
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Thomas Aven

Exploring Reservoir Computing with
Spatial Constraints

Master’s thesis in Computer Science

Supervisor: Gunnar Tufte

June 2020





Thomas Aven

Exploring Reservoir Computing with
Spatial Constraints

Master’s thesis in Computer Science
Supervisor: Gunnar Tufte
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

Reservoir computing has become a predominant member of the unconventional
computing paradigm. It is a framework suited for processing of temporal and
sequential data, traditionally using recurrent neural network models to incorporate
past inputs into an instantaneous readout.

Interestingly, there is no need for the reservoir to be an artificial neural network
– any high-dimensional, driven system exhibiting complex dynamic behavior can
be used. A wide range of physical substrates have been proposed as reservoir
machines, ranging from nanomagnetic assemblies to living cultures of neurons.

A major challenge when realizing physical reservoirs is the physical limitations
present in the underlying substrate. This is in contrast to abstract model reser-
voirs, e.g. echo state networks, which have no physical constraints in regards to
dimensionality, spatial layout and observability. In this thesis, we investigate reser-
voirs with realistic dimensional and spatial properties, constraining the possibility
of making structural changes. Initially, we conduct experiments with echo state
networks that consist of random geometric graphs, the simplest spatial network
model. We then further this work with lattice structures, which are highly regular
architectures, and are common in computational physics.

Results show that spatial constraints by default inhibit the NARMA-10 bench-
mark performance of both models. However, introducing directed edges to the
network instead of bidirectional ones restores performance to compete with estab-
lished models, indicating that the flow of information is an important property in
quality reservoirs.

Furthermore, simple square lattice reservoirs with a fixed, global input are found
to perform as well as echo state networks on NARMA-10 and Mackey-Glass bench-
marks. The value of regular, deterministic structures as a tool for theoretical anal-
ysis is evaluated, giving examples of methodology to explore the inner workings of
networks when solving specific tasks.
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Sammendrag

Reservoarberegning har blitt et fremtredende medlem av paradigmet for ukon-
vensjonell dataprosessering. Dette er et rammeverk velegnet for prosessering av
tidsmessige og sekvensielle data, tradisjonelt ved bruk av rekurrente nevrale nettverk,
som gjør tidligere input tilgjengelig som en umiddelbar avlesning.

Det er dog ikke nødvendig at reservoaret er et kunstig nevralt nett – ethvert
høydimensjonalt, drevet system som innehar kompleks, dynamisk oppførsel kan
brukes. Et bredt spekter av fysiske substrater er foresl̊att som reservoarmaskiner,
fra nanomagnetiske ensembler til levende nevronkulturer.

En stor utfordring under realisering av fysiske reservoarer er substratets fysiske be-
grensninger. Dette er i kontrast til abstrakte reservoarer, f.eks. tilfeldige rekurrente
nevrale nettverk, som ikke har fysiske begrensninger med hensyn til dimensjon-
alitet, romlig utforming og observerbarhet. I denne oppgaven undersøkes reser-
voarer med realistiske dimensjonelle og romlige egenskaper, hvor muligheten for
å gjøre strukturelle endringer er begrenset. I utgangspunktet gjennomfører vi
eksperimenter med tilfeldige rekurrente nevrale nettverk som best̊ar av tilfeldige
geometriske grafer, som er den enkleste modellen for romlige nettverk. Eksperi-
mentene videreføres med gitterstrukturer, som er høyst regulære arkitekturer, og
er vanlige i numerisk fysikk.

Resultater viser at romlige begrensninger hemmer reservoarers ytelse under ytelses-
testen NARMA-10 for begge modeller. Dersom rettede kanter introduseres i nettverkene
istedenfor toveis kanter, vil ytelsen kunne konkurrere med etablerte modeller, noe
som indikerer at informasjonsflyt er en viktig egenskap i gode reservoarer.

Videre viser det seg at reservoarer basert p̊a firkantede gitter med fast, global input
yter like godt som tilfeldige rekurrente nettverk p̊a NARMA-10 og Mackey-Glass
ytelsestester. Verdien i regulære, deterministiske strukturer som et verktøy for
teoretisk analyse evalueres, og det gis eksempler for å utforske hvordan nettverk
oppfører seg n̊ar de løser spesifikke oppgaver.

iii



iv



Preface

I would like to thank my supervisors, PhD candidate Johannes Høydahl Jensen
and professor Gunnar Tufte, for helpful feedback and encouragement. It has been
a pleasure.

I would also like to thank PhD candidate Peter Aaser for kindly introducing me to
the world of complex systems. It has been a stimulating endeavor, and has become
an interest that will last me a lifetime.

v



vi



Contents

1 Introduction 1

1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Complexity: Order, Chaos and Criticality . . . . . . . . . . . . . . . 5

2.2 Reservoir Computing Fundamentals . . . . . . . . . . . . . . . . . . 6

2.3 Echo State Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Echo State Network Internals . . . . . . . . . . . . . . . . . . 7

2.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 ESN Generation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.4 Improvements to the Traditional ESN . . . . . . . . . . . . . 9

2.3.5 Real World Applications . . . . . . . . . . . . . . . . . . . . . 9

2.3.6 Comparison to State of the Art . . . . . . . . . . . . . . . . . 10

2.4 Assessing Reservoir Quality . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Independent Metrics . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vii



viii CONTENTS

2.5 Physical Reservoir Computing . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Physical Reservoir Requirements . . . . . . . . . . . . . . . . 15

2.5.2 Topology and Spatial Networks . . . . . . . . . . . . . . . . . 16

2.5.3 Artifical Spin Ice . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Methodology 19

3.1 ESN Parameters and Sample Sizes . . . . . . . . . . . . . . . . . . . 19

3.2 Benchmarks and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Experiments: Random Geometric Graphs 23

4.1 Size of the Underlying Volume . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Distance Functions and Memory Capacity . . . . . . . . . . . . . . . 26

4.2.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Restoring Echo State Network Performance . . . . . . . . . . . . . . 27

4.3.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Reservoir Weight Distribution . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



CONTENTS ix

5 Experiments: Lattices 33

5.1 Reservoir Quality of Lattices . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Lattices with Directed Edges . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Nonlinear Dynamics in Square Grids . . . . . . . . . . . . . . . . . . 40

5.3.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Shrinking and Growing Square Grids . . . . . . . . . . . . . . . . . . 42

5.4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Restoring Bidirectional Edges . . . . . . . . . . . . . . . . . . . . . . 48

5.5.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion and Future Work 51

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 53



Chapter 1

Introduction

With the inevitable demise of Moore’s law, researchers now seek computational
methods beyond the traditional transistor-based computer architecture. A wide
range of approaches, collectively dubbed unconventional computing methodology,
aim to exploit the intrinsic computation present in many natural systems. For ex-
ample, evolution in-materio shows that computation can be implemented in phys-
ical systems as a hybrid of analogue and traditional computation [1].

Reservoir computing (RC) has become a predominant member of the unconven-
tional computing paradigm [2]. It is a framework suited for processing of temporal
and sequential data, exploiting the underlying dynamics of a reservoir. Classi-
cal RC is derived from recurrent neural network (RNN) models, e.g. echo state
networks [3]. Utilizing an RNN as a reservoir, input sequences are projected into
a high-dimensional space, incorporating its temporal information in an instanta-
neous readout. Training is then carried out by adapting the readout layer with
supervised linear regression, providing faster and simpler training than traditional
gradient descent methods.

Interestingly, there is no need for the reservoir to be an artificial neural network –
any high-dimensional, driven system exhibiting complex dynamic behavior can be
used [4]. Through a fusion of in-materio computation and the reservoir methodol-
ogy, physical reservoir computing has seen a recent surge of interest [2, 5].

In this work, the goal is to explore inherent limitations faced when exploiting phys-
ical substrates as reservoirs. In the project preceding this thesis, noise, equipment
accuracy, and system observability were investigated as physical limitations [6].
Herein, we further this work, focusing on constrained topology or physical mor-
phology. Physical reservoirs must necessarily be embedded in physical space, often
having completely fixed structural properties. This is in contrast to abstraction
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2 CHAPTER 1. INTRODUCTION

models – physical models are commonly limited in the way we may change its
geometry. The role of structure is a relatively unexplored area of RC.

1.1 Research Goals

In this thesis, we seek a better theoretical foundation for how reservoir computing
methodology translates to physical substrates. Specifically, we are interested in
understanding how spatially restricting the nodes of a reservoir network impacts
performance. Ultimately, the goal of the thesis is to answer the following research
questions:

RQ1: How does the reservoir computing paradigm translate to the spatially con-
strained topology setting of a physical medium?

First, we are concerned with investigating practical challenges of realizing physical
reservoirs. We are interested in how restrictions, primarily embedding reservoirs
in physical space, will affect reservoir quality.

RQ2: How do highly regular, physical structures compare in information process-
ing capability to that of established models such as echo state networks?

Second, we are interested in how reservoirs with regular structures, such as lattice
grids, compare to established models. If there are discrepancies in capability, we
pursue the reasoning to gain a deeper theoretical insight into why the regularity is
disadvantageous.

RQ3: Can we find simple, deterministic reservoir generation methodology, relying
less on random weighting schemes?

Designing reservoirs in a highly deterministic manner is desirable, especially due
to the fact that it may simplify the physical realization process. Simple schemes to
embed nodes in space and establish connectivity are thus beneficial. Additionally,
less stochastic elements in reservoir generation may allow us to peer into the “black
box” character of reservoir computing.

To answer the posed research questions, we conduct simulations using traditional
echo state network methodology. We investigate two types of spatially constrained
network models as reservoirs: random geometric graphs and lattices. Thus, since
all experiments use echo state networks, we use a higher level abstraction to model
physical reservoirs by imposing specific structural properties on the architecture.
Generated networks are evaluated using widely used approaches: the nonlinear
autoregressive moving average (NARMA) [7], the Mackey-Glass delay differential
equation [8], kernel quality and generalization [9], and short-term memory [10].
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The goals of this thesis are closely related to the work conducted by the SOCRATES1

and SpinENGINE2 projects. Both projects explore the suitability of artificial spin
ice for massively parallel data analysis. Artificial spin ice consists of nanomag-
nets arranged on a two-dimensional lattice, and has shown promise as a physical
reservoir system [11, 12].

1.2 Thesis Overview

The thesis is structured as follows. Chapter 1 introduces the research domain, and
presents the motivation behind exploring spatial constraints in reservoir comput-
ing. Chapter 2 covers relevant background material used throughout the thesis.
An overview of previous work on physical reservoir computing is given in 2.5.1,
and a discussion of topology and spatial restrictions within reservoir computing is
presented in 2.5.2.

Chapter 3 describes the thesis methodology. Section 3.1 presents the parameters
used for echo state network generation, while Section 3.2 explains the implemen-
tation details of benchmarks and other metrics.

Chapters 4 and 5 present experiments made with random geometric graphs and
lattice networks, respectively. Most experiments rely on the knowledge gained in
previous sections, and thus follow a chronological order.

Finally, Chapter 6 summarizes the discoveries of the experiments, draws conclusions
related to the research goals of the thesis, and suggests areas of future work.

1https://www.ntnu.edu/socrates
2https://spinengine.eu/
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Chapter 2

Background

Related work and the state of the art were reviewed, and identification of relevant
background material was carried out in the project preceding this thesis [6]. This
background is herein amended with deeper insights into the paradigm of physical
reservoir computing, and adapted to fit a thesis rather than an article. Specifically,
the main focus is transferred from physical limitations in general, to the narrower
scope of spatial limitations relating to physical morphology and topology.

2.1 Complexity: Order, Chaos and Criticality

In deeming a physical system able to compute, one implies information storage,
retrieval and modification. We are as humans intimately familiar with the con-
tinuous, yet spontaneous computation present in our brains – our consciousness.
We are less acquainted, however, with the conditions that caused the emergence of
such a system.

Spanning a wide range of topics and disciplines, the field of complexity theory seeks
answers to this conundrum. An exact definition of “complexity” is perhaps ever
so elusive, but at its core lies an emergence of behavior greater than the sum of
its parts. Simple, local interactions give rise to intricate, global patterns. This
spontaneous emergence of complex behavior is ubiquitous in nature. Ranging from
convection cells in physics, to swarm and flock behavior in biology, there is an
abundance of interesting phenomena to study [13].

Langton investigated the emergence of computation in cellular automata (CA) [14].
His findings indicate a criticality as a condition to support computation. In essence,

5



6 CHAPTER 2. BACKGROUND

in between ordered and chaotic dynamics, we find a critical phase transition. It is
these systems, intertwining order and chaos, that are of interest.

In systems that are too static, perturbation will fade too quickly. Chaotic systems,
on the other hand, are wildly unpredictable, making them excessively sensitive.
This edge of chaos is a recurring theme in the investigation of the computational
capabilities of physical systems [14]. In fact, the edge of chaos has been found to be
of significance in predicting the computational performance of neural microcircuit
models, consisting of spiking neurons and dynamic synapses [9].

Biologically inspired models, most famously the artificial neural network (ANN),
are valuable scientific tools. Oftentimes, finding a suitable set of parameters for
a model will amount to much the same as finding the critical phase transition
between order and chaos. Reservoir computing (RC), a niche framework within
the field of machine learning, is concerned with observing the inherent dynamics of
a “reservoir” of local interconnections. Often employing random neural networks,
RC exploits the intrinsic computation emerging from these local interconnections
to solve practical tasks.

2.2 Reservoir Computing Fundamentals

Training recurrent neural networks (RNN) is an inherently difficult task. Gradi-
ent descent methods that incorporate loss information become increasingly ineffi-
cient on problems with long-range temporal dependencies. This inefficiency makes
the backpropagation algorithm used with feed-forward structures less attractive.
Specifically, a continuous search in the parameter space of recurrent networks may
cause bifurcations points in the dynamics of the system, causing non-convergent
training [15]. To circumvent this complexity, alternative methods which leave in-
ternal weights untrained have been proposed [3, 16].

Echo state networks (ESN) [3] and liquid state machines (LSM) [16] independently
present supervised learning methods that do not adapt the internal weights of the
network. Instead, the output is generated using a simple, memoryless classifier
or regressor. This makes the RNN function much like a kernel in kernel method
algorithms, which seek features and general relations in datasets to increase sepa-
rability.

Thus, by projecting into a high-dimensional space, temporal information of an
input may be incorporated in an instantaneous readout. This methodology has
been unified into the research subfield of RC, in which the focus is on separating
the randomly generated reservoir from the trained readout layer [4].

Interestingly, there is no need for the reservoir to be an artificial neural network –
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Figure 2.1: Fig. 1: Basic architecture of ESN reservoir systems. The reservoir
acts as a high-dimensional kernel, transforming the temporal input sequence into
a spatial representation. The readout is trained with supervised linear regression,
providing a least squares optimum.

any high-dimensional, driven system exhibiting complex dynamic behavior can be
used [4]. As long as the dynamics of the substrate can respond suitably to input,
it can in theory be used as a reservoir.

A multitude of substrates have shown promise as reservoirs: dynamical systems
models such as CA [17], and the more general random Boolean network (RBN) [18],
provide a discrete alternative to the analogue ESN. Furthermore, a recent surge
in physical reservoir implementations has reinvigorated the field, and is introduced
further in Section 2.5.

2.3 Echo State Networks

The ESN is one of the key flavors of RC, and at its core lie untrained, randomly
initialized RNNs. Its conception introduced a highly practical approach to training
RNNs that is both simple and computationally feasible. In ESNs, inner weights
remain fixed, and only the output weights are adapted to construct a linear readout.
The basic architecture of the ESN model is illustrated in Figure 2.1, and it consists
primarily of real-valued neurons connected by unrestricted synapses, which results
in a recurrent network.

2.3.1 Echo State Network Internals

In Figure 2.1, at time-step t the ESN reservoir is defined by its input, internal,
and output units, denoted by u(t), x(t), and y(t), respectively. The reservoir
dynamics are characterized by three weight matrices, Win, Wres, and Wout. In
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the traditional ESN approach, the reservoir state is evolved according to

x(t+ 1) = tanh(Wresx(t) + Winu(t)), (2.1)

using tanh as the nonlinear transfer function for internal reservoir nodes. The
output of the reservoir is given by

y(t) = Woutx(t). (2.2)

2.3.2 Training

To train an ESN model of size N in a supervised and offline mode, it is run to
completion on a training set. The reservoir states are collected row-wise into a
matrix X, and the one-dimensional output into a vector Y. The linear readout
layer is then trained to minimize the squared output error E = ‖Y− Ŷ‖ where Ŷ
is the target output, which amounts to finding the Wout that minimizes the error
with linear regression. Well-known methods include ridge regression, often called
Tikhonov regularization [19], and the Moore-Penrose pseudo-inverse [20].

When the network is adapted to Wout, the ESN is fully trained, thus illustrating
the apparent simplicity and low algorithmic complexity of the method. Gauging
the performance of a trained network is done by running a test set.

2.3.3 ESN Generation

As with virtually every machine learning technique, the application of ESNs re-
quires some experience. Although a conceptually simple idea, generating adequate
reservoir networks is influenced by multiple global parameters. Recommendations
to achieve sufficient performance are presented in [21, 22], suggesting parameters
such as the scaling of the input weight matrix ι, the spectral radius of the reser-
voir connection matrix ρ, and the model size parameters to be of high importance.
However, in practice the evaluation of a reservoir is an endeavor often conducted
by training the output and measuring the error, sometimes requiring extensive
parameter sweeps.
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2.3.4 Improvements to the Traditional ESN

Many improvements have been made to the vanilla ESN, most of which are beyond
the scope of this thesis and its focus on physical reservoir computing. Nevertheless,
an introduction to the methodology would be incomplete without a mention of some
of the alterations that improve upon it.

Jaeger also proposed sigmoid reservoir nodes with memory to learn slow, continuous
dynamics [3]. In reservoirs with such leaky integrator neurons, the nodes will not
discard their previous state entirely, but maintain a memory due to a leaking rate α.
Another addition proposed by Jaeger is inserting noise into the training procedure,
as it is well known in the field of traditional artificial neural networks that an
addition of noise to training data can lead to generalization improvements similar
to that of Tikhonov regularization [23].

Other important discoveries include improving reservoirs using intrinsic plasticity
[24] and lateral inhibition [25], both inspired by concepts of neurobiology.

Lastly, stacking layers similarly to deep learning methods has been attempted.
With the aim of developing and enhancing hierarchical dynamics, it is intended to
allow for multiple time-scales, and increased richness in the reservoir, measured as
the entropy of the reservoir states, and it has shown great potential [26].

2.3.5 Real World Applications

The ESN methodology has been applied somewhat successfully to real world tasks.
Approaches include equalizing a wireless communication channel [27], and short-
term traffic [28], electric load [29], and stock price forecasting [30]. Robot control is
also a popular area of research for RC applications, particularly for motor control
and event detection [31, 32, 33]. Perhaps less conventionally, RC has also been
applied in the context of reinforcement learning [34].

However, as the practicality of the paradigm resides primarily in chaotic time series
prediction and classification, this is also its main focus. Furthermore, recent years
have seen an increase in the realization of physical reservoirs to accompany existing
software simulations. An example is a silicon photonics chip capable of 5-bit header
recognition up to 12.5 Gbits−1, and is scalable to even higher bitrates [35]. This
surge of optimism has breathed new life into the field of RC, as physical reservoirs
pave the way for new types of integrated chips.
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2.3.6 Comparison to State of the Art

Few definitive comparisons between the ESN and similar flavors of the RNN have
been carried out. The long short-term memory (LSTM) [36], as well as its more
recent descendant, the gated recurrent unit (GRU) [37], are mainstays in sequence
processing, particularly in natural language processing. Early experiments demon-
strated the ESN methodology to outperform previous LSTM methods on learning
a chaotic attractor by orders of magnitude [3], but ESNs have largely remained a
secondary tool outside of chaotic time series prediction and classification.

A recent study compares the promising deep echo state network architecture (Deep-
ESN) to that of gated RNNs, where an experimental comparison between recurrent
models on multivariate time-series prediction tasks is made [38]. It is established
that the DeepESN methodology outperforms other RNN approaches in their pre-
diction ability on challenging, real world datasets. The computation time is also
lessened by about one order of magnitude compared to fully-trained RNN ap-
proaches. Thus, the adoption of LSTM and GRU in practice may not necessarily
be based on performance suitability, but rather software availability and popularity.

2.4 Assessing Reservoir Quality

Designing good reservoirs, possessing some set of desired properties, naturally re-
quires some metric by which we can evaluate and compare. Parameter sweeps,
i.e. our trial and error methods, must be accompanied by sufficient methods of
assessing computational performance.

Evaluation of reservoir quality is split into two different approaches. Intuitively,
measuring the performance of the model on a given benchmark task is a simple,
direct way of assessment. However, to gain an intuition for a more general, expected
performance across multiple benchmarks, one may measure independent properties
of the system, e.g. the spectral radius of the internal weight matrix. The two
approaches are often used in conjunction, combined to propose an overall quality.

2.4.1 Independent Metrics

Kernel Quality and Generalization

Within the RC paradigm we are concerned with producing a complex mapping from
the input stream to some spatial, internal representation, such that a memory-less,
linear readout map may be employed for classification.
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The linear separation property, or kernel quality, measures ability to separate dif-
ferent inputs [9]. It is an empirical measure of this complex mapping, denoting the
potential diversity of nonlinear operations carried out by a reservoir. Kernel qual-
ity is evaluated by presenting a reservoir of size n with m different input sequences,
and computing the rank of the resulting m × n matrix consisting of the reservoir
states at some time step t for the input streams [39].

Another metric accompanying the kernel quality is the generalization capability
of the reservoir [9]. This metric addresses ability to generalize already learned
functions or filters to new, unseen input, and is used as an estimation of the VC-
dimension of the reservoir. Generalization capability is evaluated with the same
method as kernel quality, but instead requires input streams that are similar, or
belong to the same class [39].

A reservoir in the ordered regime will naturally exhibit low values on both metrics,
while both metrics will be high in a network in the chaotic regime. Thus, in
general, reservoirs exhibiting a high kernel quality and a low generalization rank
are desirable, and the difference between the two is sometimes used as its own
metric [39]. Kernel quality, generalization, and their difference have been used to
evaluate artificial spin ice as physical reservoirs [12].

Short-Term Memory

Short-term memory capacity was introduced as a quantitative measurement of
linear memory capacity in reservoirs [10]. It is a way to examine the fading memory
present in the system, and is measured by attaching output units to the reservoir,
which each are trained to recall some time delayed version of the input sequence.
By measuring how much of the input each output unit can recover, we can estimate
the memory capacity MC by summing over all time delays. Jaeger defined this as

MC =

∞∑
k

MCk =
cov2(u(t− k), yk(t))

σ2(u(t))σ2(yk(t))
, (2.3)

where MC in general is limited by the reservoir size N , such that MC ≤ N . High
input retention is a desirable property, but an increase in memory capacity through
parameter tuning is often met with a decrease in complex information processing,
due to a universal trade-off between memory and nonlinearity [40].
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Memory-Nonlinearity Trade-off

Experimentation with a wide range of reservoirs has indicated a crucial interplay
between the memory and nonlinearity properties in reservoir operation [41]. In
fact, the interplay has been uncovered to be a universal trade-off between depth of
memory and nonlinear computation performed by a dynamical system [40].

Thus, analyzing the boundary between an ordered, static regime that provides
memory, and a chaotic, dynamic regime that provides processing, is of vital im-
portance in the design of reservoirs. Determining the required nonlinearity for a
task is not simple, and often benefits from intuition about nonlinear dynamics.
Empirically, it has been shown that the input scaling, determining the nonlinearity
of reservoir responses, and the spectral radius, scaling the importance of previous
states, are the main parameters for optimization in ESNs, illustrating the signifi-
cance of the trade-off [21].

Further formalization of the trade-off has been conducted, accompanied by a propo-
sition of a mixture reservoir combining both linear and nonlinear dynamics. Adding
a “pinch of linearity” is cited to improve performance considerably [42].

Further Metrics

A handful of other methods to assess quality and criticality of reservoirs have been
adapted, including the Lyapunov exponent [43], the Jacobian of the reservoir [44],
Fisher information [45], and a separation ratio [46].

In summary, given the vast amount of methods for evaluation, choosing a set
of suitable metrics is a surmountable task. This is especially so given that few
metrics are entirely orthogonal, and can often be found to correlate in prediction
of performance [47].

2.4.2 Benchmarks

Employing benchmarks to measure the performance of reservoirs is a means to di-
rectly capture performance on specific tasks. Myriads of benchmarks exist within
the field of time series prediction, generation, and classification. The benchmark
spectrum ranges from simple tasks, to complicated, highly dynamic and autore-
gressive time series.

Simpler tasks include the XOR problem of which is not linearly separable [48],
and n-bit temporal density and parity [49]. More complex tasks may range from
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Figure 2.2: Example output generated by a 10th-order NARMA system. The
autoregressive moving average nature of the time series is clearly visible.

recognizing isolated digits in speech [50], to predicting time series, of which the
most popular are the nonlinear autoregressive moving average, NARMA [7], and
the Mackey-Glass time delay differential equation [8]. Further datasets, such as the
Santa Fe Laser, Hénon Map, IPIX Radar, and Sunspot series datasets have also
been used [51].

NARMA - Nonlinear Autoregressive Moving Average

The class of time series provided by a nonlinear autoregressive moving average,
most often simply referred to as NARMA, is a model commonly used to bench-
mark recurrent networks [7]. Its widespread use yields baseline performances for
well established models, as well as more novel approaches [43, 52]. A 10th-order
NARMA system is depicted in Figure 2.2, showing how the output of the time
series is evolved for each time step according to Equation 2.4.

NARMA provides discrete-time temporal tasks, introducing a time-lag of n time
steps, and is given by

yt = αyt−1 + βyt−1

n∑
i=1

yt−i + γut−1ut−n + δ. (2.4)

Here, n is the order of the system, and common constant parameters are α = 0.3,
β = 0.05, γ = 1.5 and δ = 0.1. The input ut is an i.i.d. stream drawn uniformly
from the interval [0, 0.5], and the nonlinear product on the input sequence is shown
in Figure 2.3, illustrating the nonlinearity of the ut−1ut−n term in Equation 2.4.
The time series is unstable, and tasks with higher than a 10th-order time lag
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Figure 2.3: Nonlinear mapping of the product ut−1ut−n of inputs in the NARMA
time series in Equation 2.4.

introduce a saturation function to produce a bounded sequence:

yt = tanh(αyt−1 + βyt−1

n∑
i=1

yt−i + γut−1ut−n + δ). (2.5)

Predicting a NARMA time series, given an input sequence u, presents a challenge
of both memory and nonlinearity. This makes NARMA well-suited for evaluating
both the memory capacity and computational power of reservoirs with a single
metric. Reservoirs must necessarily remember input sequences of length n, and
should preferably adhere to suitable dynamics on top of this.

Evaluation of ESN performance on the NARMA10 system is a thoroughly explored
area in the field of RC. Reported NRMSE performances for traditional ESN reser-
voirs of size N = 200 lie in the range [0.20, 0.25] [43, 51, 53, 54]. For some context,
using a shift register containing the input as a reservoir will achieve a minimal
NRMSE of 0.4. To achieve NRMSE values below this threshold it is necessary to
introduce nonlinearity in the reservoir.

Mackey-Glass Equation

A common benchmark for dynamical systems is chaotic attractor learning. One
such benchmark is the Mackey-Glass delay differential equation

ẏ(t) = α
y(t− τ)

1 + y(t− τ)β
− γy(t), (2.6)
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Figure 2.4: Sample sequence from the Mackey-Glass (τ = 17) delay differential
equation.

where common constant parameters are α = 0.2, β = 10 and γ = 0.1. A chaotic
attractor appears when τ > 16.8, and in practice τ = 17 is used to generate a
mildly chaotic attractor, while τ = 30 yields strongly chaotic behavior. The time
series is most often generated with numerical methods such as the Runge-Kutta
method. Figure 2.4 shows an example Mackey-Glass sequence with τ = 17, where
the output is evolved for each time step according to Equation 2.6.

2.5 Physical Reservoir Computing

Developments in the field of RC have inevitably lead to novel and creative ap-
proaches to reservoir design. Previously considered an “exotic” technique, using
physical substrates to realize reservoirs has become a common concept, and the
number of studies has been increasing rapidly. Physical reservoir computing devi-
ates from the traditional computer architecture in which processing and memory
units are separate entities, and into the territory of unconventional computing. The
notion of physical RC thus takes part in the evolution in materio paradigm [55],
encompassing the general idea of exploiting the physical properties of materials.

2.5.1 Physical Reservoir Requirements

What types of physical properties must be considered when experimenting with
novel materials for computation? Dale et al. suggest four key factors of rele-
vance: observability, nonlinear dynamics, methods of modeling the system, and
the impact of environmental factors [2]. Tanaka et al. present four requirements
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for physical reservoirs to efficiently solve tasks: high dimensionality, nonlinearity,
fading memory, and the separation property [5].

Hence, the computational requirements of physical reservoirs are similar to those
of conventional reservoirs. Their main difference lie in their operability, as physical
reservoirs tend to be harder to interact with. Suitable input and output schemes
must exist, and may be hindered by environmental factors. Moreover, physical
reservoirs have to be realized in a real, physical space, which is further introduced
in Section 2.5.2.

In practice, physical reservoirs have been realized with a broad range of substrates:
photonic systems [35], electronic memristor circuits [56], mechanical springs [57],
and more biologically oriented reservoirs such as gene regulation networks [58], and
the cat primary visual cortex [59]. Consult [5] for a thorough review of investigated
physical substrates, their applications, and the general trends in physical RC.

2.5.2 Topology and Spatial Networks

When designing physical reservoirs, there is a chance that the choice of underlying
topology is limited by physical factors, such as the type of physical interactions
that are present in the substrate. Additionally, physical reservoirs must necessarily
be embedded in physical space. The layout of vertices and edges of such systems,
however complicated their dynamics may be, are thus restricted by space. Topology
alone proves insufficient to describe these networks, as these spatial constraints
determine freedom in structure, i.e. node position and edge cost.

The real world presents us with plenty of networks that possess spatial components,
ranging from the Internet to rail roads. Models have been developed to study the
properties of these networks, which in turn may be useful in studying reservoirs
that will have spatial constraints imposed. Enticing models include the Watts-
Strogatz model [60], with its small-world properties, and the Waxman model [61],
where nodes are connected with a probability that depends on the distance between
them. A thorough review of spatial networks is presented in [62].

However, in the context of physical reservoir computing, it may turn out to be
helpful to take a step back. Before delving for interesting spatial models, it is
important to gain insight into the performance penalties one might expect from
enforcing a spatial layout in the first place. The foundation of the ESN is the Erdos-
Renyi graph [63], a simple model for random geometric graphs in which nodes are
connected with a probability p. Imposing a metric space onto the ESN model, in
practice a bare minimum, allows us to observe the simplest spatial reservoir.
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Figure 2.5: Ring topology investigated by Rodan and Tiňo [51, 64]. Dashed lines
indicate bidirectional regular jumps of length ` = 3.

Related Work

Rodan and Tiňo discovered that simple, cyclic reservoirs, i.e. ring topologies,
perform comparably to the ESN [51]. These cyclic reservoirs were later extended
with regular jumps to consistently outperform regular ESNs [64]. The ring topology
is depicted in Figure 2.5, where dashed lines are bidirectional regular jumps of
length ` = 3. Gallicchio et al. reported similar findings in their work on DeepESN,
where structured schemes such as multiple rings lead to the best performances [65].

Dale et al. compared ring, lattice, and fully-connected reservoir topologies [66].
They argue that fully-connected ESNs exhibit the highest substrate quality, given
higher memory capacities and a better ability to produce rich nonlinear repre-
sentation of the input. The discrepancy between performance predicted by these
metrics and the benchmarks used by Rodan and Tiňo in their work on ring topolo-
gies should be noted.

Lastly, Manevitz et al. have found small world topologies to produce fault tolerant
reservoirs [67]. Errors resulting from introducing dead and noisy neurons were
remedied by choosing a connectivity scheme pertaining to a power law distribution,
illustrating superiority to uniform connectivity in terms of robustness.

Research on reservoir computing with constrained topology or physical morphology
is a relatively sparse area. There is much to be discovered about the impact of
reservoir construction with structured organization. Moreover, efforts to find useful
topologies should also yield valuable insights about why the stochastic ESN works
so well, to allow for more deterministic construction of reservoirs with desirable
properties.
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2.5.3 Artifical Spin Ice

Artificial spin ice (ASI) consists of a large amount of nanomagnets arranged in a
two-dimensional lattice, and is a prime candidate for exploiting the intrinsic dy-
namics of a physical substrate. Each magnet behaves as a binary spin, and spins
are coupled via magnetic dipole-dipole interactions. Thus, ASI bears resemblance
to previous reservoir methods, where complex dynamics emerge from simple, local
interactions between nanomagnets. An ASI reservoir may be perturbed by an ex-
ternal magnetic field to encode input patterns, and the resulting ASI magnetization
is used as output.

Recent work has illustrated the promise of ASI as interesting reservoirs through
software simulations, indicating a wide range of dynamics when perturbed by an
external magnetic field [11]. Furthermore, the development of the flatspin ASI
simulator allows fast simulations in coupled spin systems [68], enabling large scale
experiments that demonstrate excellent computing capacity in ASI [12].



Chapter 3

Methodology

3.1 ESN Parameters and Sample Sizes

In this section we present the baseline ESN used during experiments. For each
experiment described in this thesis, the default setup will be as described in this
section, unless otherwise specified. All ESNs are generated according to the archi-
tecture presented in Figure 2.1.

We considered discrete-time ESNs with N internal network nodes, a single input,
and a single output node. Win was generated as a random matrix with i.i.d.
entries in the interval [-0.5, 0.5], and was fully connected. In experiments with
default ESNs, i.e. experiments where the internal network Wres is not replaced,
the weights were generated from the same distribution as Win, but with a 10% node
connectivity. This method for instantiating Wres and Win is common practice in
RC [21].

In experiments where relevant, the reservoir weight matrix was rescaled such that
its spectral radius ρ(Wres) = 0.9. The default input scaling used was ι = 1.0. Both
parameters could be tuned to provide marginally better results in most cases, but
these values were found to give a good baseline for comparisons between models.

Wout was adapted with ridge regression, using single value decomposition for com-
putational routines. This was found to lead to the most stable and precise results.

For all experiment runs, the first 200 states of each run were discarded to provide a
washout of the initial reservoir state. Reported performances are the mean across
20 randomizations of each model representative. This sample size was found to be

19
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Figure 3.1: Evaluation of a traditional ESN of size N = 200 on the NARMA-10
benchmark. The first 40 time steps of the benchmark are shown, comparing target
output to the predicted output of the reservoir. The resulting NRMSE was 0.23.

appropriate to pinpoint definite trends in the results. Standard deviations for all
experiments are available online1.

The Python software library implementation is available online, including a Jupyter
Notebook for reproducing each experiment2.

3.2 Benchmarks and Metrics

To evaluate reservoirs, the benchmarks and metrics described in Section 2.4 were
used. Note that the our primary evaluation tool was the NARMA-10 benchmark,
using the rest as supplements where relevant.

For the NARMA-10 benchmark, We generated the time series according to Equa-
tion 2.4. The generated input was split into a training and test set, with Ltrain =
2000 and Ltest = 3000, to allow comparisons with results presented in [51].

The Mackey-Glass benchmark has been used in a range of ways, making comparison
of models harder than for NARMA. We used the method presented in [69]. We
generated a time series from Equation 2.6 using discrete approximation, squashing
the output into a range of [-1, 1] with tanh(y−1). The series was split into a training
and test set, with Ltrain = 6400 and Ltest = 2000. The task of the reservoir was
to predict input 84 time steps ahead, i.e. y(t) = u(t+ 84).

1https://github.com/thomaav/esn-spatial-constraints/blob/master/appendix.md
2https://github.com/thomaav/esn-spatial-constraints
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To evaluate performance on the benchmark, we used the normalized root mean
square error (NRMSE). The NRMSE is a commonly used error metric, providing
comparability to performances reported in previous work. Given a predicted signal
y(t) and a target signal ŷ(t)

NRMSE(y, ŷ) =

√
〈‖y(t)− ŷ(t)‖2〉
〈‖ŷ(t)− 〈ŷ(t)〉‖2〉

. (3.1)

An evaluation of a traditional ESN of size N = 200 using the NARMA-10 bench-
mark is shown in Figure 3.1. In this figure, the first 40 time steps of the benchmark
are shown, comparing the target output to the predicted output of the reservoir.
The resulting NRMSE of the benchmark was 0.23.

Kernel quality was evaluated by drawing N input streams of length 20 uniformly
from the interval [-1, 1], where N is the number of hidden nodes. The resulting
input streams were then run through the reservoir, and the rank of the resulting
N × N matrix, consisting of the reservoir states, was computed. Generalization
ability was evaluated in a similar manner, but differing in that the last four inputs
across all input streams were identical. This is a standard way of computing the
metrics [39].

Memory capacity was computed according to [70]. An input stream of length
2200 was drawn uniformly from the interval [-1, 1], and the first 200 inputs were
discarded to get rid of transients. Next, an input sequence of length 1000 was
used for training, and the remaining 1000 inputs for testing. Memory capacity was
computed according to Equation 2.3, using k = 1.4N output neurons.

3.3 Experiments

In chapter 4 we are concerned with replacing the generated Wres with one that
is generated as a random geometric graph. In chapter 5 we replace the matrix
with reservoirs in which the internal connectivity is set to be square, hexagonal
and triangular regular tilings. Beyond this, the ESN approach remains entirely the
same, unless explicitly stated otherwise.
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Chapter 4

Experiments: Random
Geometric Graphs

The first idea that springs to mind when considering spatially constrained graphs,
is of course to place the vertices in some metric space. When investigating spatial
reservoirs, it is thus only natural that we begin with the simplest spatial network
model – the random geometric graph (RGG).

To construct a reservoir based on the RGG model, we place itsN internal nodes ran-
domly in an underlying metric space [0, l)dim, giving each node a position attribute
sampled from a uniform distribution. An example distribution of the vertices is
shown in Figure 4.1a. For any given pair of nodes x, y, we consider the Euclidean
distance between them

d(x, y) = ‖x− y‖2 =

√√√√dim∑
i=1

(xi − yi)2. (4.1)

Nodes are connected only to other nodes within their neighborhood radius r, i.e.
where d < r, depicted in Figure 4.1b. However, since we are interested in the
behavior in physical materials, we set r = ∞ to allow full connectivity in all
experiments. Thus, edges are weighted according to several distance functions, 1/d,
1/d2, and 1/d3, to model how the interaction strength diminishes with distance in
many physical substrates. For example, the spins in artificial spin ice, presented
in Section 2.5.3, is subject to a magnetic field from all neighboring spins that
diminishes according to 1/d3 [11]. Lastly, a dimensionality of 3, i.e. [0, l)3, is used.

23
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(a) (b)

Figure 4.1: (a) Example vertices drawn to generate an RGG embedded in a two-
dimensional Euclidean space. The neighborhood radius r of a single node is shown.
(b) RGG instance with neighborhood radius r = 0.1.

4.1 Size of the Underlying Volume

4.1.1 Synopsis

Our first experiment is concerned with the size of the metric space in which we
embed the reservoir, the l of [0, l)3. The behavior of the ESN created will obviously
be affected by the magnitude of the weights of the network edges. A space that is
too small will result in weights that are too big, and vice versa.

4.1.2 Results and Discussion

The results of tuning the underlying volume size l is shown in Figure 4.2. Shown
are the results for the distance functions 1/d and 1/d2, respectively, where the
parameter for network creation is the sweep over l. The y-axis presents both the
resulting NRMSE on the NARMA-10 benchmark (left side), and a measurement
of the resulting spectral radius of the networks (right side).

First, we see that an underlying volume of size l = 1 is near useless. The weights
generated by the 1/d and 1/d2 distance functions are too big, as expected. The
consequence of big weights is that the spectral radius of the Wres grows too large as
well. In fact, the tanh transfer function of the internal nodes, defined by Equation
2.1, stays completely saturated throughout the entire benchmark run.

Next, we see that as the spectral radius of Wres decreases, so does the benchmark
error. It is well-known that a spectral radius that is too small will cause ordered
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or fixed-point behavior, and one that is too big may cause unbounded deviation
from initial states [44]. Hence, the valleys seen in Figure 4.2, are equivalent to
those seen in early explorations of the spectral radius property in reservoirs [43].
However, in our case, the spectral radius is implicitly scaled by stretching the size
of the underlying volume in which the graph is embedded.

(a) (b)

Figure 4.2: Spectral radius and performance of generated random geometric
graphs of size N = 100, as a function of the size of the underlying volume. Illus-
trated is node coupling using two different distance functions: 1/d (a) and 1/d2

(b). For the 1/d2 (b) distance function the minimum NRMSE value over 20 runs
is used instead of the mean, as it exhibits a higher variability, explained further in
Chapter 4.2.

Knowledge that stretching the underlying space is equivalent to scaling the spectral
radius of the reservoir is of key interest. In physical contexts, this means that
we can scale the degree of dynamical richness in the reservoir by moving nodes,
or otherwise strengthening or lessening their connectivity. This conclusion seems
obvious, but is of importance for following experiments. We can directly scale the
spectral radius Wres with confidence that we could do the same by scaling the
metric space, which in practice amounts to scaling all edge weights by a single
scalar.

Performance-wise, spatially constraining ESN reservoirs has caused an increase in
error compared to the non-constrained approach. The best reservoirs, seen at the
bottom of the valley in Figure 4.2b, achieve an NRMSE around 0.5, with a spectral
radius ρ around 0.8. This is worse than what is achieved using a shift register with
perfect memory. There is thus an indication that spatial restrictions do cause a
performance penalty, and figuring out what is causing this is a main theme of the
following sections.
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4.2 Distance Functions and Memory Capacity

4.2.1 Synopsis

Before exploring changes to improve upon our RGG model, it is reasonable to
examine the differences between the distance functions we have available, 1/d,
1/d2, and 1/d3. The increasing degree of the inverse of the distance essentially acts
to reduce the neighborhood size r. For example, with a distance function of 1/d3,
nodes that are distant will have little or no impact on each other.

Using the knowledge we gained in Section 4.1 about the equivalence of the size of
the underlying space and the resulting spectral radius of the network, we now also
directly scale the spectral radius of Wres to 0.9 by multiplying it by the appropriate
scalar.

4.2.2 Results and Discussion

(a) (b)

Figure 4.3: NRMSE on the NARMA-10 task with use of different distance func-
tions to generate connection weights. Plots shown are the mean (a) and minimum
(b) error aggregations over 20 runs per individual parameter setup. Distance func-
tions are compared to the standard echo state network.

Figure 4.3 compares the performance of the distance functions to that of default
ESNs. Plotted is NARMA-10 NRMSE as a function of reservoir size, i.e. the num-
ber of hidden nodes. The average over 20 runs, shown in Figure 4.3a, shows little
noticeable decrease in error for the distance functions as reservoir size increases.
Additionally, it is clear that there is some degree of variability in the error when
using the 1/d2 and 1/d3 functions. This notion is strengthened by Figure 4.3b,
where we see best performances for 1/d is about the same as the mean, while 1/d2

and 1/d3 show a slight decrease in error with reservoir size.
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(a) (b)

Figure 4.4: Effect of input scaling on reservoirs generated as random geomet-
ric graphs, size N = 80. There is a correlation between the short-term memory
capacity of the reservoirs (a), and error rates for the NARMA-10 task (b).

Empirically, we have found that reservoirs that get no significant performance
increase on the NARMA-10 task with an increasing reservoir size, tend to be limited
by memory capacity. The inability of the reservoirs to reach the performance of
a delay line supports this hypothesis. Figure 4.4 highlights this, presenting both
the short-term memory capacity and the NARMA-10 NRMSE of reservoirs of size
N = 80 as a function of input scaling. As we decrease the input scaling, the memory
capacity increases, and error decreases. This is expected, as it determines how
nonlinear the responses of the reservoir are, and there exists a memory-nonlinearity
trade-off, described in Section 2.4.1.

To summarize, we have found that the average performance of our distance func-
tions seem to hover around similar values. A general trend is that the RGG model
lacks sufficient memory capacity to solve the NARMA-10 task well, regardless of
the distance function used. Memory retention is improved by lowering the input
scaling. Further exploration can now be done by choosing a single distance func-
tion, as our results suggest that they suffer from problems of a similar nature.

4.3 Restoring Echo State Network Performance

4.3.1 Synopsis

Next, we will make changes to the Wres generated with the RGG model to move
its performance close to the ESN model. This may seem counter-intuitive, as we
primarily concern ourselves with physical reservoir computing. Making arbitrary
changes to the model generation is not a procedure that will necessarily translate
well to physical substrates and their restrictive nature. However, we argue that
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determining the root cause of the difference in error seen in Figure 4.3 will uncover
important properties of reservoir design. In turn, this improves our fundamental
understanding of the paradigm.

In this section, we therefore introduce signedness and directedness to the edges of
the RGG. The signedness of the reservoir is given by some percentage, e.g. 10%,
such that each edge has a corresponding chance of becoming negative. Reservoirs
are either directed or undirected, where edges in a directed reservoir have a 50%
chance of going in either direction. Note that making an edge negative is not the
same as reversing its direction, as it simply means that a node will weight the value
of its neighbor negatively.

For these experiments, we use the 1/d distance function. In Section 4.2 we found
this function to give the most stable results. Although it does not strictly produce
the best results, we found the stability to easier to work with when looking for
definitive trends in performance. Similar results were seen with 1/d2, though less
pronounced. We also found lowering the input scaling to improve memory capacity,
and experiments in this section use an input scaling of 0.1

4.3.2 Results and Discussion

(a) (b)

Figure 4.5: Introducing signed weights to RGG reservoirs. Results shown are for
undirected (a) and directed (b) reservoirs.

The impact of introducing signed, directed edges to reservoirs is shown in Figure
4.5. The shape of both surfaces indicate that an increased fraction of signed weights
(left lower axis) decreases the benchmark error in all cases, both for directed and
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undirected reservoirs, except for very small ones. Moreover, making the reservoir
directed decreases error drastically when the fraction of negative edges is 0.5, shown
by the difference between the lowest points of Figure 4.5a and Figure 4.5b. This is
particularly true for the biggest reservoirs.

Firstly, negative weights discard some of the inherent symmetry of the network. Al-
though the weight matrix is still symmetric in magnitude, it now allows for a wider
range of node behavior, especially considering that the negative half of tanh be-
comes available. The addition of directed edges makes it clear that a non-symmetric
weight matrix enables richer dynamics, as we move below the performance of a de-
lay line.

Figure 4.6: Comparing RGG reservoirs with signed and directed edges to tradi-
tional ESNs. Both RGG reservoirs have a fraction of negative edges of 0.5.

Figure 4.6 compares the performance of these reservoirs with ESNs. Directed
reservoirs with a signed weight fraction of 0.5 perform comparably to ESNs, and
scale similarly with reservoir size. Our interpretation of this result is that the
importance of flow of information in reservoirs should not be understated. It seems
that the structure of the reservoir network is crucial, and that where information
flows is as important as its magnitude.

A similar conclusion was reached in [66], where directed networks were shown to
cover a bigger behavior space than their undirected counterparts.
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4.4 Reservoir Weight Distribution

4.4.1 Synopsis

By reintroducing signed and directed edges to the RGG model, it goes back to
resembling traditional ESNs. In fact, the major difference between the RGG model
and ESNs was their distributions of internal reservoir weights. In this section we
make a short comparison between the two.

4.4.2 Results and Discussion

Figure 4.7: Weight distribution of a reservoir with both signed and directed edges.
Zero-elements have been removed, as half of the matrix entries contain zeroes. The
distribution follows the 1/d distance function, which incidentally looks similar to
the reciprocal normal distribution.

The distribution of the internal weights of RGG reservoirs with signed and directed
edges is shown in Figure 4.7. Three key points are worth mentioning: (i) the distri-
bution resembles the used distance function 1/d, (ii) the distribution is symmetric
around zero, due to signed edges, and (iii) elements of zero magnitude have been
removed, as half of Wres contain zero-valued entries due to the directedness of the
reservoir.

Distributions commonly proposed to provide ESNs with good performance include
a symmetrical uniform distribution, or a normal distribution centered around zero
[21]. We end up with a symmetric distribution resulting from the distance function
1/d, a distribution resembling the inverse Gaussian distribution. This distribution
has, to our knowledge, not been used in previous experiments.
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Finally, we mention that the dimensionality of the underlying metric space of the
RGG plays a small role in the performance of the resulting reservoirs. Changing
the dimensionality will simply shift the weight distribution slightly, causing little
change in performance.

4.5 Conclusions

The experiments in this chapter demonstrate how inherent structural limitations
may impact computational capacity in reservoirs. By employing RGG reservoirs,
we have illustrated how reservoir computing translates to a simple, spatially con-
strained topology, and have reasoned about the degradation in performance.

First, we found that the spacing between nodes in RGGs is vital. We presented
a correlation between the spacing and the spectral radius of the resulting internal
connectivity matrix of the reservoir, suggesting that scaling of the volume in which
the graph is embedded is equivalent to traditional scaling of spectral radius.

Further, we evaluated multiple distance functions to determine node coupling, find-
ing that the 1/d, 1/d2, and 1/d3 functions perform almost the same, suggesting
that they produce similar structure and weight distributions. Additionally, we dis-
covered that a major reason for low performance is low memory retention, which
can be remedied by lowering input strength.

We discovered that RGG performance becomes equivalent to that of ESNs once
we re-introduce signed and directed edges to the reservoir. We interpret this to
indicate that the information flow is a key component in reservoirs.

Moreover, we found that the resulting weight distribution of an RGG with directed
edges is different from the traditional uniform or normal distributions. We under-
stand this to imply that multiple weight distributions are suitable, given that the
resulting structure of the reservoir network is suitable.

This chapter thus serves as an introductory evaluation of spatially constrained
reservoirs. The main contribution provided is the notion that directedness, i.e.
directed information flow, is a crucial property in quality reservoirs. A deeper
investigation is conducted in the following chapter on lattice reservoirs.
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Chapter 5

Experiments: Lattices

Lattice models are common in computational physics [71]. Understanding impor-
tant models of computational physics in reservoir contexts is thus crucial to ad-
vance physical RC methodology. For example, the Ising model with dipole moments
of atomic spins [11], spin-torque oscillator arrays [72], and the Ginzburg-Landau
equation [73], describe systems that are employed on a two-dimensional lattice,
and have been used in reservoir settings. In this chapter, we therefore investigate
lattice networks as more realistic models of physical reservoirs.

We explore the properties that lattice graphs exhibit as reservoirs by structur-
ing internal nodes in this manner. Lattice graphs may be embedded in Euclidean
space to form regular tilings, of which there three in two-dimensional space: square,
hexagonal and triangular, which are all depicted in Figure 5.1. Other, more com-
plicated tiling schemes exist. Semiregular, often called uniform, tilings are created
using two or more faces. However, complicated grids are left outside the scope of
this thesis, as our primary focus is the fundamental applicability of lattice layouts,
not comparing the performance between them.

Reservoirs are created by replacing the reservoirs of ESN models with the adjacency
matrix generated for lattice models. For each experiment, Wres is then scaled to
a spectral radius of 0.9, as this is equivalent to scaling the coupling, or spacing,
between nodes in a physical system. Beyond this, our reservoir model remains the
same as that of the ESN.
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Figure 5.1: Types of lattices investigated for their quality as reservoir topologies.
Investigated tilings include square (a), hexagonal (b), and triangular (c).

5.1 Reservoir Quality of Lattices

5.1.1 Synopsis

First, we evaluate the default quality of lattice reservoirs with the NARMA-10
benchmark. Reservoirs are generated by embedding internal nodes in a metric
space, much like in Figure 5.1, and connecting neighboring pairs with an edge of
unit length. Nodes along the edges are not connected to the opposite side of the
lattice, making the lattice aperiodic. Lastly, unit weight of all edges are scaled by
the appropriate scalar to allow a spectral radius of 0.9.

5.1.2 Results and Discussion

Figure 5.2 shows how reservoir error scales with reservoir size, depicting NARMA-
10 benchmark NRMSE as a function of the amount of hidden nodes N . We see
that restricting reservoir topologies to lattice structures results in a significant
performance penalty. Additionally, little difference is seen between the three types
of tilings.

In Section 4.2, it was discovered that reservoirs modeling random geometric graphs
exhibited low memory retention. The symptoms are similar here: the lattice reser-
voirs perform worse than a delay line would, and only perform marginally better
with an increasing size. Figure 5.3 illustrates the effect of scaling the magnitude of
the input. Again, we see clearly see reservoirs favoring low input scaling values.

We interpret these results to indicate that the structure imposed by an undirected
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Figure 5.2: NARMA-10 NRMSE of square, hexagonal, and triangular regular
tilings as reservoir topologies.

lattice shifts the point of criticality described in 2.1. When input scaling is lessened
such that the required memory capacity for the benchmark task is reached, the error
diminishes rapidly, and the existing reservoir dynamics work as intended.

Curiously, the NRMSE differs only slightly between the three types of lattice. It
seems that it is the overall lattice structure that is important, not the type of tiling
implementing it. We therefore argue that the different tilings, which in practice
dictate the amount of incident edges per vertex, work mostly as minor tuning
parameters. The idea that overall structure is important is in accordance with our
findings in 4.3, concluding that how information flows in the network is vital.

Input scaling decreased the benchmark error of lattice reservoirs, but the best
performing networks of Figure 5.3, i.e. the biggest reservoirs with the lowest input
scaling, are not quite comparable to the ESN. For example, square grid reservoirs
of size 200 benchmark a mean NRMSE of around 0.35, while corresponding ESNs
average around 0.25.

Overall, it is interesting that undirected lattice reservoirs perform as well as they
do. On the other hand, the distribution of the input weights are drawn from a
uniform distribution in the interval [-0.5, 0.5], letting internal nodes see varying
representations of the input signal. As physical substrates may differ in the input
schemes they offer, the input scheme will be further investigated in the next section.

To summarize, we have in this section found undirected lattice reservoirs to provide
promising results. A key discovery of Chapter 4 is the importance of a directed
flow of information, and whether directedness also improves lattice models is the
topic of the next section.
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(a) (b) (c)

Figure 5.3: Regular tilings investigated for their quality as reservoir topologies,
here as a function of reservoir size and input scaling. Investigated topologies include
square (a), hexagonal (b), and triangular (c) regular tilings.

5.2 Lattices with Directed Edges

5.2.1 Synopsis

(a) (b)

Figure 5.4: Example square grids where 25% (a) and 75% (b) of the undirected
edges are made directed.

One of the key discoveries of Chapter 4 is that directed edges improve performance
significantly in random geometric graph reservoirs. It is of interest to repeat this
experiment with lattice reservoirs, especially since information flow is so clearly
visible in a lattice structure. We modify the generated lattice graphs generated
in previous sections of this chapter to have a fraction of directed edges. Figure
5.4 illustrates the concept for square lattices, where 25% (Figure 5.4a) and 75%
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(Figure 5.4b) of the edges have been directed. The directed reservoir edges have a
50% chance of going in either direction.

5.2.2 Results and Discussion

(a) (b) (c)

Figure 5.5: Benchmark error as a function of reservoir size and directedness. The
fraction of directed edges determines the amount of edges that are left bidirectional,
explained by Figure 5.4. Shown are results for square (a), hexagonal (b) and
triangular (c) lattices.

Figure 5.5 presents the results of introducing a fraction of directed edges to lattice
reservoirs. Most reservoirs show reduced error rates with increasing fractions of
directed edges.

A small exception is visible for very small square and hexagonal reservoirs, where
a fully directed reservoir may degrade if the edges align in an insufficient manner.
Nodes in triangular reservoirs have six incident edges, as opposed to the three and
four of square and hexagonal, thus giving a smaller chance of insufficient reservoirs
appearing. Note that this problem of generating insufficient directions disappears
with bigger reservoirs. This compelling result indicates that our method of gener-
ating directed edges guarantees good reservoirs as their sizes increase – one does
not need to “get lucky” with directions.

Convincing improvements are exhibited once reservoirs become fully directed and
sufficiently big, which is especially visible at the sudden drops at the closest points
of the surface areas. The drops are only sudden when compared to reservoirs of
a lower fraction of directed edges. We plot the cross section of the surface areas
at full directedness in Figure 5.6, showing that the error rates keep decreasing
with increased reservoir size. This is again in stark contrast to their undirected
counterparts, which in Section 5.1, and also previous in Section 4.3 only perform
marginally better as reservoir size is increased.
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Figure 5.6: Benchmark error as a function of size for directed lattice reservoirs.
All reservoirs are fully directed, and the direction of each edge is decided by an
unbiased coin toss.

Thus, twice we have found directed edges to improve reservoir performance signif-
icantly, once in random geometric graph reservoirs in Section 4.3, and now again
in lattices. Despite this, lattice reservoirs still perform slightly worse than ESNs.

In the project preceding this thesis, it was found that a global input scheme, i.e.
an input scheme where every input weight is set to 1 and then scaled, works with
ESNs given appropriate scaling [6]. This simple input scheme is relevant to physical
RC, given physical substrates in which every node is forced to see the same input.
Results from using this input scheme with square grids are shown in Figure 5.7.

It is abundantly clear that the global input scheme works well with the square
lattice. In fact, it scales even better with reservoir size than the regular ESNs used
in our experiments. Additionally, we have also included error rates for a square
grid with a sparser input scheme in which only 50% of the hidden nodes see the
input. These networks marginally improve even further upon the performance of
square lattices.

Table 5.1 shows the simplicity of the square grids used in Figure 5.7. The input
of the entire reservoir is decided by a single scalar. Furthermore, there is only a
single unique magnitude used for reservoir weights in Wres, which is determined
by the spacing of nodes. ESNs shown in Table 5.1 contain a large amount of unique
reservoir weights, but achieve a worse NRMSE on the NARMA-10 benchmark.

Simple cyclic reservoirs (SCR) use topology in a similar manner to use a determin-
istic weighting scheme [51]. Units in SCRs are organized in a cycle, with a single
unique weight magnitude. All input connections have the same absolute weight
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Figure 5.7: NRMSE of square lattice reservoirs with global, fixed input schemes
compared to standard ESNs. With the sparse input scheme only 50% of the hidden
nodes see the input.

value, but the sign is determined by means of an unbiased coin. The intention with
SCR is to remove stochasticity in reservoir generation. With square lattices a simi-
lar strategy is employed. However, we do not use a stochastic scheme of generating
signed input values, but instead generate the flow of information in this manner.
This leaves an opportunity to study the structures that are generated, allowing us
to peer into the apparent black box of the ESN, as we shall see in Section 5.4.

The time evolution of internal node activations proves to be of interest. Figure
5.8 depicts an example run, comparing the standard ESN to square grids with a
fixed, global input scheme. It is clearly visible that nodes in Figure 5.8b receive
the same input, while the activations of the ESN in 5.8a seems more sporadic due
to its uniform input distribution in the interval [-0.5, 0.5].

Note also that the activations of nodes in a square lattice reservoir are strictly
positive, as the NARMA input sequence is strictly positive. This may warrant a
change of activation function to other sigmoid functions, as half of tanh remains
unused, but this has not been investigated further.

In summary, our experimental results demonstrate the potential of designing reser-
voirs in a non-stochastic manner. By introducing directed edges to spatially con-
strained lattice reservoirs, we have stumbled upon reservoirs that perform excep-
tionally well on the NARMA-10 benchmark. These results suggest that, in a physi-
cal RC context, physical substrates will show degraded performance unless there is
a directed flow of information. Additionally, we propose directed lattice reservoirs
as a means to explore the impact of information flow further.
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Table 5.1: Simplicity of the weighting scheme of square grids. Square grid reser-
voirs contain a single unique magnitude for input and reservoir weights. Displayed
values are given as an average across 20 experiment runs (std. dev.).

Reservoir type
Hidden
nodes

Unique
input weights

Unique
reservoir weights

NARMA-10
NRMSE

Square grid 100 1 1 0.346 (0.019)
Square grid 225 1 1 0.245 (0.022)
Square grid 400 1 1 0.168 (0.009)

ESN 100 100 997 (26) 0.388 (0.019)
ESN 225 225 5098 (74) 0.282 (0.019)
ESN 400 400 16070 (113) 0.215 (0.021)

(a) (b)

Figure 5.8: Evolution of internal node activations for ESN (a) and square lattice
with global input (b). Reservoirs contain N = 144 nodes, but only a subset of 10
is shown to avoid clutter.

5.3 Nonlinear Dynamics in Square Grids

5.3.1 Synopsis

In this section we look at the potential diversity of nonlinear operations in square
lattice reservoirs. Although the NARMA-10 presents a task of nonlinear operation,
we herein conduct experiments to determine the kernel quality and generalization
capabilities of the square lattice reservoirs, and run benchmarks with the Mackey-
Glass benchmark to generate a mildly chaotic attractor (τ = 17).
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5.3.2 Results and Discussion

(a) (b)

Figure 5.9: Kernel quality and generalization capability as a function of reservoir
size for ESN (a) and square lattice reservoirs (b).

Consider Figure 5.9, comparing the kernel quality of the default ESN to square
lattice reservoirs. The parameters of the reservoirs remain the same as in Section
5.2, except a scaling of the ESN spectral radius to 0.7, as to avoid complete satura-
tion of the respective ranks. We discover that square lattice reservoirs attain lower
kernel qualities. Additionally the difference between kernel quality and generaliza-
tion is also higher for ESNs. This difference is often used as a metric of reservoir
quality, as a high kernel quality and low generalization rank is desirable.

If we examine kernel quality (KQ) and generalization rank (G) as a behavior space
KQ : G, sweeping parameter spaces will reveal the flexibility of reservoir types.
For all reservoirs, KQ < N and G < N , given reservoir size N . It is known that
the standard, fully-connected ESN may be tuned to have almost any KQ : G, while
lattice reservoirs cover a smaller area of the KQ : G behavior space, as they are
unable to achieve a high KQ [66], which is a conclusion that is partly reproduced
in Figure 5.9.

In Section 2.5.2, we noted a discrepancy between performance predicted by kernel
quality and benchmarks used by Rodan and Tiňo in their work on ring topolo-
gies. Ring topologies cover a smaller area of the KQ : G behavior space than
fully-connected ESNs. Nonetheless, cyclic reservoirs with regular jumps (CRJ)
consistently outperform ESNs across multiple benchmarks [64]. We see a similar
outcome in our experiments with square lattices, where reservoirs perform com-
parably on the benchmark, but exhibit a lower kernel quality. This strengthens
a conclusion that deterministically constructed reservoirs can perform well, given
appropriate tasks.

Figure 5.10 shows NRMSE achieved for square lattice reservoirs on the Mackey-
Glass delay differential equation with mild chaos, τ = 17. Again, see a comparable
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Figure 5.10: NRMSE as a function of reservoir size. Note that this benchmark
is the Mackey-Glass chaotic attractor with τ = 17.

performance, although in this case the ESN model scales slightly better. We would
like to stress that previous work commonly compares reservoirs up to a size of N =
200, in which case both Figure 5.7 and Figure 5.10 show ESN and square lattice
reservoirs to perform equivalently. Thus, from these benchmarks we may gather
that there is potential in lattice reservoirs as simulation models, most pressingly
as a tool for theoretical analysis rather than an ESN competitor.

5.4 Shrinking and Growing Square Grids

5.4.1 Synopsis

In Section 5.2 we asserted that the directedness of square lattice reservoirs will
allow us to peer into the “black box” character of reservoirs. Traditional reservoir
generation is driven by ad-hoc methodology, resulting in reservoirs with internals
that are difficult to interpret. Hence, constructing simpler, more deterministic
reservoirs will allow us a clearer view of where and how input will flow in the
network. Lattice reservoirs follow a straightforward connectivity scheme and are
embedded in space, making analysis easier.

In this section we attempt to gain a deeper understanding into what makes a square
lattice reservoir perform well on the NARMA-10 benchmark. First we remove nodes
from the lattice in an incremental manner, where each iteration removes the node
that results in the lowest increase in error. Then we take the opposite route, adding
nodes along the frontier of the lattice, always adding the node and directing the
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edges in the manner causing the largest decrease in error. Both shrinking and
growing of square lattice reservoirs thus follow a simplistic, exhaustive approach.

5.4.2 Results and Discussion

Shrinking Reservoirs

Figure 5.11: Impact of node removal from a 12× 12 square lattice reservoir. The
original NRMSE of the reservoir is 0.28.

We begin the experiment by creating a single 12 × 12 square lattice reservoir and
evaluating the impact of removing singular nodes in individual copies. Figure 5.11
shows the distribution of the impact the removal of a node has on a reservoir with
an original benchmark NRMSE of 0.28. Few node removals make a difference, and
the few that do only change the NRMSE marginally. This speaks to an inherent
robustness in the reservoir, as dead nodes do not degenerate performance entirely.
Interestingly, a minority of nodes provide a decrease in error upon removal, indi-
cating a noisiness that causes a hinderance.

When node removals have been exhausted, the node causing the smallest increase
in benchmark error is removed. This is then repeated until there is a single node
left in the reservoir. Figure 5.12 details the development of reservoir error for each
iteration. We also conduct the same experiment with default ESNs, comparing
both models to randomly generated ESNs of the same size.

Results show that both square lattice reservoirs and ESN reservoirs benefit from
removal of a few noisy nodes. Furthermore, almost half the reservoirs may be
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Figure 5.12: NRMSE as a function of nodes removed from the original reservoir.
Both traditional ESN and square lattice reservoirs are investigated, and compared
to randomly a randomly generated ESN of the same size.

removed in this manner before performance degrades to values below that of the
initial geometry. Clearly, numerous of the hidden nodes in the reservoirs that
were generated originally serve little purpose. Removing such nodes result in a
marginal increase in benchmark error, or even a decrease in some cases. Pruning
ESNs has been attempted before. For example, by pruning output connections as
a regularization method [74], or by using the concept of attack tolerance to remove
nodes which output weights Wout correspond to large or small values [75]. Results
that indicate optimization potential in network pruning are interesting in a physical
RC context, as the resources required to realize reservoirs naturally increases with
size.

Pruning reservoir size is relevant not only to reduce costs, it is also valuable for
theoretical analysis. Figure 5.13 depicts a snapshot of reservoir geometry at four
different points during shrinking. Performance degrades to that of a delay line when
there is around N = 20 nodes left in the reservoir, shown Figure 5.13d. This is also
exactly what is remaining: a delay line of length 11, and two cycles of length 4.
Moreover, an NRMSE of 0.29 is achieved with just N = 35 nodes in Figure 5.13c.
We see a “core” providing the required short-term memory, with nodes along this
stem for processing purposes. This core is also present in the original 144-node
network, but is now easier to spot.

We have thus illustrated the value of square lattice reservoirs as an analytical tool.
This rather simple experiment has deduced that heavy lifting to solve the NARMA-
10 benchmark is done by a core stem of memory augmented by surrounding nodes.
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(a) N = 130, NRMSE = 0.21. (b) N = 70, NRMSE = 0.27.

(c) N = 35, NRMSE = 0.29. (d) N = 20, NRMSE = 0.40.

Figure 5.13: Evaluation during incremental removal of nodes from a 12 × 12
square lattice reservoir.

A comparable analysis is harder to make for the corresponding shrunk ESN reser-
voir from Figure 5.12, as even just embedding the ESN network in a metric space
requires complicated spring models such as force-directed graph drawing.

In summary, in this section we have deviated slightly from the original goal of the
thesis relating spatial constraints to physical substrates to investigate the spatial
structures that emerge in lattice reservoirs that solve the NARMA-10 benchmark.
We suggest the analysis herein to be only the tip of the iceberg, as heuristics such
as average node degree, investigation of the cyclic structures, and adding skip edges
to square lattices to improve our understanding of the ESN black box.
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Growing Reservoirs

Growing reservoirs in the same manner as shrinking them is an enticing approach.
There is a finite amount of positions where new nodes may be inserted into the
network, and for each such position there is only a handful of ways to direct the
incident edges. By exhausting all possibilities, we may attach the node that causes
the largest decrease in benchmark error.

Figure 5.14: NRMSE as a function of hidden nodes when growing a square lattice
reservoir. The process is begun from a reservoir of size N = 74, depicted in Figure
5.15a.

Figure 5.14 shows the NRMSE development of a reservoir grown with this method.
We begin with a node of N = 74 hidden nodes, found to be the best performing
reservoir when shrinking a 12× 12 square lattice reservoir in the previous section.
We see a steady decrease in benchmark error for each node addition. Achieving
a great benchmark score is of course desirable, as the results clearly show that
building reservoirs specialized for specific tasks will outperform randomly generated
ones.

However, as previously mentioned, our intention with square lattice reservoirs is
not to provide yet another ESN competitor, but to gain insights into their inner
workings. Figure 5.15 depicts the reservoir at three different points during its
growth in Figure 5.14. Curiously, holes appear in the lattice in Figure 5.15c,
demonstrating that there are parts of the lattice where adding nodes, irrelevant of
the directions of its incident edges, will cause little performance gain.

Figure 5.15c also illustrates the apparent difficulty of analyzing networks without
good heuristics. Consider for example the difference between Figure 5.15c, and the
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much smaller Figure 5.13c. The latter provides a much clearer picture of what it
is doing during the NARMA-10 benchmark. We thus refer to the approaches sug-
gested in the summary of the previous section on shrinking reservoirs – there seems
to be tremendous potential in researching the creation of structured, deterministic
reservoirs.

(a) N = 74, NRMSE = 0.26.

(b) N = 124, NRMSE = 0.18. (c) N = 250, NRMSE = 0.15.

Figure 5.15: Evaluation during incremental addition of nodes to a square lattice
reservoir. The process starts from the reservoir in (a), resulting in a decrease in
benchmark error according to Figure 5.14.



48 CHAPTER 5. EXPERIMENTS: LATTICES

5.5 Restoring Bidirectional Edges

5.5.1 Synopsis

Among the discoveries of our previous experiments, the importance of directed
edges to create a flow of information is of major relevancy to physical RC settings.
In this section we analyze the effect of restoring bidirectional edges by following the
greedy approach in Section 5.4. A base 12×12 square lattice reservoir is generated,
and its 264 edges are incrementally made bidirectional by choosing the edge causing
the least increase in error for each iteration.

5.5.2 Results and Discussion

Figure 5.16: NRMSE as a function of the fraction of edges of a square lattice
reservoir that are changed to be undirected. A 12×12 lattice is used, starting from
264 directed edges.

Results are shown in Figure 5.16. First, there is a small dip in error for the initial
20 or so edges. When an edge goes from directed to undirected, its entry in Wout

is in practice mirrored along the diagonal axis, essentially adding an incident edge
in the opposite direction. When greedily choosing which edges to change, it is
unsurprising that there are instances where an additional edge is beneficial.

As an increasing fraction of edges made undirected, the reservoir benchmark error
rises steadily. Performance degrades drastically after about 90% of edges have
been changed. Again we see that a non-symmetric weight matrix enables richer
dynamics, here as a direct consequence of the restored symmetry.
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5.6 Conclusions

The goal of this chapter was to investigate the computational feasibility of lattice
models as reservoirs. We have investigated how the fixed geometry can cause degra-
dation in reservoir quality, and evaluated methods to deterministically construct
spatially restricted reservoirs.

Analysis of bidirectional lattice reservoirs revealed that there is little difference be-
tween square, hexagonal and triangular tilings. The marginal difference between
the different tilings again suggest that the overall structure of the reservoir deter-
mines its feasibility, as the difference between the tilings account for little more than
the number of edges incident each node. This simple, sparse lattice architecture
was shown to provide decent results overall.

When edges of the lattice were changed to be directed, reservoir quality increased
to values almost comparable to traditional ESNs. Changing the input scheme
to a fixed, global input saw an additional gain in performance, outperforming
traditional ESNs on the NARMA-10 benchmark. The importance of directedness
found in Chapter 4 thus resurfaced in lattice experiments, strengthening previous
conclusions.

Interestingly, there is a discrepancy between the reservoir quality predicted by the
kernel quality, and the resulting benchmark evaluation. We found that lattice
reservoirs in general may attain a narrower range of kernel qualities than ESNs,
but perform comparably on benchmark tasks. Equivalent conclusions have been
drawn for ring topologies previously, illustrating that deterministically constructed
reservoirs may perform well on suitable tasks.

By deterministically removing and adding nodes to lattice reservoirs, we illustrated
methodology to explore their inner workings. For example, for the NARMA-10
benchmark we found that lattice reservoirs seem work by augmenting a “core”
stem of nodes which make up the short-term memory, with augmentative nodes
around it. We reasoned that constructing reservoirs in deterministic ways may
pave the way to a deeper understanding of ESN internals.

Hence, we argue that there are three main contributions in this chapter. (i) We
found physical reservoirs with lattice structures to be feasible, but may require
imposed directedness for scalability. (ii) We presented a lattice model suitable for
theoretical analysis of ESN internals. (iii) We showed example analyses, suggesting
further methods and heuristics.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we have explored physical reservoir computing with spatial con-
straints. Our goal was to provide a better theoretical foundation for how reservoir
computing methodology translates to physical substrates. We conducted software
simulations using echo state network methodology to investigate the feasibility of
reservoirs with two different spatial restrictions: random geometric graphs and
lattices. Furthermore, we have developed lattice reservoirs that can be used for
theoretical analysis of ESN internals, accompanied with example analyses of deter-
ministic reservoir construction.

RQ1: How does the reservoir computing paradigm translate to the spatially con-
strained topology setting of a physical medium?

The difference from abstraction models such as ESNs to physical reservoirs is pri-
marily concerned with the limitations posed when interacting with an actual phys-
ical substrate. In this work we have investigated spatial limitations, and in Section
4.4 we emphasized that the weight distribution resulting from a spatially con-
strained reservoir is different from unrestricted architectures. The translation of
the RC paradigm to a spatial, physical setting is thus primarily limited by the
(possibly fixed) geometries of the underlying substrate and how its internal units
are connected. Other limitations than spatial constraints, such as noise and system
observability, were explored in preliminary work [6].

More specifically, we have shown that ESNs with imposed spatial limitations by
default show a decrease in performance compared to their abstract counterparts.
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However, both RGG and lattice reservoirs achieved improved performance once
the symmetry in the resulting internal reservoir matrix was broken by directed and
signed edges.

RQ2: How do highly regular, physical structures compare in information process-
ing capability to that of established models such as echo state networks?

Highly regular lattice structures with bidirectional edges perform worse than ESNs.
However, our investigations also demonstrated that introducing directedness to
lattice reservoirs restores the ESN performance, indicating that structures that
allow a definitive flow of information may be sufficient. We also showed that a fixed,
global input betters performance compared to a standard uniform distribution,
making lattice reservoirs scale better than traditional ESNs on the NARMA-10
benchmark. We thus observe that regular structures may perform just as well as
established models, as both previous work on ring topology as well as the work
in this thesis suggests that deterministically constructing regular reservoirs reveals
great potential.

RQ3: Can we find simple, deterministic reservoir generation methodology, relying
less on random weighting schemes?

It is previously established that ring topology models may be constructed deter-
ministically to serve as quality reservoirs [51]. In this thesis we introduced lattice
reservoir models, which are constructed by deterministically placing nodes on a two-
dimensional grid. Both ring and lattice reservoirs, however, require some stochastic
element to work well. In the case of rings the sign of the input seen by each node
is determined by an unbiased coin, while in the case of lattices it is the direction of
the edge between each node that is decided by a coin flip. We therefore argue that
there is untapped potential in creating reservoirs of deterministic, regular natures.

Finally, by removing and adding nodes to lattice reservoirs, we illustrated method-
ology for theoretical analysis of the inner workings of such networks. Firstly, we
found that a removal of a few nodes can be a convenient measure to reduce net-
work size and improve prediction performance. More importantly, we also argue
that understanding the behavior of networks when solving specific benchmarks is
a stepping stone to looking into the general black box behavior of ESNs, and that
the regular structure of lattice reservoirs is easier to observe directly than the more
stochastic and abstract structure of ESNs. Hence, the intention of lattice reservoirs
is not to provide yet another ESN competitor, but to open up for further analysis
in future work.
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6.2 Future Work

As there is always an abundance of future work to conduct, we here limit sugges-
tions to two main categories of experiments we deem the most interesting: physical
realization of reservoirs to determine if directed exchange and flow of information is
sufficient to create quality reservoirs, and deeper theoretical analysis using lattice
models to find interesting heuristics in good reservoirs.

First, as ASI has proven to be a promising substrate for reservoir computing, it
is a good candidate for study of real physical limitations [12]. In this thesis it
is suggested that directedness is a key component in good reservoirs, and how
this translates to an actual physical medium would be interesting to explore. For
example, imposing shift register structures onto ASI to allow for directed flows may
hold a potential for creating quality reservoirs.

Second, further theoretical analysis using lattice models should result in a deeper
understanding of why the traditional, stochastic ESN model works so well. By
modifying lattice models to find good heuristics such as average node degree, in-
vestigating cyclic structures, adding skip edges, and so on, we may discover what
it is that makes ESN reservoirs “tick”. Specifically, lattice reservoirs are inher-
ently embedded in space, making them easier to visualize and understand. This is
valuable when attempting to understand how specific tasks are solved by an ESN.
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