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Abstract

Cerebral palsy is a permanent motor dysfunction with no existing cure. Although there
are no established tests to detect its presence, early diagnosis and treatment can greatly
improve the chances of decelerating its symptoms. Children at risk of having cerebral
palsy are today clinically observed over several years before receiving a diagnosis. An
earlier diagnosis is based on an analysis of the idle movement of infants, but it is time
consuming and requires specially trained paediatricians. A system based on computer
vision may aid in this analysis, alleviating the need of scarce specialists, and with better
accuracy.

To address this, we want to apply anomaly detection models to analyse the movement of
infants. Earlier studies have found the position of joints based on video recordings and
created an annotated dataset of healthy and impaired infants. However, there exists no
method for applying anomaly detection on this type of data. Our solution to this is the
AnoMove method. AnoMove uses angles between joints to represents the movements
of infants and transform them into frequencies using Fourier transformation. This is
followed by a dimensionality reduction using PLS-DA. The result from this processing is
used as the input for XGBOD, an outlier detection model. AnoMove uses the scores from
XGBOD to predict abnormal movement. In addition to this, AnoMove can visualise the
results from the preprocessing and anomaly prediction.

By using AnoMove we could classify infant with promising results. Anomaly detection
seems to be a well-suited approach for the problem of finding cerebral palsy in infants.



Sammendrag

Cerebral parese er en permanent motorisk dysfunksjon uten en eksisterende kur. Selv om
det ikke er noen etablerte tester for å oppdage dens tilstedeværelse, kan tidlig diagnose
og behandling i stor grad forbedre sjansene for å redusere symptomene. Barn med risiko
for å f̊a cerebral parese blir i dag klinisk observert over flere år før de f̊ar en diagnose. En
tidligere diagnose er basert p̊a en analyse av inaktiv bevegelse hos spedbarn, men den
er tidkrevende og krever spesialutdannede barneleger. Et system basert p̊a datasyn kan
hjelpe i denne analysen ved å redusere behovet for spesialister og ha en bedre nøyaktighet.

For å adressere dette, ønsker vi å bruke anomali-deteksjonsmodeller for å analysere
bevegelsen til spedbarn. Tidligere studier har funnet leddens plassering basert p̊a videoopp-
tak og skapt et annotert datasett med friske og syke spedbarn. Det eksisterer derimot
ingen metode for å anvende anomalideteksjon p̊a denne typen data. V̊ar løsning p̊a dette
er AnoMove-metoden. AnoMove bruker vinkler mellom ledd for å representere sm̊abarns
bevegelser og transformerer dem til frekvenser ved bruk av Fourier-transformasjon. Dette
blir fulgt av en dimensjonalitetsreduksjon ved bruk av PLS-DA. Resultatet fra denne
behandlingen blir brukt som inndata for XGBOD, en detekteringsmodell for anomalier.
AnoMove bruker resultat fra XGBOD for å finne unormale bevegelser. I tillegg til dette
kan AnoMove visualisere resultatene fra data-prosesseringen og anomali-prediksjonen.

Ved å bruke AnoMove kunne vi klassifisere spedbarn med lovende resultater. Anomali-
deteksjon ser ut til å være en godt egnet tilnærming for problemet med å finne cerebral
parese hos spedbarn.
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Outline

Introduction

The first chapter will give the reader an introduction to the problem at hand, the main
goal, and research questions. It will also highlight work done in the specialisation project.

Theoretical Background

Chapter 2 will give the reader an introduction into the theoretical knowledge that is
used in this thesis.

Previous Work

This chapter will present other research that are done before this thesis and that has
given motivation and developed the necessary technology and methods for completing
this thesis.

Method

Chapter 4 gives the reader an introduction to the details of the dataset before it in
detail explains the different parts of the model: preprocessing, anomaly detection, post
processing and visualisation.

Results

The results chapter presents the results from the entire method. It also includes results
that made the baseline of important choices throughout this thesis.

Discussion

In this chapter the authors will give their interpretation of the results and discuss choices
that were made in the method. It will highlight different aspects of the method that
could be explored further.

Conclusion

Chapter 7 concludes our findings in the research done for this thesis.
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1. Introduction

In this chapter the reader will be introduced to the background and motivation for this
study. The chapter will provide basic information about cerebral palsy and explain why
our study is important. Section 1.2 gives the reader an introduction to the InMotion
project. In Section 1.3 we describe the problem and research questions for this thesis.
The subsequent section describes the scope of the thesis. The chapter ends with a
description of preliminary work done by the authors.

This thesis is a continuation of the specialisation project done by the authors in the
autumn of 2019. The following sections in this chapter are gathered from this project:
Section 1.1 and 1.2.

1.1. Cerebral Palsy

Cerebral palsy (CP) refers to a group of neurological disorders that appear in infancy or
early childhood and permanently affect body movement and muscle coordination. CP is
caused by damage or abnormalities inside the developing brain that disrupt the brain’s
ability to control movement and maintain posture and balance. [2]

About 2.1 children per 1000 live births are diagnosed with CP. [3] There are several risk
factors that increase the likelihood of having CP, such as premature birth or complica-
tions during pregnancy.

Infants born with less than 28 weeks of gestation or with a birth weight under 1000g are
in the high-risk group. Between 10-20% of infants in this group get CP. [4]

Traditionally, diagnosing CP in infants is a tedious process. Trained experts can diagnose
CP in infants as early as three months after term, but it is time-consuming, and not
many doctors are trained in this technique. This leads to a high cost for diagnosing
infants. Typically, CP is diagnosed between an age of 1 and 5 years, depending on the
severity of the disease.

Children have a higher brain plasticity the younger they are. Treatments for CP is more
effective the more plastic the brain is, meaning that treatment should start as soon as
possible. To be able to achieve this, new tools are made to facilitate early diagnosis of
CP. The tools created should strive to be as non-invasive, easy, and accurate as possible,
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to minimise the impact of the procedure on the infants and their parents.

1.2. InMotion

In recent years, experts from St. Olav hospital and researchers from NTNU have worked
on a project called InMotion. The project is based on analysing symptoms of CP in infant
movement from a video that can be captured in the comfort of the infant’s home.

So far, the project has worked on extracting pose information from video, representing
the infants by the position of its limbs. There is ongoing research on describing the
symptoms from these videos, but currently no solution is in place.

Until now, there are no one involved in the InMotion project that has treated the problem
as an anomaly detection problem. The method described in this thesis is seen as an
alternative to the deep-learning methods currently being tested in InMotion.

1.3. Problem Description

As of today, there exists no acceptable method for analysing the videos in InMotion,
nor are there any methods for anomaly detection in general human movement to the
authors knowledge. This report will lay the groundwork for such a method. Our goal
for this study is to further investigate the possibility of using anomaly detection models
to classify infant movements. In order to achieve this, we must also try to find new ways
to represent the movement of infants based on the videos in the InMotion project.

Research Questions

Our research goal for this thesis is: How can anomaly detection models be used to find
abnormal patterns in infant movement caused by cerebral palsy?

To be able to answer the question above, we will work around the following research
questions.

RQ1: How can infant movement be represented with minimal feature loss and a minimal
number of dimensions?

RQ2: To what degree can basic anomaly detection models predict cerebral palsy in in-
fants?

RQ3: What is the state-of-the-art in outlier detection?
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RQ4: How do state-of-the-art outlier detection models perform when compared to basic
anomaly detection models?

1.4. Scope

In this thesis, the focus will be on how to preprocess infant movement for use in tra-
ditional outlier detection models. No new outlier detectors will be researched, but we
will evaluate the performance of existing off-the-shelf algorithms. To choose the correct
outlier algorithm for our dataset we will run an extensive search through models and pa-
rameters and choose those that perform the best. These will be used as base estimators
in an ensemble of outliers, which will perform as our predictor.

The deliverables in this Master will be a pipeline with preprocessing, a predictor con-
sisting of an outlier ensemble, and a visualisation tool to visualise the result of the
predictor. This visualisation tool is both to aid researchers in understanding the results
of the model but could also be used by medical professionals in their analysis of patients.

1.5. Preliminary Work

The authors worked on a specialisation project that lead up to this thesis. The research
questions that were answered in that specialisation project were:

RQ1: How can infant movement be represented in few dimensions?

RQ2: To what degree can changes in angles as a signal be used to represent infant move-
ment?

RQ3: To what degree can Fourier transformation be used to generate data that can be
used in standard anomaly detection methods?
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2. Theoretical Background

This chapter will give a thorough introduction to the theory behind the proposed method
presented in this thesis. The theory can be categorised into the different sections of
a rather generic pipeline within data mining and machine learning, containing data
preprocessing, model generation and training, and evaluation.

Input data

• 2.1 Infant movement

Preprocessing

• 2.2 Time series

• 2.3 Signal processing

• 2.4 Clustering

• 2.5 Dimensionality

Evaluation

• 2.7 Evaluation metrics

Model generation

• 2.6 Anomaly detection

Figure 2.1.: A generic data mining pipeline with the corresponding sections in this chap-
ter.

We start off this chapter with an introduction to some of the medical background behind
this research. Section 2.1 gives the reader an introduction to different terms and defini-
tions that are used to describe infant movement. It also defines the differences between
normal and abnormal movement.

Following that, we cover the different aspects of our data and the required methods for
preprocessing it. Section 2.2 explains what time series are and different types of time
series. Digital Signal Processing (Section 2.3) introduces the reader to different terms,
definitions and equations that are used in digital signal processing. Section 2.4 explains
clustering and different methods to measure distance within clusters. Dimensionality
(Section 2.5) explains different methods to reduce the dimensionality of data.

Finally, we consider the theory behind the model we must build to carry out our pre-
dictions. Section 2.6 explains anomaly detection and presents the reader to different
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algorithms that are commonly used in anomaly detection. The last section explains
different evaluation methods that are commonly used in computer science and when
evaluating medical results.

This work is a continuation of the specialisation project done by the authors in the
autumn of 2019. The following sections in this chapter are gathered from that project:
Section 2.1, 2.2, 2.3, 2.4 (without the part on Minkowski distance), 2.6, 2.6.1 (until
One-Class Support Vector Machine), 2.6.2 and 2.7 (until 2.7.1).

2.1. Infant Movement Analysis

Movement analysis is used for describing a subject’s movement and explain the rele-
vant information surrounding the movement. This is relevant in physical examination
and when diagnosing humans with diseases which affects movement. Infant movement
analysis is a subset of movement analysis.

2.1.1. General Movement Assessment

General movement assessment is a method for diagnosing cerebral palsy in infants.
Different movement patterns are described in Table 2.1. They are used to classify move-
ments as normal or abnormal, and can give an indication whether or not infants have
cerebral palsy. The method used when analysing general movements is called Gestalt
perception and is a proven method for this task [5]. According to Gestalt psychology, the
whole is different from the sum of its parts [6], meaning that one can perceive patterns
in entire sequences, but not necessarily in each of its parts.

Definition 1 General movement (GM)[5]
General movement are on-going movements involving all body parts and appears partic-
ularly suitable for assessment.
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Normal GMs
From 9 to 49 weeks postmenstrual age (PMA)

Fetal and preterm general
movements (GMs)

Similar to writhing movements (see below), but
wider and jerkier, especially in the lower limbs.

Writhing movements (WMs) Variable amplitude, slow-to-moderate speed,
typically ellipsoid limb trajectories lying close
to the sagittal plane with superimposed rota-
tions. Mostly expressed around term age (40
weeks PMA).

From 46 up to 64 weeks PMA

Fidgety movements (FMs) Smaller than WMs, moderate average speed
with variable acceleration in all directions, mi-
grating through all body parts as an on-going
flow of movement. Continual in the awake in-
fant, except during fussing, crying and focused
attention. Peak of expression around 3 months
post-term (52 weeks PMA).

Abnormal GMs
Preterm and WMs period

Poor repertoire (PR) Monotonous sequences, few movement compo-
nents, repetitive and not so complex as in nor-
mal WMs. Fluency may be reduced too, but is
usually more spared than complexity and vari-
ability.

Cramped-synchronized (CS) No complexity, no fluency, no variability: all
limb and trunk muscles contract and relax al-
most simultaneously.

Chaotic (Ch) Large amplitude, high jerk and chaotic order
without any fluency or smoothness. Rare, of-
ten evolving into CS.

Hypokinesia No or very few GMs are detectable during sev-
eral hours (infrequent pattern, mostly seen in
the first days after the onset of a severe hypoxic-
ischaemic encephalopathy).

FMs period GMs
Absent FMs (FM−) FMs are never observed in the whole period

Abnormal FMs (AF ) Fidgety-like movements, but amplitude, average
speed and jerkiness are exaggerated

Table 2.1.: Description of different general movement patterns. Table from [5].
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2.1.2. Fidgety Movements

Infants between 10-15 weeks have fidgety movements, which is spontaneous movements
not initiated by external stimuli. Fidgety movements are characterised as a continuous
stream of tiny and elegant movements in all directions, and are present in the neck,
trunk, and limbs [7].

A lack of fidgety movements has been shown to indicate cerebral palsy. Doctors trained
in Gestalt perception are able to analyse fidgety movements, but without an objective
measuring system, physicians working alone risk drifting away from observation stan-
dards.

2.2. Time Series

A method of representing movement is as a time series. Times series can be used for
multiple other problems like detecting trends, monitoring streaming data, and in different
scientific measurements. In this section we will present usage of time series and common
problematics.

Definition 2 Time series [8]
Let k ∈ N, T ⊆ R. A set of indexed elements of Rk, {xt|xt ∈ Rk, t ∈ T} is called an
observed time series.

A time series is a series of elements that are dependent on time. Each element x is
recorded at a time step t. Time series analysis can be used in stock marked, weather
forecast, speech recognition, earthquake prediction and many other areas [9]. One ex-
ample of a time series can be seen in Figure 2.2.

time

celsius

Figure 2.2.: Example of a time series. The red line is an example of temperature in
November. Time is represented on the x-axis and the temperature on the
y-axis.
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Types of Time Series

Time series can be divided into two groups: univariable and multivariable data. Univari-
able has only one feature changing over time. An example of that can be temperature
changing throughout the day. Multivariable on the other hand deals with multiple fea-
tures. These features can all be dependent on time, but they can also be dependent on
each other.

In time series there are mainly two different types of problems, namely forecasting prob-
lems and classification problems. Forecasting problems uses historical data to predict
future values. Weather forecasting is a good example of a forecasting problem using
multivariable time series, as it considers several factors such as temperature, humidity
and wind patterns. Classification problems takes the input data and classifies it into
a given number of predefined classes. One example of a classification problem for time
series can be detecting heart disease based on the heartbeat.

By applying statistical analysis to time series, it is possible to detect features like trends,
seasonality, outliers, long-term cycles, constant variance and abrupt changes. Detect-
ing these features are important as they may impact the outcome of the prediction or
classification. Statistical analysis can also be used to evaluate the best representation of
the data, and what type of analysis it is possible to perform depending on the different
features that are found in the statistical analysis.

2.3. Digital Signal Processing

Digital signal processing is essential in many applications, such as audio, sonar, digital
image processing and control systems. It takes a signal and processes it into another
domain. The result is a possibility to extract more information from the signal and
apply different methods and operation to the signal for enhancing the different features.

Definition 3 Signals [10]
A signal describes how some physical quantity varies over time and/or space.

The simplest signal is a sinus curve illustrated by the blue curve in Figure 2.3. Sound
waves, radio transmissions and television broadcasts are all examples of signals.

Definition 4 Signal processing [10]
Manipulating a signal to change its characteristics or extract information from it.

In signal processing there are typically three different classes of problems. The first class
is the problem with eliminating noise from a signal. In Figure 2.3 there are two curves,
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x

y

Figure 2.3.: The blue curve represents f(x) = sin(x) and the red curve represents f(x)
with noise.

both of them are sin(x), but one of them has added noise. The goal is then to eliminate
the noise from the red curve so that the new curve matches f(x). The second problem
is correcting distortion in signals. The final class of problems is extracting an indirect
quantity from measured signals. This problem is further explained in Example 1.

Example 1 Indirect information
A radar transmits a signal to an aeroplane. The distance to an aeroplane is given by
the time it takes the signal to go back and forth to the plane. Another parameter that
can be calculated is the velocity, which is given by the Doppler shift in the signal. The
distance and velocity are calculated not from the signal itself, but rather by extracting
the information embedded in the signal.

Moving Average

Definition 5 Moving average
A succession of averages derived from successive segments typically of constant size and
overlapping of a series of values.

A moving average can be used to smoothen out sudden peaks in a time series signal,
making it easier to compare different time series. The simplest form of moving average
is the simple moving average (SMA). The average is taken from a window set either
before the given value or on either side of the given value. By choosing a window before
the given value, the value will be determined by historical data. This is often used in
financial applications. By choosing a window on either side of the given value, the value
is determined by its nearest neighbours. This is typically done as preprocessing in data
science.

Equation 2.1 describes a simple moving average with historical data and Equation 2.2
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describes moving average with nearest neighbours.

pSM =
pM + pM−1 + ...+ pM−(n−1)

n
=

1

n

n−1∑
i=0

pM−i (2.1)

pSMnearest =
pM+n/2 + pM+n/2−1 + ...+ pM−n/2

n
=

1

n

n/2∑
i=−n/2

pM−i (2.2)

Theorem 1 Nyquist theorem [11]
A signal with bandwidth B can be completely reconstructed if 2B samples per second are
used. The theorem introduces the Equation 2.3, where Rmax is the maximum data rate
and M is the discrete level of signal.

Definition 6 Aliasing [10]
Aliasing occurs when the rate of sampling is too low to capture the true nature of a
signal.

Rmax = 2B log2M (2.3)

Aliasing is a common problem when sampling signals and occurs when the sampling rate
is lower than the Nyquist frequency. Aliasing can be seen in Figure 2.4, where we have
a sinus signal that is sampled. Figure 2.4a shows the original signal, with a frequency
of 1. If we try to sample it with a sampling rate of 1, we get the signal in 2.4b, and not
the original signal.

Rather than finding the right sampling rate through experiments, Theorem 2.3 gives the
correct sampling: 1

2 . Sampling with this rate gives the points represented by circles in
Figure 2.4c and results in f(x) = f(x)sampled. One important feature of the Nyquist
Theorem is that by applying the sampling rate given by the theorem the result will
be the simplest function that fits every sample. This function obtained from fitting a
function through every point f(x)sampled is the correct representation of the signal.

Continuous Fourier Transform

When working with signal analysis there are several different tools for describing or
transforming the signal into another domain, one of these being the continuous Fourier
transform. A Fourier transformation decomposes a signal into its constituent frequencies.
This makes it possible to analyse the parts that make up a signal instead of the signal
itself.
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x

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) The red curve represents f(x) = sin(2πx)

x

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) The simplest function that intersect every point given with a sample rate of 1 is the sinus
function f(x) = sin(πx).

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(c) Sampling with the rate of 1
2 given by the Theorem 2.3 gives f(x)sampled = f(x). This is clear

when plotting both functions.

Figure 2.4.: Aliasing in a signal.

An example of a signal transformed by continuous Fourier transform can be seen in
Figure 2.5. The continuous Fourier transform is defined in Equation 2.4 and the inverse
Fourier transform in Equation 2.5

H(f) =

∫ ∞
−∞

h(t)e−2πiftdt (2.4)

h(t) =

∫ ∞
−∞

H(f)e2πiftdf (2.5)
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Discrete Fourier Transform

When working with time series we often have a sampled signal instead of a continuous
one. The Discrete Fourier Transform (DFT) can be used when the data is discrete
values as it iterates over every point and apply the Fourier transform to each point.
This is showed by the Equation 2.6, and the inverse Fourier transformation is defined in
Equation 2.7. H(k) will be a function that is a combination of sinusoids and that lies in
the frequency domain.[12]

Figure 2.5.: A Fourier transformed signal. The original signal is at the top and comes
from a x-coordinate of a limb in an infant in movement. The frequency data
is at the bottom.
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H(k) =
1

N

N−1∑
n=0

h(k)e−2πi
kn
N (2.6)

h(n) =
1

N

N−1∑
n=0

H(n)e2πi
kn
N (2.7)

Fast Fourier Transform (FFT)

Due to the high computational cost of calculating the discrete Fourier transform given
by the Equation 2.6, the fast Fourier transform algorithm was created. The algorithm
is based on the Cooley-Tukey [13] method, where it was proposed how manipulation of
the window size and using recursion could simplify the problem from having a O(n2)
runtime to a O(n log n) runtime.

The algorithm works by using the Danielson-Lanczos lemma [14]. It says that a DFT
in the size of a power of two can be rewritten as the sum of the DFT of the odd and
even indexed entries of the original signal. Since the size is a power of two, this can be
done recursively until the size of the DFT is 1, making it trivial to calculate. The Fast
Fourier Transform algorithm can be seen in Algorithm 1.

Algorithm 1: The Fast Fourier Transform algorithm

Data: Vector ~x of 2n samples
Result: Discrete Fourier Transform of ~x
Set N to length of vector ~x
if N is 1 then

return ~x
else

Set ~xeven to FFT of the even indices of ~x
Set ~xodd to FFT of the odd indices of ~x
forall k = 0 to N/2− 1 do

Set t to ~xodd,k ∗ e−2πik/N
Set DFTk to ~xeven,k + t
Set DFTk+N/2 to ~xeven,k − t

end
return DFT

end
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2.4. Clustering

Clustering can be used to group together similar data points. There are multiple ways to
cluster data, with common methods of data clustering being centroid-based clustering
and density-based clustering. Centroid-based clustering revolves around clustering a
data point to the nearest cluster prototype point. These prototype points are created
iteratively based on the dataset and does not have to be in the dataset itself. Density-
based clustering finds areas in the data with a similar density between the data points
and assigns clusters to the areas. An example of clusters can be seen in Figure 2.6.

Definition 7 Cluster Analysis [15]
Cluster analysis divides data into groups (clusters) that are meaningful, useful, or both.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

Figure 2.6.: Example of three clusters in a two dimensional space.

2.4.1. Distance Measures

When clustering datasets, two points must be directly comparable by measures such as
geometric distance, density or other methods. As the data available for clustering can
model any values, different measurements can be implemented. Three common choices
for distance are manhattan distance, euclidean distance, and cosine similarity.
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Manhattan Distance

Manhattan distance is the sum of the differences in all dimensions between two data
points. It is named after the distance a cab would have to drive in Manhattan by
following the grid-pattern in the streets. It is also known as taxicab distance with the
same origin, but also rectilinear distance, L1 distance, L1 distance, snake distance, and
more. Manhattan distance is the simplest form of measurement between two data points.
The equation for Manhattan distance can be seen in Equation 2.8 and an illustration in
Figure 2.7.

y1
p

x1

y2
q

x2

Figure 2.7.: Illustration of Manhattan distance

d(p,q) = d(q,p) =
n∑
i=1

|pi − qi| (2.8)

Euclidean Distance

Euclidean distance, also known as the straight-line distance, is the shortest path between
two points in a Euclidean space. The equation for an n-dimensional Euclidean distance
can be seen in 2.9 and an illustration in Figure 2.8.

d(p,q) = d(q,p) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2 =

√√√√ n∑
i=1

(qi − pi)2

(2.9)
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Figure 2.8.: Illustration of Euclidean distance

Minkowski Distance

Minkowski distance is a generalised version of Manhattan and Euclidean distance. It is
defined as follows:

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn. The Minkowski distance d(x,y)
of order p between the two point is defined in Equation 2.10

d(x,y) = d(y,x) = {
n∑
i=1

|xi − yi|p}
1
p (2.10)

Minkowski distance has two special cases: When p = 1, the Minkowski distance is the
same as the Manhattan distance, and for p = 2 it is the same as the Euclidean distance.

Cosine Similarity

The cosine similarity is a similarity measure where the cosine of an angle between two
vectors created by the data points are the measure of similarity. The measure normalises
the amplitude of the dimensions in the data points, making only the angle between the
data points matter. Cosine similarity is often used in document similarity, as it is
effective on large sparse vectors. The equation a n-dimensional cosine similarity can be
seen in 2.11 and an illustration in Figure 2.9.
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Figure 2.9.: Illustration of Cosine similarity

Similarity = cos(θ) =
A ·B

‖ A ‖‖ B ‖
=

n∑
i=1

AiBi√√√√ n∑
i=1

A2
i

√√√√ n∑
i=1

B2
i

(2.11)

2.4.2. K-means Clustering

K-means clustering is a popular method of centroid-based clustering. It is based on
dividing a dataset into k ∈ N different clusters, with k being a tuneable parameter. [15]

The algorithm starts by initialising k points within the data set. These prototype points
can either be chosen randomly between the data points, or new points can be created
within the range of the data. All data points are assigned to their nearest prototype
point, creating the clusters.

These clusters are then improved by iteratively recalculating the prototype points and
reassigning data points to their nearest cluster. The recalculation is done by moving
the prototype points to the mean value of the points currently assigned to it. All data
points are then again assigned to their closest prototype point. This is repeated until the
prototype points recalculation yields the same results as last iteration. The algorithm
can be seen in Algorithm 2.

In Figure 2.10, K-means with different k-values can be seen on the same dataset. K-
values of 3, 5, and 6 all seem to fit the dataset, meaning there is no absolute correct
k-value without additional information.
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(a) k = 2
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(b) k = 3
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(c) k = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
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(d) k = 6

Figure 2.10.: Example of how k-means clusters a dataset with different k values. The
centroid for each cluster is a black pentagon.

Algorithm 2: K-means clustering

Select K points as initial centroids
while Centroids do not change do

Form K clusters by assigning each point to its closest centroid
Recompute the centroid of each cluster
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2.5. Dimensionality

The curse of dimensionality, first introduced by Bellman [16], is a common problem
that often arises when dealing with data in high-dimensional spaces. One of the main
problems is that when the dimensionality increases the volume also increases. This
leads to the distance between each datapoint becoming so large that the data becomes
increasingly sparse. There exists a lot of different techniques to mitigate this problem.
Some of those methods are the principal component analysis (PCA) and partial least
squares discriminate analysis (PSL-DA)

2.5.1. Principal Component Analysis

The definition of principal component analysis is given by Alexander N. Gorban [17]
and is cited in Definition 8. The goal of PCA is to reduce the number of variables in
the dataset while containing as much information as possible. To achieve this, PCA
finds the variables that correlates the most and combine them to form a smaller set of
variables that can describe the data.

Definition 8 PCA is a data analysis technique that relies on a simple transformation
of recorded observation, stored in a vector z ∈ RN , to produce statistically independent
score variables, stored in t ∈ RN , n ≤ N , see Equation 2.12.

t = PT z (2.12)

Here, P is a transformation matrix, constructed from orthonormal column vectors. [17]

x1 x2 . . . xn

2 1.9 . . . −
9 1.1 . . . −
8 0.9 . . . −
1 0.5 . . . −
1 1.7 . . . −
0 0 . . . −
5 2 . . . −
3 1 . . . −
4 1.1 . . . −

avg = 3.67 avg = 1.13 . . . −

Table 2.2.: Original datapoints before
normalisation.

x1 x2 . . . xn

-1.67 0.77 . . . −
5.33 -0.03 . . . −
4.33 -0.23 . . . −
-2.67 -0.63 . . . −
-2.67 0.57 . . . −
-3.36 -1.13 . . . −
1.33 0.87 . . . −
-0.67 -0.87 . . . −
-0.33 -0.97 . . . −
avg = 0 avg = 0 . . . 0

Table 2.3.: Datapoints after normalis-
ing them.
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PCA has four main steps:

1. Normalize the data by subtracting the mean from each point. An example of this
can be seen in Table 2.2 and Table 2.3

2. Calculate the covariance matrix for the data with Equation 2.13.

COVx,y =

∑n
i=1(xi − x)(yi − y)

n− 1
(2.13)

3. Calculate the eigen values and eigen vectors for the covariance matrix. Then
multiply the original data with the eigenvectors.

4. From the scores from the above step it is possible to find the variables that corre-
lates the most. Drop the original datapoint and use the transformed data (eigen
vectors) to find new patterns that shows the correlation between points.

2.5.2. Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) [18] has many different methods
and usages. In this thesis, a short introduction to the classification technique will be
given to the reader. This is a technique to determine what group a new sample has the
highest likelihood to belong to. Other techniques that are related to PLS-DA will not
be covered in this thesis.

PLS-DA tries to decide which of two groups a sample belongs to. It can be regarded as
a linear two-class classifier. Figure 2.11 shows an example of this, one straight line that
divides the data into two groups. The figure illustrates this by using two dimensions.
When there is more than two dimensions PLS-DA represents the variables in hyper-
planes in multidimensional space. PLS-DA is a continuation of the partial least squares
regression (PLS-R) and is therefore build on the basics from PLS-R. That is, building a
regression model between a data matrix (X) that represents a set of analytical measure-
ments and a vector (C) that represents the labels for each sample. This is illustrated in
Figure 2.12.
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Figure 2.11.: Example on a linear two-class classifier.
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Figure 2.12.: PLS-DA regression

When the model is built it is possible to use it to predict data in the original data and
future data points that arises.

PLS-DA is used for sharpening the separation between different groups in a dataset.
This is done by applying the above method and maximise the separation among classes
in the dataset and to gather information about which variables contains the necessary
information.
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2.6. Anomaly Detection

Anomaly detection consist of finding data that is different from some defined normal
behaviour. It has many different applications and can be used in a lot of domains,
such as malware detection, fraudulent email, credit card fraud, investments, healthcare
diagnosis, and patient monitoring. An example of a point anomaly can be seen in
Figure 2.13.

Definition 9 Anomaly [19]
Anomalies or outliers are substantial variations from the norm.

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

Figure 2.13.: Example of point anomaly. The red triangle is a point anomaly. It is
significantly far away from the rest of the points. The blue points can be
viewed as a cluster and the red triangle is therefore an anomaly.

One important problem in anomaly detection is differentiating between noise and anoma-
lies. This is an important and challenging task, because in some cases anomalies and
noise can be interpreted as the same thing. Take Figure 2.14 and 2.15, in the first figure
the point a1 and a2 are anomalies in a given time series, but they can also be viewed as
noise. If we treat it as noise, we end up with the data represented in Figure 2.15, which
will give a completely different result then the data from Figure 2.14. Because of this
it is important to choose an approach that can handle noise and differentiate between
noise and anomalies.
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Figure 2.14.: Data with anomalies (a1 & a2).

time
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Figure 2.15.: Removed the anomalies from
Figure 2.14

In anomaly detection there are mainly three approaches: distance-based, density-based
and rank-based. [19]

• Distance-based : Points that are farther from others are considered more anomalous.
The points (a1 & a2) with red circles in Figure 2.13 can be an example of distance-
based anomaly.

• Density-based : Points that are in relatively low density regions are considered more
anomalous. The two blue squares in the bottom in Figure 2.13 can be seen as a
cluster with high density. The red triangle can also be a cluster with only one
element, or an anomaly.

• Rank based : The most anomalous points are those whose nearest neighbours have
other points as nearest neighbours. See Example 2.

Example 2 Rank based anomaly detection
Imagine a social network where the people rank their friends from closest friends to
acquaintances. You want to cluster this network to find circles of friends. To do this you
analyse how the people rank one another as friend. Bob has four highly ranked friends,
and all of Bobs friends has Bob and each other as their highest ranked friends. This
makes Bob and his friends a cluster. However, if none of Bobs friends has him as one
of their closest friends, it makes Bob an outlier.
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When trying to choose an approach it is important to analyse the nature of the data.
The nature of the data can be classified into three groups: supervised, semi-supervised
or unsupervised.

Data that are supervised have known labels for a set of training data. This training data
defines the comparison and distance for the rest of the dataset. Unsupervised data have
no labels, so when calculating the distance or the comparison it needs to take the whole
dataset into account. The final group is semi-supervised, where there are some known
and some unknown labels. This is often the case in anomaly detection problems, where
you have the labels for normal data, but no labels for abnormal data.

2.6.1. Anomaly Detection Algorithms

There has been done a lot of research in the anomaly detection domain and there are
numerous different algorithms for detection anomalies. Some of the best known algo-
rithms are k-NN and Local outlier factor. These algorithms have different strengths and
weaknesses and gives good results in detecting anomalies.

k-NN

The k-NN algorithm determines outliers based on the distance to the neighbours of the
data points. A point is labeled as an outlier if the distance from its neighbours is more
than the rest of the set. The algorithm can either use only the distance to its kth
neighbour dk(p) [20], or the sum of the distances to the k nearest neighbours

∑k
i=1 di(p).

[21]

One weakness of the k-NN algorithm is that the user must specify the number of the
parameter k, which is the number of nearest neighbours. The output of the algorithm
is a ranked list of anomalies, and a parameter n extracts the top n ranked results as
outliers.

Local Outlier Factor

The local outlier factor (LOF) is an algorithm to find anomalies based on the local
deviation of a data point with respect to its k nearest neighbours. [22] A point is an
anomaly if the LOF is large, and the LOF is calculated with the following steps:

1. Calculate the distance to the kth nearest neighbour dk(p)

2. Let the set of the k nearest neighbour be denoted by all points which are closer
than the kth nearest neighbour. Nk(p) = q ∈ D − p : d(p, q) <= dk(p)
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3. Define the reachability distance of a point q from p as dreach(p, q) = max(dk(p), d(p, q))

4. Define the local reachability density lrd as the reciprocal of average reachability
distance.

lrdk(p) = (

∑
q∈N(p) dreach(p, q)

|Nk(p)|
)−1

5. The local outlier factor is then determined by comparing the lrd of all points in
Nk(p).

LOFk(p) =

∑
o∈Nk(p)

lrd(o)
lrd(p)

|Nk(p)|

A LOF of around 1 indicates a normal datapoint, while a LOF larger 1 indicates anoma-
lies.

One-Class Support Vector Machine

One-Class support vector machine (OCSVM) [23] is a version of support vector machines
that can be used for outlier detection. It has a methodology containing three steps:

1. In the first step, map the sampled data into a higher dimensional feature space.

2. After the data is mapped, they are enclosed in a geometric figure. To accom-
plish this, the different parameters of the figure needs to be determined. These
parameters are calculated by solving a linear optimisation problem.

3. The last step is to find the global outliers. This is done by each node broadcasting
its parameters to other nodes. In the end one node will receive parameters from
all other nodes. This is known as the central node. The central node merges the
node and computes the global parameter for the data. The merged parameters are
then broadcasted from the central node to every other node in the network. Each
node classifies themselves as an outlier or not, based on their distance from the
central node.

Angle-Based Outlier Detection

Angle-based outlier detection (ABOD) [24] tries to solve the problem with a high number
of dimensions. When mining high-dimensional data the distance between points becomes
less important. ABOD uses instead the angles between points to compare them with
each other. In Figure 2.16 a simple data set is illustrated and shows the main idea of
ABOD. Points within a cluster have a high variance in their angle between other points
in the same cluster, while outliers will have a small variance in angle to all points. The
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outlier angle γ has a much lower angle than the rest of the angles within the cluster and
is thereby an outlier.

The main advantage of ABOD is that it is parameter-free, however this increases the
computational cost, which is O(n3).

Figure 2.16.: Example of ABOD detecting an outlier.

Histogram-Based Outlier Scoring

Histogram-based outlier scoring (HBOS) [25] makes a univariate histogram for each
dimension in the dataset. For numerical values two different methods are evaluated. (1)
Static bin-width histograms or, (2) dynamic bin-width histograms. The first method is
based on the standard histogram technique using k equal width bins. The frequency of
samples that are seen in the same bin are used to estimate the density for that bin. The
second method starts by sorting the values and grouping N

k values into a single bin. k
is the number of bins and N is the total number of instances.

Each dimension in the dataset have now an individual histogram where the height of
each bin represents the density of data. The next step is to normalise the histogram in
such a way that the maximum height is 1.0. Then the HBOS over every instance p is
calculated using Equation 2.14.

HBOS(p) =
d∑
i=0

log(
1

hist(p)
) (2.14)
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Cluster-Based Local Outlier Factor

Cluster-Based Local Outlier Factor (CBLOF) [26] is a measure of both the size of the
cluster that a given point belongs to and the distance between that point and its cluster.
CBLOF is an outlier factor that gives a degree of a record’s deviation. CBLOF starts
with a clustering algorithm that partitions the dataset into clusters. It then divides these
clusters into small and large clusters, and for every point the outlier factor is calculated.
Small clusters are treated as outliers relative to the large clusters. These two steps,
clustering and calculating the outlier factor, only need one scan of the dataset each.
This gives CBLOF a linear complexity, so it handles large dataset well.

2.6.2. Ensemble Models

A technique that is getting traction within anomaly detection is ensemble models. When
using ensemble models, a system based on the scores of multiple other outlier detection
algorithms is created. There are two different architectures of ensemble models, sequen-
tial ensembles and independent ensembles.

In an independent ensemble you calculate the anomaly score from many different anomaly
algorithms like k-NN, LOF, OCSVM, and others. You can also run the same algorithms
with different parameters or subsets of the data. The output of the algorithms is then
normalised and combined to one score. A sequential ensemble does the anomaly algo-
rithms in sequence, making the output of one algorithm the input of another. The final
output is then the score of the last anomaly algorithm, with no need to combine outputs.

Another distinction between ensemble models is model-centred and data-centred ensem-
bles. A model-centred ensemble focuses on running different algorithms or parameters
of algorithms on the same dataset. Data-centred ensembles runs the same algorithm on
different dimensions or subsets of the dataset. Ensemble models can either be model-
centred, data-centred, or a combination of both.
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2.7. Evaluation Metrics

When evaluating a method, it is important to have some standardised measures. Sensi-
tivity and specificity are two statistical measures that are used when evaluating binary
classification. Sensitivity is given in Equation 2.15, and it gives a measure on the pro-
portion of positives that are correctly classified. One example can be a measure on the
percentage of how many people that have a given disease and have been classified with
the disease. Specificity is given in Equation 2.16 and is a measure on how many nega-
tives that are correctly classified. True positive, false positive, false negative and true
negative are given in Table 2.4.

True condition

Positive Negative

Predicted

condition

Positive True positive False positive

Negative False negative True negative

Table 2.4.: Table of true positive, false positive, false negative and true negative.

Sensitivity =
True positives

True positives+ False negatives
(2.15)

Specificity =
True negatives

True negatives+ False positives
(2.16)

2.7.1. Receiver Operating Characteristic

Receiver operating characteristic (ROC) is a common way to analyse results in clinical
research. It is used to describe the performance of a given method. A ROC curve is
created by plotting the true positive rate (sensitivity) as a function of the false positive
rate (1-specificity). [27]

ROC analysis is mostly used when the task is to differentiate two mutual exclusive
conditions, like whether a disorder is present or absent in an infant.

ROC is also used as a tool to choose the optimal method and to discard methods that are
less optimal. When the ROC curve is above the diagonal (the black line in Figure 2.17)
it is an indicator that the method is able to separate the classes and not only guessing
the predictions.
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2.7.2. Area Under Curve

The area under the curve (AUC) is a measure for how good a method is to classify data
correctly. An example of a AUC can be seen in Figure 2.18. The higher the AUC score
is, the better the method can predict a 0 as a 0 and a 1 as a 1. The AUC score is
calculated by taking the integral of the ROC curve, also known as the area under the
ROC curve.

AUC scores goes from 0 to 1. A good method has a score near 1, which implies that
the method has a good measure for separability. A bad method will have an AUC score
closer to 0.5 and will perform badly at classifying data correctly. If the score is 0 it will
predict negative classes as a positive class and vice versa perfectly. When the score is
0.5 it means that the method does not have any form of class separation and results are
more about luck than anything else.

TPR

FPR

ROC

Figure 2.17.: Example of a ROC

TPR

FPR

Figure 2.18.: Example of a ROC-AUC
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3. Previous Work

In this chapter the reader will be introduced to previous work that has been done in
related fields. The following topics will be covered in this chapter: earlier work on infant
movement analysis, previous work done by the InMotion project, anomaly detection in
human movement, anomaly detection in the frequency domain, classification of infant
movement using ensemble learning, and state of the art ensemble models.

This thesis is a continuation of the specialisation project done by the authors in the
autumn of 2019. The following sections in this chapter are gathered from that project:
Section 3.1, 3.2 (without State of the Art), 3.3, 3.4 and 3.5.

3.1. Early Work on Video Based Infant Movement Analysis

In 2009, Adde et al. predicted CP by measuring motion in a video through comparing
pixels on a frame by frame basis. [28] They analysed quantity of motion by observing
what ratio of pixels changed between each frame. This metric, as well as the velocity
and acceleration of motion, was used to predict CP.

The results from Adde et al. indicates that the features engineered in their paper are too
simple to correctly model the movement patterns of an infant. With a target sensitivity
of 81.5, the quantity of motion metric was only able to score a specificity of 44.4. This
low level of specificity means that more than half of healthy infants gets diagnosed as
impaired. Since 90% of infants in the risk group is healthy, a large number of infants
get a false diagnosis with this test.

New methods in video tracking facilitates the possibility of engineering a more accurate
model without adding too much complexity.
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Figure 3.1.: Image representation of motion analysis by Adde et al. To the left is the
cropped input image to the algorithm, and to the right is the changed pix-
els between two frames in the video. These pixels are used to calculate a
quantity of motion, used to predict CP. Image from [28].
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3.2. Automated General Movement Assessment Analysis in
InMotion

In the recent years, multiple students at NTNU have worked on automating the process
of general movement assessment analysis as their thesis.

In 2018, Groos and Aurlien used machine learning to extract skeleton data from videos
of infants. [29] The infant was tracked in 7 different points, with an accuracy of about
1 cm. The results from this master is the CIMA dataset, which opened possibilities for
other methods of classification than image analysis.

Figure 3.2.: Tracking points in CIMA. Image from [29].

In 2019, Wiik and Theisen tried to solve the prediction problem by training a con-
volutional neural network on the dataset generated by Groos and Aurlien. [30] They
represented the data in 10 seconds intervals by tracking the movement of the points and
representing them with lines of unique colours. The solution experienced a large number
of false negatives, with some configurations failing to predict a single infant. Wiik and
Theisen only had a dataset of 378 videos and discussed the possibility of the results
coming from the network not being able to generalise the data on such a small dataset.
They also discussed the difficulties of classification on an unbalanced dataset.
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Figure 3.3.: Data representation in the method of Wiik and Theisen. Each line is 10
seconds of movement from one tracking point. Noise is cleaned by using
clustering. Colour spectres are used to signify time in the movement. Image
from [30].

State of the Art

In 2020 Espen A.F Ihlen et al. [31] presented a novel machine-learning model, the
Computer-based Infant Movement Assessment (CIMA) model for predicting CP based
on video recordings. The CIMA model works by finding a percentage of how much
movement of an infant is predicted to be CP-related.

Espen et al. converted the x- and y-coordinates from the tracking data into time-
frequency by using multivariate empirical mode decomposition (MEMD) and Hilbert
Huang transformation. They divided the time-frequency data into period of 5 second
each with no overlap. Each of the time windows were labelled with CP or non-CP ac-
cording to the infants CP status. From this data they used partial least square regression
with a backward feature selection to select the features. Then Espen et al. used a linear
discriminative analysis to classify each of selected features as features that are commonly
found in infants with CP. The CIMA model gives each 5 second window a label of 0 or
1 corresponding to the presence of CP. The final classification uses a threshold of 50%
to decide the absence or presence of CP movement for an infant. This implies that over
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50% of the 5 seconds windows for the infant need to be classified as CP to predict the
presence of CP in an infant.

Espen et al. got a sensitivity of 92.7% and a specificity of 81.6% on their CIMA model.
The ROC graph from the model can be seen in Figure 3.4. To the authors knowledge
this is the state-of-the-art model for predicting CP in infants.

Figure 3.4.: The ROC graph from the CIMA model. Taken from [31].
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3.3. Anomaly Detection in Human Movement

Not much research has been done on anomaly detection in human movement for medical
diagnosis. In 2016, Ngyuen et al. used a hidden Markov model on 3D pose data collected
from a Kinect to recognise abnormal gait. [32] They prepared the data by selecting angles
in joints which described human posture. These postures were collected by clustering
all angles at given times into clusters. The clusters were marked with a unique id,
and a hidden Markov model was trained on the transition between the clusters. On a
dataset containing healthy individuals and individuals with either Parkinson or stroke,
the system was able to diagnose them from their gait with a specificity of 0.8 and
sensitivity of 0.88.

This exact method cannot be used in the task of detecting anomalies in infant movement.
It assumes that the movement happens in cycles, which is the case for gaits but not for
fidgety movement in infants.

3.4. Anomaly Detection of Building Systems using Frequency
Domains

In 2012, Wrinch et al. used frequency domain analysis to find anomalies in power usage
of buildings with smart energy meters. [33] They used travelling time windows for
frequency domain analysis with different window sizes. By doing this they could look at
frequencies for energy usage in windows from 4 hours to 1 week.

They found that with different window sizes they could extract different features. The
smaller windows were able to capture the lesser power usage while workers were out for
lunch, while windows of larger length were able to capture the daily cycles of power
usage. The anomalies in the frequency domains were found by experts, so no automated
system was proposed.

The results from Wrinch et al. indicated that it is possible to use the same method of
feature engineering by using different window sizes of the Fourier transform to capture
different characteristics of infant movement.
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3.5. Video-Based Early Cerebral Palsy Prediction using Motion
Segmentation

In 2014 Hodjat Rahmati et al. [1] used a motion segmentation method for extracting
motion data from videos of infants. They based their framework on [34] which is divided
into three parts, dense trajectories, graph-based segmentation algorithm and a tracking
algorithm.

The dense trajectory algorithm is used to track the entire body of the infants. Seg-
mentation is then applied to distinguish the different body parts from each other. The
different trajectories are divided into groups belonging to different body parts. This
split is done with the use of a graph-cut optimisation algorithm. The output of this step
is a label for each segment. The last step tracks the segmentation and outputs a single
trajectory for each segment.

Classification was done using a support vector machine classifier and the result can be
seen in Table 3.1. The results from this research shows a low sensitivity of 50%, but
with a high specificity of 95%. Hodjat Rahmati et al. conclude that it is possible to
make prediction of CP sub-types by analysing different body parts separately.

Data set Sensitivity Specificity Accuracy

Motion segmentation 50% 95% 87%

Table 3.1.: Classification results for motion-segmentation data set from [1].

3.6. Image-Assisted Discrimination Method for
Neurodevelopmental Disorders

In 2019 Xiaohui Dai et al. [35] used ensemble learning classification to classify motion
patterns in infant’s limbs. They used a Kernel Correlation Filter to track the movement
of the limbs, and obtained the motion trajectory for each limb for the x- and y-axis.
Xiaohiu Dai et al. found that difference between normal and abnormal infants was
present in the y-axis, while no discriminative features was found in the x-axis.

Xiaohui Dai et al. used the discrete wavelet transform to transform the signal and keep
the frequency and time information. Since the waveform has high and low-frequency
parts they used low- and high-pass filters to differentiate them.

To get more information about the captured signal, Xiaohui Dai et al. looked at the
power spectrum for the signal. The power spectrum was calculated by taking the square
of the amplitude of the original signal.
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For the ensemble model, they used a two-layer stacking model. For the first layer they
used Support Vector Machine (SVM), Random forest (RF) and Adaboost. The second
layer used XGBoost. To lessen the possibility of overfitting the training data, they used
4-fold for calculating the results for each model, taking the average of the 4-folds as the
input for the next layer.

By combining the results from the wavelet and power spectrum they obtained a sensi-
tivity of (95.0± 5.0)%, a specificity of (91.7± 6.3)% and an accuracy of (93.3± 5.7)%.

3.7. LSCP: Locally Selective Combination in Parallel Outlier
Ensembles

In 2019 Yue Zhao et al. [36] proposed a new framework for an unsupervised outlier
ensemble, named LSCP. LSCP consist of four phases: base detector generation, pseudo
ground truth generation, local region definition and model selection and combination.

In the first phase the algorithm generates a pool of base detectors. These base detectors
are initialised with a range of different hyperparameters. The base detectors are trained
on the training data before the results from each of the detectors are collected in a matrix
and then normalised.

Since the ground truth for unsupervised outlier detection don’t exists, LCSP generates
a pseudo ground truth. LCSP uses Equation 3.1 and the training data to generate the
pseudo ground truth for the detector selection. In Equation 3.1 φ represents the two
different aggregation that is used, namely average (LSCP A) and maximum (LSCP M).

target = φ(O(Xtrain)) ∈ Rn×1 (3.1)

The local region ψ is defined in Equation 3.2. The process is divided into three steps.
The first step is to generate t random groups of [d2 , d] features to construct a feature
space. The second step is to find the k nearest object in each group using the Euclidean
distance. The final step is to take all object that appear more than t

2 times and add

them to kNN
(j)
ens, which defines the local region.

ψj = {xi|xi ∈ Xtrain, xi ∈ kNN(j)
ens} (3.2)

Based on the pseudo ground truth LSCP uses the Pearson correlation to choose the best
detectors. The detectors with the highest similarity are regarded as the best local detec-
tor. When the detectors are chosen LSCP has two methods for combining the results,
namely maximum of average (LCSP MOA) and average of maximum (LCSP AOM).

37



The LCSP MOA method is when the pseudo ground truth is generated by taking the
average and LCSP takes the maximum of their prediction as the outlier score. Inverting
this gives LCSP AOM when the pseudo ground truth is generated by using maximum
and then compute the average of the subsets.

The experiments done by Yue Zhao et al. showed that the LCSP AOM achieves the
highest score on 13 of the 20 datasets they benchmarked the model on. This combined
with a runtime of O(nd+ nlog(n) + s) where n is test instance, d is dimensionality and
s is the base detectors, makes LCSP a interesting choice for an ensemble model to test
out.

3.8. XGBOD: Improving Supervised Outlier Detection

In 2019 Yue Zhao et al. [37] presented a new semi-supervised ensemble algorithm for
outlier detection called Extreme gradient boosting outlier detection (XGBOD). The
proposed framework is divided into three parts, unsupervised representation learning,
transformed outlier score selection and prediction with the gradient boosting method
XGBoost. For information on XGBoost, the reader can look at the work done by Chen
and Guestrin [38].

In the first part the outlier scoring function is defined as a mapping function. Each
scoring function gives an output in form of a real-value vector. This vector describes the
degree of anomaly and is called a transformed outlier score (TOS). The outlier scoring
function can be any scoring function that are used in unsupervised outlier detection.
TOS are used as new features to change the original feature space, combining the scores
from different scoring functions to create an outlier scoring matrix.

When the outlier scoring matrix is constructed, it can be combined with the original
features from the dataset. Not every TOS in the matrix will contribute to the prediction
in a positive way, so three methods for choosing TOS are presented: random selection,
accurate selection, and balanced selection. When the TOS are selected the refined feature
space is created by concatenating the original features with the TOS.

After the new refined feature space is created it is used as input in an XGBoost classifier
to create the final output.

The testing that Yue Zhao et al. did shows that the XGBOD achieves improved results
compared to other methods. XGBOD gets a higher score on predictions than other
unsupervised models. It has good scalability because of how it handles the TOS. This,
combined with it being a complete framework for unsupervised outlier detection with
supervised machine learning, makes XGBOD a promising method for the future.
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4. Method

In this chapter the reader will be introduced to the AnoMove method. The chapter goes
through the data pipeline, starting with the raw input data and ending with a prediction.
The AnoMove method is divided into three main parts that can be seen in Figure 4.1.

Raw data

Preprocessing

Anomaly detection

Prediction

Figure 4.1.: A simplified overview of the three main building blocks for the AnoMove
method.

• Preprocessing: Preprocess the data and make it prepared for the anomaly de-
tection.

• Anomaly detection: Trains the chosen anomaly detection model.

• Prediction: Makes the prediction for each infant.

The first section introduces the larger building blocks and the data flow for the AnoMove
method. Section 4.2 explains how the data is gathered and how we split the data into
different sets. Preprocessing (Section 4.3) goes through every stage of the preprocessing
and explains the different operations. Section 4.4 presents the anomaly detection models.
Visualisations (Section 4.6) presents a tool developed to visualise the data and result of
the analysis. The last Section (4.7) experiments on the accuracy of the preprocessing.
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4.1. Overview of the AnoMove Method

It is important to understand the flow of the data and how the building blocks of the
proposed method are connected. The rest of this chapter explains the AnoMove method.
Each section explains one of three building blocks of the AnoMove method: preprocessing,
anomaly detection, and prediction that can be seen in Figure 4.2. In addition to the three
building blocks we have made a visualisation tool, which can also be seen in the figure.
Each operation inside each block is further explained within their corresponding sections.

Resampling Noise reduction

Window slicing Angle generation Z-axis approximation

PreprocessingFFT PLS-DA

Raw data

Anomaly detection

Limb combinationFrame combination

Prediction

Threshold tuning

Anomaly Score

3D-Visualisation2D-Visualisation Anomaly visualisation

Visualisation

Figure 4.2.: Data flow through the three main building blocks of the AnoMove method.
The visualisation is not a part of the prediction, but is a tool used to visualise
both the data and results if needed.
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4.2. Raw Data

The input data used in this method is a result of previous work by Groos, where he
tracked 19 points in videos of infants using EfficientPose [39]. The points build a skeletal
overlay over the infant in the video and a visualisation of the overlay can be seen in
Table 4.1 and Figure 4.3. The points of interest are captured in x- and y-coordinates
ranging from 0 to 1.

The process of video capturing infants is not standardised, and the varying distances
from the infant to the camera will cause variations in the coordinates, as well as the
relative size of the infants. This makes it hard to directly compare infants. We propose
some means to solve these problems in our method. One of the ways is the use of angles.
Using angles to represent the movement of infants helps normalise the data in the spatial
dimension.

The first step in our method is to separate 20% of the data for use in a test set. The test
set has the same distribution of healthy and impaired infants as the rest of the data.

Training Data

The training data is used for training our anomaly detection model and tune the param-
eters in the preprocessing step. This data is further split into 5 folds using k-fold cross
validation during training.

Test Data

The test data is separated from the training data and has the same distribution. We
use the test data to make sure that our method is generalisable.
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Node Body part

1 Top of head

2 Right ear

3 Nose

4 Left ear

5 Chin

6 Right shoulder

7 Thorax

8 Left shoulder

9 Right elbow

10 Left elbow

11 Right hand

12 Left hand

13 Right hip

14 Pelvis

15 Left hip

16 Right knee

17 Left knee

18 Right foot

19 Left foot

Table 4.1.: The tracked points in
the CIMA dataset.
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Figure 4.3.: Skeleton from the CIMA dataset with 19
tracked points

Angle Description

θ1 Angle between upper chest (7), right shoulder (6) right elbow (9)

θ2 Angle between right shoulder (6), right elbow (9) and right hand (11)

θ3 Angle between upper chest (7), left shoulder (8) left elbow (10)

θ4 Angle between left shoulder (8), left elbow (10) and left hand (12)

θ5 Angle between center hip (14), right hip (13) and right knee (16)

θ6 Angle between right hip (13), right knee (16) and right foot (18)

θ7 Angle between center hip (14), left hip (15) and left knee (17)

θ8 Angle between left hip (15), left knee (17) and left foot (19)

Table 4.2.: Description of each angle in Figure 4.3. The numbers in the parenthesis
represents the node number in the figure.
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4.3. Preprocessing

The raw data will be represented as time-series data where we map the change of angles
in joints in the skeleton. There are multiple ways to choose which angles to use in the
analysis. We can either select all angles and risk using redundant data but ensure we
do not prune away features, choose which angles to use in the analysis based on expert
assessment, or an automated feature extraction technique. We chose to use all angles
that represents limbs of the infant, seen in Table 4.2.

4.3.1. Resampling

The videos in the CIMA dataset were captured without a common standard for frame
rates. This led to the videos being captured at 24, 29 and 30 frames per second. To facili-
tate direct comparison between infants, the videos had to be resampled to a standardised
frame rate. The frame rate chosen is 30.

The resampling is done by a linear interpolation. It calculates the timing of the original
frames using the frame rate and inserts the frame timings that must be interpolated for
achieving the target frame rate. It then applies the interpolation using built in functions
from the Pandas library [40] and discards the frame timings that are not a part of the
target frame rate.

4.3.2. Noise Reduction

Two measures are made to ensure that the data does not contain noise that can inhibit
the performance of our method.

The first problem stems from the inaccuracy in tracking specific points in the infant. It
is almost impossible to correctly track points on large body parts (e.g. the thorax) with
pixel perfect accuracy. This leads to our data containing noise, where the points vibrate
randomly around the point from frame to frame.

To smooth out this movement we use a simple moving average (SMA), which sets each
value equal to the average of the preceding and succeeding values. The window-size of
the moving average is set to be 3.

The second problem comes from moments where the tracker fails to correctly track a
point for a single frame, which is deemed acceptable by the creators of the tracker.
Such an error would however greatly affect the Fourier transformation, so we use a peak
detector from the signal-processing package in SciPy [41] to detect such errors and set
them to the average of the preceding and succeeding value.
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A numerical experiment has been conducted on our noise reduction and processing, and
is further explained in Section 4.7.

4.3.3. Z-axis Approximation

Since the source of the data is in three dimensions while our data is in two, just calcu-
lating the angles in joints can introduce a large amount of misrepresentation.

To demonstrate the problem, consider the following example.

Example 3 Imagine an infant laying on its back, being filmed from above. If you want
to analyse the angle generated by his elbow, you can represent it as the angle between
two vectors, one being from his elbow to his shoulder, and the other from his elbow to
his wrist. In a scenario where the arm is laying close to the ground, the length of the
vectors will equal the length of the limbs of the infant. A small movement in the wrist
will be translated to a small change in the angle of the elbow.

However, imagine the same infant, but this time with his elbow and shoulder close to the
ground, but his wrist high in the air. From above, the vector between his wrist and elbow
now has a much shorter length than the length of the limb. It also causes the same small
movement in the wrist to now translate to a large change in the angle we are tracking.

Figure 4.4.: Infant laying on its back. The left hand is stretched out along the floor, so a
small movement in the wrist in the y axis will lead to a small change in the
left elbow angle. However, the right hand has the wrist stretched toward
the camera, so a small movement in the y axis in the right wrist will lead
to a large change in the right elbow angle. Screen capture taken from the
AnoMove visualisation, with colours representing healthy movements.

To decrease the impact of the problem mentioned above, we have approximated the
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z-value of some of the tracking points in the infant. Our method assumes that the
infant lies on its back, with a stationary camera perpendicular to the surface, removing
perspective issues caused by some limbs being closer to the camera than others.

With these assumptions, it is possible to approximate the third dimension by using
the difference of vector-lengths in the data. The length of the limbs of infants is con-
stant throughout the video, and all difference must come from movement in the unseen
dimension. The vector length in three dimensions is given by Equation 4.1.

|v| =
√
δx2 + δy2 + δz2 (4.1)

We find |v| for every limb by finding the maximum length of the vector in two dimensions.
This should occur when z = 0. This |v| is constant throughout the video, and δx and
δy can be measured directly.

δz = ±
√
|v|2 − δx2 − δy2 (4.2)

This means that we can calculate δz, i.e. the change in the third spatial dimension with
Equation 4.2. As long as we only analyse one limb at the time, the sign of the δz does
not matter, as only the differences from frame to frame affects the Fourier transform.

By using the thorax as an absolute zero, we can cascade this calculation for every limb
we expect to move under the assumptions. The tree that the cascading forms can be
seen in Figure 4.5.
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Figure 4.5.: Infant represented as a tree. The thorax acts as the root of the tree, and
the reference point for z differences. The difference in z value is calculated
for every edge in the tree. The names that corresponds to the nodes can be
seen in Table 4.3

Node name Abbreviation

Thorax T

Left shoulder LS

Left elbow LE

Left hip LH

Left wrist LW

Left knee LK

Left ankle LA

Node name Abbreviation

Pelvis P

Right shoulder RS

Right hip RH

Right elbow RE

Right knee RK

Right wrist RW

Right ankle RA

Table 4.3.: The corresponding node name and their short abbreviation.

The result of this approximation reduces the misrepresentation of the data introduced
by the missing dimension. However, it is unknown what happens when the assumptions
that are made are broken, for example if an infant lies on its side instead of on its back.
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4.3.4. Angle Generation

By representing the infant as a set of angles, it should be easier to directly compare
infants, as spatial differences in the frame is ignored. The angles chosen will be the
input for the Fourier transformation and later the anomaly detection model.

The angles are generated by calculating the inner angle between the two three-dimensional
vectors that connects to the joint using Equation 4.3. This calculation is done for every
angle in every frame.

cosα =
ā · b̄
|ā||b̄|

(4.3)

4.3.5. Window Slicing

To conserve the temporal data of infant movement, we choose to split the data into
different window sizes in time before applying the Fourier transformation. By choosing
different window sizes, we hope to capture features both in short bursts of movement,
as well as trends over longer time frames.

Fourier transformation can be sensitive to where we choose to slice the movement. The
same movement pattern with slightly different start- and end-times can result in very
different frequency data. To improve this, we have the option to have overlapping
window slices to increase the number of window slices and reduce the chance that we
miss features by having bad start-frames. The amount of overlap will greatly increase
the time it takes to process the data and train the models. Having a window overlap of
two will also multiply the amount of data by two. The overlap is created by starting a
new window every window size

overlap frames. Window overlaps of 1, 2, and 4 have been tested.

4.3.6. Fourier Transformation

After the angle generation, the data is transformed using Fast Fourier Transformation,
giving windows of frequency domains for each joint’s movements in short intervals. The
chosen window sizes are varying powers of two, as the algorithm performs best on data
sizes of powers of two. The candidate window sizes can be seen in Table 4.4.

After the data is sliced into time windows, the mean value is reduced to zero. This is
done to remove the zero-frequency of the Fourier-transform, so we can compare different
frequency data more easily.
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Frames Seconds

128 4.26

256 8.53

512 17.07

1024 34.14

Table 4.4.: Candidate window sizes. The Fast Fourier Transformation (FFT) algorithm
has the best performance when the input size is a power of two.

4.3.7. PLS-DA

When running the Fourier transform, the output of the transform has a granularity equal
to the framerate of which the data was captured. This means that the granularity for
our dataset is 1/30hz. The amount of data we can extract from each window is given
by the Nyquist theorem (Equation 2.3). This equals half the window size of the Fourier
transform. This gives the input data for the anomaly models dimensions between 63
and 511 depending on the window size, discarding the 0 frequency.

Following the curse of dimensionality, many models suffer from overfitting when the
number of dimensions become large. Many models are also computationally dependent
on the number of dimensions of its input data, making it beneficial to keep the number
of dimensions minimal.

To reduce the number of dimensions we used partial least squares discriminant analysis
(PLS-DA), which helps us construct new dimensions designed to maximise the difference
between the healthy and impaired. We tested different numbers of dimensions to keep,
ranging from 3 to 10.

4.3.8. Preprocessing Parameter Search

In many of the above-mentioned operations, different parameters will lead to vastly
different results, without us knowing which would be most effective at capturing the
features that differentiates healthy from impaired. To study the effects of the parameters,
we chose to do an exhaustive search on the parameters to find the best combination.

This was done by doing a grid search on the parameters with values we found relevant.
The values had to be chosen carefully and kept to a minimum, as each added value
increased the amount of combinations multiplicatively.

Important parameters to tune include the amount of movement we require in a time
window for it to be evaluated. If the threshold is too high, insufficient data will be
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extracted from an infant to do meaningful evaluation. However, if the threshold is too
low, the results from the predictor can be drowned out by data where no significant
movement is present.

Another important parameter is the number of dimensions that are extracted from the
frequency data. The more frequencies we extract, the more of the original features that
might be present will persist. However, the performance of the outlier algorithms might
suffer both in performance and results with a too high number of dimensions.

We tested the parameters on simple outlier algorithms, to focus on the difference in the
preprocessing, as well as to reduce the computation time. There could be a chance that
more advanced methods compensate for lack in preprocessing with internal procedures,
which would suppress the results from the preprocessing and lead the advanced models
to overfit.

We tested every permutation of the parameters and their values in Table 4.5. During
the parameter search we used a stratified k-fold with 5 folds to cross validate our results.
The result from this search can be found in Section 5.1.

Parameter Tested values

Minimal movement 0.25, 0.5, 0.75, 1.0

Moving average (SMA) 3, 5

Window overlap 1, 2, 4

PLS-DA 3, 5, 10

Table 4.5.: Parameters and test values for the preprocessing step.
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4.4. Anomaly Detection

The number of anomaly algorithms is vast, and they all have different pros and cons.
Some of the different algorithms that were tested are used as base estimators for the
ensemble model.

4.4.1. Basic Anomaly Algorithms

For the basic anomaly detection algorithms, we tested the following:

• Angle-based outlier detection (ABOD)

• Cluster-Based Local Outlier Factor (CBLOF)

• Histogram-based outlier scoring (HBOS)

• k-NN

• Local outlier factor (LOF)

• Isolation forest (IForest)

• One-Class support vector machine (OCSVM)

All these algorithms are implemented in a Python library called pyod [42]. Since all
these algorithms are unsupervised, they function by finding some subset of the data that
differs from the norm, called the contamination ratio. About 10% of the infants in our
data is impaired, but since not necessarily all impaired infants’ movement differ from
the norm, we set the contamination ratio to 5%.

These models were tested both with different parameters for the models as well as all the
parameters from the preprocessing search using stratified k-fold and the results for each
of them can be seen in Chapter 5. For more information about the different algorithms,
see Section 2.6.1.

4.4.2. Ensemble Algorithms

Several different ensemble models were tested on the dataset. All ensembles have been
taken from the combo library [43], written by the same person behind pyod.
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Aggregating Ensemble Models

For some different global ensemble models, we used the SimpleClassifierAggregator from
the combo library. We used this to aggregate scores from the base estimators mentioned
in Section 4.4.1. The methods used for aggregating results were maximisation and
median. The aggregation happened across all the models, and each model used all the
data. This was tested as the naivest ensemble for our method.

LSCP

The first advanced ensemble we tested was Locally Selective Combination (LSCP). It
works by separating the data into regions, and finding the best base estimators for that
region. We expected this model could be effective for our data, as the paper by Xiaohui
Dai et al. [35] proved that the movement by impaired infants could be found in specific
regions of the data when processed with a wavelet analysis.

XGBOD

The second advanced ensemble we tested was the Extreme Gradient Boosting Outlier
Detection (XGBOD) algorithm. It is a supervised outlier ensemble model based on the
popular gradient boosting library XGBoost. It combines the original features with outlier
scores from base estimators as an input to the gradient boosting. The base estimators
are chosen to maintain both diversity and accuracy.

These ensemble models were tested using the same method as the basic anomaly detec-
tors. However, since the ensemble methods have a much higher run time than their basic
counterparts, we chose to run a subset of the preprocessing parameters in the ensemble
testing. The chosen parameters can be found in Table 4.6.

Parameter Tested values

Minimal movement 0.5, 0.75

Moving average (SMA) 3

Window overlap 1, 2, 4

PLS-DA 3, 5, 10

Table 4.6.: Parameters and test values for the ensemble model testing.
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4.5. Prediction

As the data of infants are processed by the anomaly models, each frame and joint are
processed separately. This is useful for visualisation purposes, but to be able to make
a prediction for an entire infant as well as evaluate the method, the scores should be
combined to a single score for each infant. Several different approaches for combining
the scores has been tested.

We wanted this scoring method to be naive, since using a trained model could easily
lead to an overfitted model, as the dataset is rather limited.

The anomaly model we used returns the probability of a single joint in a single frame
coming from abnormal movement. Frames without enough movement gets a score of
zero and is ignored in further processing. To combine the outlier scores to a single
score, we tried different approaches to combining the scores. One thing we tried was the
combinations of taking the average and maximum of the different set of scores.

4.5.1. Frame Combination

First, we had to combine each score the model gave for each frame. Since we used
overlapping windows of frequencies as well as different window sizes, each frame could
have from 0 to overlap ∗ window sizes scores depending on how much was filtered away
because of low movement. We combined this using either an average or maximum of the
scores.

We also tested different combinations of window sizes to see which performed the best.

4.5.2. Limb Combination

We then combined every frame for each body part we evaluated, giving a score for each
body part. This was also done by taking either the average or maximum of every frame.

As well as creating one score through averages and maximums, we tried to calculate how
many of the frames in the video went over a certain anomaly threshold value. This ratio
was the score for each limb.

4.5.3. Threshold Tuning

When using thresholds ratios to combine scores across the video frames, the outlier score
set as the threshold will have a large effect on the final ratio score. To find the outlier
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score that serves best as a threshold value, we tested every value between 0 and 1 with
increment of 0.01.

4.5.4. Anomaly Score

The final anomaly score for an infant is created using either the maximum or the average
of the limb scores.

A cross-validation parameter search is done is this thesis to compare the impact of the
different methods, and to find the combination of parameters that gives the best results.
Every permutation of the values in Table 4.7 are tested to find the combination that
gives the best prediction.

The result from the parameter search can be found in Section 5.3.

Window Window size Angle Body part Threshold

Mean, Max 128, 256, 512, 1024 Mean, max, threshold Mean, Max 0 - 1

Table 4.7.: Every permutation of the values was tested to find the best solution for the
prediction.

4.6. Visualisations

To make the system usable for clinical evaluations, a tool for visualising the result is
necessary. By design, our method gives individual scores for each joint it processes in
each frame. By visualising this, a doctor would be able to use the system as an initial
screening, and from there inspect the movement where the model found anomalies. This
makes the system a tool for doctors, instead of a replacement for their analysis.

As well as having a use for doctors, visualisations are also a helpful tool for debugging
and understanding the method.

4.6.1. 2D Visualisation

The 2D visualisation is done by making a skeleton overlay of the data. This represents
the infant the same way that the raw data from the video does, with only the tracking
points visualised. By colouring the different joints in a range from green to red, we
can visualise how abnormal the movement in a joint and frame is. The visualisations
can then be stitched to a video, giving a real time visualisation of the infant with our
predictions.
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4.6.2. 3D Visualisation

Since we approximate the z-values of the tracking points from the video, a visualisation
of that can be helpful to understand where the approximation might fail.

We do the visualisation using an isomorphic projection of the data. This allows us to
set the viewpoint so that the z-values are visible. The chosen viewpoint was rotated 15
degrees around the y-axis up from surface level, and 45 degrees anti-clockwise around
the z-axis.

As the 2D visualisation, the frames of the 3D visualisation are stitched together to a
video, so that it can be viewed in real time.

A snapshot from the visualisation can be seen in Figure 4.6. Here an infant has been
evaluated by the method, and the visualisation video has been generated.

Figure 4.6.: Snapshot from the visualisation of predicted infants. The green dots on its
joints represents movement that the method finds healthy. The bottom rep-
resentation is a one-to-one representation of the two-dimensional input data,
while the top representation is an isomorphic projection of the approximated
three-dimensional data.
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4.7. Ad-Hoc Error Analysis

To evaluate how noise in the input data affects the preprocessing of the infants, we did a
numerical experiment with artificial noise added to the raw data. In this experiment we
picked one infant that served as the ground truth, as if the tracking on that infant was
perfect. We then added a Gaussian distribution on top of the data to serve as artificial
noise. The noise was added to both the x and y axis independently.

We chose our value for the Gaussian distribution based on the work by Groos et al.
[39] in making EfficientPose, the network that is used to generate our data. Analysis of
their tracking method found that about 90% of tracked points was within 50% of the
vertical head size, and about 35% was within 10%. In the infant we used as ground
truth the vertical head size was 0.12, giving 0.012 as the 10% threshold. Since about
68% of data fall within one standard deviation in a Gaussian distribution, we found the
20% threshold to be a conservative value to use as the standard deviation, so the chosen
value was 0.024.

Figure 4.7.: Key point accuracy illustrated on an infant. The chosen standard deviation
for our analysis is double the diameter of the green circle. Image courtesy
of Daniel Groos.

We created 100 infants with artificial noise to normalise the randomness. This was done
since the z-axis approximation uses the max length of the vectors it approximates the z
value for, and this is calculated only once per infant. We then isolated the noise in both
the x- and z-axis, as well as the angles. This was done by comparing the results from
the ground-truth infant with the results from the same infant with added noise. The
results from our analysis can be found in Section 5.5.
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5. Results

This chapter will present the results from each step done in the proposed method. There
are four steps that have results, namely preprocessing, anomaly detection, prediction and
the error analysis. In the preprocessing section, the results from the parameter search
will be presented. Section 5.2 shows the results from the anomaly detection part. Each
base model and ensemble model will be presented. Section 5.3 presents the results from
the prediction step. The next section (Testing) presents the results from the testing of
the AnoMove method. The last section presents the results from the error analysis done
on in the preprocessing step. All the results are sorted by area under curve score. The
full tables with all parameters can be seen in Appendix A, Results.

5.1. Preprocessing

The results from the preprocessing are from tuning the different parameters. There
are four parameters that have been tuned, minimal movement, moving average, window
overlap and PLS-DA components. The tuning was executed by using the base estimators
to create a baseline for the performance. The different values for the parameters that
have been tested are shown in Table 5.1. In Table 5.2 are the parameters for the base
estimators that were used. The results presented in this section are from the highlighted
step in Figure 5.1.
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Raw data

Preprocessing

Anomaly detection

Prediction

Figure 5.1.: A simple overview of the proposed method with the preprocessing step high-
lighted.

Parameter Tested values Chosen value

Minimal movement 0.25, 0.5, 0.75, 1.0 0.5

Moving average (SMA) 3, 5 3

Window overlap 1, 2, 4 4

PLS-DA 3, 5, 10 3

Table 5.1.: The four parameters that have been tuned in the preprocessing step, with
their corresponding tested and chosen values.

Model Parameter

ABOD Neighbors = 3, 5, 10, 20

CBLOF Clusters = 8, 10, 12, 14, 16, 18, 20

HBOS Bins = 3, 5, 7, 9, 12, 15, 20, 25, 30, 50

IForest Estimators = 10, 20, 50, 70, 100, 150, 200, 250

KNN Neighbors = 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

LOF Neighbors = 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

OCSVM nu = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99

Table 5.2.: The different base models with their corresponding parameters that were
used when tuning the parameters in Table 5.1 and their values.
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5.1.1. Moving Average

The two results from the moving average tuning are shown in Table 5.3. The SMA tuning
was done in the noise reduction step, highlighted in Figure 5.2. Figure 5.3 illustrates the
effect of SMA on a real subset of our data.

Resampling Noise reduction

Window slicing Angle generation Z-axis approximation

PreprocessingFFT PLS-DA

Figure 5.2.: Data flow through the preprocessing step with noise reduction step high-
lighted.

Model SMA Sens Spec AUC

LOF 3 0.120 0.954 0.634

LOF 5 0.122 0.955 0.622

Table 5.3.: The best models when sorted by AUC for SMA.

Figure 5.3.: Before and after the SMA operation for the x values for the right wrist of
a randomly selected infant. The smoothing can be seen when the raw data
oscillates after a sudden change, or randomly while still.
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5.1.2. Minimal Movement

Four values were tested for the minimal movement parameter. The results from these
tests can be seen in Table 5.4. When using minimal movement equal to 1 the testing
crashed, a discussion about why this happen can be found in Chapter 6. The minimal
movement operation was executed in the window slicing step, highlighted in Figure 5.4.

Resampling Noise reduction

Window slicing Angle generation Z-axis approximation

PreprocessingFFT PLS-DA

Figure 5.4.: Data flow through the preprocessing step with the step for minimal move-
ment highlighted.

Model Movement Sens Spec AUC

LOF 0.25 0.120 0.954 0.634

LOF 0.50 0.115 0.955 0.629

LOF 0.75 0.115 0.957 0.617

Table 5.4.: The best models when sorted by AUC for minimal movement.

59



Window Sizes

Figure 5.5 show the movement within each window size. It shows the percentage of
movement done per 0.25 radians. The graph is cumulative.

(a) Percentage of movement for window size
128.

(b) Percentage of movement for window size
256.

(c) Percentage of movement for window size
512.

(d) Percentage of movement for window size
1024.

Figure 5.5.: Cumulative percentage of how much movement is in the different windows
in radians.
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5.1.3. Window Overlap

Three different values were tested for the window overlap parameter. The results from
these can be seen in Table 5.5. The window overlap operation was done in the window
slicing step, highlighted in Figure 5.6.

Resampling Noise reduction

Window slicing Angle generation Z-axis approximation

PreprocessingFFT PLS-DA

Figure 5.6.: Data flow through the preprocessing step with the window overlap step
highlighted.

Model WO Sens Spec AUC

OCSVM 1 0.281 0.807 0.607

LOF 2 0.126 0.953 0.627

LOF 4 0.120 0.954 0.634

Table 5.5.: The best models when sorted by AUC for window overlap. WO = window
overlap.
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5.1.4. PLS-DA

Three values were tested for the PLS-DA parameter. The results from these values
can be seen in the Table 5.6. The PLS-DA operation was done in the PLS-DA step,
highlighted in Figure 5.7.

Resampling Noise reduction

Window slicing Angle generation Z-axis approximation

PreprocessingFFT PLS-DA

Figure 5.7.: Data flow through the preprocessing step with the PLS-DA step highlighted.

Model PLS-DA Sens Spec AUC

HBOS 3 0.057 0.970 0.606

LOF 5 0.128 0.954 0.622

LOF 10 0.120 0.954 0.634

Table 5.6.: The best models when sorted by AUC for PLS-DA.
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5.2. Anomaly Detection

The best result for each model from the model testing step can be seen in Table 5.7. After
the results from the base models, the results from the ensemble models are presented.
The results presented in this section are from the anomaly detection step, highlighted
in Figure 5.8. It is an intermediate step, and the results are used for choosing which
detector to use in the prediction step. The 5 best results for each model with parameter
can be found in Appendix A.

Raw data

Preprocessing

Anomaly detection

Prediction

Figure 5.8.: A simple overview of the proposed method with the anomaly detection step
highlighted.

5.2.1. Model Search

The best results from each model can be found in Table 5.7.

Model Sens Spec AUCmean AUCstd

ABOD 0.073 0.966 0.579 0.031

CBLOF 0.086 0.955 0.580 0.040

HBOS 0.057 0.970 0.606 0.049

IForest 0.047 0.954 0.593 0.038

KNN 0.030 0.950 0.574 0.085

LOF 0.120 0.954 0.634 0.020

OCSVM 0.281 0.807 0.607 0.069

Table 5.7.: Results from the different base models. Sorted on AUC.
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5.2.2. Novelty Based Anomaly Detection

The novelty test was done only using LOF and with the same parameters as the base
model search. The parameters can be seen in Table 5.9 and the result from the novelty
test can be seen in Table 5.8.

Parameter Movement SMA PLS-DA Sens Spec AUC

Neighbors: 40 0.75 3 3 0.203 0.943 0.573

Neighbors: 60 0.75 3 3 0.198 0.946 0.572

Neighbors: 80 0.75 3 3 0.192 0.951 0.571

Table 5.8.: The 3 best results when treating the problem as a novelty problem.

5.2.3. Ensemble

We tested three different ensemble models, Simple Classifier Aggregator, XGBOD and
LSCP. Their base estimators and their parameters can be seen in Table 5.9. Every
permutation of the parameters was made, and the ensembles used all the models as base
estimators. The results from the ensemble testing can be seen in this section.

Model Parameters

KNN Neighbors = 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Method = largest, mean

LOF Neighbors = 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

OCSVM nu = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99

IForest Estimators = 10, 20, 50, 70, 100, 150, 200, 250

Table 5.9.: Base estimator parameters. For models with more than one set of parameters,
every permutation of parameters is made.
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Parameters

The results from the parameter tuning from the ensemble models can be seen in Ta-
ble 5.10, Table 5.11, and Table 5.12. SMA = 5 and minimal movement = 0.25 and 1
were removed before this testing.

Model Movement Sens Spec AUCmean AUCstd

XGBOD 0.5 0.014 0.994 0.678 0.035

XGBOD 0.75 0.171 0.957 0.700 0.032

Table 5.10.: The best ensembles models when sorted by AUC for minimal movement.

Model PLS-DA Sens Spec AUCmean AUCstd

XGBOD 3 0.171 0.957 0.700 0.032

XGBOD 5 0.029 0.991 0.671 0.020

XGBOD 10 0.028 0.99 0.666 0.032

Table 5.11.: The best ensembles models when sorted by AUC for PLS-DA.

Model WO Sens Spec AUCmean AUCstd

XGBOD 1 0.078 0.984 0.681 0.100

XGBOD 2 0.171 0.957 0.700 0.032

XGBOD 4 0.106 0.972 0.699 0.070

Table 5.12.: The best ensembles models when sorted by AUC for window overlap. WO
= Window overlap.

Ensemble Models

The best results from the four different ensemble models can be seen in Table 5.13.

Model Sens Spec AUCmean AUCstd

SCAmax 0.147 0.907 0.573 0.064

SCAavg 0.130 0.906 0.586 0.063

XGBOD 0.171 0.957 0.700 0.027

LSCP 0.153 0.880 0.583 0.028

Table 5.13.: Results from the ensemble model testing. XGBOD performed significantly
better than the rest of the models.
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5.3. Prediction

The results presented in this section are from the prediction step, which can be seen in
Figure 5.9. In the prediction step we combined the results from the ensemble models for
the different window sizes, angles, and body part. Every combination of window sizes
were tested to find the combination that yielded the best result. The results show how
the different models performed. This section can be regarded as the main result we score
AnoMove with.

Table 5.14 presents the best score gotten for every ensemble model we tested, and Fig-
ure 5.10 presents the ROC curve for the training data for the best performing model.
Figure 5.11 shows the different AUC scores for the different threshold values for the
models that performed the best using the threshold method for combining scores.

Raw data

Preprocessing

Anomaly detection

Prediction

Figure 5.9.: Dataflow with prediction highlighted.

The column names are short for Window Method (WM), Window Size (WS), Angle
Method (AM), Body Part Method (BPM) and Threshold (T).

Model WM WS AM BPM T AUCmean AUCstd

XGBOD max [128] threshold mean 0.17 0.812 0.072

LSCP max [256, 512] threshold max 0.97 0.654 0.069

SCAmean max [128] mean mean - 0.722 0.142

SCAmax mean [128, 256] threshold mean 0.91 0.703 0.123

Table 5.14.: Best scoring prediction parameter for each of the models tested. SCAmean

is the only method that does not perform best with the threshold method
of combining scores across the video.
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Figure 5.10.: ROC curve for the training set of the best performing model in Table 5.14.
The curve is made by collecting all test runs from the different folds, so that
each infants has been tested on once.

Figure 5.11.: Area under curve score for different threshold values on the models that
scored best using the threshold method. We can see that the best performing
model, XGBOD, is much less sensitive than the others, and has a very early
peak at around 0.15 as the threshold. The other two methods have a more
sensible sensitivity, peaking at around 0.85 and 0.9 respectively. X axis has
threshold values, and y axis has the AUC score.
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5.4. Testing

The results from the testing of the AnoMove method can be seen in Figure 5.12. It shows
the ROC curve for the test set. Only the best performing model was tested, which is
the same model used in Figure 5.10 and shown in Table 5.14.

Figure 5.12.: ROC curve for the AnoMove method for the test set.
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5.5. Ad-Hoc Error Analysis

In this section, the results from the error propagation analysis from Section 4.7 are
presented.

(a) The articifial input noise added to the co-
ordinate data in an infant.

(b) The resulting noise in the x-coordinates af-
ter preprocessing.

(c) The resulting noise in the z-coordinates af-
ter preprocessing.

(d) The resulting noise in the angle data after
preprocessing.

Figure 5.13.: Propagation of error throughout the preprocessing. Zero is marked with a
vertical line.
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6. Discussion

In this chapter we will discuss the results and choices for each step made in this report.
The first section examine the different parameters in the preprocessing stage and the
different models we implemented. Section 6.2 will bring the reader through our thoughts
around the different models and why we wanted to test each of them. It will also contain
a discussion about the results from each model and why or why not they performed as
expected. The subsequent section will go through the results from each calculation in
the score aggregation and why the different steps are needed and how different values
can affect the results. Section 6.4 discuss the implications of noisy labels in our data.
Error Propagation (Section 6.5) contains an discussion on how the uncertainty in our
data propagates through the preprocessing stage. Section 6.6 presents and discuss the
different limitations of our study. After that the research questions are discussed and
answered. The last section will give a summary of elements of our study that can be
further researched.

6.1. Preprocessing

The main focus in the preprocessing stage were to find the optimal values for the pa-
rameters and how we could transform the data so it represented the movement for each
infant. Each stage in the preprocessing had a lot of different aspects that we needed to
take into consideration when creating the AnoMove method.

6.1.1. Parameters

For each chosen parameter a thorough analysis was conducted to try to find the best
value. Each parameter is looked at in isolation and evaluated with the AUC score and
the standard deviation for the given parameter. When choosing the final values for
the parameters we also looked at which combination of values had the lowest standard
deviation while having a high AUC score.
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Simple Moving Average

The implementation of a simple moving average (SMA) was successful in reducing the
effect of noise in the raw data. As seen in Figure 5.3 the black line has less spikes than
the red. This implies that the noise has been reduced. The parameter we could tune in
SMA were how many frames we would use in the smoothing. Normal values to use are
3 or 5 points when applying SMA, so both were tested.

The results from the SMA tuning are shown in Table 5.3. Based on the AUC value, an
SMA window of 3 performed slightly better than one of 5, but there is no significant
difference. When there is no large difference between the results of the two parameters,
the smaller one is preferred. This is to minimise the possibility for removing features
from the data as well as also keeping it as simple as possible. Based on these arguments
we choose a SMA window size equal 3 for further testing.

Minimal Movement

When pruning low movement, we wanted to remove the time slots where the infant is
laying still. From the graphs in Figure 5.5 it is possible to conduct an analysis of the
impact of this parameter. As the graph shows, removing everything that is less than 1
radians will reduce the amount of data with around 90 % for window size 128, 80% for
window size 256, 75% for window size 512 and 60% for window size 1024. This will affect
the results later in the pipeline, as with less data it will become harder to create a model
that is generalised and not sample specific. It is also possible that we could lose some
features by reducing the amount of data. On the other hand, to the authors knowledge
there are no features in an infant that is laying still, and not a defined threshold for how
much movement is necessary. If we do not prune the movement the chances of getting a
lot of data that has no information is present. This will make it harder to detect features
that are representative for abnormal movement.

We could see a clear correlation between the minimal movement parameter and the run
time for the models. In early testing, using a high minimal movement parameter seemed
to give better results. However, using a minimal movement of 1 crashed the training
of many models, as they required more neighbours in their calculation than there were
data available. We chose to use minimal movement 0.5 and 0.75 in further testing.

We had a minor bug in the AUC calculation in our early testing. It punished models
that were less sensitive, which favoured the larger minimal movement limits. When the
bug was fixed the higher minimal movement parameters on the basic models were no
longer significantly better, and even a bit worse. The difference in scores is so small that
we do not think the choice of only testing 0.5 and 0.75 on ensemble models can greatly
affects the results. All scores for minimal movement tuning can be found in Table A.8
in Appendix A.2.
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This parameter is all about balancing the data size against the data relevance. If we
remove too much data, we are left with data that has a lot of movement, but too little to
use it for analysis. If we leave to much data, we increase the possibility that the features
are lost in the data. It will also increase the run time for the model drastically.

Window Overlap

Window overlapping gives us more relevant data and increases the accuracy of captured
time-dependent movement. In theory, having a window overlap equal to the size of the
window would be ideal. In that scenario, every possible window would be captured,
and it would be easy to compare two infants with similar movement. This includes the
assumption that small movements already have been removed. However, this method
would increase both the amount of generated data and the run time required to train
the model, as well as risk overfitting the model. This is important to address if a high
value for the window overlap parameter is chosen.

From the results we can see that window overlap of 4 performs better than the other two.
A window overlap of 2 and 4 have a significant better result than no window overlap.
This is supporting our assumption of having a higher value for window overlap would
yield more relevant data for the models. The results from the window overlap parameter
tuning can be seen in Table 5.5.

PLS-DA

We started out with using PCA to reduce the number of dimensions in the data. The
problem we had with PCA was that it attempts to construct dimensions that best
explains the variance in the dataset. This gives dimensions that are good at separating
each point in the dataset, but do not necessarily help with separating the healthy and
impaired. From the results we got when analysing PCA we can represent the data with
a variance of 95% with 10 PCA components, but the results in the AUC score were not
adequate. We also tried pooling together the frequencies into different bandwidths using
either maximum or average values to represent their bandwidth before applying PCA.
This was done with the assumptions that it would make the results more generalised.
However, the results were not significantly better.

To mitigate the problem of only explaining the variance in the data and to try to amplify
the features that separates the classes, we implemented PLS-DA. In contrast to PCA,
PLS-DA tries to find variables that best explains the difference between the classes of
the data. It suited our goal for the dimension reduction better.

When we implemented PLS-DA, we found that we got significant higher scores than we
did with PCA. The problem with PLS-DA is that it is a machine learning algorithm,
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and with that has the problem associated with machine learning. The biggest problem
we faced was overfitting the model so it would only perform well with our data, but not
be generalised enough for other samples. From analysing the results from the different
folds, it seems unlikely that PLS-DA overfits on our data. But it is important to take this
factor into consideration, especially with the low amount of data we have from impaired
infants.

From the PLS-DA tuning we found that using 10 PLS-DA components performed the
best on the basic models, with an AUC of 0.634. Both 5 and 10 components are signif-
icantly better than 3. More dimensions mean a higher possibility of capturing features
in the data. Again, the choice is about data quality and data size. Choosing between
the different values for the PLS-DA in this stage of the process is not possible, based
on the analysis of the results. We choose to use all three values in further testing of
the different models and ensembles. The results from the PLS-DA parameter tuning on
base estimators can be seen in Table 5.6.

6.1.2. Data Generation

In the preprocessing step we had four operations that generated and transformed data,
namely z-approximation, angle generation, Fourier transformation and window slicing.

Z-Approximation

The implementation of the z-approximation solves the problem with the data being in
only two dimensions. But it also introduces a new problem. When infants are laying
on their side the assumptions that are used when calculating the z-approximation are
broken. This means that if an infant is laying on their side the entire video the z-
approximation will create corrupt data that will decrease the performance of the model.

We did a random sample test on the input videos for our analysis and did not find many
infants on their side. The total number of infants that lay on their side in our data is
unknown, but based on our analysis this number is not high enough to greatly affect the
performance of our method. However, it is important to ensure that this assumption is
sustained when increasing the data with new videos, or to find a solution to bypass the
assumption.

Angle Generation

When using angles instead of coordinates the distance from the camera to the infant is
no longer a problem since the length of each limb has no effect on the angle in the joint.
The problem with resolution and centring of the infant is also removed. Angles gives a
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much higher generalisability than using x- and y- coordinates, since we can now directly
compare each infant with every other infant. In addition, there is a dimensionality
reduction when going from the multiple sets of coordinates to a single angle for each
joint.

From the results we can see that it is easiest for the models to classify the movements
from the knee. This can be because there is a lot of movement in the knees, and
the movement is quite large. The other angles, elbow, hip, and shoulder performed
almost identical. From the results it is also clear that the LOF model is one of the best
performing basic model. In comparison to OCSVM it has a higher specificity and a lower
sensitivity. Using both in an ensemble could increase the performance. The results from
the different angles can be seen in Table A.13 in Appendix A.

Window Slicing

The biggest problem when transforming the changes in angles to frequencies is that we
do not know when the movement starts, and therefore we do not know where to split the
data before the transformation. So, when splitting up the different windows to feed the
Fourier transformation, we do not have any assurance that we are capturing the entire
movement or some part of it. We solved this problem by dividing the data into different
slices of 128, 256, 512 and 1024. The idea is that with different window sizes we could
capture different single movements and movement patterns.

From the window size results we found that window size of 1024 performed the best,
with the three other window sizes almost identical with each other. When analysing the
results for the window sizes we noticed that a lot of different models performed well.
This is in contrast from the previous results we have analysed, were LOF performed the
best. The results from the window sizes can be seen in Table A.12.

Fourier Transformation

After the z-approximation and angle generation the data is still a time series, and for
our analysis the time component is not important. To avoid dealing with the different
challenges time series has we implemented the Fourier transformation. With the Fourier
transformation we could keep the time aspect without needing to deal with a time series.
It transforms the time series data to frequencies, so the time data is embedded in the
frequencies.
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6.2. Anomaly Detection

There are several different models for anomaly detection and choosing the correct one
is crucial. Every model has pros and cons, so it is important to find the model that fits
our data. The models we have tried are KNN, LOF, CBLOF, HBOS, ABOD, OCSVM
and IForest.

The main reason for choosing the models are that they are well known and have proved
to be reliable. They are easy to implement and within our scope for this thesis. We
wanted a diverse category of models because we did not know what would work when
we started. The use and comparison of different models facilitates further work by
establishing a baseline for the performance, as well as indicating what kind of features
are found in the data.

From the model testing we found that LOF performed best with an AUC of 0.634, and
it also has the lowest standard deviation of the seven aforementioned models. After
testing the seven models we wanted to reduce the number of models we needed to test in
the ensemble step. ABOD and CBLOF performed significantly worse and had a larger
run time complexity than the rest of the models and were excluded from further testing.
HBOS performed very well in the model testing stage with an AUC = 0.606, but only in
a small subset of the preprocessing parameters. Based on this we removed HBOS from
further testing. KNN also performed significantly worse than the best models, however
when we looked at the overall performance with the chosen values for the different
parameters, we found that KNN performed well and therefore we continued the testing
with KNN. The rest of the models has high values for the AUC and a low standard
deviation. That left us with four models that we continued testing in different ensemble
models, namely: IForest, KNN, LOF, OCSVM. They all showed promising results and
are a diverse collection of models that should capture important features in the data.
The results from the different models can be seen in Tables 5.7 and in Appendix A.1.

Novelty Detection

It is important to discuss whether the separation of movements is an outlier detection
problem or a novelty detection problem. The main reason to think that this is a novelty
detection problem is the fact that we know the labels for each infant, meaning that
it is possible to construct a dataset containing only healthy movement, and labelling
everything that is a novelty as an impaired movement.

From the novelty testing we got an AUC of 0.573. Since we only tested the novelty
detection for LOF we compared it to the result from LOF for the base models. LOF got
an AUC of 0.634 and a standard deviation of 0.020 when using outlier detection. The
reason we only tested LOF were that it was recommended as a novelty model by SciPy.
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Based on this we concluded with not doing any more testing in the novelty detection
area.

6.2.1. Base Model Parameters

Each model has several different parameters that can be tuned to improve the perfor-
mance of that model. We started out with the goal of using standard anomaly detection
models with default parameters. Therefore, we have only tested each model with the
default parameters and a few other parameters. The main reason for this is time con-
straint and the that the default parameters has showed promising results from other
researches. We have also based a lot of our work on the work by Zhao, the creator of the
pyod library. He has done a lot research on this topic and is using the default parameters
for the models.

6.2.2. Ensemble Detection

We treated the ensemble models as a black box. The main reason is that the building
and tuning of an ensemble model is outside of our scope as well as being a rather new
research field. Secondly, Zhao has done a lot of research on this topic and developed
different ensemble models for outlier detection. His research is well documented and
suited for our problem.

The results from our testing on ensemble models indicates that XGBOD greatly outper-
forms the rest. They were all run with the same base estimators, and primarily with
their default parameters. The only exception was the local region size parameter of
LSCP, which was increased from the default of 30 to 150. This parameter is dependent
on the total amount of data in the model and was therefore increased.

The library we used for the ensemble models is under development, so we came across
some undocumented behaviour that may have affected LSCP. The Pearson score calcu-
lation crashed due to it having less than two data points. However, the training did not
halt, so we assume that the error was handled by the model. The errors may indicate
that the model is not suited for our data.

XGBOD performs well almost regardless of preprocessing parameters. The AUC scores
range from about 0.65 to 0.7, which is almost within a standard deviation of each other.
Given these results, we chose a set of parameters for the preprocessing to use in the
prediction. The results from the parameters can be found in Appendix A.6.

Isolated, 0.75 radians minimal movement has the best performing results, but the results
from 0.5 radians was just a standard deviation away with most other parameter combi-
nations. We decided on a minimal movement of 0.5 radians. A limit of 0.5 radians will
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prevent us from removing too much data, and it will not set the criteria for movements
too high when applying the method to future infants.

We ended up using 3 for our moving average based on the results from the base estima-
tors. We did not test other values on the ensemble models as the parameter is solely
used to remove noise, and it is preferred to use the smallest value possible.

For window overlap we ended up choosing the largest value we tested, 4. The difference
between 2 and 4 window overlap was small, but with the increased data from a 4 window
overlap, the model is more accurate. Using a large window overlap in combination of
removing windows with a minimal movement requirement should also ensure that we
find all relevant windows of movement while discarding the ones without the features we
want.

The differences in scores when comparing PLS components were negligible. We decided
on using the lowest number of components we tested following Occam’s razor, by trying
to keep it as simple as possible. A low number of dimensions should equal a simple
input. The final values for the parameters in the preprocessing step in AnoMove can be
seen in Table 6.1.

Parameter Value

Minimal movement 0.50

SMA 3

Window overlap 4

PLS-DA 3

Table 6.1.: The final values for the preprocessing in AnoMove.
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6.3. Prediction

We wanted to keep the aggregation of the outlier scores as simple as possible. The
idea was to combine the score for each angle, window and body part to one score that
will indicate if the infant has CP or not. When combining these scores, we looked at
three possible methods: mean, max and threshold. We expected these three methods to
enhance different aspects of the propagation of our outlier scores to a final score.

As expected from the ensemble model testing, XGBOD was the top performing model
when predicting infants. Using a threshold for combining the scores across the frames of
the video ended up being the best method, with both a larger mean AUC score as well
as a lower standard deviation between runs. This was accompanied by taking the max
score within the overlapping frames in overlapping windows and taking the mean score
of the limbs we evaluated. The best scoring method had only one window size, so the
window aggregation only aggregated overlapping frames from the same window size. All
top scoring results for XGBOD and the other models can be found in Appendix A.10.

A reason for threshold being the best method for aggregating scores across the video
might be its resilience to variable length of the videos. When using mean, the score could
converge to a set value range with increasing video length regardless of label, and using
max, the value would likely increase with increasing video length. However, we must be
able to compare infants without video length being a contributing factor. When using a
threshold value, the value must also be set. This value depends on the sensitivity of the
model used. For us, XGBOD turned out to have rather low sensitivity, so a low score
of 0.17 gave the best results. The final value for the prediction step in AnoMove can be
seen in Table 6.1.

Parameter Value

Window method Max

Window size 128

Angle method Threshold = 0.17

Body part method Mean

Table 6.2.: The final values for the prediction step in AnoMove.

We expected the performance of the test set to be within one standard deviation of the
training scores. The results on the test set ended up being 0.754, which is well within
the training score of 0.812 and its standard deviation of 0.072.
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6.4. Noisy Labels

Since the number of infants that are labelled with CP are so low, it is important to
understand the implication of noisy labels. Noisy labels can for example occur if an
infant is wrongly diagnosed with CP at an early stage which later gets corrected. If the
label is not updated in the data, the model is trained on wrong assumptions. Another
possibility is human error. A single bit flip from 0 to 1 in the labelling process would be
an expected human error but could have large effects on the models we train.

We had a case of noisy labels in our project. We were given two different metadata files
with the data, one with medical data and one with technical data, and both with labels
for the outcome of the diagnosis. Since we were not concerned with medical data other
than the diagnosis outcome, we moved forward with the technical metadata. However,
when we ran the test set, which contained in total 8 infants with CP, one infant stood
out. Our model gave it a score very close to 0, indicating that the model found no
indication of any impairment. An examination of the medical metadata confirmed that
the infant was indeed healthy, and we assume that it was a human error that led to its’
label as impaired in the technical metadata.

Under a further investigation, we found that there were two cases where an infant had
switched from healthy to impaired between the two metadata files. We fixed the label of
the infant in the test data but did not fix the label of the infant in the training data. This
would have required a rerun of the entire parameter search, which would be a significant
time investment. We must expect that noisy labels can exists and design our models
around it. Noisy labels can be a reason for high standard deviation between runs, as
infants correctly labelled as healthy by the models will still get a bad score if the infant
is registered as impaired in the metadata.
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6.5. Error Propagation

In this section the results from Section 5.5 Ad-Hoc Error Analysis will be discussed. As
seen in Figure 5.13a, the noise added to the data had a mean value equal to 0 and a
standard deviation equal to 0.024, and was based on a Gaussian distribution.

After the preprocessing, the amount of noise in the same x-value is almost halved, with
the mean still being 0 and the deviation equal to 0.014. The operations the noise has
been subject to are resampling and the simple moving average. It is doubtful that the
resampling had any effect on the noise, but the simple moving average should be effective
in removing Gaussian noise.

The amount of deviation did not grow when the z-axis was approximated, but the mean
was offset substantially from 0, equalling 0.09 after the calculations. This is probably
because of the vector length that the approximation is based on, which takes the longest
value throughout the video. This way the largest noise will propagate from this point
onward.

The effect of the large offset on the noise is also apparent in the angle-data. Here,
the mean of the radian is offset -0.79 from the reference data. However, the standard
deviation is 0.17 radians. In our transformation on the data, the absolute values of
the data are insignificant, with only the differences from frame to frame affecting the
Fourier transformation. This makes the standard deviation of the angle data the only
factor affecting our model performance. In this experiment, the noise is about a factor
of 7 larger in radians then the noise in raw coordinate values.

In real world performance, the noise is less likely to take the form of a Gaussian distri-
bution on a frame to frame basis, as the model is likely to settle on the same erroneous
value when the point is not in movement. This can be seen in Figure 5.3, where the raw
data settles on the same value for long periods of time.
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6.6. Limitations

There are mainly three different limitations in our thesis. The time allotted, the data
available, and the computer resources we had available.

• Time
Since this is a project for a master thesis, it had to be done in the time slot of
one semester. Because of this we had to choose selectively which preprocessing,
models, and parameters to explore.

• Data
CIMA might be the largest set of data of infant movement with labels in the world,
but it is still only about 370 infants, with about 12% of them being impaired. When
you split up the data into test sets and validation folds, you quickly end up with
a single digit of impaired infants in each set. This paired with the possibility of
noisy labels makes it hard to guarantee the significance of our results.

• Computer resources
As our data is considered both personal information according to GDPR and con-
fidential according to InMotion, we had to sign a data delivery agreement where
we could not make the data available on the internet or send it over the internet.
Because of this, our supervisor did not find it feasible to use the clusters available
to students on NTNU. All our code is ran on home computers, where the most
powerful had a AMD Ryzen 3900X 12 core CPU and 32 gigabyte of RAM.

6.7. Research Questions

From the result and discussion, we can conclude with the following for the research
questions in this thesis.

RQ1: How can infant movement be represented with minimal feature loss and a minimal
number of dimensions?

– With the AnoMove method the information is preserved throughout the pre-
processing with every step being reversible. We also achieve a dimensional-
ity of three dimensions per time frame window and body part angle using
PLS-DA. PLS-DA also ensures that features that has the highest separation
between healthy and impaired are enhanced.

RQ2: To what degree can basic anomaly detection models predict cerebral palsy in in-
fants?

– Basic anomaly detection models did not perform as well as we hoped. We
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conclude that basic anomaly detection models are too simple to detect the
correct features in the data.

RQ3: What is the state-of-the-art in outlier detection?

– At the authors knowledge the state-of-the-art in outlier detection are outlier
ensemble models, possibly enhanced by boosting methods. Tested models in
this thesis was XGBOD and LSCP, where XGBOD performed the best.

RQ4: How do state-of-the-art outlier detection models perform when compared to basic
anomaly detection models?

– The ensemble models proved to be more able to correctly identify the features
that separate healthy and impaired infants.

6.8. Further Work

We think that the most interesting aspect of our method to improve upon could be the
window slicing. We have implemented a naive approach, where the start and end times
of a window is chosen only based on a set window size. However, if a program was
able to find patterns in the data and slice the windows based on them, one would be
able to directly compare equal movements between healthy and impaired infants. This
could greatly improve the input data quality to the machine learning models, making it
possible to train great models regardless of the small amount of available data.
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7. Conclusion

Our research goal was: How can anomaly detection models be used to find abnormal
patterns in infant movement caused by cerebral palsy?.

By representing movement with angles and transforming the signal with Fourier trans-
form we could represent the movement using frequencies. Using frequencies, we could
capture the movement done in each angle isolated in time without using time-series.
This allowed us to extract features that later could be analysed. The anomaly scores
were found in isolation on each angle and time step, and then aggregated to get a final
prediction.

We found that given the correct preprocessing, anomaly detection in movement is possi-
ble. The best anomaly detection algorithm we tested, XGBOD, got an area under curve
score of 0.754 on the test set, which is a high score given the low amount of impaired
infants in the data. An important element with the AnoMove method is the possibility
of detecting and visualising when the method is classifying abnormal movements.

We conclude that using anomaly detection methods is a feasible alternative to current
machine learning and deep learning alternatives. Since anomaly detection algorithms
are designed to perform well on unbalanced data classification, it is well suited to detect
cerebral palsy in infants.
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A. Results

A.1. Base Models

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

Neighbors: 3 0.75 3 3 1 512 shoulder 0.073 0.966 0.579 0.031

Neighbors: 20 0.75 5 3 1 128 shoulder 0.044 0.946 0.572 0.086

Neighbors: 10 0.75 5 3 1 128 shoulder 0.044 0.956 0.571 0.085

Neighbors: 5 0.75 5 3 1 128 shoulder 0.052 0.956 0.57 0.085

Neighbors: 20 0.5 3 3 4 1024 hip 0.059 0.949 0.567 0.035

Table A.1.: The five best results from ABOD, sorted on AUC

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

Clusters: 18 0.25 5 3 1 512 shoulder 0.086 0.955 0.58 0.04

Clusters: 20 0.75 5 5 1 128 shoulder 0.044 0.946 0.577 0.025

Clusters: 16 0.25 5 3 1 512 shoulder 0.096 0.953 0.576 0.044

Clusters: 8 0.75 5 5 1 128 shoulder 0.044 0.942 0.575 0.068

Clusters: 10 0.25 3 3 2 512 shoulder 0.11 0.954 0.572 0.048

Table A.2.: The five best results from CBLOF, sorted on AUC

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

Bins: 3 0.5 3 3 1 1024 shoulder 0.057 0.97 0.606 0.049

Bins: 5 0.75 3 3 1 1024 hip 0.048 0.962 0.588 0.074

Bins: 5 0.75 5 5 1 128 shoulder 0.03 0.966 0.586 0.037

Bins: 12 0.5 3 3 1 1024 hip 0.054 0.956 0.585 0.046

Bins: 9 0.75 5 3 1 128 shoulder 0.052 0.962 0.585 0.051

Table A.3.: The five best results from HBOS, sorted on AUC
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Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

Estimators: 150 0.5 3 3 1 1024 hip 0.047 0.954 0.593 0.038

Estimators: 100 0.5 3 3 1 1024 hip 0.051 0.953 0.593 0.037

Estimators: 70 0.5 3 3 2 1024 hip 0.035 0.95 0.592 0.051

Estimators: 50 0.5 3 3 1 1024 hip 0.044 0.954 0.592 0.037

Estimators: 70 0.5 3 3 1 1024 hip 0.047 0.952 0.592 0.039

Table A.4.: The five best results from IForest, sorted on AUC

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

Neighbors: 10 0.75 5 3 1 128 shoulder 0.03 0.95 0.574 0.085

Neighbors: 3 0.75 5 3 1 128 shoulder 0.037 0.954 0.572 0.083

Neighbors: 70 0.75 5 3 1 128 shoulder 0.015 0.946 0.571 0.066

Neighbors: 30 0.25 5 3 4 1024 shoulder 0.107 0.957 0.57 0.063

Neighbors: 20 0.5 3 3 4 1024 hip 0.048 0.948 0.57 0.034

Table A.5.: The five best results from KNN, sorted on AUC

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

Neighbors: 50 0.25 3 10 4 1024 knee 0.12 0.954 0.634 0.019

Neighbors: 60 0.25 3 10 4 1024 knee 0.121 0.955 0.634 0.019

Neighbors: 40 0.25 3 10 4 1024 knee 0.127 0.954 0.634 0.02

Neighbors: 70 0.25 3 10 4 1024 knee 0.126 0.955 0.633 0.019

Neighbors: 30 0.25 3 10 4 1024 knee 0.131 0.953 0.632 0.02

Table A.6.: The five best results from LOF, sorted on AUC

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

Nu: 0.01 0.75 5 5 1 128 shoulder 0.281 0.807 0.607 0.069

Nu: 0.1 0.75 5 5 1 128 shoulder 0.281 0.807 0.604 0.069

Nu: 0.2 0.75 5 5 1 128 shoulder 0.104 0.891 0.598 0.064

Nu: 0.3 0.75 5 5 1 128 shoulder 0.081 0.927 0.581 0.05

Nu: 0.6 0.75 5 3 1 128 shoulder 0.044 0.944 0.581 0.072

Table A.7.: The five best results from OCSVM, sorted on AUC
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A.2. Base Model Parameters

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

LOF 0.25 3 10 4 1024 knee 0.12 0.954 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.121 0.955 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.127 0.954 0.634 0.02

LOF 0.25 3 10 4 1024 knee 0.126 0.955 0.633 0.019

LOF 0.25 3 10 4 1024 knee 0.131 0.953 0.632 0.02

LOF 0.5 3 10 4 1024 knee 0.115 0.955 0.629 0.016

LOF 0.5 3 10 4 1024 knee 0.113 0.954 0.628 0.016

LOF 0.5 3 10 4 1024 knee 0.114 0.955 0.628 0.015

LOF 0.5 3 10 4 1024 knee 0.115 0.956 0.627 0.015

LOF 0.5 3 10 4 1024 knee 0.117 0.953 0.627 0.019

LOF 0.75 5 10 4 1024 knee 0.115 0.957 0.617 0.032

LOF 0.75 5 10 4 1024 knee 0.119 0.956 0.617 0.033

LOF 0.75 5 10 4 1024 knee 0.115 0.956 0.617 0.033

LOF 0.75 5 10 4 1024 knee 0.115 0.958 0.616 0.032

LOF 0.75 5 10 4 1024 knee 0.117 0.955 0.616 0.035

Table A.8.: The five best results from each minimal movement value from the base models. First sorted on
minimal movement then on AUC.

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

LOF 0.25 3 10 4 1024 knee 0.12 0.954 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.121 0.955 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.127 0.954 0.634 0.02

LOF 0.25 3 10 4 1024 knee 0.126 0.955 0.633 0.019

LOF 0.25 3 10 4 1024 knee 0.131 0.953 0.632 0.02

LOF 0.5 5 5 4 1024 knee 0.122 0.955 0.622 0.041

LOF 0.5 5 5 4 1024 knee 0.129 0.956 0.621 0.042

LOF 0.5 5 10 4 1024 knee 0.117 0.956 0.62 0.029

LOF 0.5 5 5 4 1024 knee 0.124 0.957 0.62 0.04

LOF 0.5 5 5 4 1024 knee 0.124 0.956 0.619 0.038

Table A.9.: The five best results from each SMA value from the base models. First sorted on SMA then on
AUC.
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Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

HBOS 0.5 3 3 1 1024 shoulder 0.057 0.97 0.606 0.049

LOF 0.75 5 3 2 512 hip 0.038 0.962 0.598 0.101

LOF 0.75 5 3 4 1024 elbow 0.12 0.955 0.596 0.063

LOF 0.75 3 3 1 1024 hip 0.036 0.956 0.596 0.05

LOF 0.75 5 3 4 1024 elbow 0.12 0.954 0.595 0.064

LOF 0.25 3 5 4 1024 knee 0.128 0.954 0.622 0.024

LOF 0.5 5 5 4 1024 knee 0.122 0.955 0.622 0.041

LOF 0.25 3 5 4 1024 knee 0.129 0.953 0.622 0.025

LOF 0.25 3 5 4 1024 knee 0.13 0.951 0.622 0.024

LOF 0.25 3 5 4 1024 knee 0.129 0.95 0.621 0.024

LOF 0.25 3 10 4 1024 knee 0.12 0.954 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.121 0.955 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.127 0.954 0.634 0.02

LOF 0.25 3 10 4 1024 knee 0.126 0.955 0.633 0.019

LOF 0.25 3 10 4 1024 knee 0.131 0.953 0.632 0.02

Table A.10.: The five best results from each PLS-DA value from the base models. First sorted on PLS-DA
then on AUC.

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

OCSVM 0.75 5 5 1 128 shoulder 0.281 0.807 0.607 0.069

HBOS 0.5 3 3 1 1024 shoulder 0.057 0.97 0.606 0.049

OCSVM 0.75 5 5 1 128 shoulder 0.281 0.807 0.604 0.069

LOF 0.5 5 5 1 1024 knee 0.102 0.956 0.604 0.067

LOF 0.5 5 5 1 1024 knee 0.102 0.955 0.6 0.068

LOF 0.25 3 10 2 1024 knee 0.126 0.953 0.627 0.026

LOF 0.25 3 10 2 1024 knee 0.116 0.954 0.625 0.027

LOF 0.25 3 10 2 1024 knee 0.116 0.956 0.624 0.025

LOF 0.25 3 10 2 1024 knee 0.114 0.957 0.622 0.024

LOF 0.25 3 10 2 1024 knee 0.111 0.957 0.62 0.023

LOF 0.25 3 10 4 1024 knee 0.12 0.954 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.121 0.955 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.127 0.954 0.634 0.02

LOF 0.25 3 10 4 1024 knee 0.126 0.955 0.633 0.019

LOF 0.25 3 10 4 1024 knee 0.131 0.953 0.632 0.02

Table A.11.: The five best results from each window overlap value from the base models. First sorted on
window overlap then on AUC.
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A.3. Base Models Window Size

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

OCSVM 0.75 5 5 1 128 shoulder 0.281 0.807 0.607 0.069

OCSVM 0.75 5 5 1 128 shoulder 0.281 0.807 0.604 0.069

OCSVM 0.75 5 5 1 128 shoulder 0.104 0.891 0.598 0.064

IFOREST 0.75 5 3 1 128 shoulder 0.044 0.952 0.586 0.097

HBOS 0.75 5 5 1 128 shoulder 0.03 0.966 0.586 0.037

LOF 0.75 5 3 1 256 hip 0.113 0.955 0.592 0.058

IFOREST 0.75 3 3 2 256 shoulder 0.056 0.953 0.581 0.061

IFOREST 0.75 3 3 2 256 shoulder 0.059 0.954 0.579 0.062

IFOREST 0.75 3 3 2 256 shoulder 0.056 0.961 0.578 0.067

IFOREST 0.75 3 3 2 256 shoulder 0.059 0.957 0.577 0.063

LOF 0.75 5 3 2 512 hip 0.038 0.962 0.598 0.101

LOF 0.75 5 3 2 512 hip 0.031 0.962 0.594 0.117

LOF 0.25 5 10 2 512 knee 0.093 0.952 0.594 0.033

LOF 0.25 5 10 2 512 knee 0.092 0.952 0.593 0.034

LOF 0.25 5 10 2 512 knee 0.097 0.951 0.592 0.029

LOF 0.25 3 10 4 1024 knee 0.12 0.954 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.121 0.955 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.127 0.954 0.634 0.02

LOF 0.25 3 10 4 1024 knee 0.126 0.955 0.633 0.019

LOF 0.25 3 10 4 1024 knee 0.131 0.953 0.632 0.02

Table A.12.: The five best results from each window size. First sorted on window size then on AUC.
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A.4. Base Models Angles

The results for which model that performance the best for each angle can be seen in Table A.13.

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

LOF 0.75 5 3 4 1024 elbow 0.12 0.955 0.596 0.063

LOF 0.75 5 3 4 1024 elbow 0.12 0.954 0.595 0.064

LOF 0.75 5 3 4 1024 elbow 0.119 0.955 0.595 0.062

LOF 0.75 5 3 4 1024 elbow 0.121 0.955 0.595 0.065

LOF 0.75 5 3 4 1024 elbow 0.118 0.954 0.595 0.062

LOF 0.75 5 3 2 512 hip 0.038 0.962 0.598 0.101

LOF 0.75 3 5 1 1024 hip 0.012 0.962 0.596 0.068

LOF 0.75 3 3 1 1024 hip 0.036 0.956 0.596 0.05

LOF 0.75 3 3 1 1024 hip 0.048 0.958 0.595 0.045

LOF 0.75 3 5 1 1024 hip 0.012 0.963 0.595 0.062

LOF 0.25 3 10 4 1024 knee 0.12 0.954 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.121 0.955 0.634 0.019

LOF 0.25 3 10 4 1024 knee 0.127 0.954 0.634 0.02

LOF 0.25 3 10 4 1024 knee 0.126 0.955 0.633 0.019

LOF 0.25 3 10 4 1024 knee 0.131 0.953 0.632 0.02

OCSVM 0.75 5 5 1 128 shoulder 0.281 0.807 0.607 0.069

HBOS 0.5 3 3 1 1024 shoulder 0.057 0.97 0.606 0.049

OCSVM 0.75 5 5 1 128 shoulder 0.281 0.807 0.604 0.069

OCSVM 0.75 5 5 1 128 shoulder 0.104 0.891 0.598 0.064

IFOREST 0.75 5 3 1 128 shoulder 0.044 0.952 0.586 0.097

Table A.13.: The five best results from each angle from the base models. First sorted on angle then on AUC.

A.5. Novelty

Parameter MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

Neighbors: 40 0.75 3 3 1 512 shoulder 0.203 0.943 0.573 0.053

Neighbors: 60 0.75 3 3 1 512 shoulder 0.198 0.946 0.572 0.046

Neighbors: 80 0.75 3 3 1 512 shoulder 0.192 0.951 0.571 0.043

Neighbors: 30 0.75 3 5 1 512 shoulder 0.203 0.938 0.571 0.039

Neighbors: 70 0.75 3 3 1 512 shoulder 0.192 0.95 0.571 0.042

Table A.14.: The five best results from LOF novelty, sorted on AUC
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A.6. Ensemble Models

Model MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

SDAavg 0.5 3 3 4 1024 hip 0.13 0.906 0.586 0.063

SDAavg 0.5 3 3 2 1024 hip 0.129 0.903 0.582 0.068

SDAavg 0.5 3 3 1 1024 hip 0.128 0.898 0.575 0.092

SDAavg 0.5 3 3 2 512 hip 0.105 0.901 0.57 0.044

SDAavg 0.75 3 3 2 128 shoulder 0.16 0.891 0.568 0.044

SDAmax 0.75 3 3 2 1024 shoulder 0.147 0.907 0.573 0.064

SDAmax 0.5 3 3 2 1024 hip 0.127 0.906 0.571 0.058

SDAmax 0.5 3 3 4 1024 hip 0.12 0.911 0.567 0.046

SDAmax 0.75 3 3 2 128 shoulder 0.136 0.901 0.564 0.044

SDAmax 0.5 3 10 4 1024 knee 0.132 0.913 0.56 0.046

LSCP 0.5 3 3 4 1024 hip 0.153 0.88 0.583 0.063

LSCP 0.5 3 3 2 1024 hip 0.152 0.884 0.58 0.071

LSCP 0.5 3 3 1 1024 hip 0.142 0.884 0.576 0.092

LSCP 0.75 3 3 2 1024 shoulder 0.181 0.89 0.569 0.059

LSCP 0.75 3 3 2 256 shoulder 0.145 0.892 0.567 0.065

XGBOD 0.75 3 3 2 1024 shoulder 0.171 0.957 0.7 0.032

XGBOD 0.75 3 3 4 1024 shoulder 0.106 0.972 0.699 0.07

XGBOD 0.75 3 3 1 512 hip 0.078 0.984 0.681 0.1

XGBOD 0.75 3 3 4 1024 knee 0.015 0.994 0.68 0.041

XGBOD 0.5 3 3 4 1024 knee 0.014 0.994 0.678 0.035

Table A.15.: The five best results from each ensemble model. First sorted on ensemble model then on AUC.

A.7. Ensemble Models Parameters

Model MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

XGBOD 0.5 3 3 4 1024 knee 0.014 0.994 0.678 0.035

XGBOD 0.5 3 3 2 1024 shoulder 0.055 0.991 0.672 0.024

XGBOD 0.5 3 3 4 1024 shoulder 0.041 0.99 0.668 0.034

XGBOD 0.5 3 5 4 1024 knee 0.023 0.99 0.666 0.025

XGBOD 0.5 3 10 4 1024 knee 0.024 0.991 0.663 0.03

XGBOD 0.75 3 3 2 1024 shoulder 0.171 0.957 0.7 0.032

XGBOD 0.75 3 3 4 1024 shoulder 0.106 0.972 0.699 0.07

XGBOD 0.75 3 3 1 512 hip 0.078 0.984 0.681 0.1

XGBOD 0.75 3 3 4 1024 knee 0.015 0.994 0.68 0.041

XGBOD 0.75 3 5 4 1024 knee 0.029 0.991 0.671 0.02

Table A.16.: The five best results from each minimal movement value. First sorted on minimal movement
then on AUC.
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Model MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

XGBOD 0.75 3 3 2 1024 shoulder 0.171 0.957 0.7 0.032

XGBOD 0.75 3 3 4 1024 shoulder 0.106 0.972 0.699 0.07

XGBOD 0.75 3 3 1 512 hip 0.078 0.984 0.681 0.1

XGBOD 0.75 3 3 4 1024 knee 0.015 0.994 0.68 0.041

XGBOD 0.5 3 3 4 1024 knee 0.014 0.994 0.678 0.035

XGBOD 0.75 3 5 4 1024 knee 0.029 0.991 0.671 0.02

XGBOD 0.5 3 5 4 1024 knee 0.023 0.99 0.666 0.025

XGBOD 0.75 3 5 4 512 knee 0.005 0.998 0.662 0.018

XGBOD 0.5 3 5 4 512 knee 0.004 0.998 0.659 0.01

XGBOD 0.75 3 5 2 1024 shoulder 0.15 0.94 0.658 0.055

XGBOD 0.75 3 10 4 1024 knee 0.028 0.99 0.666 0.032

XGBOD 0.75 3 10 2 512 knee 0.007 0.997 0.665 0.017

XGBOD 0.75 3 10 4 512 knee 0.005 0.998 0.664 0.018

XGBOD 0.5 3 10 4 1024 knee 0.024 0.991 0.663 0.03

XGBOD 0.5 3 10 4 512 knee 0.005 0.998 0.659 0.013

Table A.17.: The five best results from each PLS-DA value. First sorted on PLS-DA then on AUC.

Model MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

XGBOD 0.75 3 3 1 512 hip 0.078 0.984 0.681 0.1

XGBOD 0.75 3 3 1 1024 shoulder 0.23 0.934 0.663 0.033

XGBOD 0.5 3 3 1 1024 shoulder 0.067 0.991 0.658 0.051

XGBOD 0.75 3 3 1 1024 knee 0.018 0.991 0.657 0.055

XGBOD 0.75 3 3 1 512 elbow 0.015 0.996 0.654 0.042

XGBOD 0.75 3 3 2 1024 shoulder 0.171 0.957 0.7 0.032

XGBOD 0.5 3 3 2 1024 shoulder 0.055 0.991 0.672 0.024

XGBOD 0.75 3 10 2 512 knee 0.007 0.997 0.665 0.017

XGBOD 0.75 3 3 2 1024 knee 0.023 0.992 0.664 0.056

XGBOD 0.75 3 3 2 1024 hip 0.094 0.98 0.661 0.084

XGBOD 0.75 3 3 4 1024 shoulder 0.106 0.972 0.699 0.07

XGBOD 0.75 3 3 4 1024 knee 0.015 0.994 0.68 0.041

XGBOD 0.5 3 3 4 1024 knee 0.014 0.994 0.678 0.035

XGBOD 0.75 3 5 4 1024 knee 0.029 0.991 0.671 0.02

XGBOD 0.5 3 3 4 1024 shoulder 0.041 0.99 0.668 0.034

Table A.18.: The five best results from each window overlap value. First sorted on window overlap then on
AUC.
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A.8. Ensemble Models Window Size

The 5 best results for each window size can be seen in Table A.19.

Model MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

XGBOD 0.75 3 3 4 128 elbow 0.0 1.0 0.632 0.033

XGBOD 0.75 3 10 4 128 elbow 0.0 1.0 0.631 0.03

XGBOD 0.75 3 5 4 128 elbow 0.0 1.0 0.63 0.031

XGBOD 0.75 3 3 2 128 elbow 0.0 1.0 0.626 0.039

XGBOD 0.75 3 10 2 128 elbow 0.0 1.0 0.625 0.035

XGBOD 0.5 3 3 2 256 shoulder 0.038 0.992 0.648 0.042

XGBOD 0.75 3 5 4 256 knee 0.002 0.999 0.648 0.025

XGBOD 0.75 3 10 4 256 knee 0.001 0.999 0.648 0.022

XGBOD 0.75 3 10 4 256 elbow 0.003 0.999 0.646 0.031

XGBOD 0.75 3 3 4 256 elbow 0.003 0.999 0.646 0.027

XGBOD 0.75 3 3 1 512 hip 0.078 0.984 0.681 0.1

XGBOD 0.75 3 3 4 512 shoulder 0.123 0.966 0.666 0.09

XGBOD 0.75 3 10 2 512 knee 0.007 0.997 0.665 0.017

XGBOD 0.75 3 10 4 512 knee 0.005 0.998 0.664 0.018

XGBOD 0.75 3 5 4 512 knee 0.005 0.998 0.662 0.018

XGBOD 0.75 3 3 2 1024 shoulder 0.171 0.957 0.7 0.032

XGBOD 0.75 3 3 4 1024 shoulder 0.106 0.972 0.699 0.07

XGBOD 0.75 3 3 4 1024 knee 0.015 0.994 0.68 0.041

XGBOD 0.5 3 3 4 1024 knee 0.014 0.994 0.678 0.035

XGBOD 0.5 3 3 2 1024 shoulder 0.055 0.991 0.672 0.024

Table A.19.: The five best results from each window size. First sorted on window size then on AUC.
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A.9. Ensemble Models Angles

The results from the different angles for the ensemble models can be seen in Table A.20.

Model MM SMA PLS WO WS Angle Sens Spec AUCmean AUCstd

XGBOD 0.75 3 3 4 1024 elbow 0.057 0.994 0.66 0.029

XGBOD 0.75 3 3 4 512 elbow 0.022 0.997 0.657 0.025

XGBOD 0.5 3 3 4 1024 elbow 0.039 0.995 0.655 0.034

XGBOD 0.75 3 3 1 512 elbow 0.015 0.996 0.654 0.042

XGBOD 0.75 3 3 1 1024 elbow 0.062 0.991 0.654 0.034

XGBOD 0.75 3 3 4 1024 knee 0.015 0.994 0.68 0.041

XGBOD 0.5 3 3 4 1024 knee 0.014 0.994 0.678 0.035

XGBOD 0.75 3 5 4 1024 knee 0.029 0.991 0.671 0.02

XGBOD 0.75 3 10 4 1024 knee 0.028 0.99 0.666 0.032

XGBOD 0.5 3 5 4 1024 knee 0.023 0.99 0.666 0.025

XGBOD 0.75 3 3 1 512 hip 0.078 0.984 0.681 0.1

XGBOD 0.75 3 3 2 1024 hip 0.094 0.98 0.661 0.084

XGBOD 0.5 3 3 2 512 hip 0.001 0.998 0.659 0.048

XGBOD 0.75 3 3 4 1024 hip 0.062 0.982 0.655 0.065

XGBOD 0.5 3 3 4 512 hip 0.002 0.999 0.652 0.047

XGBOD 0.75 3 3 2 1024 shoulder 0.171 0.957 0.7 0.032

XGBOD 0.75 3 3 4 1024 shoulder 0.106 0.972 0.699 0.07

XGBOD 0.5 3 3 2 1024 shoulder 0.055 0.991 0.672 0.024

XGBOD 0.5 3 3 4 1024 shoulder 0.041 0.99 0.668 0.034

XGBOD 0.75 3 3 4 512 shoulder 0.123 0.966 0.666 0.09

Table A.20.: The five best results from each angle. First sorted on angle then on AUC.
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A.10. Prediction

WM WS AM BPM T AUCmean AUCstd

max [128] threshold mean 0.17 0.812 0.072

max [128] threshold mean 0.15 0.811 0.081

max [128] threshold mean 0.14 0.81 0.096

mean [256] mean max -1.0 0.807 0.104

mean [128, 256] mean max -1.0 0.806 0.103

max [128, 256] threshold mean 0.19 0.805 0.123

mean [256] threshold max 0.14 0.805 0.109

max [128] threshold mean 0.16 0.804 0.071

max [128] threshold mean 0.18 0.802 0.085

max [128, 256] threshold mean 0.2 0.801 0.129

Table A.21.: Prediction results using XGBOD model.

WM WS AM BPM T AUCmean AUCstd

max [256, 512] threshold max 0.97 0.654 0.069

max [128, 512] threshold max 0.97 0.647 0.081

max [128, 256, 512] threshold max 0.97 0.644 0.077

max [512] threshold max 0.97 0.63 0.108

mean [512, 1024] threshold max 0.97 0.629 0.145

mean [1024] threshold max 0.97 0.629 0.108

mean [128, 256, 512, 1024] threshold max 0.96 0.622 0.114

mean [128, 256, 512, 1024] threshold max 0.97 0.608 0.139

mean [256, 512, 1024] threshold max 0.96 0.607 0.126

mean [128, 512, 1024] threshold max 0.97 0.607 0.165

Table A.22.: Prediction results using LSCP model.

WM WS AM BPM T AUCmean AUCstd

mean [128, 256] threshold mean 0.91 0.703 0.123

mean [128, 256] threshold mean 0.9 0.687 0.069

mean [128, 256] threshold mean 0.92 0.684 0.158

mean [128] threshold mean 0.9 0.658 0.217

mean [128, 256, 512] threshold mean 0.91 0.651 0.051

mean [128, 256, 512] threshold mean 0.92 0.651 0.027

max [128, 256] threshold mean 0.91 0.646 0.073

max [256, 512, 1024] threshold max 0.96 0.646 0.071

mean [256] threshold mean 0.91 0.645 0.096

mean [128, 256] threshold mean 0.89 0.644 0.088

Table A.23.: Prediction results using Simple classifier aggregator with max.
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WM WS AM BPM T AUCmean AUCstd

max [128] mean mean -1.0 0.722 0.142

mean [128, 256] threshold mean 0.82 0.717 0.048

max [128, 256] threshold mean 0.99 0.707 0.139

mean [256] threshold mean 0.82 0.699 0.043

mean [128, 512] threshold mean 0.91 0.691 0.165

mean [128, 256] threshold mean 0.86 0.688 0.086

mean [128, 256] threshold mean 0.83 0.686 0.086

mean [256] threshold mean 0.83 0.685 0.057

max [128, 256] threshold mean 0.98 0.684 0.129

mean [128, 512, 1024] threshold mean 0.88 0.684 0.169

Table A.24.: Prediction results using Simple classifier aggregator with mean.
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