
DeepChanger
An Integrity Attack Compromising Deep Neural
Network Structures

July 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Mathias Lundteigen Mohus

2020
M

athias Lundteigen M
ohus

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

DeepChanger
An Integrity Attack Compromising Deep Neural Network Structures

Mathias Lundteigen Mohus

Computer Engineer
Submission date: July 2020
Supervisor: Jingyue Li

Norwegian University of Science and Technology
Department of Computer Science

Summary

Today, the use of Artificial Intelligence (AI) technology is ever-expanding and
used in many daily life applications. With this expansion, so does the use of AI
in performing cyber attacks and cyber-attacks targeted at AI system to circum-
vent or disrupt the AI system. This thesis explores a new method of performing
an attack against AI systems by directly altering the neural network (NN) the AI
system uses. The attack is made by merging a secondary network, trained by the
attacker, with the original neural network, which results in a merged network dis-
playing both networks’ functionality. The thesis also explores how this attack can
be prevented by implementing integrity checks and authentication on the data and
code, which make up the AI system. Another defensive measure is based on the
increased execution time of the AI system because of the more extensive network.
As the thesis successfully implemented a practical model of this attack, there could
be severe consequences if precaution is not taken, especially in safety-critical sys-
tems, such as self-driving cars.

i

Acknowledgement
This thesis was made possible by the contributions of several people. As the
regular course of the master’s thesis was interrupted halfway by the spread of
COVID19, the workflow for this thesis was massively changed.

First, I would like to thank my supervisor, Associate Professor Jingyue Li
(Bill), from the Department of Computer Science at NTNU, who has been mas-
sively helpful in writing this thesis. From our weekly meeting on the thesis, we
found an interesting goal for the thesis, based on our discussions and explorations
of the field. Additionally, his feedback in the writing of this thesis has shaped how
the results look like and is very much appreciated. Thank you so much, Bill!

Then I would like to thank Nektaria Kaloudi, a doctorate student under Jingyue
Li. Like with Bill, she has been accommodating with providing feedback and dis-
cussion in our meetings, and has been invaluable in providing reading material for
this thesis.

I would then like to thank Emil Henry Flakk, a friend who is incredibly knowl-
edgeable about computers (as well as much more). Having gotten to known Emil
through our voluntary work at the Student media in Trondheim, he has been a
source of constant knowledge and was one of the main driving forces behind my
interest in computer security. I am looking forward to further discussions in the
future Emil!

I would also like to thank Petter Sevatdal Mollerup, my good friend and room-
mate. Thank you for the dinners, movies, TV shows, and generally for just being
there during the time of quarantine. Without Petter, it is unlikely that I could have
remained sane this semester, as having you around to talk with has kept my mental
health from deteriorating.

I would like to thank my grandmother Randi Mohus for all the visits, where I
could relax, without feeling like I needed to work.

I would like to thank my mom Astrid, dad Frode, and brother Magnus, for
checking in on me, and always being supportive, especially during this semester,
when I was unable to come home for visits.

ii

Table of Contents

Summary i

Acknowledgement ii

Table of Contents vi

List of Tables vii

List of Figures viii

Abbreviations ix

1 Introduction 1
1.1 Structure of the thesis . 2

2 Background 4
2.1 NN structure . 4

2.1.1 The feed-forward mechanism 5
2.1.2 The back-propagation mechanism 6
2.1.3 Convolutional NN . 9
2.1.4 Recurrent NN . 10
2.1.5 Long Short Term Memory NN 10

2.2 Data formats . 12
2.2.1 The HDF5 format . 12
2.2.2 The SavedModel format 14

2.3 To identify integrity attacks . 15
2.3.1 Hashing . 15
2.3.2 Signature matching . 15

iii

2.3.3 Name independent flow analysis 16
2.4 Integrity and authentication . 17

2.4.1 Code signing . 17
2.4.2 Encryption . 19

3 Related Work 20
3.1 Malicious use of AI . 20

3.1.1 Social bots . 20
3.1.2 AI camouflage . 21
3.1.3 DeepLocker . 21

3.2 Attacks targeting AI-based systems 21
3.2.1 Attacks fooling AI-based systems using adversarial input . 22
3.2.2 Targeted attack against AI systems 24

4 Research motivation 25
4.1 Motivation . 25

4.1.1 The AI and security landscape 25
4.1.2 The context of an integrity attack against AI systems . . . 26
4.1.3 Practical implications . 28

4.2 Research questions . 28
4.3 How the thesis will answer the research questions 28

4.3.1 RQ1: . 29
4.3.2 RQ2: . 29
4.3.3 RQ3: . 30

4.4 By which metrics the answers for the research questions will be
evaluated . 30
4.4.1 RQ1: . 30
4.4.2 RQ2: . 30
4.4.3 RQ3: . 31

5 Results of research questions 32
5.1 The targeted AI system . 32

5.1.1 Setup . 32
5.1.2 Experimental data . 33
5.1.3 Implementation . 37

5.2 RQ1 - White-box Integrity attack against AI systems 38
5.2.1 Concept . 38
5.2.2 How to merge the two neural networks 39
5.2.3 Implementation of merging two neural networks 44

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems . . 47
5.3.1 Concept . 48

iv

5.3.2 Theoretical analysis of possible implementations to an-
swer RQ2 . 49

5.3.3 Accessing data - method 2 50
5.3.4 Implementation . 52

5.4 RQ3 - Mitigation strategy against RQ1 and RQ2 56
5.4.1 Possible strategies to ensure AI code integrity 56
5.4.2 Operation analysis of the AI system 57

6 Evaluation of research results 60
6.1 RQ1 . 60

6.1.1 Was the research successful in producing a theoretical and
practical proof-of-concept in a white-box fashion? 60

6.1.2 Did the research show any noticeable behavior or traits of
the attack? . 60

6.2 RQ2 . 61
6.2.1 Was the research successful in producing a theoretical and

practical proof-of-concept in a black-box/gray-box fashion? 61
6.2.2 Did the research show any noticeable behavior or traits of

the attack? . 61
6.3 RQ3 . 62

6.3.1 Does the proposed strategies provide a theoretical defense
against RQ1 and RQ2? 62

6.3.2 Would the proposed strategies be practically implementable
in an AI system? . 62

7 Discussion 63
7.1 Integrity attack against AI systems 63
7.2 Impact of AI integrity attacks . 65
7.3 Separate training of NN . 65
7.4 Comparison to related works . 65
7.5 Neural Network format for modification 67
7.6 RQ3 - Defensive measures . 68

8 Conclusion and future works 70
8.1 Conclusion . 70
8.2 Future works . 71

8.2.1 More complex NN modification techniques 71

Bibliography 71

v

Appendix 76
A Implemented Code 76

vi

List of Tables

5.1 System versions and descriptions 32
5.2 FERET metadata descriptions, types and examples 35
5.3 Popular formats used by Python NN libraries 51
5.4 Average execution time when classifying images 59

vii

List of Figures

2.1 A typical NN structure . 5
2.2 A sigmoid function . 6
2.3 How a node calculates it’s value 7
2.4 Convolutional Neural Network structure 9
2.5 RNN with weighted connection between output and input 10
2.6 RNN with weighted connection within each node 11
2.7 An LSTM structure . 12
2.8 An example of the HDF5 format in use, here as the storage for the

model in Tensorflow . 13

4.1 The Cyber Kill Chain steps . 27

5.1 One example image from the FERET dataset 36
5.2 Illustration for expanding the layer number of the original network 40
5.3 Visual representation of a weight matrix, for first layer 42
5.4 Visual representation of a weight matrix 43

7.1 The trainable and non-trainable weights in the alternative training
algorithm . 64

7.2 The research’s presented methods. Left: The original classifier
network. Middle: Constructing a neural network from the original,
and an attacker network. Right: A new classifier incorporating the
original behaviour, except for specific instances. 66

8.1 Alternative method for modifying a network 72

viii

Abbreviations

AI = Artificial Intelligence
NN = Neural Network
ML = Machine Learning
TF = TensorFlow
FF = Feed-Forward
MSE = Mean Square Error
CNN = Convolutional Neural Network
RNN = Recurrent Neural Network
LSTM = Long Short Term Memory
HDF5 = Hierarchical Data Format 5
PB = Protocol Buffer
RONI = Reject On Negative Impact
GAN = Generative Adversarial Network
DoS = Denial Of Service
CKC = Cyber Kill Chain
RQ = Research Question
FERET = Facial Recognition Technology
CSV = Comma Separated Values
RAM = Random Access Memory

ix

Chapter 1
Introduction

As technological advances in machine learning (ML) and AI systems continue
to provide invaluable functionality in the daily lives of hundreds of millions of
people, the development of malicious use of AI is growing and could pose a severe
risk to life and security. The use of AI defensively is also increasing, as classifying
and detecting malicious or anomalous behavior is exceptionally well suited for AI
systems.

As these defensive measures increase, so does the ways malicious actors de-
velop strategies to circumvent them. These methods include poisoning the training
data or exploiting vulnerabilities in the AI system’s performance.

While these attacks by and against AI systems have been relatively prevalent
in recent research, this thesis explores a new way of attacking AI systems directly.
By inserting a malicious neural network’s behavior into an existing AI system,
an attacker can manipulate the behavior of the existing AI system whenever a
specified input state is reached.

Throughout this thesis, the main goal is to develop a theoretical and practical
implementation of this attack, both in a white-box and a black-box manner. We
also propose a defensive strategy to protect against this attack.

The theoretical models rely on how the feed-forward algorithm of a neural net-
work works. By strategically expanding the network, and inserting the malicious
network into the data matrices and vectors containing the network parameters, the
attacker can create what practically two separate neural network models within the
same network is. With this, as well as by slightly modifying the execution code,
the attack can determine for which input state the AI system should activate the
attack while maintaining the original AI functionality to avoid detection.

1

1.1 Structure of the thesis

The secondary goal for this thesis is to propose strategies for defending against
this new threat. Research into new methods of cyberattack would not be ethical
without considering how to mitigate such attacks.

In the thesis, the research was performed in steps. At first, a robust theoretical
model for the attack was laid out, to prove how the attack can function. The re-
search then focused on making a practical implementation of said theories to make
a proof-of-concept demonstration to show that the attack is applicable in real sys-
tems. Lastly, the defensive strategies were proposed based on the experience and
knowledge gained from the research.

This thesis’s results show that the theoretical solution is correct and that the
implementation of the attack functioned as expected. There were two strategies
proposed to defend against the attack. The first is ensuring integrity for the AI
system’s execution time since the attack is based on compromising the integrity of
the system. The second is an operational analysis of the AI system, as the proposed
solution increases the execution time of the AI system, which could be monitored.

To implement the studied attack, we assume that the attacker has specific
knowledge about the AI system, primarily the used AI model file, the shape of
the input values to the AI system, and the execution code for the AI system.

In comparing the thesis against research on poisoning the training data for an
AI system, the proposed solution is argued to be more flexible. It performs the
attack after the training phase and relies less on knowing the targeted AI system
beforehand.

Lastly, the thesis concludes with recommending anyone utilizing neural net-
work structures to take precautionary measures to protect their AI system by im-
plementing some integrity check on both AI model data and the AI execution code.
The thesis ends with mentions of how the results from this research can be used
further.

1.1 Structure of the thesis

In chapter 2 - Background, the thesis will outline the most relevant knowledge
needed to be able to understand this thesis.

Chapter 3 - Related Work, outlines research into the field of AI and security,
some of which used throughout the thesis.

In chapter 4 - Research motivation, the main motivating factors for why this
thesis exists, is explored, and the research questions are defined. This chapter also
outlines the research design and the metrics for evaluating the results.

2

1.1 Structure of the thesis

In chapter 5 - Results of research questions, the main research is performed
according to the research design. Here, the theoretical and practical results of the
thesis are presented, and any data generated by the research is produced.

In chapter 6 - Evaluation of research results, the results from the research will
be evaluated in accordance with the metrics.

In chapter 7 - Discussion, the evaluations are used in a broader context, by
discussing how the findings can be used practically, as well as how the results
measures against research within the same field.

Chapter 8 - Conclusion and future works, concludes with how the knowledge
gained can be used further. By recommending how the results can be used in cur-
rent technology, as well as how the research can be furthered, the thesis concludes.

3

Chapter 2
Background

This chapter presents relevant topics and knowledge for understanding the re-
search.

Section 2.1 presents a selection of neural networks, in terms of their structure
and the way they are used, in order to ensure the reader has enough knowledge
on neural network structures to understand how the core concept - presented in
chapter 5 - works.

Section 2.2 present two methods for storing a neural network model trained
within the TensorFlow (TF) framework, to ensure the reader is aware of the differ-
ence in how the formats are structured, which will be necessary for understanding
the implementation presented in chapter 5.

Section 2.4 presents methods relevant to defend against the concept presented
in the thesis, and is necessary for the reader to know in order to understand the
defensive measures presented in chapter 5 and 7.

2.1 NN structure

In machine learning, the neural network is a data structure - inspired by the neu-
rons in the brain, allowing for techniques like feed-forward propagation, and back-
propagation learning. In turn, these techniques allow the NN to be trained to make
classifications, predictions, and decisions based on its input.

A typical NN is visualized as layers of nodes, of which nodes in the previous
layer are connected to the nodes in the next layer, with a simplified version shown
in figure 2.1.

4

2.1 NN structure

Figure 2.1 A typical NN structure

The first layer is the input layer, where values from a data source are fed into
the network - either directly, or normalized to that value’s range. Here, normaliza-
tion refers to the transformation of a value from its range of [a, b] into the appro-
priate range, often [0, 1]. The last layer is the output layer, where values are read
out to be used for a specific purpose. A typical example for how the input and
output layer would be utilized, is for the input layer to receive an image, and for
the output layer to read out the x and y coordinates, and the width and height of a
person in the image.

The layers between the input and output layers are the hidden layers. These
layers do not have a singular purpose, however, are responsible for the complex
behavior NNs can be trained to do, arising from the connections between nodes,
and the activation function used in the nodes.

2.1.1 The feed-forward mechanism

When using a neural network, the algorithm which receives input values, passes
them through the hidden layers, and in turn, calculates the output values, called the
feed-forward (FF) mechanism, works as follows:

The connections between nodes are referred to as weights (wj
n,m), j indicating

the layer index of the node the weight is connected to (with 0 being the first layer).

5

2.1 NN structure

Figure 2.2 A sigmoid function

n indicates the index of the node the weight is connected from, and m indicates
the index of the node the weight is connected to. The weight value is used to
amplify or minimize how large the value from the previous node is when being
passed to the next node, as wj+1

n,m × vjn, where vjn is the value in node number n
in layer j. The value of the node in the next layer is calculated by summing all
the weighted values from the previous layer, and adding the nodes bias value, like
vjm = A((

∑N
n=0w

j−1
n,m × vj−1n) + bjm), with bjm being the bias value for node m in

layer j, and A() being the activation function for the node. An activation function
can be pretty much any function. However, it is often picked from a selection
of functions based on the purpose of the network. Very often this function is a
sigmoid value, which inputs any real value, and outputs a value between 0 and 1,
with smaller input values mapped to 0, and larger input values mapped to 1. One
example of a sigmoid function is 1

1+e−x , shown in figure 2.2.
This process is then repeated for each node in a layer, and repeated for each

layer. A visual representation is shown in figure 2.3, for a node with 2 input nodes.

2.1.2 The back-propagation mechanism

While the feed-forward mechanism allows a NN to turn input into output, the val-
ues used for each weight and bias is yet to be determined. The process of selecting
proper weight and bias values for a specific network is impossible to do manually
or brute-forced - where every combination of weight and bias values are tested. In-
stead, the method of back-propagation is utilized. While there exist several types
of back-propagation methods, the most basic type will be covered here.

The core of the back-propagation function is the cost function, which calcu-

6

2.1 NN structure

Figure 2.3 How a node calculates it’s value

lates a gradient vector on all the trainable values in a neural network. In this
example, the cost function is calculated as the Mean Square Error (MSE), with the
value calculated per training instance as Ca =

∑I
i=0(v

L
i − yi)

2, where Ca is the
total cost value for training instance a, vLi being node i in layer L, with L being
the index for the last layer. yi is the expected value for the output neuron, and I is
the number of output nodes.

When determining the gradient vector, which aims to direct the cost function
towards a minimum gradually, the contribution to the cost for each trainable pa-
rameter is calculated. The algorithm starts from the output neurons. The contri-
bution to the cost for neuron vLn for the single training instance a, would look like
equation 2.1.

NodeCostLn =
∂Ca

∂vLn
=
∂(
∑I

i=0(∂v
L
i − yi)

2)

∂vLn
= 2× (vLn − yn) (2.1)

Next, the gradients for each of the weights connected to this single neuron can
be calculated in equation 2.2.

7

2.1 NN structure

WeightCostjn,m =
∂Ca

∂wj
n,m

=
∂vjm

∂wj
n,m

×NodeCostjm = vj−1n ×A′(x)×NodeCostjm

(2.2)

Here, the contribution to the cost is calculated for a single weight. The weight’s
cost is linearly dependent on the value of the node the weight is connected from,
the derivative of the activation function for the node, and the contribution from the
node the weight is connected to.

The next step is calculating the bias gradient in equation 2.3.

BiasCostjm =
∂Ca

∂bjm
=
∂vjm

∂bjm
×NodeCostjm = 1×A′(x)×NodeCostjm (2.3)

The bias gradient is, like the weight, linearly dependent on the derivative of
the activation function, and the contribution from the node it belongs.

The last step is then to calculate the contribution for the nodes in the previ-
ous layer (equation 2.4), which is then used to propagate the cost backward to all
weights and biases.

NodeCostjn =
∂Ca

∂vj−1n

=
∑
i=0

I
∂vji

∂vj−1n
×NodeCostji =

∑
i=0

Iwj
n,i ×A′(xi)×NodeCostji

(2.4)

For the next node, the contributing cost is the sum of contributions to the dif-
ferent nodes it is connected to, linearly dependent on the weights, the derivative of
the activation function, and the contribution from the nodes themselves.

The calculation for each weight and bias value is then calculated backward
in this fashion to calculate the gradient value, which is done for each training
instance to calculate the average gradient value. This gradient value for each pa-
rameter is then used with the learning rate of α to calculate the correction. The
correction determines how much weight or bias values should be tweaked. The
back-propagation method is then repeated to eventually reach a minimum for the
set of parameters, with the specific training data.

8

2.1 NN structure

2.1.3 Convolutional NN

A Convolutional Neural Network (CNN) is a subgroup of traditional feed-forward
neural networks and is usually used in processes requiring large input nodes, as
is the case for image recognition. Traditional networks with many input values
usually filter these values to reduce the number of inputs. However, the convo-
lutional neural network uses the network structure to train these filters - called
pooling layers - instead of relying on hand-crafted metrics deciding how the inputs
are filtered, as seen in figure 2.4. This filtering relies on the hierarchical nature of
the input values. Values ”close” to each other makes for smaller and less complex
patterns, with the added benefit that the specific method of filtering is trainable.

Figure 2.4 Convolutional Neural Network structure

9

2.1 NN structure

2.1.4 Recurrent NN

A Recurrent Neural Network (RNN) is a subgroup of feed-forward neural net-
works, and are used when there is a need for temporal behavior from a NN. The
temporal behavior is achieved with a regular NN structure, where the output nodes
act as input for the same network, as seen in figure 2.5. Moreover, node values are
calculated in steps, meaning a network with n layers, the input is provided at step
0, and would calculate the output for the specified input at step n. Additionally,
this allows for a network that can ”remember” its previous states, because of the
connection between output and input. Another popular method is for each network
node to contain a ”history” of values, where previous values of the node are stored
for a specified amount of time, and the network is trained to reuse these values,
seen in figure 2.6.

Figure 2.5 RNN with weighted connection between output and input

2.1.5 Long Short Term Memory NN

A Long Short Term Memory (LSTM) neural network is a subgroup of RNNs used
for temporal behavior problems. Like RNNs, the network has connectors from
the output to the input. However, unlike RNNs, it does not have problems with
varying gap length of time-series data, meaning that LSTM can make connections

10

2.1 NN structure

Figure 2.6 RNN with weighted connection within each node

between irregular time-steps more easily. This behavior is accomplished by the
use of regulators - parts of the system trained to filter information going through
them. The regulators are often implemented using several neural networks, each
with its separate responsibility, seen in figure 2.7. Four parts comprise the most
common LSTM structure:

• Forget gate: Trained to determine what information from the past should
be forgotten. In a language analyzer, this gate could be trained to trigger
on punctuation, which means the context of the sentence would be ”reset”
whenever punctuation is seen.

• Candidate layer: Trained to predict what might come next, e.g., a list of
words that would fit as the next word in a sentence.

• Input gate: If the LSTM has any external input (since all NNs also hold
knowledge on the previous state of the LSTM), this NN would be trained
to determine if any of the input is relevant to the current state. If the input
is knowledge about the current weather, this could influence the contents of
the message.

• Output gate: Is trained to select from the list of candidates.

11

2.2 Data formats

Figure 2.7 An LSTM structure

2.2 Data formats

2.2.1 The HDF5 format

The HDF5 (Hierarchical Data Format 5) format is a file format designed to handle
a large amount of heterogeneous data and is used by Tensorflow for storing neural
network model data, both pre- and post-training. The format is documented in
Group (2019). The format is constructed as a collection of data files, ordered by
a hierarchy of groups containing attributes - metadata about the internal files and
structure. Additionally, the groups contain datasets, which are the container files
for the user-defined data. The data files are generally defined by certain parameters,

12

2.2 Data formats

Figure 2.8 An example of the HDF5 format in use, here as the storage for the
model in Tensorflow

mainly the shape of the data - the sizes of the dimensions the data lies in - as well
as the data type - which data type of the stored values.

Tensorflow is one software that uses the HDF5 format for the storage of its NN
model, as well as any training information. In figure 2.8, the group and file struc-
ture of the HDF5 format are shown, with groups (blue) containing other groups,
and also containing data sets (green).

Group (2019) describes the data object header format with ”The header of each
object is not necessarily located immediately before the object’s data in the file and
may be located in any position in the file”. The description implies that the header
information can only be used to indirectly access the real data by reading the value
of the correct field and applying it to find the object information somewhere in the
file. Additionally, in Group (2019), the layout of the data in the file is restricted to
4 values:

• ”Contiguous: The array is stored in one contiguous area of the file. This
layout requires that the size of the array be constant: data manipulations
such as chunking, compression, checksums, or encryption are not permit-
ted. The message stores the total storage size of the array. The offset of an
element from the beginning of the storage area is computed as in a C array.”

• ”Chunked: The array domain is regularly decomposed into chunks, and

13

2.2 Data formats

each chunk is allocated and stored separately. This layout supports arbi-
trary element traversals, compression, encryption, and checksums (these
features are described in other messages). The message stores the size of
a chunk instead of the size of the entire array; the storage size of the entire
array can be calculated by traversing the chunk index that stores the chunk
addresses.”

• ”Compact: The array is stored in one contiguous block as part of this object
header message.”

• ”Virtual: This is only supported for version 4 of the Data Layout message.
The message stores information that is used to locate the global heap collec-
tion containing the Virtual Dataset (VDS) mapping information. The map-
ping associates the VDS to the source dataset elements that are stored across
a collection of HDF5 files. ”

2.2.2 The SavedModel format

In the Tensorflow framework, in addition to using HDF5 as a format for storing
the network model, TF employs another serialized format: SavedModel, which
makes it easier to deploy models in different types of environments. This format
is documented in Tensorflow (2020b).

The format is mostly a flexible method for transferring all relevant data from a
model to be able to store on disk. The central part of this is the saved model.pb
file, from Tensorflow (2020b): ”The saved model.pb file stores the actual Ten-
sorFlow program, or model, and a set of named signatures, each identifying a
function that accepts tensor inputs and produces tensor outputs.”. Additionally,
SavedModel also uses two directories to keep track of other information. From
Tensorflow (2020b): ”The variables directory contains a standard training check-
point” and ”The assets directory contains files used by the TensorFlow graph, for
example, text files used to initialize vocabulary tables. It is unused in this exam-
ple.”.

Since the model.pb is in the form of a Protocol Buffer (PB), the data for the
model is stored within the file. However, it would be required to know the model’s
internal data structure to access the PB properly.

14

2.3 To identify integrity attacks

2.3 To identify integrity attacks

There are several techniques for finding malicious code on a system, with different
pros and cons.

2.3.1 Hashing

A detector program could implement a database of hashed executables and code
which is already deemed malicious, as they have been isolated and submitted as
malicious by previously affected users. A hashing algorithm is used on the exe-
cutable code binary, which provides the detector with an easy method of detecting
malicious code from simple matching.

However, this technique is rarely used in its raw format, as circumventing this
technique is quite easy because a single modification in the source code would
generate an entirely different hash. Since such small changes could come from a
simple change in compiler configuration or pure chance, this technique would only
be useful for detecting files that are spread unchanged.

Listing 2.1: A possible mali-
cious program

1 i n t main () {
2 c o r r u p t c o r e () ;
3 d i s r u p t a v ()
4 }

Listing 2.2: A slightly different
malicious program

1 i n t main () {
2 d i s r u p t a v ()
3 c o r r u p t c o r e () ;
4 }

Calculating the SHA256 hashes for both pieces of code in listings 2.1 and 2.2,
results inCC90B137EE117C42DA0A936A5350ABE689D5683CCC944BB
3EC19038E63EEF853 and E4E85A93774834C4560280031D23F23DEBE
4161264424114D4C691AB20BD0269, which does not match, and a detector
having the hash for the first code, would not detect the second code as malicious,
despite the codes being functionally similar.

2.3.2 Signature matching

Antivirus like ClamAV (ClamAV (2020)) utilizes methods for text-based defini-
tions of malicious behavior in files, matching on files that have included any suspi-
cious text strings included, like known malicious URLs. Signature matching would
protect against certain types of attacks, which rely on the use of static strings, but
is very limited in the range of malicious code it can detect to formats the detector
can read as plain-text.

15

2.3 To identify integrity attacks

2.3.3 Name independent flow analysis

As direct hashing of files is not very reliable in detecting malicious files, another
method to address such a problem. The main problem with direct hashing is linked
to the ambiguous nature of code. Ambiguous code means that there are several dif-
ferent codebases, M - which all would have different hashes -, all of which exhibit
the same behavior because of variable name changes, placement switching, and
other syntactical changes. However, one method of dealing with this is to convert
the code into an unambiguous representation, which can then be matched with
the converted code of a malicious program, which would enable more effective
detection of malicious code.

An example is presented in listings 2.3, 2.4, and 2.5

Listing 2.3: Second function for creating a tuple of average area and a list of areas
based on lists of widths and heights

1 f u n c t i o n c a l c a r e a s (wid ths , h e i g h t s) :
2 t o t a l = 0
3 a r e a s = []
4 f o r w, h in z i p (wid ths , h e i g h t s) :
5 a r e a s . append (w∗h)
6 t o t a l += w∗h
7 re turn (t o t a l / l e n (wid th) , a r e a s)

Listing 2.4: Second function for creating a tuple of average area and a list of areas
based on lists of widths and heights

1 f u n c t i o n a r e a s (wd , hg) :
2 a r e a s = []
3 t o t a l = 0
4 f o r h , w in z i p (h e i g h t s , w i d t h s) :
5 t o t a l += w∗h
6 a r e a s . append (w∗h)
7
8 re turn (t o t a l / l e n (h e i g h t) , a r e a s)

Listing 2.5: The unambiguous code used for comparison
1 f u n c t i o n f (p a r a m l i s t [2]) :
2 vars = [0 , []]
3 f o r i in range (0 , l e n (p a r a m l i s t [0])) :
4 l o o p v a r 0 = p a r a m l i s t [0] [i]
5 l o o p v a r 1 = p a r a m l i s t [1] [i]
6
7 vars [0] += l o o p v a r 0 ∗ l o o p v a r 1
8 vars [1] . append (l o o p v a r 0 ∗ l o o p v a r 1)
9 re turn (vars [0] / l e n (p a r a m l i s t [0]) , vars [1])

16

2.4 Integrity and authentication

Here, the functions in 2.3 and 2.4 have functionally the same behaviour, but
would not be comparable as they are. Taking inspiration from data analysis used
by compilers to make determinations on the flow of data in a piece of code (Aho
et al. (1986)[Chapter 9]). It is possible to create a translated code and a comparison
scheme, which would make it possible to decide if two pieces of code behave the
same.

Using the data flow analysis, each code block would be separated into code
blocks depending on conditional statements, i.e., if , for, while, and after remov-
ing loop invariant expressions, and dead code the corresponding ”actions” in a
code block can be compared. ”Actions” could, in this context, be defined as a line
of code which is does something useful, e.g., assignment, increment, or multipli-
cation. These comparisons would check if the number of specific actions is equal
and that the constant values which are used are equal. The comparison could be
made by making a list for each comparable actions, in the code block of the two
codes, and then compare each element in the two lists to each other.

While this method would not be as quick as purely comparing the hashes of
files or functions of code, it would be more useful for discovering malicious code
based on the behavior of the code, instead of implementation specifics.

2.4 Integrity and authentication

When transmitting code across any non-trusted medium, there is a need for the
code’s recipient to verify the code’s authenticity and integrity. Integrity ensures
the recipient that the code has not been tampered with, and authenticity ensures a
trusted party sent the code. Mechanisms that ensure integrity and authentication
are presented in this section.

2.4.1 Code signing

Code signing is a security mechanism that enables parties to create a signature for
a piece of data, which can be verified by another party.

The sender of the data has an asymmetric key-pair, consisting of a private- and
a public key, which has a mathematical connection to each other. That way, gen-
erating the private key from the public key is very time-consuming, and in theory,
requires brute-forcing the key.

The act of signing code is comprised of two parts:
Signature generation: The private key and the data to be signed is used in

an algorithm, which produces the signature for this specific data and key. This

17

2.4 Integrity and authentication

algorithm is a one-way algorithm that ensures the private key cannot be generated
from knowing the data and the signature.

Signature verification: The public key, the data, and the signature are used in
an algorithm, which outputs a boolean value indicating if the signature belongs to
the data and produced by the private key, which is connected to the public key.

Using code signing, integrity is maintained. The verification algorithm checks
if the data corresponds to the signature, and authentication is maintained since the
verification algorithm checks if the public key (and by extension, the private key)
belongs to the signature.

Additionally, authenticity is often also implemented on the public key to ensure
it belongs to whomever it claims to belong. Authenticity is ensured employing
physical accessibility (putting a public key in a system manually, ensuring it is
the corresponding key), or using Certification Authorities, which can provide a
signature of their own on other public keys.

Below is a private RSA key used to generate the signature on a piece of code,
e.g., the code in listing 2.6.

-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQDGBkG7VF2JBRDJHcA+a0FbB+ye+a7nhdJNblJ/xQK
jrRd479zsDi3r+bTVxZsMTKCsXbTL6JNV/Cy56pNeTF9UgQuZmH+3Sk
YEODLEMk1iGs4KmTr2GMWUMwvL3tDVfanl/ovvkCs/7W8P5Q0/BTXpE
92EHALzWxy6OJpfsZfI+QIDAQABAoGAGuRWoN4AJc9uTCGiLdfa9EXL
OHun6QEfYiyNP5S9mwSyn1XTpqr2SYmLqUxAlhcB6uZ+2wImoBKy8Dy
O7stoVpBV0lqDgc8b1AlJZU0My05fMK9jK0B8Qc3fJ3rzdsirXXFqbi
0mHHgBWr9YKss6waFz6qae1doBvp1eg4zF6UECQQDlZUEH8ghhMzh4f
nsxsy0TFg6ALKG+TOjwdsRVIa71VmOVLOPimkKnGc3iaesBdPM0fSWb
1WRS91vvPF4yrMcNAkEA3P2YpCyufXLkdC+qf+jHwDJugS+esIwppUX
U97VQS0jdDazV2AOJ7XUMmqiPK7+rik4v8ez/pcjYYv4FxfsOnQJBAL
hWPYPdAs7ZEjABs42kpjwIJW7qbq81rppNVkfy4V1VJoDhqd6Wh6kwG
zouUyLAkA9F4crwF8Zz7/S3VhryrKECQQC+sXZN9OB9D+9i8t7FkTEN
AHeqslTVM52cKC4lsiefTziw3DuLM0KJzT8bFei1b6euqNlmgYP4ot9
WTKzesk1hAkAsEonlfAgbcroccU2eaEjOxVWnwoXtzlCN9eB8dBsB8M
fLAO0NRRMYVaWxec45XYF7HzosBZcBpOPvO98dGwn/
-----END RSA PRIVATE KEY-----

-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDGBkG7VF2JBRDJHcA
+a0FbB+ye+a7nhdJNblJ/xQKjrRd479zsDi3r+bTVxZsMTKCsXbTL6J
NV/Cy56pNeTF9UgQuZmH+3SkYEODLEMk1iGs4KmTr2GMWUMwvL3tDVf
anl/ovvkCs/7W8P5Q0/BTXpE92EHALzWxy6OJpfsZfI+QIDAQAB

18

2.4 Integrity and authentication

-----END PUBLIC KEY-----

Listing 2.6: Example code to be signed
1 i n t main () {
2 m = l o a d m o d e l (p a t h) ;
3 p r e d i c t (m, i n p u t) ;
4 }

Using OpenSSL’s dgst functionality, the code is signed using the aforemen-
tioned private key, resulting in the RSA-SHA256 hexadecimal representation be-
low, which can be verified using the public key above.

openssl dgst -hex -sign private_key example_signing_code

RSA-SHA256(example_signing_code)=52208157b536e5de48ee73
120187e0624904b925a69c42a4f528ff32ee32dcf19da614d52cb27
00d6cc639b797763848b37cd45799efdcd5f5a58b5615fe53e61447
59e0fcbd4fe6662c9897b5c1d7fb41dd0732b59ba5ca11c24d7ee4f
65b6f55af46fa560e971f8219e61ce67e735d0e723b10eec930d886
dca5e12b2312ce

2.4.2 Encryption

The act of encrypting data means using a key, or pair of keys, to generate a piece
of jumbled data, which in turn can be turned into the original data by using the
key, or keys.

Methods for encrypting data are abundant, but can be categorized into two
parts: Asymmetric - using a pair of asymmetric keys to encrypt and decrypt - and
symmetric - using a single key to perform both encryption and decryption.

Encryption: The data to be encrypted and the encrypting key is used by an
algorithm to produce a bit-string of seemingly random 1s and 0s, which is the
encrypted data.

Decryption: The encrypted string and the decrypting key is used by an algo-
rithm to transform the string into the original data.

Both integrity and authenticity are maintained, as the data is impossible to
modify without having the appropriate key(s) and provides authenticity.

19

Chapter 3
Related Work

3.1 Malicious use of AI

3.1.1 Social bots

Out of any single area, one where AI technologies have been utilized very success-
fully is creating social bots. These are created to target humans, with the end goal
to trick, fool or otherwise expose a person, in order to exploit them.

The research by Seymour and Tully (2016) outlines an AI bot that uses Re-
current Neural Networks (RNN) to generate content on Twitter to perform spear-
phishing attacks on targeted users. The RNN is trained on the content from the
users themselves, allowing for generated ”tweets” to automatically have taken the
same form and language of the target user, increasing the chance of user interac-
tion with the attacking profile.

Yao et al. (2017) provides research on using RRNs to generate false reviews
online, while avoiding detection by statistical detectors, meaning state-of-the-art
detection technology was unable to distinguish between the generated content and
user-generated content. The generation is accomplished by a mixture of RNN and
a word replacement strategy. The RNN is trained on the target domain, e.g., restau-
rants, clothing stores, bars, determining the language, and the specific text gener-
ated. The word replacement strategy then recognizes certain contextual words,
like nouns, which are then replaced with other, similar words. In turn, this enables
the attacker to control the sentiment of each review and could be used to skew the
impression real people have of the reviewed object.

20

3.2 Attacks targeting AI-based systems

3.1.2 AI camouflage

Other methods of cyber attacks incorporating AI are methods aimed at hiding the
attacker’s intent by utilizing AI techniques to learn how to avoid detection.

The paper by Bahnsen et al. (2018) outlines a method for generating phishing
URLs able to circumvent AI-powered phishing detection systems, by training an
LSTM, which can generate less detectable URLs, based on a training set of suc-
cessful phishing URLs.

3.1.3 DeepLocker

The research by Kirat et al. (2018) shows a concept for designing malicious AI un-
locked by fulfilling specific input criteria. The attack is accomplished by training
a NN on specified input parameters, like images from a face camera, or voice. The
input is used in the NN, outputting a bit-string, which is used as the decryption
key for a payload, in turn executing the decrypted payload. By encrypting the pay-
load, and hiding the decryption key in a trained AI, the attacker can avoid detection
methods against the payload, and avoid reverse-engineering the decryption key, as
the target attributes are unknown until the AI successfully decrypts the payload.

3.2 Attacks targeting AI-based systems

In Barreno et al. (2010), one of the research results is a taxonomy framework for
classifying attacks against machine learning systems. This taxonomy relies on
classifications of attack according to three distinct dimensions:

• Influence: Differentiating between how the attack is performed on the AI
system and is defined as one of two areas. First is Causative, where the at-
tack is performed by influencing the training. Second is Exploratory, where
the attack exploits misclassifications without influencing the training of the
data.

• Security violation: Differentiates between what the attack affects, and is
defined as one of two areas. First is Integrity, where input is influenced by
false positives, i.e., a misclassification which allows something to happen
which should not happen for this input. Second is Availability, where input
is influenced by false negatives, i.e., a misclassification which does not allow
something to happen when it should be allowed to happen.

21

3.2 Attacks targeting AI-based systems

• Specificity: What is the scope of the attack concerning the input, and is
defined as one of two areas. First is Targeted, where the AI is affected for
a small number of instances. Second is Indiscriminate, where the AI is
affected for a large number of instances.

In defining these categories for attacks against AI, the research also outlines
defensive measures against the two categories relating to the methods used for
attacking:

• Causative:

– RONI: Reject On Negative Impact, which measures the impact of a
training instance on the AI model, rejects the training instances that
have a large negative impact on the accuracy of the model.

– Robustness: Find procedures that are the least susceptible to manipu-
lation of the chosen training data.

– Online prediction with experts: Create a composite AI model, which is
trained to follow advice from a set of expert systems. Each AI model
gives its own, separately trained, predictions on the data, and the com-
posite classifier is trained according to how it follows the advice of the
most successful expert.

• Exploratory:

– Training data: The attacker is limited to knowing the training data used
by the AI system

– Feature selection: Transforming the raw measurement data into a fea-
ture map, which is used as the input for the AI, instead of the raw data.

– Hypothesis space/learning procedures: Making it more difficult for the
attacker to know specifically what the AI model is trained to do.

– Randomization: Randomize the hypothesis to real output values in
[0,1], instead of 0 or 1. The randomness would increase the cost for
the attacker to gain information on the AI system.

– Limiting/misleading feedback: Eliminate, channels of information, or
use these channels to provide the attacker with misleading information.

3.2.1 Attacks fooling AI-based systems using adversarial input

In the field of security and AI, much research has gone into exploring the use of
altered information in order to circumvent detection by an AI system, or otherwise
disrupt the regular operations of the AI system. The attack is made by crafting

22

3.2 Attacks targeting AI-based systems

the input values being used in the AI system, which in turn classifies the input as
something different than it should be.

The works of (Chakraborty et al. (2018)), (Zhang et al. (2020)), (Akhtar and
Mian (2018)), (Yuan et al. (2019)), (Sun et al. (2018)), and (Ozdag (2018)) outlines
surveys presenting information on which types of AI is susceptible to adversarial
examples. Here, some proposed solutions for handling adversarial examples are:

• Adversarial training: Injecting adversarial examples into the training data
makes the training more robust against adversarial attacks.

• Distillation: Where a second neural network is trained on the first’s out-
puts, in addition to using temperature variables to reduce the sensitivity of
perturbations in the input data.

• Feature squeezing: Reducing the complexity of several inputs by ”squeez-
ing” input values into single values, like smoothing filters on images-.

• Transferability blocking: A method in which NULL labeling is used to
classify instances which are adversarial, by training with adversarial exam-
ples of the training data, modified to different degrees of perturbation.

• Defence GAN: By training a Generative Adversarial Network, where one
part is set to discriminate between real and perturbed input, and the other
is the real model. By this method, the real model is trained to differentiate
between real and perturbed input.

• MagNet: A classifier read the output of the NN and rejects the output if
it is too distant from the selected ”normal” set. Additionally, it uses auto-
encoders to revert adversarial examples into normal input, but only in a black
box scenario.

Additionally, in (Clark et al. (2018)) and (Sharif et al. (2016)), experimen-
tal results show how adversarial examples can be performed in physical systems,
by sending ultrasound signals at planned locations, and by wearing a specially
designed pair of eyeglasses, showing that adversarial examples can be crafted in
physical systems as well.

Real-world threats using adversarial examples are also presented in Neekhara
et al. (2020). DeepFake videos, which are videos where a person’s face can be
”projected” onto the movements of a different person, making it possible to make
a video of any person ”saying” practically anything, has been altered. By altering

23

3.2 Attacks targeting AI-based systems

the input, DeepFake videos can avoid detection by DeepFake detectors.

Lastly, the works of Rajpal et al. (2017) show methods for training an AI to
be able to ”fuzz” input data to be used as adversarial examples, making for an
efficient method for generating a large amount of adversarial example data. The
fuzzing could help make the examples above much more efficient at producing
adversarial examples.

3.2.2 Targeted attack against AI systems

While section 3.2.1 goes into detail about how AI systems can be attacked in-
directly by altering input values, there exist other exploits which focus more on
compromising other aspects of an AI system.

In Stevens et al. (2017), the approach is based on using valid inputs for an AI
to exploit execution bugs, which induces faulty behavior in the AI system. The
attack is made in a gray-box fashion, as the exploit requires knowledge about the
software that is used. The consequence of this attack is the possibility for an entire
AI system to be poisoned by its input, influencing the AIs behavior during execu-
tion of the AI program.

In Gu et al. (2017), the research is centered around training legitimate AI struc-
tures in cloud systems and poisoning the training data to alter the target behavior
slightly. The alteration means the attackers can manipulate an AI system’s behav-
ior, even to the degree that re-training the model still causes decreased accuracy on
the target input.

In Brendel et al. (2017), the research focuses on altering the output state after
the AI core has finished computation. This method is performed by gradually
traversing a specific classifications’ input-space-boundary, meaning the edge of
the ”geometrical” shape, in which every point inside would output one specific
classification. The method is then able to gradually traverse this boundary until
the input is a separate classification. Still, it classifies as the original, since the
point lies within the classification range.

24

Chapter 4
Research motivation

4.1 Motivation

4.1.1 The AI and security landscape

In the field of cybersecurity, the use of AI technologies as preventative measures
has gradually gained a foothold, as AI-powered classifiers are trained to detect,
monitor, and mitigate a variety of cyberattack vectors. The use ranges from scam-
filters in email clients, bot-detection on social media, to Denial of Service (DoS)
detection in network structures.

The flipside to this coin is the use of AI directly in a cyber attack. While any
large-scale cyberattacks using AI directly so far is lacking, research into how AI
can be used for malicious purposes continually reveals the scope of which AI could
be used in attacks. The most notable of which might be the DeepFake AI system
(Neekhara et al. (2020)), able to imitate people in a video, even being able to alter
the image enough to fool AI-powered detectors.

Lastly, AI has gained extensive use in applications and technologies. The car
industry, for instance, predicts a significant increase in the production of self-
driving cars, utilizing AI technologies for sign detection, avoiding pedestrians,
traffic control, and planning. Other applications in everyday life also make use
of AI technologies. YouTube, the most popular video viewing and sharing web-
site, while maintaining secrecy on its internal algorithms, utilizes AI technologies.
From optimized video serving, ad serving, to their infamous Content ID system,
much of YouTube’s systems rely on AI technologies.

As the use of AI in everyday life increases, so does the motivation for mali-

25

4.1 Motivation

cious actors to be able to circumvent these AI systems. Research into adversarial
examples has shown that slightly altered input to an AI system is often able to fool
classifications, even in physical systems completely. These attacks pose a severe
challenge to the use of AI systems in real life, as such misclassifications would be
worrying to anyone who wanted to use such systems.

While many parts of using AI maliciously has been covered by previous re-
search, when it comes to compromising the integrity of the code in an AI system,
there has been limited research, and mainly in the context of the causative attack
described in Barreno et al. (2010), of which Gu et al. (2017) provides a working
example. Barreno et al. (2010) also references exploratory attacks, in chapter 3
referred to as adversarial examples. Here the concept is to exploit the flaws in an
AI system in order to misclassify input.

However, there exists a classification of attacks against AI systems that do not
fit neatly into the classifications defined in Barreno et al. (2010). This attack mod-
ifies the behavior of an AI system by altering the AI model to provide additional
functionality while maintaining the original functionality of the AI system. This
attack will, in this thesis, be referred to as an integrity attack against an AI system.

4.1.2 The context of an integrity attack against AI systems

The DeepLocker attack

The DeepLocker attack, introduced in Kirat et al. (2018), is an AI attack using a
neural network as part of a decryption mechanism for an encrypted payload con-
taining an attack. The concept works by training a neural network on a set of input
parameters, e.g., an image, or voice of a person. The output parameters are then
used as the symmetric key in an encryption algorithm, which makes it so the de-
cryption can only be performed if the neural network recognizes whatever it was
trained to recognize. An attacker payload - which can consist of any attack - is
then encrypted with the key. The network, execution code and encrypted payload
are then used in the attack on a system, installing and executing the execution code
when access to a system has been successful.

The reason DeepLocker is so appealing in the context of the attack against AI
systems is the concept of being able to modify an existing AI system, as described
earlier, and implement a DeepLocker NN in a running AI system. Because the AI
system is supposed to execute in the system, this could be used to hide the attack.
The attack would then wait in the AI system until the prerequisite conditions for
the DeepLocker NN are met. As an example, consider this attack being successful

26

4.1 Motivation

Figure 4.1 The Cyber Kill Chain steps

in infiltrating an AI-powered self-driving car. This attack could, depending on the
attacker’s goal, cause loss of human life or cause public distrust in AI-powered
self-driving cars.

Anatomy of DeepLocker using Cyber Kill Chain

The Cyber Kill Chain (CKC) is one method of dividing a cyber attack into parts,
each having its scope, methods, requirements, and most importantly, defensive
measures. These parts are seen in figure 4.1. By putting the integrity attack against
AI systems into the context of the CKC, the scope of the research is much more
clearly defined, as certain parts of the attack do not have to be specified in detail.
Assumptions can then be made on those parts which are not covered, without this
impacting the findings of the research, as the findings are put into the context of
the set CKC model.

In the described integrity attack against an AI system, steps 1, 2, and 4 must
be considered for the attack to succeed.

In step 1 - Reconnaissance - the attacker would gather information on the tar-
get, on how the AI model functions, the feature map of the system, and the output
behavior.

In step 2 - Weaponization - the attacker would train a DeepLocker neural net-
work following how the AI system functions, and encrypt the attacker payload.

Step 3 - Delivery - will be assumed to be possible and is not part of the scope
of this thesis.

Lastly, step 4 - Exploitation - the DeepLocker neural network is installed
into the existing AI system, and the payload is stored to be used whenever the
DeepLocker is activated.

As the encryption of the payload in DeepLocker allows for pretty much any
type of attack to be performed once decrypted, steps 5-7 are not considered in this
thesis.

27

4.2 Research questions

4.1.3 Practical implications

With the advent of the wide-spread use of AI technologies in real-life applications,
the danger of a malicious actor being able to directly target the AI system could
pose severe risks in the well-being of anyone using such technologies. As research
covering the definitions of attacks against AI system does not accurately cover the
mentioned classification of an integrity attack on AI systems, it is necessary to ex-
plore the capabilities of this type of attack. For this reason, this research exists; to
explore such methods and develop and test strategies and methods to mitigate the
dangers of this exploit.

Therefore, the goal of this research is to explore a concept where an AI system
is targeted by a malicious actor to describe prerequisites and assumptions needed
for the attack to be successful and to outline mitigation strategies to protect the AI
system from such an attack. This thesis’s primary focus will be the weaponization
step of the attack, in figuring out a specific method which can compromise the
integrity of the AI system.

4.2 Research questions

• RQ1: How is it possible to compromise a neural network to add function-
ality to an existing network, without the normal execution of the neural net-
work being impacted, in a white-box fashion?

• RQ2: How is it possible to compromise a neural network in order to add
functionality to an existing network, without the normal execution of the
neural network being impacted, in a black-box/gray-box fashion?

• RQ3: How is it possible to defend against the attacks explained in RQ1 and
RQ2?

4.3 How the thesis will answer the research questions

As the research relies on an existing AI system to attack, a simple AI system
will be crafted for use in the research. This system will receive training within
the scope of image classification, specifically it will be trained to recognize if a
person wears glasses and if the person has a beard. This model does not, however,
require any particular level of accuracy, as the requirements from RQ1 and RQ2
do not consider the effectiveness of the AI system, only the relative change in
functionality pre- and post the integrity attack.

28

4.3 How the thesis will answer the research questions

4.3.1 RQ1:

In answering the question of how an attacker would be able to perform an AI in-
tegrity attack in a white-box fashion, the research will be aimed at producing a
theoretical model and a practical implementation of a proof-of-concept. This con-
cept will be produced with the motivation to compromise an existing AI system’s
integrity when the specifics of the targeted AI system are known.

In the thesis, the theoretical model is a general model for how an integrity at-
tack against AI systems can be performed, focused on the method of being able to
incorporate the attacker network into the original network while maintaining the
functionality of the original network. As the model information is available from
the white-box approach, the theoretical model will make any assumptions follow-
ing what is known about the AI system beforehand.

For the practical implementation of the theoretical model, the approach is di-
vided into three separate parts: Targeted AI System, Method for Modifying the AI
System, and Verification methods for the Original, Attacker and Modified networks.
The Targeted AI System is described above.

The Method for Modifying the AI System is further split into several parts:
Accessing data, Modification method, and Storing the data. As the approach is
white-box, accessing and storing the data is possible using, however, format the
data is stored in, based on how the implemented AI system stores its data. The
modification method is also performed as an ad-hoc implementation depending
format of the data. However, the modification method would be possible to do as
a general method, which would require additional steps to translate the data to and
from the format the general method uses.

The verification methods will check the relative difference between the origi-
nal, attacker, and modified network, using test data in the original network’s scope.
The verification is done to confirm that the theoretical model’s conclusions corre-
spond with the practical implementation.

4.3.2 RQ2:

In answering the question of how an attacker would be able to perform an AI
integrity attack in a black-box/gray-box fashion, the research will be aimed at pro-
ducing a theoretical model, as well as a practical implementation of a proof-of-
concept. This concept will be produced with the motivation to be able to compro-
mise an existing AI system’s integrity when the specifics of the targeted AI system
is not known, or the knowledge is limited.

The theoretical model for RQ2 is nearly identical to the model in RQ1. The

29

4.4 By which metrics the answers for the research questions will be evaluated

difference from RQ1 is that any assumptions relying on knowledge of the AI sys-
tem are limited to the input to the AI system.

The practical implementation is structured the same as in RQ1, with specific
changes to the implementation for the method for modifying the AI system.

The Accessing data part in RQ1 relies on knowing the data format for storing
the AI system. In the black-box/grey-box fashion, the research will explore two
methods for a black-box method for accessing the data. The first is binary access
to the AI model data. Second is enumerated access to data using a list of the
most commonly used data formats. The enumeration will be limited to 2 specific
formats, HDF5 and SavedModel, for the implemented solution.

4.3.3 RQ3:

In answering the question of how to defend against an AI integrity attack, the
research will also be aimed at producing a theoretical strategy, and techniques
which can be implemented, with the goal in mind to be able to either prevent and
detect an AI integrity attack.

The strategies and techniques will be developed based on knowledge and ex-
perience gained through answering RQ1 and RQ2 and general knowledge on how
integrity and authentication can be implemented in working systems.

4.4 By which metrics the answers for the research ques-
tions will be evaluated

In chapter 6, the results from the research will be evaluated against the metrics laid
out below for each research question.

4.4.1 RQ1:

• Whether the research can produce a proof-of-concept, both in principle and
in practice using a real-world practical example.

• The degree to which the research can discover noticeable behavior or traits
of the attack.

4.4.2 RQ2:

• Whether the research can produce a proof-of-concept, both in principle, as
well as in practice using a real-world practical example, without, or with
limited knowledge on the AI system targeted.

30

4.4 By which metrics the answers for the research questions will be evaluated

• The degree to which the research can discover noticeable behavior or traits
of the attack.

4.4.3 RQ3:

• The degree to which the proposed mitigation strategies and techniques would
theoretically prevent an AI integrity attack.

• The degree to which the proposed mitigations are considered as a practical
implementation in a working AI system.

31

Chapter 5
Results of research questions

5.1 The targeted AI system

This AI system will be the basis for the attacks performed in RQ1 and RQ2 and
is based on an image classifier. The image classifier’s purpose is to be able to
recognize if people in an image wear glasses and have a beard. The purpose is
based on the metadata for the data set provided as the training data, the FERET
image database.

5.1.1 Setup

The training was implemented in Python and used the Tensorflow library to train
the models and create the model network files. In 5.1, the different versions for
libraries, languages, and formats are listed.

System name Description Version
Jupyter IDE for easy Python execution 4.6.3
Python Programming language 3.6.9

Tensorflow Python library for machine learning 2.2.0
H5PY Python library for using HDF5 files 2.10.0
HDF5 File format for storing large datasets 1.10.4

NumPy Python library for scientific array operations 1.18.2

Table 5.1: System versions and descriptions

32

5.1 The targeted AI system

5.1.2 Experimental data

The experimental data was gathered from the FERET Color Database (NIST (2019)),
providing a data set of images of 739 people’s faces, combined numbering 8172
unique images. This data set was chosen for two reasons. First, is the extensive
metadata provided, which makes the labeling of instances very easy. Second, the
relatively small size would not impact the AI system in the context of the thesis
since it did not require the AI system to have a high degree of accuracy.

The attached metadata for the images are listed in 5.2

Field Description Value
Type

Example

Recording:id ID for one specific im-
age

String cfrR00001

URL The relative image path
for the image

URL data/images/
00001/00001 930831
hl a.ppm.bz2

CaptureDate When the photo was
taken

Date 08/31/1993

CaptureTime When the photo was
taken on the date

Time 00:00:00

Subject:id ID for one specific per-
son

String cfrS00001

Pose:name Classification of the
pose of the face (TODO
write list of these)

String hl

Pose:yaw Numeric value of the de-
grees the head is turned
around the neck axis

Float 67.5

Pose:pitch Numeric value of the de-
grees the head is turned
around the ears axis

Float 17.0

Pose:roll Numeric value of the de-
grees the head is turned
around the nose axis

Float 10.5

Wearing:glasses Boolean value for
whether the subject has
glasses on

Bool No

33

5.1 The targeted AI system

Hair:beard Boolean value for
whether the subject has
a beard

Bool Yes

Hair:mustache Boolean value for
whether the subject has
a mustache

Bool No

Expression:name Classification for what
the expression of the
subject is

String fb

LeftEye:x Numeric value for which
pixel in the x plane the
left eye is located at in
the image

Integer 328

LeftEye:y Numeric value for which
pixel in the y plane the
left eye is located at in
the image

Integer 324

RightEye:x Numeric value for which
pixel in the x plane the
right eye is located at in
the image

Integer 204

RightEye:y Numeric value for which
pixel in the y plane the
right eye is located at in
the image

Integer 328

Nose:x Numeric value for which
pixel in the x plane the
nose is located at in the
image

Integer 270

Nose:y Numeric value for which
pixel in the y plane the
nose is located at in the
image

Integer 392

Mouth:x Numeric value for which
pixel in the x plane the
mouth is located at in the
image

Integer 272

34

5.1 The targeted AI system

Mouth:y Numeric value for which
pixel in the y plane the
mouth is located at in the
image

Integer 460

Weather:condition Classification for the
weather present in the
image

String Inside

Table 5.2: FERET metadata descriptions, types and examples

Listing 5.1: The corresponding metadata XML to figure 5.1
1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <!DOCTYPE R e c o r d i n g s SYSTEM ” h t t p : / / hbase . humanid . o rg / hbase / d t d /

r e c o r d i n g . d t d ”>
3 <R e c o r d i n g s>
4 <Record ing i d =” cf rR00002 ”>
5 <URL r o o t =” Disc1 ” r e l a t i v e =” d a t a / images / 0 0 0 0 1 / 0 0 0 0 1 9 3 0 8 3 1 f a a .

ppm . bz2 ” />
6 <C a p t u r e D a t e>0 8 / 3 1 / 1 9 9 3< / C a p t u r e D a t e>
7 <CaptureTime>00 : 0 0 : 0 0< / CaptureTime>
8 <Format v a l u e =”ppm” s c a n n i n g =” P r o g r e s s i v e ” c o m p r e s s i o n =” b z i p 2 ” />
9 <S u b j e c t i d =” c f rS00001 ”>

10 <A p p l i c a t i o n>
11 <Face>
12 <Pose name=” f a ” yaw=” 0 ” p i t c h =” 0 ” r o l l =” 0 ” />
13 <Wearing g l a s s e s =” Yes ” />
14 <Hai r b e a r d =”No” mus tache =”No” s o u r c e =” R e t r o s p e c t i v e l y ” />
15 <E x p r e s s i o n name=” f a ” />
16 <Lef tEye x=” 326 ” y=” 332 ” />
17 <RightEye x=” 202 ” y=” 334 ” />
18 <Nose x=” 268 ” y=” 404 ” />
19 <Mouth x=” 266 ” y=” 468 ” />
20 < / Face>
21 < / A p p l i c a t i o n>
22 <S t a g e i d =” cf rT00001 ” />
23 < / S u b j e c t>
24 <C o l l e c t i o n i d =” cf rC00001 ” />
25 <Envi ronment i d =” cf rE00001 ” />
26 <Se ns o r i d =” cfrN00002 ” />
27 < I l l u m i n a n t i d =” c f r I 0 0 0 0 1 ” />
28 < I l l u m i n a n t i d =” c f r I 0 0 0 0 2 ” />
29 < I l l u m i n a n t i d =” c f r I 0 0 0 0 3 ” />
30 <Weather c o n d i t i o n =” I n s i d e ” />
31 < / Reco rd ing>
32 < / R e c o r d i n g s>

35

5.1 The targeted AI system

Figure 5.1 One example image from the FERET dataset

36

5.1 The targeted AI system

Figure 5.1 shows a single image from the FERET dataset, with its correspond-
ing XML metadata instance shown in listing 5.1.

5.1.3 Implementation

As the purpose of this AI system is just to create a working AI system that will
be attacked, the implemented solution is based on a simple neural network tutorial
from Tensorflow (Tensorflow (2020a)).

Listing 5.2: The AI system training pseudocode
1 i n i t i a l i z e ;
2 d a t a <− l o a d d a t a (t r a i n i n g d a t a p a t h) ;
3 f o r d i n d a t a :
4 c d <− c o n v e r t d a t a t o s i z e (d , wid th =256 , h e i g h t =256) ;
5 images . append (c d) ;
6 l <− g e t m e t a d a t a (d) ;
7 l a b e l s . append (l) ;
8
9 s p l i t i m a g e s (images , t r a i n d a t a , t e s t d a t a , t r a i n p e r c e n t = 0 . 8) ;

10 s p l i t l a b e l s (l a b e l s , t r a i n l a b e l s , t e s t l a b e l s , t r a i n p e r c e n t = 0 . 8)
;

11 model <− s e t u p m o d e l ([3 x256x256 , 128 , 2] , [s igmoid , s igmoid] , l o s s
= b i n a r y c r o s s e n t r o p y) ;

12 t r a i n (model , t r a i n d a t a , t r a i n l a b e l s , epochs =2) ;
13 v a l i d a t e (model , t e s t d a t a , t e s t l a b e l s)
14 save mode l (model) ;

In listing 5.2, the general overview of the implemented code in listing A.3
in the Appendix is shown. The load data function fetches the raw training data
and metadata from disk, which is then used by the convert data to size function -
which converts the image into the input size, as well as normalizing the pixel val-
ues, transforming the R, G, and B values as [0, 255]− > [0, 1]. The get metadata
function converts the metadata into a list of 0s and 1s. This metadata is used to
denote if an image belongs to a specific classification. The converted image and
corresponding label are then put into separate lists, which are then split up into
training and testing. The neural network model is then set up, with 3 layers, the in-
put layer of size 3× 256× 256 corresponding to width = 256, height = 256 and
the 3 RGB values for each pixel. The second layer is of size 128, with the activa-
tion function being the sigmoid function. The output layer is of size two because of
the two separate classifications the model should recognize. The activation func-
tion is the sigmoid function since the prediction should be in how confident the
model is that the image is a specific classification. The chosen loss function is
binary crossentropy, which calculates the error for the individual classification
and sums up the total loss value errors. Lastly, the model is validated against the

37

5.2 RQ1 - White-box Integrity attack against AI systems

test data, and the trained model is saved.

5.2 RQ1 - White-box Integrity attack against AI systems

5.2.1 Concept

Accessing data

In RQ1, we assume the attacker knows exactly how the targeted system stores the
data. This assumption enables the attacker to use the same method of accessing
the AI model’s data as the targeted system.

Merging AI

At the core of the AI integrity attack lies a concept of modification and expansion
of an existing neural network to facilitate malicious behavior. The idea is to modify
an existing neural network in order to:

• Train the behavior of a network to the specifications of the attacker

• Add the attacker behavior to the existing neural network

• Preserve original network behavior

These restrictions are motivated by examples of using neural networks in de-
termining behavior in applications, like object detection in a self-driving car. If a
malicious actor can

• Train behavior on a specific input, like objects being in front of a car,

• Maintain AI behavior on regular input, and

• Have the new behavior work within the AI’s existing execution, the integrity
of the AI itself has been breached.

Storing data

The attacker will not change the format of the AI model data to store the modified
neural network.

Validating data

The original, attacker and modified models are tested on a set of input data to check
for correctness. The output values are checked to see if the behavior of the original
is kept and that the attacker’s neural network works as expected.

38

5.2 RQ1 - White-box Integrity attack against AI systems

5.2.2 How to merge the two neural networks

Accessing data

As the formats used to store the data, is assumed to be available for the attacker
to be able to use, the same method of accessing the data as the targeted system is
used by the attacker.

Merging NN

The first step of the attack is training a neural network with a similar structure to
the targeted solution.

The only restriction on the structure of the attacker’s NN is the number of
layers it can have. The reasoning behind such a restriction lies in the fact that
1) The original network has to maintain its functionality, and 2) The activation
function for nodes is not necessarily linear.

If we want to expand the network’s layers and maintain its functionalities, the
solution will look like the one illustrated in figure 5.2. Here, a single node is split
into two nodes, with a single weight connection between them, with the previous
input and output weights connected to each of the two nodes. This method relies
on the mathematical formula vjm = A(vj−1n × wj

n,m + bjm), with vjm being the
value of node number m in layer j, wj

n,m is the weight value from node number n
in layer j − 1 to node number m in layer j, and bjm being the bias value for node
number m in layer j.

This formula in turn, makes it necessary for having a single constant weight
value W = wj−1

n,m and a single constant bias value B = bjm to solve the equation
x = A(W ∗ x+ B). In the case that the activation function is linear, i.e. A(x) =
cx + d, the equation is solvable, but in the case that A(x) = 1

e−x+1
- the sigmoid

function - the equation does not have solutions for W and B which are constant
values. This would in turn mean that the method does not work for expanding a
network while maintaining the functionality, in the case that the activation function
is nonlinear.

Because of this restraint for this method to not be linear - which most com-
monly used activation functions are - the assumption will be that it is impossible
to expand the number of layers in a network without affecting the functionality.
However, this conclusion does not claim that it is mathematically impossible, as
there is the possibility that the solution could be solved if the network was fully
connected. This hypothesis, however, was not explored.

When it comes to adding the attacker behavior and preserving the original
network behavior, they go hand-in-hand, as one both relate to how the resulting

39

5.2 RQ1 - White-box Integrity attack against AI systems

Figure 5.2 Illustration for expanding the layer number of the original network

40

5.2 RQ1 - White-box Integrity attack against AI systems

NN structure would look like, and subsequently, how to transfer the original model
to this NN structure.

Looking at how a neural network calculates the value of a node (equation 5.1),
there does exist a method which would allow the behavior of two networks to exist
within the same neural network structure.

vjm = A((

N∑
n=0

vj−1n ∗ wn,m) + bjm) (5.1)

In the modified network, the weight and bias values from both original and
attacker models are inserted into the modified matrices and vectors to separate the
networks from each other. As both models rely on the same input, the method
for the first matrix - which contains the weights from the input nodes to the first
hidden layer - is slightly different from the other weight matrices. The modification
is done as follows:

• Creating a new matrix W , with size of mc×nc, where mc = ma = mb and
nc = na+nb, with ma×na and mb×nb being the sizes of weight matrices
A and B in the original and attacker networks. Here, mx refers to the size
of the layer that the weights connect from. ny refers to the size of the layer
that the weights connect to.

• The values from matrix A and B is inserted into matrix W as described in
listing 5.3

• The rest of the values are set as value 0

Listing 5.3: Inserting values into the matrix for the input
1 f o r i = 0 i n m a :
2 f o r j = 0 i n n a :
3 W[i] [j] = A[i] [j]
4 f o r i = 0 i n m b :
5 f o r j = 0 i n n b :
6 W[i] [j + n a + 1] = B[i] [j]

This method results in a modified weight matrix looking like figure 5.3.
The method for the other weight matrices is done as follows:

• Creating a new matrix W , with size of mc × nc, where mc = ma +mb and
nc = na+nb, with ma×na and mb×nb being the sizes of weight matrices
A and B.

• The values from matrix A and B is inserted into matrix W as described in
listing 5.4

41

5.2 RQ1 - White-box Integrity attack against AI systems

Figure 5.3 Visual representation of a weight matrix, for first layer

42

5.2 RQ1 - White-box Integrity attack against AI systems

Figure 5.4 Visual representation of a weight matrix

• The rest of the value are set as value 0

Listing 5.4: Inserting values into the matrix
1 f o r i = 0 i n m a :
2 f o r j = 0 i n n a :
3 W[i] [j] = A[i] [j]
4 f o r i = 0 i n m b :
5 f o r j = 0 i n n b :
6 W[i + m a + 1] [j + n a + 1] = B[i] [j]

This method creates a modified weight matrix looking like figure 5.4.
The method for creating the bias vectors is much simpler, with the new bias

vector having its values set by concatenating the bias vector from the attacker net-
work to the bias vector from the original network.

Lastly, since the modified model would have additional output nodes, the ex-
ecuting code of the original AI system would need to be modified to use the new
output values, e.g., implementing DeepLocker’s decryption algorithm with the new
output. The implementation would need to be done in an ad hoc fashion based on
how the execution of the network is implemented.

43

5.2 RQ1 - White-box Integrity attack against AI systems

Storing data

Since many formats require correct metadata to be able to function correctly, any
metadata which would need to be changed is changed on an ad hoc basis, based on
the requirements the format defines for the model to be validated. This change is
possible since the attack is performed in a white-box fashion, meaning the attacker
can precisely know how the metadata is stored.

Validating data

After the attacker merges the two networks, the result is a single network with
sets of output, with one belonging to the original network, and the other belonging
to the attacker. The task of the verification is to check that the merged network
expresses the functionality from both networks.

This can be done by using the test data for the models and comparing the output
nodes of the original, attacker, and merged network. Therefore, the N original
output nodes should be compared to the N first nodes in the merged network,
which should result in identical results. The M attacker output nodes should also
be compared to the N + 1 to N +M output nodes of the merged network.

5.2.3 Implementation of merging two neural networks

All computation was done on Ubuntu 18.04.4 LTS, running on an underlying Intel
Core i7-8550U CPU, with 8x1.8GHz cores.

Step 1: Reading in the data from the original and attacker NN

In this implementation, the access of data is implemented using the HDF5 library,
which is used since the white-box approach allows us to know exactly the format
used by the AI system, with HDF5 being one of the popular formats which are
used for storing Tensorflow models. The pseudocode in listing 5.5 shows how this
was implemented, by using the HDF5 library to access the file, since the white-box
approach allows for knowing the file location on disk. The HDF5 object is then
looped over for each layer stored, as the HDF5 implementation stores weights
and biases in separate internal dataset objects. After reading in the data from the
original and attacker NN, the program flow is then passed on to the Merging NN
method.

Listing 5.5: Pseudocode for accessing the model file from listing A.1 in the ap-
pendix

1 f i l e 1 = hdf5 . open (o r i g i n a l p a t h) ;
2 f i l e 2 = hdf5 . open (a t t a c k e r p a t h) ;

44

5.2 RQ1 - White-box Integrity attack against AI systems

3 f o r l a y e r o r i g i n a l , l a y e r a t t a c k e r i n z i p (f i l e 1 . l a y e r g r o u p , f i l e 2
. l a y e r g r o u p) :

4 # Modify w e i g h t s and b i a s e s

Step 2: Merging the original and the attacker’s NNs

In this implementation, the data is modified within the HDF5 library. Listing
5.6 shows the modification method for the weights and biases in a single layer.
The modifier makes sure the weights from the input layer are appropriately sized,
checked with the is first layer function in line 5 of the code in listing 5.6.

Based on the is first layer value, the width and height of the resized weight
matrix are calculated. The width as the sum of the widths from the original and
attacker network - unless it is from the input layer, in which case it is only the
original width - and the height as the sum of the heights of the original and attacker
network (see lines 5 to 11 in listing 5.6). Because of this, the resulting matrix looks
like figure 5.4, or as figure 5.3 for the weights from the input. In these figures, the
weights from both the original and attacker network are contained.

The biases are done similarly (shown in lines from 20 to 32 in listing 5.6), only
as a 1-width matrix. The biases of the original and attacker network only have to
be concatenated to each other to work correctly.

Listing 5.6: Pseudocode for modifying the model from listing A.1 in the appendix
1 w e i g h t s o <− l a y e r o r i g i n a l . w e i g h t s ;
2 w e i g h t s a <− l a y e r a t t a c k e r . w e i g h t s ;
3 t e m p w e i g h t s <− w e i g h t s o ;
4 w e i g h t s o . e m p t y d a t a s e t () ;
5 i f (i s f i r s t l a y e r (l a y e r o r i g i n a l)) :
6 wid th <− w e i g h t s o . wid th ;
7 e l s e :
8 wid th <− w e i g h t s o . wid th + w e i g h t s a . wid th ;
9 h e i g h t <− w e i g h t s o . h e i g h t + w e i g h t s a . h e i g h t ;

10 w e i g h t s o . r e s i z e (width , h e i g h t) ;
11 w e i g h t s o . f i l l w i t h (0) ;
12
13 f o r i from 0 t o t e m p w e i g h t s . h e i g h t :
14 f o r j from 0 t o t e m p w e i g h t s . w id th :
15 w e i g h t s o [i] [j] <− t e m p w e i g h t s [i] [j] ;
16 f o r i from 0 t o w e i g h t s a . h e i g h t :
17 f o r j from 0 t o w e i g h t s a . wid th :
18 w e i g h t s o [i + w e i g h t s o . h e i g h t] [j + w e i g h t s o . wid th] <−

w e i g h t s a [i] [j] ;
19
20 b i a s e s o <− l a y e r o r i g i n a l . b i a s e s ;
21 b i a s e s a <− l a y e r a t t a c k e r . b i a s e s ;
22 t e m p b i a s e s <− b i a s e s o ;

45

5.2 RQ1 - White-box Integrity attack against AI systems

23 b i a s e s o . e m p t y d a t a s e t () ;
24 b i a s e s o . r e s i z e (1 , b i a s e s o . h e i g h t + b i a s e s o . h e i g h t) ;
25 b i a s e s o . f i l l w i t h (0) ;
26
27 f o r i from 0 t o t e m p b i a s e s . h e i g h t :
28 b i a s e s o [i] [0] <− t e m p b i a s e s [i] [0] ;
29 f o r i from 0 t o b i a s e s a . h e i g h t :
30 b i a s e s o [i + t e m p b i a s e s . h e i g h t] [0] <− b i a s e s a [i] [0] ;
31
32 # S t o r e t h e d a t a

Storing data

The method for storing data within the HDF5 system is straightforward. The mod-
ifications on the file performed in the Merging NN method writes directly to the
file when the data is modified.

In the case that the Merging NN method was converted to a generalized method,
the conversion from the general data representation would be done in this step,
where the modified data would be stored in the HDF5 format as described.

Validating data

Since it is known that the NN model uses the Tensorflow library, it can be used to
confirm that the modifications made were correct. The pseudocode in 5.7 loads the
original attacker, and merged model into the Tensorflow library, and checks how
they predict the results of test data. The output nodes for the original network are
compared to the corresponding output nodes in the merged network. The compari-
son is also between the corresponding output nodes in the attacker and the merged
network. The difference between the nodes is then calculated across the test set,
for all output nodes. The expected error is 0.

Listing 5.7: Pseudocode for the validation of the model from listing A.1
1 o r i g i n a l <− t e n s o r f l o w . l o a d m o d e l (o r i g i n a l p a t h) ;
2 a t t a c k e r <− t e n s o r f l o w . l o a d m o d e l (a t t a c k e r p a t h) ;
3 m o d i f i e d <− t e n s o r f l o w . l o a d m o d e l (m o d i f i e d p a t h) ;
4 t e s t d a t a = l o a d d a t a (t e s t d a t a p a t h) ;
5
6 o r i g i n a l r e s u l t s <− o r i g i n a l . p r e d i c t (t e s t d a t a) ;
7 a t t a c k e r r e s u l t s <− a t t a c k e r . p r e d i c t (t e s t d a t a) ;
8 m o d i f i e d r e s u l t s <− m o d i f i e d . p r e d i c t (t e s t d a t a) ;
9

10 e r r o r <− 0 ;
11 f o r mod , o r i g i n z i p (m o d i f i e d r e s u l t s , o r i g i n a l r e s u l t s) :
12 f o r i from 0 t o 2 :
13 e r r o r <− e r r o r + mod [i] − o r i g [i] ;

46

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

14
15 f o r mod , a t t i n z i p (m o d i f i e d r e s u l t s , a t t a c k e r r e s u l t s) :
16 e r r o r <− e r r o r + mod [2] − a t t [0] ;
17
18 r e t u r n e r r o r == 0 ;

5.3 RQ2 - Black-box/gray-box Integrity attack against AI
systems

As opposed to RQ1, RQ2 requires the integrity attack against AI systems to be
performed with as limited knowledge as possible, to determine to what extent the
attack can perform the attack.

Firstly, three pieces of information are essential for the attack to be performed
and will be considered accessible in all scenarios.

The first is the information regarding the file location of the neural network.
As it is possible to search through all files on a file system to find the proper neural
network, the assumption will be that the file location is accessible in a black-box
scenario.

The second is the information regarding the shape of the input data to the
original NN. The shape also extends to knowing specifically which input nodes are
mapped to what data, e.g., node 1-100 are the pixel values of a 10× 10 gray-scale
picture, normalized to values in [0, 1]. This information is not likely to be easily
found, without either looking at the executing code of the AI system, in which case
it would be possible to determine the data source and its form. This information
would also have to be determined before any training occurs. Another method of
assuming the shape of the input is to train attacking networks with different input
nodes, each used in a specific domain.

The third is the information on the execution code of the AI system. As the
attack relies on being able to modify a NN to gain more output nodes than before,
in order to use these nodes to provide functionality, it has to be implemented within
the execution code.

In RQ2, the difference between a gray-box and black-box solution is whether
the solution only requires these three pieces of information - in which case it is
black-box - or if the attacker requires more specific information regarding the tar-
geted system - in which case it is gray-box.

47

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

5.3.1 Concept

Accessing data - method 1 (black-box)

In order for the core concept to work for this RQ, the attacker would need access to
the data in the NN model, and be able to insert the appropriate values into the data
file correctly. The question then arises whether the attacker would need knowledge
of how the data in the model is accessed and modified, or if there is a method of
analyzing the raw binary file and modifying the content.

The concept here revolves around the static analysis of the file containing the
NN structure’s data, with as little knowledge of the file as possible. The solu-
tion would then be able to differentiate if specific data in the file is data from the
model, or something else, and would scan the entire file to ”guess” wherein the
file-specific weights and biases are stored. This information could then be used as
a black-box method for modifying any neural network model. The only require-
ment the attacker is supposed to have is the location of the file, the shape of the
input data, and the AI system’s execution code.

Accessing data - method 2 (gray-box)

On the other side, instead of relying on manually accessing the file as a binary,
method two revolves around creating a list of enumerated ways of accessing the
data, based on knowledge of which file formats are most popular to use for the NN
models. By trying out several access methods, while the method would not guar-
antee access for all formats, most would be covered. If the attacker can construct
an extensive list of the most popular formats for storing NN data, the attack could
be considered almost black-box, since there is no longer a requirement for the at-
tack to know the specific format used. This method, however, would not work with
formats that are not publicly known.

Merging NN

The merger method for RQ2 would be almost the same as the merger from RQ1.
The method itself would be the same; however, if the merger is written mainly for
specific formats, there would be a need for several implementations for the merger.

Storing data

The data storage would rely on the found format from accessing the data, as a
particular implementation of either the binary method or the format enumerating
method.

48

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

Verifying data

In a black-box or gray-box fashion, in the case that the NN system runs, the verifier
would have to follow the same principle as the access of data, using method 1 or
method 2 mentioned above. The verifier from RQ1 could still be used, i.e., to
check if the original network behaves identically before and after the merge, and
that the attacker network behaves as intended when merged.

5.3.2 Theoretical analysis of possible implementations to answer RQ2

Accessing data - method 1

When it comes to acquiring model data from a binary resource, the strategy is
rooted in the assumption that the size of the input is already known, and that the
file which is used for storing the model is known.

Based on the concept, if the only knowledge provided to the attacker is the
size S1 of the input data for the model, the data access might be able to find a data
structures containing correct values of size S1 × S2 for storing the weights, and
another data structure with size S2 for storing the biases. If the analysis results in
finding these data structures, it would automatically know that the second layer is
of size S2, and this data access method can be rerun for the second layer.

This method would assume that 1) The values of the NN structure are in a
readable format (not compressed, encrypted, or otherwise modified in a lossless
way) and 2) The values of the NN structure are all stored in the same place, which
means that there is no arbitrary spacing between the values.

One of the prerequisites for being able to access the data in a binary fashion
is to be able to interpret the data values in the file directly. In the case of a NN,
the weights and biases would be stored as a type of float value, which for most
computers is stored as 32 bits; however, it is also able to be stored in 16 and 64
bits.

As not every combination of 1s and 0s can produce valid float values, by inter-
preting every 16, 32, or 64 bits in a file as the corresponding float value, the set of
interpreted values would include all the weight and bias values in the model. The
assumption here is that the values are readable, as mentioned above, otherwise, the
set would not contain the weight and bias values in the model.

As not all values would be interpreted as valid float values, the scanner should
be able to discover the data structure of size S1 × S2 of regularly spaced float
values. If this structure is found, the method is rerun, as described above. One

49

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

limiting factor here, however, is that the data structure found, would likely be
too large, as the bits before or after the real data structure could be interpreted
as real float values, but not belong to the real data structure. Because of this,
assumption 2 mentioned above would likely not stand. The real data structure
could, however, possibly be found by analyzing the values at both ends of the
structure, and evaluate if the value is likely to belong in the real data structure, by
using heuristics such as ranges of common values.

If, however, it is impossible to determine S2 precisely, the attacker would not
be able to access the weight and bias values stored in the file.

5.3.3 Accessing data - method 2

As mentioned, the method 2 of the attacker is to make an adapter for each pop-
ular data storage format to read the data. Thus, there is a need to enumerate as
many data formats that are commonly used for NNs. Table 5.3 lists the most com-
monly used formats for storing NN in popular libraries used in python (Choudhury
(2019)). As HDF5 and CSV are common file formats, access to the data can be
done using any library supporting these formats.

For the other formats, SavedModel, and Pickle, the data is stored as a serial-
ized object, meaning the data is stored as the model object. Access to these objects
would not be straight forward, without knowing how these model objects are im-
plemented. Because of this, and since these NN libraries used to read the data in
these formats are open source, by implementing the native object from the specific
library, the data would be deserialized into this model object, and the data would
be accessible.

Merging NN

Assuming the black-box access to the data is possible, the only difference from the
theoretical model in RQ1, is that the size of the attacker NN would not necessarily
be predetermined before the attack since it is done in a black-box fashion. Because
of this, the attacker model would have to be trained with different sizes of NN,
where the merger would select the correct size after the original network has been
accessed.

For the merging itself, the method itself would be identical to the described
model in answering RQ1.

Storing data

When it comes to data storage, this would be reliant on the specific storage format
for the data. If the format were accessed using a known format, the storage would

50

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

Format NN framework Notes
HDF5 Tensorflow Saves the whole model within

one file
SavedModel Tensorflow Saves the model in a directory

with separate files
Pickle PyTorch Saves model by saving an ob-

ject’s serialized data
Pickle Neurolab Saves model by saving an ob-

ject’s serialized data
cPickle FFNet Saves model by saving an ob-

ject’s serialized data (imple-
mented in C instead of Python)

Not specified (but usu-
ally Pickle)

SciKit Not natively supported

Not specified (but usu-
ally Pickle)

Lasagne Not natively supported

CSV Pyrenn Saves the model values in a CSV

Table 5.3: Popular formats used by Python NN libraries

be made following that format. Using a known format would mean that direct
data access, such as HDF5 and CSV, would suffice using existing libraries to store
the data. In the case of the serialized data objects, serialization would need to be
performed in the same way it was stored.

In the case of binary access, storing the data would be necessary to insert the
data directly into the binary, which would require expanding the file and moving
any data succeeding where the data would be stored.

Validating data

To be able to use a verifier for the attack, it would be necessary to use the same
Accessing data method and keep an enumerated list of methods that can produce
results from a model from a set of training data.

For the verification step itself, it follows the same procedure as in RQ1, where
the original, attacker and modified network are compared.

51

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

5.3.4 Implementation

Accessing data - method 1

The implementation of the scanner is explained in listing 5.8. The implementation
was done in stages, as some assumptions made in the theoretical model might have
been wrong, in which case the binary scanner solution would not work.

Listing 5.8: Pseudocode for the binary scanner from listing A in the appendix
1 f i l e = open (p a t h t o o r i g i n a l)
2 n u m b e r o f f l o a t s <− 0 ;
3 c o n f i r m v a l u e s <− [0 . 0 6 0 0 4 4 4 4 , 0 .05854571 , −0.059743077] ;
4 c o n f i r m i n d e x <− 0 ;
5 v a l u e s e x i s t <− f a l s e ;
6 f o r i from 0 t o f i l e . s i z e b y t e s / 4 :
7 v a l u e <− i n t e r p r e t a s f l o a t (f i l e [i ∗4] , f i l e [i ∗4 + 1] , f i l e [i ∗4

+ 2] , f i l e [i ∗4 + 3]) ;
8 i f (v a l u e != NaN) :
9 n u m b e r o f f l o a t s <− n u m b e r o f f l o a t s + 1 ;

10 i f (abs (v a l u e − c o n f i r m v a l u e s [0]) < 0 . 0 0 0 0 0 1) :
11 i f (c o n f i r m i n d e x == 2) :
12 v a l u e s e x i s t <− t r u e ;
13 e l s e :
14 c o n f i r m i n d e x <− c o n f i r m i n d e x + 1 ;

The scanner program in listing 5.8 works as follows:
Line 1 in listing 5.8 opens and reads the entire file into memory. Lines 6-14

is for loop traversing every 32 bits of the content of the file. Line 7 interprets the
value as a float32 value since the values in the model are stored as Float 32. This
assumption is, of course, only made in testing that the functionality is working, and
the 16-bit and 64-bit interpretations would be implemented when the functionality
was confirmed to work. Line 9 keeps track of the counter for how many float
values there are.

When using the scanner program, several data-points are used for the results.
The program registered all values within a file which can be interpreted as a float32
values, of which there were 44 069 906. With a file of size of 302 020 704 Bytes,
the number of interpreted Bytes represents 58.4% of the file. From the network,
the number of expected values which would be float32’s should be:

52

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

Weights between layer 1− 2 : 256× 256× 3× 128 = 25165824

Bias in layer 2 : 128

Weights between layer 2− 3 : 128× 2 = 256

Bias in layer 3 : 2

Total : 25166210

Total bytes : 100664840

From the analysis above, we suspect that 57.1% of the values found to belong
to the network model. Additionally, 15 998 860 - 36.3% - of the values found were
zeroes, which means that many of the values are suspected not to be real float32
values.

As the number of float values found exceeded the expected number of values
in the network, the next step was to confirm that the float values represented the
values from the network.

To test if the interpreted values actually ”see” the weight and bias values. In
line 10-14, the scanner checks if the list of 3 values confirm values are inter-
preted successively. This test, however, did not return positively.

Because of this, it was concluded that this method for accessing binary data
would not work on any model which did not store its values in any other fashion
that raw data. Based on the results, the conclusion was that the HDF5 file used
for the model was set to use a compression scheme, where blocks of values would
be split up, and compressed, which would result in the raw data values not being
accessible using the method proposed here.

While it would be possible to make a binary scanner which takes into account
such compressed clusters, it was concluded that:

• Creating such a scanner would be outside of the scope of this thesis

• Ad hoc implementation of data access based on a single data format (HDF5)
would likely not work for other formats, and implementing method 2 for data
access would be much simpler.

Accessing data - method 2

Method 2 is implemented by accessing model data from 2 unique formats, the
HDF5 format, and the SavedModel format. The HDF5 format is implemented as
described in RQ1, as we assume the attacker knows the location of the model file.

53

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

As the SavedModel format is the serialized object for the model in a Tensor-
flow network, it was implemented using the Tensorflow library, shown in listing
5.9 and works as follows:

The loop in line 2 goes through each format that is listed in list of formats.
Lines 3-11 shows the specific implementation required to access the data based on
the specified format, with lines 4-7 showing the access for HDF5 using the hdf5
library, and line 8-11 shows access for SavedModel using the tensorflow library.
Lastly, line 7 and 11 calls the merging function for the corresponding format. Line
3 and 12-13 are an easy way of checking that the access method is correct, as
an exception is nearly sure to be raised if the file is not in the specified format.
Because of this, except catches the expected raised error and instead continues the
program flow.

Listing 5.9: Pseudocode for access method 2 from listing A in the appendix
1 l i s t o f f o r m a t s = [” hdf5 ” , ” savedmodel ”] ;
2 f o r f i n l i s t o f f o r m a t s :
3 t r y :
4 i f (f == ” hdf5 ”) :
5 o <− hdf5 . open (p a t h t o o r i g i n a l) ;
6 a <− hdf5 . open (p a t h t o a t t a c k e r h d f 5) ;
7 m e r g e a s h d f 5 (o , a) ;
8 e l s e i f (f == ” savedmodel ”) :
9 o <− t e n s o r f l o w . open savedmode l (p a t h t o o r i g i n a l) ;

10 a <− t e n s o r f l o w . open savedmode l (
p a t h t o a t t a c k e r s a v e d m o d e l) ;

11 m e r g e a s s a v e d m o d e l (o , a) ;
12 e x c e p t :
13 c o n t i n u e ;

Merging NN

As the merger method is implemented depending on the format, the HDF5 merger
is the same as described in RQ1.

For the SavedModel format, as the access to the data was done using the Ten-
sorflow library directly, the modifications on the model were also performed using
the Tensorflow library, as shown in listing 5.10, and works as follows:

In the TensorFlow library, to modify a NN, it has to be done within a Ten-
sorflow session, shown in line 1. Line 2 loops over both the original and at-
tacker model to find each data container, i.e., the weights and biases, and as-
signs the container to paramso and paramsa to be used. Line 3-8 does the
merging for the weights from the input nodes. Here, as described by the the-
ory, the modified matrix would be of size paramso.width, and height of size
paramso.height + paramsa.height. Line 6 initializes the new matrix with the

54

5.3 RQ2 - Black-box/gray-box Integrity attack against AI systems

width and height, which is filled with zeroes. Line 7 then inserts the original
values, and line 8 inserts the attacker values into this new matrix. Line 9-14
works the same as lines 3-8, with the difference being that the width is instead
paramso.width + paramsa.width, and that the offset for the insertion of the
attacker values differs, following the theoretical model, explained earlier. Line 15-
20 is used to modify the bias. In line 17, The height is calculated as the total height
of both biases. The new bias is initialized as a 1 width matrix, filled with zeroes.
Line 19 inserts the original network into the matrix, and line 20 inserts the attacker
into the matrix. In line 21, the session is then used to update the original model by
assigning the temporary matrix.

Listing 5.10: Pseudocode for the ac hoc merging method for the SavedModel
format from listing A.1 in the appendix

1 wi th t e n s o r f l o w . s e s s i o n () a s s e s s :
2 f o r params o , pa rams a i n z i p (o r i g i n a l m o d e l , a t t a c k e r m o d e l) :
3 i f (pa rams o . name == ” dense / k e r n e l : 0 ”) :
4 wid th <− params o . wid th ;
5 h e i g h t <− params o . h e i g h t + pa rams a . h e i g h t ;
6 t e m p m a t r i x <− z e r o e s (width , h e i g h t) ;
7 t e m p m a t r i x [0 : pa rams o . h e i g h t − 1] [0 : pa rams o .

wid th − 1] <− params o ;
8 t e m p m a t r i x [pa rams o . h e i g h t : pa rams o . h e i g h t +

pa rams a . h e i g h t − 1] [0 : pa rams a . wid th − 1] <−
pa rams a ;

9 e l s e i f (pa rams o . name == ”∗ / k e r n e l : 0 ”) :
10 wid th <− params o . wid th + pa rams a . wid th ;
11 h e i g h t <− params o . h e i g h t + pa rams a . h e i g h t ;
12 t e m p m a t r i x <− z e r o e s (width , h e i g h t) ;
13 t e m p m a t r i x [0 : pa rams o . h e i g h t − 1] [0 : pa rams o .

wid th − 1] <− params o ;
14 t e m p m a t r i x [pa rams o . h e i g h t : pa rams o . h e i g h t +

pa rams a . h e i g h t − 1] [pa rams o . wid th : pa rams o .
wid th + pa rams a . wid th − 1] <− pa rams a ;

15 e l s e i f (pa rams o . name == ”∗ / b i a s : 0 ” ”) :
16 wid th <− 1 ;
17 h e i g h t <− params o . h e i g h t + pa rams a . h e i g h t ;
18 t e m p m a t r i x <− z e r o e s (width , h e i g h t) ;
19 t e m p m a t r i x [0 : pa rams o . h e i g h t − 1] <− params o ;
20 t e m p m a t r i x [pa rams o . h e i g h t : pa rams o . h e i g h t +

pa rams a . h e i g h t − 1] <− pa rams a ;
21 s e s s . run (o r i g i n a l m o d e l [pa rams o . name] . a s s i g n (t e m p m a t r i x))

;
22 e x t e n d e d m o d e l . s ave (o r i g i n a l p a t h) ;

55

5.4 RQ3 - Mitigation strategy against RQ1 and RQ2

Storing data

The storage method for the HDF5 format is performed directly when the data is
altered, and only requires the program so close the connection to the program.

For the SavedModel format, the model’s storage is done through the Ten-
sorflow library, calling the tensorflow.save model(model, path) function, as
shown in line 22 of listing 5.10, which stores the model in the SavedModel format.

Validating data

The implementation of the verifier is the same as the one implemented in RQ1. The
implementation of the verifier is limited to testing the correctness of the Merging
NN method, or be implemented with an enumeration to verify the results from test
data.

When testing the black-box/gray-box implementation on the AI system in both
HDF5 and SavedModel format, the merging was shown to be successful. The
validation method was used in both formats, both of which resulted in a total error
of 0.

5.4 RQ3 - Mitigation strategy against RQ1 and RQ2

The core of the mitigation strategy is to prevent an AI integrity attack from being
able to run on an AI system silently. General authentication, and accessibility
policies in a system would often prevent an attacker from accessing the system in
the first place. However, by following the principle of layered security, the focus
of this research is to produce strategies and techniques which would be able to
prevent and detect AI integrity attack, with the assumption that the attacker can
access the AI system.

5.4.1 Possible strategies to ensure AI code integrity

As a general concept, by making sure that the code being run, i.e., the AI executing
and network model code, is authenticated and has its integrity ensured, before be-
ing allowed to run on the system, the attacks in RQ1 and RQ2 would be hindered.

Internally secured authenticator

The code is used to ensure authentication is trustworthy and secured against threats
able to modify files on the internal system. Because of this, the authenticator code
should either be implemented in hardware or secured by a rigorous OS policy,

56

5.4 RQ3 - Mitigation strategy against RQ1 and RQ2

ensuring write access to the code is not allowed. Additionally, the execution of
the authenticator code must be a function of the OS, meaning the OS is delegated
control to perform the authentication and running the authenticated code. This re-
striction also means that the AI system should not be executable by anything other
than the OS, as an attacker could just circumvent any authentication by executing
the AI program itself.

Authentication method

To ensure that the code is run, both execution and model data must be protected
by techniques providing both integrity and authenticity. Integrity is to ensure that
the provided data is not able to be modified. Authentication is to ensure that the
sender of the data is trustworthy.

Both encryption and code signing techniques would provide both authentica-
tion and integrity, while a technique such as a checksum would be able only to
provide integrity. As encryption and code signing techniques require some sort of
key management, and implementation of this authentication would require the se-
cured authenticator to maintain the key used for decryption/verification, to ensure
a potential attacker is not able to modify the key.

Requiring the system to continuously perform authentication on the code as
it is in operation is possibly not feasible because of the overhead caused by the
authentication. Thus, the policy could either be method 1: Run authentication only
when the AI model is loaded into memory and executed, or method 2: Periodically
run authentication checks on the AI model and execution code.

While method 1 provides almost no overhead in the AI system’s execution,
it would also be vulnerable to integrity attacks aimed at modifying the AI model
in memory. This exploit, however, has not been explored, but in theory, could be
possible.

Method 2, on the other hand, would require an overhead, depending on the
interval chosen for the regular authentication. While longer intervals would de-
crease the overhead, it would lower the system’s security, for the same reason as
for method 1, where an integrity attack could be constructed to target the AI model
in memory.

5.4.2 Operation analysis of the AI system

While altogether avoiding an attack from affecting the internal system is the ideal
situation, it is also useful to consider methods of discovering an attack while it is
performing, in order to prevent further damages being done.

57

5.4 RQ3 - Mitigation strategy against RQ1 and RQ2

The idea of run-time analysis of code is nothing new, and in the instance of the
attack we explored in RQ1 and RQ2, it might be more straightforward than others,
as this solution does not depend on complex logic.

The proposed solution lies in implementing a simple measurement of the nor-
mal running state of a program, i.e., how the executing program uses the system’s
resources, mainly the use of processing power and RAM. If the AI integrity attack
modifies the NN model, to make it bigger, both processing power and RAM usage
will increase. In cases of more extensive modifications, it would be measurably
bigger. This increase in processing and RAM usage would be monitored, with a
threshold for when the system is shut down due to erratic behavior.

Additionally, such monitoring would also need to be protected in the same
manner as the authenticator mentioned earlier.

A simple example of such an analyzer is implemented in the verifier for RQ1
and RQ2. It measures the average execution time for the classification function
for each model. It also uses two different test image sets, the first being the test
images, the original model used for testing, and the second being the test images
the attacker model used for testing. This classification was performed 100 times to
get an average measurement.

The code in listing 5.11 works as follows:
In line 4, the test images from the original network’s training are loaded, and

line 5 shows the test images from the attacker network’s training being loaded.
In line 9, each of the models is chosen in turn, with line 10 selecting one of the
test image sets. Line 11-15 then calculates the average time spent by the model to
classify the chosen images, with line 15 storing the result of the total time spent
classifying for each combination of model and image set.

Listing 5.11: Pseudocode for the operational analyzer from listing A in the ap-
pendix

1 models <− [o r i g i n a l m o d e l , a t t a c k e r m o d e l , m o d i f i e d m o d e l] ;
2 i t e r a t i o n s <− 100 ;
3 t e s t i m a g e s a m o u n t <− 500 ;
4 t e s t i m a g e s o r i g i n a l <− l o a d i m a g e s (p a t h t o t e s t i m a g e s o r i g i n a l ,

t e s t i m a g e s a m o u n t) ;
5 t e s t i m a g e s a t t a c k e r <− l o a d i m a g e s (p a t h t o t e s t i m a g e s a t t a c k e r ,

t e s t i m a g e s a m o u n t) ;
6 images <− [t e s t i m a g e s o r i g i n a l , t e s t i m a g e s a t t a c k e r] ;
7 t o t a l t i m e <− [0 , 0 , 0 , 0 , 0 , 0]
8 t i m e i n d e x <− 0 ;
9 f o r model i n models :

10 f o r t e s t i m a g e s i n images :
11 f o r i from 0 t o i t e r a t i o n s :
12 t ime1 <− t ime . now ()

58

5.4 RQ3 - Mitigation strategy against RQ1 and RQ2

Model Test images Average time
ORIGINAL ORIGINAL 0.602717
ORIGINAL ATTACKER 1.134172
ATTACKER ORIGINAL 0.631220
ATTACKER ATTACKER 1.165061
EXTENDED ORIGINAL 0.906360
EXTENDED ATTACKER 1.604387

Table 5.4: Average execution time when classifying images

13 model . p r e d i c t (t e s t i m a g e s) ;
14 t ime2 <− t ime . now ()
15 t o t a l t i m e [t i m e i n d e x] <− t o t a l t i m e [t i m e i n d e x] +

t ime2 − t ime1 ;
16 t i m e i n d e x <− t i m e i n d e x + 1 ;

The resulting times is shown in table 5.4. This shows the test data from the
attacker is generally slower, and that the difference in performance between the
ORIGINAL model with ORIGINAL images, and the EXTENDED model
with ORIGINAL images, i.e., is 50.4% in execution time. This result means
that this is the expected increase in execution time after the attack when the model
receives its expected input. It should also be noted that the modified network is
around twice the size of the original network and that an attacker network, which is
relatively small compared to the target network, would be much harder to discover
using this method.

59

Chapter 6
Evaluation of research results

The evaluation is based on the theoretical and practical implementations in chap-
ter 5. For the evaluation, the original model used the implemented AI system
described in section 5.1. This AI system aims to classify an image to determine
if the person in the image has a beard and wears glasses. For the attacker model,
it is used to classify an image, to determine if the person in the image is male or
female.

6.1 RQ1

6.1.1 Was the research successful in producing a theoretical and prac-
tical proof-of-concept in a white-box fashion?

When using the implemented solution from RQ1 in section 5.2.3, with the original
and attacker model described above, the validation code in listing 5.7 shows a total
error of 0. Based on these results, the research did manage to create a practical
implementation based on a theoretical model. The results show that a white-box
method for compromising an AI system’s integrity is possible, assuming that the
attacker can deliver the malware into the system.

6.1.2 Did the research show any noticeable behavior or traits of the
attack?

Looking at the research of RQ1 in chapter 5, the method for merging the NN
structure could theoretically be applied to other types of NN. The reasoning be-
hind this is that the method only requires the NN structure to consist of neurons
containing bias values, connected by weight values representing contribution from

60

6.2 RQ2

one neuron to the next and that a specific weight value (typically 0) represents a
non-connection between neurons. Since most types of NN exhibit this behavior,
the method from RQ1 can likely be applied to most NN structures, such as RNN,
CNN, and LSTM networks.

Additionally, while the attack cannot expand the number of network layers as
a general solution, if the network has at least one layer using a linear activation
function, the number of layers can be expanded to any length. This expansion can
be done by using the method described in section 5.2.2 to expand this linear layer.

6.2 RQ2

6.2.1 Was the research successful in producing a theoretical and prac-
tical proof-of-concept in a black-box/gray-box fashion?

When using the implemented solution from RQ2 in section 5.3.4, with the original
and attacker model described above, the validation code in listing 5.7 shows a total
error of 0, for both types of data format that were implemented. Based on this
result, the research did manage to create a practical implementation based on a
theoretical model. Using an enumeration of popular formats to access the data,
the attack can be performed in a gray-box fashion. As the attacker would need to
know the location of the model file, the input for the AI system, and how the code
executes the AI system, the attack would, in this implementation not be able to be
performed in a pure black-box fashion, but rather in a gray-box fashion.

6.2.2 Did the research show any noticeable behavior or traits of the
attack?

The attack is very vulnerable to the obfuscation of information. If the attacker
cannot gain information on the input beforehand, the attack would be challenging
to implement, as the attack relies on lining up the input for the attacking network.
It would, however, be possible to gather information on the data set used for the
training, as many data sets are available to the public, making it easier for an
attacker to make assumptions on how the input looks like for the original network.

61

6.3 RQ3

6.3 RQ3

6.3.1 Does the proposed strategies provide a theoretical defense against
RQ1 and RQ2?

As the attacks in RQ1 and RQ2 assumes that the model file for the AI system does
not guarantee integrity, using a system which ensures integrity, as well as a reliable
authentication method, would be able to prevent the attacks from RQ1 and RQ2.

6.3.2 Would the proposed strategies be practically implementable in
an AI system?

As the results from RQ3 shows, the practical aspects of the defensive strategy was
considered. The attacks in RQ1 and RQ2 relies on behavior from general-purpose
computers utilizing an OS, such as the existence of a file system, and the execution
of general code. The strategies are therefore evaluated in the context of a general-
purpose computer. Thus, the implementation of an authentication program, which
is trustworthy, is realistic, as most OSs provide functionality which only the OS can
access. The OS would also control writing and execution access for the programs
and files in the system and would be able to ensure authentication and integrity
was kept before the AI system executes.

62

Chapter 7
Discussion

7.1 Integrity attack against AI systems

As shown in chapter 6, the presented proof-of-concept for the AI integrity attack
was successful. Both original and attacker models can maintain their functionality,
as shown when comparing the classification from both the original and extended
models.

While the proof-of-concept works, it was still limited in scope, as we only im-
plemented it in a trivial setting. While theoretically, the exploit should apply to
other NN structures as well, like CNNs, RNNs, and LSTMs, since they all use the
same feed-forward neural network structure, it does not guarantee this exploit to
be directly applicable to those structures, as the proof-of-concept implementations
on other types of NN need to be piloted and verified.

As shown in figure 5.4, the extension does not assume the attacker network
cannot have weight connections from the original network. This restriction is be-
cause, in a white-box fashion, the attacker would have access to the original net-
work beforehand. With this access to the original network, it would be possible to
use the original network to train the attacker network, as seen in figure 7.1. Here,
the green weights are trainable parameters, while the red weights are not trainable.
A non-trainable parameter would, in the back-propagation algorithm, not make
changes to the parameter when the gradient is applied.

Additionally, this method could be used in non-attack scenarios. For example,
a very efficient and accurate NN for detecting objects in an image could be used
as the base NN. Other, more specific classifiers could be extended from this NN,
making it more efficient than retraining a whole NN to implement both function-
alities.

63

7.1 Integrity attack against AI systems

Figure 7.1 The trainable and non-trainable weights in the alternative training al-
gorithm

64

7.2 Impact of AI integrity attacks

7.2 Impact of AI integrity attacks

Alluded to throughout the thesis, one of the more at-risk types of systems - and
which were part of the inspiration for developing this concept - is the AI systems
used in self-driving cars. As covered in Faggella (2020), most car manufacturers
project that self-driving car functionality being available, or partly available within
the 2020ies. One focus for these manufacturers should be on providing adequate
security in their systems, to avoid attacks such as the integrity attack against AI
systems.

Going back to a scenario with the DeepLocker attack, without defensive mea-
sures, an attacker could perform any attack against AI systems, since DeepLocker
hides the attack payload. If such a scenario were to happen to a self-driving car,
the attacker would be able to gain full control over the autonomous car, whenever
the DeepLocker trigger is activated, making it a significant security risk.

7.3 Separate training of NN

As shown by RQ1, it is possible to merge two separate neural networks and main-
tain the functionality from both. This method could be used as a practical method
for separate training of different classifiers, where two or more groups can train
their classifiers, which are then merged in the end.

This method could be applied in situations where very good classifiers already
exist, which could be combined to provide the functionality that is wanted without
the need to retrain a whole new NN completely.

7.4 Comparison to related works

As mentioned in chapter 4, the concept developed in this thesis is different from
how Barreno et al. (2010) defines attacks performed against AI systems. The clos-
est comparison to the attack developed in this thesis is the causative attack, where
the AI model is changed as a result of poisoned training data.

Gu et al. (2017) presents one of these poisoning attacks. The paper presents
the current environment for training NN models, which often consists of renting
computing space in cloud infrastructure, which removes the requirement for re-
searchers to physically have access to powerful computers to perform the models’
training.

Gu et al. (2017) presents a few methods for incorporating malicious behavior
into a neural network. These two methods are shown in figure 7.2. As can be seen

65

7.4 Comparison to related works

Figure 7.2 The research’s presented methods. Left: The original classifier net-
work. Middle: Constructing a neural network from the original, and an attacker
network. Right: A new classifier incorporating the original behaviour, except for
specific instances.

as in the middle, Gu et al. (2017) makes the same conclusion as this thesis, both
acknowledging that ”separated” networks can produce the wanted behavior. How-
ever, Gu et al. (2017) focuses on implementing the NN structure on the right, where
the attacking behavior is incorporated into the network. The argument made in the
paper states: ”Here, two separate networks both examine the input and output the
intended classification (the left network) and detect whether the backdoor trigger is
present (the right network). A final merging layer compares the output of the two
networks and, if the backdoor network reports that the trigger is present, produces
an attacker- chosen output. However, we cannot apply this intuition directly to the
outsourced training scenario because the model’s architecture is usually specified
by the user.”

The argument made in Gu et al. (2017) is grounded in the stated goal of the
paper, finding a method for modifying a training NN in the cloud. This thesis,
however, has the goal of performing an attack on a specified target. However, as
shown in this thesis, the middle NN in figure 7.2 is also capable of providing such
behavior. This thesis’ implementation also minimizes the need to have previous
knowledge on the specifics of the user’s network structure, primarily the training
data. Both this thesis and Gu et al. (2017) require prior knowledge on the input and
output of the AI system, meaning both need to either make educated guesses on

66

7.5 Neural Network format for modification

the input/output or limit the scope of the attack to specific types of AI. Concerning
this, Gu et al. (2017) focuses on image classifiers, while this thesis is applied to
any AI system implementing a neural network.

In Gu et al. (2017), the attack is also performed before the training phase of
the AI system, as this method relies on strategically poisoning the training data,
which alters the trained model’s behavior. This vector of attack is different from
this thesis’ vector of attack, as it performs the attack in the operation phase of the
existing AI system.

As outlined in Gu et al. (2017), the attack can also persist in the system even
after retraining the model. At the same time, this thesis has not performed any
testing on cases of retraining the modified model. The modified model in this
thesis would likely either be rejected (because of the differently sized output) or
retrained as usual, with the attacker network being slightly retrained and following
how the back-propagation algorithm modifies weights and biases.

7.5 Neural Network format for modification

As section 5.3.4 shows, the original concept for binary scanning, i.e., a generic
scanner, of a model file does not work. The main reason for the failure is rooted
in the fact that the model data files are not merely containers for the model data,
but includes a lot of other model data, like training options. Additionally, the files
contain a lot of meta-data, which describes the sizes of the data, which would need
to be altered as well. Since the concept of the binary scanner relies on the raw
data that is easily inserted or modified, it would require the data to be provided in
a straightforward format, e.g., raw .txt files.

The results also strongly imply that the file format used, i.e., HDF5 does not
store the weight and bias data directly in the file, and instead utilizes compression
on batches of data. The format’s complexity would also make it impossible to
access the data without inside knowledge on the specifics of the compression al-
gorithm. While it would be possible to implement a method which, through trial-
and-error, can decompress the values, there is a high likelihood that this method
would find several bits of seemingly decompressed batches. However, it would be
tough to determine which values belong to the model.

This conclusion is not to imply that just because this method is complicated,
it is impossible. Instead, the conclusion is that the task of constructing a binary
scanner with the described functionality, would not lie within the scope of this
thesis, as it does not directly relate to neither security nor AI. It was meant as a
mechanism for which the integrity attack against AI systems would make fewer

67

7.6 RQ3 - Defensive measures

assumptions on the file formats used by the target.
The original task of creating a general, binary scanner for the neural network

did not work. However, the method with which the integrity attack against AI
systems was implemented in section 5.3.4 - by enumerating the most popular file
formats - the attack would be able to affect a large amount of AI systems. Besides,
as most NN frameworks are open source, many NN implementations relying on
these frameworks would be vulnerable to the attack.

7.6 RQ3 - Defensive measures

While there were no implemented defensive measures, chapter 5 details certain
measures which theoretically make the AI integrity attack unusable, if imple-
mented correctly.

The core of the argument for this is to prevent a potential attacker from access-
ing the model data in the first place, which could be implemented as a measure
whenever the model data is loaded into the executing program. If the model is
stored in an encrypted fashion and is only decrypted during loading, the attack
would not be able to modify the model. The attacker is assumed not to have access
to the encryption/decryption key.

Another method would use code signing, where a trusted party signs the model
data, and whenever the model loaded into the executing program, the signature is
authenticated. This method would also prevent an attacker from being allowed to
load a modified network into execution. The attacker would not have the correct
key, which is used for signing the model data.

These methods, however, rely on the security of an authenticator/decryptor.
Under the assumption that an attacker can modify files on the target system, the
code used for authentication/decryption would, therefore, need to be secured. If
the code is not secure, the attacker would be able to make modifications to the
authenticator/decryptor to allow the modified network to be loaded and used in
real execution.

Additionally, the results in chapter 5 also show a measurable difference be-
tween the original and the modified version, in execution time. The results show
a 50.4% increase in execution time between the original to the extended model
when using the expected input for the original network, which should be unsur-
prising considering the size of the extended network is around two times as large
as the original.

This measure of decreased performance could, therefore, also be used as a
run-time indication that a network has been tampered with. However, this mea-
surement might be decreased by implementations using the technique described
earlier, where a network is trained based on another. This implementation would

68

7.6 RQ3 - Defensive measures

likely cause the trained network to be significantly smaller than the completely
separate networks. In turn, a smaller network would make this run-time analysis
less likely to discover anomalous behavior in the network.

69

Chapter 8
Conclusion and future works

8.1 Conclusion

This thesis outlines a very real and possibly impactful exploit on neural network
structures, which, if not addressed, could cause very negative consequences in
implemented AI systems using neural networks. The thesis focuses on the imple-
mentation of integrity attacks against AI systems, in both white-box and black-box
fashion, and by proposing strategies to prevent this attack from being successful.
The thesis was able to produce a practical proof-of-concept of this attack, and ar-
guing that this attack could be widely applicable to other NN structures, making
the attack threatening to any AI system which uses neural networks. The thesis
also proposed defensive strategies to prevent this attack, focusing on ensuring that
the AI system’s integrity is kept.

As such, this thesis concludes with a general recommendation to anyone using
a neural network structure. The recommendation is to consider the security in an
AI system, relating to the results from this thesis. This recommendation covers
not only in using secure communication channels, but also for authentication of
the neural network model itself, as a single intrusion could compromise the model,
and interrupt normal behavior for a predetermined input state.

Additionally, as this thesis outlines multiple times, the concept developed could
lead to discoveries, and as such, the integrity attack against AI systems should be
further explored in future research.

70

8.2 Future works

8.2.1 More complex NN modification techniques

As discussed in chapter 5, the technique for modifying an existing network re-
lies on modification of the execution code as well. This necessity is because the
original execution code would be designed for handling the outputs of the original
network, as opposed to a network with more outputs.

However, if the required functionality only has a primary focus on disrupting
the execution in specific circumstances, another similar technique could be used.
While the current concept would not modify the existing output nodes, a different
method would instead shorten the extended network by one layer. This concept
would, in practice, make the second to last layer in the extended network the output
layer.

The reasoning behind this is to train the extended network to output default
a 0, and any other value whenever the specified target input is observed. These
values would then fed forward into the original output nodes of the original net-
work. As the goal is for the extended network to disrupt the original network’s
behavior, the weight between the extended network’s second layer and the original
network’s output nodes would be set very high. Since the default value of the ex-
tended network is 0, it will contribute a value of 0 to the output whenever it should
not activate. Whenever the extended network outputs any value other than 0, its
contribution to the output would dwarf the contribution of other input, since its
weight value would be huge. If the output, on the other hand, is intended to be 0,
the weight would be set as a large negative value, making output node value much
smaller. This method is also illustrated in figure 8.1.

As mentioned in chapter 7, the potential for this structure to withstand re-
training is also very possible, as the contributions of the extended network would,
in most cases, be 0, making re-training a less effective method for preventing this
strategy. In the future, this case should be explorer further.

71

Figure 8.1 Alternative method for modifying a network

72

Bibliography

Aho, A. V., Sethi, R., Ullman, J. D., 1986. Compilers, principles, techniques. Ad-
dison wesley 7 (8), 9.

Akhtar, N., Mian, A., 2018. Threat of adversarial attacks on deep learning in com-
puter vision: A survey. IEEE Access 6, 14410–14430.

Bahnsen, A. C., Torroledo, I., Camacho, L. D., Villegas, S., 2018. Deepphish:
Simulating malicious ai. In: 2018 APWG Symposium on Electronic Crime Re-
search (eCrime). pp. 1–8.

Barreno, M., Nelson, B., Joseph, A. D., Tygar, J. D., 2010. The security of machine
learning. Machine Learning 81 (2), 121–148.

Brendel, W., Rauber, J., Bethge, M., 2017. Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models. arXiv preprint
arXiv:1712.04248.

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D., 2018.
Adversarial attacks and defences: A survey. arXiv preprint arXiv:1810.00069.

Choudhury, A., May 2019. Top 7 python neural network libraries for program-
mers.
URL https://analyticsindiamag.com/
top-7-python-neural-network-libraries-for-developers/

ClamAV, 2020. Body-based signature content format.
URL https://www.clamav.net/documents/
body-based-signature-content-format

Clark, G., Doran, M., Glisson, W., 2018. A malicious attack on the machine learn-
ing policy of a robotic system. In: 2018 17th IEEE International Conference On

73

https://analyticsindiamag.com/top-7-python-neural-network-libraries-for-developers/
https://analyticsindiamag.com/top-7-python-neural-network-libraries-for-developers/
https://www.clamav.net/documents/body-based-signature-content-format
https://www.clamav.net/documents/body-based-signature-content-format

Trust, Security And Privacy In Computing And Communications/12th IEEE In-
ternational Conference On Big Data Science And Engineering (TrustCom/Big-
DataSE). IEEE, pp. 516–521.

Faggella, D., March 2020. The self-driving car timeline predictions from the top
11 global automakers.
URL https://emerj.com/ai-adoption-timelines/
self-driving-car-timeline-themselves-top-11-automakers/

Group, T. H., July 2019. Hdf file format specification version 3.0.
URL https://portal.hdfgroup.org/display/HDF5/File+
Format+Specification+PDF

Gu, T., Dolan-Gavitt, B., Garg, S., 2017. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. arXiv preprint arXiv:1708.06733.

Kirat, D., Jang, J., Stoecklin, M., 2018. Deeplocker–concealing targeted attacks
with ai locksmithing. Blackhat USA.

Neekhara, P., Hussain, S., Jere, M., Koushanfar, F., McAuley, J., 2020. Adver-
sarial deepfakes: Evaluating vulnerability of deepfake detectors to adversarial
examples. arXiv preprint arXiv:2002.12749.

NIST, December 2019. color feret database.
URL https://www.nist.gov/itl/products-and-services/
color-feret-database

Ozdag, M., 2018. Adversarial attacks and defenses against deep neural networks:
a survey. Procedia Computer Science 140, 152–161.

Rajpal, M., Blum, W., Singh, R., 2017. Not all bytes are equal: Neural byte sieve
for fuzzing. arXiv preprint arXiv:1711.04596.

Seymour, J., Tully, P., 2016. Weaponizing data science for social engineering: Au-
tomated e2e spear phishing on twitter. Black Hat USA 37, 1–39.

Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M. K., 2016. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In: Proceedings of
the 2016 acm sigsac conference on computer and communications security. pp.
1528–1540.

Stevens, R., Suciu, O., Ruef, A., Hong, S., Hicks, M., Dumitraş, T., 2017. Sum-
moning demons: The pursuit of exploitable bugs in machine learning. arXiv
preprint arXiv:1701.04739.

74

https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/
https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/
https://portal.hdfgroup.org/display/HDF5/File+Format+Specification+PDF
https://portal.hdfgroup.org/display/HDF5/File+Format+Specification+PDF
https://www.nist.gov/itl/products-and-services/color-feret-database
https://www.nist.gov/itl/products-and-services/color-feret-database

Sun, L., Tan, M., Zhou, Z., 2018. A survey of practical adversarial example attacks.
Cybersecurity 1 (1), 9.

Tensorflow, June 2020a. Image classification.
URL https://www.tensorflow.org/tutorials/images/
classification

Tensorflow, June 2020b. Using the savedmodel format.
URL https://www.tensorflow.org/guide/saved_model

Yao, Y., Viswanath, B., Cryan, J., Zheng, H., Zhao, B. Y., 2017. Automated crowd-
turfing attacks and defenses in online review systems. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security.
pp. 1143–1158.

Yuan, X., He, P., Zhu, Q., Li, X., 2019. Adversarial examples: Attacks and de-
fenses for deep learning. IEEE transactions on neural networks and learning
systems 30 (9), 2805–2824.

Zhang, W. E., Sheng, Q. Z., Alhazmi, A., Li, C., 2020. Adversarial attacks on deep-
learning models in natural language processing: A survey. ACM Transactions
on Intelligent Systems and Technology (TIST) 11 (3), 1–41.

75

https://www.tensorflow.org/tutorials/images/classification
https://www.tensorflow.org/tutorials/images/classification
https://www.tensorflow.org/guide/saved_model

Appendix
A Implemented Code

Listing A.1: The code implemented for the neural network merger
1 import t e n s o r f l o w as t f
2 from t e n s o r f l o w import k e r a s
3 import numpy as np
4 import m a t p l o t l i b . p y p l o t a s p l t
5 import os
6 import cv2
7 import p i c k l e
8 import h5py
9 import s y s

10 import s h u t i l
11 import t r a c e b a c k
12
13 def g e t d a t a s e t (s t r i n g) :
14 def F (name) :
15 i f s t r i n g in name :
16 re turn name
17 re turn F
18
19 def combine hdf5 (f1 , f2) :
20 p a t h = os . getcwd ()
21 e x t e n d e d f i l e n a m e = ’%s /% s e x t e n d e d ’%(pa th , f1 . f i l e n a m e)
22 os . remove (e x t e n d e d f i l e n a m e)
23 s h u t i l . c o p y f i l e (’%s /% s ’%(pa th , f1 . f i l e n a m e) , e x t e n d e d f i l e n a m e)
24 f3 = h5py . F i l e (e x t e n d e d f i l e n a m e , ” r +”)
25
26 c o m b i n e i n p u t = True
27 f o r f 1 l a y e r , f 2 l a y e r , f 3 l a y e r in z i p (f1 [’ m o d e l w e i g h t s ’] .

v a l u e s () ,
28 f2 [’ m o d e l w e i g h t s ’] . v a l u e s () , f3 [’ m o d e l w e i g h t s ’] . v a l u e s ()

) :
29 t r y :
30 f 1 w e i g h t s = f 1 l a y e r [f 1 l a y e r . v i s i t (g e t d a t a s e t (’ k e r n e l : 0 ’))]
31 f 2 w e i g h t s = f 2 l a y e r [f 2 l a y e r . v i s i t (g e t d a t a s e t (’ k e r n e l : 0 ’))]
32 f 3 w e i g h t s = f 3 l a y e r [f 3 l a y e r . v i s i t (g e t d a t a s e t (’ k e r n e l : 0 ’))]
33 f 1 b i a s e s = f 1 l a y e r [f 1 l a y e r . v i s i t (g e t d a t a s e t (’ b i a s : 0 ’))]
34 f 2 b i a s e s = f 2 l a y e r [f 2 l a y e r . v i s i t (g e t d a t a s e t (’ b i a s : 0 ’))]
35 f 3 b i a s e s = f 3 l a y e r [f 3 l a y e r . v i s i t (g e t d a t a s e t (’ b i a s : 0 ’))]
36
37 weight name = f 3 w e i g h t s . name
38 b i a s n a m e = f 3 b i a s e s . name

76

39 d e l f3 [weigh t name]
40 d e l f3 [b i a s n a m e]
41 f 3 b i a s e s = f 3 l a y e r . c r e a t e d a t a s e t (b ias name , (f 1 b i a s e s . shape

[0] + f 2 b i a s e s . shape [0] ,))
42 i n p u t s i z e = f 1 w e i g h t s . shape [0] + f 2 w e i g h t s . shape [0]
43 i f c o m b i n e i n p u t :
44 i n p u t s i z e −= f 2 w e i g h t s . shape [0]
45 c o m b i n e i n p u t = F a l s e
46 o u t p u t s i z e = f 1 w e i g h t s . shape [1] + f 2 w e i g h t s . shape [1]
47 a r r = np . z e r o s ((i n p u t s i z e , o u t p u t s i z e))
48 f 3 w e i g h t s = f 3 l a y e r . c r e a t e d a t a s e t (weight name , (i n p u t s i z e ,

o u t p u t s i z e) , ’ f l o a t ’ , a r r)
49
50 f 3 b i a s e s [: f 1 b i a s e s . shape [0]] = f 1 b i a s e s
51 f 3 b i a s e s [f 1 b i a s e s . shape [0] :] = f 2 b i a s e s
52 f 3 w e i g h t s [: f 1 w e i g h t s . shape [0] , : f 1 w e i g h t s . shape [1]] =

f 1 w e i g h t s
53 f 3 w e i g h t s [− f 2 w e i g h t s . shape [0] : , − f 2 w e i g h t s . shape [1] :] =

f 2 w e i g h t s
54
55 e xc ep t :
56 pass
57
58 def c o m b i n e s a v e d w e i g h t s (f1 , f2) :
59 o r i g i n a l = t f . s aved mode l . l o a d (f1)
60 a t t a c k e r = t f . s aved mode l . l o a d (f2)
61 e x t e n d e d p a t h = f1 . s p l i t (’ / ’ , 1) [0] + ” / s a v e e x t e n d e d / ”
62 p r i n t (e x t e n d e d p a t h)
63 d i r u t i l . c o p y t r e e (f1 , e x t e n d e d p a t h)
64 e x t e n d e d = t f . s aved mode l . l o a d (e x t e n d e d p a t h)
65 wi th t f . compat . v1 . S e s s i o n () a s s e s s :
66 f o r i in range (0 , l e n (e x t e n d e d . t r a i n a b l e v a r i a b l e s)) :
67 v1 = e x t e n d e d . t r a i n a b l e v a r i a b l e s [i]
68 v2 = a t t a c k e r . t r a i n a b l e v a r i a b l e s [i]
69 nm = v1 . name . s p l i t (’ / ’ , 1)
70 i f nm [0] == ’ dense ’ :
71 i f nm [1] == ” k e r n e l : 0 ” :
72 # Weigh t s i n second l a y e r
73 shp = (v1 . shape [0] , v1 . shape [1] + v2 . shape [1])
74 num = np . z e r o s (shape =shp , d t y p e =v1 . d t y p e . name)
75 num [: v1 . shape [0] , : v1 . shape [1]] = v1 . v a l u e ()
76 num[−v2 . shape [0] : , −v2 . shape [1] :] = v2 . v a l u e ()
77 temp = t f . V a r i a b l e (name=v1 . name [: −2] , shape = TensorShape ([shp

[0] , shp [1]]) , d t y p e =v1 . d type , i n i t i a l v a l u e =num)
78 e l s e :
79 # Bias i n second l a y e r
80 shp = (v1 . shape [0] + v2 . shape [0] ,)
81 num = np . z e r o s (shape =shp , d t y p e =v1 . d t y p e . name)
82 num [: v1 . shape [0]] = v1 . v a l u e ()

77

83 num[−v2 . shape [0] :] = v2 . v a l u e ()
84 temp = t f . V a r i a b l e (name=v1 . name [: −2] , shape = TensorShape ([shp

[0] ,]) , d t y p e =v1 . d type , i n i t i a l v a l u e =num)
85 e l s e :
86 i f nm [1] == ” k e r n e l : 0 ” :
87 shp = (v1 . shape [0] + v2 . shape [0] , v1 . shape [1] + v2 . shape [1])
88 num = np . z e r o s (shape =shp , d t y p e =v1 . d t y p e . name)
89 num [: v1 . shape [0] , : v1 . shape [1]] = v1 . v a l u e ()
90 num[−v2 . shape [0] : , −v2 . shape [1] :] = v2 . v a l u e ()
91 temp = t f . V a r i a b l e (name=v1 . name [: −2] , shape = TensorShape ([shp

[0] , shp [1]]) , d t y p e =v1 . d type , i n i t i a l v a l u e =num)
92 e l s e :
93 shp = (v1 . shape [0] + v2 . shape [0] ,)
94 num = np . z e r o s (shape =shp , d t y p e =v1 . d t y p e . name)
95 num [: v1 . shape [0]] = v1 . v a l u e ()
96 num[−v2 . shape [0] :] = v2 . v a l u e ()
97 temp = t f . V a r i a b l e (name=v1 . name [: −2] , shape = TensorShape ([shp

[0] ,]) , d t y p e =v1 . d type , i n i t i a l v a l u e =num)
98 e x t e n d e d . t r a i n a b l e v a r i a b l e s [i] . a s s i g n (temp)
99 e x t e n d e d . s e l f s e t a t t r t r a c k i n g = F a l s e

100 t f . s aved mode l . s ave (ex tended , e x p o r t d i r = e x t e n d e d p a t h)
101
102
103 def v e r i f y f i l e s (o r i g i n a l m o d e l , a t t a c k e r m o d e l , e x t e n d e d m o d e l) :
104 d a t a f i l e h a i r = h5py . F i l e (’ f a c e s d a t a ’ , ’ r ’)
105 d a t a f i l e g e n d e r = h5py . F i l e (’ f a c e s d a t a g e n d e r ’ , ’ r ’)
106 t e s t i n g n u m b e r = 500
107 t e s t i m a g e s h a i r = d a t a f i l e h a i r [’ t e s t i n g i m a g e s ’] [:

t e s t i n g n u m b e r]
108 t e s t l a b e l s h a i r = d a t a f i l e h a i r [’ t e s t i n g l a b e l s ’] [:

t e s t i n g n u m b e r]
109 t e s t i m a g e s g e n d e r = d a t a f i l e g e n d e r [’ t e s t i n g i m a g e s ’] [:

t e s t i n g n u m b e r]
110 t e s t l a b e l s g e n d e r = d a t a f i l e g e n d e r [’ t e s t i n g l a b e l s ’] [:

t e s t i n g n u m b e r]
111 z = t i m e d e l t a (0)
112 t o t a l t i m e s = [z , z , z , z]
113 t i m e s l a b n a m e = [”ORIGINAL” , ”ATTACKER” , ”EXTENDED”]
114 t i m e s l a b t e s t = [”ORIGINAL” , ”ATTACKER”]
115 # t i m e s l a b m a p = [[0 , 0] , [1 , 1] , [2 , 0] , [2 , 1]]
116 i t e r a t i o n s = 100
117 models = [o r i g i n a l m o d e l , a t t a c k e r m o d e l , e x t e n d e d m o d e l]
118 t e s t s = [t e s t i m a g e s h a i r , t e s t i m a g e s g e n d e r]
119 f o r i in range (0 , l e n (models)) :
120 model = models [i]
121 f o r j in range (0 , l e n (t e s t s)) :
122 t e s t = t e s t s [j]
123 t i m e s = z
124 f o r o in range (0 , i t e r a t i o n s) :

78

125 t 1 = d a t e t i m e . now ()
126 p = model . p r e d i c t (t e s t [: t e s t i n g n u m b e r])
127 t 2 = d a t e t i m e . now ()
128 t i m e s += t2−t 1
129 p r i n t (” P r o c e s s i n g model %s %s : %.3d ” % (

t i m e s l a b n a m e [i] , t i m e s l a b t e s t [j] ,100∗ o /
i t e r a t i o n s) , end= ’\ r ’)

130 gc . c o l l e c t ()
131 avg = t i m e s . s e c o n d s / i t e r a t i o n s + t i m e s . m i c r o s e c o n d s

∗0 .000001 / i t e r a t i o n s
132 p r i n t (” Model : %s | Images : %s | Avg t ime : %f ” % (

t i m e s l a b n a m e [i] , t i m e s l a b t e s t [j] , avg))
133 e r r o r = 0
134 p r e d s = [None , None , None , None]
135 p r e d s [0] = models [0] . p r e d i c t (t e s t s [0] [: t e s t i n g n u m b e r])
136 p r e d s [1] = models [1] . p r e d i c t (t e s t s [1] [: t e s t i n g n u m b e r])
137 p r e d s [2] = models [2] . p r e d i c t (t e s t s [0] [: t e s t i n g n u m b e r])
138 p r e d s [3] = models [2] . p r e d i c t (t e s t s [1] [: t e s t i n g n u m b e r])
139 f o r v1 , v2 in abs (p r e d s [0] − p r e d s [2] [: , : 2]) :
140 e r r o r += v1 + v2
141 p r i n t (” T o t a l e r r o r f o r o r i g i n a l : %d | Avg e r r o r : %d ” % (e r r o r ,

e r r o r / (t e s t i n g n u m b e r ∗2)))
142 e r r o r = 0
143 f o r v1 in abs (p r e d s [1] − p r e d s [3] [: , 2 :]) :
144 e r r o r += v1
145 p r i n t (” T o t a l e r r o r f o r a t t a c k e r : %d | Avg e r r o r : %d ” % (e r r o r ,

e r r o r / (t e s t i n g n u m b e r)))
146
147 def v e r i f y (or h5 , a t h 5 , ex h5 , or sw , a t sw , ex sw) :
148 o r i g i n a l s w = k e r a s . models . l o a d m o d e l (o r sw)
149 a t t a c k e r s w = k e r a s . models . l o a d m o d e l (a t s w)
150 e x t e n d e d s w = k e r a s . S e q u e n t i a l ([
151
152 k e r a s . l a y e r s . F l a t t e n (i n p u t s h a p e =(256 , 256 , 3)) ,
153 k e r a s . l a y e r s . Dense (2 5 6 , a c t i v a t i o n = ’ s igmoid ’) ,
154 k e r a s . l a y e r s . Dense (3 , a c t i v a t i o n = ’ s igmoid ’ , name= ’ o u t p u t ’)
155])
156 e x t e n d e d s w . l o a d w e i g h t s (ex sw)
157 v e r i f y f i l e s (o r i g i n a l s w , a t t a c k e r s w , e x t e n d e d s w)
158
159 o r i g i n a l h 5 = k e r a s . models . l o a d m o d e l (o r h 5)
160 a t t a c k e r h 5 = k e r a s . models . l o a d m o d e l (a t h 5)
161 e x t e n d e d h 5 = k e r a s . S e q u e n t i a l ([
162 k e r a s . l a y e r s . F l a t t e n (i n p u t s h a p e =(256 , 256 , 3)) ,
163 k e r a s . l a y e r s . Dense (2 5 6 , a c t i v a t i o n = ’ s igmoid ’) ,
164 k e r a s . l a y e r s . Dense (3 , a c t i v a t i o n = ’ s igmoid ’ , name= ’ o u t p u t ’)
165])
166 e x t e n d e d h 5 . l o a d w e i g h t s (ex h5)
167

79

168 v e r i f y f i l e s (o r i g i n a l h 5 , a t t a c k e r h 5 , e x t e n d e d h 5)
169
170 def main () :
171 o r i g i n a l f i l e = ” saved mode l / model ”
172 e x t e n d e r f i l e = ” saved mode l / n e t w o r k c o n f i g f a c e s g e n d e r ”
173 f o r i in range (1 , l e n (s y s . a rgv [1 :])) :
174 a r g = s y s . a rgv [i]
175 i f a r g == ”−−o r i g i n a l f i l e ” :
176 o r i g i n a l f i l e = s y s . a rgv [i +1]
177 i += 1
178 i f a r g == ”−−e x t e n d e r f i l e ” :
179 e x t e n d e r f i l e = s y s . a rgv [i +1]
180
181 f1 = None
182 f2 = None
183 t r y :
184 f1 = h5py . F i l e (o r i g i n a l f i l e , ” r ”)
185 f2 = h5py . F i l e (e x t e n d e r f i l e , ” r ”)
186 combine hdf5 (f1 , f2)
187 e xc ep t :
188 pass
189 f i n a l l y :
190 i f f1 != None :
191 f1 . c l o s e ()
192 i f f2 != None :
193 f2 . c l o s e ()
194
195 def v e r i f y f i l e s (o r i g i n a l p a t h , a t t a c k e r p a t h , e x t e n d e d p a t h) :
196 o r i g i n a l = k e r a s . models . l o a d m o d e l (o r i g i n a l p a t h)
197 a t t a c k e r = k e r a s . models . l o a d m o d e l (a t t a c k e r p a t h)
198 e x t e n d e d = k e r a s . S e q u e n t i a l ([k e r a s . l a y e r s . F l a t t e n (i n p u t s h a p e

=(256 , 256 , 3)) , k e r a s . l a y e r s . Dense (2 5 6 , a c t i v a t i o n = ’ s igmoid ’
) , k e r a s . l a y e r s . Dense (3 , a c t i v a t i o n = ’ s igmoid ’ , name= ’ o u t p u t ’)
])

199 e x t e n d e d . l o a d w e i g h t s (e x t e n d e d p a t h)
200
201 d a t a f i l e h a i r = h5py . F i l e (’ f a c e s d a t a ’ , ’ r ’)
202 d a t a f i l e g e n d e r = h5py . F i l e (’ f a c e s d a t a g e n d e r ’ , ’ r ’)
203
204 t e s t i m a g e s h a i r = d a t a f i l e h a i r [’ t e s t i n g i m a g e s ’]
205 t e s t l a b e l s h a i r = d a t a f i l e h a i r [’ t e s t i n g l a b e l s ’]
206
207 t e s t i m a g e s g e n d e r = d a t a f i l e g e n d e r [’ t e s t i n g i m a g e s ’]
208 t e s t l a b e l s g e n d e r = d a t a f i l e g e n d e r [’ t e s t i n g l a b e l s ’]
209
210 p r e d o r i g = o r i g i n a l . p r e d i c t (t e s t i m a g e s h a i r [: 1 0 0])
211 p r e d a t t = a t t a c k e r . p r e d i c t (t e s t i m a g e s g e n d e r [: 1 0 0])
212 p r e d e x t h a i r = e x t e n d e d . p r e d i c t (t e s t i m a g e s h a i r [: 1 0 0])
213 p r e d e x t g e n d e r = e x t e n d e d . p r e d i c t (t e s t i m a g e s g e n d e r [: 1 0 0])

80

214 e r r o r = 0
215
216 f o r v1 , v2 in abs (p r e d o r i g − p r e d e x t h a i r [: , : 2]) :
217 e r r o r += v1 + v2
218
219 f o r v1 in abs (p r e d a t t − p r e d e x t g e n d e r [: , 2 :]) :
220 e r r o r += v1
221
222 p r i n t (e r r o r / 3 0 0)
223
224 i f n a m e == ” m a i n ” :
225 main ()

Listing A.2: The code implemented for the scanner
1
2 # i n c l u d e <i o s t r e a m>
3 us ing namespace s t d ;
4 # i n c l u d e < s t r i n g . h>
5 # i n c l u d e <c s t d l i b >
6 # i n c l u d e <f s t r e a m>
7 # i n c l u d e < l i m i t s >
8 # i n c l u d e <cmath>
9

10 bool cmpf (f l o a t A, f l o a t B , f l o a t e p s i l o n = s t d : : n u m e r i c l i m i t s <
double > : : e p s i l o n ()) {

11 re turn (f a b s (A − B) < e p s i l o n) ;
12 }
13
14 f l o a t b y t e s T o F l o a t (u c h a r b0 , u c h a r b1 , u c h a r b2 , u c h a r b3) {
15 u c h a r b y t e a r r a y [] = { b3 , b2 , b1 , b0 } ;
16 f l o a t r e s u l t ;
17 s t d : : copy (r e i n t e r p r e t c a s t <c o n s t char∗>(& b y t e a r r a y [0]) ,

r e i n t e r p r e t c a s t <c o n s t char∗>(& b y t e a r r a y [4]) ,
r e i n t e r p r e t c a s t <char∗>(& r e s u l t)) ;

18 re turn r e s u l t ;
19 }
20
21 void s c a n f i l e (c o n s t char ∗ f i l e p a t h , c o n s t char ∗ d a t a t y p e , i n t

i n p u t s i z e , i n t m i n p r o p s i z e , i n t m a x p r o p s i z e) {
22 i f s t r e a m f i l e ;
23 f i l e . open (f i l e p a t h , i o s : : b i n a r y) ;
24 f i l e . s eekg (0 , i o s : : beg) ;
25 i n t s i z e = 302020704;
26 char ∗ d a t a = new char [s i z e] ;
27 f i l e . r e a d (da t a , s i z e) ;
28
29 f l o a t ∗ f d a t a = new f l o a t [s i z e − 3] ;
30 f l o a t t o t a l = 0 ;
31 i n t t o t a l n u m s = 0 ;

81

32 i n t z e r o e s = 0 ;
33
34 f l o a t v1 = s t d : : s t o f (” 0 .06004444 ”) ;
35 f l o a t v2 = s t d : : s t o f (” 0 .05854571 ”) ;
36 f l o a t v3 = s t d : : s t o f (” −0.059743077 ”) ;
37 f l o a t ∗ check = new f l o a t [3] ;
38 check [0] = v1 ;
39 check [1] = v2 ;
40 check [2] = v3 ;
41 i n t c h e c k v a l u e 1 = 0 ;
42
43 unsigned i n t ∗ c l u s t e r s = new unsigned i n t [1 0 0 0 0 0 0] ;
44 unsigned i n t c l u s t e r i n d e x = 0 ;
45 unsigned i n t c l u s t e r v a l u e = 0 ;
46 unsigned i n t c l u s t e r v a l s i z e s [1 0 0 0 0] [2] ;
47 unsigned i n t c = 0 ;
48
49 f o r (i n t i = 0 ; i < s i z e / 4 ; i ++){
50 f l o a t f1 = b y t e s T o F l o a t (d a t a [i + 0] , d a t a [i + 1] , d a t a [i + 2] ,

d a t a [i + 3]) ;
51 f d a t a [i] = f1 ;
52
53 i f (f1 < 1000 and f1 > −1000){
54 i f (cmpf (f1 , 0 . 0)) {
55 z e r o e s ++;
56 }
57 t o t a l += f1 ;
58 t o t a l n u m s ++;
59 c l u s t e r v a l u e ++;
60 }
61 e l s e {
62 c l u s t e r v a l u e −= c l u s t e r v a l u e % 2 ;
63 i f (c l u s t e r v a l u e >= 10) {
64 c l u s t e r s [c l u s t e r i n d e x] = c l u s t e r v a l u e ;
65 c l u s t e r i n d e x ++;
66 bool i n s e r t e d = f a l s e ;
67 f o r (i n t j = 0 ; j < c ; j ++){
68 i f (c l u s t e r v a l u e == c l u s t e r v a l s i z e s [j] [0]) {
69 c l u s t e r v a l s i z e s [j] [1] + + ;
70 i n s e r t e d = t rue ;
71 break ;
72 }
73 }
74 i f (! i n s e r t e d) {
75 c l u s t e r v a l s i z e s [c] [0] = c l u s t e r v a l u e ;
76 c l u s t e r v a l s i z e s [c] [1] = 1 ;
77 c ++;
78 }
79 }

82

80 c l u s t e r v a l u e = 0 ;
81 }
82 }
83
84 f o r (i n t i = 0 ; i < c ; i ++){
85 i f (c l u s t e r v a l s i z e s [i] [1] > 100) {
86 c o u t << ” S i z e : ” << c l u s t e r v a l s i z e s [i] [0] << ” | S i z e : ” <<

c l u s t e r v a l s i z e s [i][1]<< e n d l ;
87 }
88 }
89
90 unsigned i n t s p a c i n g a d d r = 0 ;
91 unsigned i n t s p a c i n g v a l s i z e s [1 0 0 0 0] [2] ;
92 unsigned i n t s = 0 ;
93 c l u s t e r v a l u e = 0 ;
94
95 f o r (i n t i = 0 ; i < s i z e / 4 ; i ++){
96 f l o a t f1 = b y t e s T o F l o a t (d a t a [i + 0] , d a t a [i + 1] , d a t a [i + 2] ,

d a t a [i + 3]) ;
97 f d a t a [i] = f1 ;
98 i f (f1 < 1000 and f1 > −1000){
99 c l u s t e r v a l u e ++;

100 }
101 e l s e {
102 i f (c l u s t e r v a l u e >= 10) {
103 i f (s p a c i n g a d d r == 0) {
104 s p a c i n g a d d r = i ;
105 }
106 e l s e {
107 unsigned i n t s p a c e = i − s p a c i n g a d d r ;
108 bool i n s e r t e d = f a l s e ;
109 f o r (i n t j = 0 ; j < s ; j ++){
110 i f (s p a c e == s p a c i n g v a l s i z e s [j] [0]) {
111 s p a c i n g v a l s i z e s [j] [1] + + ;
112 i n s e r t e d = t rue ;
113 break ;
114 }
115 }
116 i f (! i n s e r t e d) {
117 s p a c i n g v a l s i z e s [s] [0] = s p a c e ;
118 s p a c i n g v a l s i z e s [s] [1] = 1 ;
119 s ++;
120 }
121 s p a c i n g a d d r = i ;
122 }
123 }
124 c l u s t e r v a l u e = 0 ;
125 }
126 }

83

127
128 f o r (i n t i = 0 ; i < s ; i ++){
129 i f (s p a c i n g v a l s i z e s [i] [1] >100){
130 c o u t << ” Spac ing : ” << s p a c i n g v a l s i z e s [i] [0] << ” | S i z e : ”

<< s p a c i n g v a l s i z e s [i] [1] << e n d l ;
131 }
132 }
133 f i l e . c l o s e () ;
134 }
135
136
137
138 i n t main (i n t argc , char ∗ a rgv []) {
139 char ∗ f i l e p a t h ;
140 char ∗ d a t a t y p e ;
141 i n t i n p u t s i z e ;
142 i n t m i n p r o p s i z e ;
143 i n t m a x p r o p s i z e ;
144
145 c o u t << ” Argc : ” << a r g c << e n d l ;
146 f o r (i n t i = 1 ; i < a r g c ; i += 2) {
147 c o n s t char ∗ a r g = a rgv [i] ;
148
149 i f (! s t r cm p (arg , ”−− f i l e p a t h ”)) {
150 f i l e p a t h = a rgv [i + 1] ;
151 }
152 e l s e i f (! s t r cm p (arg , ”−−d a t a t y p e ”)) {
153 d a t a t y p e = a rgv [i + 1] ;
154 }
155 e l s e i f (! s t r cm p (arg , ”−− i n p u t s i z e ”)) {
156 i n p u t s i z e = a t o i (a rgv [i + 1]) ;
157 }
158 e l s e i f (! s t r cm p (arg , ”−−m i n p r o p s i z e ”)) {
159 m i n p r o p s i z e = a t o i (a rgv [i + 1]) ;
160 }
161 e l s e i f (! s t r cm p (arg , ”−−m a x p r o p s i z e ”)) {
162 m a x p r o p s i z e = a t o i (a rgv [i + 1]) ;
163 }
164 }
165
166 c o u t << ” F i l e p a t h i s : ” << f i l e p a t h << s t d : : e n d l ;
167 c o u t << ” D a t a t y p e i s : ” << d a t a t y p e << s t d : : e n d l ;
168 c o u t << ” I n p u t s i z e i s : ” << i n p u t s i z e << s t d : : e n d l ;
169 c o u t << ”Min prop i s : ” << m i n p r o p s i z e << s t d : : e n d l ;
170 c o u t << ”Max prop i s : ” << m a x p r o p s i z e << s t d : : e n d l ;
171 s c a n f i l e (f i l e p a t h , d a t a t y p e , i n p u t s i z e , m i n p r o p s i z e ,

m a x p r o p s i z e) ;
172 re turn 0 ;
173 }

84

Listing A.3: The code implemented to train the AI system
1 # I m p o r t s
2 import t e n s o r f l o w as t f
3 from t e n s o r f l o w import k e r a s
4 import numpy as np
5 import m a t p l o t l i b . p y p l o t a s p l t
6 import os
7 import cv2
8 import gc
9 import s y s

10 import p i c k l e
11 import h5py
12 import random
13
14 # S e t u p o f g l o a b l v a r i a b l e s
15 r e n e w d a t a = F a l s e
16 c l a s s n a m e s = [’ h a s g l a s s e s ’ , ’ h a s b e a r d ’]
17 BS = 500
18 INPUT WIDTH = 256 #The w i d t h o f t h e c o n v e r t e d image t o f e e d i n t o

t h e NN
19 INPUT HEIGHT = 256 #The w i d t h o f t h e c o n v e r t e d image t o f e e d i n t o

t h e NN
20 TRAIN PERCENT = 0 . 8 #The p e r c e n t a g e o f images used f o r t r a i n i n g ,

t h e r e s t are f o r t e s t i n g
21
22 #The c o n v e r t e r f u n c t i o n f o r images from t h e FERET d a t a s e t
23 def g e t i m a g e (f i l e p a t h) :
24 t r y :
25 re turn np . f l o a t 1 6 (cv2 . r e s i z e (cv2 . imread (f i l e p a t h) , (

INPUT WIDTH , INPUT HEIGHT) , i n t e r p o l a t i o n = cv2 .
INTER LANCZOS4))

26 e xc ep t :
27 re turn
28
29
30 # I mp or t t h e data , i f i t has n o t been done a l r e a d y
31 i f r e n e w d a t a :
32 import xml . e t r e e . E lemen tTree as ET
33 t r e e = ET . p a r s e (” d a t a / c o l o r f e r e t / dvd1 / d a t a / g r o u n d t r u t h s / xml /

r e c o r d i n g s . xml ”)
34 r e c o r d i n g s = t r e e . g e t r o o t ()
35 t m p a r r a y = []
36 yes no map = { ’ Yes ’ : 1 , ’No ’ : 0}
37
38 # Helper f u n c t i o n t o c o n v e r t t h e image me tada ta and image
39 def c o n v e r t r e c o r d i n g (r e c o r d i n g) :
40 f o r c h i l d in r e c o r d i n g :
41 i f c h i l d . t a g == ”URL” :
42 u r l = c h i l d . a t t r i b [’ r e l a t i v e ’]

85

43 u r l = ’ d a t a / c o l o r f e r e t / dvd1 / ’ + s t r (u r l) . r s p l i t (’ .
bz2 ’ , 1) [0]

44 break
45 g l a s s e s = r e c o r d i n g . f i n d (’ S u b j e c t ’) . f i n d (’ A p p l i c a t i o n ’) .

f i n d (’ Face ’) . f i n d (’ Wearing ’) . a t t r i b [’ g l a s s e s ’]
46 b e a r d = r e c o r d i n g . f i n d (’ S u b j e c t ’) . f i n d (’ A p p l i c a t i o n ’) . f i n d

(’ Face ’) . f i n d (’ Ha i r ’) . a t t r i b [’ b e a r d ’]
47
48 l = [yes no map [g l a s s e s] , yes no map [b e a r d]]
49
50 i f l [0] == 1 or l [1] == 1 : # or l [2] == 1:
51 t r y :
52 im = g e t i m a g e (u r l)
53 i f im i s None : # I f t h e image don ’ t e x i s t , don ’ t

i n c l u d e i t
54 re turn F a l s e
55 t m p a r r a y . append ((im , l))
56 re turn True
57 e xc ep t :
58 re turn F a l s e
59 re turn True
60
61 # Conver t a l l images a v a i l a b l e
62 f o r i in range (0 , l e n (r e c o r d i n g s)) :
63 i f c o n v e r t r e c o r d i n g (r e c o r d i n g s [i]) :
64 p r i n t (’ C o n v e r t i n g a t %.3d%% and i n d e x : %d ’ %(100∗ i / l e n (

r e c o r d i n g s) , i) , end= ’\ r ’)
65 e l s e :
66 break
67 gc . c o l l e c t ()
68
69 random . s h u f f l e (t m p a r r a y)
70
71 # C o r r e c t l y o r d e r t h e images and l a b e l s
72 l a b e l s = []
73 images = []
74 f o r img , l a b in t m p a r r a y :
75 np . d i v i d e (img , 255 , o u t =img)
76 images . append (img)
77 d e l img
78
79 l a b e l s . append (l a b . copy ())
80 d e l l a b
81 d e l t m p a r r a y
82
83 # D i v i d e t h e images and l a b e l s i n t o t r a i n i n g and t e s t i n g da ta
84 t r a i n i m a g e s n u l l = np . empty ((0 , INPUT WIDTH , INPUT HEIGHT , 3)

) # I n i t i a l i z e a r r a y o f p ro pe r s i z e f o r c o n c a t e n a t e
85 t e s t i m a g e s n u l l = np . empty ((0 , INPUT WIDTH , INPUT HEIGHT , 3))

86

I n i t i a l i z e a r r a y o f p ro pe r s i z e f o r c o n c a t e n a t e
86 t r a i n l a b e l s n u l l = np . empty ((0 , l e n (c l a s s n a m e s))) #

I n i t i a l i z e a r r a y o f p ro pe r s i z e f o r c o n c a t e n a t e
87 t e s t l a b e l s n u l l = np . empty ((0 , l e n (c l a s s n a m e s))) # I n i t i a l i z e

a r r a y o f p r op er s i z e f o r c o n c a t e n a t e
88 t r a i n n r = round (l e n (images) ∗TRAIN PERCENT) #The number o f

t r a i n i n g i n s t a n c e s f o r t h e c l a s s
89
90 t r a i n i m a g e s = np . a r r a y (images [: t r a i n n r])
91 t e s t i m a g e s = np . a r r a y (images [t r a i n n r :])
92 d e l images
93
94 t r a i n l a b e l s = np . a r r a y (l a b e l s [: t r a i n n r])
95 t e s t l a b e l s = np . a r r a y (l a b e l s [t r a i n n r :])
96 d e l l a b e l s
97
98 # Save t h e da ta i n a more d i r e c t format , t o save on t i m e f o r

c o n v e r t i n g
99 t r y :

100 d a t a f i l e = h5py . F i l e (’ f a c e s d a t a ’ , ’ r + ’)
101
102 d e l d a t a f i l e [’ t r a i n i n g i m a g e s ’]
103 d e l d a t a f i l e [’ t e s t i n g i m a g e s ’]
104 d e l d a t a f i l e [’ t r a i n i n g l a b e l s ’]
105 d e l d a t a f i l e [’ t e s t i n g l a b e l s ’]
106
107
108 t r i m g = d a t a f i l e . c r e a t e d a t a s e t (’ t r a i n i n g i m a g e s ’ ,

t r a i n i m a g e s . shape , d t y p e = ’ f2 ’)
109 t r l a b = d a t a f i l e . c r e a t e d a t a s e t (’ t r a i n i n g l a b e l s ’ ,

t r a i n l a b e l s . shape , d t y p e = ’ i 1 ’)
110 te img = d a t a f i l e . c r e a t e d a t a s e t (’ t e s t i n g i m a g e s ’ ,

t e s t i m a g e s . shape , d t y p e = ’ f2 ’)
111 t e l a b = d a t a f i l e . c r e a t e d a t a s e t (’ t e s t i n g l a b e l s ’ ,

t e s t l a b e l s . shape , d t y p e = ’ i 1 ’)
112
113
114 t r i m g [:] = t r a i n i m a g e s
115 p r i n t (” F i n i s h e d t r a i n i n g images ”)
116 t r l a b [:] = t r a i n l a b e l s
117 p r i n t (” F i n i s h e d t r a i n i n g l a b e l s ”)
118 te img [:] = t e s t i m a g e s
119 p r i n t (” F i n i s h e d t e s t i n g images ”)
120 t e l a b [:] = t e s t l a b e l s
121 p r i n t (” F i n i s h e d t e s t i n g l a b e l s ”)
122
123 d a t a f i l e . c l o s e ()
124 e xc ep t :
125 p r i n t (” Unexpec ted e r r o r : ” , s y s . e x c i n f o ())

87

126 d a t a f i l e . c l o s e ()
127
128 #Load t h e p r e p a r e d da ta
129 e l s e :
130 t r y :
131 d a t a f i l e = h5py . F i l e (’ f a c e s d a t a ’ , ’ r ’)
132
133 t r a i n i m a g e s = d a t a f i l e [’ t r a i n i n g i m a g e s ’]
134 t r a i n l a b e l s = d a t a f i l e [’ t r a i n i n g l a b e l s ’]
135 t e s t i m a g e s = d a t a f i l e [’ t e s t i n g i m a g e s ’]
136 t e s t l a b e l s = d a t a f i l e [’ t e s t i n g l a b e l s ’]
137 e xc ep t :
138 p r i n t (” Unexpec ted e r r o r : ” , s y s . e x c i n f o ())
139 d a t a f i l e . c l o s e ()
140
141 # C re a t e a g e n e r a t o r o b j e c t , s i n c e t h e amount o f da ta i s t o o l a r g e

t o ho ld i n memory a l l a t once
142 c l a s s g e n e r a t o r () :
143 i m g a r r a y = None
144 l a b e l a r r a y = None
145 e l e m e n t l o a d e d = 0
146 e l e m e n t a c c e s s e d = 0
147 l i n k i m g = None
148 l i n k l a b e l = None
149 b a t c h s i z e = 0
150 def i n i t (s e l f , l i n k i m g , l i n k l a b e l , b a t c h s i z e) :
151 #Load a n o t h e r b a t c h
152 s e l f . b a t c h s i z e = b a t c h s i z e
153 s e l f . l i n k i m g = l i n k i m g
154 s e l f . l i n k l a b e l = l i n k l a b e l
155
156 s e l f . l o a d a r r a y ()
157 s e l f . e l e m e n t l o a d e d = b a t c h s i z e
158
159 def l o a d i n d e x (s e l f) :
160 i f s e l f . e l e m e n t l o a d e d + s e l f . b a t c h s i z e > s e l f . l i n k i m g .

shape [0] :
161 re turn s e l f . l i n k i m g . shape [0]
162 e l s e :
163 re turn s e l f . e l e m e n t l o a d e d + s e l f . b a t c h s i z e
164
165 def l o a d a r r a y (s e l f) :
166 s e l f . i m g a r r a y = np . a r r a y (s e l f . l i n k i m g [s e l f .

e l e m e n t l o a d e d +1: s e l f . l o a d i n d e x () + 1])
167 s e l f . l a b e l a r r a y = np . a r r a y (s e l f . l i n k l a b e l [s e l f .

e l e m e n t l o a d e d +1: s e l f . l o a d i n d e x () + 1])
168
169 def g e n e r a t e v a l u e (s e l f) :
170 whi le True :

88

171 image = np . expand d ims (np . a r r a y (s e l f . l i n k i m g [s e l f .
e l e m e n t a c c e s s e d]) , a x i s =0)

172 l a b e l = np . expand d ims (np . a r r a y (s e l f . l i n k l a b e l [s e l f .
e l e m e n t a c c e s s e d]) , a x i s =0)

173
174 y i e l d (image , l a b e l)
175 i f s e l f . e l e m e n t a c c e s s e d == s e l f . l i n k i m g . shape [0] −

1 :
176 s e l f . e l e m e n t a c c e s s e d = 0
177 e l s e :
178 s e l f . e l e m e n t a c c e s s e d += 1
179
180 # C re a t e g e n e r a t o r o b j e c t s f o r t r a i n i n g and t e s t i n g
181 t r a i n g e n = g e n e r a t o r (t r a i n i m a g e s , t r a i n l a b e l s , BS)
182 t e s t g e n = g e n e r a t o r (t e s t i m a g e s , t e s t l a b e l s , BS)
183
184 # S e t u p t h e b a s i c n e u r a l ne twork
185 model = k e r a s . S e q u e n t i a l ([k e r a s . l a y e r s . F l a t t e n (i n p u t s h a p e =(

INPUT WIDTH , INPUT HEIGHT , 3)) , k e r a s . l a y e r s . Dense (1 2 8 ,
a c t i v a t i o n = ’ s igmoid ’) , k e r a s . l a y e r s . Dense (l e n (c l a s s n a m e s) ,
a c t i v a t i o n = ’ s igmoid ’ , name= ’ o u t p u t ’)])

186
187 # Compile t h e ne twork
188 o p t = k e r a s . o p t i m i z e r s . Adam(l e a r n i n g r a t e = 0 . 0 1)
189 model . compi le (o p t i m i z e r =opt , l o s s = k e r a s . l o s s e s . b i n a r y c r o s s e n t r o p y

, m e t r i c s =[t f . k e r a s . m e t r i c s . R e c a l l ()])
190
191 # T r a i n t h e ne twork
192 model . f i t (t r a i n g e n . g e n e r a t e v a l u e () , y = None , epochs =2 ,

s t e p s p e r e p o c h = t r a i n i m a g e s . shape [0] , u s e m u l t i p r o c e s s i n g =
True , m a x q u e u e s i z e =BS / 2)

193
194 # Save t h e model
195 model . s ave (” saved mode l / n e t w o r k c o n f i g f a c e s . h5 ”)
196 t f . s aved mode l . s ave (model , ” saved mode l / s ave / ”)

89

