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Abstract

Artificial Intelligence (AI) in the medical field of radiology has advanced so far
in the recent years that clinical application of AI assisted diagnosis has become a
question of time, not of possibility. The common denominator found in research
papers on radiology and AI is a challenge especially difficult for medical imaging:
scarce availability of annotated data sets due to privacy and economic factors, as
field specific expertise and significant time is required. Data sets are necessary
for training AI models capable of performing operations such as medical image
classification and segmentation. This thesis researches a solution for developing
data sets by investigating a Digital Twin ecosystem where every citizen has an
online twin in the cloud that medical images automatically upload to. Citizens
will have the option to donate their data for the development of AI models,
increasing the amount of images that can be used for data set generation. This
thesis aims to investigate to what extent a Digital Twin ecosystem combined
with modern enterprise software solutions such as the NVIDIA Clara suite can
contribute to the generation of high quality annotated data sets. The ecosystem
takes advantage of the sudden surge in images combined with new software tools
essential for efficiently annotating them before they are used to train AI models,
with the goal of ultimately removing the biggest bottleneck of AI and radiology.

Background theory for medical imaging and AI-based medical image analysis was
conducted to gain a better understanding of the field. Use cases were mapped out
for the most the actors that will be using the system such as citizens, patients,
and radiologists. How the ecosystem will be used in a clinical radiology workflow
was specified, along with a detailed overview of a Knowledge Generation Engine
which is programmed to search Digital Twins for medical images, delegate them
for annotation, and train AI models with the resulting data sets.

The results were obtained from an investigation on how NVIDIA Clara can be
used, demonstrating the efficiency of labeling images using AI assisted anno-
tation and training AI models on powerful supercomputers. The AI models
produced were compared to pre-trained models from NVIDIA, showing similar
performance. The results also propose a design of the Digital Twin ecosystem,
along with pseudocode for three main components: the Digital Twin, application
in the clinical setting, and automatic generation of new AI models. The con-
clusion suggests that the proposed ecosystem is technologically feasible but will
require extensive resources, expertise, and more research before implementation.
The possibilities and limitations on what should be done next were identified and
discussed.
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Sammendrag

Kunstig intelligens (AI) i det medisinske feltet radiologi har utviklet seg s̊a raskt
de siste årene at klinisk anvendelse av AI-assistert diagnose har blitt et spørsm̊al
om n̊ar det skjer, og ikke om det er gjennomførbart. Fellesnevneren funnet i
forskningsartikler om radiologi og AI er utfordringen spesielt knyttet til medisinsk
avbildning: lav tilgjengelighet av annoterte datasett p̊a grunn av personvern
og økonomiske faktorer, ettersom feltspesifikk kompetanse og høyt tidsbruk er
nødvendig. Datasett er nødvendig for å trene AI-modeller som er i stand til å
utføre operasjoner som medisinsk bildeklassifisering og segmentering. Denne mas-
teroppgaven forsker p̊a en løsning for å utvikle datasett ved å undersøke et Digital
tvilling-økosystem der hver innbygger har en nettbasert tvilling i nettskyen hvor
medisinske bilder automatisk lastes opp til. Innbyggere vil ha muligheten til å
donere dataene sine for utvikling av AI-modeller som øker totalmengden av bilder
som kan brukes til generering av nye datasett. Denne oppgaven tar sikte p̊a å
undersøke i hvilken grad et Digital tvilling-økosystem kombinert med moderne
bedriftsprogramvareløsninger som NVIDIA Clara-pakken kan bidra til generering
av annoterte datasett av høy kvalitet. Økosystemet drar nytte av økningen i an-
tall bilder tilgjengelig kombinert med nye programvareverktøy som er avgjørende
for å effektivt kunne annotere dem før de brukes til å trene AI-modeller, med m̊al
om å eventuelt fjerne den største flaskehalsen for AI og radiologi.

Bakgrunnsteori for medisinsk avbildning og AI-basert medisinsk bildeanalyse ble
utført for å f̊a en bedre forst̊aelse av feltet. Bruksmønstre ble kartlagt for de fleste
aktørene som vil bruke systemet, for eksempel innbyggere, pasienter og radiologer.
Hvordan økosystemet vil bli brukt i en klinisk hverdag for radiologi ble gjen-
nomg̊att, sammen med en detaljert oversikt over en kunnskapsgenerasjonsmotor
som er programmert til å søke i digitale tvillinger etter medisinske bilder, delegere
de videre for annotasjon og trene AI-modeller med de resulterende datasettene.

Resultatene i denne oppgaven er fra undersøkelsen av hvordan NVIDIA Clara
kan brukes, og demonstrerer effektiviteten av å annotere bilder ved bruk av AI-
assistert annotasjon og trening av AI-modeller p̊a kraftige superdatamaskiner.
AI-modellene som ble produsert ble sammenlignet med ferdigtrente modeller fra
NVIDIA og viste lignende ytelse. Resultatene foresl̊ar ogs̊a en design av Digital
Tvilling -økosystemet, sammen med pseudokode for tre hovedkomponenter: Dig-
ital Tvilling, anvendelse i kliniske omgivelser, og automatisk generering av nye
AI-modeller. Konklusjonen antyder at det foresl̊atte økosystemet er teknologisk
gjennomførbart, men vil kreve omfattende ressurser, kompetanse og mer forskn-
ing før implementasjon. Mulighetene og begrensningene for hva som skal gjøres
videre ble identifisert og diskutert.



iii

Preface

This thesis was written as my master thesis for the Department of Computer
Science (IDI) at the Norwegian University of Science and Technology (NTNU)
over the course of the fall and spring semester of 2019 and 2020, respectively.

I would like to thank my supervisor, Frank Lindseth, for guidance and direc-
tion. His expertise within medical imaging was invaluable. Other awknowledge-
ments include the NTNU High Performance Computing (HPC) Group, specifi-
cally H̊akon Hukkel̊as, for guidance in taking maximum advantage of the super-
computers used to run experiments.

Sebastian Olafsson

Trondheim, July 12, 2020



iv



Contents

1 Introduction and Problem Description 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals and Research Questions . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Theory and Related Work 5

2.1 Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 X-ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 PACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.6 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 AI-based Medical Image Analysis . . . . . . . . . . . . . . . . . . . 10

2.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 11

v



vi CONTENTS

2.2.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Medical Imaging Data Sets . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Medical Imaging Decathlon . . . . . . . . . . . . . . . . . . 12

2.3.2 CHAOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 NVIDIA Clara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 NVIDIA DGX . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Collaborative learning . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Domain-optimized performance . . . . . . . . . . . . . . . . 14

2.4.4 Ease of integration . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.5 Model training pipeline . . . . . . . . . . . . . . . . . . . . 15

2.4.6 Spleen training example . . . . . . . . . . . . . . . . . . . . 15

2.5 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Methodology 21

3.1 Digital Twin Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Key components . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Ecosystem diagram . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Citizen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Radiologist . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Hospital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



CONTENTS vii

3.2.5 Developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Clinical Workflow . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Knowledge Generation Engine . . . . . . . . . . . . . . . . 30

3.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Dice Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Results 35

4.1 Clara Run-Through . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Spleen Segmentation . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Annotating an image . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Training a new model . . . . . . . . . . . . . . . . . . . . . 44

4.1.4 Updating an existing model . . . . . . . . . . . . . . . . . . 46

4.1.5 Exporting the model for inference . . . . . . . . . . . . . . 46

4.1.6 Validation of the model . . . . . . . . . . . . . . . . . . . . 46

4.1.7 Using the model for inference . . . . . . . . . . . . . . . . . 47

4.1.8 Video example . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.9 Combining Clara with the KGE . . . . . . . . . . . . . . . 51

4.2 Digital Twin Design . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 General scope . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Digital twin pseudocode . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Knowledge Generation Engine pseudocode . . . . . . . . . . 53



4.2.4 Decision support pseudocode . . . . . . . . . . . . . . . . . 55

4.2.5 Design requirements . . . . . . . . . . . . . . . . . . . . . . 56

4.2.6 Hospital requirements . . . . . . . . . . . . . . . . . . . . . 58

4.2.7 Potential future use cases . . . . . . . . . . . . . . . . . . . 59

5 Discussion 61

5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Research question 1 . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Research question 2 . . . . . . . . . . . . . . . . . . . . . . 63

5.2.3 Research question 3 . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusion and Future Work 69

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Proof of concept product . . . . . . . . . . . . . . . . . . . 70

6.2.2 Hospital deployment . . . . . . . . . . . . . . . . . . . . . . 70

6.2.3 Complete prototype and optimization . . . . . . . . . . . . 71

Bibliography 73

viii



LIST OF FIGURES ix

List of Figures

2.1 CT Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Proton Alignment in MRI . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 PACS flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 AI Techniques for Image analysis [1] . . . . . . . . . . . . . . . . . 11

3.1 Ecosystem diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Clinical Production Flow Diagram . . . . . . . . . . . . . . . . . . 28

3.3 Knowledge Generation Engine Flow Diagram . . . . . . . . . . . . 30

4.1 Initial CT scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Choosing the label . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 3D tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Segmentation result . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Selecting extreme points . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 2D tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



4.8 Final annotation with CT scan . . . . . . . . . . . . . . . . . . . . 43

4.9 Final annotation by itself . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 Location of data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.11 Training parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.12 Correct label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.13 Inference result for 100 (left) and 400 (right) epochs . . . . . . . . 48

4.14 Inference result for 1000 (left) and 2000 (right) epochs . . . . . . . 49

4.15 Inference result (left) versus label (right) . . . . . . . . . . . . . . . 50

4.16 Digital Twin Endpoints . . . . . . . . . . . . . . . . . . . . . . . . 57

4.17 Hospital Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

List of Tables

4.1 Validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

x



LISTINGS xi

Listings

4.1 Training parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Digital twin pseudocode . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Knowledge Generation Engine pseudocode . . . . . . . . . . . . . . 54

4.4 Decision support pseudocode . . . . . . . . . . . . . . . . . . . . . 56



xii LISTINGS



Chapter 1

Introduction and Problem
Description

The motivation for this thesis is to investigate the possibilities introduced by
creating a personal medical Digital Twin that follows you from birth to death
and beyond, keeping you informed on your health and storing all your health
related data safely in the cloud.

This thesis will focus on the area of gathering specific medical info on an indi-
vidual by exploring the possibilities for a specific field: Medical Imaging. One of
the first medical fields expected to be revolutionized by AI is radiology. Auto-
matic image classification and segmentation has shown to be a task computers
can do with a high level of success, with the potential to increase the quantity
and quality of diagnosis, ultimately saving many lives [2].

1.1 Motivation

The main motivation for this thesis is the introduction of new enterprise solutions
like NVIDIA Clara that have the aim to assist some of the largest challenges of
AI in radiography, as the process of transforming classification and segmentation
techniques from research papers into a clinical setting has proven to be difficult.

1
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Altman [3] outlined some of the challenges that have kept AI from entering med-
ical imaging on a large scale:

1. Difficulty in developing methods that allow for integrating heterogeneous
data sets. Most data sets are often biased data, or is built up of multiple
independent data. These new methods need to allow for more flexibility, as
well as being able to work with incomplete data.

2. The limitation of high quality annotated data sets. Experts within the field
must spend countless hours to create and label these sets.

3. Poor performance on initial models. In the absence of large data sets, new
methods have to support incorporating prior human knowledge to give a
head start to the model which the system will later refine. Training a
model from scratch using arbitrary parameters may produce poor results,
so having a preconceived starting point will allow the model to achieve high
performance quickly with less training data.

4. Social challenges like intellectual property, data provenance, regulatory, and
economics have slowed many attempts at training medical AI models due to
the fact that hospitals and patients have very strict laws for confidentiality.

The biggest challenge is undoubtedly the time and resources required to create
high quality labeled data sets. Socioeconomic challenges are the main culprit for
the scarcity. As annotating a single medical image normally takes four hours,
there is very little incentive to give these away for free, especially when only
medical professionals with high hourly pay are qualified to conduct the work.
This naturally leads to hospitals and researchers not distributing their valuable
data sets to the public.

In this thesis we will address the challenge of creating large labeled data sets by
designing an ecosystem that would make this possible. NVIDIA Clara will be the
candidate chosen as the third party solution. The ecosystem will be comprised of
components including the Digital Twin and NVIDIA Clara. Such an ecosystem
would lower costs and allow more actors to enter the AI radiology field, not just
wealthy corporations and hospitals with extensive funding and resources.

By utilizing powerful supercomputers capable of training complex AI models in
short periods of time, an envisioned result is an iterative ecosystem that contin-
uously produces state-of-the-art AI models. Hospitals can employ these models
to assist radiologists, and patients will have the option to donate their data to
improve the models with their own medical images.
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1.2 Goals and Research Questions

Goal The main objective of this thesis is to explore the possibilities of utilizing
third party solutions to facilitate an ecosystem that will enable data mining
of medical images from Digital Twins, which will subsequently be aggregated
into data sets with the purpose of training AI models to be deployed in
hospitals and integrated into the radiology workflow.

The following research questions were created to reach the goal.

RQ 1 Is it feasible to use the NVIDIA Clara suite to easily and quickly annotate
and train AI models for segmentation and classification of medical images?

RQ 2 How should a Digital Twin ecosystem be designed, and how can NVIDIA
Clara be used in conjunction with this ecosystem to automate model train-
ing?

RQ 3 How can NVIDIA Clara combined with the Digital Twin concept be in-
tegrated into the radiology workflow, and how can it be useful to patients,
hospitals, and researchers?

1.3 Contributions

This thesis investigates the possibilities, limitations, and challenges of creating
a Digital Twin ecosystem combined with NVIDIA Clara with the purpose of
generating data sets used for training AI models. Two important use cases are
described. The first use case details AI assisted decision support in a clinical
setting, and the second shows how a Knowledge Generation Engine system can be
created to continuously search for relevant medical images from Digital Twins and
use these to train AI models. An investigation is conducted where NVIDIA Clara
is used to annotate a real CT image of the spleen using AI assistant annotation.
Clara is then used to train four different AI models on spleen segmentation. A
design of the Digital Twin and its ecosystem is proposed, along with pseudocode
on the main components.
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1.4 Thesis Structure

The thesis is structured as follows:

1. Introduction and Problem Description: Introduces the thesis and the
motivation behind it.

2. Background Theory and Related Work: Introduces the background
for medical imaging, AI based medical image analysis, NVIDIA Clara, and
previous work.

3. Methodology: Describes the Digital Twin ecosystem, identifies relevant
stakeholders, and maps out use cases.

4. Results: Presents the results from the investigation conducted. Clara is
presented first, following the design of a Digital Twin.

5. Discussion: An analysis of the results is presented to answer the research
questions, followed by general reflections.

6. Conclusion and Future Work: An overall conclusion is detailed, and
future work is discussed.



Chapter 2

Background Theory and
Related Work

This chapter will go in depth into the background on this thesis, focusing on
topics such as medical imaging, technological frameworks, and previous work.

2.1 Medical Imaging

Medical imaging is the process of producing visual representations of what is
inside the body. These representations can be used for clinical analysis and
medical intervention. More importantly for this thesis, the visual representations
are used for analysing the state of organs and detecting abnormalities.

There are a number of ways to produce these visual representations as explained
in the following subchapters. These visual representations, or medical imaging
types, are often referred to as modalities.

2.1.1 X-ray

X-ray is the most common form of medical images, specializing in generating
images of tissues and structures within the human body [4]. X-rays use elec-

5



6 CHAPTER 2. BACKGROUND THEORY AND RELATED WORK

tromagnetic radiation traveling through the body to generate an image, called a
radiograph. The x-ray machine contains an x-ray source on one side and an x-ray
detector on the other side, where the patient is located between these two points
so the radiation can pass through the body. Bones and tissue absorb different
amounts of x-rays, which makes it possible to produce an image based on the
different absorption rates throughout the body. X-ray scans are often used for
broken bones, cancer, blocked blood vessels, and infections.

Frequent exposure to ionizing radiation may be harmful to living tissue, but
normal usage is considered safe for most people. X-ray machines are found in the
majority of hospitals and scanning time is short, making x-rays the most common
form of medical imaging.

2.1.2 CT

Computerized Tomography (CT) requires heavy computer processing, as it com-
bines rotational x-ray images taken from different angles to produce cross-sectional
images of blood vessels, soft tissues, and bones inside the body. [5] These cross-
sectional images are referred to as slices and contain detailed information com-
pared to normal x-rays. Slices are merged together to form a three-dimensional
image used for diagnosis.

CT scanners use x-ray technology placed on a rotational device called a gantry
that moves around the patient while continuously shooting x-rays from one side of
the machine through the body into an x-ray detector on the other side, producing
measurements that are later combined into a two-dimensional image with the use
of computer algorithms. The patient lies on a bed that moves through the CT
scanner while the gantry continuously rotates around the body, as shown in Figure
2.1. Gathering many 2D slices allow computers to later produce 3D images for
radiologist to diagnose.

The advantage of CT scans is low cost and quick scans for detailed 3D images.
Dense structures like bone are easily seen with CT scans. The disadvantage of
CT scans are the same as x-ray scans, as they produce ionizing radiation which
has the potential to be harmful if frequently exposed over time by affecting living
tissue.
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Figure 2.1: CT Scanner

2.1.3 MRI

Magnetic Resonance Imaging (MRI) is a technology used to scan and produce
detailed three-dimensional visual representations of the interior of the body [6].
Patients are placed in a MRI machine containing large magnets and are told to
lay still while the machine scans the body.

MRI machines force protons within the body to align with a strong magnetic
field produced by the machine. The protons in the patient’s body are stimulated
by a radiofrequency current and consequently deter from the natural equilibrium
as they attempt to fight against the force of the magnetic field. Figure 2.2 shows
how the proton’s direction alignment is natural on the left but becomes forced in a
single direction by the magnetic field on the right. Turning off the radio frequency
field makes the protons release energy as they realign with the magnetic field, and
this energy change is measured by the MRI machine which produces the image
by a computer. Different types of tissue in the body release the acquired energy
at various rates, making it possible to differentiate cell types from one another.

The advantages of MRI compared to CT is that it does not produce ionizing
radiation which can be harmful for humans under frequent exposure. This makes
MRI more suitable for patients requiring frequent scanning, like cancer patients
receiving regular diagnostics to track the status of a tumor. Soft tissue is bet-
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Figure 2.2: Proton Alignment in MRI

ter imaged by MRI, so muscles, ligaments, and tendons are represented more
clearly and with higher resolution compared to CT, making MRI more suitable
for shoulder and knee injuries.

The disadvantage of MRI is that the scanning machine is costly to purchase and
operate, and some smaller hospitals cannot afford a scanner. Waiting times can
therefore be long. Due to the magnetic fields created by the machine certain
patients with iron implants are unable to undergo an MRI scan as the scanning
machine is strong enough to pull metal out of the body. Scanning time is also
lengthy, lasting from 20 to 90 minutes [7]. This can be troublesome for patients
with claustrophobia who may be uncomfortable in such a machine over long
periods of time.

2.1.4 Ultrasound

Ultrasound is another example of a noninvasive scanning technique to produce
images of the body [8]. Diagnostic ultrasound uses probes called transducers
that emit sound waves and detects the ultrasonic echoes being reflected back.
As the transducer sends sound waves to the body, the waves are reflected back
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and electrical signals are generated which the ultrasound scanner measures. Dif-
ferent boundaries between tissues generate various electrical signals, such as the
boundary between tissue and bone, making it possible to calculate the distance
between boundaries to generate a 2D image of tissues and organs.

2.1.5 PACS

Picture Archiving and Communication System (PACS) was created to eliminate
the use of physical films by enabling the transition to a digital environment by
unifying how images are acquired, stored, transmitted, and displayed electroni-
cally [9].

The main advantage of PACS is improved efficiency that results from handling all
data electronically instead of physically filing films in physical storage cabinets.
Radiologists, patients, and the hospital save substantial amounts of time from the
improved efficiency of digital communication. Once filed electronically, images
become available at all times without the risk of being lost. Electronic storage
allows multiple simultaneous viewing instances of the same image. Additional
metadata becomes easier to store and query, such as the patient’s name, hospital,
date, clinician, and more. Electronic storage also allows for backups locally and
remotely so that images are unlikely to go lost.

The main disadvantage of PACS is the upfront costs of installing and maintaining
the system and the learning curve hospital staff have to go through to become
familiar with the system.

Figure 2.3: PACS flow

Figure 2.3 visualizes the flow from scanning an image which is transferred to the
PACS server and then viewed by a radiologist at a workstation.

Images stored in the PACS system are in the DICOM format, further detailed in
the following subsection. As the DICOM images are already tied to the patient,
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the PACS supports querying all images for a certain patient making it possible
to program new functionality to export or modify all images. The modifications
possible allow custom scripts to be integrated into the PACS system, laying the
necessary technological foundations required for automatic image segmentation
and classification.

2.1.6 DICOM

Digital Imaging and Communications in Medicine (DICOM) is an international
standard used in most hospitals to handle medical images [10]. It is used to
transmit, store, retrieve, print, process, and display imaging information. DI-
COM and medical imaging can be compared to JPEG and camera photos in the
sense that it is a universally accepted format for the transfer of files. The scan-
ning machines, computers, servers, and other technical equipment in hospitals all
use the DICOM standard to communicate information.

DICOM aggregates relevant information into data sets such as the image and
the patient ID, enabling a connection between the image and the patient at all
times. The image can be single or multidimensional, supporting a wide range of
modalities such as CT or MRI in either 2D, 3D, or even 4D. The protocols allow
for the exchange of images, visualization, and presentation.

2.2 AI-based Medical Image Analysis

The introduction of artificial neural networks, also called deep learning, is cur-
rently advancing in many fields within industry and academia. Computers have
gained the ability to recognize patterns in large data sets and eventually recog-
nize patterns in unseen data. Medical image analysis is one of the fields that
has seen breakthroughs from AI, as the tasks of classification, object detection,
and segmentation can be performed by computers through new techniques and
algorithms.

In general, classification aims to detect if something is in the image, object de-
tection finds the location of an object in an image, and segmentation determines
the individual pixels of an object in the image. Figure 2.4 gives a visual repre-
sentation of the various techniques.
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Figure 2.4: AI Techniques for Image analysis [1]

2.2.1 Classification

Image classification is one of the most common machine learning tasks found as
performance has increased in recent years with the introduction of new techniques
like deep neural networks. The goal of classification is to assign one or more labels
to an image. An example in medical imaging if the classification of focal liver
lesions on multi-phase CT images. As cancer in the liver is one of the leading
causes of death, being able to use computers to classify focal liver lesions in CT
images will increase the number of diagnoses being made in addition to their
quality and accuracy [11].

2.2.2 Object Detection

Object detection is the process of identifying objects within an image. It is usually
done by placing a bounding box around the object to determine the localization
within the image. An example of object detection would be localizing where the
liver or spine is within a CT image.

2.2.3 Segmentation

Segmentation is the process of identifying regions or boundaries within a 2D or
3D image. Segmentation of medical images is for example separating the lungs in
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an image, outlining only the lung. Having separated the organ of interest allows
for precise measurement and simulations. The difference between segmentation
and object detection on a technical level is that while object detection focuses on
finding the location of the object in an image with a box, segmentation marks
each pixel in the image with a label. For example, segmentation would label each
pixel of the lung as the lung, and every other pixel would be labeled as not the
lung.

Segmentation is often used to perform different operations on objects in a medical
image, such as examining an anatomical structure, locating tumors or abnormal-
ities, measuring the volume of tissue to document tumor growth, and determine
radiation dose for patients who will be receiving radiation therapy [12]. This is
done by locating regions of the image with homogeneous properties like texture,
brightness, contrast, and color.

2.3 Medical Imaging Data Sets

The low availability of high quality data sets have made it difficult to perform
research and develop AI models. Patient privacy and expensive labor costs con-
tribute to the problem of aggregating large data sets, as thousands of images are
necessary to train complex models. High quality public radiology data sets are
hard to come by but do exist.

2.3.1 Medical Imaging Decathlon

Certain challenges and competitions within the field of AI provide data sets
openly in hope of creating a new benchmark for testing new algorithms and
models. The Medical Imaging Decathlon is an example of this and provides open
source data sets that can be used by anyone, containing 2,633 3D images of
various modalities, organs, and tasks from real-world clinical applications.

The challenge consists of 10 various data sets all having different organs and
tasks, such as segmenting a cancerous tumor in the lung or classifying the tubular
small structures next to the heterogenous tumor in the hepatic vessels. The large
variation of organs and tasks combined with a high amount of images have led to
this data set becoming common for researchers to use, as many other data sets
focus on a single task and organ and contain substantially fewer images.
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The goal of the competition is to train a general purpose machine learning al-
gorithm that translates to unseen classification or segmentation tasks without
the need of human interaction or task-specific predefined parameters [13]. This
means the algorithm needs to adapt to any of the segmentation and classification
tasks without an intervention of any kind. NVIDIA is one of the official part-
ners for this challenge and use the supplied data sets for training the AI models
provided in NVIDIA Clara.

2.3.2 CHAOS

Combined Healthy Abdominal Organ Segmentation (CHAOS) is another chal-
lenge focusing on the segmentation of abdominal organs such as the liver, kid-
neys, and spleen from CT and MRI data [14]. The motivation for this challenge
was to produce AI models with high performance on extracting objects of interest
from DICOM images. The challenge provided 20 training and 20 testing cases
for CT images and the same amount for MRI images.

2.4 NVIDIA Clara

NVIDIA Clara is a healthcare application framework allowing AI-powered imag-
ing and genomics [15]. This framework contains specialized full-stack GPU-
accelerated libraries designed to run on NVIDIA hardware, such as the DGX-2
system located at NTNU. Claire is split into two parts: Clara Train and Clara
Deploy. Clara Train focuses on the annotation and training process while Clara
Deploy specializes in interfacing with existing hospital environments. Together
with GPU-optimized software and simple to use SDKs, Clara enables real-time
and scalable solutions that can be used to investigate a Digital Twin ecosystem
related to medical imaging. This subchapter will first look at the key features of
Clara and look at the technical details under the hood to gain an understanding
on how the AI models are trained.

2.4.1 NVIDIA DGX

Being both a hardware and a software company, NVIDIA has the opportunity to
create powerful enterprise solutions with software for customers with demanding
hardware requirements. The DGX-2 is a purpose built workstation focusing on
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cutting-edge hardware specialized for AI tasks [16]. The system is comprised of
16 NVIDIA V100 Tensor Core GPUs delivering two petaFLOPS of performance.
NVIDIA provides GPU optimized software designed to maximize performance
from every GPU while simultaneously providing tools that lowers the learning
curve to take full advantage of the system. NTNU has one DGX-2 system avail-
able for use, making it possible to experiment with training AI models that would
normally take substantially longer using normal top-of-the-line GPU’s.

2.4.2 Collaborative learning

Clara integrates two key techniques necessary for AI in the healthcare sector.
The first technique is transfer learning, a technique that re-trains an existing
pre-trained model. If a generalized pre-trained model is used as a baseline then it
is possible to update this model on a given domain of medical images rather than
having to start from scratch. This is useful in the beginning stages of developing
a model where data sets may be scarce, as having access to a pre-trained model
will spur the performance without the need of large data sets.

The second technique is federated learning, a technique where a global AI model
is able to be trained securely by allowing different sites to collaborate, train, and
contribute to the global model. This enables hospitals to train the model locally
before the model weights are then uploaded to the main server and integrated
into the global model. The global model is then distributed back into all the
hospitals so all parties receive the latest version. This keeps sensitive info secure
as it does not have to leave the local hospital in order to be used for training.

2.4.3 Domain-optimized performance

Clara includes a whole subset of features and techniques to achieve remarkable
performance on training AI models for medical imaging, especially if used on
NVIDIA’S own DGX platforms. This includes Horovod based multi-GPU scaling,
Automatic Mixed Precision (AMP), and smart caching mechanism. It supports
deterministic training, meaning Clara can guarantee reproducibility which is vital
for testing. Multiple loss functions are supported, with new model architectures
being added in the future as AI science advances.
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2.4.4 Ease of integration

Integration with hospital equipment is key to the success of usability and adop-
tion, and Clara has developed building blocks to build clinical workflows that
interface with existing hospital equipment, such as the industry standard PACS
system.

2.4.5 Model training pipeline

As NVIDIA Clara focuses on being user-friendly and does not require a deeper
understanding of how everything works under the hood, it does not really matter
how the models are trained to end users and is not featured on their website.
There is another reason to this, as different tasks are trained using different
methods. For example, chest x-ray disease pattern detection is trained differently
from brain tumor segmentation. Clara has abstracted the different methods for
the different tasks so that the user does not have to think about what lies under
the hood, as the developers of Clara have chosen the current best performing
methods. When using Clara to train a new model, the task and organ is all that
has to be specified, and Clara trains the model with a predefined pipeline for the
chosen task.

Clara allows the developers to change most of the components. For example, the
data pipeline, model components, loss function, optimizer, metrics, and structure
of training graph can all be changed. Clara’s documentation provides model
development guidelines and gives examples of what sections of code to change to
make it compatible with the Clara Train API.

2.4.6 Spleen training example

The specifics on how models are trained for each task can be found in the doc-
umentation. Understanding what happens under the hood is not a necessary
prerequisite for using Clara, but this can be useful to developers. As an exam-
ple, we can look at how spleen segmentation is set up, as this is one of the few
pre-trained models Clara has available.

The spleen model uses a training pipeline from the runnerup winner of the ”Medi-
cal Segmentation Decathlon Challenge 2018”. Xia et al. introduced this technique
in the paper 3D Semi-Supervised Learning with Uncertainty-Aware Multi-View
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Co-Training. Authors from John Hopkins University and NVIDIA amongst oth-
ers were part of this paper, and the end result achieved state-of-the-art perfor-
mance on the Medical Segmentation Decathlon challenge, showing that Clara
utilizes the best techniques available for training models. As some of the authors
in this paper were from NVIDIA, users of NVIDIA Clara can be assured that
optimal training techniques are used.

The premise of the paper was to create a semi-supervised algorithm to address
the challenge of training models with unlabeled 3D data. The results were pos-
itive, and while using partially labeled data achieved about 4% gain compared
to the previously best model, using fully labeled data yielded state-of-the-art
performance, showing that the pipeline and techniques made for unlabeled data
worked admirably when performing fully supervised training.

Co-training was the semi-supervised technique used in this paper. Co-training
was first done with the aim of increasing performance of models with an abun-
dance of unlabeled data with a small amount of labeled data [18]. This was done
by augmenting labeled data sets through a partitioning technique. The experi-
ment attempted to classify web pages by splitting the page into two views, the
first view was words occurring on the web page and the second view was words
occurring on the hyperlinks pointing to the web page. AI models can be trained
to recognize either of these views, and these two models were then used to predict
instances of the unlabeled data set, creating new labeled examples for the other
model. The two distinct views have to be relatively compatible by having some
correlation to each other, which was the case for the web pages in the paper, and
successful results were found.

Applying the co-training technique to medical imaging required some changes.
Having 3D data made it natural to have three views instead of two used in the
original co-training paper. The views correlated to the coronal, sagittal, and axial
views found in MRI scans. A requirement for co-training was having some level
of compatibility by having correlation between the views, which the multi-planar
views found in MRI scans naturally fulfill.

When segmenting 3D images it is common to augment 3D data, but this pipeline
is initialized in 2D data instead. This was done to take advantage of pre-trained
models that are publicly available, such as natural imaging tasks. The pre-trained
models include weights that perform better compared to training a network ini-
tialized with random weights. These 2D models were then adopted to asymmetric
kernels in 3D networks, a technique demonstrated by Liu et al.. Having models
for every 2D image allowed the training algorithm to have biases for each 2D
view, in turn giving the network more 3D information due to the complementary
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feature representations in all three views.

While the co-training multi-view paper used a network structure based on ResNet-
18, Clara uses the AH-Net structure detailed in the paper by Liu et al. [19]. The
motivation behind creating this structure was due to suboptimal performance in
generalization when trying to use classic deep convolutional neural networks with
3D convolution kernels. The AH-Net architecture transfers shared convolutional
features from 2D to 3D images, essentially exploiting knowledge found within 2D
slices of the 3D images.

Clara combines the multi-view co-training pipeline with the AH-Net kernel for
training spleen segmentation models, with the included training scripts abstract-
ing the intricate details for developers.

2.5 Previous Work

As of writing, there are no studies on combining a Digital Twin ecosystem with a
software solution to generate data sets. However, there are studies on individual
components such as federated learning, transfer learning, and data set annota-
tion. AI-based medical image analysis and its performance is well documented in
countless studies, so this background study will instead focus on techniques that
can improve the data set generation and training process.

Federated learning has been studied to find out if there is performance loss across
the models developed in a centralized manner compared to a distributed manner.
Li et al. produced a paper named Privacy-Preserving Federated Brain Tumour
Segmentation [20] where they tested the two methods, using NVIDIA Clara for
client-side local training. They concluded that a comparable segmentation per-
formance on brain tumour segmentation was achieved without sharing clients’
data, although twice the amount of epochs during training was required, as the
decentralized model converged at 600 epochs compared to the centralized model’s
300 epochs.

Optimal performance using federated learning is not exclusive to NVIDIA Clara,
as Czeizler et al. produced a paper called Using federated data sources and Varian
Learning Portal framework to train a neural network model for automatic organ
segmentation [21] where similar results were achieved. This study focused on
segmentation of the female pelvis organ, training two models in a centralized and
decentralized manner, but used Varian Learning Portal (VLP) as the software
solution. VLP is a distributed machine learning infrastructure comparable to
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NVIDIA Clara, allowing training of AI models across hospitals without sharing
private medical images. They concluded that the results were good, resulting in
two models with similar performance levels, where one was trained in a federated
manner and the other in a classic single location manner.

Transfer learning has become an important tool to give a head start when training
AI models, especially in scenarios where obtaining data sets is a challenge. Shin
et al. [22] investigated how effective transfer learning is when applied to the med-
ical domain. A model pre-trained on natural image data sets was used as a base
which was further fine-tuned to create models specializing in thoraco-abdominal
lymph node (LN) detection and interstitial lung disease (ILD) classification. The
pre-trained model was based on the ImageNet, a public image database with
over 100,000 labeled images on various words or phrases. This pre-trained model
offers high performance on natural image recognition, but is not adapted to the
medical domain. The authors hypothesized that even though the model spe-
cializes in natural images, it can be fine-tuned to be effective for cross-modality
imaging settings such as medical image recognition, as natural images contain
similarities to CT and MRI images. The authors compared training the model
with ImageNet as a base instead of randomly initialized parameters with trying
to teach an adult to classify ILDs, as opposed to babies, meaning the model
had a better starting point using ImageNet. The results indicated that transfer
learning achieved consistently better results compared to training from scratch,
suggesting cross-data set models are applicable to the medical image domain.

Transfer learning can also be relevant for solving the problem of the discrepancies
between different scanners and different imaging protocols. Van Opbroek et al.
produced a paper called Transfer Learning Improves Supervised Image Segmen-
tation Across Imaging Protocols [23] investigating this issue, noting that while
supervised learning techniques perform well on data that is exactly representa-
tive, even slight deviations in the target data will diminish the performance of the
model. These deviations come from the differences in scanning equipment and
which imaging protocols are used. The results compared performance of models
trained with and without transfer learning. The model trained on data sets with
variations in scanning properties and later fine-tuned with exact representative
target data needed fewer labeled samples to reach the same performance com-
pared to the model that was trained on exact scanning equipment. This supports
the hypothesis that differences in scanning equipment does not need completely
separate AI models, but rather a general model can be trained and fine-tuned to
fit specific scanner properties with the help of transfer learning.

RIL-Contour is a medical imaging data set annotation tool focusing on using
deep learning to accelerate annotation, noting that the largest barrier for de-
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velopment of creating AI models is the effort needed to curate these data sets
[24]. The software supports fully automated deep learning methods, semi auto-
mated methods, and manual methods to annotate medical images. The proposed
workflow is comprised of analysts annotating images, radiologists approving the
annotations, and data scientists training deep learning models from the annota-
tions. This methodology differs from Clara’s workflow as more focus is placed
mainly on the rapid collaboration between analysts, radiologists, and engineers.
Clara offers similar functionality for annotation but focuses on a greater scope,
encompassing the entire workflow from annotation to deployment.
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Chapter 3

Methodology

This chapter will first detail a high level view of the Digital Twin ecosystem,
define stakeholders, and model use cases.

3.1 Digital Twin Ecosystem

Three components create the backbone of the proposed ecosystem: all the in-
dividual Digital Twins, the Knowledge Generation Engine, and the Knowledge
Bank.

3.1.1 Key components

Digital Twins

A Digital Twin is responsible for storing all medical data for a given citizen.
Medical images will be stored in a patient’s twin after scanning. Along with
the ability to view medical records, citizens receive the option of donating data
for research use. Consenting to donate grants the Knowledge Generation Engine
access to their private data for research purposes and model development.

21
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Knowledge Generation Engine

The Knowledge Generation Engine (KGE) is responsible for extracting data from
Digital Twins and training AI models using said data. These generation pipelines
have to be manually programmed for a specific purpose. For example, researchers
may want to develop an AI model that can perform lung tumor segmentation. A
pipeline can be programmed to extract lung tumor MRI scans from Digital Twins
that have consented to donation. Given that these images have a corresponding
label containing the correct segmentation of the lung tumor, the Knowledge Gen-
eration Engine collects a set amount of image and label pairs to produce a data
set that can be used for training. The KGE initiates training using this data set
with the help of Clara. The AI model produced undergoes a validation process to
determine the accuracy of its inference performance. The KGE queries the knowl-
edge bank to determine if the newly produced model received higher validation
scores than the pre-existing model, updating the knowledge bank accordingly.
The model is placed in a knowledge bank regardless of validation scores in the
event where no pre-existing model exists.

Knowledge Bank

The knowledge bank is responsible for storing AI models after they have been
produced. The knowledge bank is in the form of a digital register containing
details on all AI models currently in the bank. For example, a chest x-ray clas-
sification model may have just been generated from the Knowledge Generation
Engine and uploaded to the knowledge bank. The register would keep track of
the task the model performs, validation score metrics, and side notes like which
scanning equipment is the model suitable for. If a second chest x-ray classifica-
tion model is uploaded and validation metrics show higher performance than the
first model, the knowledge bank will update the register accordingly to reflect
the currently best-performing model. Hospitals that have integrated the use of
AI models for decision-making will routinely check with the knowledge bank to
ensure the model being used is always up-to-date.

3.1.2 Ecosystem diagram

Figure 3.1 visualizes a high-level view of the ecosystem with three main com-
ponents. The Knowledge Generation Engine requests data from Digital Twins,
trains AI models, and exports them to the knowledge bank for Digital Twins to
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Figure 3.1: Ecosystem diagram

use.

3.2 Stakeholders

The ecosystem will be comprised of various stakeholders that regularly interact
with the system. Identifying the stakeholders and investigating their needs is
important to design a system that will be user-friendly and worthwhile.

3.2.1 Citizen

Every citizen will have a Digital Twin tied to them from before they are born
until long after they are dead. They will have the peace of mind knowing that all
their medical info is in one place and is forever accessible if they want it to be.
Storing all types of data has many advantages, for example being able to utilize
the data differently in the future. As new technology or new medical research
is introduced, the previous data stored in your Digital Twin can automatically
be fetched and analysed to monitor your health without the citizen having to
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initiate anything. Say blood pressure and heart rate has been tracked for many
decades and stored in the Digital Twin. New research might lead to being able
to predict a certain disease based on historical data of blood pressure and heart
rate, and as the Digital Twin has accumulated this data over time it would be
possible to do a retroactive prediction instead of having to wait for new data.

Citizens consequently have access to relevant medical info of their genetic history
as data is collected on their biological family. If a person is predisposed to a
medical condition due to genetics, the Digital Twin can keep track of symptoms
for the disease and warn the citizen if they need to visit the doctor.

3.2.2 Patient

For the Digital Twin and medical imaging concept to have any chance of suc-
ceeding, there will have to be a large number of patients willing to donate their
medical images for the purpose of training AI models. This will be an option
turned off by default, but they can choose at any time to toggle it on or off.
While turned on, their images can be used in data sets to train models. If a
patient wishes to stop donating, their images will be removed from the data sets
which prohibits them from being used for future training, but models that are
already trained with their data will not be affected as it is not technologically
possible to reverse the impact specific training data made on a model.

Patients will see benefits from the Digital Twin platform by making it easier and
quicker for the hospital to diagnose them. Patients will not have to wait for a
radiologist to perform a time consuming process of examining medical images if
a computer can detect abnormalities within minutes. Quicker turnaround time
from scan to diagnosis will make it possible for more patients to take scans, and
increasing number of scans will naturally lead to more patients potentially finding
diseases early on. All patients will have access to AI assisted diagnoses regardless
if they themselves choose to donate their medical images or not.

Visiting different hospitals also benefits from having a complete digital archive
of all medical data, as all data is stored in the twin and not in the hospital. This
facilitates scenarios where a patient might take a medical scan at one hospital but
wants a second opinion from somewhere else, as the new doctor with permission
can directly look at the image data stored in Digital Twin instead of waiting for
the previous hospital to transfer it.
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3.2.3 Radiologist

While some believe AI will make radiologists redundant, the reality is that radi-
ologists do many more tasks than simply diagnosing medical images. Searching
for abnormalities in an image is a rather mundane task radiologists often have
to do, and eliminating most of the searching will free up time for radiologists,
allowing them to perform more value-added tasks like challenging diagnoses and
interventional radiology. [25]. Radiology will be reshaped rather than replaced
by AI.

After a medical image is taken of a patient, the image instantly transfers from
the scanning machine through a pipeline where the AI model performs inference.
Once inference is complete, the result is transferred back to the existing viewing
software for the radiologist to view. The radiologist uses the inference result for
AI based decision making instead of blindly trusting the result before making a
diagnosis. For example, a patient could be taking an MRI scan because they have
a suspected lung tumour. Searching for the tumour in a black and white MRI
scan can be a tedious and time-consuming task for a radiologist to do, whereas
the AI model can do it in a matter of minutes and display a 3D segmented image
with the tumour outlined in color. Patients sometimes have to wait many days
before the radiologist has time to analyse their images manually, so this solution
would drastically speed up diagnosis and therefore reduce turnaround time.

Another important role for radiologists is to create data sets that will be used
for training. They may periodically be delegated batches with medical images
with missing labels from Digital Twins and will use NVIDIA Clara to assist
them in the annotation process. Clara uses AI assisted annotation, meaning
Clara helps by attempting to segment or predict the image first, leaving the
radiologist with fewer steps in the annotation process such as only having to make
minor adjustments in the event where the segmentation was slightly inaccurate.
Annotation can also be done by other qualified professionals, such as medical PhD
students. Batch annotation will be done outside of daily clinical workflow, but
a real-time annotation process as medical images are taken can be implemented
once Clara is fully integrated in hospitals. This real-time annotation would occur
directly after a radiologist receives an inference result from an AI model. The
radiologist analyses the result and determines if it is accurate enough in its current
raw state to be used as a label for the image. If corrections need to be made
the radiologist makes the necessary adjustments on the spot using Clara’s AI
assisted annotation. The real-time annotation process would occur continuously
as images are taken, eliminating the need for images to be annotated at some
point in the future and thereby reducing the workload for batch annotation.
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3.2.4 Hospital

Smaller remote hospitals will use the exact same models that larger hospitals do
for performing inference on medical images, making every hospital uniform in
the quality and consistency that patients can receive around the country. This
will ensure that every citizen will have access to the same treatment expertise
no matter what city they are in. The differentiating factor between a hospital
having excellent or mediocre radiologists will not be how fast or accurately they
can diagnose an image, but will place more focus on the entire process and how
well they communicate with patients.

3.2.5 Developer

The developers are responsible for designing an automatic training pipeline that
continuously trains AI models. This pipeline will generate new knowledge by
having access to large and high quality data sets that developers can experi-
ment with to obtain best case results. If a new model training architecture is
released achieving higher performance than current architectures, developers will
use Clara to train updated models using the data sets at their disposal and switch
out the old models. NVIDIA’s engineers will most likely integrate the new archi-
tecture into Clara themselves, and once this integration is done, developers can
simply run the training scripts again to produce new classification and segmenta-
tion models. Additionally they are able to alter the parameters of training, such
as the loss function or optimizer that allows them to experiment to choose the
most optimized parameters for the data sets on hand.

Besides designing the training pipeline, developers are needed to facilitate inte-
gration with existing hospital solutions. Developers have access to easy-to-use
APIs from Clara to interface with existing hospital solutions like PACS servers,
making integration possible for most hospitals around the world. Hospitals us-
ing PACS already have a pipeline to retrieve images digitally from the scanning
machines and place them into storage, so developers would use Clara’s APIs to
add additional steps in this pipeline to retrieve the image, convert it to a format
compatible with Clara, run inference on the image, and convert the result back
into a PACS compatible image. This image can be viewed in existing software
on workstations that radiologists already use to diagnose medical images.



3.3. USE CASES 27

3.3 Use Cases

Defining use cases is important to further understand the domain and stakehold-
ers in a proposed system, so the following sub chapters will explain the use case
of the most important actors.

The overall use case can be explained in a very simple form. Patients go to the
hospital and medical images are produced. The images are uploaded to their
Digital Twin where the patient has the option to donate their data. Donated
images will be annotated by medical professionals, producing large sets of la-
beled medical images. These images will be used to either create or improve AI
models which will be deployed in hospitals. Radiologists then use these models
for decision support in diagnostics and treatment planning.

3.3.1 Clinical Workflow

Figure 3.2 details the use case of how NVIDIA Clara and a Digital Twin system
can be used in conjunction with each other in a production environment for
clinical workers, such as radiographers and radiologists.
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Figure 3.2: Clinical Production Flow Diagram
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To begin, say a patient takes an MRI scan at a hospital to check for any lung
tumors. The radiographer will perform the same procedure of acquiring the
scan as is done normally, where the scan is taken and uploaded to the PACS
system in the DICOM format. There is now integrated software in the PACS to
automatically upload the DICOM scans to the Digital Twin ecosystem where it
will be tied to the patient’s Digital Twin, which will be permanently accessible
by the patient or relevant medical personnel like the patient’s physician.

Once uploaded to the Digital Twin, the system starts a software execution se-
quence which first checks if there is a corresponding AI model which can be used
for inference. This is checked automatically as scans are uploaded with the help
of metadata describing the task, modality, and what organ is being examined.
The current supported tasks are disease detection, localization, segmentation,
and classification. A lung tumor MRI AI model is necessary to diagnose the
patient’s MRI scan in this case.

If a corresponding model exists, the Digital Twin ecosystem will perform inference
on the MRI scan using integrations from the Clara Deploy framework. Clara
Deploy will receive the DICOM image from the Digital Twin, convert it into the
required image format for running the inference algorithms, and then convert
the inferred result back to DICOM so it can be viewed in any existing hospital
viewer. Essentially, Clara Deploy will be a ”black box” solution within the Digital
Twin ecosystem that clinicians will never have to interact with as the pipeline is
automatic.

As the AI model and NVIDIA hardware are very optimized for the computational
work necessary for the inference task, results will generally be available in under
two minutes. The patient and radiologist can therefore see the result immediately
on existing workstation viewers and discuss the outcome. If the patient has chosen
to donate their data, the radiologist can quickly determine if the inferred result
is accurate enough to be used as a label that can be further used for training AI
models. If the label needs adjustment, the radiologist can either quickly annotate
the image correctly or leave it unlabeled, in which case the Knowledge Generation
Engine would delegate the annotation task to other professionals at a later date.

The MRI scan and the inferred result will also be available in the patient’s Digital
Twin, opening up the possibilities for better communication with patients. A
physician could quickly pull up previous diagnoses during a consultation, or a
surgeon could review the medical images with a patient before an operation.
Having readily access to previous data will make it easier for a patient’s previous
history to follow them throughout their lives.
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3.3.2 Knowledge Generation Engine

Figure 3.3 details the use case of how the Knowledge Generation Engine (KGE)
will be used for traversing through Digital Twins and extract relevant images
which will be used to train new and existing AI models.

Figure 3.3: Knowledge Generation Engine Flow Diagram
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General
Prerequisites for the KGE include a functioning Digital Twin ecosystem infras-
tructure, where medical images are automatically uploaded to a patient’s Digital
Twin after a scan. This will over time accumulate into a large database of Digital
Twins with associated medical images, along with other medical data. The KGE
will be instructed to scan for new images at a set time interval, for example once
a week.

The KGE can attempt to train models before a large database of images has
been accumulated from real patients. This is useful in the beginning stages of
the Digital Twin ecosystem as it will take many months before a substantial
amount of images has been collected. Models can still be trained on public
data sets that come with annotated data. There may also be medical images
collected by hospitals that are available for public use, these may even be labeled.
Aggregating all possible medical images from sources outside of the Digital Twin
ecosystem and annotating these will allow a head start for the KGE to begin
training models. This will enable AI assisted annotation in a shorter timeframe
compared to waiting for Digital Twins to accumulate enough images.

For a given combination of organ, modality, and task, the KGE loops through
Twins to find relevant unused images. A KGE loop example would be trying to
find images to train a new or existing model on spleen CT segmentation. Images
will only go through the training pipeline if the citizen has consented to donating
their medical images to research, which includes improving the AI models. The
image will continue in the training process if it is unused and consent has been
granted.

The next step is to check if the image is labeled. There will be two ways of
annotating images: annotating at the hospital immediately after the scan by
the radiologist who is diagnosing, or annotating by qualified professionals during
batch annotation at a later time with the help of an annotation queue. The
only way for an image to enter the training process is if a corresponding label is
included.

If the image is unlabeled
Creating labeled data sets quickly is the highlighted feature of Clara, as annota-
tion can be done in minutes instead of hours. When creating the initial data sets,
large batches of images will have to be annotated by radiologists. These batches
can also be referred to as annotation queues, which can be further split up into
organ and task specific annotation queues for different combinations, such as a
queue for brain tumor MRI segmentation or a queue for chest X-ray classifica-
tion. As of writing, Clara supports the tasks of classification or segmentation on
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various organs.

Consider how the KGE searches for new images and creates these queues. The
KGE executes loops looking for specific combinations of tasks, modalities, and
organs. Searching and aggregating image results on specific combinations makes
it possible to delegate different queues to different professionals so they only
go through a queue they have expertise on. Deciding which combinations are
the KGE searches for has to be a manual decision, as certain combinations of
a task and organ perform better than others with today’s best performing AI
architectures, but this may change over the years. In practice, this means that
certain task and organ models with low performance due to technical limitations
are not yet suitable for a clinical setting, or resources are better spent elsewhere. If
a new combination suddenly becomes feasible due to technological advancements,
the manual decision to search for relevant images will be made and the KGE will
include those images on future loops.

Once the loop is complete and all annotation queues are created, medical pro-
fessionals will annotate the images using Clara Train to create associated labels.
When complete, the labels are uploaded back to the Digital Twin, creating a new
data set. The image will now be found and used for training the next time KGE
executes.

If the image is labeled
Given an annotated image combined with the consent of donation by the patient,
the image can continue in the pipeline to be used for training. Clara Train in-
cludes simple scripts to train models with optimized algorithms fitted for NVIDIA
hardware, providing efficient computations and reduced time consumption. All
Clara Train requires is the annotated data sets and settings for which parameters
should be used under training, like loss function and learning rate. The data set
will be split into training and validation sets, for example 80% for training and
20% for validation, but these values are modifiable.

The KGE will eventually have collections of annotated data sets that are ready
to be used for training. For each set it checks to see if there is an existing model
for this organ, modality, and task combination. If there is a match, the KGE
initiates transfer learning to improve the existing model. If there is no existing
model, a new one will be created.

Once a new model is trained or an existing model is updated, the KGE runs
validation tests on the models. This is a check to evaluate how the accuracy of
the new model compares to the old, in case the new model does not yield better
results. The KGE updates the Knowledge Bank on which model is currently the
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best performing model for any combination of organ, mortality, and task.

3.4 Tools

Two tools that will be used for the results were chosen based on the research
conducted. The first is the data set, and the second is a validation metric used
to measure performance of AI models.

3.4.1 Data Set

The data set that will be used for experimentation is the Medical Segmentation
Decathlon due to its extensive collection of various images across multiple modal-
ities, tasks, and organs. In addition, this is the data set NVIDIA used to produce
their pre-trained models in Clara, ensuring compatibility between the data set
and software.

3.4.2 Dice Score

Validating the performance of AI models is important when trying to compare
which model performs best and how well the model performs in general. The
Dice score, also called the Sorenson-Dice coefficient, is a common metric used to
measure performance of image segmentation. The Dice score is a measurement
of how similar objects are, such as the similarities between two segmentations.
A numerical value can be calculated between the similarity of the predicted seg-
mentation and the label segmentation, also called the ground truth. The Dice
score compares the overlap of the two segmentations divided by the total size.

DiceScore =
2 · TP

2 · TP + FP + FN
(3.1)

The equation for the Dice score above shows how the calculation is made. TP
is true positives, the total number of pixels with the same value in both seg-
mentations. FP is false positives, the number of pixels which appear in one
segmentation but not in the other. FN is false negatives, which is pixels that
should have had a certain value but did not.
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Chapter 4

Results

This chapter will first show a practical run-through of how Clara will be used to
train AI models from medical images, and will then showcase a proposed design
for a Digital Twin ecosystem.

4.1 Clara Run-Through

This section details the results obtained during the investigation of how Clara
Train can be used to annotate images, train a new model, use transfer learning to
update models, export models for inference use, and finally perform an inference
test using a model.

Clara is split into two SDKs, Clara Train and Clara Deploy. The first focuses
on creating data sets and models by assisting in annotation and training, while
the second focuses on deployment in clinical settings, such as integrating with
PACS and creating custom pipelines. As this thesis focuses on the annotation
and training process, Clara Train will be used for the investigation.

35
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4.1.1 Spleen Segmentation

To demonstrate available functionality, we will be training a model to perform
volumetric 3D segmentation of the spleen from CT images. The spleen was chosen
due to preexisting annotation and segmentation models for this task found in the
NVIDIA NGC catalog. The images and labels are retrieved from the open-
sourced Medical Decathlon Challenge.

Images along with explanations will be presented in the following subsections,
but a video showing the annotation and training process is additionally provided
in Chapter 4.1.8.

4.1.2 Annotating an image

Annotating images is most time consuming step and requires the most attention.
NVIDIA has partnered with two open-sourced imaging viewers: The Medical
Imaging Interaction Toolkit (MITK) and 3D Slicer. Both of these programs
include plugins that connect the viewer to Clara’s AI Assisted Annotation Server
(AIAA). The added functionality allows the viewer to send the image to the
server and receive a result for annotation and segmentation.
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Figure 4.1: Initial CT scan

To begin annotating, we open an image in the MITK viewer. This figure shows a
CT image including the spleen. The goal is to segment the spleen as a volumetric
3D object.

The red box is the axial view, the green box of the sagittal view, and the blue
box is the coronal view. The yellow box is a combination of all these three views
which shows the CT image in 3D. As this is a grayscale image it can be difficult
to find where the spleen is. Normally, radiologists have to look for organs and
tumors using these types of images in grayscale, with use of an AI model the
relevant part of the image can be found immediately.
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Figure 4.2: Choosing the label

After MITK is configured with a connection to the annotation server, we can
create a new label for segmentation. We select the spleen as the organ to segment.
If we were working with a different organ, this is where it would be selected.
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Figure 4.3: 3D tools Figure 4.4: Model selection

Selecting a compatible organ enables the use of tools such as NVIDIA segmenta-
tion as seen in Figure 4.3. There are both 2D and 3D tools, where segmentation
can be found under 3D tools. This is part of an extra plug-in module integrated
to support AI annotation by MITK viewer.

In the settings for 3D segmentation tools seen in Figure 4.4, there will be a seg-
mentation and annotation model if the relevant models have been preconfigured.
These models have to be downloaded and configured in the annotation server
before they can be used. For this example, we are using NVIDIA’s pre-trained
models that are available for public use. These models can be used as a baseline
model, meaning they can be further trained with new data so developers do not
have to start from scratch. First we perform an auto segmentation to receive an
initial result. This sends the unlabeled data to the annotation server and triggers
an auto segmentation.
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Figure 4.5: Segmentation result

This is the result of an auto segmentation. The benefit of performing an initial
segmentation is to make it quicker for the annotator to select extreme points
that will be used for the annotation model. The input required for the annota-
tion model is a CT image combined with extreme points that locates the outer
boundaries of the spleen, and the initial segmentation helps find these faster than
if the radiologist has to find the extreme points of the spleen manually from a
grayscale image.

The red outline shows the location of the spleen. The next step will be selecting
the extreme points.
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Figure 4.6: Selecting extreme points

The yellow crosshairs indicate the manually chosen extreme points, which can
also be seen as the yellow bubbles on the lower right-hand 3D image. Note
that these extreme points are not in the correct location as that would require
expertise from a radiologist, these locations only serve as an example.

From here we execute the annotation model, this step sends the image along
with the extreme points to the annotation server. This results in a more accurate
annotation than the initial auto segmentation could do by itself. If the result
is still not satisfactory, we can manually adjust each 2D slice as will now be
demonstrated.
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Figure 4.7: 2D tools

If the annotation was not satisfactory and needs to be corrected, this can be
adjusted using NVIDIA’S SmartPoly 2D tools. Dragging the yellow circles to fit
the spleen accurately fine-tunes the annotation.

The figure shows correcting the slice in the axial view, but the annotation can
be corrected in the sagittal and coronal views as well.
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Figure 4.8: Final annotation with CT scan

Figure 4.9: Final annotation by itself

The end result in Figure 4.8 is a volumetric 3D annotation of the spleen, as shown
by the red surface model. This has been corrected using 2D tools. The label,
along with the original CT image, will be used for training.

Disabling the view of the CT image leaves only the spleen visible in Figure 4.9.
Segmenting the spleen, finding extreme points, and making adjustments in 2D
tools is a quick process that can often be done in minutes.
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4.1.3 Training a new model

After generating one or more labeled image as shown in the previous subsection,
these can be used to train a completely new model using Clara’s built-in script
train.sh.

To use the training script, all that is required is a JSON file that gives the location
of the training and validation sets. These sets are composed of an image and a
corresponding label image. For this example we will be using four training images
and two validation images from the Medical Decathlon Challenge.

Figure 4.10: Location of data sets

From here, training parameters are adjusted before executing training.
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Figure 4.11: Training parameters

Training is a time-consuming process, so for this example we start by only per-
forming 10 epochs. This means going through the entire training data 10 times.
Throughout training, there will be checkpoints where the current model is saved.
Performing validation on these checkpoints will give an indication of the model’s
performance at the checkpoints model during training. Often, the best perform-
ing model will not be the most trained model, but rather one of the checkpoint
models. Each checkpoint model is compared with the previous best performing
checkpoint model, and if the checkpoint model performs better than the previous
one, the old model will be overwritten with the new one. At the end of training,
two models will be stored: the best checkpoint model and the final model.

epochs=10 \
num tra in ing epoch pe r va l i d=1 \

Listing 4.1: Training parameters

Listing 4.1 shows parameters for the number of epochs and how often to perform
a validation check, respectively. Training runs through the data set 10 times,
performing a validation check between each time. To generate more data and
compare results with different parameters, we will also train models going through
the data set 400 times, 1000 times, and finally 2000 times. The pre-trained model
from NVIDIA is trained with 2000 epochs which can be used for comparison.
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4.1.4 Updating an existing model

Once a model is generated, it is often desirable to update this existing model with
new training data instead of training a new one from scratch. In this example
we updated the model we just created, but NVIDIA provides pre-trained models
online for many segmentation and classification tasks which can be used as a
starting point for anyone. This is called fine-tuning the model, and executed
with the train finetune.sh script which has the same parameters as train.sh in
Figure 4.11, but is initialized by loading the previous existing model and its
weights and continues training on said model.

4.1.5 Exporting the model for inference

After a model completes training it can be exported. As previously mentioned,
training outputs both the checkpoint model and the final model. These have to be
exported to be in the correct format which can be used for inference. Executing
export.sh chooses the best performing model which will then be exported into a
frozen graph. The frozen graph contains only the model and its weights, instead
of all the metadata that is saved along with the checkpoint models. A frozen
graph cannot be further trained, it is only meant to be used for inference.

4.1.6 Validation of the model

Validation metrics can be generated from running validation on the validation
data set. This computes the average Dice score, a metric that gauges the simi-
larity between the original label and the inference result.

Mean Median Max Min 90 percent STD
100 epochs 0.163 0.163 0.181 0.145 0.149 0.018
400 epochs 0.363 0.363 0.476 0.250 0.272 0.113
1000 epochs 0.936 0.936 0.940 0.933 0.934 0.003
2000 epochs 0.948 0.948 0.964 0.932 0.935 0.016
Pre-Trained 0.971 0.971 0.976 0.965 0.966 0.006

Table 4.1: Validation results

Table 4.1 shows the results of experiments conducted with different training pa-
rameters. Training for 100, 400, 1000, and 2000 epochs took approximately 20
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minutes, 90 minutes, four hours, and eight hours, respectively. NVIDIA’s pre-
trained model was also trained with 2000 epochs, which received similar results
to the one trained here for 2000 epochs.

4.1.7 Using the model for inference

Testing the model for inference is possible before it has been deployed to the
production software which will then be integrated into a clinical setting . This
can be done by simulating an inference result in a development environment.
This saves time by eliminating the need to export the model into the production
environment every time there is a need to test the generated model.

Figure 4.12: Correct label

Figure 4.12 shows the correct label for the inference example that we are working
with. The chosen image is a spleen segmentation that the model has never seen
while training, simulating a realistic example the model has to be able to infer.
The red outline shows the spleen in the axial view on top of the CT image.
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Figure 4.13: Inference result for 100 (left) and 400 (right) epochs

The inference result from the model trained for 100 epochs did not result in
an acceptable segmentation. It failed to recognize even a general outline, and
instead produced checkered boxes of black-and-white. This was not a surprise as
the validation metrics for this model were poor, with a mean of 0.163.

While the model trained for 400 epochs succeeded in providing a general outline,
it still failed to segment the correct shape of the spleen. The borders of the spleen
are also of low resolution, showing that the segmentation model is struggling with
identifying the outlines.
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Figure 4.14: Inference result for 1000 (left) and 2000 (right) epochs

Both inference results received after training models with a high number of epochs
gave satisfactory results.

The 1000 epoch model succeeded in finding the general outline of the spleen,
but wrongfully segmented an incorrect part of the image that it thought was the
spleen, as shown by the floating shape in the top left corner.

The 2000 epoch model did not produce this error, in addition it succeeded in
providing a higher resolution segmentation around the edges.
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Figure 4.15: Inference result (left) versus label (right)

Comparing the result of the 2000 epoch model with the original label shows a
very positive result. The Dice score validation metric was computed to 0.964, a
very satisfactory result.

Although only four training images were used, a model that only took eight hours
to train was able to segment an unseen spleen image with very high accuracy.

4.1.8 Video example

A video detailing the annotation and training process can be found here:

https://vimeo.com/428781417

The video is a reiteration of the images and contains no new information, but
may be easier to follow along.
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4.1.9 Combining Clara with the KGE

A discussion around combining Clara with the KGE is appropriate after getting
hands-on experience with the annotation and training technology.

Integrating training with the KGE is a straightforward process due to the flexi-
bility Clara provides related to training. After annotated data sets are generated
from the KGE and it is time to either train new or update existing models, all the
KGE has to facilitate is creating the JSON file with data set names which points
to the images that will be used for this training session. For example, if 24 new
annotated images were created for brain tumor segmentation, a script would be
run by the KGE that compiled all 24 images and all 24 labels into the format seen
in Figure 4.11. Not all 24 images would be used for training, as common practice
includes splitting the data set into training and validation partitions. 18 images
could be used for training while the remaining six could be used for validation.
This ratio of training and validation is entirely up to the developer, an 80:20 split
is a common guideline. The ratio could also be dependent on the total amount
of training images, as having only two images would make it efficient to use both
of them for training, so a mathematical equation to determine a reasonable ratio
could be developed to split the data set into appropriate sizes depending on the
total amount of images.

After the script is run and the JSON file pointing to the location of all the current
images is generated, the KGE can initiate training without having to change any
other settings. The number of epochs typically remains constant between training
sessions but this parameter can be changed if desired.

Once training is complete, the KGE can execute the remaining scripts to export
and validate the new model. The KGE can run the validation script to compare
the validation metric results of the newly created model with the previous existing
one. If the validation results of the new model are lower than the previous, the
already existing model will still be marked as the best performing model in the
AI model register responsible for keeping track of the best available model at any
given time. If the new model provides better results, the exported model along
with its validation scores will be uploaded to the servers while simultaneously
updating the register pointing to the best available model.

Performing an inference result during the KGE training cycle is not a necessary
step, but is still useful for developers who may wish to experiment with adjusting
parameters of training to optimize the creation of the best possible models.

If an entire DGX-2 cluster was dedicated to training medical imaging AI models,
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this would enable 16 different models to be train at the same time, as the default
cluster comprises of 16 graphical processing units each. Clara includes the option
to train using two GPU’s simultaneously, speeding up total training time. Given
a scenario where multiple GPU’s are not scheduled for training over a certain
period of time, the KGE could perform a check to determine if training using two
GPU’s is possible.

Concluding the training section, it is apparent that Clara with its easy to use
scripts is capable of seamlessly integrating with the KGE.

4.2 Digital Twin Design

This section will provide pseudocode for some of the main components of the
system followed by a high level description of the Digital Twin design and how
it can integrate with hospitals and Clara.

4.2.1 General scope

The goal for the Digital Twin is to keep a record of all medical data for every
citizen. As technology advances and and it is possible to gather more health
metrics on an individual, the data stored in a Digital Twin will continuously
be expanding. For example, the rise of wearables introduces the possibility of
gathering health data during every second of the day. In the future these devices
will improve in being able to gather more types of data while increasing the
quality of the data possible to record.

For medical imaging to be integrated in the Digital Twin solution, functionality
for storing these new types of data will have to be implemented. Investigating
Clara resulted in a clear set of possibilities and limitations that the Digital Twin
will have to consider.

4.2.2 Digital twin pseudocode

The Digital Twin pseudocode contains the classes and methods related to the
Digital Twin and medical images. Each instance of a Digital Twin can be tied
to any number of medical images, whether that be zero or hundreds.
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# D i g i t a l Twin c l a s s
Class Digita lTwin :

name
he ight
weight
b i r t h d a t e
family members
dona t i on s ta tu s
images

# methods :
# r e t u r n s a l l i n s t a n c e s o f the MedicalImage c l a s s f o r a g iven twin
get med i ca l images ( Dig ita lTwin )

# medical image c l a s s
Class MedicalImage :

i m a g e f i l e
l a b e l f i l e
ta sk type
organ
modal ity
image dimensions
equ ipment in fo
dona t i on s ta tu s
notes

# methods :
# methods to add or remove an image t i e d to a Dig i ta lTwin
add image ( Digita lTwin ( MedicalImage ) )
remove image ( Digita lTwin ( MedicalImage ) )

Listing 4.2: Digital twin pseudocode

4.2.3 Knowledge Generation Engine pseudocode

The Knowledge Generation Engine pseudocode details how the KGE extracts
information from Digital Twins to build data sets and train AI models.
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# beg in by making Clara f u n c t i o n s a v a i l a b l e
import Clara SDK as c l a r a

# t h i s f u n c t i o n checks the model r e g i s t e r and
# r e t u r n s e i t h e r None or the current b e s t model
g e t c u r r e n t b e s t m o d e l ( task )

# data v a r i a b l e s
t r a i n i n g d a t a s e t
annotat ion queue
JSON fi le

# t h i s f u n c t i o n g e n e r a t e s a t r a i n i n g data s e t and
# annotat ion queue w h i l e t a k i n g a g iven t a s k
# as input , such as s p l e e n segmentat ion
f unc t i on generate knowledge ( task ) :

# loop through a l l D i g i t a l Twins
for twin in Dig i ta lTwins :

# search twins consent ing to donat ion
i f twin . dona t i on s ta tu s :

# c r e a t e a l i s t o f images
# t h a t have y e t to be donated
unused images
for image in get med i ca l images ( twin ) :

i f donat i on s ta tu s == f a l s e :
append image to unused images
# s e t donat ions s t a t u s to t r u e
dona t i on s ta tu s = true

for image in unused images :
# image i s added to t r a i n i n g s e t i f l a b e l e x i s t s
i f image . t a s k i n f o = task and image . l a b e l f i l e :

append image to t r a i n i n g d a t a s e t
# image w i l l be added to annotat ion queue
# i f l a b e l does not e x i s t
i f image . t a s k i n f o = task and not image . l a b e l f i l e :

append image to annotat ion queue

# t h i s f u n c t i o n g e n e r a t e s the JSON f i l e
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# l o c a t i n g the paths o f the images , as r e q u i r e d by Clara
f unc t i on gene ra t e JSON f i l e ( t r a i n i n g d a t a s e t ) :

# s p l i t data s e t i n t o a t r a i n i n g and v a l i d a t i o n s e t
t r a i n i n g s e t = 80% of datase t
v a l i d a t i o n s e t = 20% of datase t
append ” t r a i n i n g ” header to JSON fi le
for pa i r in t r a i n i n g s e t :

append image . i m a g e f i l e to JSON fi le
append image . l a b e l f i l e to JSON fi le

append ” v a l i d a t i o n ” header to JSON fi le
for pa i r in v a l i d a t i o n s e t :

append image . i m a g e f i l e to JSON fi le
append image . l a b e l f i l e to JSON fi le

# t h i s f u n c t i o n e x e c u t e s the Clara t r a i n i n g s c r i p t s
f unc t i on t r a i n ( JSON fi le , task ) :

# i f an AI model a l r e a d y e x i s t s f o r t h i s
# t a s k i t w i l l be updated wi th t r a i n f i n e t u n e . sh
i f task e x i s t s in m o d e l r e g i s t e r :

prev ious mode l = g e t c u r r e n t b e s t m o d e l ( task )
c l a r a . t r a i n f i n e t u n e . sh ( previous model , JSON fi le )

# a new model w i l l be t r a i n e d us ing t r a i n . sh
# i f t h e r e i s no pre−e x i s t i n g model
else :

c l a r a . t r a i n . sh ( JSON fi le , task )

Listing 4.3: Knowledge Generation Engine pseudocode

4.2.4 Decision support pseudocode

The decision support pseudocode contains the function that will be implemented
into the PACS pipeline. After a medical image is taken in the hospital, it is
sent to the PACS server for storage. This pipeline is adjustable and automatic
inference is therefore possible to integrate. The decision support system takes
the medical image as input and checks the register of AI models to localize a
model that supports inference of the task, such as spleen segmentation. If a
compatible model is found in the register, Clara runs inference on the image
using said model. The output is an inferred result of the task which is also stored
in the PACS server. A radiologist views the results with the intention of using
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it as decision support for a diagnosis while simultaneously manually checking
correctness of the model.

# beg in by making Clara f u n c t i o n s a v a i l a b l e
import Clara SDK as c l a r a

# t h i s f u n c t i o n checks the model r e g i s t e r and
# r e t u r n s e i t h e r None or the current b e s t model
g e t c u r r e n t b e s t m o d e l ( task )

# t h i s f u n c t i o n w i l l be at tempted to run on
# every medica l image taken
f unc t i on i n f e r i m a g e ( image ) :

task = image . ta sk type
model = g e t c u r r e n t b e s t m o d e l ( task )
i f model == None :

raise e r r o r : Miss ing model for t h i s task
# uses Clara to run i n f e r e n c e us ing the
# a p p r o p r i a t e model
return c l a r a . i n f e r ( model , image )

Listing 4.4: Decision support pseudocode

4.2.5 Design requirements

A Digital Twin will in essence be a data entry in a database where the data entry
is connected to a citizen, with each citizen connected to different types of medical
data. From before a citizens birth, a database entry will be created for them and
already begin storing medical data.

An appropriate solution for realizing the technical requirements is creating a cloud
server that hosts the database of Digital Twins. This server will contain APIs
that support uploading and downloading of data to relevant actors. Figure 4.16
outlines these actors that would interact with the server, hosting endpoints which
the PACS system can send (POST) images to, and endpoints the Knowledge
Generation Engine can request (GET) data from.

Medical images vary in file sizes depending on modality and resolution, ranging
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Figure 4.16: Digital Twin Endpoints

from 100 kB to 30 MB for the modalities researched for this thesis. Other modal-
ities such as real-time 3D used for ultrasound are larger in file size. The label
to these images are under a megabyte, less than a fraction of the original image.
The frequency of scans normal patients undergo every year is low, so storage
requirements related to images is unlikely to be an issue given that the patient
does not undergo an abnormal amount of scans.

Other potential digital metrics such as heart rate, blood pressure, and lab results
from the hospital all rely on text and numbers. Images propose new challenges,
like supporting viewing functionality and image exports from a Digital Twin
viewing dashboard. Dental records is another example of images that eventually
could be stored in a Digital Twin, so image functionality is inevitably necessary
for a fully fledged Digital Twin.
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4.2.6 Hospital requirements

Public hospitals have to integrate the new technical requirements necessary to
support Digital Twins. Currently, hospitals differ in their IT solutions, but for
a consistent unified system to be possible throughout the country they would all
have to revise areas of their IT systems.

To ensure consistency, a potential direction to take is to hire Digital Twin project
leaders to organize an investigation that outlines the current systems of every
hospital that will use Digital Twins. This would provide the insight needed to
design and overhaul the technological solutions that will serve as a foundation for
integrating Digital Twin functionality. The project leaders could either develop
a guideline of requirements every hospital would have to implement themselves
or they could assemble teams to travel around the country and be responsible for
facilitating the technological integration.

For medical imaging, introducing an automatic storage step in the process of
taking medical images is the most important feature to implement in hospitals
to realize data mining functionality. For every patient undergoing a scan, an
automatic integration between the scanning equipment and the Digital Twin is
key. Figure 4.17 presents the envisioned workflow from taking an image to having
a result for the radiologist to view.

Figure 4.17: Hospital Workflow

The radiologist or radiographer ensures the scanning machine schedule is tied to
the patient’s Digital Twin. After a scan is completed it enters the PACS system
and automatic uploading is possible after this step. The PACS is programmable
to support the task of uploading a medical image to a patient’s Digital Twin.
Uploading will be done by posting the scan and the task to the patient’s Digital
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Twin API endpoint. This triggers automatic segmentation or classification within
the Digital Twin platform if there is an AI model for the given task and the
PACS system receives a result for the radiologist to view. Hospitals will have
the necessary credentials to gain permission to upload and download from the
Digital Twin server to ensure security.

After an initial development of the software necessary to facilitate the function-
ality required for automatic uploading is complete and the software has been
correctly implemented in all hospitals, minimal maintenance is required for suf-
ficient upkeep. All medical images onward are automatically uploaded to a pa-
tient’s Digital Twin.

4.2.7 Potential future use cases

As every Digital Twin will store as much medical data as possible, the collection
of large amounts of data could potentially be used for new use cases in the
future. Documenting blood pressure every day for multiple years may not be of
significance today, but future research may introduce new methods of diagnosing
or preventing diseases based on the collection of medical data we already have
access to. This new research could create possibilities where every Digital Twin
could have the potential to use data stored over many years and run the relevant
data through the new research method and receive immediate results, all without
having to visit the hospital. This example shows that even if storing all medical
data as of today may be redundant, there is still potential for everything to be
used in the future.

Medical research will also face new possibilities with the introduction of abundant
digital health data. A citizen can be given the option to donate all their medical
data to research, and receive notifications for what their data was used for and
even if they contributed to saving other lives. Researchers gain the possibility to
conduct a higher number of studies, as data collection from test subjects all over
the country is now a possibility. Data scientists can research trends and discover
many new findings that have the potential to increase national health. Studies
can select between location, gender, age, and many other filters that can show
correlation which may lead to new findings.
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Chapter 5

Discussion

This chapter will discuss findings from the results and reflect on implications
these may have on future development of a Digital Twin ecosystem. The research
questions are discussed followed by additional reflections on potential challenges.

5.1 General

The findings from the results made it possible to determine the feasibility of a
Digital Twin ecosystem. The investigation made it clear that Clara is ready to
be used for annotated data set generation, and the Digital Twin design gave
insight into what components need to be in place for the ecosystem to function.
The short time needed to train the models coupled with the high performance
obtained made it apparent that generating large annotated data sets is possible
for a wider audience than initially anticipated, based on the usability of the
software and performance of the models generated. The Digital Twin design and
pseudocode for the various components were useful to get a better understanding
of the scope required to eventually develop such a system, as it contributes to
the overall feasibility by outlining how the scope of the individual components
are reasonable to develop without immense resources.
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5.2 Research Questions

The research questions are now able to be discussed in detail after conducting
the investigation.

5.2.1 Research question 1

Is it feasible to employ the NVIDIA Clara suite to easily and quickly annotate
and train AI models for segmentation and classification of medical images?

Annotation using Clara is the most important feature needed for data set cre-
ation, and from the investigation conducted it became apparent that NVIDIA
was able to succeed in relevant areas like integration tools, technical capability,
and usability. The integration between the open sourced image viewers and the
annotation server function seamlessly, only requiring a simple set up and never
causing errors during use. The added user interface functionality in the viewer
was simple and concise, containing only the bare necessities instead of unnecessary
confusion. The simplicity of the process lends a hand to the reasonably manage-
able learning curve for annotation. Sending images to and from the annotation
server is still a minor drawback, as segmentation and annotation computations in
addition to sending the image over a network may take up to two minutes, leav-
ing the annotator waiting. Fine tuning tools were intuitive to use and decrease
the amount of work necessary to change the annotation, as only small changes
need to be made from an initial starting point. From a technical and usability
perspective, annotation is feasible on both small and larger collections.

A discussion on feasibility needs to assess include a wider range of factors in ad-
dition to the technical aspect, most importantly the time required for training.
The time required to train an acceptable model using only four images took eight
hours, while normally a model would be trained with substantially more images
and consequently require more training time. The Medical Decathlon Challenge
trained their best model using over 50 images, which is a realistic number of im-
ages that could be generated on a weekly basis. Mapping out the total number of
models desirable to clinically use along with historic data on how many medical
images are donated per week are metrics necessary to estimate the time feasi-
bility. A brute force solution is simply to purchase additional DGX-2 clusters,
but this may not be necessary. Top-performing models of today use a relatively
small amount of images for training, therefore it may be beneficial for model
performance to not only train with a small number of images for every model
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update, but by extension also training for a shorter amount of time. Training
time also changes dynamically, the initial model will require more time compared
to incremental model updates. Training models is feasible from a technical per-
spective, but unforeseen real world implementation factors will decide if training
continuously over time without generating a backlog is possible.

Not all combinations of tasks and organs are ready for the production environ-
ment as of today. While spleen segmentation is a test proven to be successful,
a select few task and organ combinations still have some technological improve-
ments required before they can be used as a reliable decision-making tool. This
limitation should not be a hindrance to begin the development of data sets and
clinical integration, as research for improved model architectures continuously
happens and will likely improve to the extent where clinical integration for all
tasks and organs is likely to become possible.

Questions surrounding usability challenges were also answered with findings that
support the feasibility of Clara. The professional annotators are first and foremost
radiologists, not AI developers. The annotation process needs to focus on ease-of-
use and a reasonable learning curve for it to be feasible for these doctors. Using
the two most popular medical imaging viewing software instead of developing
their own viewer is an advantage for usability. Annotators will have familiarity
with navigating the software and it will eliminate the need to learn a new user
interface.

Investigating the use of Clara for annotation resulted in insights into how efficient
AI assisted annotation can be with the use of these powerful third-party solutions,
suggesting the software is ready for enterprise application. Creating large data
sets with this powerful tool has proven to be a very feasible task to complete, even
for users who are not experienced within the field of AI. Abstracting the intricate
details of training AI models while simultaneously retaining the option to adjust
important parameters makes Clara a feasible tool for even novice developers,
lowering the technical and financial threshold for potential clients to develop AI
models that are ready for clinical integration today. The largest bottleneck of
enterprise AI is effectively eliminated, where only hospitals with an exceptional
amount of resources and expert data scientists are able to create the large, high-
quality data sets necessary for sufficient training of AI models.

5.2.2 Research question 2

How should a Digital Twin be designed, and how can NVIDIA Clara be used in
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conjunction with the twins to automate model training?

The pseudocode developed in the results made it apparent that looping through
Digital Twins is bound to be a frequent event, further confirming the necessity
of an efficient database design to allow search optimization.

Through the investigation it was apparent that Clara supports a wide configura-
tion of integration possibilities with any first party or third-party solution from
the openness of the API, from annotation to training to deployment. This is the
biggest selling point of Clara and will enable the system to be compatible in an
extensive range of environments.

Creating internal workflows using the KGE and the Digital Twins to create
data sets and utilizing the Clara functionality is not only possible but a real-
istic achievement in a medium-term time frame.

The main challenge lies in physically integrating the new data storage solution
of Digital Twins in hospitals and transitioning from current systems.

5.2.3 Research question 3

How can NVIDIA Clara combined with the Digital Twin concept be integrated
into the radiology workflow, and how can it be useful to patients, hospitals, and
researchers?

The radiology workflow and surrounding actors will inevitably see changes from
automated diagnoses. After AI model integration is complete, time spent man-
ually examining images on a day-to-day basis will see a substantial reduction
from radiologists. The time recovered can be spent doing more difficult tasks
and allow for more patients. Patients enjoy a shorter waiting time and quicker
diagnosis, in addition to a universal online medical archive that simplifies the
process of accessing their data such as medical images. Getting a second opin-
ion from a separate hospital will be streamlined, giving them access to remotely
stored patient’s data opposed to manually requesting images from the first hospi-
tal. Researchers benefit from a larger pool of data available for research, in terms
of both the amount of data and the number of patients choosing to donate.

Hospitals are introduced with new benefits but also new challenges. Smaller hos-
pitals may notice AI inference to lower the burden of having a smaller radiology
staff, exploiting the same level of high-quality expertise that larger hospitals have.
Because of differences in hospitals, inconsistencies can cause problems with Clara



5.2. RESEARCH QUESTIONS 65

and Digital Twin integration.

Differences in technology solutions from hospital to hospital may become a chal-
lenge if different equipment is used to take images. Most hospitals use PACS
to store medical images, so while the software additions of adding a step in the
PACS pipeline to automatically infer a result for all images is universally pos-
sible, differences in scanning equipment could cause a challenge. CT and MRI
scanners differ slightly between manufacturers, which may not be a problem for
a radiologist manually diagnosing an image, but a computer expecting consistent
image formats in terms of resolution and image properties may struggle from
even minuscule differences. In practice, this may result in incompatibility be-
tween the AI models and the different scanners from various manufacturers. If
the AI model cannot adapt and create a one-size-fits-all solution for all scanning
machines, then machine specific AI models will have to be created. This chal-
lenge is very feasible to overcome, as all training images come with metadata
containing the details of how the image was created, such as the exact type of
scanner used and technical details of the image. If necessary, the KGE can be
programmed to divide training images into manufacturer specific data sets, and
multiple machine specific AI models would be trained for a certain task and organ
combination instead of a single model. Determining if machine differences need
to be taken into consideration is unknown and requires extensive testing across
all potential hospitals that aim to integrate AI inference in their workflow, but
the solution of creating machine specific models is already a realistic workaround.

The intent is to initially only use the AI models only for decision based diagnosis,
not a complete diagnosis by itself. Doctors still need to personally diagnose
images themselves, using the inference results as technological help. A potential
risk that needs to be overlooked is the case where doctors eventually begin to
trust the AI models to the point where they themselves pay less attention to
making sure that the AI diagnosis gave the correct results. Even though the
models could achieve an accuracy of over 95%, this could lead to a false sense
of trust in the AI models from doctors who may become too accustomed to
agreeing with the AI diagnosis. As machines having the option to affect a human’s
life is a very intricate and potentially controversial practice, a scenario where a
patient is misdiagnosed due to a false prediction from the AI model and a careless
radiologist not catching the mistake would have the potential to dissuade public
opinion on the use of AI-based decision-making for medical imaging. If citizens
lose trust in the system, hospitals may be forced to restrict or remove the use of
the AI models, reverting back to manual diagnosing.
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5.3 Reflections

Reflecting on the results and research questions sheds light on challenges that
may affect the proposed ecosystem. The challenges related to a successful imple-
mentation of a Digital Twin ecosystem and taking advantage of NVIDIA Clara
lies in a number of places.

The entire workflow integration and management of tasks will be the bottleneck.
A streamlined solution for continuously annotating images will require extensive
planning and coordination. As impressive results can be achieved with a low
number of training images, a cost-effective solution would be to first outsource
the annotation task to professionals who will generate large batches of initial
training data, and introduce live annotation of the inferred AI results in a clini-
cal setting at a later time. While continuous live annotation after every inferred
AI results by every radiologist at every hospital is an efficient long-term solu-
tion to generating the largest medical imaging data sets ever seen, in the short
term simply generating smaller data sets by professionals annotating in a batch
oriented workflow will suffice in creating ready to deploy AI models.

Another factor that needs to be taken into consideration is how long NVIDIA will
be supporting Clara. While NVIDIA is very invested into powering the future
of medical imaging through its AI solutions, there is always a possibility that
things do not go according to the vision they have today. NVIDIA faces a risk of
bankruptcy like any other company. Competitors may introduce similar solutions
that outperform Clara, and if NVIDIA fails to compete they will lose customers,
inevitably forcing them to abandon their product. Currently, NVIDIA is at the
forefront of graphical processing units and researching their potential integration
into medical imaging so this risk is currently low. If the case of a competitor
outperforming the performance of Clara occurs, it is likely that the competitor
will facilitate the transition to their own product, and any similar products are
forced to adapt to existing technological solutions in hospitals, such as PACS, so
that a transition to a new product may not be as costly or difficult.

Successful and high-performing AI models are contingent on being able to train
on high quality, correctly annotated data sets. Given the scenario where a pro-
fessional quickly skims through the annotation process, there may be incorrect
labels that the AI models will use for training. While a low number of mislabeled
images will not noticeably change the performance of a model, a consistent stream
of poorly labeled images will result in the AI model consistently inferring incor-
rect results. The professional annotators that are given the task of creating the
initial data sets will naturally understand the importance of accurate annotation,
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but over many years and with the introduction of live annotation by radiologists
on a day-to-day basis, there is a likelihood of deteriorating annotation quality
when this process becomes routine, creating the human challenge resulting in re-
ducing the mindfulness of the professionals conducting the annotation practice.
Routinely checking the quality of data set generation can monitor this risk and
introduce measures that will take place if the annotation process needs quality
improvements. This challenge is also minimized when the KGE checks newly
trained models to determine if they are better than the existing ones, so given
a scenario where there is a batch of low-quality annotated data sets that dete-
riorates the performance of an AI model after training, this new version would
simply not be deployed.

The initial planning and development of the end system will take the longest
time and require the most effort. Long-term planning will need to be conducted
for this solution to be successfully integrated. Usability often tends to be the
reason for a solution to either be successful or its downfall. If the entire workflow
and usefulness is not satisfactory from a usability perspective, hospitals and doc-
tors will not be inclined to either integrate the system at all or could eventually
abandon the use of AI if usability becomes a hindrance rather than a tool. Per-
forming an extensive investigation into how the day-to-day applications would
realistically be used is therefore an essential process where all potential actors
of every use case will have to thoroughly document requirements and potential
challenges that could occur. While the technology is here for successful AI based
decision-making, it will not be useful if the human factor is not carefully consid-
ered from a usability perspective.
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Chapter 6

Conclusion and Future
Work

6.1 Conclusion

Radiology will inevitably go through fundamental changes in the coming years as
AI advances and becomes commonplace in modern hospitals. Tasking computers
with performing mundane time-consuming operations such as segmentation will
free up valuable time for radiologists while simultaneously allowing more diag-
nosis to be made. This increase will lead to earlier diagnosis and an increase in
chance of survival for many patients. This thesis made progress in investigat-
ing potential solutions and identifying their limitations for solving the biggest
challenge of medical imaging AI: how to create an autonomous system purposed
with generating high quality annotated data sets used for training AI models by
utilizing medical data donated from Digital Twins.

In this project, NVIDIA Clara was used to demonstrate how medical images can
be annotated using powerful supercomputers in a fraction of the time previously
needed with the use of AI assisted annotation. Annotated images were then used
to train AI models which was later tested for performance, achieving satisfactory
results. A Digital Twin design was produced detailing requirements on a techni-
cal level as well as identifying potential possibilities and limitations concerning
hospitals and other future use cases. Pseudocode and flow diagrams were created
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for applications in the clinical setting and the Knowledge Generation Engine.
Future challenges and future possibilities that the Digital Twin ecosystem would
need to consider were mapped out, such as the biggest obstacles for adoption to
happen and future research possibilities.

6.2 Future Work

Improvements and more research can be made in many areas on the path to
creating a Digital Twin ecosystem.

6.2.1 Proof of concept product

A proof of concept product can be created by realizing the pseudocode com-
ponents in the results section. A basic Digital Twin platform that is ready to
receive and store medical images combined with sample data would be a sufficient
starting point, this would allow enough test data to create realistic scenarios for
the Knowledge Generation Engine to work with. These two components can be
used as a starting point to test an automatic loop designed to look for medical
images in Digital Twins, create annotated data sets, and use those sets to train
AI models. This proof of concept can be developed as a standalone solution
without any hospital integrations as the AI models are created independent of
clinical settings.

6.2.2 Hospital deployment

Hospital deployment is likely to be the task which needs the most time and re-
quires most resources, as discussed previously. Successful hospital integration de-
pends on extensive research on the equipment currently used in hospitals today to
get a better understanding of how Clara needs to interface with the current tech-
nology. Clara Deploy would be the technology framework used to interface with
the PACS systems. The work would consist of visiting hospitals, mapping out
current solutions, becoming familiar with Clara Deploy, and eventually creating a
proof of concept product. This proof of concept would attempt to automatically
upload images to the Digital Twin platform from the scanning machines, run
inference on the images, and display the result on existing workstations in the
hospital.
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6.2.3 Complete prototype and optimization

Once a proof of concept has been created and hospital deployment has been re-
searched, a complete prototype can be put together from the individual compo-
nents. A full loop would allow optimization to begin as well, such as implementing
routines for when annotation should occur and who should be responsible, how
often AI models should be trained or updated, and how well they perform in real
life. Reaching this stage is important to begin more research into the effective-
ness of the entire solution, like tracking AI model performance metrics over time.
As the Digital Twin and AI ecosystem is dependent on citizens donating their
images, long-term research on effectiveness of AI models in radiology is critical
to persuade more citizens into donating.
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