8-bit chiptune music designed for the Nintendo Entertainment System (NES). The model
trains on both the Lakh MIDI dataset (also used by Engel et al., 2018) and the NES
four-instrument dataset (Donahue et al., 2018), by adapting the samples from the Lakh
MIDI Dataset to being “performed” by the available instruments from the NES. Although
the two datasets di�er in content and genre, transfer learning between the two improves
results. Benefits are drawn from the Lakh MIDI Dataset’s large size (175,000 samples),
and the NES Music Database’s structural homogeneity.

Hybrid Systems

Hybrid systems can be used as an attempt to mitigate disadvantages from one or more
systems by combining their features. One such project is the Computoser, presented by

5
https://magenta.tensorflow.org/piano-transformer

6
https://github.com/COMP6248-Reproducability-Challenge/music-transformer-comp6248
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Bozhanov (2014), a hybrid between a rule-based and probability-based algorithm. The
algorithm analyses both defined rules on terms such as structure, rhythm and repetition
as well as sample data, producing new songs. The evaluation is also in a hybrid form, by
machine detection of discrepancies from rules, and also by an audience as the system’s
output is released online.7

Fox and Khan (2013) introduce the Multi-AlGorithmic Music Arranger MAGMA, a
knowledge-based system using Markov chains, routine planning, and genetic algorithms
to compose music. A user inputs desired values for five di�erent preferences: Transition,
repetition, variety, range and mood. First, the song structure is generated (i.e., verses,
choruses, bridges and outros). Then, the measure structure is determined, followed by
generating a chord sequence and at last, the melody. Each of the three algorithms used
performs all four steps and produces a result for the user to compare.

Commercial products

In the development of systems related to AI and music, much progress has been made
outside of the strictly academic context. Systems for composition, adjustment and
recommendation can rapidly become commercial products. One significant contribution
is AIVA, or the Artificial Intelligence Virtual Artist, composing soundtracks based on
emotion, genre or other parameters (AIVA, 2019). The architecture is only explained
briefly, but consists of a combination of genetic algorithms and deep neural networks
(AIVA Technologies, 2018). This has resulted in several products, one of them being a
Music Engine, composing to a variety of genres and moods, with the stated goal to assist
human composers in “the cases where human creativity doesn’t scale”. This could be
relevant for use in movies, video games, or other areas where the need for musical content
is large, but where the demand for variation and originality is also present. AIVA has
been registered as a composer in an author’s rights society, SACEM, making it the first
software recognized for its creative capabilities (AIVA, 2019).

Other commercial products also exist in the sphere of AI music composition. Melodrive8

is a company which has created Melodrive Indie, which composes an infinite stream of
music adjusting to user input, primarily intended for video games (Melodrive, 2019).
Another is Popgun 9 where a tool has been created for automatic mastering of musical
tracks to improve audio quality in addition to working with musical composition. However,
very little is published about the architecture.

3.3.6. Musical Datasets

In order to train a model for use with music, a suited dataset of su�cient size and quality
is necessary. However, the access or construction of a suitable dataset can be di�cult,
and even more so with music due to copyright and usage restrictions. In this section,
some dataset options are presented, and the general conclusion can be seen in that there

7
http://computoser.com. Accessed November 9, 2019

8
https://melodrive.com. Accessed November 12, 2019

9
https://popgun.ai. Accessed November 12, 2019
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often is a clear trade-o� between dataset size, data availability and data or annotation
quality. As a large amount of data is paramount to the successful usage of neural network
and deep learning methods, the demands for a suitable dataset are high.

The 2007-2017 MIREX Audio Mood Classification tasks annually compare MER
algorithms with large popular music datasets. However, due to proprietary restrictions,
datasets are not directly accessible to participants.

Panda et al. (2018) present a dataset extracted from the openly available AllMusic
API10, querying songs for their title, artist, genre and emotion “tags”. AllMusic’s existing
tags do not spring from any known taxonomy, but the dataset maps them as accurately
as possible onto a VA plane. For the emotion recognition task, SVM is used. This
dataset provided music information directly, as well as emotion tags corresponding to the
valence/arousal taxonomy presented by Thayer (1990). Thus, this was a fitting choice
for the network presented in Chapter 4.

Ferreira and Whitehead (2019) present the VGMIDI dataset, consisting of 95 labelled
and 728 non-labelled piano pieces stemming from video game soundtracks. The dataset
is annotated in the two-dimensional VA plane. Due to its limited size, the dataset is
primarily designed for training a generative model composing new music.

Soleymani et al. (2017) present The Database for Emotional Analysis of Music (DEAM)
dataset, consisting of 1802 royalty-free 45-second song excerpts. Although this dataset
excels in size and in the fact that audio samples are available, data quality is not consistent.
In some excerpts, noise, claps or silence are highly present. This is due to the excerpts
being chosen from a random point in the song, and makes its results di�cult to trust
and use for machine learning. Furthermore, other researches have performed further
validation on the annotation methods, and there is a significant discrepancy between the
annotations from the original subjects and the final quadrant annotation, only agreeing
on 47% of samples (Vale, 2017). Also, the dataset is quite unbalanced, with as much as
681 samples for Q3 and only 200 for Q2. Thus, the dataset is not considered to be of
su�cient quality for use in its current state.

Turnbull et al. (2007) present the Computer Audition Lab 500 (CAL500) dataset. The
dataset consists of 500 popular music songs, each labelled with multiple adjectives by at
least three subjects. There are 174 labels, categorized within emotion, genre, instrument,
song, usage and vocal, where 18 of the labels are related to emotion. The labelling
process was performed by 66 paid students in a controlled laboratory environment, under
“controlled experimental conditions”, and should, therefore, be of su�cient quality. The
original full dataset is unavailable. However, the features are available online 11.

Donahue et al. (2018) present the NES Music Database, a corpus of 46 hours of
video game soundtracks created for the Nintendo Entertainment System (NES). As
the console was released in 1983, music was limited to its 8-bit architecture and four
monophonic instruments. As the music is composed for video games over a limited
time, it is remarkably stylistically cohesive, making it suitable for training in a machine

10
http://developer.rovicorp.com/docs. Accessed November 10, 2019

11
https://github.com/yzhaobk/CAL500
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learning context. The dataset is openly available online12.
One e�ort to enable MIR research for machine learning in terms of dataset size is

the Million Song Dataset. It is a very large and freely available dataset consisting of
audio features and metadata for one million popular music tracks (Bertin-Mahieux et al.,
2011). Its data is provided by The Echo Nest 13, a music intelligence platform owned
by Spotify. No audio data is available directly, but rather features extracted from the
music. These features are both baseline features such as tempo, key, loudness, as well
as community-based tags such as crowd-sourced Last.FM metadata. The quality of the
metadata is not guaranteed, and therefore this cannot be considered a valid source of
information without manual validation.

Spotify Developers Platform Another service, which is not quite a dataset but
can provide a significant amount of data, is the Spotify Developers platform. For any
song in the Spotify roster, information can be fetched on various attributes. Some
baseline attributes include song duration, key, mode and tempo, while more high-level
attributes include acousticness, danceability, loudness, speechiness and valence. Spotify
also provides their own recommendation API, where a song, artist or genre is entered
as a “seed”, and a number of other tracks are returned based on the seed. In theory,
the information on loudness and valence could be combined to produce an emotion
quadrant for each song. However, how these attributes are determined on Spotify’s side
is nontransparent, and therefore is di�cult to trust and build upon. With Spotify’s APIs,
music can, to some extent, be accessed, but is limited to registered users, and often
paying users. Also, downloading samples is not available, but the music can be played
and used within Spotify’s own web interface.

12
https://github.com/chrisdonahue/nesmdb

13
http://the.echonest.com
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4. System Architecture

As part of the work on this thesis, a system was implemented for mood classification,
and music composition based on the mood-classified data. This chapter describes the
architecture of the system. Section 4.1 describes the overall architecture of the emotion
classification system. Section 4.2 describes the classification network structure in detail.
Section 4.3 describes the architecture used for music composition. Finally, section 4.4
describes the hardware and software requirements for running the system.

4.1. Overall Architecture

The system predicts the mood of a given music sample within the four quadrants of the
Valence and Arousal (VA) plane, as initially described in 3.3.2 on page 23. The VA plane
and quadrant model was chosen as it seemed widely used in existing work on Music
Emotion Recognition (MER), and it has a simple, yet comprehensive structure argued
to give a su�cient understanding of emotions. Music data is processed as tensors of
their raw audio waveforms. Following this, a deep neural network trains a model on the
annotated music data, classifying each sample based on the audio data only. The mood
predicted by the model after the training phase is stored along with the sample. Finally,
the annotated samples are used to compose new music conforming to a desired mood.
The overall architecture can be seen in Figure 4.1. The following subsections explain
each aspect of the system more thoroughly.

4.1.1. Dataset

The dataset, visualized as the “Music Database” element in Figure 4.1, used with the
system was constructed by Panda et al. (2018). The music samples and related metadata
in this dataset are gathered from the AllMusic API. The AllMusic API categorizes
songs belonging to one or more of 289 distinct categories, not explicitly related to a
known emotion categorization taxonomy. Thus, Panda et al. semi-manually mapped
the categories to fit within the four quadrants of the VA plane, as displayed in Figure
3.2 on page 25. This includes the removal of songs where a dominant emotion quadrant
could not be established given the category data, songs without genre information and
songs without su�cient category information. After filtering, annotation validation was
performed manually.

Table 4.1 describes the features provided in the dataset from Panda et al., and gives
an example for each feature. The highlighted feature, Quadrant, indicates the sample’s
quadrant position in the VA plane, and is the feature used as the target in model training.
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4. System Architecture

Figure 4.1.: Overall system architecture.
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Feature name Feature description Example
Song Song unique ID MT0000044741
Artist Artist name Gipsy Kings
Title Song title Flamencos en el Aire
Quadrant VA-plane quadrant (Q) Q4
PQuad Level of certainty in classification 0.75
MoodsTotal No. of moods found in total 4
Moods No. of moods corresponding to a Q 3
MoodsFoundStr Moods corresponding to a Q fiery, sexy, spicy
MoodsStr All moods Cathartic, Fiery, Sexy, Spicy
Genres No. of genres 2
GenresStr Genres International, Jazz

Table 4.1.: Metadata given for each song in dataset from Panda et al. (2018)

Input format
The input data consists of MP3 music files in samples with a length of 30 seconds. As

argued by Dai et al. (2017), deep convolutional networks should be able to construct
their own understanding of musical features without specific functions to extract them.
Thus, this was selected as the starting point for the algorithm, excluding hand-tuned
features, metadata and spectrograms.

The labels given from the dataset were related to the four emotion quadrants: Q1,
Q2, Q3, Q4. This should be noted as a possible point of improvement, as it does not
position each sample within a quadrant. As an example, if a sample belongs to Q3, but in
the XY-axis was placed very close to Q2, classifying the sample as Q2 will be considered
“equally wrong” as choosing Q4. A more accurate label would improve the system’s ability
to accurately indicate “how wrong” a prediction is. This issue is discussed in Section
6.2.5.

4.1.2. Data Processing

In order for a sample to be usable in a neural network, it must be processed into a tensor.
This is the procedure executed in the Data processing step of Figure 4.1. The data loads
from a CSV file containing all file names, as well as quadrant information. This section
describes this procedure for one sample.

1. The MP3 sample is retrieved and loaded using the Torchaudio library1, a library
implemented for PyTorch for loading sound as a tensor. Data is normalized for
each entry so that values are between [-1, 1].

2. The two audio channels produced (because the sound is stereophonic) are averaged
for each signal in each channel, to convert to mono sound on one channel only.

1
https://pytorch.org/audio/
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3. A tensor containing zeros of shape [160000, 1] is created, and then filled with
the data from the audio sample. Samples with less than 160,000 signals are filled
with zeros at the end, while longer samples are cut, so that all samples are of equal
length.

4. The sample is reduced in quality to around 8 kHz, in order to reduce dataset size
and training time. This is done by taking every fifth signal of data, in a new tensor
of shape [32000, 1].

With this procedure applied to all samples, all sound data is homogenous, normalized,
equal in length and generally suitable for training. It should be noted that this procedure
does reduce the audio quality quite significantly by using mono channel music and
reducing its size by 80%. However, this kind of compression would still result in a
perfectly recognizable sample if loaded back into sound, so it was considered a reasonable
trade-o�.

Training/testing data split
Many data sets include a predefined training/testing split, in which the testing split is

constructed to ensure even representation of all classes and inputs. In the used dataset,
no such splits were indicated, so PyTorch built-in functions for dataset splitting were
used to construct a test dataset consisting of 20% of the samples chosen at random. Thus,
it should be noted that a stratified distribution in the testing set is not guaranteed.

4.1.3. Data Querying with the Spotify Web API

As seen in the Spotify Web API element in Figure 4.1, a connection to the Spotify Web
API can be made in the data processing, which returns data from the Spotify Database,
containing songs and metadata for millions of songs. This is a procedure which can be
run in the event that a quadrant is not provided for the sample. This is the case for the
MAESTRO dataset, where a CSV file provides information on the composer and track
name, but no emotion quadrant has been annotated.

This procedure works as follows:

1. An access token is established by using Spotify’s Authorization Code flow and a
private Spotify account.2 An access token and a refresh token is granted, which is
later used to send requests.

2. The metadata of artist and song name is extracted from the CSV, along with the
file name used to load the correct MP3 data.

3. The artist and song names are processed so that spaces are replaced with +, and
they are concatenated. Other signs such as . or ’ are not removed, as the search

2
https://developer.spotify.com/documentation/general/guides/authorization-guide/#authorization-

code-flow
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Artist name Song name Query
Paul Gilbert Let The Computer Decide paul+gilbert+let+the+computer+decide

Dr. John I Don’t Wanna Know dr.+john+i+don’t+wanna+know

Table 4.2.: Search query processing for the Spotify Web API.

Figure 4.2.: Flowchart of quadrant classification using valence and energy measures.

engine can handle them as part of the search string. Examples can be seen in Table
4.2.

4. The Spotify Web API is queried using an HTTP GET query on Spotify’s
audio-features API endpoint. The parameters passed are the search string
created, and the access token granted.

5. A JSON object containing information on zero, one or more songs given the search
string. If results are found, each song comes with an audio-features JSON
object containing audio features such as valence and energy (arousal). All features
available can be seen in Table 5.4.

6. The Valence and Energy measures are combined to produce a sample quadrant,
where 0.5 constitutes a threshold for classification on high or low energy and valence.
A classification flowchart can be seen in Figure 4.2.

7. The determined quadrant is stored with the sample and can be used for training in
the same manner as discussed above.

4.2. Classification Network Structure

This section describes the structure of the classification network, visualized as the Neural
network element in Figure 4.1. The initial network structure itself was inspired by Dai
et al. (2017), as an e�cient and comprehensive solution to classification based on raw
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audio data. However, the solution has been substantially modified to adapt to the
emotion classification problem with a musical dataset, whereas Dai et al. worked on
recognition of urban sounds such as car horns, barking or children playing. The network
structure can be seen in Figure 4.3. For simplicity, the several layers following the routine
of convolution/max pooling/batch normalization have been truncated in the figure.

Detailed layer information for the first three layers can be seen in Table 4.3. The most
important information here is the growth of the di�erent numbers. The receptive field
is large for the input layer, but very small in the following convolutional layers. The
number of feature maps doubles for each layer, while the input length decreases because
of the max pooling. The reasons for this are explained in this section.
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Figure 4.3.: Classification network structure, with a truncated view of the convolutional, max pooling and batch normalization
layers.
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Layer Receptive Field Feature maps Length
Convolutional Layer 1 80 128 8000
Max Pooling Layer 1 4 2000
Convolutional Layer 2 3 256 2000
Max Pooling Layer 2 4 500
Convolutional Layer 3 3 512 500
Max Pooling Layer 3 4 125

Table 4.3.: Layer specifications in classification network, first three layers.

4.2.1. Fully Convolutional Network Design

The network constructed is a fully convolutional design. Many deep convolutional
networks use several fully connected high-dimensional layers for discriminative modelling.
However, this method gives a very high number of parameters in the network, leading to
high computational costs. With a fully convolutional design, no fully connected layers
are used, which is hypothesized to force the network to learn a fitting representation
in convolutional layers and develop better generalization abilities (Dai et al., 2017; He
et al., 2016; Long et al., 2015). The fully convolutional architecture, as described by
Long et al. (2015), shares similar traits with the architecture used in this thesis, in the
sense that the input layer has a large receptive field, whereas following layers have narrow
receptive fields, essentially reducing how much of the input is considered at once. For
our purpose, this translates to that the beginning layers consider higher-level features,
while deeper layers consider lower-level features. Combined, a fully convolutional design
proves powerful in building models for inputs with hierarchies of features.

4.2.2. Input Layer

The input audio is represented by a single input tensor, visualized in Figure 4.3 as the
Input vector element. Therefore, the stereo sound provided in the dataset is processed
as discussed in Section 4.1.2, in order to ensure homogeneity and equal quality for all
samples. The receptive field for the input layer is very large compared to the receptive
fields in the following layers. This is done in order to enable learning for high-level music
features in the early layers. This is an attempt at mimicking the behaviour of a band-pass
filter, i.e. passing frequencies in a particular range and rejecting others, used in many
kinds of audio processing. A receptive field of size 80 covers around 10 milliseconds of one
sample, which is argued to produce the best possible performance by Dai et al. (2017).

4.2.3. Convolutional Layers

The samples pass through several convolutional layers, which is visualized as the Convo-
lution element in Figure 4.3. Dai et al., and originally Simonyan and Zisserman (2014),
suggest that very small receptive fields for each layer (except the first input layer) allow
for a reduction in the number of parameters for each layer, and thus restrain overall
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model size when working with many layers. This is used in this architecture as well.
Between each layer, max pooling with large strides is also used to substancially reduce
computational costs deeper in the network.

In each layer, a feature map encodes activity level of the associated convolutional
kernel. The number of feature maps doubles as temporal resolution decreases in each
max pooling layer, visualized as the Max Pooling element in Figure 4.3. This trade-o�
between the number of feature maps and temporal resolution throughout the network,
as reflected in Table 4.3, allows di�erent levels of specialization. Higher layers focus on
overall structure, and lower layers focus on more basic musical features.

After each layer, batch normalization, visualized as the Batch normalization element
in Figure 4.3, is applied in order to reduce internal covariate shift, i.e. the problem of
network gradients changing too much, too soon, caused by the amplification of small
changes in the first layer being amplified as network depth increases (Io�e and Szegedy,
2015). After batch normalization, the ReLU activation function is applied.

4.2.4. Output Layer

In the final layer, a global average pooling is applied directly following the final max
pooling. In the end, a softmax function is applied to determine the most likely emotion
quadrant.

4.3. Music Composition

This section describes the Composer element in Figure 4.1, which takes the element called
Mood-filtered samples as its input. The input format is a CSV file containing file names,
used to fetch music data, and the annotated quadrants determined by the network.

For music composition, an existing architecture was used, building on the Music
Transformer principles, namely, the Pop Music Transformer as presented by Huang and
Yang (2020) and introduced in Section 3.3.5. The Pop Music Transformer was used as is,
with modifications so that training is performed on the MAESTRO dataset, and that
fine-tuning is performed on the mood-annotated data from the classification model. This
section describes the Pop Music Transformer architecture and the modifications done to
adapt the system to the use in this thesis.

4.3.1. Pop Music Transformer

The Pop Music Transformer, by Huang and Yang (2020), presented in Section 3.3.5, is
a tool for automatic music composition, which serializes a musical score in a sequence
of events, similar to the MIDI format. This event set, called Revamped MIDI-Derived
Events (REMI), is used for sequence modelling rhythmic and melodic patterns of the
music. The architecture is based on the Music Transformer Architecture (Huang et al.,
2019).

The typical event in the MIDI format is the NOTE_ON or NOTE_OFF event for any note
entered by an instrument. The events are based on discrete time ticks, making a metrical
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structure such as bars and beats, as well as natural variations in tempo, something that
a sequence model has to reconstruct, often with di�culty.

The REMI structure introduces the BAR event, representing one bar, and a POSITION
event to indicate the placement of a note in the bar, which is split into 16 discrete points.
The two combined create a grid structure, more similar to the way humans write musical
scores.

Within this structure, other musical tokens are added, such as TEMPO, allowing for
local changes in tempo without interfering with the notes’ positioning. CHORD events are
introduced to state harmonic structure in the music explicitly.

The musical components in the Pop Music Transformer aim to express music more
similarly to how humans compose music. Building on the attention-based model of the
Music Transformer, listening tests prove this system preferred to the Music Transformer
(Huang and Yang, 2020).

4.3.2. Composition with Mood-Annotated Music

In order to bridge the gap between the annotated data and the Pop Music Transformer,
the existing fine-tuning mechanism of the system was utilized. To use this, a model either
needs to be pre-trained, or trained as the first step of running the code.

When an initial model is defined, a set of MIDI files is input as the new data corpus
on which to fine-tune. These music samples are annotated with a quadrant, and only the
files belonging to the input quadrant are used. Then, the system trains for 200 epochs on
this new data corpus, on top of the existing model. This way, some common information
will be dispersed no matter which mood is input, ensuring that the model is built on a
su�cient amount of data to produce meaningful results.

4.4. System Requirements

The system can be run on any computer using Python version 3.7 and the ability to
download packages for Python.

As training is a computing-intensive task, it is recommended to perform this task
on a computer with access to GPU resources. The training procedures used in order
to train the models described in this thesis was performed on the NTNU IDUN high-
performance cluster.3 The resources accessed were NVIDIA GPU resources. As the
IDUN Cluster is a distributed system, exactly which resources are used can vary between
the following: NVIDIA Tesla P100, NVIDIA Tesla V100 16GB and NVIDIA Tesla V100
32GB. No changes are needed to run the code on CPU resources, as the code detects
this automatically. However, depending on the size of the dataset used, this is a very
time-consuming task.

3
https://www.hpc.ntnu.no/idun
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The experiments conducted in this thesis aim to address di�erent aspects of the research
questions RQ1 and RQ3, as presented in Section 1.2. Namely, they involve experimenta-
tion within the architecture described in Chapter 4, as to what configurations are e�cient
for classifying mood, and for composing new music.

As the music composer used is an existing system, a smaller focus has been set on this
in the experiments. The neural network used for emotion classification is the main focus,
and several aspects of the network and its input data have been addressed in di�erent
experiments.

Section 5.1 describes the experimental plan for five di�erent experiments. Sections
5.2-5.7 describe the setup and execution of each of the described experiments. Section
5.8 describes a survey designed and conducted for evaluation of the music produced.

5.1. Experimental Plan

When training an ANN, a large array of parameters and aspects are subject to change,
which in turn all may a�ect performance in some way. The goal is, of course, to achieve
the “perfect combination” of all possible parameters. However, this would require a very
laborious testing procedure, where many combinations may not be relevant to each other
and have small e�ects on performance.

Due to this, and in order to reduce the experimentation scope of this thesis, the
most promising results for each experiment are used in the system throughout each
next experiment. If several results seem similar in terms of performance, one is selected
and explicitly stated at the start of the next experiment. This is a somewhat naïve
approach, as it neglects that a seemingly optimal result of the first experiments may
prove sub-optimal in combination with some other set of parameters later on. However,
this approach was deemed feasible given the time constraints on the thesis work.

The experiments were conducted in the following order:

Experiment 1: Learning rate adaptation. This includes determining the initial learning
rate, using an optimization algorithm to dynamically adjust the learning rate, and
at which rate the learning rate should be adjusted.

Experiment 2: Network depth. Comparison of loss and accuracy using between four
and eight convolutional layers.

Experiment 3: Expanding the training dataset. An expanded version of the dataset
from Panda et al. (2018) was acquired, and used as input instead of the dataset
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described in the original paper.

Experiment 4: Metadata incorporation. In the original dataset, several metadata at-
tributes were available. This experiment performs simple tests on using some
metadata as an explicit part of the network’s input.

Experiment 5: Classification using Spotify track features. The Spotify Web API is an
openly available tool that, among other features, provides Valence and Arousal
(energy) values for any song in the Spotify database. The dataset is classified using
this service and compared to the annotation given by Panda et al.

5.2. Learning Rate Adaptation

To dynamically adjust the learning rate, the Adam optimizer was utilized. Adam, the
name derived from adaptive moment estimation, is an optimization algorithm that updates
network weights for each parameter individually as learning progresses (Kingma and Ba,
2015). An initial learning rate is supplied, as well as a weight decay rate, indicating at
which rate learning should decrease within epochs.

The loss function used for all experiments is the negative log likelihood loss. The
function is built into Pytorch.1

Table 5.1 describes several di�erent implementations of the Adam algorithm and their
e�ect on accuracy on the testing accuracy after 300 epochs of training. Also, each
iteration runs classification on the Maestro dataset after training. The distribution of
quadrants (Q1/Q2/Q3/Q4) is also indicated in the table.

5.3. Network Depth

For the exploration of network depth, the learning rate setup used was the Adam algorithm
with an initial learning rate of 0.01 and a weight decay of 0.001.

Increasing depth in the network implies a doubling of feature maps, as explained
in Section 4.2. For music, this means that more resources are allocated to identifying
low-level features.

For each iteration, training was performed over 300 epochs. In Table 5.2, various
network depths are compared. Results are measured using the loss in the final training
epoch and the accuracy on the testing set after the final training epoch.

5.4. Expanded Dataset

The original dataset presented by Panda et al. (2018) contains 900 songs. For deep
learning purposes, the dataset should be larger. This is especially because the system in
this thesis works on raw audio data, not any other derived features or metadata, other
than what the network itself can deduce from the audio data. In their article, Panda

1
https://pytorch.org/docs/stable/nn.html#torch.nn.NLLLoss
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Initial learning rate Weight decay Testing accuracy Maestro distribution
Q1 Q2 Q3 Q4

0.1 0.0001 49% 0 0 8 1176
0.1 0.001 49% 0 0 493 691
0.1 0.01 48% 0 0 46 1138
0.1 0.1 20% 0 0 0 1184
0.05 0.0001 46% 0 0 0 1184
0.05 0.001 50% 0 0 11 1173
0.05 0.01 52% 0 0 0 1184
0.05 0.1 24% 1184 0 0 0
0.01 0.00001 42% 0 0 163 1021
0.01 0.0001 46% 5 1 353 825
0.01 0.001 49% 2 0 819 363
0.01 0.01 44% 2 0 1133 49
0.01 0.1 41% 0 0 1184 0

Table 5.1.: Classification accuracy for various learning rate setups

Number of convolutional layers Loss Testing accuracy Maestro distribution
Q1 Q2 Q3 Q4

4 0.030592 47% 1 0 793 390
5 0.110965 54% 5 1 353 825
6 0.042910 51% 4 0 824 356
7 0.005466 52% 8 0 679 497
8 0.117877 49% 49 0 900 235

Table 5.2.: Loss and testing accuracy for di�erent network depths.
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Dataset Loss Testing accuracy Maestro distribution
Q1 Q2 Q3 Q4

Panda et al. 0.110965 54% 5 1 353 825
Panda et al. expanded 0.035813 52% 2 0 0 1182

Table 5.3.: Loss and testing accuracy for the original and expanded dataset.

et al. (2018) state that larger versions of the dataset exist and that the size of the dataset
has been reduced for several reasons. One is that the manual validation and annotation
is labour-intensive. Another is that much of the data was sparsely annotated in terms
of metadata, possibly making the automatic part of the processing inaccurate. A third
reason is that the data was unbalanced in terms of the number annotations for each
emotion quadrant and genre. In an e�ort to acquire a larger usable dataset, contact was
made with the authors of the original dataset. Luckily, they showed great interest in the
project and were able to contribute. A new, much larger dataset was provided.

The expanded dataset contains 51,781 samples, with the attributes SongID, artist,
title, moods and genre extracted from the aforementioned AllMusic API. Each sample is
also annotated with a Quadrant, computed by Panda et al., making the metadata match
the original dataset, as described in Figure 4.1. However, in the expanded dataset, most
of the songs were not used in the original dataset of 900 songs because the computed
quadrant probability was below 0.5. 686 of the songs in the expanded dataset were not
associated with any quadrant at all (i.e., Q0, PQuad=0). 32,138 of the songs have a
computed quadrant probability of less than 0.5.

Table 5.3 displays the di�erence in loss and testing accuracy, as well as the distribution
over quadrants for the MAESTRO dataset after 300 epochs of training. Both used five
convolutional layers and an initial learning rate of 0.01 and a weight decay of 0.001. The
loss and accuracy measures are averaged over 10 runs.

5.5. Metadata Incorporation

This experiment involves the exploitation of metadata in the working dataset, such as
information on genre, artist or song names, in order to improve accuracy.

With using music data only, the input vector of one music sample is of the shape
[32000, 1]. However, the dataset used also provides metadata with each sample. Figure
4.1 describes each metadata feature and gives an example.

In the classification process, the Quadrant column is used as the baseline for the
classification, using only the music content as input. This experiment tests the network
using metadata in various ways to support network decisions.

Using metadata as a part of the network’s input
A natural starting point for using metadata is incorporating it into the network as a

part of the input. This would mean that the input for n samples, originally at size n x 1
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x 32000, would be expanded to size n x 1 x 3200+m where m is the dimension of the
input metadata.

The initial experiment introduces the metadata feature GenresStr, where the set of
genres found in a song is encoded as a m-length “one-hot” vector (although a song can
belong to n « m genres), where m is the total number of genres found in the dataset.

The feature GenresStr was chosen because of its somewhat indicative nature on music,
although it has no linear connection to the labelling. Features such as song or artist
name were not used because they would need further grouping or semantic encoding in
order to make sense in a classification problem. MoodsFoundStr could have been used,
but was not chosen in the first round due to its more direct relation to the annotated
quadrant.

In order to produce the complete list of genres, all genres were extracted from the
dataset’s samples as no such list was provided directly. Genres were split on the characters
, and /, and spaces, and stripped of casing to prevent duplicates. With this process, 23
genres were found, and all samples were appended with the “n-hot” vector produced for
each sample.

To compare performance with and without metadata, the process was run on the exact
same code, on the same computer with the same memory and processing specifications,
on 100 epochs of training.

5.6. Classification using Spotify Track Features

A known factor inhibiting machine learning on music is the lack of consistent, high-quality
annotation on larger datasets. This experiment explores the use of Spotify metadata,
which aspects of it can be used to annotate mood and to which extent the provided data
aligns with the semi-manual annotations of the dataset from Panda et al. (2018).

5.6.1. Feature selection

For any song available on Spotify, metadata and Audio Features can be extracted using
the Spotify Web API.2 The audio features provided can be seen in Table 5.4.

Some of these features are simple to measure, while others are more complex and
require the balancing of several both high- and low-level features of the music. No further
information is listed on Spotify’s documentation on how these features are captured, thus
no guarantee can be given as to their quality. However, these measures are widely used
in Spotify’s own music recommendation work. This, combined with its ease of access,
makes it relevant in the process of creating annotations for larger datasets.

The two features most directly aligned with our notion of valence and arousal are
valence and energy, based on the description from Spotify. However, several other
measures can also prove relevant. For valence, mode can be a simple indicator (major or
minor). For arousal, some relevant measures could be danceability, loudness and tempo.

2
https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
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Feature name Value description Range
duration_ms The duration of the track in milliseconds Hundred-thousands
key The estimated overall key of the track -1 (no result), 0-11
mode The modality (major or minor) of the track 0 or 1
time_signature Estimated overall number of beats in each bar Typically 2-7
acousticness Confidence of whether the track is acoustic 0.0 to 1.0
danceability Describes how suitable a track is for dancing 0.0 to 1.0
energy Describes a measure of intensity and activity 0.0 to 1.0
instrumentalness Predicts whether a track contains no vocals 0.0 to 1.0
liveness Detects the presence of audience in the recording 0.0 to 1.0
loudness the overall loudness of a track in decibels (dB) Typically -60 to 0
speechiness Detects the presence of spoken words in a track 0.0 to 1.0
valence Describes the musical positiveness conveyed 0.0 to 1.0
tempo The overall estimated tempo of a track in BPM Typically 50-200

Table 5.4.: Available Spotify Web API musical features.

Valence measure Arousal measure Result
Average of Valence and Mode Average of Energy and Danceability 0.42
Valence Average of Energy and Danceability 0.46
Valence Energy 0.49

Table 5.5.: Di�erent configurations of valence and arousal measures and their agreement
with Panda annotations

5.6.2. Comparison of Spotify classification and Panda et al.

classification

In order to learn more about Spotify’s musical feature metadata, tests were performed
towards the dataset and annotations of Panda et al. (2018). As Spotify provides a variety
of metadata attributes which can possibly contribute in the creation of annotations,
several combinations were tested. Of the possibly relevant measures, two were selected
for each axis (the others were also tested, but worsened results). Results can be seen in
Table 5.5.

As the usage of the Energy and Valence features initially proved most accurate, the
results from this annotation process can be seen in Figure 5.1 and Figure 5.2. The plots
have been split in two for ease of understanding.

As can be seen in Figure 5.1 and Figure 5.2, there is evidently some connection between
Spotify’s and Panda et al.’s annotations. In the figures, a dot indicates a music sample,
and its position in the X/Y plane indicates its levels of arousal and valence. The coloured
background indicates the four quadrants. The colour of the dots indicates the original
annotation from Panda et al. This means that, as an example, a blue dot on blue
background indicates agreement between the two sources on that given sample, while
a blue dot on yellow background indicates that Panda suggests Q1, while Spotify’s
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5.6. Classification using Spotify Track Features

Figure 5.1.: Plot in the Valence-Energy(Arousal) plane for Q2 and Q3.

Figure 5.2.: Plot in the Valence-Energy(Arousal) plane for Q1 and Q4.
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Figure 5.3.: Distribution of the energy measure in Spotify’s data.

metadata suggests Q4.
The level of agreement from the two sources varies from quadrant to quadrant.
For Q1, we see a relatively high level of agreement, where Spotify’s metadata identify

61.5% of Panda’s Q1 annotated samples. We can also see that the samples with di�ering
annotations are quite close to Panda’s annotated quadrant in the X/Y plane.

For Q4, the situation is quite di�erent. Spotify’s metadata only agrees on 27% of
Panda’s annotations, and a large amount of samples is labelled with Q3 instead. As can
be seen from Figure 5.2, there is a dense area where Spotify’s metadata assigns these
samples valence values close to zero, where Panda et al. disagree. The reason for this
is di�cult to pinpoint, but one reason may be a di�culty in distinguishing calm and
relaxing music with regards to valence.

For Q2, we see a high level of agreement when it comes to energy levels, and some
disagreement on the valence levels.

For Q3, Spotify’s metadata gives quite widespread results. While the metadata aligns
with 54% of Panda’s annotated samples, the samples not agreeing with Panda’s estimated
quadrant seem to be spread out over the X/Y axis, more so than the remaining quadrants,
with a slight overweight on Q4.

5.7. Composition Using Mood-Annotated Music

The final step in the pipeline of understanding mood is the generation of new music which
uses the acquired mood understanding. This section explains how the mood-annotated
data is used in order to condition a generative model to create music according to a
mood.

5.7.1. Dataset Selection

For composition on mood-annotated music, the MAESTRO dataset was chosen. One
great merit of this dataset is that all data is available both in MP3 and MIDI format,
which is suitable because the classification process uses the MP3 format, while the
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5.7. Composition Using Mood-Annotated Music

Figure 5.4.: Distribution of the valence measure in Spotify’s data.

composer uses the MIDI format. Thus, the pipeline between the two segments can be
automated as the file naming is entirely consistent between the data in the two formats.

5.7.2. Training on the Selected Dataset

The MAESTRO dataset has no emotional quadrant annotation, and performing such
a task would be labour-intensive, as well as not guaranteed to align with methods
of annotation performed in the dataset from Panda et al. (2018), used to train for
classification. The datasets di�er in that Panda et al. classify music of all genres, while
the MAESTRO dataset is comprised of classical piano pieces. Thus, using the pre-trained
classification model on the MAESTRO dataset could induce some bias. This is discussed
further in Chapter 6.2.2. For the purpose of experimenting, however, the model trained
on the dataset from Panda et al. was used for classification of the MAESTRO dataset.

5.7.3. Producing Music

For the composition of new music based on the annotated dataset, the Pop Music
Transformer (Huang and Yang, 2020) architecture was used as the composer.

The training of the composer is performed in two phases:

1. Training on the MAESTRO dataset. The entire dataset is used in training a
model. This is to ensure that enough data is available to the system to acquire a
sense of its musical “universe”, musical structure and other general features.

2. Finetuning on mood-annotated data. After the initial training, a smaller
dataset consisting of mood-annotated data of one specific mood is used for further
training.

After both stages of training, a checkpoint is stored so that the model does not need
re-training for each run unless prompted, and so that finetuning is performed on the
same base model for any mood.
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As discussed in Section 6.1.1, the classification model was not able to reliably classify
samples from the MAESTRO dataset into the two high-arousal categories, Q1 and Q2.
Thus, there was no reliable corpus to use for producing music in these two quadrants.
Therefore, composition and testing could only be performed on samples annotated with
Q3 and Q4.

5.7.4. Network Configuration

In training the composer and producing new music, several parameters are adjustable
both in training and network setup. The system is run with di�erent configurations in
order to explore their impacts on the composed samples’ originality and conformity to
the applied data.

Aspects studied were:

1. Temperature: A number ranging from 1 to 10, indicating a degree of mutation
allowed in generation. A low temperature leads to less originality and more
replication of the applied data, while a high temperature causes the music to sound
more original, or “random”. Thus, a healthy balance is important to create music
that is both novel and pleasant.

2. Emphasis on finetuning. In a relatively uniform dataset such as the MAESTRO,
finetuning can be applied rigorously in several ways. There are two main methods
for this: Dataset size and the number of training epochs. A large finetuning dataset
can ensure breadth in the composed results, but it can be di�cult to verify that
the resulting model truly has learned from the finetuning dataset. In adjusting the
number of training epochs, the model increasingly focuses on the finetuning dataset
and less on the base model.

5.8. Survey

In order to evaluate the results of the composition on mood, a digital survey was
conducted.

The survey conducted was a quantitative study, performed online. Initially, a wish
was to conduct such a survey with participants from public areas, such as on the street.
However, due to COVID-19 restrictions in the spring of 2020, no such activity could be
conducted.

The main goal of the survey was to uncover whether music produced in accordance
with some mood appears to align with that mood in the ears of the listener.

5.8.1. Music Sample Configuration

For each combination of composer network configurations introduced in Section 5.7.3,
one sample was tested in the survey. However, when running the composer, the same
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Quadrant Temp. Finetune samples Training epochs ID Included
Baseline 1.2 20 300 - -

Q4 0.8 20 300 Q4-08-20-300 Yes
Q4 1.2 20 300 Q4-12-20-300 Yes
Q4 1.6 20 300 Q4-16-20-300 Yes
Q4 1.2 10 300 Q4-12-10-300 No
Q4 1.2 40 300 Q4-12-40-300 Yes
Q4 1.2 20 100 Q4-12-20-100 No
Q4 1.2 20 500 Q4-12-20-500 Yes
Q3 0.8 20 300 Q3-08-20-300 No
Q3 1.2 20 300 Q3-12-20-300 Yes
Q3 1.6 20 300 Q3-16-20-300 Yes
Q3 1.2 10 300 Q3-12-10-300 Yes
Q3 1.2 40 300 Q3-12-40-300 Yes
Q3 1.2 20 100 Q3-12-20-100 Yes
Q3 1.2 20 500 Q3-12-20-500 Yes

Table 5.6.: Experimental setup for music composition.

combination of features could result in widely di�erent composed music. Thus, the result
produced by the algorithm is not guaranteed to be representative.

Table 5.6 displays the configuration of the samples produced and used in the survey.
The main parameters tested were the temperature, finetuning sample set size, and the
number of training epochs. Combining all features and variations upon them gave 14
distinct samples.

Baseline measures were selected, following the base inputs used by Huang and Yang
(2020). For the finetuning sample set size, no baseline input was provided, so 20 was
chosen as a number which would give a substantial amount of data, while all samples
could be recognized in the case that the model should purely duplicate one of the samples.

In the survey, one sample for each of the experimental setups was shown. However,
three samples were omitted from the study. These were samples of “failed” training,
which sounded highly random and unpleasant. The selection of samples to omit was
judged on the author’s own opinion. Which samples were included and omitted can be
seen in the Included column in Table 5.6.

The sheet music for all samples used in the survey, including omitted samples, can be
found in Appendix B. The samples produced for the survey can be seen in Table 6.2.

5.8.2. Survey Design

For each sample, the participant was asked to rate the song at hand on two measures:
Energy and valence. The two measures were explained as follows:

• Valence is the measure of positive or negative emotion expressed. Feelings with
positive valence could be happiness, joy and content, while feelings with negative
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valence could be anger, sadness, depression or despair.

• Arousal expresses the energy level of the emotion expressed. A high level of arousal
is found in emotions such as exhilaration, excitement, rage or shock. A low level of
arousal is found in emotions such as tiredness, sleepiness, relaxation and calmness.

The participants were asked to evaluate each song for measures of valence and arousal
on a scale from 1-5.

A side goal was for the participants to evaluate the music on enjoyability and quality
overall. Adopting terms from another survey, namely Olseng (2016), participants were
asked to evaluate the songs on three criteria: pleasantness, interestingness, and random-

ness. These criteria were not explained explicitly, but rather shown as antonyms on a scale,
where pleasant, interesting and random were shown as antonyms of unpleasant, boring

and structured, respectively. Pleasantness is a measure indicating what the individual
listener finds pleasing. It is not necessarily a measure of musical quality, but rather what
is pleasing to the ear. Interestingness means to explore whether the music has interesting
features, regardless of whether they are pleasant or not. However, as introduced by
Olseng, this measure can be prone to a fatigue bias. Randomness asks the participant to
evaluate the structure of the music. While some randomness is useful for making the
piece interesting, it should not appear completely random in order to be convincing. A
piece with high randomness may be deemed unlikely to sound like a human composer
created it. Participants were asked to rate each sample for these measures on a scale
from 1-5.

For each sample, a text box was included, where the participant had the option to
include comments on the sample they had just heard. Also, as a background question,
participants were asked to briefly explain their relationship with music.

The participant group consisted of 101 fellow students or other people in the social
network of the author’s friends and family. This group is not a representative group of
an entire society, as the possibility to reach out to a broader and more diverse group was
reduced due to COVID-19 restrictions. This and other biases are discussed in Section
6.2.8.
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6. Evaluation and Discussion

This chapter presents results for the experiments conducted and discusses the significance
of these results in relation to related work. Section 6.1 presents the results and evaluation
of experiments conducted on the task of emotion classification and music composition.
Also, a survey is presented as a tool for evaluating the music composed. Section 6.2
presents a discussion on key topics that influence the performance of the system.

6.1. Evaluation

6.1.1. Emotion Classification

In the task of emotion classification, answering RQ1, the Panda et al. (2018) dataset was
used for training. This dataset utilised the four emotion quadrants on the valence/arousal
plane as its emotion taxonomy, making this the focal point explored in answering RQ2.
The deep neural network implemented is able to perform classification with a testing
accuracy of 54%, averaged over 20 runs on 300 epochs of training, with variations between
50 and 60% for di�erent runs due to di�ering random seeds. Given that it runs on a
dataset of 900 samples only, and has no explicit musical understanding, this can be
seen as impressive as it indicates that the network to some extent has built its own
understanding of musical features indicative to each quadrant. However, much work
remains to be done before it can be put into use for this purpose.

Figure 6.1 displays the confusion matrix for the test set of 180 samples. Here, we can
see that the performance of the classifier varies for each quadrant. For Q2, classification
is quite accurate. However, Q1 is often mistaken for Q3, and the model struggles to
distinguish the low-arousal quadrants Q3 and Q4. The latter issue is one also present for
this dataset with the SVM architecture used by Panda et al. (2018).

With this system, we can to some extent conclude that the network itself develops
mechanisms to distinguish these four emotion categories. While not entirely ready for
use, it supports the notion that expert knowledge or hand-tuned musical features may
not be needed in the future for machines to make their own understanding of music.

Emotion Classification of the MAESTRO dataset
The model produced was trained on the dataset presented by Panda et al. (2018).

However, for composition, the model was used to classify emotions in the MAESTRO
dataset (Hawthorne et al., 2018). This proved a very di�cult transfer learning task for
the model. As can be seen in Tables 5.1, 5.2 and 5.3, no setup for the system was able
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Figure 6.1.: Confusion Matrix for emotion classification, based on test set of 180 samples.

to produce results that gave even a close to even distribution of the quadrants for the
MAESTRO dataset. Many setups classified all samples either to Q3 or Q4, and some
setups classified a more even distribution between Q3 and Q4. However, samples rarely
were classified into Q1, and virtually never into Q2.

In light of these results, a broad conclusion can be drawn that the model seems to
struggle with identifying high arousal in the MAESTRO dataset. There can be many
reasons for this. The main reason hypothesized is that the dataset from Panda et al.
consists of music of all genres, while the MAESTRO dataset consists of classical piano
music only. Naturally, classical piano music is overall a less energetic genre than genres
such as rock or electronic music.

6.1.2. Music Composition

For music composition, seven di�erent configurations were used to produce samples
belonging to each quadrant. Each sample consisted of roughly 16 bars, lasting between 30
seconds and one minute, depending on the tempo of the song produced. This subsection
presents a small selection of the sheet music, to provide an overview of the overall quality
of the produced results.

All sheet music and music clips in .MP3 and .MIDI formats can be seen and listened
to in the thesis attachments or on Google Drive.1

In general, the subjective quality of the music produced seems highly inconsistent. For
one configuration, running the composer system many times can produce very di�erent
results. However, some tendencies were evident across many configurations, speaking to

1
https://drive.google.com/drive/folders/1AJ9DkSOIr-2mV-Cio8W_PgBKAdvhVC09?usp=sharing
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Figure 6.2.: Sheet music, sample Q4-12-10-300.

the quality of the composer overall.
Figure 6.2 shows a tendency found in many composed samples, of continuing, rapid

staccato (short and decisive) notes. There is also widespread use of dissonant notes in the
sense that half-note intervals are played simultaneously. This piece of sheet music is an
extreme example of a recurring issue in several of the pieces produced, namely segments
of very rapid note changes, di�cult for the ear to keep up with.

On the other hand, many composed pieces have very pleasant qualities. Several
compositions prove very successful in establishing recurring themes which create coherence
and enjoyment in the music. Figure 6.3 displays a sample carrying these traits. Red
markings (inserted by the author) indicate one recurring musical element, while blue
markings show another. These elements are, in spite of messy-looking notes, very similar,
and are recurring in di�erent keys and variations throughout the song, creating a sense
of progression and coherence.

6.1.3. Survey Results

This section presents the results from the survey conducted. First, the participant group
is described. Secondly, the scores for music pleasantness, interestingness and randomness
are presented. Finally, the participants’ opinions on emotion conveyed, including written
comments are described, and seen in relation to di�erent qualities in the music produced.
Discussion points drawn from the survey results can be found in Section 6.2.7. Strengths
and weaknesses with the survey are discussed in Section 6.2.8.

Participants
A total of 101 participants contributed to the survey. A total of 1,073 music samples

were evaluated.
The survey participants freely described their relationship with music. Of the 101

participants, 100 answered this question, and all 100 described themselves as consumers
(assuming that a composer or musician is also a consumer, even if it is not mentioned
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Figure 6.3.: Sheet music with recurring themes highlighted, sample Q4-12-40-300.
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Pleasantness Interestingness Randomness
Average 3.02 3.12 3.11
Standard Deviation 0.51 0.32 0.37
Median 3.09 3.08 3.10

Table 6.1.: Aggregate scores for Pleasantness, Interestingness and Randomness metrics.

explicitly). Nine also described themselves as composers or songwriters in a hobby
or professional manner. Fifty-nine identified themselves within playing one or more
instruments.

Pleasantness, Interestingness and Randomness Scores Table 6.1 presents the
average scores, the standard deviation and median scores for all samples for the measures
of Pleasantness, Interestingness and Randomness.

The sheet music for all samples used in the experiment, including the omitted ones,
can be seen in Appendix B. The survey results for each music sample can be seen in
Table B.1.

Participant Sentiment and Qualitative Observations
The survey feedback places pleasantness, interestingness and randomness slightly higher

than the mean value, 3. The feedback varies with each sample. All sentiments can be
found in Appendix B.

Many of the sentiments included give feedback that the music sounds “Mechanic” or
“stops abruptly”, and that this at times feels unpredictable in a song. One participant
comments, for sample Q4-12-20-300: “It’s periodically fine, however some notes are clearly
o�, and it changes suddenly in a non-positive way”. Another, for sample Q4-08-20-300,
states: “Randomness undermines valence, pleasentness and interest”. This statement
can mean that when the music sounds too random, it is impossible to evaluate other
measures at all. For sample Q3-12-10-300, a participant states: “Unplayable for humans,
a machine out of control”. This sample was played in a very high tempo, which makes it
clear that humans did not compose it, because playing it is not humanly possible.

One common thread in several of the samples is the abrupt endings. Examples of
these can be seen in the sheet music in Appendix B; many samples do not have “logical”
endings.

Some of the samples perform much better than others, and are described by participants
as more convincing, even reminiscent of human composers such as Bach or Debussy. One
participant states that “Obvious conotations to classical music makes it more interesting
and a little bit more valencing”, i.e., connotations to a familiar genre helps the listener
to connect more with the music. In sample Q3-12-20-300, a participant says that the
sound is like “Debussy in the land of jazz ballads?”, possibly implying that the music
sounds like a fusion of familiar genres.
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In all samples, a common tendency is that there are seemingly random notes inserted
here and there, disturbing the flow of the music. For sample Q3-12-20-500, a participant
states: “Pretty, but a bit messy at times. The melody is nice, but it disappears a bit in
the composure.”

Some participants found the valence and arousal measures challenging to use in order
to classify all emotions. One participant, for sample Q4-08-20-300, states: “Di�cult to
evaluate valence for a bittersweet feeling, e.g. melancholy”.

Valence and Arousal Scores
Table 6.2 on page 63 displays the participants’ average values and standard deviations

for valence and arousal. Values marked in bold are the ones which indicate belonging to
the intended quadrant, i.e. high valence and low arousal for Q4 and low valence and low
energy for Q3 (threshold 2.5).

The valence and arousal average scores can also be seen as a scatterplot in Figure 6.4
on page 63. The background colours of the figure indicate the four emotional quadrants,
and the colour of the dots indicate the quadrant to which they were finetuned. The
placement of the dot on the X/Y axes indicate the average valence and arousal values,
respectively, from participants.

From the scatterplot, it can be seen that only two of the samples ended up as annotated
with what would correspond to their original, intended quadrant. However, given that
the classification system was only able to distinguish quadrants Q3 and Q4, this is not
surprising in terms of the arousal (energy) axis. The composer had no direct input on
what constituted as high or low energy in the music. However, there seems to be some
correlation between low arousal and low energy, but this is not easy to prove due to
sparse data.

6.2. Discussion

6.2.1. Reproducibility In Related Work

RQ1, as presented in Section 1.2, asks: “What are suitable methods for computer-based
classification of emotion in music?” This implies a need for benchmark measures that
can be used across multiple studies, for comparison in determining suitability of di�erent
methods.

While papers and workshops related to musical computational creativity are plentiful,
their results and conclusions are often di�cult to verify. There are many reasons for this.
One is that the concrete models and representations often are left out of a paper, due to
various reasons of copyright and privacy.

Another is the inherent non-deterministic nature of evaluating the results of creative
work. An AI system may produce di�erent results each time it is run unless explicit
preventative steps such as using determined random seeds. The evaluation methods
applied may also vary. As seen in the related work discussed in this thesis, the evaluating
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Sample Valence SD(Valence) Arousal SD(Arousal)
Q4-12-20-300 3.22 0.971 4.34 0.790
Q4-08-20-300 3.49 0.853 2.75 0.699
Q4-16-20-300 3.92 0.898 4.61 0.616
Q4-12-10-300 Omitted - - -
Q4-12-40-300 2.77 1.043 3.48 0.729
Q4-12-20-100 Omitted - - -
Q4-12-20-500 3.86 1.105 4.79 0.454
Q3-08-20-300 Omitted - - -
Q3-12-20-300 3.24 0.757 2.73 0.807
Q3-16-20-300 2.49 0.959 4.23 0.654
Q3-12-10-300 2.94 1.109 4.79 0.503
Q3-12-40-300 2.74 0.988 2.13 0.755
Q3-12-20-100 3.24 0.867 4.06 0.709
Q3-12-20-500 3.53 0.915 3.67 0.828
All Q4 samples 3.45 0.475 3.99 0.861
All Q3 samples 3.03 0.380 3.77 1.013

Table 6.2.: Average scores and standard deviation for valence and arousal for each sample

Figure 6.4.: Scatterplot for average values from survey response of valence and arousal
scores.
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mechanisms almost always contain some domain knowledge provided by the system
developers. This domain knowledge may be prone to bias, and therefore the results may
not make sense to another reader. Especially in a field as subjective as evaluating a mood
or ambience, complete objectivity will be impossible.

Given this, exploring methods used in related work is highly relevant, but cannot be
expected to yield equivalent results. There is also a significant lack of benchmarking
which methods are genuinely the most e�ective, as there is an absence of meaningful and
measurable empirical results from other systems to which we can compare.

In conclusion, RQ1 becomes di�cult to answer due to the fact that results are di�cult
to verify and reproduce. Also, there is no established “common ground” dataset or task
within MER which allows for fair comparison between performance of di�erent systems.

6.2.2. Dataset Comparison for Classification and Composition

RQ3, as presented in Section 1.2, asks: “What are relevant and e�cient methods for
creating emotion-based computer-generated music, and evaluating it?” In this task, an
understanding of emotion in some music dataset must be established. Also, a music
dataset is needed for composition of the emotion-based music. This music needs to be
written in a format which can be decomposed and used in new combinations for new
music, such as the MIDI format.

In the tasks of classification and composition, finding a dataset suited for both missions
was unsuccessful. For classification, the dataset needs su�cient size and quality, and
high-quality mood annotations. For composition, the data needs to be separable, so that
the building blocks of the music can be reused in novel ways to compose new music. As
no discovered dataset met these rigorous requirements, two di�erent datasets were used
for the two tasks.

The nature of the two datasets varied, in that the dataset used for classification
consisted of popular music of all genres, and that the MAESTRO dataset consisted of
classical piano music. Therefore, it could be seen that the classification model struggled
to predict high energy levels in the MAESTRO dataset, classifying virtually all samples
into Q3 or Q4. This tendency is a clear sign of a lack of familiarity with the classical
piano music genre and the ability to distinguish music within the dataset. This is not
highly surprising, as other genres present in the classification dataset have objectively
much higher energy levels.

With this limitation, it is evident that the model cannot produce music which distin-
guishes lower and higher-energy emotions. However, the model can distinguish between
quadrants Q3 and Q4, making it possible to produce music di�ering in the two moods.

6.2.3. Expanded Dataset

A concern in the work within this topic was that available data sets were often too small.
While the dataset from Panda et al. (2018) was of high quality, its size was hypothesized
too small for the neural network to be able to extract emotion from its audio content.
Thus, a larger dataset was acquired, with over 50,000 entries. As seen in the experiment
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in Table 5.3 on page 48, the expanded dataset proved ine�cient in improving testing
accuracy – in fact, accuracy decreased from 54% to 52% using the expanded datasets.
The loss was much lower, going from 0.11 to 0.036. This probably shows a case of
overfitting, where the model has capacities to “memorize” the data without developing
abilities to generalize any more than what was achieved with the original dataset.

Using the expanded dataset came with a series of known limitations, as presented in
Section 5.4. For one, the dataset was very uneven in its quadrant distribution, whereas
the original dataset was evenly distributed. Also, annotations in the dataset were not
validated, only automatically calculated. A large portion of the dataset had a computed
quadrant probability of less than 0.5. Finally, a fifth quadrant was present in the dataset,
Q0. The intended use for the quadrant Q0 was unclear, but may be an expression for
when no quadrant was found.

With all these limitations listed, it is evident that the dataset did not have the
su�cient qualities required for successful training. It is possible that a di�ering network
configuration, more resilient toward the dataset’s imbalances, may have mitigated this,
but this was not explored further in this thesis. Overall, it seems that a large dataset of
lower quality does not yield higher performance than a smaller dataset of higher quality.

6.2.4. Metadata Incorporation

Experiment 5.5 incorporated genre metadata as part of the network’s input, along with
the sound data. Figure 6.5 displays the development of loss over 100 epochs of training.
The figure shows that the loss over the training datasets develops similarly for the
first roughly 20 epochs. However, following the blue line, loss proves more volatile and
eventually comes to rest at a much higher rate than without the metadata as part of the
input. The loss for the original method, without metadata, converges at around 0.9, and
loss for the network using metadata converges at around 2.0, averaged over 10 runs.

Figure 6.6 displays accuracy for the testing set for networks with and without using
metadata as input. The development is somewhat similar to the loss function. Accuracy
is low for the first 10-20 epochs, but eventually stabilizes after roughly 40-60 epochs.
Eventually, the model using metadata as input stabilizes on a testing accuracy of around
45%, while the network not using metadata stabilizes on roughly 50%. Overall, it can be
concluded that the inclusion of one-hot-vector encoded genre metadata as a part of the
network’s input does not improve performance.

The central aspect to note with regards to the model’s lower performance is that the
direct inclusion of metadata causes the final 23 input tensors to represent something
entirely di�erent than the first 32,000, which represent audio signals. This input implies
that we expect the network to discover that this is an entirely di�erent representation on
its own.

Another important aspect of this inclusion of metadata is that the distribution of
values is very di�erent from those of audio signals. Genre information is represented by 0
or 1 in a one-hot vector, whereas audio signals are floating-point numbers virtually never
0 (except when no signal is received) or 1. Thus, the genre information values deviate
significantly from the values used in the rest of the input.
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Figure 6.5.: Loss function, using (blue line) and not using (orange line) metadata.

Figure 6.6.: Test accuracy, using (blue line) and not using (orange line) metadata.
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While in theory a deep neural network can have the ability to learn its own notion
of what its input represents, this may be too little information to enable this kind of
learning. Moreover, the direct inclusion of metadata into the network along with audio
signals may overall be an unsuited way of including metadata.

6.2.5. Indicating Degree of Classification Correctness

RQ2, as presented in Section 1.2, asks: “What are sets of emotion categories that are
comprehensible and e�ective for machine learning use?”. In the experiments performed,
only the four emotion quadrants Q1-Q4 are used. However, a song’s position within
a quadrant implies that it is positioned somewhere in the X/Y plane. In the dataset
used for classification, this X/Y position was not known. Contact was made with the
authors of the dataset (Panda et al., 2018), and the information did exist, but the authors
could not find the time to provide the data. This means that many samples may have
been very close to an adjacent quadrant, but there was no way to express this. In an
optimal system, if that adjacent quadrant is predicted, the error should be considered
less severe than other predictions. In fact, if the quadrant predicted was correct, but the
X/Y measures were far away from each other although in the same quadrant, perhaps
some error should be enforced as well.

One possible solution may have been viable in the e�ort towards finding partial
correctness in samples. The Spotify Web API for music feature metadata does provide
this information on valence and arousal. As Section 5.6.1 concluded, the features energy

and valence proved most indicative of position in the VA plane. However, as these two
data sources often indicate di�erent quadrants for the same sample, it is an imperfect
solution.

The following setup could have been used for indicating “partial correctness” in a
classification:

if sample . classified_quadrant == sample . annotated_quadrant :
correct = 1

else:
close_enough_energy =

sample . energy < annotated_quadrant . max_energy *1.1
or sample . energy > annotated_quadrant . min_energy *0.9

close_enough_valence =
sample . valence < annotated_quadrant . max_valence *1.1

or sample . valence > annotated_quadrant . min_valence *0.9

if close_enough_energy and close_enough_valence :
correct = 0.5

else:
correct = 0

Using this setup, the annotation is rewarded 0.5 correctness if both energy and valence
are within 10% of the maximum values of valence and arousal belonging to the correct
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quadrant. The goal of such a setup would be to use this partial correctness in order to
punish those classifications less in the training process, causing the model to stay closer
to its partially correct predictions in future iterations. Also, tests should be performed
regarding which measures should be used as acceptable distance from the annotated
quadrant, as well as measures for partial correctness reward.

As a conclusion, the quadrant annotation, hypothesized to be an e�ective taxonomy
for classification, may give too little information on the emotional content of the music.
Moreover, the lack of X/Y position information in the valence/arousal plane inhibits the
opportunity to reward partial correctness.

6.2.6. Discussions with Spotify engineers

In an e�ort to acquire more information on emotions conveyed in music, the Spotify
feature analysis tool was used in the experiment presented in Section 5.6. The feature
analysis tool provided, among other data points, valence and energy measures which
together could form an X/Y position in the valence/arousal plane.

An issue with the Spotify feature analysis is its lack of documentation on how the
features are produced. The quality of the feature analysis appears high and coherent
on samples tested, but its use is di�cult to verify and justify when the system is non-
transparent. Fortunately, contact was established with Jussi Karlgren, adjunct professor
at Kungliga Tekniska Högskolan (KTH) and researcher at Spotify. The conversations
that followed were not structured interviews, but rather a dialogue on Music Emotion
Recognition (MER) in general and at Spotify, the ways such systems are built at Spotify
and what di�culties they have met in this development.

Karlgren describes music recommendation work at Spotify as split mainly into two
segments. One is the social aspect of listening, namely that when you have similar
listening habits to another user, you may get recommendations based on other songs that
the other user listens to, but you may not have discovered yet. This method is highly
e�cient in that it exploits the users’ own listening habits for recommendation, providing
the “human touch” that recommender algorithms often may lack. The other aspect of
music recommendation is what is called the cold start problem. In Spotify’s roster
of millions of songs, many of them have almost never been listened to and therefore
cannot be used in social recommendation. A famous artist may have an advantage when
publishing new music, given that the artist is already familiar. Thus, that information
can be used for recommendation to users deemed likely to enjoy that artist’s music.
However, small or independent artists are more likely to go unnoticed. Here, Spotify
depends on systems which classify songs based purely on audio content, a similar topic
to the one addressed in this thesis. It is the cold start problem, and the analysis tools
developed for this purpose at Spotify, which were the main topics of discussion with
Karlgren.

With regards to the question on documentation of the analysis tools for the cold start
problem, information on how features such as valence and energy are computed was
superficial or lacking. In discussion with Karlgren, three main hypotheses were presented
and later researched for evidence. The following section describes these hypotheses.
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• Analysis tools are valuable to the business. Spotify is not just a music
listening service. It is also widely known for its high-quality recommendation
algorithms. If Spotify’s methods of music classification and recommendation were
publicly available, it might jeopardize Spotify’s competitive advantage.

• Analysis tools may not have been documented upon creation. There are
many possible reasons for this. First, many systems from Spotify are developed
using test-driven development, which creates a form of implicit documentation
which would be di�cult to publish. Second, the people who were most familiar
with the systems may not be working at Spotify anymore, as the company has seen
great growth in the last years. Spotify is probably not alone in being reliant on
their workforce being their direct source of documentation, which then can become
a problem upon workforce turnover through the years.

• Documentation may not be necessary when you feel certain that it
works. As a commercial company, the quality of a certain tool within feature
analysis can, in some regards, be measured in its success when meeting the users.
When the recommendation system is e�ective in getting the user to listen to more,
and more diverse, music, it can be considered a success. On the other hand, if an
aspect of the system proved ine�ective in reaching such user-related goals, it would
have been discarded or improved upon. Thus, its very existence and availability
may serve as evidence that it should be considered accurate in its predictions.

After discussing these hypotheses, contact was made with Simon Durand and Ching
Sung, research scientist and product manager, respectively, at Spotify working in the
team building audio analysis features. Discussion with them provided some more insight
into how the features were developed.

One main aspect to note is that the audio features addressed in this chapter were
designed by a music intelligence company called The Echo Nest, which was acquired by
Spotify in 2014. According to Durand, these inner workings of the features were not
documented clearly. However, some more high-level explanations were available. Here
follows the direct explanation from Durand for the energy and valence features.

• “Energy tries to convey how energetic a song is. It is a linear combination of 20
features extracted from the overall analysis of a song, like average note duration. It
is trained on human judgement to rank 5 songs (among about 1000) from more
energetic to less energetic.

• Valence is the musical positiveness conveyed by a track. Tracks with high valence
sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence
sound more negative (e.g. sad, depressed, angry). It is a feed-forward Neural
Network applied on the 2d fast Fourier transform of short audio windows, then
averaged. It was trained on human judgements.”

The experimental method for extracting Valence and Energy measures on the basis of
human judgment are described as follows:
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• “A dataset of 1000 songs was selected (the 1000 songs were probably randomly
drawn among the Echo Nest database but unfortunately I don’t have more inform-
ation about the dataset composition)

• 5 examples are drawn randomly among those 1000 songs and constitutes a set.
This is done many times.

• Each of these sets of 5 examples is being shown to human participants who are
asked to ranked the 5 songs according to an audio attribute (eg: rank from highest
to lowest energy)

• The audio attribute model is also shown those sets of 5 examples and is trained to
output a measure of an attributes that can rank them such that the Kendall’s tau
coe�cient between the prediction and the human judgement is minimized. The
Kendall’s tau coe�cient measures the similarity of two rankings by counting how
many swaps you have to do to align one list to the other”

While this sheds important light on the testing methods, several aspects of the testing
remain unclear. The most significant issue is that the dataset composition is unclear,
meaning that it may be biased towards specific kinds of music. If the music was drawn
randomly from a large database, it might be biased towards whether the music database
is distributed evenly within all kinds of music. The ranking method used is an e�cient
way to rank several samples against each other. However, it naturally takes on the
assumption that all songs can be ranked towards each other. For example, if a test is
between four very calm songs and one very energetic, they would still be ranked in order
where all samples are seen to be equidistant to one another. To mitigate this flaw, one
method is to ensure a high enough number of these rankings for each song. However, to
what extent this is done is not clear.

In the end, it is di�cult to conclude whether this method is strong enough to use.
However, it is clear that human judgment is deemed necessary in the development
of these features, and this method may be a reasonable choice in the trade-o� with
resource demand. It seems that Spotify developers comfortably rely on the fact that their
recommendation algorithms, which utilize these features, are popular and considered
accurate by their user base. In such a regard, the features, in combination with Spotify’s
other recommendation systems, should be considered as successful, although no scientific
conclusion can be made to why this is, in this thesis.

6.2.7. Composition Quality and Recommended Composition Setup

The goal for this thesis overall, as presented in Section 1.2, was to “Classify emotion in
music and use the classifications in automatic music composition”. The survey conducted
gives an evaluation of whether the music composed does indeed convey the emotions
intended by the system, by giving valence and arousal values for music samples. This
implicitly results in a quadrant, to which we can compare with the intended quadrant
used in composition.
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The music composed with a given emotion as input, presented in Section 6.1.3, was
not recognised by survey participants as consistent in adhering to the intended emotion
quadrant. However, there are di�erences in the composition results that may indicate
that the classification was e�ective to some extent. On average, the music composed
based on Q3 (low arousal, low energy) annotations are rated by survey participants with
lower valence and arousal values than the Q4 (high arousal, low energy) compositions.
This can be seen most clearly by the visualized survey results in Figure 6.4 on page 63.
Therefore, a conclusion here is that the music produced with the intent on low arousal is
on average scored with lower arousal than the music produced with the intent of high
arousal. However, the results are not consistent, and further testing should be performed
in order to increase the certainty that this is indeed the case.

Another interesting matter here is a strange phenomenon best seen when studying
the sheet music. Overall, there is an over-representation of very short notes and pauses.
Even when a longer note is heard, it is often the joining of several short notes in the sheet
music. As the system used is an existing architecture, it is di�cult to understand why
this is. However, it is natural that participants connect short, rapidly changing notes as
“high-energy”. This may be part of the explanation as to why the energy is mostly rated
as very high for many samples.

RQ3 asks for relevant and e�cient methods for creating emotion-based computer-
generated music. In using the Pop Music Transformer, many di�erent experimental
setups were used, in an attempt to understand which parameters had an impact on both
music quality and whether the music conveyed the intended emotion.

With regards to what is the most suitable experimentation setup, no clear tendency
was found as to which configuration of the composer created the “best” result. However,
some conclusions can be made from the results produced.

First and foremost, too little finetuning data (10 samples) or too few epochs of training
(100 epochs) most often led to very unpleasant music samples. Sample Q4-12-10-300
(using 10 finetuning samples) and Q4-12-20-100 (training for 100 epochs) were discarded
due to their very low quality and coherence. The corresponding configurations for Q3,
namely Q3-12-10-300, was rated with one of the lowest scores for pleasantness and
high randomness, as well as being described by participants as too fast and incoherent.
Q3-12-20-100 also scored below average for pleasantness, but was overall better received.
Thus, a conclusion here is that for future experimentation, a small amount of finetuning
data is not recommended.

With regards to the experiments on including a more substantial amount of training
data or number of training epochs, no direct conclusion can be drawn as to what facilitates
a clearly better result. The samples rated as most pleasant were Q4-08-20-300, Q4-12-
40-300 and Q3-12-40-300. One indication may be that a larger amount of finetuning
samples lead to a more pleasant result. However, more samples would need testing in
order to verify this.
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6.2.8. Survey Strengths and Weaknesses

The conducting of a survey to evaluate the results in this thesis has some strength and
weaknesses, discussed in this section. A primary strength of the survey is its ability
to gather information on people’s subjective experiences in a structured manner. It
makes the participants adhere to the same type of language in expressing opinions on
the produced music. Also, the participants can make comments if they wish to express
themselves outside of the structured language. Combined, this gives a combination of
quantitative and qualitative data which is suited for the preliminary understanding of
the quality of the system produced.

There are, however, several weaknesses to which the survey is prone. First and foremost,
the survey was conducted digitally and online. This method means that the participants
have no way of asking questions if anything is unclear. No assurance can be made that
the participants understand the language used in the survey in the same way.

Another weakness is found in the group of the participants and their relationship with
the author. Due to the COVID-19 outbreak, which took place in the spring of 2020,
at the time of writing, no physical experiments could be conducted. This also severely
limited the people that could be reached with other methods of contact, such as asking
people on the street or at the school campus. Thus, the participants asked directly to
participate were all in a familiar, friendly or professional relationship to the author. This
can introduce several forms of bias. One is that the participants give overly positive
answers (on factors such as pleasantness), to show their support of the work. On the
other hand, this may be a factor that is known to the participants, for which they may
try to overcompensate. This issue may introduce another bias, i.e. the participants giving
overly negative answers, trying to avoid the original bias.

Attempts were made to mitigate these biases by encouraging participants to ask friends
or colleagues of their own to participate in the survey. This removes the direct relationship
with the author, but may still be a source of similar familiarity biases.

In the participant group, over half of the participants stated that they play one or
more instruments, indicating that this group overall has a strong relationship to and
understanding of music. This number is a clear over-representation as to what could
be expected of a more diverse group, as it reflects the author’s personal network where
there is a large number of musicians. It can also be a sign that people who have a
personal interest in music felt more compelled to answer the survey than the more casual
consumer.

A third possible weakness is in the fact that only two of the four quadrants were used
in the survey, because the classifier only could predict songs from the MAESTRO dataset
into quadrants Q3 and Q4. A possible bias here is that the participants may expect that
all quadrants should be evenly present in the survey, and answers will be adjusted so
that all quadrants are present there as well.

The main attempt to mitigate this weakness was to ask the participants to rank the
music on scales of valence and energy, instead of asking the participants to place each
sample in one of the quadrants. This creates more options for the participants than
just the four categories, possibly reducing the participants’ bias towards giving an even
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distribution of answers. However, this cannot be validated, as no direct conversation was
had with the participants.

In presenting the survey, samples were not presented to the participants in a random
order, due to technical di�culties with the online survey tool. This lead to survey
responses which did not evaluate all samples, causing the final samples to be evaluated
fewer times. 19 participants skipped the final sample in the survey. This can be a sign of
fatigue bias with the participants (i.e. the deteriorating e�ort put in by participants in
later sections of the survey).

6.2.9. Composition: Should all results be good?

In the produced music, quality and perceived coherence vary greatly. Some pieces are
enjoyable, while others feel “random” or unpleasant in other ways.

In a sense, this is not so di�erent from the work of a musician, as no musician is
expected to produce exclusively great compositions, or even compositions liked by all
people. Ideas, themes and melodies must be hand-picked and combined in order to
produce pleasant results, often to some defined audience. Thus, one use of the system
created in this thesis is just that: the facilitation of ideas and creativity. This could
either be in the input of a mood, and receiving a new piece from scratch upon which to
build, or inputting one’s own melody and creating a continuation.
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From Chapter 1, the goal of this thesis was to classify emotion in music and use the
classifications in automatic music composition. This goal has been addressed by the
exploration and answering of three main research questions. This section summarizes
contributions made as introduced in Section 1.4 on page 3, and finally, to which extent
the goal has been met.

In this Master’s thesis, a structured literary review has been performed, reviewing the
state-of-the-art within musical computational creativity. From this, experiments have
been conducted in order to find relevant machine learning methods and data sources for
the understanding of mood in a popular music data set.

As presented in Section 4.1, a neural network architecture has been produced, in a fully
functional pipeline between the classification of mood in music, and the composition of
new and novel music based on mood-annotated music data. Test accuracy in classification
lies around the 50% mark, whereas random guesses would perform at around 25%. This
performance could have been improved by two main factors: A larger dataset, as the
system only had 900 samples to work on, and a better indication of each sample’s position
in the emotional X/Y plane.

Answering Research Question 1 (RQ1), it seems that a deep neural network
classifying on raw musical data is a viable method for classifying mood in music data.
This method has the significant advantage that little musical expert knowledge is required,
and that the network itself is given the task of distinguishing both high- and low-level
features.

RQ2 asks what suitable sets of emotion/moods categories are. In this thesis, I conclude
that the X/Y axis is a su�cient method for understanding mood in music in such a way
that it can be used to compose new music. However, it has also been made clear that
this choice cannot be used universally on all genres on music. The classical piano genre
can be categorized on such a set of axes, but if it is combined with a much louder genre
such as rock, no classical piano music would ever be considered energetic. This indicates
that universal measures for all music may not fit in such a taxonomy, but they can be
very useful within a genre.

RQ3 asks for methods for the production and elevation of mood-based computer-
generated music. In this thesis, several methods of compositions have been compared,
with a focus on instrumental music with a limited number of instruments. The most
significant find is that the element of relative attention is essential to composing music
that feels both novel and “human”. Recurrence of themes and melodies contribute to a
song feeling complete.

The element of relative attention has been used in the composer used in this thesis.
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The compositions were produced with emotion-annotated data as a “finetuning” input,
training specifically on the emotion-annotated samples in order to learn elements which
distinguish that data from the entire data corpus. The compositions produced vary in
quality. Some are pleasant and seem to cohere to the input mood, while others feel
random. However, there seems to be evidence of structure and repetition within the
music, and thus the goal of self-attention is to some extent achieved.

A survey was performed in order to test whether the emotional “intent” was indeed
conveyed in the produced music. Results from the survey indicated that high-arousal
emotion was generally well-reflected in the composed music, and low-arousal emotion was
on average rated as lower-arousal, however not within the desired thresholds required in
order to successfully place the composed music in the originally desired emotion quadrant.

7.1. Future Work

Expanding datasets containing raw musical data.
An important step in the progress of music emotion recognition would be to develop

larger, yet still publicly available, datasets containing the actual music. In this
sense, the most significant part of the problem is probably the issue of intellectual
property and licensing. However, expanded availability on even short samples of
songs could be of great help in understanding the relationship between music and emotion.

Data for both classification and composition.
The first inhibiting factor of this work has been the accessibility of data suited for both

the purpose of composition and of classification. A significant step towards smarter music
composition would be to develop a dataset which both carries mood annotations and the
music in a file format which can be deconstructed and reconstructed for composition.

Measures for partial correctness.
With the strict limits of the emotional quadrants, a measure for partial correctness

should be developed in order to avoid suppressing “almost correct” solutions just as
much as the completely incorrect solutions. This means working on annotations in the
X/Y plane, and developing a more “fuzzy” loss function.

Separate networks for audio and metadata.
A measure that may improve classification accuracy is a system with the ability to

combine audio data and metadata. A small experiment was conducted in this thesis,
combining the two types of data in the same network. However, as the data types are
very di�erent, a possibility for the processing of metadata could be employing it in a
di�erent network structure entirely and combining the results to ensure that it is not
treated as the same type of information as audio signals.

Further testing for significant survey results.
In the survey conducted for this thesis, 101 participants evaluated 11 samples, one for
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each training configuration. However, one training configuration could produce a massive
variety of di�erent samples. Thus, further testing on the model using a larger amount of
samples for each training configuration would give a more representative image of what
the impact of each training configuration truly is. Moreover, similar surveys should be
performed on more diverse participant groups in order to reduce familiarity biases.

77





Bibliography

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,
Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16), pages 265–283, Savannah,
GA, nov 2016. USENIX Association. ISBN 978-1-931971-33-1. URL https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi.

AIVA. About AIVA. https://www.aiva.ai/about#about, 2019. [Online; accessed
11-November-2019].

AIVA Technologies. How we used our Music Engine to create the first AI-generated
album of Chinese Music. https://medium.com/@aivatech/how-we-used-our-
music-engine-to-create-the-first-ai-generated-album-of-chinese-music-
9d6fa984b4e8, 2018. [Online; accessed 11-November-2019].

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IE, 2(1):1–18, 2015.

J. Bai, K. Luo, J. Peng, J. Shi, Y. Wu, L. Feng, J. Li, and Y. Wang. Music emotions
recognition by cognitive classification methodologies. In 2017 IEEE 16th International

Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), pages 121–129,
July 2017. doi: 10.1109/ICCI-CC.2017.8109740.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1798–1828, 2013.

Thierry Bertin-Mahieux, Daniel Ellis, Brian Whitman, and Paul Lamere. The Million
Song Dataset. In Proceedings of the 12th International Conference on Music Information

Retrieval (ISMIR 2011), pages 591–596, 01 2011.

Margaret A. Boden. Creativity and artificial intelligence. Artificial Intelligence, 103(1-2):
347–356, August 1998. ISSN 0004-3702. doi: 10.1016/S0004-3702(98)00055-1. URL
http://dx.doi.org/10.1016/S0004-3702(98)00055-1.

Andrew Botros, John Smith, and Joe Wolfe. The Virtual Boehm Flute – A web service
that predicts multiphonics, microtones and alternative fingerings. Acoustics Australia,
30(2):61–66, 2002.

79



Bibliography

Bozhidar Bozhanov. Computoser - rule-based, probability-driven algorithmic music
composition. Computing Research Repository (CoRR), abs/1412.3079, 2014. URL
http://arxiv.org/abs/1412.3079.

Catherine B Bruch. Assessment of creativity in culturally di�erent children. Gifted Child

Quarterly, 19(2):164–174, 1975.

Zehra Cataltepe, Yusuf Yaslan, and Abdullah Sonmez. Music genre classification using
midi and audio features. EURASIP Journal on Advances in Signal Processing, 2007:
1–8, 01 2007. doi: 10.1155/2007/36409.

Òscar Celma, Perfecto Herrera, and Xavier Serra. Bridging the music semantic gap.
Extended Semantic Web Conference (ESWC) 2006 Workshop on Mastering the Gap:

From Information Extraction to Semantic Representation, 2006.

P. Chen, L. Zhao, Z. Xin, Y. Qiang, M. Zhang, and T. Li. A scheme of midi music
emotion classification based on fuzzy theme extraction and neural network. In 2016

12th International Conference on Computational Intelligence and Security (CIS), pages
323–326, Dec 2016. doi: 10.1109/CIS.2016.0079.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995. Springer.

Alan S. Cowen, Xia Fang, Disa Sauter, and Dacher Keltner. What music makes us feel:

At least 13 dimensions organize subjective experiences associated with music across

di�erent cultures. National Academy of Sciences, 2020. doi: 10.1073/pnas.1910704117.
URL https://www.pnas.org/content/early/2020/01/01/1910704117.

Darren W Dahl and Page Moreau. The influence and value of analogical thinking during
new product ideation. Journal of marketing research, 39(1):47–60, 2002.

Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. Very deep convolutional
neural networks for raw waveforms. In 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 421–425. IEEE, 2017.

Roger Dannenberg. Computer Models of Musical Creativity, MIT Press (2005). Artificial

Intelligence, 170:1218–1221, 12 2006. doi: 10.1016/j.artint.2006.10.004.

Leon Derczynski. Complementarity, f-score, and NLP evaluation. In Proceedings of the

Tenth International Conference on Language Resources and Evaluation (LREC’16),
pages 261–266, Portoroû, Slovenia, May 2016. European Language Resources Associ-
ation (ELRA).

Chris Donahue, Huanru Henry Mao, and Julian McAuley. The NES Music Database:
A multi-instrumental dataset with expressive performance attributes. In Proceedings

of the International Society for Music Information Retrieval (ISMIR) 2018, pages
475–482, 2018.

80



Bibliography

Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W Cottrell, and Julian
McAuley. LakhNES: Improving multi-instrumental music generation with cross-domain
pre-training. arXiv preprint arXiv:1907.04868, 2019. In Proceedings of the International

Conference on Music Information Retrieval (ISMIR 2019).

Stuart Dreyfus. The computational solution of optimal control problems with time lag.
IEEE Transactions on Automatic Control, 18(4):383–385, 1973.

Paul Ekman. What scientists who study emotion agree about. Perspectives on

Psychological Science, 11(1):31–34, 2016. doi: 10.1177/1745691615596992. URL
https://doi.org/10.1177/1745691615596992. PMID: 26817724.

Jesse Engel, Matthew Ho�man, and Adam Roberts. Latent constraints: Learning to
generate conditionally from unconditional generative models. In International Confer-

ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
Sy8XvGb0-.

Paul R. Farnsworth. The social psychology of music. Journal of Aesthetics and Art

Criticism, 17(1):133–133, 1958. doi: 10.2307/428031.

Lucas N. Ferreira and Jim Whitehead. Learning to generate music with sentiment.
In Proceedings of the Conference of the International Society for Music Information

Retrieval, ISMIR 2019, 2019.

R. Fox and Adil Haleem Khan. Artificial intelligence approaches to music composition.
In The International Conference on Artificial Intelligence (ICAI) (p. 1). The Steering

Committee of The World Congress in Computer Science, Computer Engineering and

Applied Computing (WorldComp)., Northern Kentucky University, 2013.

A. Freitas and Frederico Guimarães. Melody harmonization in evolutionary music using
multiobjective genetic algorithms. In Proceedings of the Sound and Music Computing

Conference, January 2011a.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Proceedings of the 27th International Conference on Neural Information Processing

Systems - Volume 2, NIPS’14, page 2672–2680, Cambridge, MA, USA, 2014. MIT
Press.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
Pages 200–220.

Kazjon Grace and Mary Lou Maher. Expectation-based models of novelty for evaluating
computational creativity. In Tony Veale and F. Amílcar Cardoso, editors, Computational

Creativity: The Philosophy and Engineering of Autonomously Creative Systems, pages
195–209. Springer International Publishing, Cham, 2019. ISBN 978-3-319-43610-4. doi:
10.1007/978-3-319-43610-4_9. URL https://doi.org/10.1007/978-3-319-43610-
4_9.

81



Bibliography

Tatsunori B. Hashimoto, Hugh Zhang, and Percy Liang. Unifying human and statistical
evaluation for natural language generation, 2019.

Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,
Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. Enabling factorized
piano music modeling and generation with the MAESTRO dataset. arXiv preprint

arXiv:1810.12247, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016.

L. A. Hiller, Jr. and L. M. Isaacson. Musical composition with a high-speed digital
computer. Journal of the Audio Engineering Society, 6(3):154–160, 1958. URL
http://www.aes.org/e-lib/browse.cfm?elib=231.

John C Houtz, Edwin Selby, Giselle B Esquivel, Ruth A Okoye, Kristen M Peters, and
Donald J Tre�nger. Creativity styles and personal type. Creativity Research Journal,
15(4):321–330, 2003.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon,
Curtis Hawthorne, Andrew Dai, Matt Ho�man, Monica Dinculescu, and Douglas
Eck. Music transformer: Generating music with long-term structure. In International

Conference on Learning Representations (ICLR), 2019. URL https://arxiv.org/
abs/1809.04281.

Yu-Siang Huang and Yi-Hsuan Yang. Pop music transformer: Generating music with
rhythm and harmony, 2020.

Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International

Conference on Machine Learning, volume 37, 2015.

Tony Jebara. Machine learning: discriminative and generative, volume 755. Springer
Science & Business Media, 2012.

Sean F Johnston. A cultural history of the hologram. Leonardo, 41(3):223–229, 2008.

A. Kartikay, H. Ganesan, and V. M. Ladwani. Classification of music into moods
using musical features. In 2016 International Conference on Inventive Computation

Technologies (ICICT), volume 3, pages 1–5, Coimbatore, India, Aug 2016. doi: 10.
1109/INVENTIVE.2016.7830197.

Nikhil Ketkar. Introduction to PyTorch, pages 195–208. Apress, Berkeley, CA, 2017a.
ISBN 978-1-4842-2766-4. doi: 10.1007/978-1-4842-2766-4_12. URL https://doi.
org/10.1007/978-1-4842-2766-4_12.

82



Bibliography

Nikhil Ketkar. Introduction to Keras, pages 97–111. Apress, Berkeley, CA, 2017b. ISBN
978-1-4842-2766-4. doi: 10.1007/978-1-4842-2766-4_7. URL https://doi.org/10.
1007/978-1-4842-2766-4_7.

Shahin Khobahi and Mojtaba Soltanalian. Model-Aware Deep Architectures for One-Bit
Compressive Variational Autoencoding. arXiv preprint arXiv:1911.12410, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Proceedings of the 3rd International Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. An Introduction to Variational Autoencoders.
arXiv preprint arXiv:1906.02691, 2019.

Anders Kofod-Petersen. How to do a Structured Literature Review in Computer
Science. https://research.idi.ntnu.no/aimasters/files/SLR_HowTo2018.pdf,
2018. [Online; accessed 24-November-2019].

Zheng Cong Koh, Jin Hong Yong, and Jin Yi Yong. Re-implementation of music trans-
former: Generating music with long term structure, 2019. URL https://github.
com/COMP6248-Reproducability-Challenge/music-transformer-comp6248. [On-
line; accessed 24-November-2019].

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation Applied to Handwritten
ZIP Code Recognition. Neural computation, 1(4):541–551, 1989.

Erich L Lehmann and George Casella. Theory of point estimation. Springer Science &
Business Media, 2006. Pages 50–51.

Colby N Leider. Digital audio workstation. McGraw-Hill, Inc., 2004.

Tao Li and Mitsunori Ogihara. Detecting emotion in music. Proceedings of the Interna-

tional Society for Music Information Retrieval (ISMIR) 2003; 4th Int. Symp. Music

Information Retrieval, 2003:1–2, 11 2003.

Yong Li, Yang Fu, Hui Li, and Si-Wen Zhang. The improved training algorithm of back
propagation neural network with self-adaptive learning rate. In 2009 International

Conference on Computational Intelligence and Natural Computing, volume 1, pages
73–76. IEEE, 2009.

C. Lin, M. Liu, W. Hsiung, and J. Jhang. Music emotion recognition based on two-level
support vector classification. In 2016 International Conference on Machine Learning

and Cybernetics (ICMLC), volume 1, pages 375–389, July 2016. doi: 10.1109/ICMLC.
2016.7860930.

Dan Liu, Lie Lu, and Hong-Jiang Zhang. Automatic mood detection from acoustic music
data. In Proc. ISMIR 2003; 4th Int. Symp. Music Information Retrieval, January
2003.

83



Bibliography

Xin Liu, Qingcai Chen, Xiangping Wu, Yan Liu, and Yang Liu. CNN Based Music
Emotion Classification. arXiv preprint arXiv:1704.05665, April 2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks for
Semantic Segmentation. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3431–3440, 2015.

Todd I Lubart. Models of the creative process: Past, present and future. Creativity

research journal, 13(3-4):295–308, 2001.

Andrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, and Andrew Y. Ng. Improving
Text Classification by Shrinkage in a Hierarchy of Classes. In Proceedings of the

Fifteenth International Conference on Machine Learning, ICML ’98, pages 359–367,
San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-556-8.
URL http://dl.acm.org/citation.cfm?id=645527.657461.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Melodrive. About melodrive. http://melodrive.com/index.php#about, 2019. [Online;
accessed 11-November-2019].

Marvin Minsky and Seymour A Papert. Perceptrons: An Introduction to Computational

Geometry. MIT press, 2017. Pages 227–246.

S. Mo and J. Niu. A Novel Method Based on OMPGW Method for Feature Extraction
in Automatic Music Mood Classification. IEEE Transactions on A�ective Computing,
10(3):313–324, July 2019. ISSN 2371-9850. doi: 10.1109/TAFFC.2017.2724515.

Olav Andreas E Olseng. An application of evolutionary algorithms to music: - co-evolving
melodies and harmonization. Master’s Thesis, Norwegian University of Science and

Technology, Faculty of Information Technology and Electrical Engineering, Department

of Computer Science, page 47, June 2016.

Stephen E. Palmer, Karen B. Schloss, Zoe Xu, and Lilia R. Prado-León. Music–color
associations are mediated by emotion. Proceedings of the National Academy of Sciences,
110(22):8836–8841, 2013. ISSN 0027-8424. doi: 10.1073/pnas.1212562110. URL
https://www.pnas.org/content/110/22/8836.

Davis Yen Pan. Digital audio compression. Digital Technical Journal, 5(2):28–40, 1993.

Renato Panda, Ricardo Manuel Malheiro, and Rui Pedro Paiva. Novel audio features for
music emotion recognition. IEEE Transactions on A�ective Computing, 9:240–254,
2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
Di�erentiation in PyTorch. Proceedings of Neural Information Processing Systems,
pages 1–4, 2017.

84



Bibliography

Ashish Kumar Patel, Satyendra Singh Chouhan, and Rajdeep Niyogi. Using crowd
sourced data for music mood classification. In Anirban Mondal, Himanshu Gupta,
Jaideep Srivastava, P. Krishna Reddy, and D.V.L.N. Somayajulu, editors, Big Data

Analytics, pages 363–375, Cham, 2018. Springer International Publishing. ISBN
978-3-030-04780-1.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, and Vincent
Dubourg. Scikit-learn: Machine learning in Python. The Journal of Machine Learning

Research, 12:2825–2830, 2011.

Trevor Pinch and Frank Trocco. The Social Construction of the Early Electronic Music
Synthesizer. Icon, 4:9–31, 1998. ISSN 13618113. URL http://www.jstor.org/
stable/23785956.

Adam Roberts, Jesse Engel, Colin Ra�el, Curtis Hawthorne, and Douglas Eck. A
hierarchical latent vector model for learning long-term structure in music. arXiv

preprint arXiv:1803.05428, 2018.

Nurlaila Rosli, Nordiana Rajaee, and David Bong. Non Negative Matrix Factorization for
Music Emotion Classification. In Ping Jack Soh, Wai Lok Woo, Hamzah Asyrani Sulai-
man, Mohd Azlishah Othman, and Mohd Shakir Saat, editors, Advances in Machine

Learning and Signal Processing, pages 175–185, Cham, 2016. Springer International
Publishing. ISBN 978-3-319-32213-1.

Jon Rowe and Derek Partridge. Creativity: A survey of AI approaches. Artificial

Intelligence Review, 7(1):43–70, 1993.

Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long Short-Term Memory
Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. arXiv

preprint arXiv:1402.1128, 2014.

Rob Saunders. Towards Autonomous Creative Systems: A Computational Approach.
Cognitive Computation, 4(3):216–225, 2012.

Jürgen Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural networks,
61:85–117, 2015.

Nandini Sengupta, Md Sahidullah, and Goutam Saha. Lung sound classification using
cepstral-based statistical features. Computers in biology and medicine, 75:118–129,
2016.

Yeong-Seok Seo and Jun-Ho Huh. Automatic Emotion-Based Music Classification for
Supporting Intelligent IoT Applications. Electronics, 8:164, 02 2019. doi: 10.3390/
electronics8020164.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint 1409.1556, September 2014.

85



Bibliography

M Soleymani, A Aljanaki, and YH Yang. DEAM: MediaEval Database for Emotional
Analysis in Music. PloS One, 12(3), 2017.

Stephen V Stehman. Selecting and interpreting measures of thematic classification
accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

Hope R Strayer. From neumes to notes: The evolution of music notation. Musical

O�erings, 4(1), 2013.

Robert E. Thayer. The Biopsychology of Mood and Arousal. Oxford University Press
USA, New York, 1990. Pages 15–20.

Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet. Towards Musical
Query-by-Semantic-Description Using the CAL500 Data Set. In Proceedings of the

30th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’07, page 439–446, New York, NY, USA, 2007. Association
for Computing Machinery. ISBN 9781595935977. doi: 10.1145/1277741.1277817. URL
https://doi.org/10.1145/1277741.1277817.

Pedro F. Vale. The role of artist and genre on music emotion recognition. Master’s thesis,

Repositório da Universidade Nova de Lisboa, NIMS - Dissertações de Mestrado em

Gestão da Informação, 2017.

Pradnya A Vikhar. Evolutionary algorithms: A critical review and its future prospects.
In 2016 International conference on global trends in signal processing, information

computing and communication (ICGTSPICC), pages 261–265. IEEE, 2016.

Kelly L. Whiteford, Karen B. Schloss, Nathaniel E. Helwig, and Stephen E. Palmer. Color,
music, and emotion: Bach to the blues. i-Perception, 9(6):2041669518808535, 2018. doi:
10.1177/2041669518808535. URL https://doi.org/10.1177/2041669518808535.

Claes Wohlin. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.709.9164&rep=rep1&type=pdf, 2014. [Online; accessed 24-November-2019].

Uwe Wolfradt and Jean E Pretz. Individual di�erences in creativity: Personality, story
writing, and hobbies. European Journal of Personality, 15(4):297–310, 2001.

Yi-Hsuan Yang, Chia-Chu Liu, and Homer H. Chen. Music emotion classification: A fuzzy
approach. In Proceedings of the 14th ACM International Conference on Multimedia,
MM ’06, page 81–84, New York, NY, USA, 2006. Association for Computing Machinery.
ISBN 1595934472. doi: 10.1145/1180639.1180665. URL https://doi.org/10.1145/
1180639.1180665.

Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

Andreas Zell, Niels Mache, Ralf Huebner, Günter Mamier, Michael Vogt, Michael
Schmalzl, and Kai-Uwe Herrmann. SNNS (Stuttgart Neural Network Simulator). In
Neural Network Simulation Environments, pages 165–186. Springer, 1994.

86



A. Structured Literature Review

(SLR) Protocol

A.1. Introduction

This SLR Protocol was developed during the fall of 2019 as a part of the Master’s Thesis
spanning from the fall of 2019 to the spring of 2020.

This Master’s Thesis revolves around the field of computational musical creativity, and
in particular the understanding and synthesizing music in specific moods and genres.
The purpose of the SLR is to discover existing related work, to uncover performance of
various solutions, and to identify points of further work where this Master’s Thesis can
make a contribution.

A.2. Research Questions

The research questions can be found in Section 1.2.

A.3. Search Strategy

The search engine used for the review is Google Scholar. This tool aggregates results from
other domains, lists these domains clearly and also has useful functions for searching for
synonyms or filtering by citations. Other domains considered were SpringerLink, ACM,
IEEE, and ResearchGate.

The set of search terms is defined with regards to RQ1. Some terms are split into
groups where terms in one group are synonyms or have similar semantic meaning. The
search is conducted with boolean notation, using OR notation for synonyms and AND
notation to concatenate the di�erent search term groups. The search terms are found in
table A.1.

The search string is represented as follows, where G indicates the row and T indicates
the column:

([G1, T1 OR G1, T2] AND [G2,T1 OR G2, T2 OR G2, T3]
AND [G3, T1 OR G3, T2] AND [G4, T1 OR G4, T2])

All results produced by using the search string are collected and reduced by removing
duplicate papers or papers published from multiple sources.
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A. Structured Literature Review (SLR) Protocol

Table A.1.: Search terms and groups
Term 1 Term 2 Term 3

Group 1 Music Musical
Group 2 Mood Ambiance Emotion
Group 3 Classification Detection
Group 4 Artificial Intelligence Machine Learning

Table A.2.: Number of search results for each publishing year 2010-2019
Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

# results 1580 1780 2870 2640 3000 3420 3960 4780 5560 3870

A.3.1. Search term limitations

In researching a evolving and growing field, it is natural to impose a temporal limit in
order to examine as new and relevant studies as possible. With the selected search term,
the number of papers published has increased every year (see table A.2). In Google
Scholar, for this search term, 16,500 papers have in total been published in or before
2015, and 18,170 have been published in 2016 or later. Thus, the limit for the search was
set to articles written in 2016 or later in order to roughly halve the amount of search
results. However, older articles could be included if they were a part of the Starting set.

Naturally, exploration of thousands of articles is impossible within the scope of a
Master’s Thesis. The top 100 articles ranked “most relevant” on Google Scholar were
used as the foundation for the SLR quality assessments, in addition to the given articles
from the Starting set. Note that Google Scholar does not provide documentation for
its ranking algorithm. This may be a cause of possible bias and oversight of important
articles. The inclusion of a Starting set of articles, and use of the Snowballing method
within these, is one attempt to mitigate such e�ects.

A.4. Selection of Primary Studies

To reduce the number of studies evaluated, three di�erent selection processes are applied.
The first two are primary and secondary screening, used to filter out non-thematically
relevant studies. The primary inclusion criteria uses meta data such as the title and
abstract, while the secondary screening uses the entire study text. The third step, quality
assessment, is also applied to the entire text.

A.4.1. Primary Inclusion Criteria

IC1 The study’s main concern is musical computational creativity.

IC2 The study is a primary study presenting empirical results.

IC3 The study concerns the computational understanding of music’s mood or ambiance.
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A.5. Study Quality Assessment

A.4.2. Secondary Inclusion Criteria

IC4 The study concerns music without lyrics.

IC5 The study describes the implementation of an application.

All studies passing the primary and secondary inclusion criteria will continue to quality
assessment.

A.5. Study Quality Assessment

To further assess the quality of studies passing the primary and secondary inclusion
criteria, a set of 10 quality criteria is used (provided by Kofod-Petersen (2018)). Each
study is ranked on each of the quality criteria. The goal of this quality assessment is to
evaluate the article with regards to RQ3 (What is the strength of the evidence supporting

the various conclusions presented?).
The possible outcomes for each quality criteria are:

• Yes. 1 point

• Partly. 0,5 points

• No. 0 points

QC1 Is there a clear statement of the aim of the research?

QC2 Is the study put into context of other studies and research?

QC3 Are system or algorithmic design decisions justified?

QC4 Is the test data set reproducible?

QC5 Is the study algorithm reproducible?

QC6 Is the experimental procedure thoroughly explained and reproducible?

QC7 Is it clearly stated in the study which other algorithms the study’s algorithm(s)
have been compared to?

QC8 Are the performance metrics used in the study explained and justified?

QC9 Are the test results thoroughly analysed?

QC10 Does the test evidence support the findings presented?
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A. Structured Literature Review (SLR) Protocol

A.6. Data Extraction

The following data will be extracted from each study to perform the SLR:

• Name of author(s)

• Title

• Year of publication

• Name of proposed system

• Type of proposed algorithm

• Data set source

• Algorithm source (if available)

• Findings and conclusions

The data will be presented in a table, with each data point in one column, and data
points for each study within one row.
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B. Sheet music and survey results

This section lists all sheet music produced, and their according survey results. The survey
results are presented as the average answer from the metrics asked. All metrics were
ranked on a scale from 1-5.

Table B.1 presents survey results for each music sample.
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Sample ID Valence Energy Pleasantness Interestingness Randomness Sentiments
Q4-12-20-300 3.22 4.34 2.46 3.21 3.84 Sample A
Q4-08-20-300 3.49 2.75 3.65 3.39 2.88 Sample B
Q4-16-20-300 3.92 4.61 3.09 3.18 3.13 Sample C
Q4-12-10-300 - - - - - Omitted from survey
Q4-12-40-300 2.77 3.48 3.77 3.73 2.36 Sample E
Q4-12-20-100 - - - - - Omitted from survey
Q4-12-20-500 3.86 4.79 2.69 2.80 3.10 Sample G
Q3-08-20-300 - - - - - Omitted from survey
Q3-12-20-300 3.24 2.73 3.35 3.04 3.01 Sample H
Q3-16-20-300 2.49 4.23 2.65 3.46 3.39 Sample I
Q3-12-10-300 2.94 4.79 2.14 2.79 3.40 Sample J
Q3-12-40-300 2.74 2.13 3.40 2.88 3.02 Sample K
Q3-12-20-100 3.24 4.06 2.80 2.74 2.95 Sample L
Q3-12-20-500 3.53 3.67 3.19 3.08 3.10 Sample M

Table B.1.: Survey results for each music sample.
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Sentiments for Q4-12-20-300:

• This would be the soundtrack in a movie where you’re being chased by an axe
murderer but then you stop to buy ice cream on the way

• This one was fascinating. It actually developed from a very pleasant melody to a
much more energetic and random style.

• Sounds computerized

• Mechanical and rigid. But could work as a small part of a film score.

• It’s periodically fine, however some notes are clearly o�, and it changes suddenly in
a non-positive way.

Sentiments for Q4-08-20-300:

• Almost sounds like Jazz

• Reminds me of Zelda: Breath of the Wild

• Atmospheric

• two di�rent pieces from before and after 27 secs and out. got a whole di�rent
feeling after that

• Good start, towards the ending it’s maybe a bit sour, and it stops abruptly. That
can be good if done correctly, but maybe not in this manner. It was more structured,
which was nice.

• Randomness undermines valence, pleasentness and interest.

• A tonal tendency limits the randomness, the form maintains it.

• Like someone who can play is Just testing a piano

Sentiments for Q4-16-20-300:

• It was very random at the end.

• Mechanical

• Uncomfortable

• Like sample A (Q4-12-20-300 ), a few hints of ragtime connotations makes it a little
bit more interesting.

• A tonal and structured tendency dissolves a bit at the end.

Sentiments for Q4-12-40-300:
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B. Sheet music and survey results

Figure B.1.: Sheet music for sample Q4-12-20-300.
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Figure B.2.: Sheet music for sample Q4-08-20-300.
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B. Sheet music and survey results

Figure B.3.: Sheet music for sample Q4-16-20-300.
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Figure B.4.: Sheet music for sample Q4-12-10-300.
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B. Sheet music and survey results

Figure B.5.: Sheet music for sample Q4-12-40-300.
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Figure B.6.: Sheet music for sample Q4-12-20-100.

• Destroyed baroch

• Nice! It’s a bit o� on some of the notes, which kinda always ruins a piece of music,
but I can see what it’s trying to do, it’s pleasant to follow and at times I find it
almost beautiful.

• Bach-ish :-)

• Obvious conotations to classical music makes it more interesting and a little bit
more valencing.

• Moments of Bach or Beethoven, but hitting random additional keys most of the
time.

• Perpetum mobile

Sentiments for Q4-12-20-500:

• think I’ve heard the first four bars before

• It’s mostly just fast

• Ragtime on speed
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B. Sheet music and survey results

Figure B.7.: Sheet music for sample Q4-12-20-500.

• Late 19th to early 20th century pastisch (or perhaps something between Schubert
and Winifred Atwell).

• Stumfilmfeeling

• The First one I think could be made of a human

Sentiments for Q3-12-20-300:

• It’s pleasant, but then towards the end it kinda loses it. Pleasant melody, but a bit
random.

• More chord progressions with jazz conotations in the beginning, less afterwards

• Debussy in the land of jazz ballads?

Sentiments for Q3-16-20-300:

• Quite close to contemporary music composed by humans

• Debussy after a visit to Strawinsky’s?

Sentiments for Q3-12-10-300:

• Also just fast
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Figure B.8.: Sheet music for sample Q3-08-20-300.

• Unplayable for humans, a machine out of control

• This track made me want to hear more, it felt like I was interested in a longer
version of the track.

• Too many fingers and a high level of stress?

• Noisy

Sentiments for Q3-12-40-300:

• the syncopation just seems random

• jazz standard gone ai

• The notes are good together, but timing and length of the need adjustment.

• Intended sadness is traseable in classical references

• A Chopin/Grieg-like probing of harmony.

• Halting

Sentiments for Q3-12-20-100:

• Pretty!
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B. Sheet music and survey results

Figure B.9.: Sheet music for sample Q3-12-20-300.
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Figure B.10.: Sheet music for sample Q3-16-20-300.

Figure B.11.: Sheet music for sample Q3-12-10-300.
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B. Sheet music and survey results

Figure B.12.: Sheet music for sample Q3-12-40-300.
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Figure B.13.: Sheet music for sample Q3-12-20-100.
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B. Sheet music and survey results

• Semistructures here and there, but not really interesting

• Debussy after a visit to Sæverud’s.

Sentiments for Q3-12-20-500:

• Pretty, but a bit messy at times. The melody is nice, but it disappears a bit in the
composure.

• This high energy need to say something empty (witout content) makes me sad.

• Oh, I discovered the A, how nice - but I miss it every now and then...
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Figure B.14.: Sheet music for sample Q3-12-20-500.
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