
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Kim Aksel Tahuil Borgen

A study on committee-based sharding
within the context of Rapidchain

Master’s thesis in Computer science

Supervisor: Mariusz Nowostawski

July 2020

Kim Aksel Tahuil Borgen

A study on committee-based sharding
within the context of Rapidchain

Master’s thesis in Computer science
Supervisor: Mariusz Nowostawski
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Committee based sharding presents an interesting solution to the scalability prob-
lem of traditional Nakamoto-based blockchains because the throughput in these
systems scales linearly with respect to the total amount of nodes in the system. The
state of the art solution within the field of committee based sharding is at present
the Rapidchain protocol presented by Zamani et al. [1] who present performance
comparable to traditional systems, such as Visa and Twitter. The key questions that
this thesis asks are: Are there any limitations or other issues in the protocol presen-
ted by Zamani et al. [1], can these matters be addressed or resolved, and can the
results be replicated? This thesis implements a derivation of the implementation
presented by Zamani et al. [1]. The problem of cross-committee transaction veri-
ficability which is not presented in the existing literature is discussed and a solu-
tion to this problem is provided by using the novel contribution of ,Proof of Con-
sensus. Due to limitations in this thesis, the results cannot conclusively compare
the presented results by Zamani et al. [1], but similar trends are discovered.

iii

Sammendrag

Kommite basert "sharding" presenterer en interesant løsning til skalabilitetsprob-
lemet av tradisjonelle Nakamoto baserte blockchains fordi "throughput" i disse
systemene skalerer linært i forhold til den totale mengden antall noder i systemet.
Den beste nåverende løsningen innenfor komite baserte "sharding" er per i dag
Rapidchain, presentert av Zamani et al. [1] som presenterer resultater som kan
sammenliges med tradisjonelle systemer slik som Visa og Twitter. Hovedspørsmålene
som denne oppgaven presenterer er: Finnes det noen begrensninger eller andre
problemer i protokollen presentert av Zamani et al. [1], kan disse begrensningene
bli løst, og kan resultatene bli reprodusert? Oppgaven implementerer en derivas-
jon av implentasjonen presentert av Zamani et al. [1]. Problemet med å verifisere
transaksjoner på tvers av kommiteer, som ikke er presentert av dagens literatur,
er diskutert og en løsning ti dene problemet er utarbeidet ved å bruke en bevis
på konsensus. Dette er det orginale bidraget i denne oppgaven, på grunn av be-
grensninger i denne oppgaven, det er ikke mulig med sikkerhet å sammenlige
resultatene, men lignende trender er blitt observert.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . ix
Tables . xi
1 Introduction . 1
2 Background . 3

2.1 General . 3
2.2 Committee based sharding . 4
2.3 Rapidchain . 5

2.3.1 Information Dispersal Algorithm (IDA) gossiping 5
2.3.2 Consensus protocol . 6
2.3.3 Cross committee transactions 6
2.3.4 Inter-Committee routing . 6

3 Litrature Review . 9
3.1 Review protocol . 9

3.1.1 Review questions . 9
3.1.2 Search Process . 9
3.1.3 Search method . 10
3.1.4 Inclusion criteria . 10
3.1.5 Exclusion criteria . 10
3.1.6 Study selection process . 11
3.1.7 Quality assessment . 11
3.1.8 Data extraction . 11
3.1.9 Data analysis . 11
3.1.10 Review timetable . 11

3.2 Included and excluded studies . 11
3.3 Literature review results . 13

3.3.1 Incentive mechanism . 13
3.3.2 Security . 14
3.3.3 Error Correcting Codes . 16
3.3.4 Miscellaneous . 17

3.4 Discussion of literature review . 19
3.4.1 Incentive mechanism . 19
3.4.2 Security . 20

vii

viii :

3.4.3 Error Correcting Codes . 21
3.4.4 Miscellaneous . 21
3.4.5 Review questions . 23

4 Reworking the Rapidchain protocol . 25
4.1 Consensus protocol . 25
4.2 Inter-committee routing with Kademlia 28
4.3 IDA protocol . 30
4.4 Cross committee transaction protocol 30

4.4.1 Clarifications . 30
4.4.2 Small improvements . 31
4.4.3 Inherent Limitations . 31

4.5 Proof of Consensus . 34
4.5.1 Solving the cross committee transaction verificability problem 34
4.5.2 Proof of Consensus . 36
4.5.3 Applications on the cross committee transaction protocol . . 37
4.5.4 Size . 38

5 Results . 39
5.1 Test setup . 39
5.2 Implementation details . 39
5.3 Proof of Consensus . 40
5.4 Cross committee transactions . 43
5.5 User-perceived transaction latency . 43
5.6 IDA Gossip . 46

6 Discussion . 47
6.1 Effect of oversubscribing CPU on results 47
6.2 Proof of Consensus . 47
6.3 Cross committee transactions . 48
6.4 User-perceived transaction latency . 49
6.5 IDA Gossip . 50
6.6 limitations . 51

7 Conclusion . 55
7.1 Future work . 55
7.2 Conclusion . 56
7.3 Acknowledgments . 57

Bibliography . 59

Figures

3.1 Flowchart of the search process . 12

5.1 Time to add (left) and verify (right) a Proof of Consensus in a cross
committee transaction response. 41

5.2 Proof of Consensus size without optimization (left). Number of
transactions included in a block with a block size of 2048 kilobytes,
without optimizations (right). 42

5.3 Amount of cross committee transactions involved in a transaction . 44
5.4 User-perceived transaction latency for transactions with no cross

committee transactions (left), one cross committee transaction (middle),
and two cross committee transactions (right). 44

5.5 Average seconds for an entire committee to successfully recover an
IDA message over time (left). Distribution of how many seconds it
took to successfully recover an IDA message for a node (right). . . . 45

ix

Tables

3.1 Identified classifications on the twenty included studies 13
3.2 Estimated failure probability of Rapidchain presented in Hafid et

al. [52] using a total network size of 4000 participants 15

5.1 Parameters used in the presented experiment 40
5.2 Measured performance when adding a Proof of Consensus 40
5.3 Measured performance when verifying a Proof of Consensus 41
5.4 Proof of Consensus size in bytes on relevant committee sizes 42
5.5 Number of transactions included in a block of size 2048 kilobytes

on relevant committee sizes . 43
5.6 Measured transaction latency with varying cross committee trans-

actions. 45
5.7 Measured mean and median latency for completing the IDA gossip

protocol for one message . 46

6.1 Measured transaction latency divided by the factor 6.66. 49

xi

Chapter 1

Introduction

Bitcoin, a construct introduced in 2008 by Nakamoto [3], solved the double spend-
ing problem of existing similar solutions with a construct called Proof of Work
(PoW). This construct enabled the creation of an immutable blockchain, where a
distributed network of trust-less nodes agree, or more correctly, reaches consensus
on a common block.

The key issue in current blockchain systems is scalability [2], slow throughput
and large latencies. In fact, Bitcoin’s maximum throughput is 7 transactions per
second, with close to an hour average latency before a transaction is included
in a block [2]. Several modern systems have produced better scalability, but any
scalability observed in traditional blockchains is pale in comparison with real-life
traditional systems, such as VISA, with their 2000-47000 transactions per second,
or Twitter with their 5000 transactions per seconds [22].

My previous work [2] asked the key question of how academia are addressing the
scalability issue of blockchain technologies. The work resulted in several possible
areas of research, where one of the most important areas was the area of commit-
tee based sharding. The concept of dividing the blockchain into multiple smaller
blockchains produced excellent performance results. The latest of these solutions
was identified to be Rapidchain by Zamani et al. [1] which produced state of the
art results of a throughput of 7300 transactions per second, with a user-perceived
latency of 70.7 seconds with a network size of 4000 nodes. My previous work did
not however not find any studies that thoroughly investigated Rapdichain so the
key questions that this study asks are: Are there any limitations or other issues
in the protocol presented by Zamani et al. [1], can these matters be addressed or
resolved, and can the results be replicated?

The main contributions of this work is as follows.

• Presents a literature review of every study that references Rapidchain.
• Clarifies, defines and addresses required missing implementation details or

issues into a rework of the original implementation by Zamani et al. [1].

1

2 :

• Implements a derivation of the Rapidchain protocol. The results of this im-
plementation is compared to the original to determine to what degree the
results presented by Zamani et al. [1] can be reproduced.

• Presents the novel problem of cross-committee transaction verificability.
• Presents the novel contribution Proof of Consensus that addresses the veri-

ficability problem. The Proof of Consensus construction enables the con-
struction of a proof to verify the inclusion of any transaction in any block in
any committee.

The composition of the thesis is as follows. Chapter 2 goes into the background of
Rapidchain. Chapter 3 presents the literature review. Chapter 4 presents a rework
of the Rapidchain protocol. Chapter 5 presents the experimental and analytical
results of the implementation of the rework presented in Chapter 4. Chapter 6
discusses the results and presents the limitations of this study. Chapter 7 concludes
the study and presents identified future work.

Remark. In the rest of this thesis the words "original", "Rapidchain", and
"authors" usually refers to the study by Zamani et al. [1] that introduced
the Rapidchain protocol, unless it is clear that something else is referred
to.

Chapter 2

Background

This section presents the background for the work in this thesis. Related works
are excluded since they are naturally included in the literature review presented
in Chapter 3.

2.1 General

Proof of Work (PoW) is a way for a node to prove that they have used energy to
work on a specific problem. Bitcoin uses the computational problem of computing
a hash of a block, with a varying nonce, lower than a specific threshold. PoW
consensus is also called Nakamoto consensus [1, 21]. Proof of Stake (PoS), as
presented by King and Nadal [29] replaces the cost of producing a Proof of Work
with a direct monetary cost.

The problem of a group of distributed, trust-less, nodes collectively agreeing to a
value can be reformulated as the problem of reaching consensus on a value. This
was formalized into the byzantine generals problem, presented by Lamport et al.
[30], and is solvable only if the number of faulty nodes is below 1/3.

From the byzantine generals problem, one can define a byzantine system to be
a system of nodes where some are faulty. Subsequently, the property Byzantine
Fault Tolerance indicates that a system of nodes tolerates up to 1/3 faulty nodes
[2].

A faulty node, within the context of Byzantine environments, is a node which
does not behave as expected. A faulty node can be both honest and malicious.
If a node is honest, then a fault may happen due to unexpected circumstances,
such as package loss or power failures. But if a node is malicious it may choose
to fault and produce any behaviour possible, for example voting for an invalid
value.

The scalability trilemma, further defined in Borgen [2], states that between the

3

4 :

three properties scalability, security and decentralization, only two of the proper-
ties can be achieved at the same time.

In a unspent transaction output (UTXO) system, a transaction consists of several
outputs and inputs. An input of a transaction must be an output of a previous
transaction that has not already been used as input in any confirmed transaction.
Bitcoin also makes the optimization of requiring that the full value of the output
must be included as the input in a new transaction. In the literature, the nomen-
clature of spending an UTXO refers to the process of including the full UTXO in
an input in a new transaction.

Confirmation latency is defined by Zamani et al. [1] to be the time between a
transaction being included in a proposed block to the time the block is finalized
and therefore immutably added to the blockchain. The user-perceived latency is
defined to be the time between when a transaction is sent to the system, until the
transaction is included in a finalized block.

Hash trees, as presented by Merkle [13], more commonly refereed to by the no-
menclature Merkle trees [1, 4], enables the construction of a hash tree over a
range of data. The root of this hash tree naturally encapsulated the identifier of
the data, since any changes to underlying data will result in a different root. This
property is particularly useful in blockchain systems. Where the root of the Merkle
tree computed over the data of a large block, it can be used as the block’s ID. To
create a chain of these blocks, it is enough to add the previous ID of a block to the
data of the next block. Any block can then be verified against the indicated root
in this chain of IDs, and that is how we get the word blockchain.

An equally important property of a Merkle tree is the ability to create a proof for
any of the leaf nodes in the Merkle tree. Given the root of the Merkle tree, a single
path of nodes in the hash tree, and the leaf node itself (or the hash of it), one can
verify that the leaf node exists in the Merkle tree with the given root. The single
path of nodes in the hash tree is defined to be the Merkle proof. This is usefull
if a Merkle tree is constructed over the set of transactions included in a block. If
the root of the transaction set is included in the block header. You can then verify
that a transaction is included in a block by the block header itself, and through a
Merkle proof of the transaction.

Sharding, within the field of blockchain, can be defined to refer to the set of solu-
tions that split either nodes or data into smaller subsets of the full blockchain,
while at the same time achieving some kind of inter-operability between shards
[2].

2.2 Committee based sharding

Committee based sharding differs from normal sharding in that both node and
data are divided into shards. Each subset of nodes will then have exactly one
data shard. These subsets of nodes form a committee. These committees create

Chapter 2: Background 5

their own internal blockchain, and each committee performs a consensus pro-
cess between the committee members to agree on the state of its internal block-
chain. All the committees in a system that agree on the protocol used, form a
system of multiple smaller blockchains. In theory, the system should then have in-
creased the maximum possible throughput by number of committees. In practice,
this perfect scalability cannot exist since the committees must also communicate
together.

The scalability factor, with respect to committee based sharding, can therefore be
defined as the amount of increased throughput when adding either a singe node
or committee. Rapidchain observes this factor, with respect to single nodes, to be
linearly increasing [1].

To observe a scalability effect, a transaction submitted to the system should only
be handled by a subset of committees. If every committee must process a trans-
action, then no performance increase should be observed. In Rapidchain, a single
transaction only has one responsible committee. A problem arises when consid-
ering an UTXO system in a committee- based sharding scheme. If the process of
determining the responsible committee of a transaction is random, then the inputs
of a transaction may belong in several different committees. The corresponding
outputs in the different committees either have to be destroyed or moved to the re-
sponsible committee before the transaction can be confirmed. If the corresponding
outputs in the different committees were not provably spent, the issue of double
spending becomes a problem.

Due to the problem presented in the previous paragraph, a protocol to handle
cross committee outputs must be implemented. This thesis defines the nomen-
clature of such a protocol to be a "cross committee transaction protocol". Different
nomenclature is used in literature, for example "cross-shard transactions" is used
by Zamani et al. [1].

2.3 Rapidchain

Only the relevant components of Rapidchain that are referenced in this thesis are
presented here. For a more complete overview, the reader is strongly recommen-
ded to read the original study by Zamani et al. [1].

2.3.1 Information Dispersal Algorithm (IDA) gossiping

Zamani et al. [1] presents a gossiping protocol for gossiping large messages within
committees. The authors state that the gossiping protocol was inspired by the IDA
protocol of Alon et al. [31], and they therefore call their protocol IDA Gossip. The
protocol divides a message M into equal-sized κ chunks. Several parity chunks Φ
are added to provide redundancy using the error correcting code protocol of Reed
and Solomon [32]. To reconstruct the original message it is enough to have any
κ amount of chunks in the concatenated list of chunks κ||Φ. A Merkle tree is then

6 :

computed over the concatenated list. The concatenated list is then divided equally
to the neighbouring nodes. Each message to the neighbouring nodes includes the
root of the Merkle tree, Merkle proofs of the chunks, and the chunks themselves.
Each neighbour will then gossip the received messages to its neighbouring set,
and so on. If each honest committee member receives at least κ distinct chunks,
then the message can be successfully reconstructed.

2.3.2 Consensus protocol

Zamani et al. [1] state that they implement a variant of the synchronous consensus
protocol of Ren et al. [9]. The synchronous assumption state that all messages
are received by every member of the committee within a known time ∆. Due to
the synchronicity assumption, the total amount of faulty nodes within a single
committee can be as high as 49%.

The consensus protocol is run in iterations. A new leader is picked at each iter-
ation. The leader gossips a new proposed block to the committee using the IDA
Gossip protocol. The leader then gossips the block header of the proposed block
with the tag "propose". Each honest node that receives this message will gossip
the block header with the tag "echo". If no malicious behaviour is detected, by for
example proposing multiple valid blocks, then all honest nodes gossip the block
header with the tag "accept". If a node observes 51%, or mf +1, valid "accepts" it
will accept the block and move on to the next iteration.

2.3.3 Cross committee transactions

If a transaction has two inputs I1 and I2 and one output O, and the two inputs
belong in different committees than the responsible committee for the transac-
tion itself, then two new transactions, with their respective inputs, and their re-
spective outputs being of the same size as the input, are sent to the committees
Cini that own the UTXOs referred to in the inputs. This process is accomplished
by the leader of the committee Cout . Cini then includes the transaction in a new
block and spends the UTXO by sending it back to Cout . If all new cross committee
transactions are successful, then a final transaction spends the outputs of the suc-
cessful cross committee transactions, into the original output O. If one or more
cross committee transactions are not successful, then the UTXO of the successful
cross-committee transactions is still available to the user and only the committee
ownership of an UTXO has been shifted.

2.3.4 Inter-Committee routing

Zamani et al. [1] states that they use ideas from the Kademlia protocol, as presen-
ted by Maymounkov and Mazieres [10], to create a committee to committee rout-
ing protocol. This protocol produces a routing table with the network information
of log(log(n)) nodes in each of the log(n) closest committee. Any further definition

Chapter 2: Background 7

of the inter-committee routing protocol was not inherently clear and is therefore
further defined in Section 4.2.

Chapter 3

Litrature Review

3.1 Review protocol

As in my previous work Borgen [2], a review protocol is presented to reduce the
possibility of researcher bias, and to increase replicability. This review protocol
was created before conducting the search. The purpose of this literature review
may seem very general, because at the time of conducting this review I did not
know precisely which areas to focus on. The purpose of this review was therefore
to gain general insight into what literature has already discussed about Rapid-
chain.

3.1.1 Review questions

• RQ1: Is the Rapidchain protocol state of the art?
• RQ2: Are there any areas of the Rapidchain protocol with shortcommings

or limitations that should be investigated?
• RQ3: Have there been any attempts to recreate either the Rapidchain pro-

tocol or recreate results of some of the components Rapidchain introduces?
• RQ4: Is there any research in the literature about committee based sharding

that can be applied to Rapidchain?

3.1.2 Search Process

As was discovered in the previous work [2], there is a significant amount of relev-
ant grey literature, literature that is not necessarily published but can be classified
as scientific research, that was not discovered with the scopus database. Due to
this, the search should be carried out in the google scholar search engine [24].
Google scholar will for example present white papers that are not searchable in
traditional databases, such as scopus.

Similarly to the previous work [2], the search is conducted in three rounds.

9

10 :

The first round will only include titles and abstracts. The full content of the study
should be skimmed to determine inclusion or exclusion only if there is any doubt.
If a conclusion cannot be easily determined, then the study should be included in
the next round.

All studies should be thoroughly examined in the second round, and a final inclu-
sion or exclusion conclusion must be presented with a minimal justification.

The last, and third round only includes studies that should be presented. These
studies will also undergo data extraction and quality assessments.

3.1.3 Search method

Due to the general nature of the review questions specifically on the Rapidchain
protocol, a simple search of all the studies that reference Rapidchain should be
enough to satisfy review question 1-3. The previous work [2] indicated that Rap-
idchain was a state of the art committee based sharding solution, with significant
improvements over its predecessors. Due to this we can assume that all research
on committee based sharding, should reference the Rapidchain protocol, and we
can conclude that the presented search method will loosely satisfy review question
4.

3.1.4 Inclusion criteria

• Literature that presents discussions, extensions, or improvements on Rap-
idchain, committee based sharding, or any relevant component.

• Literature that presents results that may be applicable to Rapidchain, but
do not discuss that applicability directly.

3.1.5 Exclusion criteria

Most of the exclusion criteria presented in this section are based upon the exclu-
sions criteria in the review protocol of the previous study [2].

• Literature not applicable to permissionless or public blockchain technology
will be excluded.

• Literature that has a small, irrelevant, auxiliary section pertaining to the
main topic of the research will be excluded as it does not contribute to the
literature.

• Literature focused on economic, business, hardware, or other non relevant
aspects will be excluded.

• If the literature has low credibility, as discovered in the quality assessment
presented later, it should be thoroughly examined if the results presented
are correct. If a conclusion cannot be reached, it should be clearly stated in
the results.

• If the literature has severe shortcomings without proper discussion or ana-
lysis it should be excluded.

Chapter 3: Litrature Review 11

• Literature with non-scientific or equivocated nomenclature or otherwise in-
comprehensible arguments, should be excluded due to the risk of misun-
derstanding the content of the literature.

• Literature that utilizes a trust or reputation mechanism should be excluded
if and only if it does not present a rigorous and correct security analysis.

3.1.6 Study selection process

I, alone was responsible for the search process.

3.1.7 Quality assessment

The Quality Assessment checklist can be found in table ??. The checklist is directly
modified from the previous work [2], with some non-relevant questions removed.
This checklist was initially based on Table 5 and 6 in Keele et al. [25].

Each question should be answered with a score between 0 and 10, but if the
question is not relevant to the study then it can be skipped.

3.1.8 Data extraction

The data to extract from included studies is defined in Table ??.

3.1.9 Data analysis

Quantitative data should be extracted, presented and discussed from the overall
search process. Quantitative data should also be presented for the last round.

3.1.10 Review timetable

This review was conducted in the spring of 2020.

3.2 Included and excluded studies

The search presented in this literature review was extracted from google scholar
on 27. April 2020. The search yielded 155 studies, of which 3 were duplicates. The
first round yielded 45 accepted and 107 excluded studies. After round two, a total
of 20 studies were selected for inclusion in this literature review, and 20 studies
were excluded. Figure 3.1 presents a flowchart of the entire search process.

The quality assessment, and data extraction, as presented in Table ?? and ?? re-
spectively, for each of the twenty final studies, can be found on the accompanying
GitHub repository1.

From the twenty identified studies, only three distinct categories could be iden-
tified. Incentive mechanism, security and error correcting codes. Relevant results

1https://github.com/kimborgen/master-thesis-data

https://github.com/kimborgen/master-thesis-data

12 :

Google scholar (155 total studies)

Accepted in round 1 (45) Excluded in round 1 (107) Duplicates in round 1 (3)

Final selection from round 2 (20) Excluded in round 2 (25)

Figure 3.1: Flowchart of the search process

Chapter 3: Litrature Review 13

that do not fit under the three identified categories are therefore placed under a
fourth general category called miscellaneous. All classifications are presented in
Table 3.1.

Classification Studies

Security 8
Incentive scheme 4
Error correcting codes 4
Checkpoint mechanism 2
Protocols 2
Cryptographic primitives 2
Load balancing 1
Client driven protocols 1
Storage size 1
Cross chain transaction 1
Atomicity 1

Table 3.1: Identified classifications on the twenty included studies

3.3 Literature review results

3.3.1 Incentive mechanism

Manshaei et al. [39] presents a model of commitee-based sharding, along with
a non-cooperative N-player game model The authors proved that a cooperative
equilibrium, which is the state where the protocol is successful, could not be
achieved if rewards are uniformly distributed to all participants. The authors then
presented fair incentive where participants are only rewarded if they participate
in consensus. This mechanism proved that if the set of transactions were large
enough for every participant, then cooperative equilibrium could be reached. The
authors then presented a novel incentive protocol that relies on an elected co-
ordinator per shard that recommends the optimal strategy for each participating
node. The results indicate that less transactions are required to reach cooperative
equilibrium in the novel inventive-compatible mechanism. The presented incent-
ive mechanism in Kokoris-kogias [33] is similar to the fair incentive mechanism
presented by Manshaei et al. [39].

Manshaei et al. [39] states that Rapidchain and its predecessors have a "lack of
clarity" and therefore assumes that the networks fail an epoch if one or more
shards fail.

Wang et al. [62] show that none of the presented committee based sharding pro-
tocols have any incentives for participating in protocol. Indicating a significant
area of further research, Bano et al. [61] confirms this by stating that there has
been little investigation into incentives for committee based protocols.

14 :

Wang and Wu [34] cite the work of Manshaei et al. [39], but take a different and
more "aggressive" approach. The authors present an incentive game where a valid-
ator stakes the original transaction fee in a transaction as a way of confirming the
transaction. Any node can challenge this transaction, either if the outcome of the
transaction is false, or if they are acting maliciously, by staking the total amount
of transaction fee that is related to that transaction. If the Challenger wins, they
receive the last validation stake which doubles their initial stake. This process can
proceed in rounds until a threshold is met, and the dispute is taken to a special
committee that resolves which side is right. This process lies under the assumption
that the special committee is not malicious, and that the threshold is sufficiently
low so that honest nodes are able to challenge a wealthy adversary. The results
show that a rational and honest participant will have a positive payoff, and parti-
cipants that guess, abort or act maliciously will have a negative payoff. The paper
however scored very low on the "clear and coherent" quality assessment, which
means that it is difficult to judge the overall contribution of the paper. The credib-
ility of the results can therefor be questioned. Nevertheless, the resulting concept
is novel and interesting and is therefor included in this literature review.

Harmony [36] state that they will use an incentive mechanism of rewarding new
tokens, along with the transaction fees, equally to all voting shares that signed
the block. This is similar to the fair incentive as explained by Manshaei et al. [39].
The authors also state that they will use harsh penalties, by slashing stakes, if any
dishonest behaviour is confirmed. However, any details, analysis, discussion or
evaluation was not performed on this incentive mechanism.

Chawla et al. [65] showed that by using error correcting codes, in the context of a
traditional Nakemoto consensus blockchain, it was possible to increase block size.
The higher block size incentivizes miners to actually include as many transactions
as possible, because the accumulated transaction fee is greater than the reward
of mining an empty block. Whether or not this is relevant to a commitee-based
protocol is yet to be determined.

3.3.2 Security

Das et al. [42] states that the security of the byzantine agreement protocols is
strictly correlated with the size of the identity set. Furthermore, the authors state
that this sample size is the limiting factor on the identity protocol. The authors
then explain that in order to improve communication cost, several protocols im-
plement a trade-off of performance when in the honest case, which lowers secur-
ity.

Hafid et al. [52] bounds the failure probability for both one epoch and one commit-
tee using three different probability bounds. The results indicate that Hoeffding’s
probability bound from Hoeffding [5]2, gave the best approximation. Hoeffding’s
probability bound can be used to estimate failure probability for both one epoch

2not included in this literature review

Chapter 3: Litrature Review 15

and one committee for any parameter. This can also be used to calculate the aver-
age number of years before failure. This will allow researchers and implementers
to choose the level of security by choosing parameters such as committee size.
Hafid et al. [52] further presented some estimated numbers using this probability
bound that are presented in table 3.2.

Committee size Failure probability Years to fail
80 <1.3E-03
150 <1.4E-04
250 3.79E-07 450
800 2.83E-23 235970

Table 3.2: Estimated failure probability of Rapidchain presented in Hafid et al.
[52] using a total network size of 4000 participants

Rajab et al. [76] analyzed the sybil identity resistance of Elastico, as presented
by Luu et al. [23]3, to work out the probability of both breaking the consensus
process and the probability of controlling the protocol based on the adversaries
hashing power. Their results show that an adversary can break the protocol by
controlling 25-33% of the hash power.. This makes sense since the total resiliency
of Elastico is 1/4.

Homoliak et al. [63] presents various attack vectors for various blockchain com-
ponents. The authors did not analyse Rapidchain, and the section on BFT was
severely lacking, nevertheless any implementation of Rapidchain should be ana-
lysed within the work of Homoliak et al. [63] to ensure that any potential attack
vector is discussed.

Wang et al. [62] state that Rapidchain does not take into account what happens in
a cross-chain transaction scenario where a committee leader is malicious.

Wang et al. [62] further state that to prevent prevent adversary attacks, no one
should be able to work out the result of the reconfiguration before it happens.
They should also not be able to influence the result of the partition in a way that
gives them prior knowledge of the results. This is also formalized by Bano et al.
[61].

Bano et al. [61] states that using PoW, or any similar construction, will impose a
limitation of sybil resistance because the miners with a higher hashing power will
have a bigger likelihood of dominating a committee.

Bano et al. [61] further discuss that a leader-based committee protocol introduces
several challenges including, Denial-of-Service attacks directly targeted at com-
mittee leaders, and malicious leaders detection that degrades performance.

Bano et al. [61] also identifies that a single shard failure compromises the security
of the entire system.

3not included in this literature review

16 :

Manuskin et al. [53] discusses the vulnerability to Denial-of-Service attacks in
sharded systems. The authors argue that since transactions are assigned to shards
based on their hash, it is possible for an adversary to create many transactions
targeted at a single shard in order to overwhelm the shard.

Harmony [36] state that the Distributed Randomness Generation protocol in Rap-
idchain is not secure because malicious nodes can send inconsistent shares that
create multiple possible versions of the randomness. The authors cite the work of
Syta et al. [6]4, but do not give any more detailed explanation. They then propose
using a Verifiable Delay Function, as proposed by Boneh et al. [7]5 and used by
the Ethereum 2.0 implementations, combined with a Verifiable Random Function,
as the one currently in use by rapidchain, to create an unbiasable and verifiable
random number. The authors state that this prevents the last-revealer attack, as
explained by Dworzanski [8]. The authors do mention that this approach is vulner-
able to situations where an adversary with more computation power than the hon-
est nodes will be able to calculate the randomness slightly before the honest nodes,
which could lead to situations where the adversary has an advantage.

3.3.3 Error Correcting Codes

Li et al. [41] introduced a coded sharding scheme that mixes several normal data
shards into one coded shard the size of one normal shard. This provides data
replication, to ensure that data is not lost even if one shard fails, but introduces
computational redundancy.

Choi et al. [56] comments on the work of Li et al. [41] by stating that the high
communication burden of using coded data shards limits the application in prac-
tice, because required shards must be transmitted to the shard responsible for the
resulting transactions.

Choi et al. [56] further presents a scheme that uses a network coded practical
byzantine fault tolerant algorithm for data replication and communication. This
scheme starts with a client sending a transaction to a single node that is respons-
ible for sharing a subset of the data with other backup nodes.

Harmony [36] claims that their solution, which uses RaptorQ’s fountain code, is
better than Rapidchain’s fixed-rate Reed-Solomon codes because such codes may
lead to transmission failures once symbols are exhausted. While fountain codes
do enable infinite, just-in-time generation of encoding symbols, no more detailed
analysis or discussion was provided to back up this claim.

Chawla et al. [65] also presents a solution using rateless fountain codes in the
context of a normal Nakemoto consensus blockchain. The authors showed that
by using error correcting codes it is possible to increase block size while keeping
the orphan rate at an acceptable level. This results in higher miner profitability

4not included in this literature review
5not included in this literature review

Chapter 3: Litrature Review 17

and transaction throughput, but negatively effects computational efficiency and
latency.

3.3.4 Miscellaneous

Woo et al. [72] presents two algorithms dedicated to solving dynamic load bal-
ancing in Ethereum’s sharding environments. The first algorithm predicts future
transaction gas load based on previous gas usage. The second algorithm places
the result from the first algorithm into a priority queue, that is used to relocate
accounts across shards in order to balance the gas consumption of the system.
They experienced up to 12% increase in transaction throughout and up to a 74%
decrease in transaction latency. The authors did not discuss Rapidchain in any
other capacity than to introduce sharding.

Hafid et al. [52] discusses two blockchain projects in industry, Harmony by Har-
mony [36] and Zilliqa [20]6. The authors state that both these projects achieve
high throughput, but Zilliqa has severe shortcomings because it does not shard
state, and the sharding process is vulnerable to singe-shard takeover attacks. Har-
mony [36] do however claim that they address these problems.

Bano et al. [61] state that a client-driven protocol, such as Omnilegder by Kokoris-
Kogias et al. [21]7, where clients are responsible for part of the cross-committee
transaction process, is vulnerable to Denial-of-Service attacks that may result in
clients losing all the involved value.

Bartolomey [54] state that Rapidchain has less storage overhead than Omniledger
due to omitting any data that contains fully spent UTXO’s, rather than implement-
ing a checkpoint mechanism. The author discusses the fact that this assumption
is "rather strong" due to the existence of high-stake transactions that optimally re-
quire more validation. This trade-off, that does not treat low or high-stake trans-
actions differently, but consequently decreases the security of high-stake transac-
tions, differs from similar protocols. The authors remark that this trade-off, along
with its several other improvements, makes Rapidchain the best option for a gen-
eral purpose blockchain.

Matzutt et al. [73] presents a novel pruning method for integration with the exist-
ing Bitcoin blockchain, along with a survey of pruning mechanisms. The authors
take inspiration from the fast state sync approach of Ethereum that ties the cur-
rent state to each block. This allows a node to only download the current state
with the entire header-chain. The node can then easily verify that the state was
valid at that specific block and continue as normal from that block. The authors
then present CoinPrune, where snapshots of the current UTXO set, along with
other metadata, is made periodically by miners and it’s hash is included in those
blocks’ coinbase (making it available in the header-chain). Each miner that fol-
lows the CoinPrune meachinsm will include the snapshot identifier (a hash of the

6not included in this literature review
7not in this review

18 :

snapshot) in their blocks coinbase for a certain reaffirmation time after this. A
new node can then bootstrap its blockchain by downloading the entire header-
chain, along with a snapshot, and sync as normal after the snapshot. A new node
will verify the snapshot by counting snapshot identifiers in the header-chain, and
will only accept the snapshot if it has the majority of the reaffirmations. The au-
thors provided only a limited security discussion, but there does not seem to be
any large security hole. The authors perceived a storage overhead decrease from
230GiB to 5GiB and synchronization time from 5 hours to 46 minutes for new
nodes joining the system. This is because new nodes only need to download the
current, pruned, UTXO set.

Wang et al. [62] note that the cross-chain mechanism in Rapidchain causes three
transactions for every cross-chain transaction, increasing the total number of trans-
actions that need to be processed, subsequently increasing the communication
burden. These transactions also depend on the routing algorithm, and the authors
state that this is a potential bottleneck.

Dang et al. [64] discusses the fact that since Rapidchain does not provide atom-
icity of cross-shard transactions, it is unsuitable for a non UTXO based system, for
example an asset based account system.

Harmony [36] presents a commitee-based sharding blockchain called Harmony,
that builds upon Rapidchain and uses many of its components. Harmony breaks
the assumption of Rapidchain that all participants have equal computing power,
and employs a Proof-of-Stake system where the staked capital determines how
many voting shares the participant has in the next epoch. Large stakers would
therefore have more control over the system.

Harmony [36] uses both the reconfiguration protocol of Rapidchain, but with vot-
ing shares as first-class citizens, as well as the Information Dispersal Algorithm,
but with different codes.

Kokoris-kogias et al. [47] introduced the allegedly first asynchronous distributed
key generation, by creating a novel high-threshold asynchronous verifiable secret
sharing construction. These constructions result in a shared key that can encrypt
data, generate signatures with constant sizes representing a threshold of parti-
cipants and otherwise scale blockchains. The authors only mentioned Rapidchain
in the context of the latter.

Kokoris-kogias [33] presents MOTOR, a BFT consensus protocol intended to re-
place the one in Omniledger [21]8. The author utilizes BLS signatures in an ag-
gregation signature scheme, as presented by Boneh et al. [19]. This aggregation
scheme transforms multiple signatures into one single verifiable signature, sig-
nificantly decreasing the computational time to verify blocks. The BLS scheme is
also used for threshold cryptography, where a committee can only produce a valid
signature if a threshold of nodes signs the message.

8not included in this literature review

Chapter 3: Litrature Review 19

3.4 Discussion of literature review

3.4.1 Incentive mechanism

The original study by Zamani et al. [1] does not present or discuss an incentive
scheme, but it is obvious that an incentive scheme should be developed before the
application to real world use.

Manshaei et al. [39] did not assume malicious adversaries, therefore the derived
theorems and equations need to be adjusted to account for the specific threat
model in committee-based sharding protocols. The proposed novel incentive mech-
anism lacks details and discussion. Some potential weaknesses of the mechanism
include the need for a coordinator that could produce malicious information, as
well as the need for the coordinator to control rewards that could result in unfair
exclusion or selfish reward distribution. The number of transactions required per
epoch in the proposed mechanism is in the range of 7000-12000, which may af-
fect smaller blockchains. Lastly the model that the authors presented differs from
the model of Rapidchain, and the results may therefore not be applicable.

Manshaei et al. [39] results are however interesting and could be used to determ-
ine if any proposed incentive mechanism would produce a cooperative equilib-
rium. The naive fair reward concept could also provide a simple incentive mech-
anism for Rapidchain. The concept of the novel incentive mechanism should be
explored further, for example, an interesting question could be how performance
would be affected.

It is unclear how the incentive mechanism of Wang and Wu [34] affects perform-
ance since the proposed mechanism was also bundled with other novel compon-
ents outside the scope of this literature review. The evaluation did however give
an indication that increases in delay were on the scale of 1.5 -> 4.5 times the ori-
ginal delay depending on the ratio of adversaries, but an estimation of delay was
not provided. However one can assume that this incentive approach will increase
the communication burden significantly since all rounds need to be broadcast and
enough time has to pass for a node to challenge the transaction. In the case of a dis-
pute, the delay of the special committee protocol must also be included. The worst
case delay for a transaction may therefor be very large and not feasible.

Wang and Wu [34] designed this mechanism specifically for "Validation intens-
ive Transactions", transactions that for example execute smart contract code, and
these transactions further use an off-chain computation scheme. So the high delay
may be justified in such a system, but since all individual transactions in Rapid-
chain require the same low validation effort this incentive mechanism might not
be suitable.

Harmony [36] introduces the use of penalties to the incentive mechanism. How-
ever the use of a penalty system requires something to be staked, and there-
fore cannot be directly applicable to Rapidchain in its current Proof of Work
form.

20 :

Chawla et al. [65] shows that a transaction fee needs to be large enough such
that the reward for including a transaction in a block is higher than by mining an
empty block. This is an important property to have in any incentive scheme.

3.4.2 Security

The results of Das et al. [42] show that the security of Rapidchain comes directly
from how many nodes are present in the system. The larger the network size,
the more secure the system is. Rapidchain does not trade-off performance in the
honest case.

Hafid et al. [52] results shows how much of an improvement Rapidchain is in re-
lation to its academic and industry counterparts, further establishing it as the best
solution in the literature at the time. This is mainly because Rapidchain’s threat
model allows up to 1/3 total adversaries and 1/2 adversaries in each commit-
tee, compared to the 1/4 total adversaries with 1/3 committee adversaries in its
counterparts. As an example, the authors present a failure probability of 1.34E-02
using a committee size of 250 on the Rapidchain counterparts, with 4.7 days to
failure. When compared to the results in table 3.2 Rapidchain has a several orders
of magnitude better failure probability for the same committee size.

The results from Rajab et al. [76] are not directly applicable to Rapidchain due to
the difference in adversary power, but its theorems seems applicable to Rapidchain
with modifications. One can therefore use the work of Rajab et al. [76] to find
out if the hashing power of an adversary breaks the total resiliency of 1/3 in
Rapidchain.

The result of Wang et al. [62], and subsequently of Bano et al. [61], may indicate
that the the reconfiguration and distributed random generation protocol should
be investigated for possible sources of bias. The inconsistent share problem, as
presented by Harmony [36], should also be addressed in a revised distributed
random generator protocol. The bias of such a protocol must be thoroughly ad-
dressed. In fact, the work of Wang et al. [62], Bano et al. [61], and Harmony [36]
indicate that there might be a bias problem in any distributed random generation
protocol. The following research question can be formulated. Is there potential
for bias in any component of the Rapidchain protocol?

Rapidchain assumes that every node has equal hashing power, but this is not true
in a real life scenario, as described by Bano et al. [61]. A big miner can therefore
increase the number of included identities it can produce and therefore increase
the likelihood of controlling a larger amount of nodes in each committee. This
problem is however present in any blockchain protocol.

The possibility to detect a malicious leader, as described by Bano et al. [61], should
be explored. Is it, for example, possible for a committee to produce a proof of
malicious behaviour that can be used to penalize malicious nodes?

Manuskin et al. [53] do not discuss the possibility of an incentive mechanism that

Chapter 3: Litrature Review 21

would make such attacks costly. Honest transactions could simply raise their trans-
action fee to be included. However, such Denial-of-Service attacks are prominent
in any blockchain system, but since a single shard failure would affect and pos-
sibly break the entire system its impact may be more significant in Rapidchain and
it should be accounted for in a potential incentive mechanism.

3.4.3 Error Correcting Codes

The concept of storing shard data on several shards will increase security and
lower absolute failure probability. Li et al. [41] used a relatively low number of
nodes in each shard, where the failure probability of one shard is higher. The prob-
ability of a shard failure in Rapidchain is only high when the number of committee
members are low. A replication scheme may therefore help in small Rapidchains,
but it may also provide the ability to recover from shard failures, somethimg which
was not discussed in the Rapidchain paper Zamani et al. [1].

Choi et al. [56] concept of dividing data into several nodes might be usefull if
implemented on a committee level, for example by partitioning each checkpoint
state into multiple shards, but the method of communication is mainly covered
by the IDA protocol of Rapidchain. Choi et al. [56] did not discuss their method
compared to the conceptually similar IDA protocol.

The results of Chawla et al. [65] are not be applicable to Rapidchain due to
the fact that Rapidchain does not use Nakemoto consensus, but nevertheless it
shows that bigger blocks are propagated faster than by not using error correcting
codes.

Neither Harmony [36] or Chawla et al. [65] discussed the difference between
the fixed-rate code that Rapidchain uses, and the rateless code of fountain codes.
Neither did the authors of these two studies discuss fountain codes in the relevant
context of Rapidchain. Any relevant performance impact of using fountain codes
for Rapidchain can therefore be questioned.

3.4.4 Miscellaneous

Ethereum has an account based system, where one specific shard contains one
specific account and all its transaction history. Rapidchain on the other hand uses
a UTXO system where each transaction is independent. Due to this fact, the work
of Woo et al. [72] cannot be applied to Rapidchain, but the observed results may
indicate that improving load balancing for an UTXO system might provide better
performance.

Tee work of Bano et al. [61] shows that since the Rapidchain protocol is not client-
driven then a fatal Denial-of-Service attack is mitigated. This indicates the security
improvement of the Rapidchain protocol over the Omniledger protocol in Kokoris-
Kogias et al. [21].

22 :

Bartolomey [54] state that Rapidchain does not utilize a Checkpointing mechan-
ism. The authors of Rapidchain did however state that a checkpoint mechanism
was utilized, but did not go into any more details. The results of Bartolomey [54]
do however indicate that Rapidchain is more secure and better suited for general
use than its predecessors.

The work of Matzutt et al. [73] is not directly applicable to Rapidchain due to its
design being influenced by the need for applicability to the current running Bitcoin
blockchain. However, the concept of the checkpoint mechanism of Matzutt et al.
[73] seems applicable to the Rapidchain protocol.

The results of Wang et al. [62] indicate the problem of every transaction poten-
tially increasing the amount of transactions that need to be processed. A trans-
action can have many cross chain transactions, not just three. Nevertheless the
bottlenecks of the cross-committee transaction protocol and the routing protocol
should be investigated.

Dang et al. [64] state that the design of Rapidchain makes a switch from an UTXO
based system to an asset based account system impossible. However, one can
design a system where special accounts can be created that belong to the receiver
of a transaction if and only if all transactions involved are successful, if not, the
output would belong to the original sender of the transaction and no assets would
be lost. This approach would incur an extra computation cost since it would re-
quire special design. It is unclear as to how this approach would perform under a
smart contract scenario, but there are indications that atomicity can be emulated
using the current cross-committee design of Rapidchain.

The study by Harmony [36] is classified as a white-paper, an overview of their
technical solution intended for industry deployment. As such it did not include
any details, comprehensive discussion, analysis or evaluation, but the abstract
concepts presented by the authors are relevant. The use of the reconfigruation
protool and IDA protocol of Rapidchain in this study Harmony [36] further indic-
ate that the design of these components are state of the art. Indeed, the authors
did not find any negative aspects to these approaches.

Rapidchain participants sign blocks individually, and gossip both its own signature
and others. This potentially leads to a large storage and communication overhead.
A shared key scheme, as presented by Kokoris-kogias et al. [47], with constant-
sized signatures may therefore provide storage and communication performance
increase. The authors however did not evaluate their constructions in terms of
performance. Neither did the Rapidchain paper go into depth in relation to the
performance impact of their scheme, so it is unclear if there is a performance in-
crease by changing the protocol in favor of a shared key scheme. Such a change
would also change many high-level components of the protocol. The asynchron-
ous verifiable sharing construction may be applicable if Rapidchain changes its
assumption from synchronous/partly synchronous to asynchronous.

Kokoris-kogias [33] use of a cryptographic aggregation scheme, and threshold

Chapter 3: Litrature Review 23

encryption scheme may indicate that the use of a more advanced cryptographic
scheme can significantly increase performance. If for example the size of signa-
tures becomes a bottleneck, then an aggregation scheme could be employed to
limit the size of the signature set to a single compact signature.

3.4.5 Review questions

This subsection will answer the review questions presented in the review protocol
3.1.

• RQ1: Is the Rapidchain protocol state of the art?

◦ None of the studies presented in this chapter indicate that a better
solution has been presented in the relevant literature. Harmony [36]
does present a solution that claims to be better than Rapidchain, but
due to lack of results and analysis, this statement cannot be verified.

• RQ2: Are there any areas of the Rapidchain protocol with shortcomings or
limits that should be investigated?

◦ The lack of incentive mechanism in any committee-based sharding pro-
tocol, as presented by Wang et al. [62] and Bano et al. [61], indicate
a clear area of research.

◦ Wang et al. [62] indicates a lack of discussion of the consequences of
a malicious leader.

◦ The results of Wang et al. [62], Bano et al. [61], and Harmony [36]
indicate the possibility of bias in the different protocols.

◦ Wang et al. [62] also indicate a potential bottleneck in the cross com-
mittee transactions protocol

• RQ3: Has there been any attempts to recreate either the Rapidchain protocol
or recreate results of some of the components Rapidchain introduces?

◦ Hafid et al. [52] produced a probability bound for the failure probab-
ility of Rapidchain, confirming the failure probability presented by the
Rapidchain paper. No other study attempts to reproduce the results of
Rapidchain, and no attempt of a second implementation was found.

• RQ4: Is there any research in the literature about committee-based sharding
that can be applied to Rapidchain?

◦ Most of the studies presented in this chapter had a potential applica-
tion on Rapidchain. The discussion in Section 3.4 provides the answer
to this review question.

Chapter 4

Reworking the Rapidchain
protocol

This chapter introduces several shortcomings, drawbacks and missing details of
the Rapidchain protocol as presented by the original paper [1]. Some solutions
will be presented or discussed.

4.1 Consensus protocol

How does an honest leader re-propose pending blocks, and why does a pending
block need to be committed to the blockchain?

There are three scenarios for a non valid block. (1) A leader equivocates by send-
ing multiple proposed blocks or block headers, (2) the block contains invalid trans-
actions or other invalid fields, or (3) it did not receive the required amount of valid
signatures within the defined time. If any of these scenarios are fulfilled the block
is defined as pending. The pending block cannot be committed to the blockchain
since a block needs mf + 1 "accept" votes to be valid, and honest nodes do not
send "accept" votes on a non-valid block.

The authors did not define the process of re-proposing these blocks referred to in
the previous paragraph, and gave no motivation for why a non-valid block should
be re-proposed. A pending block should not produce changes to any state, since
it is invalid. Therefore there does not seem to be any reason as to why a pending
block should be committed to the blockchain. The authors did not describe any
block creation protocol. The only reason to commit a pending block would be if the
block creation protocol produced state changes. This could happen if for example
the block creation protocol only included transactions added to the transaction
pool in the previous iteration. Therefor if a pending block was not committed it
would cause every transaction committed to the transaction pool in that iteration
to be lost. We can however define a block creation protocol that operates on a

25

26 :

independent transaction pool, where transactions are not removed from pool until
they are in an accepted block.

A potential motivation for committing pending blocks could be to detect if too
many pending blocks were created due to scenario (3) where there is not any dis-
honest behaviour involved, but rather where the synchronicity assumption might
have been broken due to a low∆. This could produce the necessary data required
for a delta-changing protocol or ceremony.

Another potential motivation for committing pending blocks could be to have an
irrefutable record of a potential dishonest leader. But because in practice the syn-
chronicity assumption could break, and a pending block is created by scenario (3)
without dishonest behaviour involved, then punishment or blacklisting should be
done carefully, and preferably in conjunction with an incentive mechanism.

Given the proper motivation for re-proposing a pending block it could be as simple
as proposing a chain of blocks. Each pending block could then be wrapped in a
null-block, that does not produce any state changes, but encapsulates the original
block, so every committee member can confirm that the block is indeed invalid,
and check that they have previously denied the block. This null-block would then
reference the previous block and have its own unique hash. If there are several
pending blocks then the next null block can reference the previous null block, and
so on, until a new block is proposed that references the last of the null blocks.
This way we will have an uninterrupted hash-chain that can be voted on.

The implementation presented in this thesis does not have a need for the motiv-
ations discussed above, and will therefor not be re-proposing blocks. If a block is
invalid, or pending, it will not be committed and the next leader will propose a
new block. With a different, but most likely similar, transaction set.

How does nodes in a committee communicate messages in the consensus
protocol?

The authors only state that each committee member "gossips" it’s consensus mes-
sages. It is unclear if the full IDA-Gossip protocol or normal gossiping to neigh-
bours is utilized. The authors do however state that the they use a variant of the
synchronous consensus protocol of Ren et al. [9]. The protocol of Ren et al. [9]
utilizes all-to-all communication.

Due to the fact that the committee sizes are relatively small, and the implementa-
tion presented in this thesis is highly parallelizable, the all-to-all communication
pattern of Ren et al. [9] is utilized in this implementation.

How is the leader election protocol in committees defined?

The authors only state that the current epoch randomness is used to elect the
current leader. They do however define a leader election protocol used in the

Chapter 4: Reworking the Rapidchain protocol 27

bootstrapping protocol. Can this protocol be used at the start of each committee
iteration?

The authors call this protocol "Subgroup election", where each member runs a dis-
tributed random generator protocol to generate a random string s. Each member
calculates h = H(s||I D) and if h <= 2(256−e), where e = 2, is true, it announces
itself as leader. Given a synchronous round, then each member in the committee
will honor the node with the lowest observed ID.

Since an epoch contains many iterations, this approach would only elect a single
leader for every epoch. We mitigate this issue by including the current iteration
in the calculation h= H(s||i||I D).

In a committee leader election protocol we can replace s with the epoch random-
ness, as the authors stated. Since the set of members in a committee is known to
every committee member, each node can easily verify if they have the lowest h, by
calculating hcm for every committee member, without setting an explicit bound on
h. The implementation presented in this thesis assumes that every node remains
online, and therefor the node with the lowest h will assume the role of committee
leader automatically without exchanging any messages.

Definition 1 (Leader election protocol). If s is the current epoch random-
ness, and assuming every committee member cm, with ID cmI D, is online.
At the start of every iteration i, all members will calculate

hcm = H(s||i||cmI D) (4.1)

for every committee member cm in C , including itself. The node with the
lowest hcm will then be accepted automatically by all committee members.

A more advanced leader election protocol must be designed if we break the as-
sumption that every node remains online. Such a protocol can be implemented
by choosing a threshold t. If t = 2, then if a node calculates that h is either the
lowest, or second lowest compared to the set of calculated hcm they can announce
their h to every committee member. Given a synchronous round every committee
member will now agree on the lowest observed h, and the announced message
ensures that the leader is online. But such a protocol is outside the scope of this
thesis.

How are iterations synchronized among committee members?

The authors made no statement on when an iteration starts. A simple solution
would be to assume a perfectly synchronized clock. Each committee member
would then start the leader election protocol in given intervals defined by∆. How-
ever, no perfectly synchronized clock exists in the world. We could approximate
such a clock in a controlled testing environment but that this would be impossible
in the real world. A better solution would be to start leader election after each

28 :

block is accepted and processed into the blockchain. That way we ensure that an
iteration is entirely finished before starting a new one. This approach trades off a
bit of potential delay with consistent iterations.

Definition 2 (Leader election protocol start). The leader election pro-
tocol will be initiated by every node right after the previous block is ac-
cepted and processed.

4.2 Inter-committee routing with Kademlia

The authors state that they construct their inter-committee routing protocol based
on ideas from the Kademlia protocol presented by Maymounkov and Mazieres
[10].

What distance metric should be utilized?

The choice of distance metric was not clear. The authors suggested the use of the
Hamming distance metric, as presented by Hamming [11], but gave no reason or
discussion on the choice of this metric. Maymounkov and Mazieres [10] presents
the XOR metric, which is used as the foundation for the rest of the Kademlia pro-
tocol. Due to this, the implementation presented in this thesis utilizse the original
XOR metric.

Routing protocol definition

It is also unclear how the routing protocol operates and how much of the Kademlia
protocol is used. Is the kademlia protocol used only to gather routing information
or is it used to physically send messages? The two possible solutions are presented
in the following list:

(1) The original Kademlia protocol is only used for routing information. To find
a target committee Ct that does not belong in the routing table in the send-
ing committee, then a subset of the nodes in the sending committee Cs will
then issue "find_node" messages to the committee C1 in their routing table
that is closest to the target committees ID, based on the XOR distance met-
ric. If the target committee belongs in committee C1’s routing table, the
information on Ct is sent back to the sending committee Cs. Now Cs has the
required network information to send a message to the target committee
Ct . If C1 does not have Ct in it’s routing table it will return the commit-
tee C2 that is closest to the target committee, and the sending committee
will again send a "find_node" message to C2. This process is performed up
to log(n) times because each committee stores the information of log(n)
committees.

(2) The full message is sent from the sending committee Cs to the first commit-
tee C1 in the routing path. That committee will route the transaction to the

Chapter 4: Reworking the Rapidchain protocol 29

next committee in the routing path C2, until the transaction is received at
the target committee Ct .

If (2) is chosen, it will put a significant burden on the network since the full
message needs to be sent to each committee in the routing path. Option (1) is
more lightweight since you only have to send the target committee ID (32 bytes
in the implementation presented in this thesis), and the response would be the ID
and IP pair of a subset of the nodes in the next committee (32 bytes for ID plus 6
bytes for IP and Port per node).

Option (1) is also a subset of the solution presented by Maymounkov and Mazieres
[10], whereas option (2) only utilizes the routing table and distance metric of the
Kademlia solution.

Due to the reasons presented above, option (1) would be the better choice, and is
the one that the implementation in this thesis utilizes.

Is this routing protocol susceptible to Denial of Service attacks?

Due to the fact that transaction, or messages, are routed without confirming the
validity of the transactions it may be very easy to perform cheap Denial of Service
attacks by flooding the network with invalid transactions that target the longest
routing path. Due to insufficient computational resources this could not be invest-
igated in this thesis.

Is a routing protocol necessary?

Given the existence of a cheap Denial of Service attack, it may seem as if the
routing protocol trades-off security for scalability.

The authors state that storing the required network information for every node in
the system will compromise privacy, simplify Denial-of-Service attacks, and limit
scalability. However, each node already stores the ID of each node in the cur-
rent epoch in the reconfiguration block created by the reference committee. For
a network size of 4000 nodes this ID set only takes 128 kilobytes of storage. The
required network information of a node can be as low as 6 bytes, 4 bytes for the
IP and 2 bytes for the port number. For a network size of 4000 nodes this will
only add 24 kilobytes of storage. This information could be sent with the recon-
figuration block in each epoch, or a separate network layer could be employed so
each node could easily gather the information of the ID’s in the reconfiguration
block it does not have network information for. This could be done, for example
by employing the Kademlia protocol.

Such a system would compromise privacy and simplify Denial of Service attacks
somewhat, but every traditional blockchain system already suffers from the same
issues.

The implementation in this thesis will not utilize such a system because it is being

30 :

used to test the limits of the original Rapidchain protocol, although it may give
an indication for future work.

4.3 IDA protocol

How does Rapidchain create a well-connected random graph between com-
mittee members?

The authors state that "Rapidchain creates a well-connected random graph for gos-
siping between nodes on a committee", but does not state how Rapidchain creates
a well-connected random graph.

If neighbouring committee members are picked at random there is no guarantee
that the committee graphs are well-connected. In fact, creating a distributed well-
connected random graph is not an easy problem [12], and is outside the scope of
this study.

Since all committee members are known to each other it is an easier task to con-
struct a neighbouring set deterministicly based on heuristics that guarantee con-
nectivity. We already have such a construction in the Inter-committee routing pro-
tocol, and therefor we employ the same protocol and distance metric to create a
routing table of neighbouring nodes. If we ensure that committee ID’s and node’s
ID’s are both 32 bytes, the exact same algorithms can be applied.

The choice of the size of the neighbouring set was not presented or discussed by
the authors. So to ensure that the gossiping guarantees presented by the authors
still hold with this method we could supplement the above routing protocol by for
example choosing the nodes with distance 2i−2i/4 along with the original nodes
with distance 2i until we have d neighbours.

4.4 Cross committee transaction protocol

The cross committee transaction protocol presented in the original paper was very
short and incomplete, and the following section is therefore divided into several
sub-sections that will clarify and discuss details and inherent limitations of the
presented protocol, and then present an improved protocol that addresses these
limitations.

4.4.1 Clarifications

How are transaction divided into committees?

The authors state that "each committee only stores transactions that have the com-
mittee ID as their prefix in their IDs". The XOR distance metric, as presented by
Maymounkov and Mazieres [10], can also be seen as a common prefix distance
metric, and can therefor be used to fulfill this statement. The committee with

Chapter 4: Reworking the Rapidchain protocol 31

the lowest XOR distance to the transaction ID will be responsible for the transac-
tion.

Definition 3 (Committee ownership of transaction). A transaction be-
longs to the committee ID with the lowest XOR distance to the transaction
ID.

4.4.2 Small improvements

Ensure the uniqueness and security of derived cross committee transactions

To ensure that each derived cross committee transaction is valid, and its output
can only be sent to Cout , then the creator of a transaction must sign every input
with the transaction ID.

Definition 4 (Signing a transaction). When creating a transaction a user
must sign every input with the transaction ID as defined by:

Signaturei = Sign(Inputi||t I D)

Every input can now only be sent to the committee that owns the transaction ID, as
defined by definition 3. The output of every cross committee transaction response
is also automatically addressed to the owner of the input UTXO. Together they
ensure that a cross committee transaction response will only transfer the UTXO
to Cout , while the ownership of the UTXO stays the same.

4.4.3 Inherent Limitations

What happens if either Cout or Cin has a malicious leader?

The damage a malicious leader can do in an honest committee is limited to some
censorship and bias. A malicious leader can choose which transactions to include
in a block, and order those transactions in any order, but a malicious leader cannot
create an invalid or inconsistent block. Therefore, a malicious leader can choose
to not include any cross committee transactions in its block, but the next honest
leader will include it. This will only increase the potential delay, but will still satisfy
liveness.

However, since the authors state that only the leader in Cout will send the de-
rived cross-committee transactions, a malicious leader can choose to not send
these cross-committee transactions and at the same time deceive the rest of the
committee that it sent the transactions.

It is therefor clear that the leaders of the committees should not be fully respons-
ible for sending cross committee transactions, or their responses. To solve this is-
sue we can use the same ideas from the inter committee routing protocol, where
only log(m) nodes in a committee will route a transaction.

32 :

Definition 5 (Responsibility of cross committee transactions). A cross
committee transaction, or i’s response, is sent by log(m) members of a
committee, including the leader.

But how does a leader communicate to the rest of the committee that the original
transaction and derived cross committee transaction have been processed and
should be sent? And which log(m) nodes should be responsible?

Original, or derived cross committee transactions, are not added to the block-
chain in Cout

A simple solution to ensure that every original transaction, and its derived cross
committee transactions, are sent, is to add it to the current block. A block should
be accepted before the derived cross committee transactions are routed because
a block may be invalid. After the block is accepted, no leader can re-propose the
original transaction. These transactions should not produce any state changes, but
rather act as proof of transaction processing.

Definition 6 (Proof of Cross Committee Transaction Processing). Every
transaction that requires one or more derived cross committee transac-
tions is added to a block, along with its derived cross committee transac-
tions. These transactions are to be specially marked so that they are not
processed, and therefor do not produce any state changes.

Once a block is accepted. The log(m) nodes will send the cross committee transac-
tions to their destination committees, but how do we choose these nodes?

Which log(m) nodes should be responsible for sending the transaction?

How do we maximise the probability that these log(m) nodes will send the trans-
action?

To maximize the probability of success we need to pick nodes at random, but
only from the set of active nodes. Assuming the existence of a signature set, as
defined in definition 11, it can be used to detect which public key was active
in that iteration. We can borrow from the leader election protocol and select the
log(m) nodes from the last signature set that has the lowest h= H(s||i||I D).

Remark. This will automatically add the leader to the set of nodes since
the leader always has the lowest h of the active set of nodes in an iteration.

Definition 7 (Responsibility of cross committee transactions). A cross
committee transaction, or its response, as presented in definition 6, in
an accepted block, will be sent to their target committees by log(m) com-
mittee members.

These committee members are chosen from the set of public keys presen-
ted in the accepted blocks signature set and is the log(m) nodes with the

Chapter 4: Reworking the Rapidchain protocol 33

lowest h= H(s||i||I D). These log(m) nodes are called responsible nodes.

Since the set of committee members is known, each member can easily verify if
they are responsible.

Since committees can have up to 1/2 corrupt members, then it is not unlikely that
all log(m) responsible nodes are corrupt. Due to this possibility, this is not a secure
protocol, but in fact, none of the routing or gossiping protocols presented in the
original Rapidchain paper, nor its derivation in this thesis, are secure. The only
way to ensure succesful routing would be to have mf + 1 responsible nodes, but
this would have a huge network penalty. In fact, only one responsible node needs
to be honest to successfully send a transaction, given the success of the routing
protocol.

We can somewhat mitigate this issue if none of the responsible nodes send the
transactions by allowing C to send the cross-committee transactions again after
some iterations, if no response has been received. Cother can then detect mali-
cious behaviour if the responsible nodes did not send the cross committee trans-
action response. This approach would however be very dependent on an incentive
scheme and is therefore outside the scope of this study.

A cross committee transaction is not verifiable by Cout

How does Cout verify that a completed cross committee transaction was in fact
included in an accepted block in Cin? The authors did not discuss or present this
problem.

If a committee does not verify that a completed cross-committee transaction is
valid, then any malicious member of Cin can pose as a responsible node, as defined
in definition 7, and send invalid or inconsistent transactions to Cout . Cout would
have no way of knowing which return message would be correct. A simple solution
would be to make all committee members send all cros-committee transactions
responses, to their target committees. But this would incur a heavy performance
and delay penalty, and would make all nodes in a committee potentially commu-
nicate with a large number of committees. A better solution would be to attach
some kind of proof to cross-committee transaction responses that verifies that
the transaction is included into the blockchain of Cin. If the proof is valid then a
single honest responsible node is enough to ensure that Cout can verify the trans-
action.

Definition 8 (Cross committee transaction verifiability problem). A com-
mittee Cout must verify that a cross committee transaction response t i is
valid. The problem is split into the two following verification problems:

(1) Cout must verify that t i is included in the block biin belonging to Cin.
(2) Cout must verify that the block biin is accepted and therefor immut-

ably added to the blockchain of committee Cin.

34 :

The problem defined by definition 8 is solved by the novel contribution Proof of
Consensus, which is presented in the next section.

4.5 Proof of Consensus

4.5.1 Solving the cross committee transaction verificability problem

This section will address the cross-committee transaction verificability problem,
as presented in definition 8.

(1) Cout must verify that t i is included in the block biin belonging to Cin

To solve this problem we must create a block construction where its ID is determ-
inisticly created by its content. If a single bit in the block’s content is changed,
then its ID will also change. Committees vote only on a block header that includes
the block’s ID. So after a block is accepted in a committee the block’s content can
never change.

Assuming the existence of a valid and verifiable signature set, as described in
definition 11.

A simple solution would be send the entire block biin , with a valid signature set,
to Cout , The member of Cout can then easily see that transaction t i is included
in its transaction set, and if the computed ID of the block is the same as the one
presented, and assuming that the signature set accepts the block header, then
Cout can be sure that the transaction is valid. This solution would however incur
a heavy network penalty since blocks are relatively large in size, and since the
authors of the original paper stated that most transactions in the system are cross-
committee, then these relatively large blocks will be sent to a subset of committees,
severely limiting the performance increase over a system where all blocks are sent
to every committee.

To minimize the required size of a block we could construct a Merkle tree, as
presented by Merkle [13], on the transaction set. To prove that a transaction is
part of this transaction set then it is enough to have the Merkle root and the
Merkle nodes of the path towards the leaf node where the transaction is located.
Given such a construction you could construct a Merkle proof tproo f of each cross
committee transaction. This proof is enough to verify that a cross committee trans-
action is part of the transaction set. The Merkle tree root of the transaction set is
then included in the block header. To verify a transaction t i it is now enough to
have the block header and the Merkle proof of the transaction.

This block header that includes the transaction Merkle tree root, and other rel-
evant information, is the same for every cross committee transaction proof in the
same block. Therefor it is enough to send one block header to Cout , and a separate
Merkle proof of every t i .

Chapter 4: Reworking the Rapidchain protocol 35

The block header can be further optimized if we allow a committee to only vote
on the ID of a block. Then we can construct a small hash tree of the block header,
where the root of this hash tree is the block’s ID. To verify a transaction you only
need three values. The node in the hash tree then contains the hashes of all in-
formation except the Merkle root of the transaction set BHh, The Merkle root of
the transaction set tsmr , and the Merkle proof tproo f . The hash of the two first
values will then produce the ID of the block I D = H(tsmr ||BHh).

Definition 9 (Block ID). The ID of a block is created by the following
formulas where TSmr is the Merkle root of the transaction set, BH in f o
is other arbitrary information concatenated and hashed, and H is a hash
function.

BH in f o = H(infoi|| . . . ||infon) (4.2)

Block ID= H(TSmr ||BH in f o) (4.3)

Remark. A block header can be represented by just the two values TSmr
and BH in f o. Assuming that the output of the hash function H is of size 32
bytes, then this representation is only 64 bytes.

Definition 10 (Proof of Inclusion). A proof of any transaction t belonging
to any block B in any committee C can be represented by the following
set

PoI= [BH in f o, TSmr , tproo f] (4.4)

Where TSmr is the Merkle root of the transaction set, BH in f o is other arbit-
rary information concatenated and hashed BH in f o = H(info1|| . . . ||infon),
and tproo f is the Merkle Proof of a transaction in the transaction set TS.

But this proof only verifies that a transaction was included in a fictional block in
Cin, how can Cout verify that the block was immutably added to the blockchain of
Cin?

(2) Cout must verify that the block biin is accepted and therefor immutably
added to the blockchain of committee Cin.

How can committee Cout verify that a block biin produced by Cin is valid? This
can be solved by constructing a signature set consisting of the accept messages
of a block ID, the public key, and a valid signature from that public key of the
accept message and block ID. Cout must be able to verify that the public keys of
the signature set indeed do belong in that committee, and Cout must also ensure
that the set of public keys in the signature set is larger that mf +1. Only then can
committee Cout ensure that the block from Cin is valid.

36 :

As was explained in Section 4.2, the reconfiguration block includes all ID’s and
committee memberships, and is sent to every node in the system every epoch.
Committee Cout can therefor easily check that the set of public keys in the signa-
ture set SCi

belongs to committee Cin in epoch i by checking the reconfiguration
block Bre

of the current epoch.

Definition 11 (Signature set). The signature set S of an accepted block
B in iteration i by committee Cin, denoted by SCi

, is defined as a set of si
from i = 0, . . . , #(number of signatures).

si = [Tag=accept, pk=public key, signature from pk of (Block ID, Tag)]
(4.5)

4.5.2 Proof of Consensus

In this section we will combine the results of Section 4.5.1 to solve the cross com-
mittee transaction verificability problem with the novel contribution Proof of Con-
sensus.

Definition 12 (Proof of Consensus). Any transaction t, included in any
accepted block Bi in any committee C , has the following Proof of Con-
sensus (PoC) tPoC .

tPoC = [PoI, SCi
] (4.6)

Where PoI is the Proof of Inclusion defined in definition 10 and SCi
is the

signature set of the accepted block Bi defined in definition 11.

Theorem 1. A valid Proof of Consensus tPoC verifies that the transaction t
belongs in an accepted and therefore immutable block Bi in the committee
C , if and only if every committee is honest.

Proof. The Proof of Inclusion, as presented in definition 10, is correct
if the hash function H is collision-proof and if the Merkle proof tproo f
presented by Merkle [13] is correct.

The signature set SCi
, as described in definition 11, can be verified by

(1) Verifying that the public keys in SCi
belong in committee C in the

current reference block Bre

(2) Verifying that at least mf +1 signatures, that are valid against item
(1), are also valid against the Block ID, as presented in the Proof of
Inclusion, and the tag, as presented in the signature si .

If the committee is not honest then it could produce an invalid block with
more than mf + 1 valid signatures. Since all conditions presented in this

Chapter 4: Reworking the Rapidchain protocol 37

proof are still valid in that scenario, the Proof of Consensus would be
invalid.

If all the conditions are valid, then it is verified that the committee C has
accepted the block Bi , that contains transaction t. The block, and sub-
sequently the transaction, is therefor immutably added to the blockchain
in C .

Corollary 1.1. A Proof of Consensus tPoC can be verified by any node in
the system.

Proof. The required information to prove a Proof of Consensus is only the
information inside the Proof itself and the reconfiguration block Bre

with
the same epoch number as the transaction t. Every node in the system
stores all reconfiguration blocks Bre

, and therefore is able to prove any
Proof of Consensus in any epoch.

The Proof of Consensus is of a relatively large size, since it has to be sent with
every cross-committee transaction response, but it is required to verify a cross-
committee transaction response.

Only the Merkle proof tproo f of its inclusion in the transaction set is unique to
every cross committee transaction response in a single iteration. It is therefore
enough to only send one complete Proof of Consensus to each committee involved.
Every cross committee transaction response can then be verified with only tproo f
and the first tPoC in every iteration.

4.5.3 Applications on the cross committee transaction protocol

The Proof of Consensus construction enables the use of verifiable cross committee
transactions.

There is no need to include a proof of consensus when sending derived cross-
committee transactions from Cout because any request to do so can only come
from a new and valid transaction from a user.

However, when the committees Cin send the cross committee transaction responses
back to Cout , then Cout must verify that the transactions are valid, or else there
could be potential double spending.

Therefor every cross committee transaction response must have a Proof of Con-
sensus attached. As described in the previous subsection, we only send the first
tPoC to Cout and the rest of the cross-committee transactions responses that are
to be sent to Cout only include the Merkle proof of inclusion in the transaction set
tproo f .

38 :

4.5.4 Size

In this subsection, if the following assumptions are made: The output of hash
function H is 32 bytes, the block header can be represented by 2×H outputs, LTS
is the length of the transaction set, a Merkle proof can be represented by a path
of log2(length of transaction set) nodes where each leaf node is 32 bytes, a valid
signature can be represented by 96 bytes, a block needs mf +1 accept messages:
then the minimum size of a Proof of Consensus can be calculated by the following
formula:

PoCminsize = 64B+ log2(LTS × 32B) + 96B× (m× f + 1) (4.7)

The only variable in the equation above that may differ from iteration to iteration,
assuming that all committee members are online and therefore m is constant,
is the length of the transaction set. Assuming that a block is always filled with
the maximum amount of transactions, ignoring the size of the block header, and
assuming every transaction uses one Proof of Consensus, then one could use the
following formula to calculate the length of the transaction set, where tavgsize is
the average transaction size without a Proof of Consensus attached and B is the
block size.

LTS =
B

tavgsize + PoCminsize
(4.8)

Substituting LTS in equation 4.7 with the result from equation 4.8, and solving
for PoCminsize yields the following equation:

PoCminsize =
W (2

165+96× f ×m+tavgsize × B × log(2)))− tavgsize × log(2)

log(2)
(4.9)

Where W is the Lambert W function, also called the product log function, intro-
duced by Lambert [15].

As discussed in Section 4.5.3, as the number of cross committee transactions grow
larger, we can amortize the cost by only sending one block header and signature
set per iteration to each committee that requires it. Every cross committee can
then only be represented by the size of the Merkle proof.

Without block header and signature set, with the use of equation 4.8, and again
solving for PoCminsize we get the equation:

PoCminsize =
W (2

5+tavgsize × B × log(2)))− tavgsize × log(2)

log(2)
(4.10)

Chapter 5

Results

All the data presented in this chapter comes from the measurements of a single ex-
periment, except Figure 5.2, Table 5.4 and Table 5.5, which present the analytical
results of the equation presented in section 4.5.4.

5.1 Test setup

The experiment ran on 16 c5a.4xlarge instances on the AWS cloud infrastructure
[17]. Each c5a.4xlarge had 16 virtual CPUs @ up to 3.3 GHz, with 32 GiB of ram.
Each instance ran 8 nodes. A coordinator node, used to initiate the experiment,
emulate the bootstrap protocol, log results, and generate transactions, was placed
on a separate, but similar instance. All instances was placed in the same region
on the same sub network, therefor minimizing potential latency.

The original paper stated that the experiment utilized 32 Intel Xeon Phi 7210 ma-
chines with 1.3GHz processors, where each machine ran 125 nodes. These ma-
chines has 256 threads available [16], and therefor utilized approximately two
threads per node. Threads are equivalent to virtual CPU’s on the machines util-
ized in this thesis [17]. Even though two threads was utilized for each node in
both implementations, the CPUs used in this implementation had the potential
of reaching up to 3.3 GHz [17], almost three times as much as in the original
implementation.

5.2 Implementation details

The implementation used in this thesis was written in the programming language
Go1 due to the simplicity of writing concurrent programs with heavy amounts of
network usage. The source code of the implementation is open source2.

1https://golang.org/
2https://github.com/kimborgen/rapidchain

39

https://golang.org/
https://github.com/kimborgen/rapidchain

40 :

Parameter Value Note
n 128 total network size
m 16 committee size (8 committees)
Total f 1/3 total adversaries
Committee
f

1/2 committee adversaries

tps 10 transactions per seconds generated
κ 128 IDA Gossip shard size
Φ 80 IDA Gossip redundancy
∆ 4000 synchronous ∆
B 221 bytes block size

Table 5.1: Parameters used in the presented experiment

Mean 2.63 ms
Median 2.08 ms
Min 0.66 ms
Max 314.22 ms

Table 5.2: Measured performance when adding a Proof of Consensus

All communication is done over TCP channels, to guarantee delivery. Public and
private keys, and their signatures uses normal ECDSA cryptography [26]3, with
the elliptic curve secp256r1 [28]. The hash function H is the SHA-256 function,
which produces an output of 256 bits = 32 bytes [27]. For more implementa-
tion details visit the documentation in the README in the open source Github
repository.

The bootstrap protocol was not implemented, a coordinator node was therefor
used to emulate the setup required. The reconfiguration protocol was also not
implemented, and therefor there is no reference committee in the current imple-
mentation, and there is only one epoch.

The parameters used to run the experiment presented in this chapter is presented
in Table 5.1.

5.3 Proof of Consensus

Proof of Consensus, which is the novel contribution presented in section 4.5, only
has two potential performance impacts on the system, the computational power,
measured in seconds, required to add and verify a Proof of Consensus, and the
size of the Proof of Consensus. The size of the proof depends on the transaction
generation method, and as discussed in chapter 6, this method has limitations
in the current implementation. Due to this, an analytical approach is presented

3The implementation used can be found here https://golang.org/pkg/crypto/ecdsa/

https://golang.org/pkg/crypto/ecdsa/

Chapter 5: Results 41

Figure 5.1: Time to add (left) and verify (right) a Proof of Consensus in a cross
committee transaction response.

Mean 27.40 ms
Median 20.89 ms
Min 0.66 ms
Max 545.11 ms

Table 5.3: Measured performance when verifying a Proof of Consensus

42 :

Figure 5.2: Proof of Consensus size without optimization (left). Number of trans-
actions included in a block with a block size of 2048 kilobytes, without optimiz-
ations (right).

Committee
size

Size of PoC in
bytes

8 560
125 6173
250 12172

Table 5.4: Proof of Consensus size in bytes on relevant committee sizes

instead, using the equations presented in section 4.5.4.

Figure 5.1 presents the time to add and verify a Proof of Consensus, measured in
milliseconds. The y-axis, where the number of Proof of Consensuses is measured,
is considerably larger on the left-hand graph. This is due to the measurement
method, where the log(m) response nodes, as defined in definition 7, will log the
time to add a Proof of Consensus, whereas only the leader will log the time to
verify the same Proof of Consensus.

Due to outliers, the x-axis on Figure 5.1 is cut off to only display relevant data. The
mean, median, minimum and maximum of the same data is presented in Table
5.2 and 5.3.

The results of equation 4.9, with committee sizes m = [8,250], a block size of
B = 2048000, an average transaction size of tavgsize = 250 [14], and an f =
0.5, is presented in Figure 5.2 (left). The presented values for the size of the
proof depending on committee size is then used with equation 4.8 to produce the
number of transactions that can be included in a block of size 2048 kilobytes, with
committee sizes m= [8, 250], and is presented in Figure 5.2 (right).

Chapter 5: Results 43

Committee
size

Transactions in-
cluded in a block

8 2527
125 318
250 164

Table 5.5: Number of transactions included in a block of size 2048 kilobytes on
relevant committee sizes

There are three relevant committee sizes. m= 8 is used in the experiment presen-
ted here, m = 125 is the one presented by Zamani et al. [1] when the network
size is n = 500 (the lowest value presented in their study), and m = 250, which
is used with the targeted network size of n = 4000 in the same study. The values
for these committee sizes is presented in Table 5.4, for Figure 5.2 (left), and Table
5.5, for Figure 5.2 (right).

The values presented in Figure 5.2, and subsequently in Table 5.4 and 5.5, do not
use the optimization presented in section 4.5.4. When the optimization method is
utilized, equation 4.10 presents the estimated size of the proof. With the same val-
ues presented above, a block size of B = 2048000, and an average transaction size
of tavgsize = 250, equation 4.10 yields a size of d17.9e = 18 bytes. The amount
of transactions that can be included in a block, with the same values presented
above, is given by equation 4.8 and yields b7641.79c = 7641 transactions in a
block.

5.4 Cross committee transactions

Figure 5.3 presents how many cross committee transactions were necessary to
finish an original transaction. In the experiment presented here, a total of 1811
transactions were included in a finished block. Only 10% of those transactions
could be completed without a cross committee transaction, whereas 90% required
one or more cross committee transactions.

Zamani et al. [1] did not present the number of cross committee transactions
that were involved in a transaction. To this extent, the results presented here can
therefore be classified as novel although no changes in the implementation in
this thesis from the original implementation by the authors should produce any
changes to the presented results.

5.5 User-perceived transaction latency

Figure 5.4 presents the distribution of user-perceived transaction latency for trans-
actions with differing amounts of cross-committee transactions. The two transac-
tion outliers with three cross-committee transactions, as can be seen in Figure 5.3,

44 :

Figure 5.3: Amount of cross committee transactions involved in a transaction

Figure 5.4: User-perceived transaction latency for transactions with no cross com-
mittee transactions (left), one cross committee transaction (middle), and two
cross committee transactions (right).

Chapter 5: Results 45

Number of cross commit-
tee transactions

Measurement Seconds

0 Mean 38.03 s
0 Median 36.34 s
1 Mean 109.69 s
1 Median 108.02 s
2 Mean 111.86 s
2 Median 110.08 s
Total Mean 103.19 s
Total Median 101.49 s

Table 5.6: Measured transaction latency with varying cross committee transac-
tions.

Figure 5.5: Average seconds for an entire committee to successfully recover an
IDA message over time (left). Distribution of how many seconds it took to suc-
cessfully recover an IDA message for a node (right).

were omitted due to non relevant results. The total mean and median was also
included for comparison with the original study.

The mean and median for the graphs in Figure 5.4 are presented in Table 5.6,
along with the total calculated mean and median latency for every transaction,
which were of 103.19 ms and 101.49 ms respectively.

Assuming that the differing implementation details presented in this thesis do not
greatly affect transaction latency, then the result presented in this section would be
the best metric to compare with the original implementation presented by Zamani
et al. [1].

46 :

Mean per node 3.63 s
Median per node 3.00 s

Table 5.7: Measured mean and median latency for completing the IDA gossip
protocol for one message

5.6 IDA Gossip

Figure 5.5 presents the latency of the Information Dispersal Algorithm starting
when a node initiates the IDA Gossip protocol, and ending when each node suc-
cessfully reconstructs the message. Figure 5.5 (left) measures the average number
of seconds it took for an entire committee to successfully reconstruct an IDA mes-
sage, over time. Figure 5.5 (right) measures at each node, how many seconds
it took for the node to reconstruct an IDA message, and presents the calculated
distribution.

The mean and median measured latency for completing the IDA gossip protocol
for one message are 3.63 s and 3.00 s respectively. This is also presented in Table
5.7

The implementation of IDA presented in this thesis differs only from the original
study [1] in the choice of neighbours. The authors did not however present any
performance results on the IDA protocol, so we cannot compare results directly,
although if the results were to be compared they should not have been very dif-
ferent because the implementation difference should not affect the performance
results significantly.

Since no results were presented in the original paper, the results in this section
can therefor be classified as novel.

Chapter 6

Discussion

6.1 Effect of oversubscribing CPU on results

The test setup used to run the experiment presented in Chapter 5 may have im-
posed certain limitations on the presented results. As presented in Section 5.1, the
experiment used only two virtual CPUs, the equivalent of one CPU core, for each
node. Each node does however perform multiple actions simultaneously. We can
see the effect of this clearly in the presented results, where the maximum values
of Table 5.2, Table 5.3, and Figure 5.5 are orders of magnitude larger than the
mean and median. These spikes in the data can then be explained with the scen-
ario where the responsible CPU core chooses to prioritize other function calls in
the middle of the measurement of these results.

If the system is deployed to real-world nodes, that have the capacity to use several
CPU cores, then the outliers that cause spikes in the data would most likely be non
existent. For this reason, the median provides a better estimate of performance
than the mean, and will be used for the rest of this chapter.

6.2 Proof of Consensus

Figure 5.2, and subsequently Table 5.4 and 5.5, indicate the linear growth of a
Proof of Consensus depending on committee size when not utilizing the optim-
ization presented in Section 4.5.4. This linear growth has the effect of exponen-
tially decreasing the number of transactions that can fit in a 2048 kilobyte block,
as can be seen in Figure 5.2 (right). In the target network size, n = 4000, of
the original study by Zamani et al. [1], only 164 transactions can fit in a block
using this method. This presents a significant bottleneck. Therefore, the optimiza-
tion presented in Section 4.5.4 must be utilized. Using optimization, only a single
full proof must be sent with each block. Each subsequent proof only requires 18
bytes, and 7641 transactions can be included in a block, as presented in Section
5.3.

47

48 :

If every transaction in the block of 7641 transactions has 1 cross committee, and
the size of a proof is 18 bytes, then the total size of every Proof of Consensus in a
block would be 137.5 kilobytes. An acceptable size with respect to the full block
size of 2048 kilobytes.

As we can see in Table 5.2 and 5.3, the median time to add a Proof of Consensus
is 2.08 ms, whereas the median time to verify a Proof of Consensus is 20.86 ms.
This difference in one order of magnitude is expected due to fact that adding
a proof requires little computation, whereas when verifying a proof a node has
to verify all signatures, as well as the Merkle proof, resulting in, among other
non relevant computations, several invocations of the hash function H. The result
presented in these tables might be questioned due to the limits of the testing setup
described above. The minimum time to both add and verify presented in the same
tables, indicates that the time to both add and verify a proof of consensus would be
significantly lower if enough CPU resources were available. Indeed by multiplying
the median times by the maximum number of transactions in a block the median
time to add would be 15.9 seconds, and the median time to verify would be 159.4
seconds, for each block.

However, since the data presented here, except the median times to add and verify
a proof, is based on an analytical approach, and not an experimental one, real
world results may vary.

The equations in Section 4.5.2 assumed that every transaction had exactly one
proof of consensus attached. This would not be the case in a real world scenario,
but as discussed in the next section, due to an imperfect transaction generation
method, a better real-world approximation could not be presented.

6.3 Cross committee transactions

As discussed in Section 5.4, 90% of the transactions in the presented experiment
required the use of one or more cross committee transactions. This resonates
somewhat with the results presented by Zamani et al. [1], who presented a 96.3%
probability of a transaction requiring a cross committee transaction with a net-
work size of 500 nodes, and 3 committees. But since the experiment presented in
this thesis uses significantly less nodes and more committees, the results do not
match perfectly.

However, in Figure 5.3 we can see that a transaction only has one or two cross
committee transactions, but the experiment presented in this thesis had 8 com-
mittees. Since transaction IDs would be divided over more committees, one could
also assume that a transaction would potentially have more than the observed
one or two involved cross committee transactions. This may be a limitation of
the transaction generation method. The transaction generation method used in
the presented implementation does not come from a real world set of Bitcoin
transactions, and is generated randomly. The transaction generation method may
therefor have only created transactions with low amount of inputs. Due to the late

Chapter 6: Discussion 49

Number of cross commit-
tee transactions

Measurement Seconds

0 Median 5.40 s
1 Median 16.20 s
2 Median 16.53 s
Total Median 15.24 s

Table 6.1: Measured transaction latency divided by the factor 6.66.

discovery of this issue, it was not investigated. To get a better estimation, it would
also be preferable to use a real world dataset.

6.4 User-perceived transaction latency

This thesis does not evaluate or measure confirmation latency. This is due to the
fact that confirmation latency is fully dependant on the synchronous round time
∆. A new iteration will start as soon as the previous one is done. A new transaction
received by a committee in an iteration will be included in the next one, assuming
that every block will empty the transaction pool. The experiment presented in
this thesis could not produce enough transactions to fill the 2048 kilobyte block.
Therefore, since a transaction will always be included in the next iteration in this
experiment, measuring confirmation latency is as simple as calculating the time of
an iteration plus the estimated time to wait before the next iteration starts which
is half the iteration time on average.

From Table 5.6 we can see that the perceived latencys of transactions containing
one or two cross committee transactions are quite similar, with only about 2 ms
difference. This is within expectations since the cross committee transactions are
sent at the same time to the two or more committees. The only differences would
be routing delay, if for example one committee is located within the routing table
of the sending committee while the other committee must be routed with the
inter-committee routing protocol, as well as differences in start times of iterations,
because iterations are not necessarily synchronous across committees.

The experiment presented in Chapter 5 used a high ∆ of 4000, compared to a ∆
of 600 used by Zamani et al. [1]. Since the confirmation latency is fully depend-
ant on ∆, the fact that that results are drastically worse is expected. Since this
thesis increased the ∆ by 6.66 times, we can calculate the expected results if we
lowered the∆ to 600. Table ?? divides the results of Table 5.4 by 6.66 for a better
comparison.

Zamani et al. [1] did not present results with a lower network size than 500. The
network size of 128 presented in this experiment can therefore not be fully com-
pared to the original. However one can expect that lower network sizes produce
lower transaction latency. The lowest latency presented by Zamani et al. [1] was,
with a network size of 500 with 3 committees, 8.04 seconds confirmation latency

50 :

and 32.2 seconds user-perceived latency, where these two values only increased
with higher network sizes. The original study did not present results that differ
between transactions of differing number of cross committee transactions, there-
fore it is only possible to compare the total median delay and not the individual
delays presented in this thesis. The result of 15.24 ms, with a network size of 128,
against the original result of 32.2 seconds, with a network size of 500, is not out-
side the realm of possibility. The user perceived latency presented by the Zamani
et al. [1], was only stable after a network size of 1000, therefore it is impossible
to calculate a formula for this latency for a better comparison.

Since the experiment did not allow any other measurement to be directly com-
pared with the results presented by Zamani et al. [1], the comparison of user-
perceived latency is the best comparison this thesis can make. As was discussed
above, it is impossible to compare the latency directly, but the perceived latency
was well within the realm of possibility. Therefor we can conclude that the imple-
mentation presented in this thesis is most likely similar to the one presented by
Zamani et al. [1] although this cannot be proven.

6.5 IDA Gossip

The size of committees was only 16 nodes. The lowest committee size presented
by Zamani et al. [1] is 125. Due to this difference, any results presented could not
be true in a larger committee. This section will however look at trends that may
be applied to larger committee sizes.

Remark. The implementation presented in this thesis starts each iteration
in every committee at almost identical times. Due to synchronous rounds,
the rounds should therefore also be synchronized across committees at the
start. Small changes in delay may have consequences, and rounds across
committees should therefore not be synchronized for long. Rounds are
not synchronized in either this implementation or the original one. The
synchronous rounds across committees in the start may therefore produce
patterns in the data that may not be true after a while.

As one can see in Figure 5.5 (left), the average time to complete the IDA Gossip
protocol for a committee increases, and then suddenly drops. This pattern contin-
ues to be observed, but becomes more unclear the more IDA messages are sent.
The only component outside the protocol that could invoke the use of the IDA pro-
tocol is the transaction generator, but the transaction generator was designed to
send a constant amount of transactions per second, randomly to any node in the
system, and should therefore not produce such a pattern. Since iterations across
committees are synchronized in the start, the increase and rapid decrease should
therefor encapsulate the natural iterations in committees.

The above-mentioned pattern is more clear in the start, since no cross committee
transactions exist in the system yet, and the only components invoking the IDA

Chapter 6: Discussion 51

protocol at that time would be transactions and the proposing of blocks. After a
few iterations one can still see the pattern, but it may be shifted due to iterations
across committees starting to become unsynchronized.

The spiking patterns at the end of iterations may be due to cross committee trans-
actions being routed to their target committees. Each receiving committee of such
transactions receives a minimum of log(m)messages of the same transaction from
the responsible nodes in the sending committee, and possibly more if the routing
protocol is utilized. Each of those messages would invoke the IDA protocol, even
though they are equal. This is required for security, but if t different cross commit-
tee transactions are sent to the same targeting committee from just one sending
committee, then a minimum of t × log(m) messages need the invoking of the
IDA Gossip protocol, from only one sending committee (excluding invoking the
IDA protocol from normal transactions). If every committee sends an average of t
cross committee transactions to each other committee in every iteration, then the
minimum of uses of the IDA protocol per committee would be n/m× t × log(m).
This may be the reason for large spikes of up to 34 second delays in the IDA pro-
tocol.

The issue presented immediately above should be solved by batching cross com-
mittee transactions, as Zamani et al. [1] presented. If these transactions are batched
together, then the IDA protocol should only be invoked n/m×log(m) per iteration,
and is therefore not susceptible to the amount of cross-committee transactions, but
rather only to the size of the network and committee sizes. The late discovery of
this issue resulted in batching not being implemented.

The analysis of the results discussed in this section showed the existence of a
bottleneck caused by the impact of the cross committee transaction protocol on
the IDA protocol. The issue is however easily solvable with batching. Batching is
not a novel contribution, but the argument for why batching is required becomes
more transparent with these results.

6.6 limitations

One large limitation of this study is the lack of computational resources required
for a proper comparison with the original study by Zamani et al. [1]. In testing,
it was impossible to launch more nodes per CPU than the ones presented in the
experiment in this thesis because the system failed due to the halting of too many
nodes. Since the maximum number of nodes the testing setup presented here
could run was 128, and the results with the lowest amounts of nodes in the ori-
ginal study used 500 nodes, it is impossible to compare fully the two implementa-
tions. The source code of the implementation presented by Zamani et al. [1] is not
available and can therefore not be used for comparison. Nonetheless, the results
discussed earlier in this chapter indicate similar trends in the data which can be
compared.

Another large limitation was the runtime of the experiment. The experiment presen-

52 :

ted in this thesis inexplicably ended after about 5 minutes. This may have been
due to the spiking pattern observed, causing huge bottlenecks that would halt
nodes and therefor break the synchronicity assumption. Due to limitations in time,
and the late discovery of possible bottlenecks, the issue could not be solved. The
previous sections in this chapter did however present possible solutions to these
bottlenecks, and once implemented, and run on a testing setup where multiple
virtual CPU’s can be assigned to each node, I believe that the experiment could be
run for the expected time.

Due to the limitations in runtime, as presented in the previous paragraph, meas-
urement of more relevant metrics could not be performed. The most interesting
metric in the original study was, in my opinion, the scalability factor. The trans-
action generation method was capped at producing at most 10 transactions per
seconds, otherwise the bottlenecks presented in the previous sections would be
large enough to only allow a successfully runtime. Due to the 10 transactions per
second limit, an honest comparison of the scalability factor could not be presen-
ted.

Due to the limitations presented in this sections, the artificial networking delay of
100ms as used in the original study was not implemented. Malicious behaviour
was also not implemented. The reason to not implement these importunity details
was mainly done to better observe the effect of the bottlenecks directly, to discover
the cause of the limitations, but due to time limitations, the solution to these
problem could not be located in time.

The ∆ was also set 6.66 times larger than the original ∆ due to the bottlenecks
presented in this chapter. Lowering the ∆ resulted in shorter runtimes with less
completed transactions. In order to gather interesting results to present in this
thesis the∆ had to be of such a large size. This further indicates that the synchron-
icity assumption did not hold in the implementation presented in this thesis.

The lack of the source code of the original implementation by Zamani et al. [1],
and the lack of implementation details presented in the original study, imposes
a significant limitation on the comparability between the two implementations.
Several details had to be clarified, or derived, in Chapter 4, and may differ from
the original implementation.

The scope of this study was also limited to only a subset of the full original imple-
mentation. Several components, such as the bootstrap protocol, reconfiguration
protocol and the responsibilities of the reference committee were not investigated.
Sparsification of the Merkle trees in the IDA Gossip protocols was also not imple-
mented. Therefor the implementation and results presented in this thesis cannot
be classified as a full replicability study. These protocols were discussed in detail
in the original paper by Zamani et al. [1], whereas the components implemen-
ted in this thesis, especially the cross-committee transaction protocol, were not
equally rigorously discussed compared with those in the original study, and the
results and discussion presented here, except the novel contribution Proof of Con-
sensus, can therefore be classified as an extension, or complement, of the original

Chapter 6: Discussion 53

study.

A significant limitation on the literature review presented in Chapter 3, was the
choice of search method. The assumption that every relevant study on committee
based sharding would reference Rapidchain is very strong. The inherent limitation
in the choice of search query is that only studies published after the original Rap-
idchain paper was published would be found, although committee based sharding
existed well before the original Rapidchain paper [23].

As was presented in the literature review in Chapter 3, the work of Homoliak et al.
[63] should be analysed against any implementation of the Rapidchain protocol,
but the implementation presented in this thesis was not. This was mainly due to
an incomplete implementation, and time limitations.

Chapter 7

Conclusion

7.1 Future work

The most important future work would be to solve the bottlenecks presented in
the previous chapter. Multiple possible solutions are presented, and these form
a primer for future work. Another obvious future work would be to expand the
implementation presented in this thesis to include the missing components, such
that a full replication study can be performed.

Section 6.2 presents and discusses the potential problem of the time to add and
verify Proof of Consensuses in a full block of 7641 transactions. The verification
time of 159 seconds should be decreased by at least two orders of magnitude so as
to avoid a bottleneck in the system. The implementation of the Proof of Consensus
verification method is sequential, but each Proof of Consensus can be verified in
parallel. Other optimizations in code can also be utilized.

Another important future work would be to analyze the size of a Proof of Con-
sensus with different amounts of cross committee transactions involved. The ana-
lytical results in this thesis assume that every transaction has exactly one Proof
of Consensus, but as was shown in Section 6.3, the number of cross commit-
tee transactions, and therefor Proof of Consensuses, differ. Due to an incomplete
transaction generation method, the true amount of cross-committee transactions
is assumed to differ from the presented results in Chapter 5. An important future
work is therefore to analyze how many cross committee transactions would be re-
quired, on average, for each transaction in a real world dataset. The results from
this could then be used to create a better analytical approach than the one presen-
ted in Section 4.5.4. These results should be complemented with an experimental
measurement as well.

An important metric in the original study that was not discussed in this thesis,
but that should be investigated further, would be the impact of nodes joining
or leaving committees in an epoch. The original study authors only tested the
performance impact of up to 10 nodes joining and leaving the entire system, with

55

56 :

a network size of n= 4000. The assumption that only 10 nodes will join or leave
the system in an epoch time of 24 hours may not be practical for a real world
scenario. The performance impact also seems to be exponential, but the authors
did not present enough data to reach such a conclusion. An important future work
is therefore to implement the reconfiguration protocol, and test the impact of more
nodes joining and leaving the system during an epoch.

As presented in Figure 5.2, the size of the the Proof of Consensus linearly grows
with committee size. The only part of the equation 4.7 that grows with respect to
the committee size m, is the size of the signature set. A future work could then
be to decrease the size of this signature set, but since it was proposed to amortize
the full size of the Proof of Consensus by only sending the full Proof of Consensus
once, the relevant performance impact of decreasing the signature set may not be
large. However, to give a primer for future research, one could employ a signature
aggregation scheme, such as Schnorr [18] or BLS signatures [19], to shorten the
size of the signature set to only one verifiable signature.

Another important question that was not answered in this thesis would be if the
synchronicity assumption is practical for real-world use. The synchronicity as-
sumption states that a message is delivered to all nodes within a know time∆. This
cannot be true in a real world scenario. An important future work would therefore
be to change the consensus protocol to allow for semi-synchronous rounds, where
a committee can recover from a potential spike in delay. Optimistic timeouts can
also be employed. A protocol to dynamically change ∆ either in epochs, or in
iterations, is also required.

The potential of a Denial-of-Service attack on the routing protocol, as discussed in
Section 4.2, should also be investigated given higher computational resources.

Three important questions that were uncovered in the literature review were not
addressed in this thesis. The potentiality of bias in the distributed random gen-
eration method, the construction of an incentive scheme, and the analysis of the
Rapidchain implementation in the work Homoliak et al. [63]. These issues are
therefore left to future work.

7.2 Conclusion

This thesis presented identified limitations and issues on the state of the art solu-
tion Rapidchain, as presented by Zamani et al. [1]. These limitations and issues
are discussed in Chapter 4, and possible solutions or clarifications were presen-
ted. The main limitations of the Rapidchain protocol were found to be its cross-
committee transaction protocol, where no cross-committee transaction could be
verified across committees, causing the potential of double-spending. A solution to
this cross- committee transaction verificability problem was presented in Section
4.5. The solution creates a new construction called Proof of Consensus, which en-
ables any node in the Rapidchain system to verify that any transaction is included
in any finished block in any committee. The verificability of a Proof of Consensus

Chapter 7: Conclusion 57

was proved in Thereom 1, and subsequently by Corollary 1.1. In Chapter 5 and
6 it was shown that the size of these proofs could be as low as 18 bytes. Under
certain assumptions this would indicate that only 137.5 kilobytes of proofs would
need to be added to a block with size 2048kb. However, the time required to verify
a large amount of these proofs could be a potential bottleneck. Several possible
solutions were discussed, but the implementation of such solutions was left to fu-
ture work. The rest of the results and discussion presented in the same chapters
indicated that the results from the experiment presented in this thesis were not
enough to represent a full comparison, but the results did nevertheless indicate
similar trends.

7.3 Acknowledgments

I would like to thank Mariusz Nowostawski, my supervisor, for his invaluable guid-
ance in both my specialization project [2], and this master thesis.

I would also like express my gratitude towards my step father for helping me with
grammatical corrections, and the rest of the family for providing support.

Finally I would like to thank my good friends at the university for providing good
humour1 and companionship in the unprecedented global events that occurred
during the semester when this masters thesis was written.

1aaaaa

Bibliography

[1] M. Zamani, M. Movahedi and M. Raykova, Rapidchain: Scaling blockchain
via full sharding, Cryptology ePrint Archive, Report 2018/460, https://
eprint.iacr.org/2018/460, 2018.

[2] K. A. T. Borgen, A structured literature review on the topic of scalability and
performance of public blockchains, 2019.

[3] S. Nakamoto, ‘Bitcoin: A peer-to-peer electronic cash system’, Manubot,
Tech. Rep., 2019.

[4] G. Wood et al., ‘Ethereum: A secure decentralised generalised transaction
ledger’, Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[5] W. Hoeffding, ‘Probability inequalities for sums of bounded random vari-
ables’, in The Collected Works of Wassily Hoeffding, Springer, 1994, pp. 409–
426.

[6] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer
and B. Ford, ‘Scalable bias-resistant distributed randomness’, in 2017 IEEE
Symposium on Security and Privacy (SP), Ieee, 2017, pp. 444–460.

[7] D. Boneh, J. Bonneau, B. Bünz and B. Fisch, ‘Verifiable delay functions’, in
Annual international cryptology conference, Springer, 2018, pp. 757–788.

[8] P. Dworzanski. (). A note on committee random number generation, commit-
reveal, and last-revealer attacks., [Online]. Available: http://paul.oemm.
org/commit_reveal_subcommittees.pdf (visited on 15/05/2020).

[9] L. Ren, K. Nayak, I. Abraham and S. Devadas, ‘Practical synchronous byz-
antine consensus’, arXiv preprint arXiv:1704.02397, 2017.

[10] P. Maymounkov and D. Mazieres, ‘Kademlia: A peer-to-peer information
system based on the xor metric’, in International Workshop on Peer-to-Peer
Systems, Springer, 2002, pp. 53–65.

[11] R. W. Hamming, ‘Error detecting and error correcting codes’, The Bell system
technical journal, vol. 29, no. 2, pp. 147–160, 1950.

[12] P. Mahlmann and C. Schindelhauer, ‘Distributed random digraph trans-
formations for peer-to-peer networks’, in Proceedings of the eighteenth an-
nual ACM symposium on Parallelism in algorithms and architectures, 2006,
pp. 308–317.

59

https://eprint.iacr.org/2018/460
https://eprint.iacr.org/2018/460
http://paul.oemm.org/commit_reveal_subcommittees.pdf
http://paul.oemm.org/commit_reveal_subcommittees.pdf

60 :

[13] R. C. Merkle, ‘A digital signature based on a conventional encryption func-
tion’, in Advances in Cryptology — CRYPTO ’87, C. Pomerance, Ed., Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378, ISBN: 978-3-
540-48184-3.

[14] J. Göbel and A. E. Krzesinski, ‘Increased block size and bitcoin blockchain
dynamics’, in 2017 27th International Telecommunication Networks and Ap-
plications Conference (ITNAC), IEEE, 2017, pp. 1–6.

[15] J. H. Lambert, ‘Observationes variae in mathesin puram’, Acta Helvetica,
vol. 3, no. 1, pp. 128–168, 1758.

[16] Xeon phi, Apr. 2020. [Online]. Available: https://en.wikipedia.org/
wiki/Xeon_Phi.

[17] Amazon ec2 instance types - amazon web services, https://aws.amazon.
com/ec2/instance-types/#instance-details, (Accessed on 07/14/2020).

[18] G. Maxwell, A. Poelstra, Y. Seurin and P. Wuille, ‘Simple schnorr multi-
signatures with applications to bitcoin’, Designs, Codes and Cryptography,
vol. 87, no. 9, pp. 2139–2164, 2019.

[19] D. Boneh, M. Drijvers and G. Neven, ‘Bls multi-signatures with public-key
aggregation’,

[20] T. zilliqa foundation, Zilliqa, https://www.zilliqa.com/, (Accessed on
07/15/2020).

[21] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta and B. Ford,
‘Omniledger: A secure, scale-out, decentralized ledger via sharding’, in 2018
IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp. 583–598.

[22] B. Koteska, E. Karafiloski and A. Mishev, ‘Blockchain implementation qual-
ity challenges: A literature’, in SQAMIA 2017: 6th Workshop of Software
Quality, Analysis, Monitoring, Improvement, and Applications, 2017, pp. 11–
13.

[23] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert and P. Saxena, ‘A
secure sharding protocol for open blockchains’, in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, 2016,
pp. 17–30.

[24] Google scholar, https://scholar.google.com/, (Accessed on 07/15/2020).

[25] S. Keele et al., ‘Guidelines for performing systematic literature reviews in
software engineering’, Technical report, Ver. 2.3 EBSE Technical Report.
EBSE, Tech. Rep., 2007.

[26] D. Johnson, A. Menezes and S. Vanstone, ‘The elliptic curve digital signa-
ture algorithm (ecdsa)’, International journal of information security, vol. 1,
no. 1, pp. 36–63, 2001.

[27] Sha-2 - wikipedia, https://en.wikipedia.org/wiki/SHA-2, (Accessed on
07/15/2020).

https://en.wikipedia.org/wiki/Xeon_Phi
https://en.wikipedia.org/wiki/Xeon_Phi
https://aws.amazon.com/ec2/instance-types/##instance-details
https://aws.amazon.com/ec2/instance-types/##instance-details
https://www.zilliqa.com/
https://scholar.google.com/
https://en.wikipedia.org/wiki/SHA-2

Bibliography 61

[28] S. Turner, D. Brown, K. Yiu, R. Housley and T. Polk, ‘Elliptic curve cryp-
tography subject public key information’, RFC 5480 (Proposed Standard),
2009.

[29] S. King and S. Nadal, ‘Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake’, self-published paper, August, vol. 19, p. 1, 2012.

[30] L. Lamport, R. Shostak and M. Pease, ‘The byzantine generals problem’, in
Concurrency: the Works of Leslie Lamport, 2019, pp. 203–226.

[31] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi and J. Stern, ‘Addendum to
“scalable secure storage when half the system is faulty”[inform. comput.
174 (2)(2002) 203–213]’, Information and Computation, vol. 205, no. 7,
pp. 1114–1116, 2007.

[32] I. S. Reed and G. Solomon, ‘Polynomial codes over certain finite fields’,
Journal of the society for industrial and applied mathematics, vol. 8, no. 2,
pp. 300–304, 1960.

[33] E. Kokoris-kogias, ‘Robust and Scalable Consensus for Sharded Distributed
Ledgers’,

[34] M. Wang and Q. Wu, ‘Lever: Breaking the Shackles of Scalable On-chain
Validation’,

[35] M. El-hindi, ‘BlockchainDB - A Shared Database on Blockchains’, vol. 12,
no. 11, pp. 1597–1609,

[36] Harmony, ‘Harmony’, Journal of the American Medical Association, vol. XXXIII,
no. 1, pp. 45–46, 1899, ISSN: 23768118. DOI: 10.1001/jama.1899.02450530051008.

[37] J. Suzuki and T. Suda, ‘Design and Implementation of an Scalable Infra-
structure for Autonomous Adaptive Agents’, Proceedings of the IASTED In-
ternational Conference on Parallel and Distributed Computing and Systems,
vol. 15, no. 2, pp. 594–603, 2003.

[38] J. Wilsdon, ‘The politics of small things: Nanotechnology, risk, and uncer-
tainty’, IEEE Technology and Society Magazine, vol. 23, no. 4, pp. 16–21,
2004, ISSN: 02780097. DOI: 10.1109/MTAS.2004.1371634. arXiv: arXiv:
1011.1669v3. [Online]. Available: http://waset.org/publications/
14223/soil-resistivity-data-computations-single-and-two-layer-
soil-resistivity-structure-and-its-implication-on-earthing-
design%7B%5C%%7D0Ahttp://www.jo-mo.com/fadoohelp/data/DotNet/
Ethical%20securty.pdf%7B%5C%%7D0Ahttp://link.springer.com/10.
10.

[39] M. H. Manshaei, M. Jadliwala, A. Maiti and M. Fooladgar, ‘A Game-Theoretic
Analysis of Shard-Based Permissionless Blockchains’, IEEE Access, vol. 6,
pp. 78 100–78 112, 2018, ISSN: 21693536. DOI: 10.1109/ACCESS.2018.
2884764. arXiv: 1809.07307.

[40] M. Ahmed and K. Kostiainen, ‘Don’t Mine, Wait in Line: Fair and Efficient
Blockchain Consensus with Robust Round Robin’, 2018. arXiv: 1804.07391.
[Online]. Available: http://arxiv.org/abs/1804.07391.

https://doi.org/10.1001/jama.1899.02450530051008
https://doi.org/10.1109/MTAS.2004.1371634
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
http://waset.org/publications/14223/soil-resistivity-data-computations-single-and-two-layer-soil-resistivity-structure-and-its-implication-on-earthing-design%7B%5C%%7D0Ahttp://www.jo-mo.com/fadoohelp/data/DotNet/Ethical%20securty.pdf%7B%5C%%7D0Ahttp://link.springer.com/10.10
http://waset.org/publications/14223/soil-resistivity-data-computations-single-and-two-layer-soil-resistivity-structure-and-its-implication-on-earthing-design%7B%5C%%7D0Ahttp://www.jo-mo.com/fadoohelp/data/DotNet/Ethical%20securty.pdf%7B%5C%%7D0Ahttp://link.springer.com/10.10
http://waset.org/publications/14223/soil-resistivity-data-computations-single-and-two-layer-soil-resistivity-structure-and-its-implication-on-earthing-design%7B%5C%%7D0Ahttp://www.jo-mo.com/fadoohelp/data/DotNet/Ethical%20securty.pdf%7B%5C%%7D0Ahttp://link.springer.com/10.10
http://waset.org/publications/14223/soil-resistivity-data-computations-single-and-two-layer-soil-resistivity-structure-and-its-implication-on-earthing-design%7B%5C%%7D0Ahttp://www.jo-mo.com/fadoohelp/data/DotNet/Ethical%20securty.pdf%7B%5C%%7D0Ahttp://link.springer.com/10.10
http://waset.org/publications/14223/soil-resistivity-data-computations-single-and-two-layer-soil-resistivity-structure-and-its-implication-on-earthing-design%7B%5C%%7D0Ahttp://www.jo-mo.com/fadoohelp/data/DotNet/Ethical%20securty.pdf%7B%5C%%7D0Ahttp://link.springer.com/10.10
http://waset.org/publications/14223/soil-resistivity-data-computations-single-and-two-layer-soil-resistivity-structure-and-its-implication-on-earthing-design%7B%5C%%7D0Ahttp://www.jo-mo.com/fadoohelp/data/DotNet/Ethical%20securty.pdf%7B%5C%%7D0Ahttp://link.springer.com/10.10
https://doi.org/10.1109/ACCESS.2018.2884764
https://doi.org/10.1109/ACCESS.2018.2884764
https://arxiv.org/abs/1809.07307
https://arxiv.org/abs/1804.07391
http://arxiv.org/abs/1804.07391

62 :

[41] S. Li, M. Yu, C.-S. Yang, A. S. Avestimehr, S. Kannan and P. Viswanath, ‘Poly-
Shard: Coded Sharding Achieves Linearly Scaling Efficiency and Security
Simultaneously’, pp. 1–12, 2018. arXiv: 1809.10361. [Online]. Available:
http://arxiv.org/abs/1809.10361.

[42] S. Das, A. Kolluri, P. Saxena and H. Yu, (Invited Paper) on the Security of
Blockchain Consensus Protocols Sourav. Springer International Publishing,
2018, vol. 1, pp. 146–167, ISBN: 9783030051716. DOI: 10.1007/978-3-
030-05171-6. [Online]. Available: http://dx.doi.org/10.1007/978-3-
030-05171-6%7B%5C_%7D8.

[43] Z. Fidelman, ‘A Generic Sharding Scheme for Blockchain Protocols’, no. June,
2019.

[44] J. Wang, Y. Zhou, X. Li, T. Xu and T. Qiu, ‘A Node rating based sharding
scheme for blockchain’, Proceedings of the International Conference on Par-
allel and Distributed Systems - ICPADS, vol. 2019-December, pp. 302–309,
2019, ISSN: 15219097. DOI: 10.1109/ICPADS47876.2019.00050.

[45] H. Liu, F. Shen, Z. Liu, Y. Long, Z. Liu, S. Sun, S. Tang and D. Gu, ‘A se-
cure and practical blockchain scheme for IoT’, Proceedings - 2019 18th
IEEE International Conference on Trust, Security and Privacy in Computing
and Communications/13th IEEE International Conference on Big Data Sci-
ence and Engineering, TrustCom/BigDataSE 2019, pp. 538–545, 2019. DOI:
10.1109/TrustCom/BigDataSE.2019.00078.

[46] I. Homoliak, S. Venugopalan, Q. Hum and P. Szalachowski, ‘A security ref-
erence architecture for blockchains’, Proceedings - 2019 2nd IEEE Interna-
tional Conference on Blockchain, Blockchain 2019, pp. 390–397, 2019. DOI:
10.1109/Blockchain.2019.00060. arXiv: 1904.06898.

[47] E. Kokoris-kogias, A. Spiegelman, D. Malkhi and I. Abraham, ‘Bootstrap-
ping Consensus Without Trusted Setup : Fully Asynchronous Distributed
Key Generation’, no. V, pp. 1–22, 2019. [Online]. Available: https://
eprint.iacr.org/2019/1015.pdf.

[48] T. Chitra and U. Chitra, ‘Committee Selection is More Similar Than You
Think: Evidence from Avalanche and Stellar’, 2019. arXiv: 1904.09839.
[Online]. Available: http://arxiv.org/abs/1904.09839.

[49] G. Avarikioti, E. Kokoris-Kogias and R. Wattenhofer, ‘Divide and Scale: Form-
alization of Distributed Ledger Sharding Protocols’, pp. 15–17, 2019. arXiv:
1910.10434. [Online]. Available: http://arxiv.org/abs/1910.10434.

[50] B. Bünz, L. Kiffer, L. Luu and M. Zamani, ‘FlyClient: Super-Light Clients
for Cryptocurrencies’, 20’S&P, pp. 1–31, 2019. [Online]. Available: https:
//eprint.iacr.org/2019/226.pdf.

[51] J. Wang and H. Wang, ‘Monoxide: Scale out blockchain with asynchronous
consensus zones’, Proceedings of the 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2019, pp. 95–112, 2019.

https://arxiv.org/abs/1809.10361
http://arxiv.org/abs/1809.10361
https://doi.org/10.1007/978-3-030-05171-6
https://doi.org/10.1007/978-3-030-05171-6
http://dx.doi.org/10.1007/978-3-030-05171-6%7B%5C_%7D8
http://dx.doi.org/10.1007/978-3-030-05171-6%7B%5C_%7D8
https://doi.org/10.1109/ICPADS47876.2019.00050
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00078
https://doi.org/10.1109/Blockchain.2019.00060
https://arxiv.org/abs/1904.06898
https://eprint.iacr.org/2019/1015.pdf
https://eprint.iacr.org/2019/1015.pdf
https://arxiv.org/abs/1904.09839
http://arxiv.org/abs/1904.09839
https://arxiv.org/abs/1910.10434
http://arxiv.org/abs/1910.10434
https://eprint.iacr.org/2019/226.pdf
https://eprint.iacr.org/2019/226.pdf

Bibliography 63

[52] A. Hafid, A. S. Hafid and M. Samih, ‘New mathematical model to ana-
lyze security of sharding-based blockchain protocols’, IEEE Access, vol. 7,
pp. 185 447–185 457, 2019, ISSN: 21693536. DOI: 10.1109/ACCESS.2019.
2961065.

[53] A. Manuskin, M. Mirkin and I. Eyal, ‘Ostraka: Secure Blockchain Scaling
by Node Sharding’, 2019. arXiv: 1907.03331. [Online]. Available: http:
//arxiv.org/abs/1907.03331.

[54] A. Bartolomey, ‘Progress on the Use of Sharding to Enhance Blockchain
Scalability’, pp. 1–15, 2019.

[55] A. Sonnino, S. Bano, M. Al-Bassam and G. Danezis, ‘Replay Attacks and
Defenses Against Cross-shard Consensus in Sharded Distributed Ledgers’,
2019. arXiv: 1901.11218. [Online]. Available: http://arxiv.org/abs/
1901.11218.

[56] B. Choi, J. Y. Sohn, D. J. Han and J. Moon, ‘Scalable Network-Coded PBFT
Consensus Algorithm’, IEEE International Symposium on Information Theory
- Proceedings, vol. 2019-July, pp. 857–861, 2019, ISSN: 21578095. DOI:
10.1109/ISIT.2019.8849573.

[57] S. Gupta, J. Hellings and M. Sadoghi, ‘Scaling Blockchain Databases through
Parallel Resilient Consensus Paradigm’, no. 2, 2019. arXiv: 1911.00837.
[Online]. Available: http://arxiv.org/abs/1911.00837.

[58] S. Kadhe, J. Chung and K. Ramchandran, ‘SeF: A Secure Fountain Architec-
ture for Slashing Storage Costs in Blockchains’, 2019. arXiv: 1906.12140.
[Online]. Available: http://arxiv.org/abs/1906.12140.

[59] M. J. Amiri, D. Agrawal and A. E. Abbadi, ‘SharPer: Sharding Permissioned
Blockchains Over Network Clusters’, pp. 1–25, 2019. arXiv: 1910.00765.
[Online]. Available: http://arxiv.org/abs/1910.00765.

[60] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-Sanchez,
A. Kiayias and W. J. Knottenbelt, ‘SoK: Communication Across Distributed
Ledgers’, pp. 1–23, 2019.

[61] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn
and G. Danezis, ‘Sok: Consensus in the age of blockchains’, AFT 2019 -
Proceedings of the 1st ACM Conference on Advances in Financial Technologies,
no. Section 4, pp. 183–198, 2019. DOI: 10.1145/3318041.3355458.

[62] G. Wang, Z. J. Shi, M. Nixon and S. Han, ‘Sok: Sharding on blockchain’,
AFT 2019 - Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pp. 41–61, 2019. DOI: 10.1145/3318041.3355457.

[63] I. Homoliak, S. Venugopalan, Q. Hum, D. Reijsbergen, R. Schumi and P. Sz-
alachowski, ‘The Security Reference Architecture for Blockchains: Towards
a Standardized Model for Studying Vulnerabilities, Threats, and Defenses’,
pp. 1–44, 2019. arXiv: 1910.09775. [Online]. Available: http://arxiv.
org/abs/1910.09775.

https://doi.org/10.1109/ACCESS.2019.2961065
https://doi.org/10.1109/ACCESS.2019.2961065
https://arxiv.org/abs/1907.03331
http://arxiv.org/abs/1907.03331
http://arxiv.org/abs/1907.03331
https://arxiv.org/abs/1901.11218
http://arxiv.org/abs/1901.11218
http://arxiv.org/abs/1901.11218
https://doi.org/10.1109/ISIT.2019.8849573
https://arxiv.org/abs/1911.00837
http://arxiv.org/abs/1911.00837
https://arxiv.org/abs/1906.12140
http://arxiv.org/abs/1906.12140
https://arxiv.org/abs/1910.00765
http://arxiv.org/abs/1910.00765
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1145/3318041.3355457
https://arxiv.org/abs/1910.09775
http://arxiv.org/abs/1910.09775
http://arxiv.org/abs/1910.09775

64 :

[64] H. Dang, T. T. A. Dinh, D. Loghin, E. C. Chang, Q. Lin and B. C. Ooi, ‘Towards
scaling blockchain systems via sharding’, Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 123–140, 2019, ISSN:
07308078. DOI: 10.1145/3299869.3319889. arXiv: 1804.00399.

[65] N. Chawla, H. W. Behrens, D. Tapp, D. Boscovic and K. S. Candan, ‘Velo-
city: Scalability Improvements in Block Propagation Through Rateless Eras-
ure Coding’, ICBC 2019 - IEEE International Conference on Blockchain and
Cryptocurrency, pp. 447–454, 2019. DOI: 10.1109/BLOC.2019.8751427.

[66] S. Kim, J. Song, S. Woo, Y. Kim and S. Park, Gas consumption-aware dynamic
load balancing in ethereum sharding environments, 2019. DOI: 10.1109/
FAS-W.2019.00052.

[67] Y. Liu, J. Liu, Z. Zhang and H. Yu, ‘A fair selection protocol for committee-
based permissionless blockchains’, Computers and Security, vol. 91, 2020,
ISSN: 01674048. DOI: 10.1016/j.cose.2020.101718.

[68] Y. Xu, Y. Huang, J. Shao and G. Theodorakopoulos, ‘A flexible n/2 ad-
versary node resistant and halting recoverable blockchain sharding pro-
tocol’, Concurrency Computation, no. December 2019, pp. 1–13, 2020, ISSN:
15320634. DOI: 10.1002/cpe.5773.

[69] A. Hafid, A. S. Hafid and M. Samih, ‘A methodology for a probabilistic se-
curity analysis of sharding-based blockchain protocols’, Advances in Intelli-
gent Systems and Computing, vol. 1010, pp. 101–109, 2020, ISSN: 21945365.
DOI: 10.1007/978-3-030-23813-1_13.

[70] Y. Xu and Y. Huang, ‘An n/2 byzantine node tolerate blockchain shard-
ing approach’, Proceedings of the ACM Symposium on Applied Computing,
pp. 349–352, 2020. DOI: 10.1145/3341105.3374069. arXiv: 2001.05240.

[71] M. Zhang, J. Li, Z. Chen, H. Chen and X. Deng, ‘CycLedger: A Scalable and
Secure Parallel Protocol for Distributed Ledger via Sharding’, 2020. arXiv:
2001.06778. [Online]. Available: http://arxiv.org/abs/2001.06778.

[72] S. Woo, J. Song, S. Kim, Y. Kim and S. Park, ‘GARET: improving through-
put using gas consumption-aware relocation in Ethereum sharding envir-
onments’, Cluster Computing, vol. 1, 2020, ISSN: 15737543. DOI: 10.1007/
s10586-020-03087-1. [Online]. Available: https://doi.org/10.1007/
s10586-020-03087-1.

[73] R. Matzutt, B. Kalde, J. Pennekamp, A. Drichel, M. Henze and K. Wehrle,
‘How to Securely Prune Bitcoin ’ s Blockchain’, 2020. arXiv: arXiv:2004.
06911v1.

[74] N. Okanami, ‘Load Balancing for Sharded Blockchains’, pp. 1–13, 2020.

[75] Y. Xu, Y. Huang, J. Shao and G. Theodorakopoulos, ‘Multichain-MWPoW:
A $p/2$ Adversary Power Resistant Blockchain Sharding Approach to a
Decentralised Autonomous Organisation Architecture’, 2020. arXiv: 2004.
04798. [Online]. Available: http://arxiv.org/abs/2004.04798.

https://doi.org/10.1145/3299869.3319889
https://arxiv.org/abs/1804.00399
https://doi.org/10.1109/BLOC.2019.8751427
https://doi.org/10.1109/FAS-W.2019.00052
https://doi.org/10.1109/FAS-W.2019.00052
https://doi.org/10.1016/j.cose.2020.101718
https://doi.org/10.1002/cpe.5773
https://doi.org/10.1007/978-3-030-23813-1_13
https://doi.org/10.1145/3341105.3374069
https://arxiv.org/abs/2001.05240
https://arxiv.org/abs/2001.06778
http://arxiv.org/abs/2001.06778
https://doi.org/10.1007/s10586-020-03087-1
https://doi.org/10.1007/s10586-020-03087-1
https://doi.org/10.1007/s10586-020-03087-1
https://doi.org/10.1007/s10586-020-03087-1
https://arxiv.org/abs/arXiv:2004.06911v1
https://arxiv.org/abs/arXiv:2004.06911v1
https://arxiv.org/abs/2004.04798
https://arxiv.org/abs/2004.04798
http://arxiv.org/abs/2004.04798

Chapter 7: Conclusion 65

[76] T. Rajab, M. H. Manshaei, M. Dakhilalian, M. Jadliwala and M. A. Rahman,
‘On the Feasibility of Sybil Attacks in Shard-Based Permissionless Block-
chains’, 2020. arXiv: 2002.06531. [Online]. Available: http://arxiv.org/
abs/2002.06531.

[77] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang and R. P. Liu, ‘Survey: Sharding in
Blockchains’, IEEE Access, vol. 8, pp. 14 155–14 181, 2020, ISSN: 21693536.
DOI: 10.1109/ACCESS.2020.2965147.

https://arxiv.org/abs/2002.06531
http://arxiv.org/abs/2002.06531
http://arxiv.org/abs/2002.06531
https://doi.org/10.1109/ACCESS.2020.2965147

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Kim Aksel Tahuil Borgen

A study on committee-based sharding
within the context of Rapidchain

Master’s thesis in Computer science

Supervisor: Mariusz Nowostawski

July 2020

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Introduction
	Background
	General
	Committee based sharding
	Rapidchain
	Information Dispersal Algorithm (IDA) gossiping
	Consensus protocol
	Cross committee transactions
	Inter-Committee routing

	Litrature Review
	Review protocol
	Review questions
	Search Process
	Search method
	Inclusion criteria
	Exclusion criteria
	Study selection process
	Quality assessment
	Data extraction
	Data analysis
	Review timetable

	Included and excluded studies
	Literature review results
	Incentive mechanism
	Security
	Error Correcting Codes
	Miscellaneous

	Discussion of literature review
	Incentive mechanism
	Security
	Error Correcting Codes
	Miscellaneous
	Review questions

	Reworking the Rapidchain protocol
	Consensus protocol
	Inter-committee routing with Kademlia
	IDA protocol
	Cross committee transaction protocol
	Clarifications
	Small improvements
	Inherent Limitations

	Proof of Consensus
	Solving the cross committee transaction verificability problem
	Proof of Consensus
	Applications on the cross committee transaction protocol
	Size

	Results
	Test setup
	Implementation details
	Proof of Consensus
	Cross committee transactions
	User-perceived transaction latency
	IDA Gossip

	Discussion
	Effect of oversubscribing CPU on results
	Proof of Consensus
	Cross committee transactions
	User-perceived transaction latency
	IDA Gossip
	limitations

	Conclusion
	Future work
	Conclusion
	Acknowledgments

	Bibliography

