
Bakken, Edvard G
jessing

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Bakken, Edvard Gjessing

Does sequence affect grades?

A quantitative analysis of graded Python source
code and their relative position in a sequence.

Master’s thesis in Informatics

Supervisor: Sindre, Guttorm

June 2020

Bakken, Edvard Gjessing

Does sequence affect grades?

A quantitative analysis of graded Python source code
and their relative position in a sequence.

Master’s thesis in Informatics
Supervisor: Sindre, Guttorm
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The aim of this master thesis was to investigate the relationship between the sequence
(i.e order of presentation) of computer science student’s submissions (i.e Python source
code) and their given grades in tertiary education. After students submit their exam an-
swers, a professional rater grades these submissions in a specific sequence. This thesis
investigates if different permutations of this sequence has any effect on the grades and
if an optimal sequence (i.e optimal permutation) increase values such as fairness, valid-
ity and reliability in the form of inter-rater and intra-rater reliability. The second goal of
this thesis was to provide a prototype to automate the generation of optimal sequences
given a set of source codes.

Scientific literature on psychology and education shows that monotonic work over
a significant period of time decreases a humans ability to perform and increases irra-
tionality and invalidity. This study utilize quantitative data from digital exams in the
computer science course TDT4127 at the Norwegian university of science and tech-
nology (NTNU) in the form of Python source code to conduct 3 different experiments
(Experiment 1: N = 10, Experiment 2: N = 40, Experiment 3: N = 0).

The results from this thesis suggests that there was no significant relationship be-
tween the independent variable sequence and the dependent variable grade as no sig-
nificant effects were observed. However, this does not directly imply that there is no
relationship at all. Independently of these results, the suggested prototype is docu-
mented in detail and the results of the conducted experiments suggests that it is able
to generate optimal (as defined in this thesis) sequences purely based on source code
as input. This thesis also provide a strong suggestion that using Greedy-String-Tiling
to calculate the similarity between source code is similar to human measurements of
similarity.

i

ii

Sammendrag

Målet med denne masteroppgaven var å undersøke forholdet mellom sekvensen (dvs.
rekkefølgen på presentasjonen) av IT-studenters eksamensinnleveringer (dvs. Python-
kildekode) og gitte karakterene i tertiær utdanning. Etter at studenter har levert besva-
relsene til en eksamen, gir en profesjonell sensor besvarelsene en karakter i en gitt
sekvens. Denne oppgaven undersøker om forskjellige permutasjoner av sekvenser har
noen innvirkning på karakterene, og hvis en optimal sekvens (dvs. optimal permu-
tasjon) øker verdier slik som fairness, validity og reliabilitet i form av inter-rater og in-
tra-rater reliabilitet. Det andre målet med denne oppgaven var å skape en prototype
som automatiserer genereringen av optimale sekvenser gitt et sett med kildekoder.

Vitenskapelig litteratur om psykologi og utdanning viser at monotont arbeid over en
betydelig periode reduserer menneskers evne til å utføre arbeid og skaper irrasjonalitet
og ugyldighet. Denne masteroppgaven bruker kvantitative data fra digitale eksamener
i IT-faget TDT4127 ved Norges teknisk-naturvitenskapelige universitet (NTNU) i form
av Python-kildekode for å utføre 3 forskjellige eksperimenter (Eksperiment 1: N = 10,
Eksperiment 2: N = 40, Eksperiment 3: N = 0).

Resultatene fra denne oppgaven antyder at det ikke var noen signifikant sammen-
heng mellom den uavhengige variabelen sekvens og den avhengige variabelen karak-
ter ettersom ingen signifikante effekter ble observert. Dette innebærer imidlertid ikke
en direkte antydning om at det ikke eksisterer noe forhold i det hele tatt. Uavhengig
av disse resultatene er den foreslåtte prototypen dokumentert i detalj, og resultatene
fra de gjennomførte eksperimentene antyder at den er i stand til å generere optimale
(som definert i denne oppgaven) -sekvenser rent basert på kildekode. Denne oppgaven
presenterer også sterke antydninger til at bruken av Greedy-String-Tiling for å beregne
likheten mellom kildekode ligner på menneskelige målinger av likhet.

iii

iv

Acknowledgements

This thesis was written the autumn of 2019 and the spring of 2020 at the Department of
Computer Science (IDI) at the Norwegian University of Science and Technology (NTNU).

First of all, I give my thanks to my thesis advisor professor Guttorm Sindre of the Norwe-
gian the Norwegian university of science and technology (NTNU). His advise, guidance
and engagement in discussions allowed for this paper to take form. Secondly, I must
express my very profound gratitude to my long time friend and mathematician Eirik
Agnalt Østmo for his engagement in the thesis, advice and support throughout the pro-
cess. Without him, the contributions of this thesis would definitely have been of lesser
value.

I would also like to thank Associate Professor Magnus Lie Hetland for technical guid-
ance, Andrea Bach and my colleges at UNIBOYZ for providing constant feedback, vali-
dation and emotional support.

Finally, I must express my very profound gratitude to my family and friends for provid-
ing me with unfailing support and continuous encouragement throughout my years of
study and through the process of researching and writing this thesis.

Thank you.

Edvard Gjessing Bakken
Trondheim, June 10, 2020

v

vi

Contents

Abstract i

Sammendrag iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

I Introduction and Methodology 1

1 Introduction 3
1.1 Motivation . 3
1.2 Scope of the Thesis . 5
1.3 Research Goal, Research Questions, and Hypotheses 6
1.4 Ethical Considerations . 6
1.5 Contributions . 7
1.6 Literature review . 7
1.7 Thesis Structure . 7

2 Research Methodology 9
2.1 Research Strategies . 10

2.1.1 Experiments . 10
2.1.2 Design and Creation . 11

2.2 Data Generation Methods . 11
2.2.1 Data sources . 11
2.2.2 Experiment 1 . 12
2.2.3 Experiment 2 . 12
2.2.4 Experiment 3 . 13

2.3 Data analysis . 13

vii

viii CONTENTS

II Literature review and problem elaboration 15

3 Literature Review 17

3.1 Constructed and selected responses . 17

3.1.1 Selected response . 17

3.1.2 Constructed response . 18

3.2 Grading . 18

3.2.1 Validity, fairness and reliability of grades 18

3.2.2 Inter and intra-rater reliability . 19

3.2.3 Subjective-influenced objective decisions 19

3.2.4 Grading computer science classes . 20

3.3 Cognitive bias . 20

3.3.1 Sources of bias . 21

3.4 Digital Exams at NTNU . 22

3.4.1 Grading with Inspera Assessment . 22

4 Problem Elaboration 25

4.1 Problem introduction . 25

4.2 Generating a sequence . 25

4.3 Evaluation of sequence . 26

4.4 Subjectivity of raters . 26

4.5 Calculating similarity . 26

4.6 Compiling of code . 26

III Background theory, related work and system design 29

5 Background Theory 31

5.1 Cluster analysis . 31

5.1.1 Data points . 31

5.1.2 Noise . 32

5.1.3 Data quality . 32

5.1.4 Features . 33

5.1.5 Distance Function . 33

5.1.6 DBSCAN . 34

5.1.7 OPTICS algorithm . 36

5.2 Feature extraction and selection . 37

5.2.1 Feature extraction . 37

5.2.2 Feature selection . 39

5.3 Compiling . 39

5.3.1 Lexical Analysis . 40

5.4 Travelling salesman problem . 42

CONTENTS ix

6 Related Work 43

6.1 Autograding . 43

6.1.1 Combining constructed and selected responses 44

6.2 Clustering . 45

6.3 Sequence manipulation . 45

7 System Design 47

7.1 Optimal sequence . 47

7.2 General Design . 47

7.2.1 Design introduction . 48

7.3 Preprocessor . 49

7.3.1 Scanner . 49

7.3.2 Cleaner . 49

7.3.3 Tokenization . 50

7.4 Distance measure . 52

7.4.1 Greedy String Tiling . 53

7.5 Clustering . 54

7.5.1 Weight scaling . 55

7.6 Sequence generation . 57

IV Experiments, Results, Discussion, and Conclusion 59

8 Experiments 61

8.1 Experiment 1 . 61

8.2 Experiment 2 . 64

8.2.1 Inconsistencies . 66

8.3 Experiment 3 . 67

9 Results 69

9.1 Results - Experiment 1 . 69

9.1.1 Experiment 1 - Descriptive Analysis 71

9.1.2 Experiment 1 - Inferential Analysis . 71

9.2 Results - Experiment 2 . 74

9.2.1 Experiment 2 - Descriptive Analysis 78

9.2.2 Experiment 2 - Inferential Analysis . 78

9.3 Results - Artefact . 84

9.3.1 GST similarity and grades . 84

9.3.2 Sequence generation . 85

9.3.3 Measuring sequence optimality . 85

9.3.4 Optimizing EPS . 88

9.3.5 Finding inconsistencies . 89

x CONTENTS

10 Discussion, Conclusion and Future Work 91
10.1 Validity of results . 91
10.2 Findings of the experiments . 91
10.3 Findings of the artefact . 92
10.4 Threats to validity . 94
10.5 Conclusion . 95
10.6 Future Work . 96

Appendices 96

A Preprocessor lookup table 99

B Artefact Illustrations 103

C Nettskjema 113

Bibliography 121

List of Figures

2.1 Model of the research process . 9

3.1 Inspera Workflow . 24

5.1 Example of cluster . 32
5.2 DBSCAN . 35
5.3 OPTICS Reachability plot . 37
5.4 Abstract Syntax Tree . 38
5.5 Example of Final state machine . 41
5.6 Illustration of Preprocessor inputs and outputs 41
5.7 Example graph with vertices . 42
5.8 Example Hamilton path made with TSP . 42

7.1 System Design . 48
7.2 System Design inputs and outputs . 48
7.3 Scanner . 49
7.4 Cleaner . 49
7.5 Lexeme and Token . 50
7.6 Tokenization . 52
7.7 Syntax Analyzer . 52
7.8 Example of cluster after OPTICS . 55
7.9 Example of a random Hamilton Path . 56
7.10 Example of a Hamilton path . 56
7.11 Example of no cluster border Hamilton path 57
7.12 Example of cluster border Hamilton path . 57

8.1 Text explaining task 10, datasource 1 . 62
8.2 Illustration of proposed solution to task 10, datasource 1 62
8.3 Text explaining task 4, datasource 2 . 65
8.4 Illustration of proposed solution to task 4, datasource 2 65
8.5 Original path from datasource 2 . 66
8.6 Optimal path from datasource 2 . 66
8.7 Equal samples of source code . 67

xi

xii LIST OF FIGURES

9.1 Original and optimal path from datasource 2 illustrated with colors 86
9.2 Reachability plot from datasource 2 . 87
9.3 Assigned grades, mean and standard deviation of datasource 2 87
9.4 EPS values and clusters generated for datasource 2 89

List of Tables

3.1 Cognitive biases Sequence effects . 21
3.2 Relevant cognitive biases . 22

5.1 Example of representing data by using a table 32
5.2 Example of distance matrix . 33
5.3 Levenshtein distance table . 34
5.4 Example of tokens and values . 41

7.1 Sample of Preprocessor lookup table . 51

8.1 Participant experiment guidelines . 63

9.1 Empirical data - Experiment 1 . 70
9.2 Descriptive analysis - Experiment 1 . 71
9.3 Mann–Whitney two-sample rank-sum test - Experiment 1 72
9.4 Levene’s test of variance - Experiment 1 . 72
9.5 Serial position correlation coefficient- Experiment 1 73
9.6 Contrast effect correlation coefficient - Experiment 1 74
9.7 Time used by participators - Experiment 2 75
9.8 Empirical data, control group - Experiment 2 76
9.9 Empirical data, test group - Experiment 2 . 77
9.10 Descriptive analysis - Experiment 2 . 78
9.11 Mann–Whitney two-sample rank-sum test - Experiment 2 79
9.12 Levene’s test of variance - Experiment 2 . 79
9.13 Serial position correlation coefficient - Experiment 2 Control 80
9.14 Serial position correlation coefficient - Experiment 2 Test 80
9.15 Contrast effect correlation coefficient - Experiment 2 Control 81
9.16 Contrast effect correlation coefficient - Experiment 2 Test 81
9.17 Inconsistencies. Control group . 82
9.18 Inconsistencies. Test group . 83
9.19 EPS values . 84
9.20 Standard deviation of grades in clusters and random 84
9.21 Contrasting values . 88
9.22 Path-length values . 88

xiii

xiv LIST OF TABLES

Abbreviations

GST Greedy String Tiling

DBSCAN Density-Based Spatial Clustering of Applications with Noise

OPTICS Ordering Points To Identify the Clustering Structure

AST Abstract Syntax Tree

EPS ε, Epsilon

MinPts Minimum amount of necessary neighbours

TSP Traveling salesman problem

xv

xvi LIST OF TABLES

Part I

Introduction and Methodology

1

Chapter 1

Introduction

This chapter presents the motivation for writing this thesis, an overview of the scope,
the research questions and a general presentation of the thesis approach. The chapter
ends with a presentation of the thesis structure.

1.1 Motivation

Since 2013, Norwegian universities and academic institutions have implemented digi-
tal assistance tools to for conducting final exams. These tools have proven to decrease
manual labor, increase security and streamline the overall process. The tools consists of
a range of specialized computer software-products that contain functionality to create,
complete and grade exams.

Digital tools are already implemented to reduce monotonous tasks such as grading
multiple-choice questions and in some cases, scanning written essays and suggesting
a grade, even when the content is highly advanced. However, while digital tools do
remove a considerable amount of manual labor, they are not sophisticated enough to
automatically grade all kinds of student submissions to completely substitute humans.
Many open-ended questions with multiple levels of correctness and advanced theory
are difficult to evaluate. Therefore, in many cases, humans still have to manually evalu-
ate submissions even though it means evaluating hundreds of student submissions in a
short amount of time. When comparing digital with non-digital exams, the difference
does not lie in human intellectual insight and decision-making, but instead cover areas
such as logistics, security and submitting digital documents instead of physical paper.

When confronted with monotonic tasks, humans are prone to make mistakes and
become influenced by conscious and subconscious effects. A research paper titled "Se-
quential effects in Olympics synchronized diving scores" by Kramer (2017), presents
different aspects of human traits when observing sequences. It states that if given the
task of evaluation, such as a judge scoring Olympic divers or a professor grading open-
ended student submissions, there is no (objectively) correct answer, merely our own

3

4 CHAPTER 1. INTRODUCTION

opinion. Even when adhering to specific criteria or guidelines, scores can still differ
significantly from each other. Subjective measures of objective input often output dif-
ferent results between individuals (Muckler and Seven, 1992). Kramer investigates if
our current opinion is influenced by the surrounding context, as if our judgment of
one diver is influenced by the previous diver, creating a contrasting effect. Kramer con-
cludes that "Olympic judges show contrast effects when scoring synchronized divers.
This bias causes a decrease in scores for athletes that follow a high-scoring pair and an
increase in scores for those who follow a low-scoring pair. Such a bias represents an
unfair (dis)advantage for divers".

Spear (1997) conducted an experiment where she gave 336 teachers the task of eval-
uating three different written works differing in quality and authorship. The experiment
considered the received grade for each work based on its position in the sequence of the
three. To measure the existence of contrast effects in grading, she measured the corre-
lation between the given grade and the paper’s order. The six possible permutations
were seen the same number of times in order to measure differences. Spear concludes
that work of high quality was favored when following work of lower quality, and work of
low quality was assessed more harshly when following, rather than preceding, work of
contrasting quality. Spear also shows that the number of preceding contrasting items
amplifies this effect. Contrasting effects (previous observations inversely favours fol-
lowing units), has been observed in many other areas such as Human-Agent Interac-
tion (Ramesh et al.), judging vocal competitions (Page and Page, 2010), speed dating
(Bhargava and Fisman, 2014) and grading essays (Zhao et al., 2017).

Additional to contrasting effects, distinction bias is also suggested to influence our
subjective judgment of objects in sequence. Distinction bias addresses the tendency
to compare items close to each other differently than when evaluating them separately
and within different time-periods. Therefore, equal items might be evaluated differ-
ently based on their position in a sequence. Aslett (2006) states that mental and physical
fatigue either due to monotony, lack of interest, or lack of sleep can have severe impli-
cations with regards to task performance and accuracy. When evaluating sequences, all
objects should be evaluated with equal measures to assure fairness and validity. This
is of grave importance when evaluating performance such as when grading students in
academia. However, research by Aslett (2006), Klein and El (2003) and Wolfe et al. (2001)
suggests that this is not what is carried out. Evaluating large amounts of objects creates
inconsistencies of grades based on their position in the sequence. One of the effects of
this is that identical objects are evaluated differently and receive different grades purely
based on their position in a sequence.

Contrast effect and distinction bias is a subset of the total set of biases affected by
the sequence, hence sequence effects.

It is evident that internal and external forces influence our decisions. Cognitive bi-
ases affect our ability to perform, decreasing our mental functionality which thereby
inflicting our reliability. In academia, reliability and validity are of grave importance to
induce a fair system and by reducing the effects of cognitive biases, it directly increases

1.2. SCOPE OF THE THESIS 5

fairness. This correlation has made the pursuit of reducing cognitive biases an impor-
tant topic and is therefore the topic of this thesis.

Since the order of a sequence is often an available variable we can manipulate, this
raises the question: Is it possible to manipulate the sequence of submissions before
they are graded in order to reduce bias? In theory, if we decrease the amount of con-
trasting objects directly pursuing each other, smoothing out the contrast between the
objects, it should result in a reduction of contrasting effects when they are graded. Sim-
ilar to this, if we reorder the sequence in such a fashion that identical or similar objects
directly follow each other, they will be evaluated with equal measures. Manipulating
the order of the sequence to obtain an optimal order is the goal of this thesis. The opti-
mal order is in this thesis based on two properties:

1. Equal answers receives equal grades

2. Contrasting effects are reduced

In this thesis, I will attempt to assist in the improvement of NTNU’s digital exam
solution in regard to reducing the effects of human biases affecting fairness in grading
of student submission to final exams.

1.2 Scope of the Thesis

This thesis will focus mainly on discussing validity, fairness, and reliability considering
grades given to submitted answers in computer science classes. The answers are in the
form of source code in the programming language Python. The leading research will
be conducted using students simulating professional raters in the task of grading real
submitted final exam answers. The environment and participants of the experiment are
concentrated at the Norwegian University of Science and Technology (NTNU) in Trond-
heim, Norway. I will conduct experiments regarding the sequence of submissions that
are graded to extract patterns and gain insight into possible ways of improvement. I
also discuss a strategy of automatically ordering source code into different orders and
discuss the results. This thesis is not meant to replace the current system, but rather
provide insight and suggest further research. The source code for the provided algo-
rithm developed for this thesis can be found at the repository 1. This thesis also pro-
vides insight into different biases affecting academia. It is essential to emphasize that
this thesis does not cover all biases, but merely a small subset.

1Source code available at https://bitbucket.org/EdvardGB/sequence_artefact/src/master/

https://bitbucket.org/EdvardGB/sequence_artefact/src/master/

6 CHAPTER 1. INTRODUCTION

The following source code is an example of Python source code used in this thesis. This
example is extracted from source 1 presented in 2.2.1.

def find_const (s t r g) :
i f s t r g [0] != "−":

return s t r g [0]
e lse :

return s t r g [: 2]

1.3 Research Goal, Research Questions, and Hypotheses

Goal When grading student submissions in computer science courses, research if an
optimal sequence reduce sequential effects and develop a method to reduce se-
quential effects by automation

RQ 1 Does the sequence of submissions have any effect on the given grades?

RQ 1.1 Does an optimal sequence reduce the consequences of contrast effect?

RQ 1.2 Does an optimal sequence reduce the number of inconsistencies in equal
grading of equal submissions?

RQ 1.3 Does an optimal sequence increase inter-rater or intra-rater reliability?

RQ 2 Given a set of Python source codes, can we automatically generate an optimal
sequence?

RQ 2.1 Can GST be used to cluster equal submissions with similar grades?

RQ 2.2 Can we manipulate any sequence to become optimal by automation?

1.4 Ethical Considerations

As this thesis used human participants for experiments, ethical considerations is an
important topic. All participants was fully informed and voluntarily participated in the
experiments and agreed for the empirical data generated to be used in this thesis. No
usage of offensive language of formulation were used before, under or after the exper-
iments. All participants were anonymous and no data were collected that can be used
to identify personal information about the participants.

The material used in the experiments was real student submitted programming as-
signments for exam answers. Permission was granted from the instructors involved to
use the material. All submitted material used where anonymous, as in identification
number, name or comments which can be used to identify a person was not available
or used. All material is independent and only sub-parts of the total exam.

1.5. CONTRIBUTIONS 7

1.5 Contributions

The contributions of this thesis is mainly the exploration of the relationship between
sequence of submissions and the grades given to them. It is explored by experiments
and the design of an automatic method of generating optimal sequences. The results
are described in chapter 9. Conclusions based on these results might lay the founda-
tions for further research in the area.

• A better understanding of the relationship between grading sequence and evalu-
ation of student submissions.

• A prototype to automatically generate a grading sequence reducing the influence
of sequence effects in computer science courses.

• A suggested method for reducing inconsistencies when grading equal submis-
sions with unequal grades.

1.6 Literature review

A background study of related literature and similar dissertations was performed prior
to this research. The outcome of the literature review laid the foundations for the method-
ology and contribution. The sources used to retrieve the relevant literature where
scholar.google.com and oria.no. When researching these sources, the following tags
were used, either in combination or included in larger queries:

• Rater bias

• Sequence effects

• Reliability

• Clustering

• Source code similarity

• Grades

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

Part II – Literature review and problem elaboration: This chapter presents previous
literature reviewed prior to the completion of the developed algorithm and the writing
of this thesis. It includes insight into different relevant aspects regarding the topic of this
thesis and further elaboration of the challenges faced when developing the algorithm.

8 CHAPTER 1. INTRODUCTION

Part III – Background theory, related work and system design: This chapter provides
technical details and insight into the development of the algorithm and the architec-
ture of the algorithm itself. It also presents and overview of related work with similar
solutions to similar problems.
Part IV – Experiments, Results, Discussion, and Conclusion: This chapter presents a
detailed overview of the conducted experiments, the results and a discussion of the re-
sults. The chapter ends the thesis with a conclusion and further needed development.

Chapter 2

Research Methodology

This chapter presents the approached research process used in order to answer the re-
search questions described in 1.3. The research process is defined by a strategy, a data
generation method and an analysis approach. The Figure 2.1 illustrates an overview of
different approaches to conduct the research process (Oates, 2005, chap. 3).

Figure 2.1: Model of the research process

9

10 CHAPTER 2. RESEARCH METHODOLOGY

2.1 Research Strategies

The choice of research strategy was based on how to achieve valid conclusions to the
research questions. In order to achieve this, the combination of the strategies Exper-
iment and Design and Creation was chosen as they provide methods to test various
approaches and find optimal solutions iteratively. Experiments were used to identify
the correlations between the variables, while Design & Creation were used to create a
sequence-reordering-algorithm prototype. Other strategies such as a case study, action
research or ethnography were considered, but given the limited access to case participa-
tors, time-restraints and given the exceptional circumstances caused by the COVID-19
virus pandemic occurring simultaneous with the creation of this thesis, they were not
suitable.

2.1.1 Experiments

The term Experiment is not any arbitrary piece of field research. It specifically refers to
a research strategy to identify the relationship between cause and effect. This is done by
manipulating independent variables and observe the changes of dependent variables to
identifying the in-between correlation (Oates, 2005, chap. 9). The variables is defined
by a hypothesis which is a sentence stating a predicted correlation in the form of:

• "Increasing variable X, causes variable Y to decrease"

• "Activity X causes the effects Y ".

• "Removing the wings from a plane reduces drag and increases flight speed"

By changing the variable X, we observe the effects of variable Y. If variable Y changes
in a predictable pattern we can be fairly confident that X and Y are correlated. However,
if Y does not change or it changes in an unpredictable pattern, then Y does not corre-
late with X. To conclude with a strong causal effect, the repetition of an experiment
under various conditions is necessary to isolate the variables. This is done by including
a random element in choosing the participants, choosing anonymous participants, us-
ing control and test groups, and/or eliminating or reducing external variables that may
interfere with the experiment.

In a scientific experiment, a null hypothesis (H0i) is the hypothesis that there is no
correlation between X and Y. To state that there is no correlation between the two is
practical, because by disproving this directly implies that there actually is a correlation.
If the null hypothesis is not disproven, it implies that any difference observed in the
data would be due to errors is measurements, samples or purely due to random chance.
However, if the null hypothesis is disproven, it is replaced by an alternative hypothesis
(H1i) which proposes the influence of a non-random factor and the dependent variable
actually is dependent on the independent variable.

2.2. DATA GENERATION METHODS 11

2.1.2 Design and Creation

Design and Creation is an iterative process to design and develop a product and apply-
ing it to a domain. It is typically a problem-solving approach, however it is rarely a fully
implemented system that can be used immediately without further research. Therefore
the design, also called artefact, often only serve as a prototype or a demonstration to il-
lustrate functionalities or ideas. It can thereafter be further researched or implemented
in full-scale projects (Oates, 2005, chap. 8).

In this thesis, I design and evaluate a specific combination of already developed
algorithms combined into a single product similar to a sorting algorithm. This produc-
t/algorithm is therefore referred to as the artefact in the following chapters and serves
as a part of the thesis contribution.

2.2 Data Generation Methods

Data generation is the activity of generating empirical data. To conduct a valid analysis
and construct a grounded conclusion, relevant and valid data is necessary. For this the-
sis, data that can provide insight into the causes and effects in the process of grading
student submissions are necessary. Therefore, I have chosen a quantitative approach
which allows for the collected data to be easily translated into numerical values for later
ease of measure.

In this thesis, student final exam submissions is hereby referred to as "submissions"
and should not be confused with the data collected in the experiments even though the
participants of all experiments were also students. For clarity, Experiment 1 submis-
sions refer to the student submissions to the final exam extracted from the data sources
described in 2.2.1, and not the empirical data collected in the experiment. The empir-
ical data collected in the experiment are numerical values from 0 to 5, as the partici-
pant’s task was to assign grades. I conducted two different experiments wherein both
experiments participants were anonymous students from NTNU with knowledge of the
programming language Python.

2.2.1 Data sources

The described experiments in 2.2.2 and 2.2.3 utilize previously collected data material
in order to generate empirical data later analysed in this thesis. The data material is
in the form of Python source code as described in 1.2 and collected from real student
submissions to final exams. The exam was conducted digitally, and the submissions
are therefore easily obtainable as individual digital documents. The actually received
grade from the professional rater(s) grading the exams is also included the individual
documents. The used material is extracted from the following sources:

12 CHAPTER 2. RESEARCH METHODOLOGY

1. 53 submissions, graded 1 to 5. Final exam, NTNU TDT4127, Nov. 2018, task 10.

2. 212 submissions, graded 0 to 5. Final exam, NTNU TDT4127, Nov. 2019, task 4.

3. 212 submissions, graded 0 to 5. Final exam, NTNU TDT4127, Nov. 2019, task 5.

4. 210 submissions, graded 0 to 7. Final exam, NTNU TDT4127, Nov. 2019, task 10.

5. 201 submissions, graded 0 to 7. Final exam, NTNU TDT4127, Nov. 2019, task 13.

6. 204 submissions, graded 0 to 6. Final exam, NTNU TDT4127, Nov. 2019, task 18.

Notice that each source is only one task from one exam and not the whole. The
grades are of differing values due to the tasks weight towards the total grade and actu-
ally represents percentages and not grades. Nevertheless, in this theses these points are
referred to as "grades". There are also no evidence identifying the number of profes-
sional raters responsible for these grades, in such there could have been only one single
rater or multiple.

2.2.2 Experiment 1

The first experiment was conducted by using the data generation method question-
naires. Questionnaires are a pre-defined set of questions participants respond to in
a determined order. Questionnaires are often used together with the Survey strategy as
questionnaires can easily be answered simultaneously or asynchronously by a multi-
tude of participants. Questionnaires is often utilizing selected responses (multiple choice)
and not constructed responses (text), which in turn makes it easy to quantitatively anal-
yse the collected data. Questionnaires can be self-administrated or guided by a re-
searcher in a research-administrated session. The current experiment was conducted
as a research-administrated questionnaire (Oates, 2005, chap. 15).

This experiment only serve as a proof of concept/pilot as the goal of the experiment
were to observe how well participants (in this case 10 students) enter the role as a rater
and assigns a numerical grade (0-5, were 5 is top score) to 20 different Python source
code samples. The empirical data collected from the participants in this experiment is
therefore secondary to the functionality of the experiment, however it still might give
some interesting insights. The source code samples used in this experiment were taken
from data source 1, and were chosen because they are constructed responses and not
too complicated.

2.2.3 Experiment 2

The second experiment was intended to be a repeat of Experiment 1 with 20 new source
code submissions, a constructed "optimal" sequence and a large number of partici-
pants. The experiment were also intended to be conducted in March 2020 but was can-
celled due to the outbreak of the COVID-19 virus. Restrictions to physical participation

2.3. DATA ANALYSIS 13

demanded the experiment to be conducted with a self-administrated questionnaire in-
stead of the research-administrated questionnaire. 40 randomly selected students par-
ticipated in a digital questionnaire which contained two parts (none who also partic-
ipated in experiment 1). The first part introduced the participants to the experiment
with necessary information and instructed them; in equal fashion as in Experiment 1,
to grade the 20 source code submissions allocated in the second part of the question-
naire. The source code was selected from data source 2 as the material was similar to
the material used in Experiment 1, only with small differences. The used questionnaire
can be found appendix B.

2.2.4 Experiment 3

The third experiment was different from the other two as it generated empirical data
using the developed artefact. A series of smaller experiments were conducted to record
the performance and outputs of the artefact. The datasources used in this experiment
where datasource 2 to 6.

2.3 Data analysis

Data analysis based on the empirical data generated from the experiments was done
quantitatively (i.e Quantitative analysis). Quantitative analysis is the technique of ex-
tracting understanding from numerical values using mathematics, statistics, tables, charts,
and graphs (Oates, 2005, chap. 17).

The quantitative analysis was conducted with the tools Microsoft Excel, Python
(Scipy.stats), and the statistical software program Minitab. As the empirical data anal-
ysed was mostly ordinal (0 to 5 and 1 to 20), the nonparametric methods
Wilcoxon–Mann–Whitney two-sample rank-sum test (U) (McKnight and Najab, 2010),
Levene’s test (Derrick et al.) and Spearman’s rank correlation coefficient were used. As
multiple independent comparisons were conducted, a global p-value was calculated
with Fisher’s combined probability test (Li et al., 2014) and corrected with a Bonferroni
correction. Parametric tests such as T-test and ANOVA was used on data of normal dis-
tribution.

14 CHAPTER 2. RESEARCH METHODOLOGY

Part II

Literature review and problem
elaboration

15

Chapter 3

Literature Review

This chapter presents an overview of the literature researched prior to the writing of
this thesis. It provides insight into the most relevant literature, even though it is only
a subset of the total literature reviewed. Section 3.1 presents the two predominant ap-
proaches of measuring a student’s knowledge, section 3.2 presents insight into the pro-
cess of grading student submissions, section 3.3 presents an overview of different biases
related to this thesis and section 3.4 presents an quick overview of digital exams in Nor-
way.

3.1 Constructed and selected responses

Constructed and selected responses are the predominant approaches used to measure a
student’s knowledge—each providing their own set of practical aspects suited for differ-
ent types of contexts. Constructed and selected responses are modifiable tools used in
order to construct an arena in which the student can operate. They differ in their ability
to let the student demonstrate their level of knowledge and critical thinking. However,
choosing the correct tool to display the correct knowledge is critical as they do have lim-
itations in certain areas. They are therefore often used in combination complementing
to each other.

3.1.1 Selected response

A selected response is typically a quantitative approach which often provides a series
of alternatives where usually only one answer is correct. It is not suited to provide an
arena for the student to illustrate critical thinking and fully let the students demonstrate
their complete knowledge of a subject. It is more likely used as an easy way of testing
if the student knows the correct answers to a series of questions. A selected response is
often chosen for its ability to be easily graded as it often provides a binary (True/False)
aspect and is effortlessly translated into a numerical score (a machine often automates
this process).

17

18 CHAPTER 3. LITERATURE REVIEW

3.1.2 Constructed response

A constructed response is typically a qualitative approach. It demands the subject in
question to demonstrate cognitive knowledge and reasoning. It is often called "open-
ended" questions, as more than one answer are often accepted as correct. A constructed
response provide an opportunity for the students to construct their answers within cer-
tain restrictions. Relative to a selected response, a constructed response provides a
challenge when graded as more than one answer is accepted as correct, the degree of
"correctness" is not binary, but multivariate. When the set of possibly correct and in-
correct answers or the multivariate degree of correctness increases, the distinction of
correct and incorrect becomes vague.

Even though a constructed response serve an important role in displaying a high
level of knowledge and critical thinking, it also is hard to evaluate. Given a set of rules
or guidelines, evaluation becomes a more manageable task. However, Rye (2014) pro-
vides claims of unequal grading of a constructed response due to differing factors in the
grading community.

3.2 Grading

Grading is an essential process in academic environments in order to standardize the
evaluation of the degree of individual achievement. Grades provide an objective truth,
and the assignment of the level of achievement can be done with any ordinal scale.
Academic institutions such as NTNU use the letters A through F, where A is top per-
formance, and F is a failed attempt. The need to standardize the level of achievement
in a field of study is to quickly convey the achieved level to any interested third party,
such as an employer or another academic institution. The third part uses the grades
(as well as many other factors) in essential decision-making processes such as to whom
they should delegate positions to in a company, or as to whom universities will accept
as students. The grade’s role in the academic environment is therefore a very impor-
tant part of the foundation of academia, and any form of involuntary risk which might
damage its integrity is a problem for every partaker of the system.

3.2.1 Validity, fairness and reliability of grades

Preservation of academic standards such as validity, fairness and reliability is as stated
in 1.1 and referring to Skedsmo and Huber (2018) and, The Norwegian Directorate for
Education and Training (NDET) (6.S), of severe importance. The effect of invalidity
or unfairness in the grading process can produce severe implications for the receiving
parts. de Moira et al. (2002) states that "Marking should be at a common high standard
and free from bias, otherwise some candidates are placed at an unfair advantage and
others at an unfair disadvantage".

• Fairness refers to equal impartial treatment or behavior without favouritism or
discrimination. A measure is considered fair if the result is not dependent on

3.2. GRADING 19

other factors than what is measured.

• Validity refers to the manner of evaluating accurately based on a set of sound
policies. A measure is valid if it grants the correct level of degree of achievement.

• Reliability refers to the consistency of a measure. A measure is considered reli-
able if it produces equal results of the same conditions on multiple occasions.

These three aspects are independent of each other as grades can be reliable, fair,
but invalid at the same time. As a valid grade is a grade which greatly reflects the level
achievement, an invalid grade does not. An unfair and invalid system can be reliable.

3.2.2 Inter and intra-rater reliability

Inter-rater reliability refers to the level of agreement/disagreement between a group
of raters. A high level of agreement is desired as it increases validity. We can measure
inter-rater reliability by analyzing the standard deviation of grades given to one or more
submissions from all parts of the group. As academia strives for equal measure for all,
low inter-rater reliability is an issue in cases where two or more rater assigns different
grades to identical submissions (Aslett, 2006).

Intra-rater reliability refers to the level of reliability of one rater. If a rater consis-
tently assigns the same grade to identical assignments in different contexts, it is consid-
ered as reliable. However, that does not indicate that the grades are valid or even fair.
Intra-rater reliability can consistently assign unfair grades. As mentioned in 1.1, mental
and physical fatigue either due to monotony, lack of interest, or lack of sleep can have
severe implications with regards to task performance and accuracy (Aslett, 2006). Dif-
ferential Rater Function over Time (DRIFT) is a term introduced by Wolfe et al. (2001) to
describe the different effects affecting a person undergoing repetitive and monotonic
tasks. Mental attitude changes (often subconsciously) as we are influenced by fatigue
and other factors, creating a shift in our evaluation and judgment. This shift might
result in assigning more harsh grades to early positioned submissions in the grading
process, and less harsh grades later in the process, or vice versa.

3.2.3 Subjective-influenced objective decisions

Since the degree of correctness is often not evident when dealing with a constructed
response, subjective decisions are most likely prone to happen, even when following
a set of rules or guidelines or even conducting a standardization-meeting prior to the
exam (Raikes et al., 2009), (Midtbø et al., 2018). Objective decision-making refers to the
elimination of subjective perspectives and a process that is purely based on hard facts.
Eliminating subjective perspectives is not an easy task, especially when dealing with
sub-optimal facts that do not cover the full specter of evaluation to assign the most

20 CHAPTER 3. LITERATURE REVIEW

valid grade. Subjective decisions fills the gaps of ambiguity and uncertainty in which
the objective facts do not, creating an objective decision partly or heavily influenced by
subjective factors such as mood and fatigue. The relationship between mood, fatigue,
and other factors and how they influence memory and judgment has proven to be one
of the most challenging problems in all of the social and cognitive psychology (Srull,
1984).

3.2.4 Grading computer science classes

Fitzgerald et al. (2013) reports insight into professional raters and their methods, grad-
ing scales, and agreement when grading computer programs. It concludes with the
statement, "Clearly there is no single right way to grade programs.", but states that pro-
fessional raters do agree with which programs are "Very good" and "Very bad". This
agreement suggests that even if there is no consensus of the "correct" grade, profes-
sional raters are highly correlated with one another. Another research paper, Albluwi
(2018) reports insight into different ways of grading a computer program, however it
also report disagreement with what’s "Very good" and "Very bad", disagreeing with
Fitzgerald et al. (2013). Albluwi (2018) conducted an experiment where 60 computer
science class instructors were presented with the task of grading four different source
codes. The source code varied in quality by implementing different errors in all of them:
s1(structural error), s2(syntax error), s3(logic error) and s4(both syntax and logic errors),
respectively ordered from highest to lowest based on the average given grade.

s2 and s3 were assigned different scores within the range [0 to 9] and [0 to 8] re-
spectively where the total range possible was [0 to 10], suggesting a large disagreement
between the participators.

3.3 Cognitive bias

In psychology, cognitive bias is "cases in which human cognition reliably produces rep-
resentations that are systematically distorted compared to some aspect of objective re-
ality" Haselton et al. (2015). In other words, our brain subconsciously tries to dictate
our reason and behavior, which sometimes causes us to behave irrationally or experi-
ence errors in judgment. This phenomenon has been studied since 1971 when it was
introduced by Tversky and Kahneman (1971) and further research has expanded our
knowledge of how our brain works to a somewhat reliable model. There are many dis-
cussions and critiques in this field, but some predictable effects in specific areas have
been documented and serve as a guide to understand how we are affected by internal
and external factors.

In psychology, heuristics are mental "shortcuts" that allow people to quickly and
efficiently solve problems and make judgments Shah and Oppenheimer (2008). They
allow people to operate without the need to dedicate large amounts of time to evaluate
their next move. In most cases, we do not need the optimal solution for every prob-
lem we face. “People rely on a limited number of heuristic principles which reduce the
complex tasks of assessing probabilities and predicting values to simpler judgmental

3.3. COGNITIVE BIAS 21

operations” Tversky and Kahneman (1974). Heuristics assist our ability to reach con-
clusions and make decisions by extracting sub-optimal solutions. If we had to find the
optimal solution behind each decision, the amount of information to process and the
processing-time required quickly extends towards infinity. Heuristics is documented to
lead to cognitive bias, but all cases of cognitive bias is not an effect of heuristics Lockton
(2012).

3.3.1 Sources of bias

There are many different kinds of cognitive biases. These cognitive biases are divided
into groups based on their influences and effects, such as biases in a social context,
decision-making, and biases affecting memory. A social bias is often viewed as a dis-
proportional inclination for or against a person or a group, usually in a way that is in-
terpreted as unfair or misguided.

The following tables 3.1 and 3.2 illustrate a small sample of different cognitive biases
affecting not only academia, but various other relevant or interesting samples.

Name Description
Serial position effect Observing a sequence, recalling the first and last occurring

items is easier than recalling centering items.
Distinction bias The tendency to evaluate two items as similar/dissimilar when

evaluating them simultaneously than when evaluating them
separately

Assimilation effect Two items perceived as similar/dissimilar will be further as-
sessed as similar even when proven dissimilar/similar.

Anchoring Excessive weighting/dependency of certain items/informa-
tion when making decisions.

Consistency bias Incorrect recall of past attitudes and behaviour altering them
to resemble present attitudes and behaviour.

Contrast effect Experiencing opposing instances of a certain stimulus creat-
ing a distinct perceived contrast between the instances.

Source confusion Confusing memories (often episodic) with different memo-
ries/information, creating distorted memories.

Decision / respon-
dent fatigue

After a long session of decision making, the quality of an indi-
viduals decisions deteriorates.

Table 3.1: This table illustrate a sample off biases in which take effect when observing
items in a sequence, also called Sequence effects.

22 CHAPTER 3. LITERATURE REVIEW

Name Description
The Weber–Fechner
law

Difficulty in comparing small differences in large quantities

Empathy gap The tendency to underestimate the influence or strength of
feelings, in either oneself or others.

Halo effect The tendency to evaluate a person/item positively or nega-
tively in a different context based upon previous observations.

Automation bias The tendency to excessively depend on automated systems in
which can lead to incorrect or poor decisions.

Bias blind spot The tendency to view oneself as less biased/less prone to make
mistakes than others. Lack of self-awareness.

Framing effect The tendency to conclude with different results from the same
information, only by changing the presentation.

Table 3.2: This table illustrate a sample off relevant cognitive biases. There exists an
almost never-ending list of different biases observed and documented.

3.4 Digital Exams at NTNU

Since 2013, NTNU and other higher educational institutions in Norway initiated pilot
testing and preparation for digital assessment of final exams (DIG), (Brusch et al.). In
2018, UNIT (The Norwegian Directorate for ICT and joint services in higher education
and research) acted to preserve the task of digitizing higher education and research and
further investing in the transition to digital platforms (UNIT, 2019). This enactment
covers the whole educational system, including examination. To conduct a final exam
digitally does not suit all arbitrary subjects, however, subjects assessed on a textual ba-
sis such as computer science courses are greatly encouraged to transfer to a digital plat-
form.

Digital Assessment software (DAS) is a service that focuses on national collabora-
tion, standardization of work processes, and coordination of the development of exam-
ination systems in the framework agreements for digital exams. In 2016, UNIT signet an
agreement with three different providers of digital assessment software companies. The
products of the agreement was the software WISEflow, Inspera Assessment and Flex-
ite!Exam (Dig). Inspera Assessment is chosen as the main software for use at NTNU.

3.4.1 Grading with Inspera Assessment

Inspera Assessment provides a platform that is used before, during, and after the exam.
The creation of the exam is managed by an interactive user interface in which an in-
structor can design the exam with different types of question types (constructed, se-
lected, or both). During the exam, all students use their personal username and pass-
word to log in to a similar interactive platform that displays the questions. After the
exam, a third interactive platform is used by the raters to grade the submitted answers.

3.4. DIGITAL EXAMS AT NTNU 23

The submissions are presented to the rater in an ordered sequence based on the numer-
ical studentID number. The rater does not know who the studenID number belongs to,
making the whole process anonymous. The rater starts at the first submission and work
their way thought to the last in a consecutive order. Limited functionality to navigate
between the submissions are provided, but it does exist.

There is often more than one rater working together to grade all the submitted an-
swers. Inspera provides two different methods of grading. One is the traditional method
(individual marks), where each rater grade the complete submission, including all sub-
tasks for one student and then move to the next. The other method is called shared
marks and used when raters want to collaborate to create a single cumulative grade
pr student. If the exam is divided into multiple independent questions, the raters can
choose to divide the questions on the number of raters, spreading them out. Each exam
is therefore not only graded by one single rater but multiple. In such, if the raters have
low inter-rater reliability, it is spread out on all students equally, creating a more fair sys-
tem. Figure 3.1 illustrate the option the original creator of the exam is presented with
when selected the method of grading.

As the system is now, Inspera Assessment does not include a compiler as a resource
students can utilize while conducting their exam (this is only relevant for computer sci-
ence classes. A general compiler architecture is described in 5.3). This is explicitly not
implemented since a compiler is a powerful tool one can use to validate if the written
source code answer is correct or not. Most compilers also provide feedback on what is
wrong or missing from the written source code if it does not compile correctly, provid-
ing the students with often unwanted or illegal information.

A compiler is a tool that makes the assessment of the student’s knowledge harder
and is therefore not implemented.

After the grading is complete, analysis can be done by exporting all the grades to
a Microsoft Excel file (.xls) and analyze the grades to detect mistakes or to get general
insight to increase validity.

24 CHAPTER 3. LITERATURE REVIEW

Figure 3.1: Marking workflow in Inspera Assessment. Select between Individual marks
and Shared marks (Sha).

Chapter 4

Problem Elaboration

This chapter expands on the defined problem introduced in the Introduction and the
challenges faced when reviewing and developing the artefact.

4.1 Problem introduction

The topic of reordering submissions to improve fairness is not an easy task. The idea of
reordering is simple, but how can we tell if one sequence is superior to another? When a
human evaluates an object, subjective measures that are not easily quantified are used.
Since the objective of this thesis is to automatically reorder identical or similar objects
to follow each other directly, we need to measure the similarity between the objects as
close to as a human would.

4.2 Generating a sequence

A sequence is described as a set of items and their position in the sequence. If all items
where given the identifier based upon their position in the original sequence (the orig-
inal sequence is the order the submissions were presented in from the data source, and
is probably the original order a professional rater graded them in) such that the first
item is identified by the number "1", the second number "2", etc. This creates a list of
identifiers which represents the ordering of the items. A list of n items can therefore be
presented as such: [1, 2, 3, 4, 5, ..., n].

The main goal of this thesis is to develop a method to reduce sequential effects when
grading student submissions in computer science courses by automation. This is done
by automatically generating an optimal sequence before it is graded. Therefore, all we
want is just for the output of the algorithm to be a permutation of the original list (exam-
ple output: [n, 5, 2, ..., 1, 4, 3]). The problem does not lie in generating a permutation, a
random shuffled list is easy to make. The problem is to generate an optimal sequence.
How do we do that? And are there such a thing as an optimal sequence at all? There are

25

26 CHAPTER 4. PROBLEM ELABORATION

no prior research I have found that states exactly what the optimal order of submissions
should be.

4.3 Evaluation of sequence

To find the optimal sequence, we need to prove it is optimal or at least present evi-
dence that a sequence might be optimal. To do that we need a method of evaluating
sequences, compare them against one another and extract the most optimal one. To
evaluate something, you measure/observe its aspects or how well it performs in a cer-
tain area. But when we want to measure a sequence, which aspects do we choose to
observe? How do we know if a sequence "performs well"? If we choose to measure the
wrong aspects or area, we have no ground to find and extract the optimal one for our
usecase.

4.4 Subjectivity of raters

Since all human raters are influenced by their subjective persona as described in 3.2,
no rater are the same. Therefore, it exists an element of randomness in the given grades
to constructed responses. As long as submissions of the type constructed response are
rated by humans, the element of randomness is consistent. The empirical data from
the experiments and other measures is therefore not only affected by the sequence, but
also by this random element. So, even if a perfect optimal sequence were generated
and presented to a rater before grading, the element of randomness will consistently
have an effect on the given grades. This causes even further difficulty when evaluating
sequences.

4.5 Calculating similarity

Let us presume that we found some aspects we want to measure (examples are: "the
length of the code" or "how many times the word ’if’ appears"). When comparing items,
we need a method of calculating similarity. There exist a range of mathematical formu-
las and different algorithms, also called metrics, which inputs a set of measures, and
outputs a numerical value describing the similarity between two objects. This numer-
ical value is often in the range between 0 and 1. The challenge is to choose the metric
who reflects the objective the most. Choosing the wrong metric might result in calcu-
lating incorrect distances.

4.6 Compiling of code

When grading computer science classes, source code is often submitted as answers.
One great idea is to base the given grade upon how well the source code performs. The
rater simply compiles and runs the program and bases a grade upon the results. As

4.6. COMPILING OF CODE 27

described in 3.4.1, the software system Inspera Assesment (and many other DAS) does
not include a compiler. Students writing and submitting source code do not know if
their code compiles without problems or not. They have no way of validating if the
code is correct and as a result of submitting uncompiled code, it has a high chance of
crashing if compiled. If the rater gives zero points to all programs that crashes, it raises
the difficulty level by a great magnitude and harshly punishes those who submitted a
near correct answer containing small mistakes. All features used to compare similarity
between source code based upon compiled code is therefore hard or impossible to use.
Generating tokens is still possible using alternative ways and is explained in 5.3.

28 CHAPTER 4. PROBLEM ELABORATION

Part III

Background theory, related work
and system design

29

Chapter 5

Background Theory

This chapter presents the relevant theory used in the development of the artefact. Sec-
tion 5.1 presents a detailed insight into clustering, section 5.2 presents an overview of
how features are extracted and selected, section 5.3 presents an overview of a general
compiler architecture, and section 5.4 presents a quick introduction to the Traveling
Salesman Problem.

5.1 Cluster analysis

Cluster analysis is a technique used in many different subjects such as machine learn-
ing, data mining, statistical analysis, information retrieval, image analysis, and pattern
recognition. It is a technique used to analyze current knowledge in order of extracting
new knowledge. Cluster analysis is the problem of knowledge exploration by cluster as-
signment, not a specific algorithm in itself. Cluster analysis uses data to create groups
of similar objects, also called clusters. A cluster in itself is simply a multitude of assigned
data points where the rules of assignment can vary. The rules of cluster assignment is
defined by a multitude of different algorithms with different objectives such as classi-
fication or grouping (clustering). Algorithms such as Hierarchical clustering, k-means
and DBSCAN are famous cluster analysis algorithms (Pang-Ning et al., 2005).

5.1.1 Data points

A data point or object is a discrete representation of an observation or a measure-
ment. It is described by attributes, which are properties or characteristics of an object.
Data points are easily described by a table such as 5.1, where rows are data points and
columns attributes.

31

32 CHAPTER 5. BACKGROUND THEORY

ID Name Sex
1 John Smith Male
2 Lisa Simpson Female
3 Chris Thompson Male

Table 5.1: Example of representing data by using a table

Figure 5.1: Example of clusters generated with the DBSCAN algorithm. The points are
assigned to clusters, where the color represent their cluster assignment.

5.1.2 Noise

Noise, also called outliers, are distorted values often caused by errors in measurements
or other forms of irregularities. Noise can be missing values, incorrect values, or dras-
tically different values relative to the general norm in a set (i.e outlier). In Figure 5.1,
noise are shown as black dots. When represented as a numerical number, noise is often
written as the negative number "-1".

5.1.3 Data quality

The term “data quality” can best be defined as “fitness for use”, (Tayi and Ballou). Data
used in cluster analysis and other data mining techniques prefer data without noise,
which adds irregularities and increases the difficulty of knowledge extraction. Reducing
noise increases quality. A reduction of noise can be made using different methods, such
as eliminating noisy data or estimation of missing values. Methods of preprocessing
the data to make the data more suitable for its purpose can be applied. Methods such
as aggregation, sampling, dimensionality reduction and feature subset selection is often
used (Pang-Ning et al., 2005).

5.1. CLUSTER ANALYSIS 33

5.1.4 Features

Features in the sense of cluster analysis, are individual measurable characteristics of an
object, which in total describes the object. A feature can be binary, categorical, or con-
tinuous and is synonymous with the term attribute. Many algorithms require features
of numerical values since numerical values are more convenient for processing and sta-
tistical analysis. The importance of a feature is measured by its ability to convey useful
information relative to a context. The nature of the context directly controls the useful-
ness of a feature. In the context of a job interview where the interviewee is describing
why he/she should be hired, a bad/less important feature might be the number of liters
of blood the interviewee contains at the current moment. However, a good/more impor-
tant feature might be the interviewees’ ability to communicate with other coworkers. In
the context of a medical situation, a doctor might need to know the amount of blood
contained in a patient and does not care much about the patient’s coworker commu-
nication skills. A feature vector is an n-dimensional vector of features that represent an
object. Extracting and selecting features is described in 5.2.

5.1.5 Distance Function

Having a method of computing similarity is necessary to differentiate the objects and
assign them into clusters. Similarity, also called distance, is calculated in numerical
values. The term dimension represents the number of features selected for a certain
task, in this case, a calculation of difference/distance. A popular way of calculating the
distance, d, between two objects in data analysis is Euclidian distance (Pang-Ning et al.,
2005) given by the following formula:

d(p, q) =
√

n∑
i=1

(
qi −pi

)2 (5.1)

Where p & q are data points, n is dimensions and qi and pi are, respectively, the ith
feature of p and q. A distance matrix represents the distances between all objects in a
set. As an example, the distance matrix 5.2 represents the distances between the points
p1 = (0,0), p2 = (2,0) and p3 = (3,2).

p1 p2 p3

p1 0 2 3.6
p2 2 0 2.23
p3 3.6 2.23 0

Table 5.2: Example of a distance matrix containing the calculated distances between
the three points p1, p2, p3

5.1.5.1 Levenshtein Distance

Levenshtein Distance, also called the edit distance, is a metric to calculate the differ-
ence between two strings by the number of changes (insertion, deletion, or substitu-

34 CHAPTER 5. BACKGROUND THEORY

tion) needed to transform one into the other (Haldar and Mukhopadhyay, 2011). The
higher the Levenshtein distance, the more different the strings are. Given two strings:
(A) "hello" and (B) "world", the pseudocode for the Levenshtein algorithm is illustrated
below. Table 5.3 illustrates how the algorithm calculates the distance by using a table.

Levenshtein_Distance (A , B)
// I n i t i a t i o n
distance = 0
matrix = A . length *B . length matrix . F i r s t column and row range from 0 to (A . length or B . length)

// Calculation
for achar and ai in A // achar = charater in a ; ai = counter−object from 1 to A . length

for bchar and bi in B
i f achar equals bchar

matrix [ai] [bi] = matrix [ai −1][bi−1]
else

matrix [ai] [bi] = min(
matrix [ai −1][bi] ,
matrix [ai −1][bi −1] ,
matrix [ai] [bi −1]) +1

return matrix [−1][−1]

(1)

h e l l o
0 1 2 3 4 5

w 1
o 2
r 3
l 4
d 5

(2)

h e l l o
0 1 2 3 4 5

w 1 1 2 3 4 5
o 2 2 2 3 4 4
r 3 3 3 3 4 5
l 4 4 4 3 3 4
d 5 5 5 4 4 4

Table 5.3: Initiation of Levenshtein Distance matrix is shown in table (1). Calculation
of the Levenshtein Distance matrix is shown in table (2), where the bottom most right
corner is the total distance.

5.1.6 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a simple and
effective density-based clustering algorithm. It was first proposed by Ester et al. (1996)
and was awarded the SIGKDD Test of Time Award in 2014 (SIG), which is awarded to
papers that have had an important impact on the data mining research community.
With a runtime of O(logn) it discovers clusters of any amount and any arbitrary shape
and size. As in the name, it is resistant to noise which is categorized by the algorithm as
outliers and not assigned any cluster.

DBSCAN is a hard clustering algorithm which either assign a point to a cluster or
assigns the point as an outlier. It uses a center-based approach to density, which allows
us to classify a point either as a (1) core point,(2) border point, or (3) outlier. The con-
cepts of core, border, and outlier are illustrated in Figure 5.2.

5.1. CLUSTER ANALYSIS 35

• Core points: A core point is the center of a cluster. There can be many core points
in a cluster as they together form a tight mutually, joint linkage. A point is as-
signed the class core determined by a distance function, a distance/radius vari-
able EPS (epsilon, ε) and a a specific minimum number of neighbouring points
MinPts with a distance smaller than EPS.

• Border points: A border point is similar to a core point, but does not meet the
requirements of the MinPts. A border point must have a core point as its neighbor.

• Outlier points: An outlier point is like a border point which does not meet the re-
quirements of the MinPts. However, it does not have a core point as its neighbor.

DBSCAN works by iterating all the points in a set, identifying and assigning the
points to a class. A separate group of core points identifies each cluster. The selection of
the variables EPS and MinPts determines how the algorithm performs. DBSCAN is sim-
ple and robust but performs poorly within environments with various densities. EPS
and MinPts are user-defined variables and often difficult to be assigned their optimal
values as it can drastically differ amongst different densities.

Figure 5.2: DBSCAN. Point A and the other red points are core points, B and C are border
while the blue point is Noise/outlier. (Chire, 2011a)

36 CHAPTER 5. BACKGROUND THEORY

5.1.7 OPTICS algorithm

As an improvement to DBSCAN, Ordering Points To Identify the Clustering Structure
(OPTICS) was introduced in the paper Ankerst et al. (1999). OPTICS specifically tar-
gets the flaw DBSCAN possesses, its disability to not perform within environments with
various densities at an optimal rate. OPTICS, as DBSCAN, require the variables EPS (ε)
and MinPts, and uses the same classes as DBSCAN (core, border and outlier). However,
the difference lies in the assignment of the classes. OPTICS assigns the class core to all
points who has a defined core-distance. All other points which receive an undefined
core-distance are either assigned as a border or outlier. The core-distance of an object
is defined by the smallest ε possible while still maintaining MinPts. It is defined by the
formula:

cor e −di stε,Mi nP t s (p) =
{

UNDEFINED, |Nε(p)| < MinPts

MinPts-distance(p), otherwise
(5.2)

Where p and q are objects, Nε(p) is the set of objects inside pε radius (neighbours)
and MinPts-distance(p) is the distance from p to its MinPts’ neighbor. All core points
also have a reachability-distance. All points contained inside this reachability-distance
who is not already assigned as core, is assigned as a border. The reachability-distance
can not be smaller than the core-distance. The reachability-distance (i.e reach-dist) of
an object is defined by the formula:

reach-distε,Mi nP t s (p, q) =
{

UNDEFINED, |Nε(p)| < MinPts

max(core-dist(p), dist(p,q)), otherwise
(5.3)

Where dist(p,q) is the distance function between two objects and can not be larger
than ε. All core and border points assigned as neighbors defines a cluster. Points not
reachable by a core point’s reachability-distance, is an outlier and not assigned any clus-
ter. Illustrating the results after running the OPTICS algorithm on a set of objects can be
done with a reachability plot. It displays the reachability-distance for each point and il-
lustrates the different clusters as "valleys" and noise and border points as "mountains".
Figure 5.3 illustrates a reachability plot.

5.2. FEATURE EXTRACTION AND SELECTION 37

Figure 5.3: This figure illustrate a reachability plot generated after the OPTICS has
been executed and calculated all the reachability-distances between the points. (Chire,
2011b)

5.2 Feature extraction and selection

In machine learning and statistics, extracting and selecting the correct features serve a
critical role in achieving the optimal results. As discussed in 5.1.4, features carry infor-
mation, and its importance is relative to the context. When a context changes, so do
the required features to capture the essential information. Extracting available features
and selecting the most important features is a challenge.

5.2.1 Feature extraction

Feature extraction is the process of extracting usable features from raw data into a fea-
ture vector. Raw data is data without organization or structure, often collected from a
source such as text, measurements, images, and sound. Due to the nature of disorder
and variations in raw data, choosing the correct feature extraction method is difficult,
though it is the key to success. Some sources are less variable (it has fewer dimensions)
and more structure than others, thereby allowing features to be more easily extracted
while other sources are the opposite. The amount of dimensions a domain contains
defines the method of extraction. Using methods of extraction designed for domains
with a low amount of dimension (D < 10) on a domain with a high amount of dimen-
sions (D > 50) yields poor results (Lewis, 1992). It is therefore important to recognize
the operational domain, its dimensions and thereby choose the appropriate extraction
method.

Feature extraction from textual domains is the feature extraction category Struc-
tural description, containing areas such as formal languages and their grammars, pars-
ing techniques, and string matching techniques (Lewis, 1992). In this category, it exists
two different kinds of features, structural and statistical features. Various methods are

38 CHAPTER 5. BACKGROUND THEORY

used to extract the structural and statistical features. Structural methods identify the
structural features of a character where structure refers to how the information within a
written text is organized. Statistical methods identify the statistical features of a charac-
ter were statistical refers to "features of a data set, which can be defined and calculated
through statistical analysis" (Wha), (Vithlani et al., 2015). Typical methods of feature
extraction of textual sources is "Bag of words", "TF-IDF", and "Word2Vec".

Source code lies in the textual domain, which allows all textual feature extraction
methods to generate a feature vector from the source code. Source code is heavily de-
pendent on keywords and syntax. Therefore both recognizing the structure and statis-
tics of characters is of great value. Examples of differnet methods of structural feature
extraction of source code are the following:

Abstract Syntax Tree (AST): AST is an abstract syntactic model of the source code
represented by a tree structure. The source code is parsed and modeled into an AST
where nodes are program elements, and paths are the relative movement between the
nodes (Alon et al., 2018). AST is a widely used model to compute the similarity be-
tween source code by comparing the structures of the program. Comparing struc-
tures allows for ambiguity in keywords and reduction of noise. However, comparing
the structural tree graph with N-nodes is complex in computation and a worst case of
O(n3) (Ragkhitwetsagul et al., 2018). Solving a comparison problem between graph-
based models are often NP-complete, however simplifications and reduction in com-
plexity can be made to lower the computation time. AST also lacks the ability to be
generated if obstructions or unintended faults in the syntax occurs. The source code
needs to be correctly implemented before the AST can be created. Other graph meth-
ods are program dependence graphs (PDG), Compile tree, or control flow graphs (CFG)
(Ragkhitwetsagul et al., 2018).

Figure 5.4: A JavaScript program and its AST, along with an example of one of the paths.
(Alon et al., 2018)

5.3. COMPILING 39

N-gram analysis: N-gram analysis is a predictive model often used in Natural Lan-
guage Processing (NLP) and used to detect and predict structures in sequences. It cre-
ates overlapping subsets of length n containing words from the text. Based on the N-1
previous words, it computes the probability of the next word in a sequence.

p(s) = p(a1)p(a2|a1)p(a3|a1a2)...p(an |a1...an−1) (5.4)

Where p is the probability function and a1,a2...an is objects in a sequence of length n
(Hindle et al.). A similar usage of n-grams is the syntactic n-grams. It uses a tree-based
structure and generates syntactic relations between words which reduces arbitrariness
(Sidorov et al., 2014).

latent semantic indexing Latent semantic analysis (LSA) is a technique to aggregate
all the words in a corpus by analyzing the context of relative appearance. This is done
with the intent to provide sets of mutual words with similar context appearance, and
therefore similar meaning (Landauer et al., 1998).

5.2.2 Feature selection

Feature selection is the process of selecting the relevant and discard irrelevant features
to improve performance (Brank et al., 2011). Consider a set of independent features
(f) extracted from a domain as F = { f1, f2, ..., fn}. Using these extracted features, we
wish to select a subset of relevant features and remove irrelevant or redundant features.
The reason to only select a subset of features instead of using them all has to do with
the phenomenon called "the curse of dimensionality". When the number of features
increases, the time required and the complexity for an algorithm to compute increases,
sometimes exponentially. It is also worth noting that additional features do not always
increase the total descriptive power (Trier et al., 1996). Often, there exists a finite small
subset of features with equal (or near equal) descriptive power as the whole. The task of
selecting the optimal subset of relevant features is hard, as the term "relevant" is often
somewhat obscure.

5.3 Compiling

A compiler is a translator. It is computer software who translates code written in a
programming language such as Python or JavaScript (source), into another language
(target). Compilers are necessary to translate human-written source code into generic
machine code.

Now, why do we do this? In short, humans and computers like to organize things dif-
ferently. Humans can effectively understand high level languages (such as Norwegian,
English, or Python) containing aspects such as ambiguity and context. Humans can
extract information from poorly structured data such as an image or a written Shake-
speare poem without much trouble. Computers on the other hand, lack this ability.
For a computer to know what to do, it needs to know exactly what needs to be done in

40 CHAPTER 5. BACKGROUND THEORY

the correct order, or else it will crash. It is very sensitive to miss-inputs and structural
changes. Therefore, source code is written to be easily understood and correctly built
by humans, then compiled into a language easily understood by the computer (i.e ma-
chine code). This is what the compiler does. It takes what is called "high level" human-
written code and transforms it to an understandable "low level" code for a computer.

As there are many different languages, there are many different compilers. One can
not use a Swedish-to-English translation book to translate Chinese into English. It is
the same with computer programs. One can not use the same compiler designed to
compile Python into machine code to compile JavaScript into machine code (unless it’s
designed to do that specifically, but this is never the case). Therefore there are as many
(or more) compilers as there are computer languages, and none of them are exactly
equal. However, they all share some common traits.

The common compiler is made up of many steps of code transformation. Lexi-
cal Analyzer, Syntax Analyser, Semantic Analyzer, Intermediate Code Generator, Ma-
chine Independent Code Optimizer, Code Generator and Machine Dependent Code
Optimizer. In this thesis’s scope, it is only necessary to understand the lexical, syntax,
and semantic analysis processes.

5.3.1 Lexical Analysis

Lexical analysis is the first phase of a compiler. It takes source code as input and out-
puts the code as a series of tokens. Lexical analysis is generally made up by two steps.
Preprocessing and Tokenization.

5.3.1.1 Preprocessing

Preprocessing is the first process of lexical analysis. It "cleans" the raw input to make
it more easily read by the following processes. It removes white-space and following a
set of rules, it splits the raw code-words into individual characters called lexemes that
are more easily interpreted by the Tokenizer. A lexeme is a character or a combination
of characters that serve as individual element. A lexeme is often simply a word such as
"if", "while", or "return", but can also be numbers or separators such as ":" or ";". The
identification of lexemes is usually made with a Final State Machine (FSM) (Figure 5.5 is
an example of an FSM) in a process called Scanning. The Scanning process iterates the
input character stream and identifies characteristics such as numerical, alphanumeri-
cal, or a combination of symbols (!==, <=). The Scanner maps the characters towards a
corpus of words to identify legal and illegal lexemes. The process of creating lexemes
can sometimes be very complicated, especially if the total set of allowed lexemes is very
large. In cases where the Scanner identifies an illegal lexeme as a result of a input-error
or illegal syntax, the Scanner stops the whole process and returns a compilation error.
Figure 5.6 illustrates the inputs and outputs of the Preprocessor. It inputs source code
and outputs a list of tokens.

5.3. COMPILING 41

Figure 5.5: Example of a Final State Machine where any node is the starting node or the
end node.

Figure 5.6: Illustration of inputs and outputs of the Preprocessor. Inputs raw text in the
form of source code and outputs a list of generated tokens.

5.3.1.2 Tokenization

The tokenizing process transforms the generated lexemes into tokens. Tokens are wrap-
pers with additional information of a fixed uniform structure to a lexeme. It tells the
system what kind of meaning the lexeme has as it adds semantics to the lexeme. The
tokenizer transforms lexemes into tokens by mapping the lexeme to a set of predefined
grammatical rules. The tokenizer uses an evaluation function to map the lexemes into
different categories such as keywords, constants, identifiers, literals, operators or sepa-
rators. Table 5.4 shows an example of different types each lexeme is mapped to.

Type Value
keyword for, while, if, else, elif
separator (,), [,], {, }, ;, :
literal True, False, numbers, lists, tuples, dictionaries, sets
operator +, -, *, /, and, or

Table 5.4: Example of tokens and their values.

42 CHAPTER 5. BACKGROUND THEORY

All lexemes are assigned a category and converting into tokens. The token is ei-
ther illustrated by a uppercase words such as EQUALS or SEMICOLON, or it is illus-
trated by a token wrapper "Token(category, value)" such as Token(operator, ’=’) or To-
ken(seperator, ’:’).

5.4 Travelling salesman problem

Travelling salesman problem (TSP) is an optimizations problem: "given a graph of nodes,
construct the shortest path such that all nodes are visited once and only once". A path
visiting all nodes exactly once in a graph is called a Hamilton path. TSP tries to find the
shortest Hamilton Path. TSP is NP-hard (can not be solved in polynomial time), and ex-
haustive search requires O(n!) complexity which leads to the need to calculate 2∗1018

different calculations even only for a graph with 20 points. Reducing computational
complexity can be done by accepting sub-optimal solutions with various heuristics
such as greedy, insertions, Christofides or Nearest Neighbour heuristics (Nilsson, 2003).
The norm is to use a heuristic as the time to optimally solve TSP takes too long when
working with larger problem spaces.

Figure 5.7: Example graph with vertices Figure 5.8: Example Hamilton path made with TSP

Chapter 6

Related Work

This chapter presents a closer look at the related work carried out in the field of au-
tomation and grading. Section 6.1 presents an overview of systems who automatically
grades student submissions in various ways, section 6.2 presents an overview of how
clustering is utilized by different systems and section 6.3 presents an overview of other
works who have conducted experiments with sequences.

6.1 Autograding

Given biases and other unreliable elements introduced into the academia by humans,
one might be induced to implement a more consistent, reliable, and automated method.
Such a method can produce the same reliable output unaffected by the influence of bi-
ases or fatigue. The task of automation is simple in the aspect of calculating a grade
on selected responses (multiple choice and similar task styles). However, the diffi-
culty increases given the task of automatically grading subjects with constructed re-
sponses such as essays or source code (Srikant and Aggarwal). Autograders have proved
to have a high correlation with human grades, but lack insight into the actual con-
tent and other higher-order aspects (Attali et al., 2013). Therefore, Autograding has
proven to be insufficient as a single source of measure when dealing with submissions
of importance, such as final exams. Several studies have conducted investigations in a
human-machine collaboration where the autograder serves as a complement, provid-
ing access to its suggested grade and considerations (Attali et al., 2013). This human-
machine collaboration has increased human reliability and consistency, however it also
increases human and machine grade correlation. This correlation infers that human
raters are influenced by the autograders low-level thinking, which reduces the impor-
tance of higher-order content in the grading process (Attali et al., 2013).

Using Latent Semantic Analysis (LSA) to automate grading of computer program-
ming assignments were studied by Zen et al. (2011). The main idea was to analyze the
source code using LSA, which uses text-words; hereby referred to as terms, and com-
pares their similarity against predefined correct answers. LSA is often used in the field

43

44 CHAPTER 6. RELATED WORK

of Natural Language Processing (NLP) where the task is to make a machine understand
human written text. LSA assumes that terms which appear in a similar position, have
a similar meaning. LSA uses a term-document matrix to represent the occurrence of
terms in a set of documents. Since Zen et al. (2011) automates grading on source code,
which consists of alphanumerical, mathematical, and other specific syntax symbols
and not regular text, noise is a problem. Noise in data is described in [section x] "mean-
ingless information" and should either be removed or reduced so as not to interfere or
create unreliability. Zen et al. (2011) asserts variable names and other alphanumeri-
cal characters as noise and reduces noise by complete removal, leaving only separators
and operators (“if(n>1)” and “if((n==0)||(n==1))” is transformed into “(>)” and “ ((==
)||(==))”). Cosine similarity (Cos) is a metric used to calculate the similarity between
the predefined correct answers. The similarity was finally used to calculate a grade. The
comparison of this technique as to human grading were proven to be insufficient. LSA
is able to grade assignments fast and consistently in addition to avoiding bias, however,
LSA does not differentiate the order of symbols and therefore completely ignores the
importance of syntax. Related research using LSA on source-code is the paper Alves dos
Santos and Favero (2015).

Srikant and Aggarwal (2014) implemented a highly sophisticated machine learning
system in order of autograding written source code. Advanced methods were used to
extract features describing the complexity and the correctness of a program. As dis-
cussed previously in section 5.2, this is a task that should not be taken lightly as the
difficulty of feature extraction and selection is very complicated. The machine learn-
ing algorithm (Srikant and Aggarwal, 2014) implements utilizes regression with 3-fold
cross-validation to model the grades and linear ridge-regression, SVM-regression, and
Random Forests to build the models. This approach is by far one of the best ways to
acquire insight into higher-order concepts and ideas, but it has a major drawback as it
uses pre-built correct solutions in its grade-calculation.

What makes automatic grading insufficient on important submissions such as final
exams is their inability to truly grasp the high-order concepts. They often do not meet
the requirements to be used in exams and often add additional workload. The lack of
a compiler at Norwegian universities makes the usage of AST nearly impossible as AST
needs source code without syntax errors. The need for additional workload to create
an environment for the autograders to fully function is not efficient. This is workload
such as generating different correct answers patterns that use the same techniques one
predicts the students to use.

6.1.1 Combining constructed and selected responses

Since selected responses provide a quantitative approach and constructed responses
provides a qualitative approach, why not combine the two? Take the best of both worlds
and create an approach easily quantified and able to demonstrate a high level of knowl-
edge? One such approach is Parson problems and researched in ??. Parson problems
is a tool suited explicitly for computer science classes and source code programming

6.2. CLUSTERING 45

problems. It is a set of "blocks" written of source code the partaker needs to place in
the correct order. By utilizing indentations as a variable additional to the blocks, the
possible permutations quickly increase by the polynomial factor of n!. Therefore, even
if the student does not write the textual content and is presented with a list of building-
blocks, the student is able to demonstrate knowledge of a higher order. The blocks can
more easily be automatically graded than text.

6.2 Clustering

Massive Open Online Courses (MOOCs), with several thousand attending students from
all around the world, is rapidly becoming a popular alternative in education (Hatzi-
panagos and Gregson, 2015) (Basu et al., 2013). MOOCs are highly scalable as the lec-
tures are automated with videos, texts, and social forums. Assessment is completed
with weekly quizzes and multiple-choice questions. However, Hatzipanagos and Greg-
son (2015) states that MOOCs remain limited in its ability to assess complex and open-
ended student assignments. Although the dynamic scalability of selected responses
is perfect with MOOCs, constructed responses are not. As constructed responses are
the superior way of demonstrating knowledge (Anderson and Biddle, 1975), they are
also desired in MOOCs. As well as assigning numerical grades, the challenge is grading
and giving quality feedback to the constructed responses without increasing the work-
load. Basu et al. (2013) coined the term "powergrading" as the solution to this problem.
When a student delivers their answers to the same task, different groups of students
have often made the same mistakes. Writing feedback to each group/subgroup instead
of each individual reduces workload and increases consistency. Basu et al. (2013) uses
Latent Semantic Analysis (LSA) to extract and select features, tf-idf as weighting and
cosine similarity as distance function. Clustering into groups were done with the k-
medoids algorithm (Kufman and Rousseeuw, 1987). Overall accuracy were computed
to be 92.9%

Clustering based on source code written in programming courses to decrease work-
load was researched by (Barbosa et al., 2018). The research describes an attempt to de-
crease the time between submission and receiving feedback, minimize the evaluation
effort as well as considering the different criteria of each evaluator. "Adaptive cluster-
ing" is the concept of not only clustering, but adapting the clusters to match the aspects
of the evaluator using it. The clustering was done with Kmeans, and similarity was cal-
culated with Jaccard similarity.

6.3 Sequence manipulation

Attali et al. (2013) experimented with the effects of sequence when graded. The purpose
was to study if the sequence affected inter- and intra-rater reliability of grading and/or
the effort to discern differences in essay quality. In the experiment, a shallow clustering
algorithm were used to group similar essays on specific criteria. The length of the essay

46 CHAPTER 6. RELATED WORK

were chosen as the similarity feature and the clustering algorithm were simply to group
essays of similar length together. Raters were asked to grade all essays from one group
before moving to another group. The results of the experiment stated that the sequence
had no effect on scores, reliability and did not seem to have any effect on the rating
process at all. The participators gave feedback stating:

1. ‘scoring the groups of long responses was quite exhausting’,

2. ‘It can be very refreshing to work with and within the entire score range, not only
for variety, but for clarity’,

3. ‘sequence might unduly influence a rater’s thinking to even subconsciously tend
towards “longer must be better”’

Chapter 7

System Design

This chapter presents the developed artefact with the main goal of automating the sort-
ing of any arbitrary sequence into an optimal sequence. Section 7.1 presents insight
into what an optimal sequence might be, section 7.2 presents a general overview of the
artefact and its parts, section 7.3 presents a detailed insight into the architecture of the
Preprocessor, section 7.4 presents insight into how the artefact calculates distances, sec-
tion 7.5 presents a detailed insight into how the submissions are clustered, and section
7.6 presents insight into how the sequence is finally generated.

7.1 Optimal sequence

The optimal sequence should be a sequence that increases reliability, validity, and fair-
ness. Based upon the research done by Spear (1997) and other related works such as
(Zhao et al., 2017), (Aslett, 2006), (Wolfe et al., 2001) and (Fitzgerald et al., 2013), this
might be achievable by sorting the complete set of submission in such a way that equal
or similar submissions are graded directly after one another. As similar items might
get similar grades, the contrasting quality between items should be reduced. Such a
sequence might reduce contrasting effects and give equal grades to equivalent submis-
sions.

7.2 General Design

The general goal of the artefact is automatically sort any sequence of Python source
code into an optimal sequence. The artefact is made up of separate modules. These
modules contain submodules who are the building-blocks of the artefact. The submod-
ules is mostly made up of already stress-tested algorithm with previously proven results.
The modules and submodules is illustrated in Figure 7.1.

47

48 CHAPTER 7. SYSTEM DESIGN

Figure 7.1: This model describes the general design of the artefact, its modules (color)
and their respective submodules (white).

7.2.1 Design introduction

What I designed and implemented in this thesis was an algorithm/artefact that requires
Python source code as input, and outputs a list of integers representing the submis-
sions’ position in a sequence. As this design does not depend on any already imple-
mented digital examination tool, it can be used as a third party to any arbitrary system.
The artefact is four separate modules: Preprocessor, Distance measure, Clustering and
Sequence generation.

Figure 7.2: This model describes the very basic idea of the system. In this example,
the Python files A-B represent student submissions. They are presented to the artefact,
which outputs a list of identifiers describing their optimal position in a sequence. The
output can be any arbitrary permutation of the input files.

As the problem of this thesis is an open-ended problem, there is no "correct" de-
sign, only suggestions. This design only describes a suggestion of how to solve the main
problem. The rationale behind the implemented design is to keep it as simple as possi-
ble and to only use already stress-tested modules.

The general design is inspired by source code similarity systems for plagiarism de-
tection (Durić and Gašević, 2013). The intention was to acquire some sort of similarity
measure between each submitted source code and generate an arrangement based on
that. The general design is made up of four main modules. The preprocessor, distance
measure, clustering, and sequence generation.

7.3. PREPROCESSOR 49

7.3 Preprocessor

The preprocessor module has the critical task of streamlining the raw input of Python
files, such that the following modules can operate without failure. Its main task is to
iterate over the files, extract the content, and present it to the next module (distance
measure) as a list of tokens. The Preprocessor is made up of three submodules, the
Scanner, Cleaner, and tokenization. The Preprocessor design is a replication of the first
stages of a compiler (lexical analysis) with a few modifications. A regular lexical analysis
breaks if there are syntax errors, this Preprocessor does not.

7.3.1 Scanner

The Scanner simply reads the files line by line and assembles the lines together in a list.
The inputs and outputs of the scanner is illustrated in Figure 7.3.

Figure 7.3: This model describes the scanning process. A & B are input files and the
output is a list containing the content of A & B.

7.3.2 Cleaner

The Cleaner produces lexemes from the Scanner output. The lexemes need to be with-
out noise, such as spaces, comments, and other insignificant symbols. The Cleaner
removes these insignificant symbols and outputs a list of lexemes. The inputs and out-
puts of the scanner is illustrated in Figure 7.4.

Figure 7.4: This model describes the cleaning process of the Cleaner. Output from the
Scanner is takes as input and lexemes are given as output

50 CHAPTER 7. SYSTEM DESIGN

7.3.3 Tokenization

The Tokenizer is a Final State Machine (FSM) which inputs lexemes generated from the
Cleaner and outputs a list of tokens generated from the lexemes. While the lexeme,
in its simplest form, is just a word, a token is a wrapper of information to the lexeme,
adding semantics.

Figure 7.5: This model describes the relationship between a lexeme and a token. In this
example, the lexeme is created from the word "def".

A token is described by the hierarchy (also called dimensions) Type => Group =>
Value (as illustrated in Figure 7.5). Type describes what kind of token it is (Keyword,
Function, Separator, etc), Group describes what functionality the specific token has
(Function, Flow, Separator, etc), and Value simply contains the lexeme the token is built
from. The table in Appendix A describes all accepted Keywords, groups, and values. To-
gether, the variables provide the original written text word with semantics we can use
when computing similarity. Table 7.1 illustrates a small sample of the hierarchy.

7.3. PREPROCESSOR 51

Type Group Value
Keywords CONTROL_FLOW for, while, if, else, return

MODULE from, with, as, import
EXCEPTION try, except, finally, raise

Separator BRACKET_START (
COLON :
COMMA ,

Operator ARITHMETIC +, -, *, **, /, //, %
RELATIONAL <, >, ==, ===, !=, <=, >=
LOGICAL and, or, not, !

Literal BOOLEAN true, false
NONE none, null

Variable NUMBER numbers
STRING "text written within quotation marks"
VARIABLE assigned to user defined variable names

Function FUNCTION_DEFINE def
FUNCTION variables defined as callable functions

Unknown UNKNOWN lexemes not assigned any other type and group

Table 7.1: Small sample of the token hierarchy illustrating the levels Type, Group and
Value. The full lookup table can be found in appendix A

7.3.3.1 Syntax Analyzer

Handling lexemes that do not fit any of the regular syntax types is an issue. In a regular
compiler, if something is not recognized immediately, the compiler stops and returns
an error. We do not want our preprocessor to stop if it must handle something uniden-
tifiable. The Preprocessor is designed to solve this by introducing a unique Unknown
token illustrated in Figure 7.6. The Unknown token lets the Preprocessor continue to
create tokens even though the syntax is incorrect. This is the major difference between
the designed Preprocessor and a regular compiler.

The drawback of using the Unknown token is that it adds noise. It does not add any
semantics except for the fact that it is unknown and therefore not easily identified or
used. Thus it should be reduced as much as possible. The lexeme an Unknown token is
built upon are often variable identifiers. They are strings of arbitrary length and values
of any alphanumerical characters. As described in 6.1, such variables pose a problem as
they make noise. We therefore want to process the Unknown tokens through a syntax
analyzer to discover if they can be changed into one of the other tokens.

The syntax analyser evaluates the Unknown tokens and recognizes tokens with equal
lexeme values. If it have previously generated a token with an equal lexeme value, the
Unknown token is transformed into a copy of the found token. This process is illus-
trated bu Figure 7.7.

52 CHAPTER 7. SYSTEM DESIGN

Figure 7.6: This model describes the tokenization process. It inputs lexemes and out-
puts Tokens.

Figure 7.7: This model illustrates the Syntax analyser as it inputs a Unknown token and
tries to map it into one of the other token types.

7.4 Distance measure

The Distance measure module is tasked with calculating the distance between the all
the input files. The files is represented as lists of tokens, also called token-strings from
the Tokenizer output.

7.4. DISTANCE MEASURE 53

7.4.1 Greedy String Tiling

Greedy String Tiling (GST) is "for comparing pairs of strings to determine the degree
to which they are similar" (Wise, 1993). The metric inputs two token-strings (TS1 and
TS2) and calculates a numerical distance between the two. It was first proposed by Wise
(1993) in 1993 and used in source code similarity systems like JPlag (Prechelt et al.), and
suggested as one of the best source code similarity algorithms when comparing plagia-
rism detection (Durić and Gašević, 2013).

The metric is based on a one-to-one matching and is similar to the "longest com-
mon substring" (LCS) algorithm (Babenko and Starikovskaya, 2011). The objective is
to find as many matching elements in a row and to mark them such that they are not
counted twice. The rows of matched elements are called a "block". LCS and GST try to
find as many blocks as possible and then calculate a numerical value from the blocks.

The difference between LCS and GST is that the LCS algorithm is "order-preserving",
which means that it does not ignore different permutations of substrings. That is a
problem since source code can be written in multiple ways and still have the exact same
functionality. GST ignores permutations of substrings and will calculate the same dis-
tance for all arbitrary permutations of two strings. This functionality has some costs
and makes the runtime complexity of GST to beO(n3) while LCS (depending on how
you implement it) generally has O(n ∗k) complexity. GST can be improved to almost
O(n) using Karp-Rabin pattern matching algorithm (Richard Karp Michael).

GST iterates the source code token by token and outputs a list of tiles. Let set A be
the set of all tokens in TS1 and set B be the set of all tokens in TS2. A tile describes a
set of matches in succession. A match is any element in the in the intersection A ∩B .
A tile is written of the form "(x,y,z)" where x is the position of the first element in the
succession, y is the position of the the last element and z is the number of elements in
the tile. The pseudo code for GST is described in the appendix.

After the execution of GST, the numerical distance between the token-strings can be
calculated by following the distance function formulas (7.1 and 7.2) originally described
by Prechelt et al.:

sim(A,B) = 2∗coverage(tiles)/(|A|+ |B |) (7.1)

coverage(tiles) = ∑
match(a,b,l eng th)∈tiles

length (7.2)

A token can be compared on the three different dimensions (Type, Group and Value),
each providing their own level of "strictness" as they carry different semantics. As an
example, if given the task of comparing colors, choosing a level of strictness is impor-
tant. With a high level of strictness, the colors blue and light blue are not equal. Re-
ducing the level strictness increases the similarity of blue and light blue. With the right
amount of strictness, blue and light blue is equal to each other, while blue and red are
note equal. Comparing two colors without any strictness at all, all colors are one and

54 CHAPTER 7. SYSTEM DESIGN

the same.

When comparing two tokens, the dimensions describe the level of strictness. Com-
paring two tokens on their Value (i.e lexeme) is very strict as often variables such as
variable identifier can vary a lot. This creates few to no matches at all. Comparing two
tokens on their Type, creates only as many different tokens as there are different types,
making two files too similar. Choosing the level of strictness gives different results when
comparing source code which leads to a totally different performance of the whole al-
gorithm. The strictness variable is therefore very important to the whole artefact. Since
source code is ambiguous, we want to use the correct level of strictness to achieve the
best performance. In this thesis I chose to use strictness level of Group, as it provides
the highest amount of semantics and an average strictness. Example 1 and Example 2
shows the difference between using Group or Value as dimension for comparison.

Example 1.

A = [’ def ’ , ’ func ’ , ’ (’ , ’ arg ’ , ’) ’ , ’ : ’]
B = [’ func ’ , ’ (’ , ’param ’ , ’) ’]

GST(A , B) => [(1 , 2 , 2) , (4 , 4 , 1)]
GST(B, A) => [(0 , 1 , 2) , (3 , 3 , 1)]

Example 1: This example illustrates the comparison of the token-string A and B. They
are compared on their Value variable and the output of GST are the lists of (x,y,z) tiles.

Example 2.

A = [DEF, FUNCTION, BRACKET_START, BRACKET_END, COLON]
B = [FUNCTION, BRACKET_START, BRACKET_END, COLON]

GST(A , B) => [(1 , 3 , 3)]
GST(B, A) => [(0 , 2 , 3)]

Example 2: This example illustrates the comparison of the token-string A and B. They
are compared on their Group variable and the output of GST are the lists of (x,y,z) tiles.

7.5 Clustering

Having a way of comparing source code and calculating a distance matrix, we now need
to use the distances to generate a optimal path. Clustering is a way of grouping data
points into separate clusters, and as we want similar objects to appear closer to each
other in the final sequence, we group the objects into separate clusters. The algorithms

7.5. CLUSTERING 55

OPTICS with DBSCAN is used for clustering and the concepts is explained in 5.1.6 and
5.1.7.

7.5.1 Weight scaling

After clustering is done on the data points and before the TSP algorithm is run, weight
scaling needs to happen. If the weights are not scaled, clustering is unnecessary and
provides no benefit at all. In Figure 7.8, we see an example of the algorithm OPTICS run
on 30 data points with x,y coordinates in the range [0,8] with eps=0.7 and minPts=3. It
shows 4 different clusters and 9 noise points (black). Let’s assume that each data point
is a student submission and a teacher has graded all the submissions (the grading of
the submissions is something that happens after all of the algorithms has run. But just
for explanation let’s assume that the points are "theoretically" given. That means that
they deserve the points given to them and hopefully will be given that amount of points
when graded). All the data points in each cluster got the same amount of points (this is
unlikely in a actual scenario) where data points in the blue cluster got 2 points, the red
cluster got 3 points, the green cluster got 4 points, and the purple cluster got 5 points.
The noise points are wildcards. They could have got any amount of points, but let’s as-
sume that they share received a similar amount of points relative to their nearest cluster.

Figure 7.8: Example of clusters after running OPTICS algorithm with eps=0.7 and
minPts=3. This illustrates four independent clusters (points colored red, blue, green
and purple) and noise points (black).

Now that we have the clusters show in 7.8, we need to organize a Hamilton path
between all the points. This is easy. Just draw a line from one point to another and
never visit the same point twice and you end up with a sequence which a teacher can
grade. But, here lies the problem. If you could have just drawn random lines between
all the points you will end up with something similar to Figure 7.9. Then why do we
even cluster? Let’s assume that the graph in Figure 7.10 is the Hamilton path you have
drawn. This could have been any arbitrary order of the points, but some thought has

56 CHAPTER 7. SYSTEM DESIGN

Figure 7.9: Example of a ran-
dom Hamilton path drawn be-
tween each point

Figure 7.10: Example of a Hamil-
ton path drawn between each
point

been given to create the shortest path. This path is better than total randomness, but it
has some flaws. The path starts of in the green cluster, then moves into the purple and
then back into the green cluster. Looking at this, all the points could be any color and
not clustered at all. The path does not respect the borders of the clusters. It can move
in and out and then back into a cluster again as we can see in Figure 7.11. We want all
the points inside a cluster to be followed directly after one another, not what we see in
Figure 7.10, where the path cross cluster borders. What we want to see is what we see
in Figure 7.12. This Hamilton path is somewhat longer than in Figure 7.10, but is more
optimal as it respects the cluster borders.

To make the TSP respect the cluster borders, it must be given an incentive to travel
all the points inside a cluster before moving on to the next. This is of course impos-
sible to do for every arbitrary cluster graph, but should be acquired if possible. The
method to I chose was to decrease the intra-cluster-distance and increase the inter-
cluster-distance. That means that the distance is increased between all the points which
are not in the same cluster, but decreased between all the points in the same cluster.
This creates a shorter path for the TSP to order all the points in a cluster after one an-
other and not move to another cluster before it’s absolutely necessary.

7.6. SEQUENCE GENERATION 57

Figure 7.11: Example of a Hamil-
ton path That does not respect the
cluster borders

Figure 7.12: Example of a Hamil-
ton path that respects the cluster
borders

7.6 Sequence generation

As explained in 5.4, TSP finds the shortest Hamilton path between all nodes in a mul-
tidimensional graph. TSP is used to create the final output of the artefact. Since an
exhaustive search requires O(n!) complexity, the greedy version is chosen, but in reality,
any version of the TSP can be used. Other version such as the combination of the CON-
CORDE algorith and TSP was done by Agarwala et al. (2000) and delivers a complex but
fast method of computing the shortest path. While the greedy version has some flaws,
it was chosen because it is extremely fast. It has the approximation factor of O(log|V|)
(Rosenkrantz et al., 2008) but will often yield a subotimal path.
The Sequence generation module inputs a distance matrix and calculates the shortest
Hamilton path. It outputs a sequence in which should be the "optimal" path in the form
of a list with positional identifiers: [5, 4, 8, n, ..., 1, 3].

58 CHAPTER 7. SYSTEM DESIGN

Part IV

Experiments, Results,
Discussion, and Conclusion

59

Chapter 8

Experiments

This chapter presents a detailed insight into the different experiments conducted in
order to answer the research questions presented in section 1.3. Section 8.1 and 8.2
presents how the experiments were conducted. The experiment setup is described back
in section 2.2.

8.1 Experiment 1

This experiment was conducted in order to generate empirical data for analysis related
to RQ 1. The goal of this experiment was to observe the results of students acting as
raters with the task of grading 20 student submissions and the effects of different se-
quences. The experiment solely served as a proof of concept for the second, larger ex-
periment. Therefore, in this experiment the 10 participants were divided into a control
and test group, 5 in each. The chosen submissions for this experiment were the sub-
missions of the first 20 submissions from data source 1.

The text explaining the task for data source 1 and used in this experiment is illus-
trated in Figure 8.1. The proposed solution to the task is illustrated in Figure 8.2. Note
that this is not the only correct answer to the task, only a proposed solution. Students
can get the full score even if their solution is significantly different from the proposed
solution.

Ten computer science students in 3rd grade at NTNU was randomly chosen to par-
ticipate in the experiment for one hour. The participants were paid 200,- NOK for the
one hour they participated. The experiment was conducted inside a classroom with
ten separated desks with approximately 1,5m apart. The students were given 11 double
printed pages and a pen. The first page contained the text illustrated in Figure 8.1 and
the proposed solution illustrated in Figure 8.2. The first page also included guidelines
for awarding the correct grades, illustrated in Table 8.1, together with an example of a
student submission. The example submission was included as a warm-up exercise for
the participants and used to resolve uncertainties the participants might have. The ten

61

62 CHAPTER 8. EXPERIMENTS

Figure 8.1: This text explain task 10 given on the final exam in the NTNU course
TDT4127 November 2018.

Figure 8.2: This text illustrates a proposed solution to task 10 given on the final exam in
the NTNU course TDT4127 November 2018.

remaining pages had two submissions printed on them, one at each side. This arrange-
ment resulted in when the pages stacked on top of each other with only one submission
is visible at a time. The first 20 minutes were used to explain the task, the proposed so-
lution, and other necessities for the participants to settle into the role as professional
raters. The participants used the remaining 40 minutes to grade the 20 submissions.

8.1. EXPERIMENT 1 63

Grade Rationale
0 Minor/zero attempt was made. Only repeats information already

given in the assignment text
1 Minor attempt, lots of mistakes or very slim code
2 Slight attempt, lots of mistakes however the student demonstrate rea-

son or partial logic
3 good attempt, big mistakes or many minor mistakes
4 good attempt with small errors
5 perfect attempt with only minor textual mistakes

Table 8.1: This table illustrates the guidelines the participant had access to while grad-
ing the 20 submitted source codes.

To decrease variability, the participants were given a sett of rules they had to follow:

1. 2 minutes must be used for each task. If you finish early, wait until 2 minutes is
used before moving to the next.

2. A grade between 0-5 must be assigned to each submission. No blank answers. If
uncertain of which grade to assign, follow your intuition and assign a grade. No
explanation must be given, only the numerical grade.

3. Do not disturb the other participants and no cooperation of any for is allowed.

4. The current page and the first explanatory page is the only two pages allowed to
be visible for the participants.

5. You are not allowed to go back and view previous pages.

These rules were set to strengthen the simulation of being a professional rater. The
2-minute rule is for the ones who rush through without much rational thinking and to
create a sense of time restraints as all raters have deadlines they need to adhere to. The
reason the allowance of viewing previous papers is restricted, is to create the illusion
of grading hundreds of submissions over a multitude of days. Our memory is not able
to remember all previous submissions, and as the participants only graded 20 samples
they needed to forget them, and was therefore not allowed to go back and revisit. Nat-
urally, professional raters do visit previous graded submissions for quality assurance.
Nevertheless, as described in Chapter 3 it seems that this does not eliminate the prob-
lem as a whole.

To increase validity, the students were assigned desks in order of their arrival in such
fashion that they were placed further apart from the previous arrived person. The par-
ticipants were divided into a test and a control group. The control group received the
20 submissions in the original sequence (the sequence the submissions original was
graded in). The test group received the exact same 20 submissions, however the dif-
ference was that they were reordered into a new sequence. This setup gave five partici-
pants grading the original sequence and five participants grading a reordered sequence.

64 CHAPTER 8. EXPERIMENTS

Before the experiment, the five test sequences and the five control sequences were shuf-
fled into one pile. When the experiment started, the papers were handed out to the par-
ticipants from the top of the pile creating a random distribution of participants. There
was no other difference between the handed out papers than the sequence. The par-
ticipants had no way of knowing which group they were assigned to or even that there
were groups at all.

8.1.0.1 Reordering the sequence

The method of generating the sequence used by the test group was not a priority in this
experiment. The sequence was automatically reordered by using a slightly different de-
sign than what is explained as the design of the artefact in chapter 7. As this experiment
was conducted before the final design was implemented, a simpler algorithm was used.
This algorithm provides a simple solution using Levenshtein Distance as explained in
7.4, and and TSP to generate a sequence. No use of tokens or clustering. The sequence
generated from using Levenshtein Distance and TSP can be illustrated by the following
list: [10, 19, 2, 9, 14, 20, 4, 15, 1, 11, 17, 6, 16, 3, 5, 12, 13, 7, 18, 8]

8.2 Experiment 2

This experiment was conducted in order to generate empirical data for analysis related
to RQ 1. The goal of this second experiment was to extend experiment 1 with a more
significant amount of participants and a well constructed optimal sequence of submis-
sions. As described in 2.2.3, this experiment was conducted with a digital questionnaire
with 40 participants. As in experiment 1, the participants were divided into a control
group and a test group at random. When the participants engaged in the question-
naire, the first choice they made was to select between two different hyperlinks sending
them to either the control or test questionnaire. No information was given as to what
separated the two links, only that they should choose one either by flipping a coin or
simply by selecting. The only difference between the questionnaires was the sequence
of the submissions. This randomness validly assigned participants to a random group,
resulting in 24 participants in the control group and 16 participants in the test group.
The questionnaires can be found in appendix C.

The collection of random anonymous participants were done in the following way:
E-mails containing information and instructions were posted to many different stu-
dent organizations who is known to contain students with knowledge of Python. The
organizations served as a proxy and asked their student members to participate. The
participants were paid 200,- NOK for a fully completed questionnaire, and it was stated
it would take between 40-60 minutes of their time to complete. The proxy then only
informed with the number of participants as it made the whole process anonymous.
The text explaining the task chosen for this experiment is illustrated in Figure 8.3. The
proposed solution to the task is illustrated in Figure 8.4.

8.2. EXPERIMENT 2 65

Figure 8.3: This text explain task 4 given on the final exam in the NTNU course TDT4127
November 2019.

Figure 8.4: This text illustrate a proposed solution to task 4 given on the final exam in
the NTNU course TDT4127 November 2019.

8.2.0.1 Reordering the sequence

This experiment measured the effects of reordering the sequence of submissions be-
fore grading. The experiment’s only measure was changing the independent variable
"order" to observe the effects of the dependent variable "grade". To analyze the rela-
tionship between the cause and effect and assure as few possible undesirable causes
which could affect the result, no other variables than the order was changed.

The sequence was not created solely by the thesis design explained in 7, but in
combination with a human-based opinion. This combination created an "optimal" se-
quence as it was first reordered by the thesis-design algorithm and the further reordered
by a human. The following figures illustrates the difference between the sequence of
the control and test group. Figure 8.5 illustrates the grades given by the original profes-
sional rater who graded the exam in 2019. Figure 8.6 illustrates the same submissions
and their grades, only ordered into the "optimal" sequence. This "optimal" sequence
can be illustrated by the following list: [15, 17, 7, 8, 0, 4, 16, 18, 5, 9, 14, 1, 11, 19, 13, 20,
6, 2, 12, 10].

66 CHAPTER 8. EXPERIMENTS

Figure 8.5: This figure illustrates the grades given to the submissions (1-20) after the
final exam in the NTNU subject TDT4127 held in November 2019. These grades is the
original grades given by a professional rater after the exam. The sequence of this figure
is the original sequence they were graded in.

Figure 8.6: This figure illustrates the grades given to the submissions (1-20) after the
final exam in the NTNU subject TDT4127 held in November 2019. These grades is the
original grades given by a professional rater after the exam. The sequence of this figure
is the optimal sequence generated by a combination of the thesis design and a human
opinion. Note that the grades have not changed since Figure 8.5, only the sequence.

8.2.1 Inconsistencies

As of measuring if equal submissions receive equal grades, four near equal submissions
was placed in the sequence. These were the submissions: 2, 11, 14 and 19 and illustrated
in figure 8.7

8.3. EXPERIMENT 3 67

Figure 8.7: Four samples from data source 2 judged equal or near equal. All submissions
got 3 points from the originial grader grading the exam.

8.3 Experiment 3

This experiment was conducted in order to generate empirical data for analysis related
to RQ 2. The goal of the third experiment was to record the output of the developed
artefact described in chapter 7, when provided with different data material. As this ex-
periment did not make usage of human participants, it only made use of the artefact
ant the material from source 2 to 6 (2.2.1). The artefact was run once for every data
source creating six different sets of empirical data.

68 CHAPTER 8. EXPERIMENTS

Chapter 9

Results

This chapter presents the empirical data generated by the experiments described in
chapter 8 and the analysis conducted on the data. Section 9.1 and 9.2 presents a de-
tailed overview and quantitative analysis of the empirical data generated of Experiment
1 & 2, and section 9.3 presents the results of the artefact.

9.1 Results - Experiment 1

This is the data generated from experiment 1 described in section 8.1 and presented as
numerical values in Table 9.1. The numerical values in the table are the grades the par-
ticipants of the experiment gave to the 20 Python source code submissions from data
source 1 as if they were grading the exam. The table is split into three parts: control,
original rater, and test. The columns of the tables are the participants (Rater1 as R.1,
original rater as R.O) and table rows are the python source code (Submission 1 as S.1),
where each row represent one submission. The values for the test group were originally
created in the the optimal sequence, but reordered back into the original for ease of
comparison. While the grades given by the original rater are not used in the experi-
ment, they are added as a reference to illustrate the opinion of an actual professional
rater on the quality of the submissions.

69

70 CHAPTER 9. RESULTS

Control Test
R.1 R.2 R.3 R.4 R.5 R.O R.6 R.7 R.8 R.9 R.10

S.1 1 1 3 3 1 2 3 1 1 1 4
S.2 3 0 4 3 4 3 5 3 3 3 4
S.3 3 4 2 4 3 4 5 3 2 2 4
S.4 1 0 3 2 1 1 2 2 3 3 1
S.5 2 1 5 2 3 2 3 3 1 1 2
S.6 1 0 1 1 2 1 2 3 2 2 1
S.7 3 1 4 2 3 3 1 2 1 1 3
S.8 2 2 4 2 2 2 4 2 2 2 3
S.9 2 3 3 3 3 2 4 3 4 4 5

S.10 2 2 1 3 2 2 4 3 2 2 2
S.11 1 0 2 3 3 2 4 4 3 3 5
S.12 4 3 4 3 3 3 3 2 1 1 1
S.13 4 2 3 5 4 4 2 1 2 2 0
S.14 2 2 3 3 3 2 4 3 3 3 3
S.15 1 1 2 3 2 2 4 3 3 3 3
S.16 2 0 1 3 2 1 4 4 3 3 2
S.17 2 0 3 3 4 2 3 4 5 5 5
S.18 2 2 4 4 3 3 4 3 2 2 2
S.19 1 1 3 3 4 2 2 3 3 3 3
S.20 1 1 1 3 2 1 3 2 2 2 2

Table 9.1: This table illustrates the grades given by the Experiment 1 participants to 20
submissions of Python source code. The table is split into control and test group with
the original professional rater grading the actual exam as reference (R.O).

9.1. RESULTS - EXPERIMENT 1 71

9.1.1 Experiment 1 - Descriptive Analysis

Table 9.2 illustrate the descriptive analysis of the empirical data generated from experi-
ment 1. It illustrates the mean, median and standard deviation for the control and test
group. The average values for each column at the bottom suggests that the test group
gave higher grades on average and had a higher inter-rater reliability (i.e lower standard
deviation).

Mean Median Standard Deviation
Control Test Control Test Control Test

S.1 1.8 2 1 1 1.095 1.414
S.2 2.8 3.6 3 3 1.643 0.894
S.3 3.2 3.2 3 3 0.837 1.304
S.4 1.4 2.2 1 2 1.14 0.837
S.5 2.6 2 2 2 1.517 1.000
S.6 1 2 1 2 0.707 0.707
S.7 2.6 1.6 3 1 1.14 0.894
S.8 2.4 2.6 2 2 0.894 0.894
S.9 2.8 4 3 4 0.447 0.707

S.10 2 2.6 2 2 0.707 0.894
S.11 1.8 3.8 2 4 1.304 0.837
S.12 3.4 1.6 3 1 0.548 0.894
S.13 3.6 1.4 4 2 1.14 0.894
S.14 2.6 3.2 3 3 0.548 0.447
S.15 1.8 3.2 2 3 0.837 0.447
S.16 1.6 3.2 2 3 1.14 0.837
S.17 2.4 4.4 3 5 1.517 0.894
S.18 3 2.6 3 2 1 0.894
S.19 2.4 2.8 3 3 1.342 0.447
S.20 1.6 2.2 1 2 0.894 0.447

AVG 2.34 2.71 2 3 1.020 0.829

Table 9.2: Experiment 1 - Descriptive analysis

9.1.2 Experiment 1 - Inferential Analysis

As all grades analysed is ordinal, statistical analysis is done by nonparametric methods.
Wilcoxon–Mann–Whitney two-sample rank-sum test (U) can be used to investigate
whether two independent samples were selected from populations having the same
distribution (H0 : ∼X1 =∼X2, H1 : ∼X1 6= ∼x2, n1 = n2 = 5) (McKnight and Najab, 2010).
Such a test was done for each submission between the groups creating 20 independent
comparisons. Table 9.3 illustrate the U value, the probability significance p-value (two-
tailed) and a common language effects size value f (McGraw and Wong, 1992) generated
from the tests.

72 CHAPTER 9. RESULTS

SUB S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9 S.10
U 11.5 10.0 12.0 7.0 10.0 4.0 6.0 10.5 2.0 8.0
p 0.4055 0.2861 0.4568 0.1164 0.2938 0.0291 0.0772 0.3028 0.0088 0.1439
f 0.46 0.4 0.48 0.28 0.4 0.16 0.24 0.42 0.08 0.32

SUB S.11 S.12 S.13 S.14 S.15 S.16 S.17 S.18 S.19 S.20
U 2.0 1.5 1.5 6.0 2.0 3.0 2.5 9.5 11.0 6.5
p 0.0116 0.008 0.0087 0.0466 0.0092 0.0206 0.0158 0.2481 0.3615 0.0868
f 0.08 0.06 0.06 0.24 0.08 0.12 0.1 0.38 0.44 0.26

Table 9.3: This table illustrate multiple Mann–Whitney two-sample rank-sum test be-
tween each submission for the control and test group from Experiment 1. SUB is the
submissions, U is the test value, p is the probability and f is the common language
effect size.

As many of the p-values in Table 9.3 suggest different significance were some re-
jects H0 and some do not, the probability of statistical type I errors (false positive) is
highly probable. As the inflation of probability of type I error increases with the increase
in the number of comparisons, a Bonferroni correction can be used to counteract this
problem (α = 0.05 to α/20 = 0.0025). With this, none of the p-values is significant af-
ter the correction suggesting a true null. However, a Fisher’s combined probability test
can be used to combine all the independent p-values to test for a global null hypothesis
H0 : ∼X1 = ∼X2 to a p < 1.94e-08, rejecting the null and suggesting the distribution is
unequal between the groups.

9.1.2.1 Inter and intra-rater reliability

Related to RQ 1.3 (Does an optimal sequence increase inter-rater or intra-rater reliabil-
ity?), Inter-rater reliability can be measured by in the internal inter-rater variance of
the groups. To measure a significant difference of variance, the difference of between-
group variance for each submission (H0 : σ1 = σ2, H1 : σ1 6= σ2, n1 = n2 = 5) was cal-
culated by a Levene’s test (W) (Derrick et al.). Table 9.4 illustrate the test values W, the
p-values and the common language effect size f.

SUB S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9 S.10
W 0.062 0.348 1.0 0.2 0.118 0.0 0.133 0.125 0.4 0.182
p 0.8089 0.5716 0.3466 0.6666 0.7404 1.0 0.7245 0.7328 0.5447 0.6811
f 0.002 0.014 0.04 0.008 0.005 0.0 0.005 0.005 0.016 0.007

SUB S.11 S.12 S.13 S.14 S.15 S.16 S.17 S.18 S.19 S.20
W 1.0 0.182 0.133 0.4 1.6 0.2 0.348 0.2 2.667 0.8
p 0.3466 0.6811 0.7245 0.5447 0.2415 0.6666 0.5716 0.6666 0.1411 0.3972
f 0.04 0.007 0.005 0.016 0.064 0.008 0.014 0.008 0.107 0.032

Table 9.4: This table illustrate multiple Levene’s test of equal variance between each
submission for the control and test group from Experiment 1. SUB is the submissions,
W is the test value, p is the probability and f is the common language effect size.

As none of the p-values in Table 9.4 is significant even before a Bonferroni correc-

9.1. RESULTS - EXPERIMENT 1 73

tion and a Fisher’s combined probability test is calculated to p = 0.975, it suggests that
H0(σ1 =σ2) is true. This suggests that there is no significant difference of internal inter-
rater reliability between the groups. As the standard deviation is different between the
groups as seen in Table 9.2, a T-test can be used as the standard deviation comes from
a normal distribution with a p = 0.053 (two-tailed), not rejecting the null and further
suggesting H0 is true.

Measuring intra-rater reliability is difficult, nevertheless it is measured in this thesis
by the inconsistencies in equal grading of equal submissions for each rater (related to RQ
1.2), and serial position effect (as done by Kramer (2017). Does submissions earlier/later
in the sequence tend to get a higher/lower grade?). As this experiment did not contain
any equal submissions, inconsistencies could not be measured. However, Serial posi-
tion is measured by the Spearman’s rho correlation coefficient (rho) for the monotonic
relationship between the position of the submissions (1 to 20) and the grades (0 to 5).

The correlation coefficients and the significance of the correlation coefficient is pre-
sented in Table 9.5. The mean with a 95% confidence level interval for both groups show
near zero correlation, suggesting that there is no significant instance of serial position
effect in any of the groups. However, some of values are significant as a correlation
coefficient > 0.3 or < -0.3 suggest a significant correlation, the Fisher’s p-value is not
significant for any of the groups (p = 0.404 (control), p = 0.290 (test)).

Control
Rater R.1 R.2 R.3 R.4 R.5 Mean

rho -0.15 0.033 -0.241 0.363 0.231 0.047[-0.186, 0.264]
p 0.529 0.891 0.305 0.116 0.327

Test
Rater R.6 R.7 R.8 R.9 R.10 Mean

rho -0.077 0.275 0.327 0.327 -0.135 0.143[-0.044, 0.364]
p 0.747 0.24 0.159 0.159 0.57

Table 9.5: Spearman’s rho correlation coefficient for serial position. The mean and a
95% confidence interval is calculated and show a near zero correlation for both groups.

9.1.2.2 Contrast effect

To evaluating the existence of contrast effect (related to RQ 1.1), a Spearman’s rho cor-
relation coefficient is calculated to measure the monotonic relationship between the
N-1 submission grades for all participants (does the directly following grade tend to be
affected of the previous?). The correlation coefficient, the mean with a 95% confidence
interval and the p values is presented in Table 9.6. Both groups show near zero corre-
lation and suggest that there is no significant instance of contrast effects in any of the
groups. Even though participant 4 have a significant correlation, the Fisher’s p-value is
not significant for any of the groups (controlp = 0.429, testp = 0.832).

74 CHAPTER 9. RESULTS

Control
Rater R.1 R.2 R.3 R.4 R.5 Mean

rho -0.065 -0.09 -0.116 0.428 -0.272 -0.023[-0.391, 0.200]
p 0.792 0.713 0.637 0.067 0.261

Test
Rater R.6 R.7 R.8 R.9 R.10 Mean

rho 0.149 0.161 -0.143 -0.143 -0.118 -0.019[-0.158, 0.121]
p 0.542 0.511 0.561 0.561 0.631

Table 9.6: Spearman’s rho correlation coefficient for N-1 submission grades, testing for
contrast effect. The mean and a 95% confidence interval is calculated and show a near
zero correlation for both groups.

9.2 Results - Experiment 2

This is the empirical data from experiment 2 described in section 8.2 and presented as
numerical values in two different tables, Table 9.8 (control) and Table 9.9 (test). The
numerical values in the tables are the grades the participants of the experiment gave
to the 20 Python source code submissions from data source 2 as if they were grading
the exam. Table 9.9 is reordered back into original order as in Table 9.1 for ease of mea-
sure. As for the experiment’s validity, the participants was chosen randomly and were
asked to select which survey they would answer by themselves. This created a skewed
difference in the number of participants in the test and control group. 24 participants
answered the control survey while 16 participants answered the test survey, making 40
participants in total.

As the empirical data generated for this experiment was conducted using a self-
administrative digital questionnaire, the time the participator used was measured as
well. The time is calculated from when a participator opened the questionnaire to sub-
mitting the final answer. Table 9.7 presents the time measure for each rator (Hour = h
and minute = m). As the participants were strictly instructed to use 40 minutes in total
to grade all the tasks, and the 10-20 minutes it took them to read the instructions, all
significantly lower amount of time used than this suggests for invalid data. The partic-
ipants were incentivized by payment to participate in the experiment, and some might
therefore not be interested in the experiment itself and rush through in few minutes
with irrational grading and therefore invalid grades. Because of these threats to the va-
lidity of the experiment, removal of the data generated by a subset of the participants
was done based upon their time used. The removed participants include: R.2, R.14,
R.16, R.17, R.22, R.23, R.30, R.31, R.38. This caused a reduction in the sample size for
each groups, effectively reducing the test group down to 13 participants and the con-
trol group down to 18 participants. R.33 and R.39 have significantly higher amounts
of time used, however this does not suggest directly invalid grades and is therefore not
removed.

9.2. RESULTS - EXPERIMENT 2 75

Rater R.1 R.2 R.3 R.4 R.5 R.6 R.7 R.8
TIME USED 51m 22m 34m 28m 36m 1h 34m 33m 37m

Rater R.9 R.10 R.11 R.12 R.13 R.14 R.15 R.16
TIME USED 59m 35m 1h 26m 51m 37m 3m 1h 28m 22m

Rater R.17 R.18 R.19 R.20 R.21 R.22 R.23 R.24
TIME USED 15m 32m 1h 5m 37m 1h 7m 20m 23m 29m

Rater R.25 R.26 R.27 R.28 R.29 R.30 R.31 R.32
TIME USED 29m 30m 38m 26m 1h 56m 10m 21m 36m

Rater R.33 R.34 R.35 R.36 R.37 R.38 R.39 R.40
TIME USED 5hr 7m 40m 38m 32m 36m 16m 48h 40m 30m

Table 9.7: Time used by participants in experiment 2. The raters R.2, R.14, R.16, R.17,
R.22, R.23, R.30, R.31, R.38 are removed as their used time is significantly low and sug-
gest non valid values.

76 CHAPTER 9. RESULTS

R
.1

R
.2

R
.3

R
.4

R
.5

R
.6

R
.7

R
.8

R
.9

R
.1

0
R

.1
1

R
.1

2
R

.1
3

R
.1

4
R

.1
5

R
.1

6
R

.1
7

R
.1

8
R

.1
9

R
.2

0
R

.2
1

R
.2

2
R

.2
3

R
.2

4
S.

1
5

5
5

5
5

5
5

5
5

5
5

5
5

4
5

5
5

5
5

5
5

4
4

4
S.

2
3

2
3

3
3

3
2

3
3

3
3

3
3

2
2

2
2

2
3

2
4

2
1

2
S.

3
1

0
0

2
3

2
2

3
1

2
1

1
2

2
0

1
2

2
2

1
2

2
2

3
S.

4
5

5
4

5
4

5
5

5
5

5
5

5
5

5
4

5
4

4
5

5
5

4
5

2
S.

5
5

3
3

5
4

5
5

4
3

5
3

4
5

5
5

5
3

3
3

4
4

3
3

4
S.

6
1

1
0

2
2

1
2

2
2

1
2

1
1

3
0

1
2

3
1

0
2

3
2

3
S.

7
5

5
4

5
4

4
5

4
5

5
5

5
5

4
5

5
5

5
5

5
5

4
4

5
S.

8
3

3
4

5
5

4
5

4
3

4
4

5
4

2
3

3
3

4
5

3
5

4
5

4
S.

9
3

4
4

4
3

4
4

4
3

3
4

4
4

3
2

2
2

5
4

3
4

3
3

1
S.

10
2

0
0

2
2

2
2

2
3

1
0

1
3

5
0

0
0

3
2

0
2

3
2

1
S.

11
1

3
2

3
3

3
3

3
2

3
3

3
4

4
3

2
3

4
3

2
4

2
3

2
S.

12
2

4
2

3
4

2
3

4
3

3
4

4
2

1
2

3
2

4
5

2
4

2
5

2
S.

13
3

1
1

2
2

2
2

3
2

3
3

2
1

5
1

2
3

3
3

0
3

3
5

3
S.

14
1

3
3

3
3

3
2

3
3

3
4

3
3

4
3

2
3

4
3

2
4

3
3

3
S.

15
5

5
5

5
4

4
5

5
5

5
5

5
5

2
5

5
5

5
5

4
5

4
5

5
S.

16
5

5
5

5
4

5
5

5
5

5
5

5
5

3
5

5
5

5
5

5
5

4
5

5
S.

17
5

3
4

5
4

4
5

5
4

4
5

5
3

5
4

5
5

5
5

4
5

4
5

1
S.

18
5

5
5

5
4

5
5

5
5

5
5

5
5

4
5

5
5

5
5

4
5

2
3

5
S.

19
3

2
3

3
2

3
3

3
3

3
3

3
3

1
3

2
3

3
3

2
4

3
2

3
S.

20
2

2
0

3
3

2
2

2
2

2
1

2
3

2
1

2
2

2
3

0
3

2
3

4

Ta
b

le
9.

8:
E

m
p

ir
ic

al
d

at
a

E
xp

er
im

en
t2

.C
o

n
tr

o
lg

ro
u

p

9.2. RESULTS - EXPERIMENT 2 77

R
.2

5
R

.2
6

R
.2

7
R

.2
8

R
.2

9
R

.3
0

R
.3

1
R

.3
2

R
.3

3
R

.3
4

R
.3

5
R

.3
6

R
.3

7
R

.3
8

R
.3

9
R

.4
0

S.
1

5
5

4
4

4
5

4
4

5
5

4
5

5
5

5
5

S.
2

3
4

5
5

3
4

4
4

4
4

3
5

4
5

3
5

S.
3

5
5

5
4

4
2

3
5

5
5

5
5

5
5

5
S.

4
3

4
3

3
4

3
3

3
3

3
5

5
3

5
3

3
S.

5
5

5
5

5
5

4
5

5
5

5
5

5
5

5
5

5
S.

6
5

5
5

4
4

4
4

3
5

5
4

5
5

5
4

5
S.

7
5

5
5

5
4

5
3

4
5

5
5

5
5

5
5

5
S.

8
5

5
5

5
5

5
4

5
5

5
5

5
5

5
5

5
S.

9
5

5
3

5
4

3
2

5
5

5
2

4
5

2
5

3
S.

10
4

4
4

3
3

2
2

3
4

4
2

4
3

3
3

4
S.

11
3

3
2

2
1

2
2

2
2

2
0

2
2

4
3

3
S.

12
3

3
2

2
2

2
3

2
3

2
1

2
2

4
3

3
S.

13
3

3
2

2
2

2
3

2
2

2
3

2
2

4
3

3
S.

14
3

3
2

2
2

3
3

2
3

2
2

2
2

4
3

3
S.

15
2

3
2

1
2

2
3

2
4

2
1

2
3

3
3

2
S.

16
3

2
1

1
2

4
4

1
2

2
1

1
4

3
2

3
S.

17
2

1
1

1
3

1
3

1
1

2
1

1
1

2
1

2
S.

18
2

1
2

1
1

3
1

0
0

2
2

0
0

2
1

2
S.

19
2

3
3

3
3

3
5

2
3

2
3

0
3

4
3

4
S.

20
2

2
2

1
3

2
4

1
0

0
1

0
3

2
1

2

Ta
b

le
9.

9:
E

m
p

ir
ic

al
d

at
a

E
xp

er
im

en
t2

.T
es

tg
ro

u
p

78 CHAPTER 9. RESULTS

9.2.1 Experiment 2 - Descriptive Analysis

Table 9.10 illustrate the descriptive analysis of the empirical data generated from ex-
periment 2. It illustrates the mean, standard deviation, median and mode for the con-
trol and test group. The average vales for each column at the bottom suggests that the
control group gave higher grades on average, however the test group had a higher inter-
rater reliability (i.e lower within standard deviation).

Mean Standard deviation Median Mode
Control Test Control Test Control Test Control Test

S.1 4.944 5.000 0.236 0.000 5 5 5 5
S.2 2.778 2.308 0.548 0.630 3 2 3 2
S.3 1.667 1.077 0.907 0.862 2 1 2 2
S.4 4.611 4.538 0.778 0.660 5 5 5 5
S.5 4.111 4.308 0.832 1.032 4 5 5 5
S.6 1.444 1.385 0.922 0.650 2 1 2 1
S.7 4.778 4.615 0.428 0.768 5 5 5 5
S.8 4.111 3.462 0.758 0.776 4 3 4 3
S.9 3.500 3.462 0.924 0.660 4 4 4 4

S.10 1.556 1.385 1.042 1.044 2 1 2 2
S.11 2.833 2.385 0.786 0.506 3 2 3 2
S.12 3.056 2.615 0.998 0.961 3 3 2 3
S.13 2.167 2.231 0.924 0.832 2 2 3 2
S.14 2.944 2.077 0.725 0.862 3 2 3 2
S.15 4.833 4.615 0.383 0.506 5 5 5 5
S.16 4.944 4.846 0.236 0.376 5 5 5 5
S.17 4.278 4.077 1.018 0.760 5 4 5 4
S.18 4.889 5.000 0.323 0.000 5 5 5 5
S.19 2.944 2.385 0.416 0.506 3 2 3 2
S.20 2.056 1.923 1.056 0.954 2 2 2 2

AVG 3.422 3.185 0.712 0.667 4 3 4 3

Table 9.10: Experiment 2 - Descriptive analysis of the empirical data illustrated in Table
9.8 and Table 9.9

9.2.2 Experiment 2 - Inferential Analysis

As in 9.1.2, a Mann–Whitney (U) test can be used to investigate whether the two in-
dependent groups were selected from populations having the same distribution (H0 :
∼X1 =∼X2, H1 : ∼X1 6= ∼x2, n1 = 13,n2 = 18). Such a test was done for each submission
between the groups creating 20 independent comparisons. Table 9.11 illustrate the U
value, the probability significance p-value (two-tailed) and a common language effects
size value f generated from the tests.

9.2. RESULTS - EXPERIMENT 2 79

SUB S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9 S.10
U 110.5 72.5 77.0 105.0 97.0 108.5 112.0 64.0 108.0 105.0
p 0.0293 0.1932 0.449 0.0018 0.0891 0.1844 0.1343 0.1108 0.0016 0.257
f 0.472 0.31 0.329 0.449 0.415 0.464 0.479 0.274 0.462 0.449

SUB S.11 S.12 S.13 S.14 S.15 S.16 S.17 S.18 S.19 S.20
U 74.0 96.5 114.0 50.5 91.5 105.5 91.5 104.0 55.5 101.5
p 0.1977 0.0217 0.0452 0.279 0.1938 0.3562 0.3919 0.0117 0.3437 0.3078
f 0.316 0.412 0.487 0.216 0.391 0.451 0.391 0.444 0.237 0.434

Table 9.11: This table illustrate multiple Mann–Whitney two-sample rank-sum test be-
tween each submission for the control and test group from Experiment 2. SUB is the
submissions, U is the test value, p is the probability and f is the common language
effect size.

To counteract the inflation of probabilities of multiple comparison leding to a in-
creased probability of type I error, the Bonferroni correction alpha is calculated (α= 0.05
to α/20 = 0.0025). Even with this correction, two samples where calculated with p <
.0025, suggesting that the samples were from different distributions. The Fisher’s p =
1.197e-06 further suggests the difference in distribution and a rejection of the null.

9.2.2.1 Inter and intra-rater reliability

Related to RQ 1.3 (Does an optimal sequence increase inter-rater or intra-rater reliabil-
ity?), Inter-rater reliability can be measured by in the internal inter-rater variance of
the groups. To measure a significant difference of variance, the difference of between-
group variance for each submission (H0 : σ1 = σ2, H1 : σ1 6= σ2, n1 = 13,n2 = 18) was
calculated by a Levene’s test (W). Table 9.12 illustrate the test values W, the p-values
and the common language effect size f.

SUB S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9 S.10
W 0.715 0.498 0.013 0.074 0.009 3.895 0.567 0.166 0.066 0.061
p 0.4046 0.4862 0.9088 0.7868 0.9268 0.058 0.4577 0.6869 0.7991 0.8068
f 0.003 0.002 0.0 0.0 0.0 0.017 0.002 0.001 0.0 0.0

SUB S.11 S.12 S.13 S.14 S.15 S.16 S.17 S.18 S.19 S.20
W 0.304 1.386 0.682 0.426 1.865 0.802 0.599 1.52 1.865 0.014
p 0.5854 0.2486 0.4157 0.5193 0.1826 0.3779 0.4453 0.2275 0.1826 0.9079
f 0.001 0.006 0.003 0.002 0.008 0.003 0.003 0.006 0.008 0.0

Table 9.12: This table illustrate multiple Levene’s test of equal variance between each
submission for the control and test group from Experiment 2. SUB is the submissions,
W is the test value, p is the probability and f is the common language effect size.

As none of the p-values in Table 9.12 is significant even before a Bonferroni correc-
tion and the Fisher’s p = 0.760, it infers that H0(σ1 =σ2) is true. This suggests that there
is no significant difference of internal inter-rater reliability between the groups. As the
standard deviation is different between the groups as seen in Table 9.10, a T-test can
be used as the standard deviation comes from a normal distribution with a p = 0.626

80 CHAPTER 9. RESULTS

(two-tailed), not rejecting the null and further suggesting H0 is true.

As in experiment 1, serial position (does submissions earlier/later in the sequence
tend to get a higher/lower grade?) is measured by the Spearman’s rho correlation coef-
ficient by investigating the monotonic relationship between the position of the submis-
sions (1 to 20) and the grades (0 to 5) . The correlation coefficients for the control group
is presented in Table 9.13 and the test group is presented in Table 9.14. A 95% con-
fidence level interval was calculated for each group mean. The mean of both groups
show near zero correlation suggesting that there is no significant instance of serial po-
sition effect in any of the groups. The Fisher’s p-value is not significant for any of the
groups (controlp = 0.999, testp = 1) further suggesting a true null.

Serial position effect. Control group
Rater R.1 R.3 R.4 R.5 R.6 R.7

rho 0.018 0.064 0.024 -0.165 -0.087 0.0
p 0.94 0.787 0.92 0.488 0.717 1.0

Rater R.8 R.9 R.10 R.11 R.12 R.13
rho 0.007 0.046 -0.041 0.089 0.049 -0.08

p 0.977 0.848 0.864 0.71 0.836 0.739
Rater R.15 R.18 R.19 R.20 R.21 R.24

rho 0.088 0.177 0.143 -0.142 0.077 0.162
p 0.714 0.456 0.548 0.551 0.746 0.495

Mean 0.024[-0.0589, 0.116]

Table 9.13: Spearman’s rho correlation coefficient for serial position of the control
group. The mean and a 95% confidence interval is calculated and show a near zero
correlation.

Serial position effect. Test group
Rater R.25 R.26 R.27 R.28 R.29 R.32 R.33

rho -0.024 -0.037 -0.051 0.008 -0.057 0.019 -0.006
p 0.921 0.875 0.832 0.974 0.813 0.936 0.979

Rater R.34 R.35 R.36 R.37 R.39 R.40
rho -0.097 -0.039 0.022 0.108 -0.002 0.151

p 0.684 0.87 0.927 0.65 0.995 0.526

Mean 0.0[-0.0491, 0.082]

Table 9.14: Spearman’s rho correlation coefficient for serial position of the test group.
The mean and a 95% confidence interval is calculated and show a near zero correlation.

9.2.2.2 Contrast effect

To evaluating the existence of contrast effect (related to RQ 1.1), a Spearman’s rho cor-
relation coefficient is calculated to measure the linear relationship between the N-1

9.2. RESULTS - EXPERIMENT 2 81

submission grades for all participants. The correlation coefficient for the control group
is presented in Table 9.15 and the test group is presented in Table 9.16. Both that there
is no significant instance of contrast effects in any of the groups. The Fisher’s p-value is
not significant for any of the groups (controlp = 0.997, testp = 0.995).

Contrast effect. Control group
Rater R.1 R.3 R.4 R.5 R.6 R.7

rho 0.082 0.244 0.157 -0.029 0.074 0.163
p 0.739 0.314 0.521 0.906 0.765 0.504

Rater R.8 R.9 R.10 R.11 R.12 R.13
rho 0.183 0.035 0.037 0.134 0.147 -0.098

p 0.452 0.886 0.881 0.583 0.548 0.690
Rater R.15 R.18 R.19 R.20 R.21 R.24

rho 0.065 0.198 0.054 0.080 0.174 0.034
p 0.792 0.417 0.825 0.745 0.475 0.890

Mean 0.096[0.021, 0.172]

Table 9.15: Spearman rho correlation coefficient for N-1 submission grades, testing for
contrast effect in the control group. The mean and a 95% confidence interval is calcu-
lated and show a near zero correlation.

Contrast effect. Test group
Rater R.25 R.26 R.27 R.28 R.29 R.32 R.33

rho -0.061 -0.027 0.079 0.143 0.116 0.101 -0.089
p 0.803 0.914 0.748 0.560 0.637 0.680 0.717

Rater R.34 R.35 R.36 R.37 R.39 R.40
rho 0.124 0.051 0.230 -0.197 -0.137 -0.014

p 0.613 0.837 0.343 0.418 0.577 0.955

Mean 0.0073[-0.1043, 0.119]

Table 9.16: Spearman rho correlation coefficient for N-1 submission grades, testing for
contrast effect in the test group. The mean and a 95% confidence interval is calculated
and show a near zero correlation.

9.2.2.3 Inconsistencies

As this experiment did contain equal submissions, inconsistencies of equal grading
could be measured. As the submissions 2, 11, 14 and 19 were equal (with only mi-
nor differences), they should receive the same grade. The standard deviation for each
rater between the grades given to the four submissions should therefore be 0. However,
the mean standard deviation were calculated to 0.182 (test) and 0.348 (control). 44.44%
of the control group participants gave inconsistent grades to equal source codes, while
only 23% of the test group did the same. This suggest that the test group had a sig-
nificant lower amount of inconsistencies than the control group. Table 9.17 and Table

82 CHAPTER 9. RESULTS

9.18 illustrate the grades and the standard deviation for the groups. A T-test was used
to measure a significant difference of variance as the variances follow a normal distri-
bution (p = 0.239, two-tailed). As this p-value is not < 0.05, the null hypothesis of equal
variance (H0 :σ1 =σ2) can not be rejected.

Inconsistencies. Control group
Rater R.1 R.3 R.4 R.5 R.6 R.7 R.8 R.9 R.10

S.2 3 3 3 3 3 2 3 3 3
S.11 1 2 3 3 3 3 3 2 3
S.14 1 3 3 3 3 2 3 3 3
S.19 3 3 3 2 3 3 3 3 3

STDEV 1.155 0.5 0 0.5 0 0.577 0 0.5 0

Rater R.11 R.12 R.13 R.15 R.18 R.19 R.20 R.21 R.24
S.2 3 3 3 2 2 3 2 4 2

S.11 3 3 4 3 4 3 2 4 2
S.14 4 3 3 3 4 3 2 4 3
S.19 3 3 3 3 3 3 2 4 3

STDEV 0.5 0 0 0 0.957 0 0 0 0.577

Mean Standard deviation = 0.348

Table 9.17: This table illustrates the grades given to the submissions 2, 11 ,14 and 19
by the control group. It also illustrates the standard deviation of the grade for each
rater. All the submissions were near equal and should get the same grade and a standard
deviation of 0.

9.2. RESULTS - EXPERIMENT 2 83

Inconsistencies. Test group
Rater R.25 R.26 R.27 R.28 R.29 R.32 R.33

S.2 3 3 2 2 2 2 3
S.11 3 3 2 2 2 2 2
S.14 3 3 2 2 1 2 2
S.19 3 3 2 2 2 2 3

STDEV 0 0 0 0 0.5 0 0.577

Rater R.34 R.35 R.36 R.37 R.39 R.40
S.2 2 1 2 2 3 3

S.11 2 3 2 2 3 3
S.14 2 0 2 2 3 3
S.19 2 2 2 2 3 3

STDEV 0 1.291 0 0 0 0
Mean Standard deviation = 0.182

Table 9.18: This table illustrates the grades given to the submissions 2, 11 ,14 and 19 by
the test group. It also illustrates the standard deviation of the grade for each rater. All the
submissions were near equal and should get the same grade and a standard deviation
of 0.

84 CHAPTER 9. RESULTS

9.3 Results - Artefact

The following figures illustrates the original and optimal paths created by the artefact
for datasource 2 to 6 defined in 2.2.1. For all following experiments using the artefact,
the manual inputs of the variables MinPts and EPS must be set to some value. MinPts is
chosen to be always set to 2 because if it exists two or more equal items in a data source,
they should form a cluster. The EPS values are described in Table 9.19 and the rationale
behind the EPS is discussed in 9.3.5.

Source 2 3 4 5 6
EPS 0.75 0.65 0.70 0.60 0.50

Table 9.19: EPS values chosen for the datasources when generating empirical data using
the artefact

9.3.1 GST similarity and grades

Measuring similarity between two items is dependent on the context and the chosen
features. The features that makes two apples similar is not the same features that make
two source codes similar. Choosing the correct features for the artefact to measure sim-
ilarity in the same manner as human would is hard. If the artefact measures similarity
between source code in the same manner as a human does, the items clustered by the
artefact should have similar grades. To actually test this, the artefact was made to gener-
ate clusters for each EPS value (0.01 to 1), for each datasource and average the standard
deviation of the grades for each cluster (ignoring noise). This process created a total of
32,121 different clusters with an average amount of items in each cluster of 43,8 with
a median of 28 items (a great illustration of this is the EPS-graph in Figure 9.4). The
standard deviation of the grades in each cluster for each datasource was calculated and
the mean of the standard deviations is presented in Table 9.20. This was done twice for
each datasource, one with the actual clusters and grades and one with the same grades
but with their position randomly shuffled. This randomness created a control standard
deviation and the mean of this is also presented in Table 9.20.

data source 2 3 4 5 6
St.Dev cluster 0.1576 0.1445 0.2060 0.2284 0.2453

St.Dev random 0.5645 0.3110 0.8764 1.0925 1.5188

Table 9.20: This table illustrate the mean standard deviation of the grades assigned to
the same cluster for all cluster generated for all EPS values (32,121 clusters). It also il-
lustrate the same clusters, only the items are randomly assigned to the clusters instead.

The values in Table 9.20 present a much lower standard deviation value for the clus-
tered grades. A T-test testing difference in variance (H0 :σ1 =σ2) with p = 0.032, reject-

9.3. RESULTS - ARTEFACT 85

ing the null. This suggests that using GST to measure similarity between Python source
code is very similar to how a human measures similarity between Python source code.

9.3.2 Sequence generation

The main goal of the artefact was to generate an optimal sequence given a set of Python
source codes. For each datasource, the optimal sequence was generated and measured.
Figure 9.1 illustrate the optimal path for datasource 2 and presents the submissions as
colored dots where each color represent one cluster. The clusters are identified by a nu-
merical number (i.e 0 to 17) while noise is included as smaller navy blue colored dots
and represented by the negative number -1. The dots are mapped to their position in
the sequence and the grade the original professional rater assigned. Figure 9.2 is a gen-
erated reachability plot after the OPTICS algorithm has run. The figures illustrating the
rest of the datasources can be found in appendix B. Note that all following sequences
are generated using a Greedy TSP heuristic generating sub-optimal paths.

When clustering, the goal is to cluster similar items. Related to reducing contrast
effects, the goal of clustering is to cluster items of similar quality and receive similar
grades. Therefore, we want each cluster to contain items who got the exact same grade,
or as similar grade as possible. Figure 9.3 illustrate all the given grades to datasource
2 by the professional rater. It also illustrate all the clusters (0 to 17) and the grades for
each item in the clusters by mean and standard deviation.

The graphs presented in this section are only to illustrate the sequences and the
clusters as the grades is not available when the artefact is supposed to run, which is be-
fore the grading process.

9.3.3 Measuring sequence optimality

Measuring the optimality of a sequence is relative to how an optimal sequence is de-
fined. In this thesis, the optimal sequence is defined in section 7.1 and is based on
two key concepts: reduction of contrasting items and clustering of similarity. These
two concepts produce two different measurements, amount of contrasting items and
path-length. Other measurements can be used instead of or additional to the chosen
measurements, as the definition of optimality is relative to the context of use.

9.3.3.1 Amount of contrasting items

The amount of contrasting items can be calculated by first defining what a contrasting
items is, and as illustrated in Table 3.1, contrasting items are items in a sequence who
are of opposite quality and directly following each other. The definition of what quality
is, and when two items goes from being equal or similar and to being of opposite quality
is outside the scope of this thesis. I have simply chosen that when two following items
have a difference of two grades or more, they are defined as being of opposite quality

86 CHAPTER 9. RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

21
0

Submissions

5.0

3.0

1.0

2.0

4.0

0.5

0.0

1.5

0.3

Gr
ad

e

Original sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

21
0

Submissions

5.0

3.0

1.0

2.0

4.0

0.5

0.0

1.5

0.3

Gr
ad

e

Optimal sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 9.1: Original and optimal path (before and after the artefact has run) for data-
source 2. Each color represent one cluster, and small navy-blue dots are noise.

(i.e (5 and 3), (4 and 2) or (5 and 1) are samples of contrasting items). The numerical
difference of two grades are chosen as the research of Spear (1997) items of average
quality was the ones who were effected the most, both increased and decreased in grade
relative to the previous. The numerical value of two or more on a range of [0-5] might
compare items of grade 3 to items of grade 1 or 5. Therefore, the amount of contrasting
items can be calculated by the following equation where G(S) is the grades given in a
sequence S:

contrast(G(S)) = ∑
gi∈G

{
1, |gi − gi+1| >= 2

0, otherwise
(9.1)

Where the value contrast is the amount of contrasting items in a sequence. Calcu-
lating the contrast value for each dataset yields Table 9.21. The table also includes a
calculated average of 1000 pseudo-random permutations of the sequence for each data

9.3. RESULTS - ARTEFACT 87

0 50 100 150 200
Items

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
ac

ha
bi

lit
y

di
st

an
ce

Reachability Plot

Figure 9.2: Reachability plot. Displaying the reachability distance on the y-axis creating
valleys if items are similar. The colors represent the assignment to clusters equal to the
ones used in Figure 9.1.

0.0 0.3 0.5 1.0 1.5 2.0 3.0 4.0 5.0
Grades

0

10

20

30

40

50

60

Am
ou

nt

Assigned grades

0 111 21 10 12 17156 1343 5 7 8 9 14 16
Clusters

0

1

2

3

4

5

Gr
ad

es

Cluster mean & standard deviation

Figure 9.3: Assign Grades illustrates grades and their frequency given by the original
rater to data source 2. Cluster mean & standard deviation illustrated the mean and
standard deviation of grades for each cluster made. The colors and numbers on the
x-axis are cluster identifiers and equal to the ones used in Figure 9.1. Note that the
negative number "-1" is noise and not assigned any cluster.

source. Measuring significant difference of the means between the optimal and the avg
of 1000 with a T-test (H0 : x1 = x2) results in p < 0.0001 (one-tailed), rejecting the null
and suggesting that the optimal reduces the amount of contrast effects.

9.3.3.2 Path-length

Path-length is the measure of how similar each item is to the previous in a sequence.
The numerical value representing the distance between two items is calculated by the

88 CHAPTER 9. RESULTS

Source optimal original avg of 1000
2 47 113 111.234
3 56 110 108.06
4 49 131 131.385
5 45 108 115.677
6 56 129 131.446

Table 9.21: This table illustrate how many contrasting values found for the original and
optimal sequence for each data source.

artefact’s distance function (i.e GST), where a lower distance means more similar items.
This distance is not the weight scaled distance, but the distance calculate purely by the
distance function. The value Path-length is the sum of in the in between distances from
one item to the next and calculated by the following formula where S is the sequence
and dist is the distance function:

path-length(S) = ∑
di∈S

dist(di ,di+1) (9.2)

Calculating the path-length value for each dataset yields Table 9.22. The table also
includes a calculated average of 1000 pseudo-random permutations of the sequence for
each data source. Measuring significant difference of the means between the optimal
and the avg of 1000 with a T-test (H0 : x1 = x2) results in p < 0.0001 (one-tailed), reject-
ing the null and suggesting that the optimal reduces the path-length.

Source optimal original avg of 1000
2 50.600 93.810 93.892
3 57.625 96.958 97.794
4 66.775 115.822 116.675
5 56.795 96.965 99.707
6 41.562 89.809 91.346

Table 9.22: This table illustrate the calculated path-length for the original and optimal
sequence for each data source.

9.3.4 Optimizing EPS

EPS is explained in section 5.1.6 to be the maximum distance to consider if two items is
neighbours or not. The optimal distance can drastically differ amongst different densi-
ties, and is not easy to calculate. When choosing EPS values, a method is to generate a
graph displaying all EPS values between 0 and 1 and generating cluster for each value
(i.e a EPS-graph) as shown in figure 9.4. Such a graph can be generated for each data-
source and by visually inspecting the graph, one can choose a EPS value. Figure 9.4 il-
lustrates a EPS-graph generated from datasource 2. Different EPS values yields different

9.3. RESULTS - ARTEFACT 89

generated optimal paths and in such, the generated optimal path is heavily dependent
on the EPS value (and of course the MinPts). The generated EPS-graphs for each data-
source can be found in appendix B.

At value 1 in Figure 9.4, almost all the items are clustered in cluster 0. One can ar-
gue that the goal was to cluster all the items, and therefore this is the optimal value.
This is true if it was the goal. However, the goal was to cluster similar items, not all
items. Dealing with large data-sets, noise is probably inevitable. When we decide that
all items should be placed into one cluster, noise is mixed into the cluster as well. The
optimal EPS is therefore the value that reduced the inclusion of noise in the clusters
as well as creating individual clusters housing similar items (items with similar qual-
ity and grade). However, to reach this goal automatically is outside the scope of this
thesis. The EPS values chosen in Table 9.19 were simply chosen by human intuition as
they seemed to be fairly balanced between the inclusion of noise and the separation of
differing items.

1.
0

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91 0.
9

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81 0.
8

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71 0.
7

0.
69

0.
68

0.
67

0.
66

0.
65

0.
64

0.
63

0.
62

0.
61 0.
6

0.
59

0.
58

0.
57

0.
56

0.
55

0.
54

0.
53

0.
52

0.
51 0.
5

0.
49

0.
48

0.
47

0.
46

0.
45

0.
44

0.
43

0.
42

0.
41 0.
4

0.
39

0.
38

0.
37

0.
36

0.
35

0.
34

0.
33

0.
32

0.
31 0.
3

0.
29

0.
28

0.
27

0.
26

0.
25

0.
24

0.
23

0.
22

0.
21 0.
2

0.
19

0.
18

0.
17

0.
16

0.
15

0.
14

0.
13

0.
12

0.
11 0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

EPS

0

25

50

75

100

125

150

175

200

Ite
m

s

0 -1 3 5 4 2 1 6 7 8 9 10 11 12 14 13 15 16 17

Figure 9.4: Graph illustrating all the different EPS values and the clusters generated for
each value between 0.01 and 1. This graph is generated from datasource 2. Each color
represent one distinct cluster. Notice the items change from almost only noise at 0.01
to almost all items in one cluster at 1.

9.3.5 Finding inconsistencies

The artefact can be used to find inconsistencies by evaluating items with low or zero
distance and compare their given grades. Running the algorithm on data source 2,
only one case were found in which the source code was near identical (with minor dif-
ferences regarding syntax), but received different grades. The submissions were S.39
and S.182 with the grades 4 and 5 respectively. Of all 212 submissions of datasource 2,
and for searching through all the other datasources, this was the only serious mistake
i found, which in turn suggest that the raters of these exams was very valid, fair and
reliable. The same test were run for all data sources (3 to 6), however no other cases of
inconsistency were found.

90 CHAPTER 9. RESULTS

Chapter 10

Discussion, Conclusion and
Future Work

In this chapter the results in chapter 9 are discussed and a presentation of the con-
clusion and future work are made. Section 10.2 discuss the results from Experiment 1
and 2, and section 10.3 discuss the results from the artefact. Section 10.4 lists possi-
ble threats to the validity of the research done in this thesis. The chapter ends with a a
conclusion i section 10.5 and a list of possible future work in section 10.6.

10.1 Validity of results

First of all, the results generated in chapter 9 needs to be viewed with the utmost respect
towards the aspect of validity as there might be a chance that none of the reported de-
scriptive and especially the inferential analysis results are valid. As statistical analysis
is only a method of using models to acquire insight into data, there is no guarantee for
the models used in this thesis to exactly mirror the goal of the analysis. Therefore, all
results discussed in this chapter is based on the assumption that the chosen models are
correct, however other models might serve a better fit. The models used in this thesis
is chosen as they were the ones deemed the most suitable to generate the correctly de-
sired insight, however they might prove to not serve this fit. There is also substantial
reason to believe that type I and type II errors are present in the data. With this in mind,
the results from chapter 9 can be discussed.

10.2 Findings of the experiments

In both experiments, the sample size can be argued to be of very small sizes and no
significant conclusion can be drawn based on the results generated. However, it does
provide insight we can discuss. Experiment 1 only served as a pilot experiment be-
fore the larger experiement 2 was conducted to gain experience and knowledge of how

91

92 CHAPTER 10. DISCUSSION, CONCLUSION AND FUTURE WORK

well the experiment would work when scaled. The results from Experiment 1 is there-
fore as stated earlier, not in focus but might serve some insight. The experiments was
conducted to illustrate if the sequence of submissions have any effects on the grades
in terms of a change in the amount of contrasting items and inconsistencies of equal
grading. The experiment was also conducted to get insight into if the sequence had any
effect on inter and/or intra-rater reliability.

As the results show, no significant amount of contrast effect were found in any of
the groups in both experiments. In fact, no significant amount of change in inter or
inter-rater reliability were found either. Even though testing for inconsistencies in ex-
periment 2 gave a lower amount for the test group, it was not significant enough to
suggest a difference between the groups. The results therefore suggests that there is
no difference between the groups at any level and supports the findings of Attali et al.
(2013) of no significant difference on grades based on ordering. However to state that
there is no difference only based on not observing any of the measured effects might be
wrong as the results from Spear (1997) and Kramer (2017) did find contrasting effects. A
larger sample size might prove a significant difference as the results only suggest a non
existent difference on the measured levels for a small sample size.

Related to the research questions, the results suggests that the answer to RQ 1.1
and RQ 1.3 can not directly be answered based on the results as no effects were found,
and therefore no difference was observed. As for RQ 1.2, the results from this research
suggest that inconsistencies are not reduced, however this might prove differently with
a larger sample size.

10.3 Findings of the artefact

When evaluating the sequence, the grades are already assigned by a professional rater.
So as for measuring the optimality of a sequence only serve a hypothetical measure.
To actually measure the optimality, one needs to observe the effects of generating the
sequences before they are graded, not after (as done in this thesis). Therefore, relative
to RQ 2, to prove if the generated sequences are optimal is probably not possible after
the grades are assigned. However, the high similarity between GST and how a human
rater measures source code suggests that GST can be used to cluster equal submissions
with similar grades (RQ 2.1). Though, to be able to prove this, a larger sample size and
samples with different architecture and syntax is needed. One thing to also note is that
correlation does not mean causality, so even thought the results show that the mea-
surement of a human and GST is similar, it does not mean that is guaranteed or the
similarity is purely caused by GST.

Relative to RQ 2.2, the optimal sequence was described in section 7.1 as a sequence
which reduces contrasting items and similar items are graded directly after one another.
This can be argued to be achieved as the results from section 9.3.3.1 and section 9.3.3.2
suggest that contrasting items are reduced and similar items are graded directly after
one another. However, Spear (1997) show findings that contrasting effects are increased

10.3. FINDINGS OF THE ARTEFACT 93

when multiple items of similar quality are followed by a contrasting item. This might re-
sult in the the optimal sequences generated by this artefact, does not reduce contrasting
effects but actually increases them. This problem might be solved by using the quality of
the source code as and additional factor when generating the sequence. The sequence
can then be generated to not have contrasting clusters directly after one another, but
the sequence can either start in the high quality cluster and move to lower quality clus-
ter or vice versa. This might create a more smoothed out sequence which might reduce
contrast effects. However, automatically measuring quality of source code might be a
challenge.

Another effect might also be increased rather than decreased when using a optimal
sequence. This effect is the assimilation effect and is described as the effect of treating
similar items similarly when measured together rather than independent. This was the
basis of the idea that equal submissions should get equal grades. However, the prob-
lem arises when a submission of low quality is similar to submissions of high quality, it
might be treated equally or be affected of the mere presence of the high quality submis-
sions. This might increase the grade of the low quality submission to an unfair extent.

Noise is also still a problem. section 9.3.5 describes how one can manually select
an EPS, but not automatically select one and definitely not how to extract the optimal
one. Selecting the Optimal EPS depends on the similarity measure, features used and
the spacial dimension in the clusters. Even though GST might be used to as a similar-
ity measure, it still generates a lot of noise in combination with the OPTICS algorithm.
Viewing the illustration of the optimal sequence in Figure 8.6 the noise is also some-
what clustered by grades, but at a more uneven rate. If a better similarity measure, a
better clustering algorithm or a better sequence generation method were used, the re-
sult might be improved. Noise is also heavily dependent on the material from the data
source. If the material from one source where very different from one another, every-
thing would be noise, or everything would be clustered. Therefore, the sequence is not
only dependent on the artefact modules, but the material itself. Proving that all se-
quence can be manipulated into a optimal sequence is therefore only possible to do by
the means of induction and assumptions.

One thing to note is that if the artefact is used, raters might behave differently based
upon their knowledge of the usage. If a rater knows that the sequence is optimally gen-
erated and items following each other have a higher chance of receiving the same or a
similar grade, an assimilation effect might occur. This means that in a sequence, a low
quality submission might be affected by its position among high quality submissions
and receive a similar grade as the high quality submissions, and vice versa. As well as
this, the knowledge of the usage of the artefact might also serve as an incentive for the
rater to increase focus in details, but decrease the punishment resulting in a more ho-
moscedastic variance of grades.

As the artefact was used to find inconsistencies in the data sources and only one
were found, it suggest the original raters of the exams was very consistent and fair re-

94 CHAPTER 10. DISCUSSION, CONCLUSION AND FUTURE WORK

spectively. However, the method of measuring for inconsistencies might be prone to
Type II error (false negative) and no conclusion can be made by this that there exist no
other case of inconsistency other than the one that were found. There was in total 1039
submission (data source 2 to 6) and manually validate the equality of the source code
and the grades was not done as it would have taken a significantly larger amount of
time than the value gained. However, it could be done for a subset of the submissions
such as the ones clustered at a very low EPS values (<0.10). By utilizing the artefact as a
mean to find inconsistencies after the grading is done, is a second possible use-case for
the artefact. By running the algorithm again and extracting similar submissions which
have received different grades, might reduce even more inconsistencies.

10.4 Threats to validity

The validity of the research done in this thesis is susceptible to different threats and as
a disclaimer, the threats listed in this section has a fair chance to only be a subset of the
total set of threats. With this said, the threats to validity in this thesis are:

1. Sample size and geolocation: Only 40 participants participated in the experiement
were all was positioned in the same geolocation. A bigger sample size from mul-
tiple geolocations would increase the validity.

2. Knowledge of participants: All participants were students and no background
test were conducted to validate the students knowledge of Python. The only rea-
son for the belief that they did have knowledge of Python was by the fact that it
was stated that the experiment participators needed knowledge of Python. More-
over, participants were selected only from selected groups known to have certain
knowledge of Python.

3. Experience of participants: As all participants were students, the chance of the
presence of experience with professional rating of final exams in any of the par-
ticipants are minuscule. Therefore, the results from this thesis can not directly be
inferred on actual professional raters without further research done.

4. Self-administration: As experiment 2 was a self-administrated questionnaire,
the participators carried it out without supervision. The chance of invalidity is
therefore high as unregulated, unobservable environments and other factors might
effect the participators. These factors might be that a participator lacked focus or
interest in the task, not completing it solely alone but in cooperation with some-
one else (might create diffusion, interaction between control and test group par-
ticipants), or taking long breaks from the experiment effectively reducing the ef-
fects a sequence might impose.

5. Incentives: The participants were incentivized to participate by the offering of
money (200,- NOK). This might have posed an effect on the collection of invalid
data as some participators might have filled out the questionnaire by the sole
incentive of receiving payment and not by contribution to the experiment.

10.5. CONCLUSION 95

6. Obedience to instructions: As many of the participants did not fully follow the
specified 2-minute rule (by completing the questionnaire in experiment 2 much
faster than what was instructed), they might also have broken other rules. Rules
as: going back to previous tasks and review the given grades or conduct the ex-
periment in an insufficient environment not fully letting them make use of the
instructed grade-criteria attached. This might have lead to poor data quality as
the grades given did not fully follow the necessary criteria.

7. The removal of participants in experiment 2 was done by pure intuition. This
might impose that some of the removed participants were valid, or some of the
participants were invalid and should have been removed as well.

8. Statistical errors: As of the small sample size and the various statistical methods
used in this thesis, the values might be biased or prone to errors. Statistical Type
I and Type II errors are also inclined to occur.

10.5 Conclusion

The goal of this research was to investigate if an optimal sequence reduce sequential
effects when grading Python source codes, and develop a method to reduce sequential
effects by automation. No instance of sequential effects was observed and therefore
no relationship was measured between the variables suggesting that the sequence does
not have any effect on the grades. However, to conclude that there is no difference is
wrong as the sample sizes were small, the test results might have errors and only the
presence of some effects were suggested to be non-existent and does not directly imply
that all other effects are also non-existent.

Automating the generation of an optimal sequence which should reduce sequential
effects was suggested to be fairly efficient by the means of the artefact described in this
thesis. Using GST to measure similarity between Python source codes is significantly
supported as similar to a human which further can be used to acquire a more robust
method in the future. However, the optimal sequence defined in this thesis might prove
to increase sequence effects more than it reduces them. Therefore, even though the
artefact does generate an optimal sequence, the reduction of sequence effects might be
more dependent on the definition of the optimal sequence and further research needs
to be done to define a more ideal definition.

96 CHAPTER 10. DISCUSSION, CONCLUSION AND FUTURE WORK

10.6 Future Work

The research and results presented in this thesis are not perfect and should be further
researched. The next steps could be to conduct research into these different areas:

1. Optimal sequence

(a) In this thesis, research was done to observe if sequence did have an effect
on the given grades. However, not much research was done to define what
an optimal sequence actually is. Further research can be done to identify
the true aspects of an optimal sequence.

2. Artefact Architecture

(a) The architecture of the artefact is only a prototype and not optimized. Opti-
mization could be done to extract better tokens or an AST, test different dis-
tance measures, different clustering algorithms such as Hierarchical clus-
tering, and maybe most of all find a better way than a TSP greedy heuristic
to generate an optimal path.

(b) The presented EPS-graph in Figure 9.4 and all the other EPS-graphs in ap-
pendix B demonstrate the existence of large amounts of noise. By changing
different architectures and used algorithms, or finding a better way to opti-
mizing the EPS value, noise can be reduced.

3. Similarity and grade

(a) As this thesis only presents a strong suggestion between GST similarity and
human given grades, it does not present any correlation between any other
mean of similarity and grade. Research could be done to extract features
where the calculated similarity have a higher correlation with the received
grades over many different data sources.

4. Sequence effects

(a) As this thesis did not find any sequence effects, it does not prove that the
does not exist any when grading Python source codes. Further research
could be done to investigate the existence of sequence effects. As well as
this, further investigation could be done in the field of reducing inconsis-
tencies.

Appendices

97

99

100 APPENDIX A. PREPROCESSOR LOOKUP TABLE

Appendix A

Preprocessor lookup table

Type Group Value
Keywords ’CONTROL_FLOW’ (Flow) for, while, break, continue, if, else, elif, re-

turn, yield, pass
’MODULE’ (MOD) from, with, as, import
’EXCEPTION’ (EXC) try, except, finally, raise
’OTHER’ (OTH) del, assert

Function ’LAMBDA’(LAMB) lambda
’FUNCTION’ (FUNC) variables defined as callable functions
’FUNCTION_CALL’ (CALL) .(dot), variable()
’FUNCTION_DEFINE’
(DEF)

def

’GLOBAL’ (GLOB) global, nonlocal
’CLASS’ (CLASS) class

Separator ’BRACKET_START’ (
’BRACKET_END’)
’COLON’ :
’COMMA’ ,
’SEMICOLON’ ;

Operator ’ARITHMETIC’ (ARI) +, -, *, **, /, //, %
’RELATIONAL’ (REL) <, >, ==, ===, !=, <=, >=
’LOGICAL’ (LOG) ‖,&,not , !
’BITWISE’ (BIT) «, », , ,and ,or
’ASSIGNED’ (ASS) =, +=, -=, *= /=, %=, &=, ‖ =,<<=,>>=

,∗∗=,// =,@ =, :=, ::=
’MEMBERSHIP’ (MEM) in
’IDENTITY’ (IDE) is

Literal ’BOOLEAN’ true, false
’LIST_START’ [
’LIST_END’]
’COLLECTION_START’ {
’COLLECTION_END’ }
’NONE’ none, null

Variable ’NUMBER’ numbers
’STRING’ strings, list of characters, usage of "" or ”
’VARIABLE’ assigned to user defined variable names

Unknown ’UNKNOWN’ lexemes not assigned any other type and
group

101

102 APPENDIX A. PREPROCESSOR LOOKUP TABLE

Appendix B

Artefact Illustrations

103

104 APPENDIX B. ARTEFACT ILLUSTRATIONS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

Submissions

5.0

1.0

4.0

2.0

3.0

0.0

2.5

Gr
ad

e

Original sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

Submissions

5.0

1.0

4.0

2.0

3.0

0.0

2.5

Gr
ad

e

Optimal sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure B.1: Original and optimal path (before and after the artefact has run) for data-
source 3. Each color represent one cluster, and small navy-blue dots are noise.

0 50 100 150 200
Items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
ac

ha
bi

lit
y

di
st

an
ce

Reachability Plot

Figure B.2: Reachability plot generated after OPTICS is run for datasource 3

105

0.0 1.0 2.0 2.5 3.0 4.0 5.0
Grades

0

10

20

30

40

50

60

70

Am
ou

nt

Assigned grades

1 16105 1842 153 8 9 191376 11 14120 171
Clusters

0

1

2

3

4

5

6

Gr
ad

es

Cluster mean & standard deviation

Figure B.3: Mean and standard deviation of grades pr cluster made for datasource 3.
The colors represent the same clusters as in figure ??. Cluster "-1" is noise.

1.
0

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91 0.
9

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81 0.
8

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71 0.
7

0.
69

0.
68

0.
67

0.
66

0.
65

0.
64

0.
63

0.
62

0.
61 0.
6

0.
59

0.
58

0.
57

0.
56

0.
55

0.
54

0.
53

0.
52

0.
51 0.
5

0.
49

0.
48

0.
47

0.
46

0.
45

0.
44

0.
43

0.
42

0.
41 0.
4

0.
39

0.
38

0.
37

0.
36

0.
35

0.
34

0.
33

0.
32

0.
31 0.
3

0.
29

0.
28

0.
27

0.
26

0.
25

0.
24

0.
23

0.
22

0.
21 0.
2

0.
19

0.
18

0.
17

0.
16

0.
15

0.
14

0.
13

0.
12

0.
11 0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

EPS

0

25

50

75

100

125

150

175

200

Ite
m

s

0 3 -1 4 2 1 5 6 7 8 9 10 11 12 13 14 15 17 16 19 21 20 18 22 24 23

Figure B.4: Graph illustrating all the different EPS values and the clusters generated
for each value between 0.01 and 1 for datasource 3. Each color represent one distinct
cluster.

106 APPENDIX B. ARTEFACT ILLUSTRATIONS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

Submissions

7

6

2

4

1

5

3

0

Gr
ad

e

Original sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

Submissions

7

6

2

4

1

5

3

0

Gr
ad

e

Optimal sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure B.5: Original and optimal path (before and after the artefact has run) for data-
source 4. Each color represent one cluster, and small navy-blue dots are noise.

0 50 100 150 200
Items

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Re
ac

ha
bi

lit
y

di
st

an
ce

Reachability Plot

Figure B.6: Reachability plot generated after OPTICS is run for datasource 4

107

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Grades

0

5

10

15

20

25

30

Am
ou

nt

Assigned grades

01 2318652 4 2083 2613111 27252422211914 179 10 16157 12
Clusters

0

1

2

3

4

5

6

7

8

Gr
ad

es

Cluster mean & standard deviation

Figure B.7: Mean and standard deviation of grades pr cluster made for datasource 4.
The colors represent the same clusters as in figure ??. Cluster "-1" is noise.

1.
0

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91 0.
9

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81 0.
8

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71 0.
7

0.
69

0.
68

0.
67

0.
66

0.
65

0.
64

0.
63

0.
62

0.
61 0.
6

0.
59

0.
58

0.
57

0.
56

0.
55

0.
54

0.
53

0.
52

0.
51 0.
5

0.
49

0.
48

0.
47

0.
46

0.
45

0.
44

0.
43

0.
42

0.
41 0.
4

0.
39

0.
38

0.
37

0.
36

0.
35

0.
34

0.
33

0.
32

0.
31 0.
3

0.
29

0.
28

0.
27

0.
26

0.
25

0.
24

0.
23

0.
22

0.
21 0.
2

0.
19

0.
18

0.
17

0.
16

0.
15

0.
14

0.
13

0.
12

0.
11 0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

EPS

0

25

50

75

100

125

150

175

200

Ite
m

s

0 1 -1 2 3 4 5 6 7 8 9 10 11 13 14 12 15 16 17 18 19 21 24 25 23 22 20 26 27

Figure B.8: Graph illustrating all the different EPS values and the clusters generated
for each value between 0.01 and 1 for datasource 3. Each color represent one distinct
cluster.

108 APPENDIX B. ARTEFACT ILLUSTRATIONS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

Submissions

4.0

2.0

1.0

6.0

0.0

3.0

7.0

5.0

1.5

Gr
ad

e

Original sequence
0 1 2 3 4 5 6 7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

Submissions

4.0

2.0

1.0

6.0

0.0

3.0

7.0

5.0

1.5

Gr
ad

e

Optimal sequence
0 1 2 3 4 5 6 7

Figure B.9: Original and optimal path (before and after the artefact has run) for data-
source 5. Each color represent one cluster, and small navy-blue dots are noise.

0 25 50 75 100 125 150 175 200
Items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
ac

ha
bi

lit
y

di
st

an
ce

Reachability Plot

Figure B.10: Reachability plot generated after OPTICS is run for datasource 5

109

0.0 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0
Grades

0

10

20

30

40

50

Am
ou

nt

Assigned grades

1 3210 754 6
Clusters

0

1

2

3

4

5

6

7

Gr
ad

es

Cluster mean & standard deviation

Figure B.11: Mean and standard deviation of grades pr cluster made for datasource 5.
The colors represent the same clusters as in figure ??. Cluster "-1" is noise.

1.
0

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91 0.
9

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81 0.
8

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71 0.
7

0.
69

0.
68

0.
67

0.
66

0.
65

0.
64

0.
63

0.
62

0.
61 0.
6

0.
59

0.
58

0.
57

0.
56

0.
55

0.
54

0.
53

0.
52

0.
51 0.
5

0.
49

0.
48

0.
47

0.
46

0.
45

0.
44

0.
43

0.
42

0.
41 0.
4

0.
39

0.
38

0.
37

0.
36

0.
35

0.
34

0.
33

0.
32

0.
31 0.
3

0.
29

0.
28

0.
27

0.
26

0.
25

0.
24

0.
23

0.
22

0.
21 0.
2

0.
19

0.
18

0.
17

0.
16

0.
15

0.
14

0.
13

0.
12

0.
11 0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

EPS

0

25

50

75

100

125

150

175

200

Ite
m

s

0 1 2 -1 4 3 5 7 6 8 10 9 13 11 12

Figure B.12: Graph illustrating all the different EPS values and the clusters generated
for each value between 0.01 and 1 for datasource 5. Each color represent one distinct
cluster.

110 APPENDIX B. ARTEFACT ILLUSTRATIONS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

Submissions

5

6

0

3

2

4

1

Gr
ad

e

Original sequence
0 1 2 3 4 5 6 7 8 9 10 11 12

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

Submissions

5

6

0

3

2

4

1

Gr
ad

e

Optimal sequence
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure B.13: Original and optimal path (before and after the artefact has run) for data-
source 6. Each color represent one cluster, and small navy-blue dots are noise.

0 25 50 75 100 125 150 175 200
Items

0

1

2

3

4

5

Re
ac

ha
bi

lit
y

di
st

an
ce

Reachability Plot

Figure B.14: Reachability plot generated after OPTICS is run for datasource 6

111

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Grades

0

10

20

30

40

50

Am
ou

nt

Assigned grades

1 2 1170 3 5 126 101 94 8
Clusters

0

1

2

3

4

5

6

7

Gr
ad

es

Cluster mean & standard deviation

Figure B.15: Mean and standard deviation of grades pr cluster made for datasource 6.
The colors represent the same clusters as in figure ??. Cluster "-1" is noise.

1.
0

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91 0.
9

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81 0.
8

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71 0.
7

0.
69

0.
68

0.
67

0.
66

0.
65

0.
64

0.
63

0.
62

0.
61 0.
6

0.
59

0.
58

0.
57

0.
56

0.
55

0.
54

0.
53

0.
52

0.
51 0.
5

0.
49

0.
48

0.
47

0.
46

0.
45

0.
44

0.
43

0.
42

0.
41 0.
4

0.
39

0.
38

0.
37

0.
36

0.
35

0.
34

0.
33

0.
32

0.
31 0.
3

0.
29

0.
28

0.
27

0.
26

0.
25

0.
24

0.
23

0.
22

0.
21 0.
2

0.
19

0.
18

0.
17

0.
16

0.
15

0.
14

0.
13

0.
12

0.
11 0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

EPS

0

25

50

75

100

125

150

175

200

Ite
m

s

0 1 2 -1 3 4 5 6 7 11 10 12 8 9 13

Figure B.16: Graph illustrating all the different EPS values and the clusters generated
for each value between 0.01 and 1 for datasource 6. Each color represent one distinct
cluster.

112 APPENDIX B. ARTEFACT ILLUSTRATIONS

Appendix C

Nettskjema

113

114

115

116

117

118

119

120

Bibliography

, . 6. Kvalitetssikring av eksamen og sensur. URL: https://
www.udir.no/tall-og-forskning/finn-forskning/rapporter/
vurderinger-og-forelopige-anbefalinger-fra-eksamensgruppa/6.
kvalitetssikring-av-eksamen-og-sensur/.

, . Cosine Similarity - an overview | ScienceDirect Topics. URL: https://www.
sciencedirect.com/topics/computer-science/cosine-similarity.

, . Digital eksamen | Unit. URL: https://www.unit.no/en/node/496.

, . DIGITAL VURDERING OG EKSAMEN. Technical Report.

, . Shared marks - Knowledge Base - Inspera. URL: https://inspera.atlassian.
net/wiki/spaces/KB/pages/87359579/Shared+marks.

, . SIGKDD News : 2014 SIGKDD Test of Time Award. URL: https://www.kdd.org/
News/view/2014-sigkdd-test-of-time-award.

, . What is Statistical Features | IGI Global. URL: https://www.igi-global.com/
dictionary/identification-of-wireless-devices-from-their-physical-layer-radio-frequency-fingerprints/
60630.

Agarwala, R., Applegate, D.L., Maglott, D., Schuler, G.D., Schäffer, A.A., 2000. A fast
and scalable radiation hybrid map construction and integration strategy. Genome
Research 10, 350–364. doi:10.1101/gr.10.3.350.

Albluwi, I., 2018. A Closer Look at the Differences between Graders in Introductory
Computer Science Exams. IEEE Transactions on Education 61, 253–260. doi:10.
1109/TE.2018.2805706.

Alon, U., Zilberstein, M., Levy, O., Yahav, E., 2018. A general path-based representa-
tion for predicting program properties, in: Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), Association
for Computing Machinery, New York, New York, USA. pp. 404–419. URL: http:
//dl.acm.org/citation.cfm?doid=3192366.3192412, doi:10.1145/3192366.
3192412.

121

https://www.udir.no/tall-og-forskning/finn-forskning/rapporter/vurderinger-og-forelopige-anbefalinger-fra-eksamensgruppa/6.kvalitetssikring-av-eksamen-og-sensur/
https://www.udir.no/tall-og-forskning/finn-forskning/rapporter/vurderinger-og-forelopige-anbefalinger-fra-eksamensgruppa/6.kvalitetssikring-av-eksamen-og-sensur/
https://www.udir.no/tall-og-forskning/finn-forskning/rapporter/vurderinger-og-forelopige-anbefalinger-fra-eksamensgruppa/6.kvalitetssikring-av-eksamen-og-sensur/
https://www.udir.no/tall-og-forskning/finn-forskning/rapporter/vurderinger-og-forelopige-anbefalinger-fra-eksamensgruppa/6.kvalitetssikring-av-eksamen-og-sensur/
https://www.sciencedirect.com/topics/computer-science/cosine-similarity
https://www.sciencedirect.com/topics/computer-science/cosine-similarity
https://www.unit.no/en/node/496
https://inspera.atlassian.net/wiki/spaces/KB/pages/87359579/Shared+marks
https://inspera.atlassian.net/wiki/spaces/KB/pages/87359579/Shared+marks
https://www.kdd.org/News/view/2014-sigkdd-test-of-time-award
https://www.kdd.org/News/view/2014-sigkdd-test-of-time-award
https://www.igi-global.com/dictionary/identification-of-wireless-devices-from-their-physical-layer-radio-frequency-fingerprints/60630
https://www.igi-global.com/dictionary/identification-of-wireless-devices-from-their-physical-layer-radio-frequency-fingerprints/60630
https://www.igi-global.com/dictionary/identification-of-wireless-devices-from-their-physical-layer-radio-frequency-fingerprints/60630
http://dx.doi.org/10.1101/gr.10.3.350
http://dx.doi.org/10.1109/TE.2018.2805706
http://dx.doi.org/10.1109/TE.2018.2805706
http://dl.acm.org/citation.cfm?doid=3192366.3192412
http://dl.acm.org/citation.cfm?doid=3192366.3192412
http://dx.doi.org/10.1145/3192366.3192412
http://dx.doi.org/10.1145/3192366.3192412

Anderson, R.C., Biddle, W.B., 1975. On asking people questions about what they are
reading. Psychology of Learning and Motivation - Advances in Research and Theory
9, 89–132. doi:10.1016/S0079-7421(08)60269-8.

Ankerst, M., Ankerst, M., Breunig, M.M., Kriegel, H.p., Sander, J., 1999. OPTICS: Order-
ing Points To Identify the Clustering Structure , 49–60URL: https://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.129.6542.

Aslett, H.J., 2006. Reducing variability, increasing reliability: exploring the psychology
of intra-and inter-rater reliability. Investigations in university teaching and learning
4.

Attali, Y., Lewis, W., Steier, M., 2013. Scoring with the computer: Alternative proce-
dures for improving the reliability of holistic essay scoring. Language Testing 30, 125–
141. URL: http://journals.sagepub.com/doi/10.1177/0265532212452396,
doi:10.1177/0265532212452396.

Babenko, M.A., Starikovskaya, T.A., 2011. Computing the longest common substring
with one mismatch. Problems of Information Transmission 47, 28–33. doi:10.1134/
S0032946011010030.

Barbosa, A.d.A., Costa, E.d.B., Brito, P.H., 2018. Adaptive clustering of codes for as-
sessment in introductory programming courses, in: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Springer Verlag. pp. 13–22. doi:10.1007/978-3-319-91464-0{_
}2.

Basu, S., Jacobs, C., Vanderwende, L., 2013. Powergrading: a Clustering Approach to
Amplify Human Effort for Short Answer Grading. Transactions of the Association for
Computational Linguistics 1, 391–402. doi:10.1162/tacl{_}a{_}00236.

Bhargava, S., Fisman, R., 2014. Contrast effects in sequential decisions: Evidence
from speed dating. Review of Economics and Statistics 96, 444–457. doi:10.1162/
REST{_}a{_}00416.

Brank, J., Mladenić, D., Grobelnik, M., Liu, H., Mladenić, D., Flach, P.A., Garriga, G.C.,
Toivonen, H., Toivonen, H., 2011. Feature Selection, in: Encyclopedia of Machine
Learning. Springer US, Boston, MA, pp. 402–406. URL: http://link.springer.
com/10.1007/978-0-387-30164-8_306, doi:10.1007/978-0-387-30164-8{_
}306.

Brusch, J., Trapnes, N., Sindre, G., . Digitalization of Exams A study of how digitalization
can improve the examination processes at NTNU. Technical Report.

Chire, 2011a. File:DBSCAN-Illustration.svg - Wikimedia Commons. URL: https://
commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg.

Chire, 2011b. File:OPTICS.svg - Wikimedia Commons. URL: https://commons.
wikimedia.org/wiki/File:OPTICS.svg.

122

http://dx.doi.org/10.1016/S0079-7421(08)60269-8
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.6542
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.6542
http://journals.sagepub.com/doi/10.1177/0265532212452396
http://dx.doi.org/10.1177/0265532212452396
http://dx.doi.org/10.1134/S0032946011010030
http://dx.doi.org/10.1134/S0032946011010030
http://dx.doi.org/10.1007/978-3-319-91464-0{_}2
http://dx.doi.org/10.1007/978-3-319-91464-0{_}2
http://dx.doi.org/10.1162/tacl{_}a{_}00236
http://dx.doi.org/10.1162/REST{_}a{_}00416
http://dx.doi.org/10.1162/REST{_}a{_}00416
http://link.springer.com/10.1007/978-0-387-30164-8_306
http://link.springer.com/10.1007/978-0-387-30164-8_306
http://dx.doi.org/10.1007/978-0-387-30164-8{_}306
http://dx.doi.org/10.1007/978-0-387-30164-8{_}306
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
https://commons.wikimedia.org/wiki/File:OPTICS.svg
https://commons.wikimedia.org/wiki/File:OPTICS.svg

Derrick, B., Candidate, P., Ruck, A., Toher, D., White, P., . TESTS FOR EQUALITY OF
VARIANCES BETWEEN TWO SAMPLES WHICH CONTAIN BOTH PAIRED OBSERVA-
TIONS AND INDEPENDENT OBSERVATIONS. Technical Report.

Durić, Z., Gašević, D., 2013. A source code similarity system for plagiarism detection.
Computer Journal 56, 70–86. doi:10.1093/comjnl/bxs018.

Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. Technical Report. URL:
www.aaai.org.

Fitzgerald, S., Hanks, B., Lister, R., McCauley, R., Murphy, L., 2013. What are we thinking
when we grade programs?, in: Proceeding of the 44th ACM technical symposium on
Computer science education - SIGCSE ’13, ACM Press, New York, New York, USA. p.
471. URL: http://dl.acm.org/citation.cfm?doid=2445196.2445339, doi:10.
1145/2445196.2445339.

Haldar, R., Mukhopadhyay, D., 2011. Levenshtein Distance Technique in Dictionary
Lookup Methods: An Improved Approach URL: http://arxiv.org/abs/1101.
1232.

Haselton, M.G., Nettle, D., Murray, D.R., 2015. The Evolution of Cognitive Bias, in: The
Handbook of Evolutionary Psychology. John Wiley & Sons, Inc., Hoboken, NJ, USA,
pp. 1–20. URL: http://doi.wiley.com/10.1002/9781119125563.evpsych241,
doi:10.1002/9781119125563.evpsych241.

Hatzipanagos, S., Gregson, J., 2015. The Role of Open Access and Open Educational Re-
sources : A Distance Learning Perspective University of London Centre for Distance
Education , Visiting Fellow , UK. Electronic Journal of e-Learning 13, 97–105.

Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P., . On the Naturalness of Software.
URL: http://en.wikiquote.

Klein, J., El, L.P., 2003. Impairment of teacher efficiency during extended sessions of
test correction. European Journal of Teacher Education 26, 379–392. doi:10.1080/
0261976032000128201.

Kramer, R.S.S., 2017. Sequential effects in Olympic synchronized diving scores. Royal
Society Open Science 4, 160812. URL: https://royalsocietypublishing.org/
doi/10.1098/rsos.160812, doi:10.1098/rsos.160812.

Kufman, L., Rousseeuw, P.J., 1987. Clustering by means of medoids .

Landauer, T.K., Foltz, P.W., Laham, D., 1998. An introduction to latent semantic analysis.
Discourse Processes 25, 259–284. doi:10.1080/01638539809545028.

Lewis, D.D., 1992. Feature selection and feature extraction for text categorization,
Association for Computational Linguistics (ACL). p. 212. doi:10.3115/1075527.
1075574.

123

http://dx.doi.org/10.1093/comjnl/bxs018
www.aaai.org
http://dl.acm.org/citation.cfm?doid=2445196.2445339
http://dx.doi.org/10.1145/2445196.2445339
http://dx.doi.org/10.1145/2445196.2445339
http://arxiv.org/abs/1101.1232
http://arxiv.org/abs/1101.1232
http://doi.wiley.com/10.1002/9781119125563.evpsych241
http://dx.doi.org/10.1002/9781119125563.evpsych241
http://en.wikiquote.
http://dx.doi.org/10.1080/0261976032000128201
http://dx.doi.org/10.1080/0261976032000128201
https://royalsocietypublishing.org/doi/10.1098/rsos.160812
https://royalsocietypublishing.org/doi/10.1098/rsos.160812
http://dx.doi.org/10.1098/rsos.160812
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.3115/1075527.1075574
http://dx.doi.org/10.3115/1075527.1075574

Li, Q., Hu, J., Ding, J., Zheng, G., 2014. Fisher’s method of combining dependent statis-
tics using generalizations of the gamma distribution with applications to genetic
pleiotropic associations. Biostatistics (Oxford, England) URL: https://doi.org/
10.1093/biostatistics/kxt045.

Lockton, D., 2012. Cognitive Biases, Heuristics and Decision-Making in Design for Be-
haviour Change. SSRN Electronic Journal doi:10.2139/ssrn.2124557.

McGraw, K.O., Wong, S.P., 1992. A Common Language Effect Size Statistic. Psychological
Bulletin 111, 361–365. doi:10.1037/0033-2909.111.2.361.

McKnight, P.E., Najab, J., 2010. Mann-Whitney U Test, in: The Corsini En-
cyclopedia of Psychology. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 1–
1. URL: http://doi.wiley.com/10.1002/9780470479216.corpsy0524, doi:10.
1002/9780470479216.corpsy0524.

Midtbø, T., Rossow, A., Sagbakken, B., 2018. Måling av sensorreliabilitet ved vurder-
ing av norskprøve i skriftlig framstilling. Acta Didactica Norge 12, 12. doi:10.5617/
adno.6358.

de Moira, A.P., Massey, C., Baird, J.A., Morrissy, M., 2002. Marking Consistency over
Time. Research in Education 67, 79–87. doi:10.7227/rie.67.8.

Muckler, F.A., Seven, S.A., 1992. Selecting Performance Measures: "Objective" versus
"Subjective" Measurement. Human Factors: The Journal of the Human Factors and
Ergonomics Society 34, 441–455. URL: http://journals.sagepub.com/doi/10.
1177/001872089203400406, doi:10.1177/001872089203400406.

Nilsson, C., 2003. Heuristics for the Traveling Salesman Problem. Technical Report.

Oates, B.J., 2005. Researching information systems and computing. Sage .

Page, L., Page, K., 2010. Last shall be first: A field study of biases in sequential perfor-
mance evaluation on the Idol series. Journal of Economic Behavior and Organization
73, 186–198. doi:10.1016/j.jebo.2009.08.012.

Pang-Ning, T., Steinbach, M., Karpatne, A., Kumar, V., 2005. Introduction to Data Min-
ing. URL: https://www-users.cs.umn.edu/~kumar001/dmbook/index.php.

Prechelt, L., Malpohl, G., Philippsen, M., . Finding Plagiarisms among a Set of Programs
with JPlag. Technical Report. URL: http://www.jplag.de.

Ragkhitwetsagul, C., Krinke, J., Clark, D., 2018. A comparison of code similar-
ity analysers. Empirical Software Engineering 23, 2464–2519. doi:10.1007/
s10664-017-9564-7.

Raikes, N., Fidler, J., Gill, T., 2009. Must examiners meet in order to standardise their
marking? An experiment with new and experienced examiners of GCE AS Psychol-
ogy. Technical Report.

124

https://doi.org/10.1093/biostatistics/kxt045
https://doi.org/10.1093/biostatistics/kxt045
http://dx.doi.org/10.2139/ssrn.2124557
http://dx.doi.org/10.1037/0033-2909.111.2.361
http://doi.wiley.com/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.5617/adno.6358
http://dx.doi.org/10.5617/adno.6358
http://dx.doi.org/10.7227/rie.67.8
http://journals.sagepub.com/doi/10.1177/001872089203400406
http://journals.sagepub.com/doi/10.1177/001872089203400406
http://dx.doi.org/10.1177/001872089203400406
http://dx.doi.org/10.1016/j.jebo.2009.08.012
https://www-users.cs.umn.edu/~kumar001/dmbook/index.php
http://www.jplag.de.
http://dx.doi.org/10.1007/s10664-017-9564-7
http://dx.doi.org/10.1007/s10664-017-9564-7

Ramesh, D., Liu, A.Z., Echeverria, A.J., Song, J.Y., Waytowich, N.R., Lasecki, W.S., . Yes-
terday’s Reward is Today’s Punishment: Contrast Effects in Human Feedback to Re-
inforcement Learning Agents Human-Agent Interaction, Contrast Effects, Reinforce-
ment Learn-ing ACM Reference Format. Technical Report. URL: www.ifaamas.org.

Richard Karp Michael, b.M., . Efficient randomized pattern-matching algorithms. Tech-
nical Report.

Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M., 2008. Approximate algorithms for the trav-
eling salesperson problem, Institute of Electrical and Electronics Engineers (IEEE).
pp. 33–42. doi:10.1109/swat.1974.4.

Rye, J.F., 2014. Konsistente karakterer? Uniped 37, 63–77. doi:10.3402/uniped.v37.
22654.

Alves dos Santos, J.C., Favero, E.L., 2015. Practical use of a latent semantic analy-
sis (LSA) model for automatic evaluation of written answers. Journal of the Brazil-
ian Computer Society 21, 1–8. URL: https://journal-bcs.springeropen.com/
articles/10.1186/s13173-015-0039-7, doi:10.1186/s13173-015-0039-7.

Shah, A.K., Oppenheimer, D.M., 2008. Heuristics Made Easy: An Effort-Reduction
Framework. Psychological Bulletin 134, 207–222. doi:10.1037/0033-2909.134.
2.207.

Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-Hernández, L., 2014.
Syntactic N-grams as machine learning features for natural language processing. Ex-
pert Systems with Applications 41, 853–860. doi:10.1016/j.eswa.2013.08.015.

Skedsmo, G., Huber, S.G., 2018. Reliability, validity and fairness—key issues in assessing
the quality of teaching, instructional leadership and school practice. doi:10.1007/
s11092-018-9290-8.

Spear, M., 1997. The influence of contrast effects upon teachers’ marks. Educational
Research 39, 229–233. doi:10.1080/0013188970390209.

Srikant, S., Aggarwal, V., . A System to Grade Computer Programming Skills using Ma-
chine Learning URL: http://dx.doi.org/10.1145/2623330.2623377, doi:10.
1145/2623330.2623377.

Srikant, S., Aggarwal, V., 2014. A system to grade computer programming skills using
machine learning, in: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Association for Computing Machinery. pp.
1887–1896. doi:10.1145/2623330.2623377.

Srull, T.K., 1984. The Effects of Subjective Affective States on Memory and Judgment.
ACR North American Advances NA-11.

Tayi, G.K., Ballou, D.P., . Examinining Data Quality. Technical Report.

Trier, D., Jain, A.K., Taxt, T., 1996. Feature extraction methods for character recognition
- A survey. Pattern Recognition 29, 641–662. doi:10.1016/0031-3203(95)00118-2.

125

www.ifaamas.org
http://dx.doi.org/10.1109/swat.1974.4
http://dx.doi.org/10.3402/uniped.v37.22654
http://dx.doi.org/10.3402/uniped.v37.22654
https://journal-bcs.springeropen.com/articles/10.1186/s13173-015-0039-7
https://journal-bcs.springeropen.com/articles/10.1186/s13173-015-0039-7
http://dx.doi.org/10.1186/s13173-015-0039-7
http://dx.doi.org/10.1037/0033-2909.134.2.207
http://dx.doi.org/10.1037/0033-2909.134.2.207
http://dx.doi.org/10.1016/j.eswa.2013.08.015
http://dx.doi.org/10.1007/s11092-018-9290-8
http://dx.doi.org/10.1007/s11092-018-9290-8
http://dx.doi.org/10.1080/0013188970390209
http://dx.doi.org/10.1145/2623330.2623377
http://dx.doi.org/10.1145/2623330.2623377
http://dx.doi.org/10.1145/2623330.2623377
http://dx.doi.org/10.1145/2623330.2623377
http://dx.doi.org/10.1016/0031-3203(95)00118-2

Tversky, A., Kahneman, D., 1971. Belief in the law of small numbers. Psychological
Bulletin 76, 105–110. doi:10.1037/h0031322.

Tversky, A., Kahneman, D., 1974. Judgment under uncertainty: Heuristics and biases.
Science 185, 1124–1131. doi:10.1126/science.185.4157.1124.

UNIT, 2019. Unit-Direktoratet for IKT og fellestjenester i høyere utdanning og forskn-
ing. Technical Report.

Vithlani, P., Scholar, R., Kumbharana, C.K., 2015. Structural and Statistical Feature Ex-
traction Methods for Character and Digit Recognition. Technical Report 24.

Wise, M.J., 1993. (PDF) String Similarity via Greedy String Tiling and Running
KarpRabin Matching. URL: https://www.researchgate.net/publication/
262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_
Karp-Rabin_Matching.

Wolfe, E.W., Moulder, B.C., Myford, C.M., 2001. Detecting differential rater function-
ing over time (DRIFT) using a Rasch multi-faceted rating scale model. Journal of
applied measurement 2, 256–80. URL: http://www.ncbi.nlm.nih.gov/pubmed/
12011510.

Zen, K., Iskandar, D.N., Linang, O., 2011. Using latent semantic analysis for automated
grading programming assignments, in: 2011 International Conference on Semantic
Technology and Information Retrieval, STAIR 2011, pp. 82–88. doi:10.1109/STAIR.
2011.5995769.

Zhao, H., Andersson, B., Guo, B., Xin, T., 2017. Sequential Effects in Essay Ratings: Ev-
idence of Assimilation Effects Using Cross-Classified Models. Frontiers in Psychol-
ogy 8, 933. URL: http://journal.frontiersin.org/article/10.3389/fpsyg.
2017.00933/full, doi:10.3389/fpsyg.2017.00933.

126

http://dx.doi.org/10.1037/h0031322
http://dx.doi.org/10.1126/science.185.4157.1124
https://www.researchgate.net/publication/262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_Karp-Rabin_Matching
https://www.researchgate.net/publication/262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_Karp-Rabin_Matching
https://www.researchgate.net/publication/262763983_String_Similarity_via_Greedy_String_Tiling_and_Running_Karp-Rabin_Matching
http://www.ncbi.nlm.nih.gov/pubmed/12011510
http://www.ncbi.nlm.nih.gov/pubmed/12011510
http://dx.doi.org/10.1109/STAIR.2011.5995769
http://dx.doi.org/10.1109/STAIR.2011.5995769
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.00933/full
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.00933/full
http://dx.doi.org/10.3389/fpsyg.2017.00933

Bakken, Edvard G
jessing

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Bakken, Edvard Gjessing

Does sequence affect grades?

A quantitative analysis of graded Python source
code and their relative position in a sequence.

Master’s thesis in Informatics

Supervisor: Sindre, Guttorm

June 2020

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	I Introduction and Methodology
	Introduction
	Motivation
	Scope of the Thesis
	Research Goal, Research Questions, and Hypotheses
	Ethical Considerations
	Contributions
	Literature review
	Thesis Structure

	Research Methodology
	Research Strategies
	Experiments
	Design and Creation

	Data Generation Methods
	Data sources
	Experiment 1
	Experiment 2
	Experiment 3

	Data analysis

	II Literature review and problem elaboration
	Literature Review
	Constructed and selected responses
	Selected response
	Constructed response

	Grading
	Validity, fairness and reliability of grades
	Inter and intra-rater reliability
	Subjective-influenced objective decisions
	Grading computer science classes

	Cognitive bias
	Sources of bias

	Digital Exams at NTNU
	Grading with Inspera Assessment

	Problem Elaboration
	Problem introduction
	Generating a sequence
	Evaluation of sequence
	Subjectivity of raters
	Calculating similarity
	Compiling of code

	III Background theory, related work and system design
	Background Theory
	Cluster analysis
	Data points
	Noise
	Data quality
	Features
	Distance Function
	DBSCAN
	OPTICS algorithm

	Feature extraction and selection
	Feature extraction
	Feature selection

	Compiling
	Lexical Analysis

	Travelling salesman problem

	Related Work
	Autograding
	Combining constructed and selected responses

	Clustering
	Sequence manipulation

	System Design
	Optimal sequence
	General Design
	Design introduction

	Preprocessor
	Scanner
	Cleaner
	Tokenization

	Distance measure
	Greedy String Tiling

	Clustering
	Weight scaling

	Sequence generation

	IV Experiments, Results, Discussion, and Conclusion
	Experiments
	Experiment 1
	Experiment 2
	Inconsistencies

	Experiment 3

	Results
	Results - Experiment 1
	Experiment 1 - Descriptive Analysis
	Experiment 1 - Inferential Analysis

	Results - Experiment 2
	Experiment 2 - Descriptive Analysis
	Experiment 2 - Inferential Analysis

	Results - Artefact
	GST similarity and grades
	Sequence generation
	Measuring sequence optimality
	Optimizing EPS
	Finding inconsistencies

	Discussion, Conclusion and Future Work
	Validity of results
	Findings of the experiments
	Findings of the artefact
	Threats to validity
	Conclusion
	Future Work

	Appendices
	Preprocessor lookup table
	Artefact Illustrations
	Nettskjema
	Bibliography

