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Abstract

Algorithmic  decision-making  systems  assist,  or  sometimes  even
replace,  human  decision-makers  in  high  impact  settings  both  in  the
public  and  private  sectors.  The  systems make  decisions  that
significantly  affect  peoples'  lives,  such  as  access  to  credit,  college
admission,  employment,  medical  treatment,  or  judicial  sentencing.
Thus it is clear that ethical aspects such as the fairness of these systems
are  of  great  importance.  Unfortunately,  algorithmic  decision-making
systems  are  known  to  be  plagued  by  biases  that  can  make  their
decisions  discriminatory  or  unfair  towards  population  subgroups.  In
response to this, "fair machine learning" has emerged as a new field of
study,  with  the  overarching  goal  to  mitigate  bias  unintentionally
incorporated into algorithms. This field is contributed to by researchers
from  diverse  disciplines  such  as  law,  ethics,  philosophy,  computer
science,  statistics,  machine  learning,  and  social  sciences,  and  these
disciplines often lack common terminology, making fair ML literature
scattered  and  sometimes  confusing.  Few fair  ML papers  attempt  to
present a comprehensive overview of common types of bias that can
enter predictive ML systems. In this thesis, we fill a gap in previous
research  by  doing  just  that.  Furthermore,  we  review  literature  that
shows that approaches intended to enhance the fairness of algorithmic
decision-making systems tend to  reduce prediction  accuracy,  forcing
engineers  and decision-makers  to  make trade-offs  between accuracy
and  fairness.  We  explore  these  trade-offs,  using  multi-objective
optimization via  the genetic  algorithm NSGA-II.  Our findings  show
that  there  is  a  clear  accuracy  penalty  for  improving  fairness  via
common  bias  mitigation  tools,  but  also  that  sometimes,  very  large
increases in fairness can be achieved at a relatively low accuracy cost.
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Chapter 1

Introduction                                                          

Artificial intelligence (AI) is no longer a purely academic project. Thanks to advances
in machine learning (ML), and the availability of massive amounts of data, AI systems
now affect  our  everyday  life.  Examples  of  commonly  encountered  AI  technologies
include smart assistants in phones, spam filtering, personalized social media feeds, face
recognition logins, and product recommendations in online shopping, to name a few.
Perhaps less well known, but even more impactful to individuals and society, are the
algorithmic  decision-making  systems  (ADS)  that  assist  or  replace  human  decision-
makers in many high stakes settings. These systems are used both in the private and
public sectors. They rely on the analysis of personal data to infer correlations, based on
which they make predictions that significantly affect peoples' lives. Because the impact
of the predictions can be substantial, ethical aspects such as the fairness of algorithmic
decision-making systems are of paramount importance.

Unfortunately, there are  numerous examples that algorithmic decision-making systems
are plagued by bias, such that they make decisions that are discriminatory or unfair
towards population subgroups. Furthermore, research that we will review in this paper
shows that approaches intended to enhance the fairness of the systems tend to reduce
their  prediction  accuracy,  forcing  engineers  and  decision-makers  to  make  trade-offs
between accuracy and fairness.

In  this  thesis,  we  will  investigate  the  biases  that  cause  unfairness  in  algorithmic
decision-making  systems,  as  well  as  explore  fairness-accuracy  trade-offs  in  bias
mitigation. Section 1.1 presents some background and motivation for the thesis, section
1.2 places algorithmic fairness within the broader field of AI ethics, section 1.3 contains
our research questions, and section 1.4 lays out the thesis structure.

1



An Exploration of Discrimination and Fairness-Accuracy Trade-offs in Algorithmic Decision Making 

1.1   Background and motivation
Algorithmic decision-making systems are used in several socially impactful settings.
They  process credit applications  [1], [2], assist in bail and probation proceedings  [3],
[4], screen job candidates  [5], [6], predict locations of future crimes  [7], [8], perform
medical diagnosis based on chest X-rays [9], [10], decide who gets access to health care
[11], and evaluate immigrant applications [12], to name a few.

Using algorithms for decision making may provide several benefits. In some areas, like
screening X-ray images as part of medical diagnosis, patient outcomes may suffer due
to shortages of radiologists  [13], making algorithmic systems an attractive alternative.
Algorithms  make  quicker  and  cheaper  decisions  than  humans.  They  also  make
predictions  based  on  datasets  that  are  too  large  for  humans  to  handle  efficiently.
Provided enough training data, they can often generate equally good decisions as human
experts, e.g., demonstrate radiologist-level accuracy in diagnostic classification [9].

Furthermore,  ADS may reduce  the  arbitrariness  that  is  present  when  humans  make
decisions. It has been found, for example, that human judges sometimes judge similar
defendants  differently,  that  some  judges  are  stricter  than  others  [14],  and  that  the
decisions of human judges are affected by how hungry they are [15]. ADS will trivially
avoid all those problems, acting reliably at all times.

Human decision making can be unintentionally swayed by cognitive biases or prejudice
on the part of the decision-maker. Naively, one might assume that because automatic
systems hold no prejudices against any group, all decisions they make will be purely
objective. This assumption, though, does not to hold in real life. It has been known for
almost  25 years  that  algorithmic systems and datasets  can be biased  [16],  and later
research  has  shown that  algorithmic  decision-making  systems  have  the  potential  to
reproduce or amplify human bias, or even introduce new bias [17][18]. Bias may cause
the ADS to exhibit disparities in performance across protected subgroups, leading to
different subgroups receiving differing treatment, thereby producing discriminatory or
unfair outcomes for people with specific social or demographic traits. Table 1.1 shows
some examples of algorithmic decision-making systems with fairness issues.

2
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Area Fairness issues
Public health 
care

   A commercial algorithm from UnitedHealth Group, widely used by 
the US health care system to guide decisions about which patients 
should receive extra health care, has been shown to be racially biased. 
At a given risk score, black patients are considerably sicker than white
patients, leading to unequal access to medical care for equally sick 
black and white patients.
   The bias is thought to occur because the algorithm uses health care 
costs as a proxy for health needs. Traditionally, more money is spent 
on white patients with the same level of need, so the algorithm falsely 
determines that black patients are healthier than equally sick white 
patients [19].

Medical 
diagnosis

   A May 2020 paper has found that gender imbalances in X-ray image
datasets lead to biased ADS for medical diagnosis [20].
   Likely reasons are actual physiological differences in men and 
women, or that men and women tend to seek medical help and get 
their X-rays taken at different stages in the progression of their 
disease, so that an algorithm trained on mostly male X-ray images will
not generalize well to women.

Recidivism 
prediction

   The COMPAS system, an automated system used by some US 
courts for predicting the likelihood that a prisoner will commit a crime
if released, has been shown to output higher false positives rates for 
black persons and higher false negative rates for white persons [3]. 
   The system is not given explicit information about race, but derives 
information about race from proxies like education and ZIP code [21].

Image 
classification

   It is a well-known problem in image classification that algorithms 
perform more poorly on black persons than white persons. A notorious
example is when Google Photos labeled black people as gorillas [22].
   Part of the reason for this is that common datasets used for training 
the algorithms contain too few images of people of color.

Credit approval    One famous example is the gender bias exhibited by the Apple credit
card issued in the fall of 2019, which used an algorithm from 
Goldman Sachs to determine credit limits. The algorithm gave Apple 
co-founder Steve Wozniak a ten times higher credit limit than that of 
his wife, despite the two sharing all assets and accounts [23]. 

Table 1.1: Examples of AI Systems with Known Fairness Issues
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In response to this, "fair machine learning" has emerged as a new field of study, with the
overarching  goal  to  mitigate  bias  unintentionally  incorporated  into  algorithms.  This
field  is  contributed  to  by  researchers  from diverse  disciplines  such  as  law,  ethics,
philosophy,  computer  science,  statistics,  machine  learning,  and  social  sciences,  and
these disciplines often lack common terminology, making fair ML literature scattered
and  sometimes  confusing.  To  our  knowledge,  few  papers  attempt  to  present  a
comprehensive overview of common types of bias that can enter predictive ML systems.
In this thesis, we fill a gap in previous research by doing just that.

Developing a good understanding of bias and how it can affect outcomes of algorithmic
decisions is,  of course,  vital  for engineers so that  they can develop fairer  decision-
making systems.  But  it  is  also crucial  for  those who use  or  oversee these  systems.
Because,  while  unfair  outcomes  are  particularly  worrisome  when  the  ADS  acts
autonomously [24], research shows that even with a human in the loop, biased decisions
might slip through unnoticed. The reason for that is that most algorithms are so complex
and inscrutable that it is hard for humans to detect possible bias in their decisions [24].
Furthermore, if the human does not have a good understanding of the potential bias that
may be present in the algorithm, there is a risk of the human trusting the system too
much [25], thereby diminishing the value of human oversight.

Many sub-fields of machine learning consider algorithmic fairness, e.g., recommender
systems [26], or text mining [27], but in this thesis, we will concentrate only on fairness
in algorithmic decision-making systems. How to mitigate bias and unfairness in ADS is
a very active area of research in fair ML, and there are several approaches for this, some
of which we will describe in section 2.6. As we will see in our review of related work, it
is well established that enhancing algorithmic fairness typically comes at the cost of
reducing prediction accuracy  [28]–[35]. In other words,  there is  a trade-off between
fairness  and  accuracy.  We will  look for  state-of-the-art  methods  or  frameworks  for
evaluating those trade-offs, try to reproduce selected results, and then attempt to verify
that the methods work by applying them on new problem settings. If we are successful,
we  will  have  made  contributions  toward  helping  decision-makers  choose  the  most
appropriate levels of fairness for their particular use cases and problem settings.

4



An Exploration of Discrimination and Fairness-Accuracy Trade-offs in Algorithmic Decision Making 

1.2  Fair ML Within the Broader Field of AI Ethics
As a result of increased awareness around potential risks, harms, and disruptive effects
of AI technologies, there has been growing interest in the ethics of AI. Initiatives and
institutes have been founded to study these issues, and at least 63 guidelines for the
ethical  development,  deployment,  and  governance  of  AI  have  been  published  [36].
Ethics  in  this  context  covers  a  variety  of  questions  of  right  and  wrong,  bias  and
distortion,  power and abuse.  It investigates individual and societal  harms from  “the
misuse, abuse, poor design, or negative unintended consequences of AI systems” [17].

While some researchers work on challenges we may face if  we succeed in creating
artificial general intelligence (AGI) [37], [38], others concentrate on the potential for
harm in technologies we already do possess. AI researcher Pedro Domingos has said:
“People worry that computers will get too smart and take over the world, but the real
problem is that they’re too stupid and they’ve already taken over the world” [39]. The
statement  refers  to  the  fact  that  machine  learning  systems  make  decisions  that
significantly impact  peoples'  lives,  solely based on correlations in  data,  without any
understanding  or  true  intelligence.  Such  systems  are  susceptible  to  make  ethical
mistakes.

The challenges discussed in this thesis falls under the umbrella of fair ML, which first
and foremost deals with unfairness and bias in algorithmic decision-making. Fair ML
has been singled out by many AI ethics organizations as an area that needs immediate
attention,  and  is  an  active  research  area,  with  several  conferences  and  workshops
dedicated to it, e.g. FAT/ML, ACM FAT and FairWare.
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1.3   Goals and Research Questions
The overall goal of this thesis is to map the types of algorithmic bias that may cause
unfair outcomes for protected groups, and to explore trade-offs between accuracy and
fairness, in algorithmic decision making systems.

Towards that end, we formulate the following research questions:

Research question 1  What biases in algorithms and datasets cause unfair 
outcomes in machine learning systems?

Research question 2  What are the state-of-the-art methods or frameworks for 
investigating trade-offs between fairness and accuracy in machine learning 
classification systems?

Research question 3  Can we apply the method(s) or framework(s) identified in 
RQ2 on new problem settings, and what conclusions can we draw from that?

1.4   Thesis Structure
The thesis contains six chapters. The first provides background and motivation for our
work and presents our goals and research questions. The second chapter contains the
background  theory  that  is  necessary  in  order  to  follow the  subsequent  discussions.
Chapter  three  contains  literature  reviews  of  related  work,  as  well  as  lays  out  our
approach to bias. Chapter four explains the approach to method and experiments, and
chapter  5  contains  the  experimental  results.  Finally,  in  chapter  6,  we  summarize,
evaluate, and wrap up with conclusions, as well as provide some suggestions for future
work.

6
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Chapter 2

Background Theory                               

This section presents the theoretical background of this Master’s thesis. Our aim is for
the  reader  to  gain  the  necessary  background  knowledge  for  understanding  the
subsequent discussions. We will also define some key terms. First, section 2.1 contains a
brief overview of machine learning and algorithmic decision-making systems, and then
section  2.1.2  introduces  multi-objective  optimization,  Pareto  optimality,  and  Pareto
fronts. Section 2.1.3 presents genetic algorithms, and section 2.1.4 goes in-depth on the
topic of fairness.  Sections  2.1.5 and 2.1.6 covers bias  and bias  mitigation methods,
respectively.

2.1   Machine Learning and Algorithmic Decision-
making Systems
Computer systems can make sense of large quantities of data through machine learning,
allowing  them  to  complete  certain  tasks  quickly  and  at  great  scale,  and  to  solve
problems that would not be cost-effective - and in some cases not even feasible - to
solve by manual programming. Two examples of the latter are playing advanced games
better  than  any  human  [40],  or  detecting  skin  cancer  with  more  accuracy  than
dermatologists [41].

The  traditional  machine  learning  pipeline  consists  of  the  following  five  steps:  (1)
ingesting data, (2) preparing data, (3) feature extraction, (4) training models, and (5)
serving predictions. Figure 2.1 illustrates this pipeline. Because the traditional machine
learning pipeline does not deal with unfairness,  it  is  necessary to include additional
strategies. We will discuss that in greater detail in later chapters.

7
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Although there are many types of machine learning, the type that is most relevant to our
paper  is  supervised learning,  in  which the algorithm observes some example input-
output pairs and then learns a function that maps from input to output. Specifically, the
task of supervised learning is this: 

Given a set of  n example input-output pairs  (x1,  y1),...,(xn, yn), where the true
outputs yi are known, but the function y=f(x) that generated them is not known,
discover a function h(x) that approximates f(x)

Learning a discrete-valued function is called  classification, and learning a continuous
function is called regression. When there are only two possible values for the outcome,
it  is  called  binary  classification.  When  classifiers  are  used  for  decision  making  or
predictive analysis, we will refer to them as algorithmic decision-making systems.

The data set containing the input-output pairs used to develop h is called a training set.
After training, the algorithm's performance can be tested on a set of previously unseen
data, and this set of data is called a test set.

8
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We are mostly interested in classification problems in this paper, and the algorithms for
solving them are called classifiers. Algorithms usually used for regression can also be
modified to work for binary classification problems, by deciding on a  classification
threshold, or decision threshold, for separating positives from negatives. For instance, in
a credit approval system, predicted credit scores above the threshold can be labeled as
belonging to the positive class, and predicted credit scores below the threshold can be
labeled as belonging to the negative class.

Machine learning algorithms for classification are evaluated based on their  accuracy.
Informally, accuracy is the fraction of predictions that the algorithm got right. Formally:

Accuracy=Number of correct predictions
Total number of predictions

Outcomes of classifiers can be divided into  true positives (TP), which are outcomes
where the classifier correctly predicts the positive class, true negatives (TN), which are
outcomes where the model correctly predicts the negative class,  false positives (FP),
which are outcomes where the classifier incorrectly predicts the positive class, and false
negatives  (FN),  which  are  outcomes  where  the  classifier  incorrectly  predicts  the
negative  class.  This  allows  us  to  create  a  better  accuracy  formula  for  binary
classification:

Accuracy= TP+TN
TP+TN+FP+FN

In  many  settings,  accuracy  alone  is  not  a  very  valuable  measure  of  the  classifier’s
performance. For instance, an algorithm for detecting a rare form of cancer that usually
turns up in only one of a thousand tumors will have an accuracy of 99,9% if it simply
classifies all tumors as benign. Yet, that will be a despicable performance, leaving 100%
of all malign tumors undiagnosed.

To better evaluate the classifier’s true performance, one can look at precision and recall.
Precision  attempts  to  find  what  proportion  of  positive  identifications  was  actually
correct:

9
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Precision= TP
TP+FP

Recall attempts to find what proportion of actual positives was identified correctly:

Recall= TP
TP+FN

In our example above, with the classifier identifying all tumors as benign, the classifier
would have a recall of 0, thus showing that it has horrible performance despite its 99,9%
accuracy.

Recall is sometimes called true positive rate (TPR),  and a false positive rate (FPR) is
defined as:

FPR= FP
FP+TN

The final classifier performance measure we wish to mention is called Area under Curve
(AUC),  or  Area  Under  the  ROC  Curve.  The  ROC  curve  is  a  graph  showing  the
performance  of  a  classification  model  at  all  classification  thresholds,  plotting  the
parameters  TPR  and  FPR  on  its  axis.  AUC  measures  the  two-dimensional  area
underneath the ROC curve,  giving values from 0.0 (when the model predictions are
100% wrong), to 1.0 (when the model predictions are 100% correct).  AUC is scale-
invariant,  and  clasification-threshold  invariant.  In  some  cases  it  is  a  preferable
performance measure to the measures mentioned above.

In  the  next  section  we will  present  a  specific  classifier,  which  we shall  use  in  the
experiments that attempts to answer research question 3.

2.1.1  Support Vector Machines
A Support Vector Machine (SVM) is  a highly popular,  supervised machine learning
algorithm,  capable  of  performing  both  linear  or  nonlinear  classification,  as  well  as
regression, making them part of step (4) of the machine learning pipeline mentioned in
the previous section. Support Vector Machines belong to the class of non-parametric

10
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methods, meaning they retain training examples and potentially need to store them all.
In practice, however, they often only have to retain a small fraction of the number of
examples.  Thus  they  can  be  said  to  combine  advantages  of  non-parametric  and
parametric models, by being resistant to overfitting, but still having the flexibility to
represent complex functions. Another benefit of SVMs is that they generalize well. This
is  due  to  their  method  of  constructing  maximum  margin  separators;  decisions
boundaries with the largest possible distance to example points.

For linearly separable data, the SVM can perform hard margin classification. Figure 2.2
(a)  shows an example,  where the two classes in a  dataset  are  separated by  support
vectors  in such a way that there are no data points between the support vectors. The
support vectors are separated in the middle by the decision boundary, and when the
distance between the support vectors is maximized, the decision boundary is called an
optimal hyperplane. Hard margin classification is sensitive to outliers. This problem can
be handled by allowing margin violations, i.e. allowing data points to be on the "wrong"
side of  the support  vectors.  This  is  called soft  margin classification.  In  soft  margin
classification it is still important to strike a good balance between the margin violations
and the goal of maximizing margins, and this balance can be controlled through the C
hyperparameter,  a.k.a.  the  penalty  parameter,  a.k.a.  the  soft  margin  constant.  It
determines the cost of mis-classification, in the form of a penalty to apply to data points
that  end up on the wrong side of the decision boundary.  A smaller  C give a  wider
margin, but at the price of more margin violations, whereas a larger C will give fewer
margin violations but smaller margin. Incidentally, a smaller C will also make the SVM
less likely to overfit the data.

11
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We can adjust SVMs to work for datasets that are not linearly separable, by using a
mathematical technique called  kernel functions. Kernel functions specify the type of
decision boundary that can be learned by the classifier, and the calculations needed to
ensure  this.  Polynomial  kernels  and  radial  kernels  are  two  examples  of  non-linear
kernels. Non-linear kernels are more flexible, but comes at the cost of requiring more
computational power, which might become a problem for large datasets. Therefore, the
choice of kernel is an important decision when working with SVMs, and the choice of
kernel affects what hyperparameters that need to be tuned (in addition to C).

In our thesis we will be performing soft margin classification with a Gaussian radial
basis function (RBF) kernel, which has the following equation:

ϕ γ (x , l)=exp(−μ‖x−l‖2) ,μ>0

where x = (x1, x2),  l is the center from which the euclidian distance of x is measured,
and  γ is  the  kernel  parameter.  Along  with  C,  the  kernel  parameter  determines  the
performance  of  the  SVM model,  or  more  specifically,  the  relationship  between  the
model's bias and variance. A large γ value leads to high bias and low variance, while a

12

Figure 2.2: Support Vector Machine Concepts



An Exploration of Discrimination and Fairness-Accuracy Trade-offs in Algorithmic Decision Making 

low γ value gives low bias and high variance. C works the other way; a large C gives
low bias and high variance, and a small C gives higher bias and lower variance.

2.2  Multi-Optimization, Pareto Optimality and Pareto 
Fronts
Within  mathematics,  optimization means attempting  to  maximize  or  minimize  some
function  relative  to  some set.  Formally,  given a  possibly  nonlinear  and non-convex
continuous function f : Φ → ℝ from some set Φ to the real numbers, find an element x0

∈ Φ such that f(x0) ≥ f(x) for all x ∈ Φ (maximization) or such that f(x0) ≤ f(x) for all x
∈ Φ  (minimization).  Common  applications  include  finding  minimal  cost,  maximal
profits, minimal error, and so forth. The domain Φ of f is called the search space, while
the elements of Φ are called  feasible solutions. The function  f is called the  objective
function,  and  is  a  loss  function or  cost  function when  the  problem  at  hand  is
minimization,  and  a  utility  function or  fitness  function when  the  problem  is
maximization.  Finding  arbitrary  local  minima  or  maxima  is  usually  relatively
straightforward, but finding a global minimum or maximum can be very challenging.

When there is more than one objective function to be optimized simultaneously, the
problem is  called  multi-objective optimization (MOO).  It  is used in situations where
optimal decisions need to be taken in the presence of trade-offs between two or more
conflicting  objectives.  For  non-trivial  multi-objective  optimization  problems,  it  is
impossible to find a single solution that simultaneously optimizes each objective. The
objective functions are then said to be conflicting.

The  concept  of  optimization  is  not  relevant  only  in  mathematics;  it  is  used  in
engineering,  economics,  and many other  disciplines.  In  engineering,  an  example  of
conflicting objectives may be the minimization of the production cost of some product,
while  maximizing  its  quality.  Barring  knowledge  about  which  objective  is  more
important, decisions will need to be taken in the presence of trade-offs between the two
conflicting objectives. There will then exist a number of  Pareto optimal solutions. A
solution is Pareto optimal if none of its objectives can be improved without degrading at
least one of the other objectives.

13
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Formally:  given  a  set  of  objective  functions  fi(x),  i  [1,  ∈ k],  and  a  multi-objective
optimization problem formulated as

min(f1(x), f2(x),…,fk(x))

a solution ẋ Pareto dominates ẍ if the following two conditions hold:

1.  i  ∀ i ∈ ∈ [{1,…,k} :  fi(ẋ) ≤ fi(ẍ)

2.  ∃ j  {1,…,∈ k} :   fj(ẋ) < fj(ẍ)

In other words: a solution ẋ Pareto dominates a solution ẍ if ẋ is at least as good as ẍ for
all objectives, and ẋ is strictly better than ẍ for at least one objective.

It then follows that Pareto optimal solutions are the solutions that are not domintated by
any other solution. For this reason they are also known as nondominated solutions.

The set of all Pareto optimal solutions for a given system is called the Pareto front. All
Pareto optimal  solutions are  objectively equally good, so further  decisions will  rely
upon  the  subjective  preferences  of  a  human  decision-maker.  Figure  2.3  shows  an
example Pareto front, for a problem in which two objectives; A and B, both need to be
maximized. The dots on the Pareto front curve are the nondominated solutions, and the
dots under the curve are the dominated solutions.

The  classical  approach  for  solving  multi-objective  optimization  problems  is  to  use
methods  such  as  the  weighted  sum  method,  lexicographic  ordering  methods,  or
scalarization methods. These use various strategies to convert the problem into a single-
objective optimization problem. Some downsides of the classical approaches are that
they will only deal with one solution per run, may miss some solutions, have difficulties
dealing  with  discontinuous  or  concave  Pareto  fronts,  and  may  require  a  priori
information about preferences, ranking, or even weights of the objectives.
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A popular category of methods for MOO problems that do not have these limitations are
the bio-inspired, multi-objective  evolutionary algorithms.  Many different types exist,
but we will  look in particular at  one of the more popular variants,  called a  genetic
algorithm (GA). Genetic algorithms offer certain benefits compared to traditional MOO
approaches; the main ones for us are the ability to find several Pareto optimal solutions
per run of the algorithm, and that they do not need a priori preference information about
the objectives. The next section gives the necessary background on genetic algorithms.

2.3  Genetic Algorithms
Like we mentioned at the end of the previous section, a genetic algorithm is a subclass
of evolutionary algorithms. Evolutionary algorithms are algorithms based on Darwin’s
theory of evolution. Evolution is the change in the genetic makeup of populations over
time, and Charles Darwin suggested that  natural selection  is the primary mechanism
behind  evolution. Natural  selection  says  that  organisms  with  the  best-suited
characteristics  for  their  environment  survive  and  pass  on  their  genetic  traits  in
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Figure 2.3: Pareto front
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increasing  numbers  to  successive  generations.  In  contrast,  less  adapted  organisms
reproduce at a lower rate or are eliminated from the population. For natural selection to
occur, there must be variation within populations, and competition between organisms
for  resources.  An organisms’ ability  to  survive  and reproduce  in  its  environment  is
called its fitness, and the principle of natural selection is often branded “survival of the
fittest”.

Members of a population produce offspring through cross-breeding, thus creating a new
generation of individuals. The offspring inherits traits from their parents through genes.
Genes  are  stored  inside  chromosomes,  and  each  gene  has  a  special  place  within  a
chromosome, called its locus. 

Variation  in  the  population  stems  from the  introduction  of  new  genes  via  random
changes called mutations, and via reshuffling of existing genes. Because only the fittest
tend to survive and reproduce, it  is expected that the very fittest individuals will be
found in the latest generations.

Genetic  algorithms  are  inspired  by  the  theory  of  evolution  by  being  stochastic,
population  based  algorithms  that  rely  on  biologically  inspired  operators  such  as
mutation, crossover, and selection. Although not mathematically guaranteed to find the
optimal  solution,  they often find sufficiently  good solutions for certain optimization
problems. Briefly, the idea is to first generate an initial population of candidate solutions
to the problem at hand, and then iteratively generate new generations of solutions by
applying stochastic operators such as mutation, crossover, and selection on the previous
population. The initial population is usually seeded by randomly generated candidate
solutions.  Each candidate solution in the population is  called an individual,  and the
solutions  are  encoded  in  chromosomes,  which  contain  genes,  which  are  in  fixed
positions called loci and have a value (allele).

There  are  many  possible  representations  for  the  problem  being  solved.  The
chromosomes can be any data structure,  but the typical example is an array of bits.
Figure  2.4  shows  an  example,  while  also  illustrating  the  concepts  of  genes  and
population.
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We can split the representation of a chromosome into two parts, the genotype, and the
phenotype.  The  genotype  is  the  encoding  of  the  solution  used  by  the  evolutionary
algorithms, while the phenotype is the encoding that represents the real world solution.

In nature, the fittest individuals are more likely to reproduce, and genetic algorithms
emulate this by basing the selection probability for reproduction on a fitness function.
The fitness function is usually the objective function in the optimization problem being
solved. The fitness function outputs a single real-valued fitness score for each individual
in the population, and can be looked upon as a measure of the quality of the solution
that the individual represents.  To calculate  fitness scores,  the chromosome genotype
must generally be decoded into a phenotype that can be used to calculate these scores.

A  certain  number  of  individuals  are  randomly  selected  for  reproduction  in  each
generation,  with  a  probability  for  selection  that  increases  with  increasing  fitness
function  scores.  Individuals  may  be  selected  more  than  once,  and  even  the  worst
individuals in the population have a non-zero chance of being selected. 

The next generation is generated from those selected in the previous generation through
a  combination  of  genetic  operators:  recombination  (usually  called  crossover),  and
mutation.  Figure  2.5  visualizes  crossover,  and  figure  2.6  gives  two  examples  of
mutation operators: swap, and flip. Several other mutation operators exist, but those are
the ones we will use in this thesis. Crossover and mutation processes ensure that the
next generation population is different from the previous. Over time, the average fitness
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Figure 2.4: Population, chromosomes and genes
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of the population will usually increase by this procedure, due to the tendency to select
the fittest individuals for reproduction.

New generations are produced until  some termination criterion is met.  For instance,
when a good enough solution is found, or because a fixed number of generations is
reached, or because the fitness of the best solution has reached a plateau for a number of
generations.

Summing up, the genetic algorithms contain four overall steps: (i) generating an initial
population, (ii) calculate fitness of each individual, (iii) selection, (iv) crossover and
genetic operators, and (iv) termination.

Sometimes  genetic  algorithms use  elitism,  which is  the  practice of  copying a  small
portion of the fittest candidates, unchanged, into the next generation. Elitism can speed
up the performance of the GA significantly.

18

Figure 2.5: Crossover

For each pair of parents to be mated, a crossover point is chosen at
random, and offspring are created by letting each child get its 
genes from one of the parents until the crossover point is reached, 
and from the other parent for the rest of the genes.
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For multi-objective optimization problems, the solutions with the best fitness scores will
make up a  Pareto  front.  For  each solution in  the Pareto  front  there exists  no other
solution that is at least as good in all scores, and simultaneously better in at least one
score. The crowding distance of a solution is the average distance to its two neighboring
solutions. It can be said to be a measure of closeness in performance to other solutions.
By biasing the selection of solutions towards those with greater crowding distances, one
can ensure more diversity in solutions. Figure 2.7 shows how this works when selecting
7 out of fourteen solutions in a Pareto front.

19

Figure 2.6: Mutation operators

Flip mutation: a gene is randomly selected, and flipped.

Swap mutation: Two randomly selected genes are swapped.

Figure 2.7: Crowding selection
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Genetic algorithms are well suited to explore Pareto-dominance relationships in MOOs,
by being able to evaluate a large number of classifier parametrizations, evaluate their
performance on the objectives, and propagate non-dominated solutions.

2.4  Fairness and discrimination
Discrimination in a social sense of the word is the prejudiced treatment of people based
on  perceived  membership  in  certain  classes,  groups,  or  categories,  often  called
protected  classes.  The  attribute  that  defines  a  protected  class  is  called  a  sensitive
attribute. Gender, race, religion, disability, or age are examples of sensitive attributes.
Intentional  discrimination  explicitly  based  on sensitive  attributes  is  called  disparate
treatment [29] and is prohibited by law in most countries [42]. Sensitive attributes are
not universal; they are context and application-specific  [43]. In cases where one can
prove that a specific attribute is relevant to the outcome, it may be permissive for the
algorithm to  use that  attribute,  even though the  same attribute  might  be considered
sensitive  in  another  setting.  For  example,  governments  can  refuse  blind  people  to
become truck drivers, because being blind is relevant to the task  [44]. Similarly, car
insurance agencies are allowed to charge different prices to customers based on gender
and age, because they can demonstrate that the risk of accidents is higher for young
males than for older females.

In some cases, one may have unintended discrimination, where different groups receive
different outcomes or treatment even though their protected class membership was not
explicitly considered in the decision process. This is called disparate impact [29], and is
the type of discrimination that most frequently occurs in biased algorithms.

Fairness is a concept that deals with impartial and just treatment of people. Often it is
used  in  the  context  of  the  distribution  of  goods  or  rights.  Different  cultures  have
different notions and intuitions about what fairness is, but in most democratic societies,
it is seen as an equal distributions of life chances. That regardless of their initial position
in society, people with equal gifts should have equal opportunities.
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Unfairness, then,  is  to  limit  people’s  life  chances  based  not  on  merit  or  their
contribution to society, but instead based on sensitive attributes like gender or race, or
unrelated choices like where they live. An example of such unfairness might be to deny
someone access to a loan based solely on their gender.

For  machine  learning  purposes,  one  needs  precise  metrics  for  fairness,  and  many
different metrics have been proposed. A basic and naive idea is called fairness through
unawareness/blindness,  which  says  that  an  algorithm is  fair so  long  as  it  does  not
explicitly consider sensitive attributes in the decision process [45]. However, already in
2008,  Pedreshi  et  al.  showed  that  for  sufficiently  rich  datasets,  there  might  exist
redundant encodings,  i.e.,  highly correlated features that are proxies of the sensitive
attribute,  allowing  the  algorithm to  predict  unknown sensitive  attributes  from other
features [46]. Another fairness concept that has been studied, most notably by Dwork et
al., is called individual fairness [47], which is the idea that similar individuals should be
treated similarly. The majority of  fair ML research, though, studies  statistical fairness
[1],  [21],  [31],  [48].  These  are  closely  tied  to  the  concept  of  discrimination  [49].
Statistical  fairness  requires  the  equalization  of  a  particular  statistical  metric  across
groups.  Among the  more notable  such metrics  is  demographic parity:  the  idea that
membership in a protected class should have no correlation with the decision. Research
by Srivastava et al. indicates that this metric closely matches lay people’s perception of
fairness [49]. Unfortunately, Dwork et al. has shown that it does not ensure fairness, and
that it disallows perfect prediction in cases where the outcome actually  is correlated
with the sensitive attribute [47].

Some fairness metrics are mutually incompatible, in the sense that they cannot hold
simultaneously  [21].  This  can  be  illustrated  by  the  so-called  COMPAS  debate.
COMPAS is a probation risk assessment system used by courts in some states in the
USA,  which  was  the  subject  of  a  highly  influential  article  in  ProPublica  by  Julia
Angwin, claiming that it is racially biased  [3]. Angwin implicitly adopted  equality of
false positive rates as  a fairness criterion in her  article,  showing that  the COMPAS
system  had  different  false  positive  rates  for  white  and  black  defendants.  Among
defendants  who did  not  get  rearrested,  black  defendants  were  twice  as  likely  to  be
misclassified as high risk by the system [50]. In a rebuttal, Northpointe, the company
behind COMPAS, has shown that the system satisfies equal positive predictive values.
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Specifically, out of those classified as high risk, the proportion of rearrested people was
approximately equal between races [50]. Hence, we can argue that the system is fair or
unfair, depending on what fairness metric we use to evaluate it.

Srivastava et al. have pointed out that fairness is highly dependent on the context and
societal domain in which the algorithm is used [49]. In light of that, developers need to
be  firmly  aware  of  what  fairness  metric  they  want  their  system to  satisfy,  for  the
particular use case and context the system is intended for, and use this to guide the rest
of the development process.

We  will  now  present  some  well-known  fairness  metrics  and  their  mathematical
definitions (table 2.2).

Notations used in the table are:

• G:  protected  or  sensitive  attribute;  G=1  means  membership  in  the
protected/unprivileged group, and G=0 means membership in the non-protected/
privilaged group.

• X: all additional attributes

• Y: the actual label / classification result

• S: predicted probability for a certain classification c, P(Y=c | G, X)

• d: predicted decision for the individual;  d=1 means the individual received a
positive  classification,  and  d=0  means  the  individual  received  a  negative
classification

• E(…): expected value of...

Furthermore,  when the  wording  “both  groups”  is  used  in  the  table,  it  refers  to  the
protected group and the non-protected group.
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Metric name Definition Reference

Statistical parity a.k.a 
equal acceptance rate 
a.k.a. demographic 
parity

Requires the positive outcome to be given at the 
same rate for both groups.

P(d=1 | G=1) = P(d=1 | G=0)

Dwork et al
(2012) [47]

Statistical parity 
difference

This is the difference in the probability of 
favorable outcomes between the protected and 
non-protected groups.

SPDiff = P(d=1 | G=1) - P(d=1 | G=0)

Bellamy  et
al.  (2019)
[43] 

False negative error 
rate balance  a.k.a. 
equal opportunity

Requires the same true positive rate in both 
groups.

P(d =0|Y =1, G=1) = P(d=0|Y =1, G=0)

Hardt,
Price,
Srebro
(2016) [1]

Equal opportunity 
Difference

Difference in true positive rates between 
protected and non-protected groups.

EODiff = P(d =0|Y =1, G=1) - P(d=0|Y =1, G=0)

Equalized odds a.k.a 
disparate mistreatment

Requires the same true positive rate and the 
same false positive rate in both groups.

P(d=1 | Y=i, G=1) = P(d=1 | Y=i, G=0), i  {0, ∈
1}

Hardt,
Price,
Srebro
(2016) [1]

Balance for the 
negative class

E(S|Y=0, G=1) = E(S|Y=0,G=0) Kleinberg,
Mullainatha
n,
Raghavan
(2017) [32]

Balance for the 
positive class

E(S|Y=1, G=1) = E(S|Y=1, G=0) Kleinberg,
Mullainatha
n,
Raghavan
(2017) [32]
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Predictive parity Both groups have equal positive predictive value
(i.e. precision).

P(Y=1|d =1, G=1) = P(Y=1|d =1,G = 0)

Chouldecho
va  (2016)
[52]

Conditional use 
accuracy equality

Requires the same positive predictive value and 
the same negative predictive value in both 
groups.

(P(Y =1|d =1,G = 1)= P(Y =1|d =1,G = 0))  ∧ 
(P(Y =0|d =0,G = 1)= P(Y =0|d =0,G = 0))

Berk  et  al
(2017) [51]

False positive error rate
balance a.k.a. 
predictive equality

Both groups have equal false positive rate.

P(d =1|Y =0,G = 1)= P(d =1|Y =0,G = 0)

Chouldecho
va  (2016)
[52]

Overall accuracy 
equality

P(d = Y,G = 1)= P(d = Y,G = 0) Berk  et  al
(2017) [51]

Treatment equality Both protected and unprotected groups have an 
equal ratio of FP and FN.

Berk  et  al
(2017) [51]

Fairness through 
unawareness

No sensitive attributes are explicitly used in the 
decision process.

Kusner et al
(2017) [53]

Disparate impact factor This is the ratio in the probability of favorable 
outcomes between the protected and non-
protected groups.

DI = P(d=1|G=1) / P(d=1|G=0)

Feldman  et
al. (2015)
[29] 

Mean difference score MD = P(d=1|G=1) - P(d=1|G=0) Calders  and
Verwer
(2010)
[48]

Average odds 
difference

This is the average of difference in false positive
rates and true positive rates between protected 
and non-protected groups.

Bellamy  et
al. (2019)
[43]

Theil Index Measures whether individuals are treated in a 
similar way. (Is the only individual fairness 
metric in this table)

Speicher  et
al.  (2018)
[54]

Table 2.2: A selection of common fairness metrics
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2.5  Bias
In humans, bias is a tendency to have a preconceived or unreasoned positive or negative
opinion of someone or something, usually in a way that is prejudicial, close-minded, or
unfair. Human biases can impede fair decisions in many domains, both in the private
and public sector.

In machine learning, bias is an overloaded word. It may refer to a technical bias in the
algorithm,  like  the  algorithm’s  inductive  bias,  or  it  may  refer  to  a  statistical  bias
affecting  the  accuracy  of  the  outcome.  An  example  of  the  latter  is  an  algorithm’s
“tendency  to  consistently  learn  the  same  wrong  thing”  [55].  For  example,  if  an
algorithm for  estimating  credit  scores  consistently  gives  everyone  a  score  that  is  a
couple of points lower than their true risk, we say that it is biased. See figure 2.8 for an
example of how bias works in the context of dart-throwing.

This type of bias affects all algorithms to some degree and is not the type of bias with
which fair ML research concerns itself. However, if the algorithm systematically gives a
poorer outcome for one subgroup than for another, and true demographic differences
between the groups can not warrant this, the algorithm is unfairly biased. See figure 2.9
for a visualization. Unfair bias places privileged groups at a systematic advantage and
unprivileged groups at a systematic disadvantage [43]. This form of bias has become a
hot topic in machine learning in the last decade. Many research papers and news stories
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Figure 2.8: Bias in dart throwing
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have revealed that some algorithms – even those used in high-impact public sectors like
law enforcement  – discriminate  unfairly  against  minorities  [3][56][57].  Despite  this,
these  very same systems are  increasingly being used in  the  public  sector  [58].  The
systems are often bought from external vendors that developed them in isolation from
users and use contexts  [58], and they are often delivered without documentation that
provides information about potential pitfalls or intended use cases of the system [59].
This, of course, exacerbates the potential for harm.

So  how  can  algorithms  become  biased?  Machine  learning  algorithms  learn  from
historical instances of a decision problem by picking up statistical patterns in data, so if
that data reflects patterns of historical discrimination against some group, the algorithm
is likely to reproduce or even amplify that discrimination [60]. Another way for bias to
enter the algorithm, is if the data used to train or test it is not sufficiently representative
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Figure 2.9: Unfair bias in a credit approval algorithm. 

Left: The true outcome.

Right: outcome of an unfairly biased algorithm. The accuracy for the 
algorithm as a whole is good, and the accuracy between groups 
(circles and crosses) are equal, but the algorithm is unfairly biased, 
systematically giving higher scores for circles, and lower scores for 
crosses, resulting in two false positives for the circles, and two false 
negatives for the crosses.
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of the populations about which it is drawing inferences. Even if the algorithm's overall
accuracy  is  good,  it  might  perform  poorly  for  a  minority  group  that  was  under-
represented  in  the  data  that  the  algorithm was  trained  on  [61].  In  some cases,  the
algorithm itself may cause bias and discriminatory results [24].

A difficult problem in bias research is understanding whether differences in outcomes
measured between protected groups are due to algorithmic/data bias or simply due to
natural demographic variation  [62]. In some contexts, there may be actual differences
between groups, which the system should take into consideration. For example, in crime
recidivism, it is known that men are more likely to commit future violent crimes than
women with the same criminal history. Thus, there may be good reasons for employing
gender-specific  recidivism  models  to  avoid  women  having  their  recidivism  risk
systematically overestimated, have started using such gender-specific tools [63].

Section 3.3 will describe different types of fairness-related biases that can occur in a
machine learning context.
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2.6  Bias Mitigation and Fairness-enhancing Methods
In this section, we will discuss techniques to enhance the fairness of machine learning
methods. Many methods have been proposed since Pedreshi et al. published the first
study on fair classification back in 2008 [46]. Chiefly, we can categorize them in four
families:  (i)  pre-processing techniques,  (ii)  algorithmic modification techniques  /  in-
processing,  (iii)  postprocessing  techniques,  and  (iv)  causal  frameworks.  The  latter
methods focus on detecting and removing discrimination by leveraging causal inference
techniques. Causal approaches have become an active, and in our opinion, promising
area  of  research.  However,  causal  frameworks  usually  require  access  to  graphs
specifying  causal  relationships  between different  features,  which  can  be  difficult  to
obtain in practice. We will therefore concentrate on the three first mitigation strategies
in this thesis.

Broadly, all bias mitigation related studies first specify some fairness measures that they
wish to control, and then they propose techniques to control for said measures. Figure
2.10 shows an overview of the three main bias mitigation approaches, and then the next
three sub-sections will discuss each separately.
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Figure 2.10: Approaches to Bias Mitigation

(Adapted from Haas 2019)
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2.6.1  Pre-processing
A machine learning algorithm is "only as good as the data it works with" [64], meaning 
it can only learn patterns present in the data. If that data contains bias, the algorithm will
likely propagate the bias. Hence, it makes sense to attempt to change the characteristics 
of the input data in such a way that classification algorithms trained on this data achieve
fairness with respect to their predictions. This is precisely the idea behind pre-
processing techniques. An example is to remove existing correlations with the sensitive 
attribute, such that it becomes impossible to predict the sensitive attribute from the non-
sensitive attributes. If we can do this while ensuring that the resulting distribution is as 
close as possible to the original data distribution, we may achieve decent accuracy while
having guaranteed that any classifier trained on this data will be disparate impact-free. 
This is in essence the approach that Feldman et al. proposes [29]. Other pre-processing 
strategies include obfuscating the sensitive attributes and learning fair representations of
the original data set [65][66], or changing the labels of some objects in the dataset in 
order to remove discrimination from the input data [67].

The main strength of the pre-processing approach is that the modified dataset can be
used to train any algorithm afterwards.

We wish to mention briefly three specific approaches that we will make use of in our
experiments:

Reweighing

The Reweighing method by Kamiran and Calders [67] attempts to de-bias the dataset by
generating different weights for the training examples in each group-label combination.

Optimized Pre-processing

The  Optimized  Pre-processing  method  by  [66] Calmon  et  al.  learns  a  probabilistic
transformation  that  edits  the  features  and  labels  in  the  dataset  with  group fairness,
individual distortion, and data fidelity constraints and objectives [43].
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Disparate Impact Remover

The Disparate Impact Remover by Feldman et al.  [29] edits feature values to increase
group fairness while preserving rank-ordering within groups.

2.6.2  Algorithmic modification techniques / "in-processing"
This  strategy consists  of  integrating  the  fairness  constraints  directly  into  a  learning
algorithm,  by  modifying  the  training  procedure  of  the  classifier,  to  ensure  that  the
outputted  model  is  fair.  Numerous  approaches  exist.  Zhang  et  al.  apply  adversarial
learning to create unbiased models [68], Calders and Verwer propose embedding a non-
discriminatory constraint into a decision tree classifier by changing its splitting criterion
and pruning strategy  [48], Kamishima proposes a regularization approach  [69], while
Celis et al. present a meta-algorithm with provable guarantees that can handle a number
of fairness constraints and achieve near-optimal fairness in several datasets [70].

2.6.3  Post-processing
Post-processing  techniques  modify  the  outcome  of  an  already  trained  model  in  an
attempt to ensure fairness. This approach usually involves learning different decision
thresholds  for  a  given  score  function  in  order  to  remove  disparate  mistreatment  or
impact, or variants of re-labeling classifier predictions for individual instances in such a
way that fairness is enhanced, like Kamiran et al. Pleiss et al., and Hardt et al. represent
examples of [1], [71], [72].

A downside  of  most  post-processing  techniques  is  that  they  require  access  to  the
sensitive attribute at the decision time, an option that is frequently not available, due to
disparate treatment laws.
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Chapter 3

Related Work                                          

Section 3.1 review some of the work done on fairness-related bias and discrimination.
We review key papers, and then in chapter 3.2, present a taxonomy of bias that we have
developed based on the literature review in section 3.1. Collectively, chapters 3.1 and
3.2  answer  research  question  1  (see  section  1.3).  Section  3.3  reviews  the  related
literature on the topic of trade-offs between fairness and accuracy, and in the process,
will answer research question 2 (see section 1.3).

3.1  A Review of Fairness-Related Bias in Machine 
Learning Literature
Our research question 1 (see section 1.3) asked what biases in algorithms and datasets
cause unfair outcomes in machine learning systems. This section, along with section
3.2, will answer that question.

Much research has investigated the concept of bias in machine learning to understand,
detect, and mitigate unfairness in algorithmic systems. However, fair ML literature is
currently somewhat chaotic. Terminology is not aligned – sometimes even conflicting –
and many terms and concepts lack clear or agreed-upon definitions. Historically, ML
literature contains  novel  names for  concepts  that  are  already known under  different
names in statistics or other fields. For example, a feature, attribute, variable, covariate,
predictor, and input all refer to the same thing. This tradition of coming up with new
names for concepts instead of using established ones continues in fair ML literature, and
occasionally those new terms conflict with other uses of the same term. As an example,
Suresh and Guttag use  “representation bias” to describe when “certain parts  of the
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input  space  are  underrepresented”  [73],  a  concept  that  is  already  known  as
undercoverage bias in statistics. Another paper uses the same term (representation bias)
to mean bias in the machine learning representation, where representation in this context
may be a bag-of-words, or a deep recurrent neural network [74]. Most papers, though,
simply talk about bias in very general terms like “training data bias”, or mention only
context-specific bias applicable to limited domains, like image dataset  [75], or social
data  [76].  This  makes fair  ML literature somewhat  confusing to  read,  and makes it
harder for practitioners to get a good grasp on the problem of unintended bias in ML.

As pointed out by  Suresh and Guttag,  many bias discussions in research papers are
either  too  broad  to  be  useful,  or  lack  the  shared  terminology  necessary  to  be
understandable outside of  specialty  fields  [73].  They began an important  process of
creating a comprehensive taxonomy that ML system developers can use in their work.
We continue that process in this thesis (see section 3.2), hoping to bring greater clarity
to the topic of bias in algorithmic decision systems. A handful of papers have presented
collections and taxonomies of bias types, or mentioned examples of common bias types.
Our thesis sums these up in a more comprehensive way than has been done before, and
unify them under more commonly used names than what is sometimes used in various
fair ML papers.
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Friedman and Nissenbaum created the earliest taxonomy of bias in computer systems
that we are aware of, sorting bias under three top-level categories: pre-existing bias,
technical  bias,  and  emergent  bias  [16].  A  2018  position  paper  by  Dobbe  et  al.
[77] expands on their  work, with a particular focus on technical and emergent bias,
positing  that  emergent  bias  can  be  understood  by  studying  feedback  mechanisms
between algorithms and the environment upon which they act. We regard both these
works as a foundation on which to build our understanding. Still, they do not go into
enough  detail  that  machine  learning  professionals  can  look  to  them  for  practical
guidance for how to avoid biases in ML systems. 

Baeza-Yates presents a taxonomy of 6 bias types that are specific to internet/web data
[78],  and  Olteanu  et  al.  present  a  different  but  related  taxonomy,  intended  for
understanding bias as it relates to  social data, which include data coming from social
media platforms like Facebook, as well as user-driven websites like Quora or Wikipedia
[76]. Both works are lacking in generality, due to their focus on internet/web data and
social data, respectively, but we draw elements from both works in this paper.

We also take into consideration work by Toralba and Efros presenting some bias types
specific to image datasets  [75], a paper by Rajkomar presenting biases in ML in the
context of medicine [25], and a paper by Gupta et al. which also has a useful listing of
some relevant bias types [79].

Suresh and Guttag describe five sources of bias in ML, while also explaining how these
biases can lead to societal harms [73]. Their work subsumes the taxonomies and related
results of Danks and London [24], Silva and Kenney [80], Calders and Žliobaitė [81],
and Friedler et al. [82].

Finally, a 2019 survey by Mehrabi et al. [83] lists all bias types mentioned in [73], [76],
[78], plus some from  [84], along with short explanations of each. They further argue
that the attempts in previous works to group bias types together is hard, due to feedback
mechanisms,  and  attempt  to  model  a  categorization  of  bias  definitions  that  take
feedback loops into account.

In the next section, we will tie the available literature together and propose our approach
to bias. 
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3.2  Our Approach to Bias
This  section presents  our  approach to  bias,  which we have developed based on the
literature survey in the previous section. More specifically, it lays out where in the ML
system development cycle that biases can enter the process, what the reasons are, and
what effects such biases can cause. We have never seen a presentation of this scope in
the literature previously. 

Table 3.1 gives examples of some simple bias issues.  We refer to them as "simple"
because, unlike in these examples, there are often not just one, but several intertwined
sources of bias involved when the outcome of an algorithm is unfair.

Bias type Example Reason

Under-coverage bias

Darker-skinned females are 
misclassified by facial analysis 
algorithms with error rates up to 
34.7%, while the maximum error
rate for lighter-skinned males is 
0.8% [85].

Under-representation of 
dark-skinned females in 
datasets. 

Measurement bias

Same type of example as above 
(darker-skinned individuals are 
often misclassified by facial 
regcognition software), but 
different reason

Color balance settings and 
the dynamic range of 
cameras make it harder to 
capture high quality photos 
of people with dark skin 
than of people with light 
skin [86][61].

Label bias

The COMPAS crime recidivism 
tool has been shown to be biased
against blacks in certain respects
[3].

Crime recidivism prediction
tools use future arrests as a 
proxy for future crime.
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Historical bias / stale
data

A Google Images search for 
“C.E.O.” produced 11 percent 
women at a time when 27 
percent of United States chief 
executives were women [5]. 

Historically, a lot less than 
27% of CEOs were women, 
so if the search algorithm 
operated on historical data, 
it did not reflect current 
reality.

Aggregation bias

The COMPAS recidivism 
prediction tool has been shown 
to misclassify women as higher 
risk for violent crimes than they 
really are [63].

There are true differences 
between the genders in the 
sense that men are more 
likely to commit future 
violent crimes than women 
with the same criminal 
history [63], and the tool 
does not consider that.

Table 3.1: Some simple bias examples

3.2.1  Biases in the Model
Data preparation bias.  As part of the machine learning pipeline, we need to decide
what sets of data features to collect and use, and how to prepare them for use. A paper
by Chouldechova and G’Sell shows that the choice of what features to use in the model
can lead to subgroup differences in fairness [87].

Aggregation bias. Aggregation bias can occur  when the underlying groups that the
algorithm makes predictions on are in fact different, but the same model is used for all
of them. In that way, the model’s predictions may be inaccurate for all groups. Or if
there is a majority group in the training data, the model will fit to it, and be inaccurate
for other groups. In either case, it will yield unfair outcomes between groups [73].

As an example, in crime recidivism, it is known that men are more likely to commit
future violent crimes than women with the same criminal history [63]. Thus, if we train
a model on a sample consisting of men and women, the model will yield higher false
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positives for women than for men, even if they are equally represented in the sample.
Similarly, in medicine, it is believed that levels of HbA1c, which doctors often use to
diagnose diabetes, differ across races and genders [73].

Teams that develop predictive algorithms should work closely with domain experts to
identify issues like this. And like we already mentioned in chapter 2.5, there may be
good reasons for employing gender- or race-specific models, in order to avoid problems
related to aggregation bias.

3.2.2  Biases in Data Collection or in the Training Data
Historical  bias  /  stale  data  /  temporal  bias.  If  sampling  or  label  distribution  has
changed over time, there may be a bias present in (old) data simply because times have
changed [73], [79]. Example: In many countries, there are now more women than men
going to medical school [88][89]. An old image dataset might contain mostly pictures of
male doctors, making algorithms trained on it biased.

Label bias.  Label bias can occur when we have unobservable /  partially observable
labels, such that one instead has to rely on proxies or labels decided by humans. We
may regard it as a measurement error in the output y. We may also characterize it as the
bias that occurs when the observed binary class labels on the training and testing set are
influenced  by  sensitive  attributes  [90].  Label  bias  may  be  the  hardest  obstacle  to
overcome for fair machine learning [63]. It can occur in the following situations:

   1) The training label is a proxy for the true label/output

In crime recidivism, the true label “did / did not commit a crime” is unknown, so crime
recidivism algorithms have to rely on proxies like arrest records or convictions. In cities
like Oakland, US, the police have historically concentrated more of their efforts in black
neighborhoods than in white neighborhoods. Police tend to arrest more people in the
areas they patrol than the areas they do not patrol, so in Oakland, drug-related arrest
rates are 200 times higher for blacks than for whites, even though actual drug crimes are
more evenly distributed between the groups  [91]. Thus, an algorithm trained on that
data will become biased against non-whites [77].
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   2) The training label is the actual outcome of a historical case

If the human who made the decisions contained in the training data was prejudiced or
biased against some protected group, there may be a systematic bias in the training data,
such that  the algorithm is  trained to  become biased against  this  group too  [77].  An
example would be if  a  bank has been systematically  and unfairly  rejecting loans to
people who should have been approved [69], or if an employer systematically has been
hiring men instead of equally qualified female applicants.

   3) Incorrect labeling due to prominence labeling bias or human ignorance

A labeler is more likely to apply an incorrect label to classes he or she is less familiar
with  or  has  less  knowledge about.  This  typically  affects  less  prominent  classes.  An
example would be to label an image of a porpoise as a dolphin [79]. This points to the
importance of involving domain experts in the data preparation process, especially in
high-stakes domains.

   4)  Incorrect  or  inaccurate  labeling  due  to  cognitive  or  social  biases,  or  social
pressure

Biased labeling can occur if the labeler feels social pressure to label a certain way, i.e.,
when  reporting  on  people’s  weight,  or  when  labeling  whether  or  not  something  is
offensive [79]. A similar issue occurs when someone who wants to rate an item a certain
way changes his mind because many others have rated it differently (social bias) [83],
or because an authority rated it differently (authority bias). An example of a cognitive
bias leading to biased labeling is to let irrelevant priors affect labeling, for example,
labeling someone as a good person because they are handsome (the halo effect) [79].

Under-coverage bias. When a protected group is not sufficiently represented in the data
for the algorithm to learn the correct statistical patterns, this is called  under-coverage
bias. Some sources also call it  under-representation bias  [92], or  minority bias [25].
When the under-coverage is specifically in the training data, Suresh and Guttag calls it
“representation bias”  [73], and then they call it  “evaluation bias” when the under-
coverage is in the evaluation/test/benchmark data [73]. However, we feel that this is two
sides of the same coin, and group it all under the umbrella of under-coverage.
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There are  several  ways that  under-coverage might  occur.  If  the data  points that  the
algorithm is  trained,  evaluated,  or  tested  on is  not  randomly selected,  this  is  called
sample selection bias,  or sometimes just  selection bias.  An example of this is if you
have credit data from a bank that has been declining credit to a minority group without
assessing their applications. Then that minority group will be under-represented in the
sample [93]. A sub-category of sample selection bias is called selective labels bias. The
prototypical example comes from the domain of judicial bail decisions. An algorithm is
to be trained to make decisions about whether or not an arrested individual is likely to
show up for court if he is released on bail. However, the only samples we can train the
algorithm on are those individuals that a human judge historically decided to release.
Those who were put in jail never got the chance to show up for court or not, so they are
not included in our training data [94]. Self-selection bias occurs if your sample selection
is based on people choosing whether or not to be a part of the sample [83], for example,
by answering or not answering a survey you sent out, or by calling in after having heard
a radio show. The latter  case is also referred to as  voluntary response bias,  and not
answering a survey is sometimes called nonresponse bias.

Even when individuals are sampled randomly and uniformly from the population, we,
by definition,  have fewer data points about minorities,  leading to what is  known as
sample size disparity.  Machine learning becomes more accurate when there is more
data, so the algorithm may then work less well for members of the minority group [61].

In order to avoid under-coverage bias, developers should cooperate with domain experts
to assess the fit between the collected data and the underlying population to be modeled
[17].

Measurement bias.  Once you have a  sample of subjects,  you need to measure the
features/attributes/variables  you  are  interested  in.  Measurement  bias  occurs  when
information  collected  for  use  as  a  feature/variable  is  inaccurate.  This  can  lead  to
inaccurate  outcomes.  However,  in  our  context,  we  are  interested  in  unfair/biased
outcomes,  not  inaccurate  outcomes  per  se.  If  there  is  a  greater  proportion  of
measurement error in the features of one protected group than for another group, this
can lead to unfair outcomes across those groups [50].
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To illustrate the phenomenon, we use an example laid out by Mitchell et al.: “accessing
drug  treatment  (V)  is  used  to  predict  child  maltreatment  (Y).  If  V is  measured  as
accessing public treatment,  its  measurement  will  differ  between poorer families and
wealthier families, who may instead access private (i.e. unobserved) treatment” [50].

Another  example  involves  situations  where  a  feature  is  an  image.  Images  can  not
represent  the  world  fully,  they  are  limited  by  the  technology  in  the  camera,  and
limitations  in  this  technology make cameras less  adept  at  capturing details  in  dark-
skinned  individuals  than  in  light-skinned  individuals.  This  represents  a  form  of
measurement bias [61].

A special case of measurement bias is what Rajkomar et al. refers to as informativeness
bias:  “Features may be less informative to render a prediction in a protected group.
Example: identifying melanoma from an image of a patient with dark skin may be more
difficult.” [25]

3.2.3  Biases in Interaction with Humans Who Use the System
Automation bias. When human decision-makers do not understand what potential bias
may be present in the algorithmic decision-making system, they run the risk of trusting
the system too much, inappropriately acting on inaccurate predictions  [25]. This is a
similar phenomenon as  decision-automation bias / technological halo effect, which is
the tendency of users of automated decision-support systems to become “hampered in
their critical judgment as a result of their faith in the perceived objectivity, neutrality,
certainty, or superiority of the AI system” [17].

Feedback loops. Feedback loops occur when decisions from the algorithm affect the
data that is collected for future iterations of the training process [18]. The most common
example involves predictive policing: If the system makes a biased recommendation
that the police direct their resources towards a particular area, and the human decision-
maker  follow the  recommendation  even  if  it  is  incorrect  to  do  so,  the  police  will
subsequently make more arrests in that area, simply because they are more likely to
make many arrests in heavily policed areas. These new arrests are fed back into the
system the next time it is trained, reinforcing its belief in the first prediction [91].
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3.2.4  Biases in Interaction With the Subjects of the 
Algorithmic Decisions
Agency bias. Proving that an algorithm treats some group unfairly is hard, and certain
minority groups may lack the education and resources to detect biases against them, or
lack the influence to enforce corrections if biases are detected [25]. In that way, the bias
is allowed to continue.

3.3  Methods for Evaluating Trade-offs Between 
Fairness and Accuracy
For  at  least  a  decade,  it  has  been  known  that  fairness-enhancing  methods  for  ML
classification  are  subject  to  a  fairness/performance  trade-off.  To  our  knowledge,
Kamiran,  Calders,  and  Pechenizkiy  [28] were  the  first  to  describe  how  achieving
fairness comes at the cost of lowering the prediction accuracy for certain subgroups, and
their results have been further cemented by later works [29]–[34], [95]. 

Zliobaite [96] studies the problem of making a binary classifier as accurate as possible
under fairness constraints, in particular demographic parity. The author suggests that we
should measure discrimination as the difference in classifier acceptance rates between
the non-protected group and the protected group. He shows that the acceptance rate is
directly  dependent  on the choice  of  the threshold  value  for  the classifier.  Changing
acceptance  rates  leads  to  changes  in  baseline  accuracy  and  baseline  discrimination.
Therefore, he argues that when evaluating the fairness of classifiers, one should take
into account acceptance rates.   Another interesting idea that the investigation in this
paper suggests is that it might be beneficial to use the sensitive attributes during the
training process, to quantify which portion of observed inequalities are justifiable, and
which  should  be  eliminated.  Even  though  Zliobaite  provides  some  methodological
recommendations for comparison of fair classifiers and brief empirical analysis of trade-
offs between accuracy and demographic parity, he does not attempt to generalize results
beyond demographic parity, and does not quantify the relation between accuracy and
fairness.
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To our  knowledge,  Corbett-Davies  et  al.  were  the  first  to  theoretically  quantify  the
trade-offs between fairness and classifier performance, in an influential 2018 paper [31].
Their  research investigates  the cost  of  fairness  from the point  of view of  trade-offs
between  fairness  and  public  safety  in  the  domain  of  bail  decisions.  The  particular
classifier they study is the COMPAS algorithm used in many US states to help judges
decide whether defendants should be detained or released while awaiting trial.  Even
though COMPAS does not explicitly  use race as an input,  it  has been shown to be
racially biased, by systematically classifying black defendants as higher risk than they
are  [3].  The  authors  reformulate  algorithmic  fairness  as  a  constrained  optimization
problem, where the objective is to maximize public safety while satisfying the following
formal fairness constraints: statistical parity, conditional statistical parity, and predictive
equality.  Public  safety  in  this  context  relates  to  the  risk  that  a  released  defendant
commits a violent crime. It is particularly the last of those three fairness metrics that
COMPAS has been criticized for violating: the algorithm outputs higher false positives
for blacks than for whites. In the paper the authors show that for the fairness metrics
mentioned above, optimal classification requires applying separate thresholds for each
protected group. These results suggest that an optimal trade-off between fairness and
discrimination requires training a classifier with the objective of maximizing accuracy
first, then set the separate decision thresholds in a post-processing step. However, in
order to set different thresholds for different protected groups in a post-processing step,
you need access to the sensitive attributes at decision time, which is often impossible
due to disparate treatment laws or privacy concerns.  Therefore,  we argue that while
interesting,  the  Corbett-Davies  approach  is  probably  not  the  best  route  forward  in
practical applications.

Menon and Williamson [34] derive similar results as Corbett-Davies et al. for traditional
classification accuracy1, and show that constraint-based mechanisms that do not use the
protected  attribute  will  have  lower  accuracy  than  one  achieved  by setting  different
thresholds.  More  specifically,  they  study  the  problem  of  learning  with  a  fairness
constraint  independent  of  the  choice  of  algorithm,  aiming  to  find  what  is  the  best

1 Corbett-Davies et al. measure classifier performance by an objective they refer to as «immediate 
utility», formulated as a combination of the utility of a classifier and the cost of detaining individuals,
but Corbett-Davies et al. states that this objective can be swapped with classification accuracy with 
the conclusions still standing.
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accuracy that can be expected for a given level of fairness, and what is the nature of an
optimal  fairness-aware  classifier?  They  use  Disparate  Impact  factor  and  Mean
Difference score as the fairness metrics for their analysis. Their results indicate that for
cost-sensitive  approximate  fairness  measures,  the  Bayes-optimal  classifier  is  an
instance-dependent thresholding of the class-probability function. Finding the Bayes-
optimal fairness-aware classifier using these methods requires access to a theoretical
population distribution, which in real-world settings might not be possible to achieve.
And even though the  paper  provide  a  practical  means of  approximating the Bayes-
optimal classifier, we still run into another problem: just as with the Corbett-Davies et
al.  paper,  the  Menon  and  Williamson  results  too  relies  on  access  to  the  sensitive
attribute at decision time, which as we have described earlier may put us in conflict with
disparate treatment laws. This places this research in the same category as the Corbett-
Davies  et  al.  paper  when  it  comes  to  practical  applicability.  They  derive  several
interesting  theoretical  results,  for  instance,  in  showing  that  the  trade-off  between
fairness  and  accuracy  depends  on  the  similarity  between  the  target  and  sensitive
features,  and  in  quantifying  the  degradation  in  performance  by  a  measure  of  this
alignment. However, just as with the previously mentioned papers, the major relevance
to our research is in establishing that there is indeed a trade-off between accuracy and
fairness. We shall not be making use of their results in our experiments.

Wick et al. [90] is a more recent work, and they consider two types of bias that lead to
unfairness in machine learning: label bias and selection bias. To evaluate fairness, they
look at the group fairness metric demographic parity, but the authors explain that their
findings should be transferable to other notions of fairness. Their main finding is that
when controlling for label and selection bias, the conflict between fairness and accuracy
often disappears. This should not be surprising to anyone, as it is well known that the
unfairness  in  ML models  is  often  caused  by  data  bias,  as  opposed  to  bias  in  the
algorithm itself.  Another  interesting,  and problematic,  issue  they  raise  is  that  many
popular fairness assessments, such as equal odds and equal opportunity, involve error
rates as measured against labeled data. As if the labeled data represents the ground truth,
which of course, it might not do at all. The authors show that when measured against
unbiased data, improving the fairness of classifiers may even increase accuracy as well,
which makes sense if the protected group and non-protected group are, in fact, equal. If
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they are not, then the classifier should not be expected to produce equal outcomes for
the groups. (Unless we want the classifier to create affirmative action, but that is another
discussion entirely;  a  political  one).  The authors  address  the problem of not  having
access to perfect ground truth datasets, but mention that this problem can be partially
overcome  by  data  simulation.  The  downside  of  that  method  is  that  the  artificially
constructed dataset cannot quality controlled in a reliable way. Overall, the Wick et al.
results  add a piece to the AI fairness puzzle,  by confirming what most practitioners
already thought they knew, but there are no surprising findings here.

The reviewed papers, especially the Menon and Williamson [34] and Corbett-Davies et
al.  [31] papers, allow us to conclude that optimal classifiers under fairness constraints
require  separate  thresholds  for  separate  groups,  and  that  applying  such  thresholds
reduces classification accuracy. Wick et al. [90] show that this reduction does not have
to occur when there is no underlying differences between the protected group and non-
protected group with regards to ground truth outcome. In such cases,  increasing the
fairness of a classifier may also increase its accuracy.

All the papers reviewed have discussed methods for removing unfairness either while
using static datasets, or when the discrimination comes from label bias or selection bias.
It is well known, however, that unfair outcomes may result also from other types of
biases, for instance measurement bias, other forms of under-coverage bias, and so forth.
(See chapter 3.2 for a comprehensive overview of bias types). The best course of action
in many cases is often to gather more or better data, which in theory might make the
classifier fair without modifications, and hence without sacrificing accuracy. Sadly, this
is often impossible in practice, which means that even in cases where the bias stems
from non-representative data, or other sources of bias outside the algorithm, we still
need  methods  for  evaluating  the  fairness/accuracy  trade-offs  of  different  fairness-
enhancing approaches.

This leads us to the next paper in our review, “The Price of Fairness – A Framework to
Explore  Trade-Offs  in  Algorithmic  Fairness”  by  Christian  Haas  [35].  This  paper  is
critical to our work, as our experiments build on Haas' suggestions for future research.
Haas sets out to explore the relationship between fairness and performance in classifiers
as a multi-objective optimization problem, by comparing Pareto fronts from different
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algorithms and bias mitigation approaches against each other. As we have seen in the
other papers we have reviewed, fairness metrics may conflict with accuracy in the sense
that increasing the fairness for a subgroup often leads to a decrease in overall accuracy
for the classifier. Haas fills a gap in previous research by studying how to find a good
balance between accuracy and the desired fairness metric. He proposes a generalized
framework that can be adapted to different objectives, algorithms, and datasets.  The
framework consists of five separate stages and is depicted in figure 4.2. The first three
stages  involve  selecting  what  dataset  to  work  with,  decide  what  the  protected
attribute(s) in the dataset will be (e.g. race, gender), define what metrics and objectives
to  consider,  and  select  what  classifier  to  use,  along  with  any  pre-processing,  in-
processing,  or  post-processing  schemes  to  include.  The  final  two  steps  involve
calculating the Pareto front for each classifier and fairness approach, and then use the
calculated trade-offs to determine the best level of fairness for the given classifier and
approach.

The Haas framework uses Pareto-dominance sorting through the NSGA-II algorithm.
By  comparing  multiple  Pareto  fronts  generated  by  using  different  algorithms  and
fairness techniques, Haas is able to systematically analyze trade-offs between fairness
and  accuracy  objectives.  He  demonstrates  this  in  a  case  study,  in  which  he  uses
classifiers with and without fairness enhancing schemes on the German credit dataset
[97], with age as the sensitive attribute. SVM without fairness-enhancing techniques
functions as the baseline.  The classifier  is trained with the GA approach, creating a
Pareto front  where the objectives  are  AUC and the fairness metric  statistical  parity,
respectively. Against this Pareto front, he compares Pareto fronts made by training SVM
after  pre-processing  by  Reweighing,  and  by  first  training  the  SVM and  then  post-
processing with the Reject Option Classifier (ROC). The fourth and final Pareto front is
made  by  using  an  alternative  classifier,  the  Meta-fair  classifier,  which  is  an  in-
processing technique to increase fairness. He also runs the same experiment one more
time, changing the fairness metric from AUC to the individual fairness metric Theil
index.  By visually  inspecting  the  resulting  Pareto  fronts,  and calculating  the  Pareto
fronts' hypervolumes, he can compare strategies analytically. In his paper, he skipped
step five of his framework, but his results from step four makes it clear how one could
proceed to select "best" trade-offs on the Pareto frontier. For example, the case study
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results show that optimization for the group fairness metric statistical parity resulted in
observable  differences  between  the  approaches,  with  the  SVM  with  ROC  post-
processing being the "best" solution, while the Meta-Fair approach is dominated by the
other  approaches (thus being the "worst").  Even when optimizing for the individual
fairness metric, the ROC Pareto front yields the best AUC values in combination with
the largest hypervolume. This implies that the Haas framework can be a useful tool for
decision-makers  and  developers  when  making  choices  about  what  classifiers  and
fairness-enhancing methods to apply for their specific predictive analysis setting.

In  research  question  2  (see  section  1.3),  we  asked  what  are  the  state-of-the-art
frameworks or methods  for  investigating trade-offs between fairness and accuracy in
machine  learning  classification  systems.  Our  conclusion  after  having  reviewed  the
literature is that there currently exist no established, agreed-upon system for this. Hence,
one  cannot  say  that  there  is  a  state-of-the-art.  However,  as  our  previous  discussion
shows, the Haas framework shows promise, and we will design experiments with the
intent of confirming or disproving its usefulness (chapter 5).
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Chapter 4

Approach                                                

This chapter will first present the development tools and programming libraries used for
this thesis. It will then describe the research method we will use to answer research
question 3 from section 1.3, and finally, present our architecture.

4.1  Development Tools and Libraries
We do not wish to build the necessary tools for our experiments from scratch; therefore
we will rely on publicly available libraries and platforms. This section describes the
ones we have chosen to use.

4.1.1 scikit-learn
There are many machine learning tools and libraries to choose between; from remote
tools like Google Prediction API, AWS Machine Learning, or Microsoft Azure Machine
Learning, to local tools like GoLearn,  TensorFlow, Keras,  PyTorch, and scikit-learn.
Many of  these are  unnecessarily  complex for  our  needs,  emphasizing deep learning
algorithms, so we settled on scikit-learn, which is an easy to use, open-source machine
learning library built on top of SciPy, NumPy, and matplotlib. It provides several well-
established  algorithms  for  supervised  and  unsupervised  learning  via  a  consistent
interface in Python. It is licensed under a permissive and simplified BSD license, and it
is well suited for classification and regression tasks. Importantly, for our purposes, it
contains a good implementation of a support vector machine (SVM) classifier. The next
section will go into greater detail on our set-up of the SVM for this thesis.
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4.1.2  SVM
The general background theory on support vector machines was given in section 2.1.1,
but to recap briefly, an SVM tries to achieve two goals simultaneously: a hyperplane
with the largest minimum margin, and a hyperplane that correctly separates as many
data points as possible. The C parameter regulates this trade-off: a low C gives a larger
margin,  but  more  misclassified  data  points,  and a  high  C gives  fewer misclassified
instances but a narrower margin.

Like  we  already  mentioned  in  section  2.1.1,  for  our  experiments,  we  will  use  the
Gaussian radial basis function (RBF) kernel, which has the following equation:

ϕ γ (x , l)=exp(−μ‖x−l‖2) ,μ>0

where x = (x1, x2),  l is the center from which the euclidian distance of x is measured,
and γ is the kernel parameter.

The optimal value for C and γ depends on the dataset,  and we will  use the genetic
algorithm NSGA-II, a multi-objective optimization algorithm, to optimize both. Section
4.3 lays out the details for how we go about doing this.

4.1.3  AI Fairness 360
AI  Fairness  360  (AIF360)  [43] is  an  open-source  Python  toolkit  for  detecting,
understanding,  and  mitigating  algorithmic  unfairness  and  bias.  It  is  developed  by
researchers  at  IBM,  and  is  available  under  an  Apache  v2.0  license.  It  provides  a
common framework for fairness researchers to share and evaluate algorithms, and it
also aims to facilitate the transition of fairness research algorithms to use in an industrial
setting. It contains a comprehensive set of fairness metrics for datasets and models, as
well as pre-processing, post-processing, and algorithmic techniques for mitigating and
evaluating bias in datasets  and models.  A host of common datasets  is  also provided

through  the  StandardDataset class,  where  datasets  can  be  loaded  in  different

manners simply by passing different arguments to the constructor, making it easy to
configure the loading procedure at runtime.
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4.1.4  NSGA-II
Like  we  have  described  in  section  2.3,  genetic  algorithms  are  well  suited  for
determining Pareto dominance relationships  in  multi-objective optimization.  For  our
thesis,  we will use an implementation of a genetic algorithm called NSGA-II (Non-
dominated Sorting Genetic Algorithm), designed by Deb et al [98]. NSGA-II is famous
for  fast  non-dominated  search,  and  compared  to  other  multi-objective  evolutionary
algorithms  (MOEAs),  like  PAES  and  SPEA,  it  will  often  find  a  better  spread  of
solutions and better convergence near the true Pareto-optimal front. It uses elitism, as
well as the diversity-preserving mechanism called crowding distance, both of which we
discussed in section 2.3. Figure 4.1 shows a flowchart for NSGA-II.

The steps of the NSGA-II algorithm goes like this:

Step 1: Create a random, initial parent population P of size Z

Step 2: Evaluate objective functions, and sort the random parent population 
based on non-domination

Step 3: For each non-dominated solution, assign a rank equal to its non-
domination level (1 is the best level, 2 is the next best level, and so forth)

Step 4: Create an offspring population Q of size Z using binary tournament 
selection, crossover, and mutation operators on P.

Step 5: Evaluate objective functions of the offspring population

Step 6: Combine the two populations to form R of size 2Z

Step 7: Use the fast non-dominated sorting algorithm to sort according to non-
domination, and rank the population according to its non-domination level

Step 8: Identify a Pareto front of best solutions, F1

Step 9: If the size of F1 is larger than Z, reduce it by crowding selection, store the
solutions in F1 in a new set P*, then move to step (8)

Step 10: If the size of F1 is smaller than Z, store the set of solutions in F1 in a 
new set P*, remove them from R and keep repeating the process of finding new 
Pareto fronts, storing the solutions in P* and removing them from R until the 
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combined number of solutions in P* and the next Pareto front, Fk, exceeds Z. 
Then reduce Fk by crowding selection and store it in P*.

Step 11: The selected solutions in P* now form a new population P, and the 
remaining solutions in R are rejected.

Step 12: Repeat from step (4) until some termination criterion is met

Step 13: Perform a final Pareto selection to get the best solutions from the final
population

Implementation specifics for crossover and mutation operators, and the evaluation of
objective functions, are given in section 4.3.

Arguably, the defining components of NSGA-II are fast non-dominated sorting, and the
use of crowding distance and elitism. See section 2.3 for a description of both. Elitism
makes sure that the best solutions from each generation is carried forward so that they
do not have to be re-discovered, and crowding distance and fast non-dominated sorting
is involved in determining what individuals get selected for reproduction. The fast non-
dominated sorting algorithm creates ranked Pareto fronts, each Pareto front containing
solutions that do not dominate each other, and the crowding distance algorithm is used
to preserve diversity by applying tournament selection to reduce the population, where
solutions  compete by comparing their  crowding distance.  Selection is  performed by
binary tournament. In the binary tournament are considered first the rank, and then the
crowding  distance.  Between two solutions  with  differing  non-domination  ranks,  the
solution with the lower rank is preferred. If both solutions in the tournament belong to
the same Pareto front, then we prefer the solution that is located in the least crowded
region of the frontier.
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4.2  Method Description
For our experiments, we will implement the Haas framework for exploring trade-offs in
algorithmic fairness  [35],  that  we gained some familiarity  with,  in  section  3.3.  The
framework consists of the five stages depicted in figure 4.2. They are: 

1. selection of dataset and protected attribute

2. defining metrics and objectives that should be considered

3. selection of classifiers and algorithms that will  be used to calculate a Pareto
front,  and  additionally,  one  might  include  in  this  step  a  selection  of  pre-
processing, in-processing, or post-processing steps for increasing fairness

4. calculation of the Pareto front for each classifier and fairness approach

5. using the calculated trade-offs to determine the best level of fairness for a given
algorithm and approach

The purpose of the framework is to use multi-objective optimization to try to find a
good balance between performance metrics such as accuracy, and fairness metrics, for a
given predictive analytics problem.

Steps 1 & 2 of the framework will be covered in the next chapter, where we lay out our
experiments. For step 3, we have chosen to use a support vector machine. SVMs are
powerful,  versatile,  and  particularly  well  suited  for  classification  of  complex  but
medium-sized datasets, which the typical datasets used in ML fairness-research are.

For step 4, the multi-objective optimization that calculates the Pareto fronts, we will be
using  NSGA-II  (see  section  4.1.4),  which  is  a  fast  genetic  algorithm that  has  been
shown to be highly effective for performing Pareto-dominance sorting  [99]. We could
have used a variety of other evolutionary algorithms instead, but decided on NSGA-II
for two reasons: it  is  what Haas used,  and we have good knowledge and first-hand
experience with it from a previous NTNU course.
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In any machine learning task in general, and in any classification task in particular, two
of the most important steps are feature selection and parameter tuning. Feature selection
identifies what features to use from the original dataset, and that choice greatly impacts
the speed with which the model can be trained. It may also affect how many examples
are needed, because more features increase the complexity of the pattern recognition
problem, increasing the demand for training examples to generalize from. Therefore, the
goal of feature selection can be said to be to allow the model to generalize well with as
few  features  as  possible.  Parameter  tuning  is  necessary  in  order  to  make  sure  the
classifier performs optimally under the constraints of the dataset it has been given. We
discussed hyperparameters for support vector machines using the RBF kernel function
in sections 2.1.1 and 4.1.2, and we identified them to be the penalty parameter C, and
the  kernel  parameter  γ.  Huang  and  Wang  have  shown  that  genetic  algorithms  are
effective for parameter tuning [100], and that they achieve better results than the most
frequently used traditional parameter tuning method, Grid Search, while simultaneously
being able to perform automated feature selection.  For our experiments,  we will  be
using the NSGA-II to perform parameter tuning and feature selection for the SVM,
while optimizing two objectives: one performance objective, and one fairness objective.
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Haas  does  not  go  into  much  architectural  detail  about  how  they  implemented  the
framework in  their  case study experiments,  so we do not know to what degree our
implementation will match theirs. However, it is clear that to implement the framework,
we  have  to  decide  how  to  design  the  NSGA-II  chromosomes,  how  to  design  the
crossover  and  mutation  operators,  and  how  to  generate  the  initial  population  of
solutions. The next section will lay out the details for these decisions.

4.3  Architecture
The task at hand is to optimize hyperparameters for the support vector machine and
perform feature selection. Our genetic algorithm, NSGA-II will do both tasks, so the
only architectural choices left are those relating to NSGA-II. Chromosome design, how
to create the initial parent population of chromosomes, choosing the fitness function to
help the algorithm determine which chromosomes/solutions are better than others, and
finally,  determining what  type  of  crossover  and mutation  operators  to  use to  create
offspring. In evolutionary algorithms in general, one would also have to decide how to
create diversity in the population, and how to select what chromosomes in the parent
population to select for reproduction. Those decisions, however, are already baked into
the  NSGA-II  algorithm.  Crowding  distance  sorting  (see  section  2.3)  takes  care  of
diversity,  and  the  NSGA-II  selection  mechanisms were  described  briefly  in  section
4.1.4.
The next sections provide detail about our chromosome representation, how to create
the  initial  population,  mutation  and  crossover  operators,  and  evaluation  of  the
objectives, respectively.

4.3.1  Chromosome Representation

When using genetic algorithms, one of the most important - and challenging - aspects is
the design of the chromosome. The chromosome represents the solutions to the problem
at hand. The task we wish to give our genetic algorithm is to perform hyperparameter
tuning and feature selection while balancing our two objectives (accuracy and a fairness
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measure,  respectively).  Therefore,  each  chromosome  must  represent  a  set  of
hyperparameters  and  features.
As we saw in section 2.3, the representation of a chromosome can be split into two
parts: the genotype and the phenotype. The former is the encoding that is used by the
GA,  and  the  latter  is  the  encoding  that  represents  the  real-world  solution.  In  our
architecture, the phenotype is the real-valued parameters for the support vector machine
and the feature mask representing the features to  use.  There are several  options for
representing this phenotype as a genotype, and we have chosen a simple one: the binary
encoding  system.  In  it,  a  list  of  bits  is  all  that  is  required.  That  allows  for  easy
implementation,  and  it  makes  it  easier  to  design  genetic  operators.
Some genes in each chromosome will represent the C, some genes will represent γ, and
the  rest  will  represent  the  feature  mask.  See  figure  4.3  for  a  visualization  of  the
representation. Each Ck represents a bit in C, such that the n in C1,...,Cn represents the
number of bits of C. Similarly with γ, which is granted m bits, and the features, which
are given q bits. Naturally, q must equal the number of features in the dataset.

For feature mask genotype decoding, we let a bit value of 1 mean that a feature is kept,
and  a  bit  value  of  0  means  that  it  is  discarded.
We  wish  to  let  the  bit  representations  of  C  and  γ  be  decoded  into  floating-point
numbers, to allow for higher precision with a shorter length chromosome. For this, we
will use the IEEE 754 standard. Under the IEEE 754 standard, a floating-point number
is specified by:

• a base b, which will be 2 in our case

• a precision p
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• an exponent range from emin to emax, with emin = 1 - emax

The first bit in the IEEE 754-standard is reserved for the sign of the number, but for our
purposes, the sign will always be positive. Thus, we can dispose of it. Next follows a
number  of  bits  reserved  for  the  exponent,  and  the  remaining  bits  represent  the
significand. The following formula gives the floating-point value f of a binary number,
using the IEEE-standard:

f=2e s
2p−1

where  s is the significand,  p is the number of digits in the significand, and  e is the
exponent. Figure 4.4 shows an example of a layout for 32-bit floating points.

To calculate the floating point value of our binary representation, the following equation
is used:

(∑
n=0

p−1

2−n)∗2e

4.3.2  Generation of the Initial Population
A common strategy for generating initial populations is to generate them randomly. That
ensures diversity in the population, and it is the strategy we will use. We do that by
randomly generating 1's or 0's for each position in each chromosome.
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4.3.3  Crossover and mutation
We described crossover and mutation operations in  detail  in  section 2.3.  For binary
representations, it is fairly straight forward to implement both, and for this thesis, we
have chosen the following strategy:

Crossover  operator:  choose  a  random  crossover  point,  and  split  each  parent
chromosome in two at that point. Then combine the parts in the opposite way, creating
two offspring chromosomes. This operation is visualized in figure 2.5.

Mutation operator: choose a random bit in the chromosome, and flip the value of the
bit. If it used to be a 0, it becomes a 1, and vice versa. This operation is visualized in
figure 2.6.

4.3.4  Evaluation of objectives

One of the steps of NSGA-II is to rank the population (see figure 4.1). This is a step for
NSGA-II has to do to be able to perform non-domination sorting. Before ranking, we
need  to  evaluate  the  objectives  for  each  chromosome  in  the  parent  and  offspring
populations.  We need two values;  one  representing  the performance measure of  the
classifier, and one representing a fairness measure. In order to obtain those values, we
need to  run  the  scikit-learn  SVM classifier,  as  well  as  apply  one  of  the  mitigation
approaches from the AIF360 toolkit. This must be done for each chromosome in the
total population. The steps for evaluating the objective functions are as follows:

1. Scale  test  set  and  training  set:  both  sets  are  scaled  using  the  following
function:

xscaled=
x−X
s

where X is the mean of the training samples, and s is the standard deviation of
the training samples.

2. Convert genotype to phenotype: this is done in the way that is explained in
section 4.3.1
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3. Keep feature subset: The phenotype representing the feature mask is used to
keep the chosen feature subset and discard the other features from the training
and test sets.

4. Train  SVM classifier:  The  phenotypes  of  the  values  of  C  and  γ  from the
chromosome is  used  as  parameters  for  the  SVM classifier,  which  in  turn  is
trained using the training set.

5. Test  SVM classifier:  The trained classifier  is  used to  predict  scores for  test
samples. These scores are assigned labels using a classification threshold of 0.5,
where scores above the threshold is assigned the positive label, and scores below
the threshold is assigned the negative label.

6. Apply bias mitigation method: Apply bias mitigation method from the AIF360
library. This step must be done earlier in the cycle if pre-processing is the chosen
mitigation method.

7. Calculate values for the objectives: Calculate the desired accuracy and fairness
measures, based on the predictions from step 5. Collectively, these are used to
rank the chromosome.

8. Return values

The calculated values for each objective is then used when performing non-dominated
sorting.

4.4  Implementation Details
All code is written in Python3, and resides in a Github repository, along with 
instructions for how to run the code (in the file README.md)2. Table 4.1 lists the 
Python modules we have used to run our code, and their version numbers.

2 https://github.com/gunnaja/ml_fairness_tradeoffs
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Module Version Remarks

numpy 1.17.4

scikit-learn (sklearn) 0.22

aif360 0.2.3

pandas 0.25.3 Our code does not run with 
newer versions of pandas. 
We don't know the reason 
for this.

matplotlib 3.1.2
Table 4.1: List of Python modules required to run our code

The  machine  learning  library  scikit-learn that  we chose  to  use  for  the  SVM

algorithm is described in section 4.1.1. For bias mitigation, we used the IBM aif360

toolkit,  which  is  described  in  section  4.1.3.  Other  viable  choices  would  have  been

Themis-ML or  Fairness Comparison,  but  wishing to stay close to  the Haas

implementation,  we  decided  on  using  aif360.  Numpy was  used  to  represent  and

perform calculations on the chromosomes in our NSGA-II implementation. It is also a

requirement  for  some  of  the  other  modules.  Pandas was  a  requirement  for  the

aif360 module.  Finally,  Matplotlib was  used  to  plot  the  results  from  our

experiments.

Instructions on how to run the code can be found in the README.md file in the Github
repository

For non-separable datasets, there is a risk that the SVM classifier, for some values of C
and  γ,  will  try  to  fit  the  training  set  almost  indefinitely.  To avoid  this,  we  set  the
maximum number of iterations to 15 thousand.
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Chapter 5

Experiments and Results                      

This chapter will present our experiments, built on the approach we laid out in chapter
four.  The purpose of  the  experiments  is  to  answer research question 3.  Section 5.1
explains our experimental plan,  section 5.2 explains the experimental setup, and the
final section, 5.3, presents our results and analysis.

5.1  Experimental Plan
In section 3.3 we found that the framework proposed by Haas in their 2019 study "The
Price of Fairness - A Framework to Explore Trade-offs in Algorithmic Fairness"  [35],
for investigating trade-offs between accuracy and fairness in machine learning systems,
is our best candidate for being called state-of-the-art. It has not yet stood the test of
time,  but  there  are  no  better  candidates  that  we  are  aware  of.  We  will,  therefore,
implement  the  Haas  framework,  and  design  experiments  for  it  in  order  to  answer
research question 3 (see section 1.3). Our experiments are based on the suggestions
Haas provides as potential avenues for future research in their paper.  We will apply
additional bias mitigation approaches, apply the framework on a different dataset from
what they used, and we will also investigate trade-offs between accuracy and fairness
for more fairness metrics than they did in the Haas paper.

In  the  Haas  paper,  they  use  the  following  mitigation  approaches:  MetaFair  for  in-
processing,  the  Reject  Option  classifier  (ROC)  for  post-processing,  and  the  pre-
processing  they  use  the  Reweighing  algorithm.  We  will  extend  this  by  using  two
different  pre-processing  methods,  namely  Optimized  Pre-Processing,  and  Disparate
Impact Remover. 
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In the Haas study, they use the German Credit Dataset. We will extend their work by
using a different dataset, namely the COMPAS dataset described in section 5.2.1.

5.2   Experimental Setup
This section describes the setup for the experiments we will be performing in this thesis.
The  first  section  describes  the  dataset.  Section  5.2.2  describes  the  fairness  and
performance measures we will evaluate. Section 5.2.3 lays out our chosen parameter
settings for the genetic algorithm. Section 5.2.4 gives some information about the GA
chromosome. Section 5.2.5 presents our choice of algorithm and mitigation technique.
Finally, section 5.2.6 summarizes the choices in a table, for ease of reference.

5.2.1  Dataset and Dataset Pre-processing
We experiment  with  a  real-world  dataset:  the  ProPublica  COMPAS risk assessment
dataset  [101].  The  dataset,   gathered  by  ProPublica,  contains  information  about  all
criminal  defendants  subject  to  screening  by  the  COMPAS  risk  assessment  tool  in
Broward County, Florida, in 2013-2014. It consists of data about more than 7 thousand
pre-trial criminal defendants, and relates to recidivism risk prediction, i.e., predicting if
a criminal defendant will commit an offense within a certain future time. The dataset
contains a number of features such as the age and number of prior criminal offenses for
the defendant, as well as a class label indicating whether or not the person recidivated
within two years of their  arrest.  The former is the positive class, and the latter,  the
negative class.

We will be using the "Risk of Recidivism" label, and the sensitive attribute we will use
is  race, where White/Caucasian is the privileged group, and the others are combined
into a "Non-Caucasian" unprivileged group.

The aif360 (see section 4.1.3) tool provides a version of the COMPAS data set that is

pre-processed in the same way as the original [43]. This includes removing rows with
missing data, and selecting only the most relevant features.
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The  aif360 tool  uses  one-hot-encoding  on  the  charge  description  feature,  adding

another  389  features  to  the  dataset.  We  will  remove  those  features,  and  use  the
following ten: sex, age, age category, race, juvenile felony count, juvenile misdemeanor
count, juvenile other count, priors count, charge degree, and charge description.  Age
and  charge degree is one-hot-encoded, bringing the feature total up to 12. Examples
with  missing data  is  removed,  which  brings  the total  number of  examples  down to
6.172.

We split the dataset into an 80/20 split for training and testing. Details about the split
can be seen in table 5.1.

Dataset type # of features # of data points % of total dataset

Training set 12 4937 80%

Test set 12 1235 20%

Total dataset 12 6172 100%
Table 5.1: The table shows the two dataset splits with their respective amount of data
points

Relevant to our further investigations, research by Dressel and Farid  [102] have been
unable to reach higher accuracies than 65-67% in their  experiments on this  dataset,
using both linear and non-linear classifiers, leading them to conclude that the COMPAS
dataset is neither linearly nor non-linearly separable. 

5.2.2  Metrics
Performance metric

We choose  to  use  plain  binary  accuracy  as  our  performance  metric.  The  metric  is
explained  in  section  2.4,  but  to  recap,  accuracy  in  binary  classification  settings  is
defined as:

Accuracy= TP+TN
TP+TN+FP+FN
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We are aware of the potential  problems associated with this  metric,  as explained in
section 2.4, but we had no such problems in our experiments.

We will investigate the accuracy-fairness trade-offs of our methods using two different

fairness metrics, namely Statistical Parity Difference (SPDiff) and Theil Index. To recap

from section 2.4, Statistical Parity Difference is a group fairness metric defined as the
difference  in  the  probability  of  favorable  outcomes  between  the  unprivileged  and
privileged groups, and Theil index is an individual fairness metric.

5.2.3  NSGA-II Parameters
Four parameters  need to  be adjusted  for  the NSGA-II  algorithm to  run:  number of
generations, population size (number of chromosomes / candidate solutions), mutation
rate, and the crossover probability. There are no hard-and-fast rules for how to go about
selecting these parameters, but generally, because a longer chromosome exponentially
increases  the  size  of  the  solution  space,  longer  chromosomes  may  require  larger
population sizes and higher number of generations. As a rule of thumb, we will attempt
to use a population size N that is at least as big as the number of features, and a mutation
rate of about 1/N. Table 5.2 shows our parameter settings.

Parameters Value

Number of generations 100

Population size (number of candidate solutions / chromosomes) 100

Mutation rate 0.1

Crossover probability 0.8
Table 5.2: NSGA-II parameters for our experiments
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5.2.4  Chromosome length
The  chromosome  representation  is  described  in  section  4.3.1.  We  will  use  a
chromosome length of 42, where the first thirty bits consists of 15 bits each for the C
and γ values, and the last twelve bits represent the 12 features we wish to use from the
COMPAS dataset. The C value will be decoded into a range of [2-16, 216], while the γ
value will be decoded into a range of [2-10, 23].

5.2.5  Algorithm & Mitigation Technique
As explained in section 4.1.2, we will be using the standard sklearn SVM classifier for
our experiments, with a  Gaussian radial basis function (RBF) kernel. We will run the
classifier with four different mitigation techniques:

1. No mitigation, just the SVM classifier alone. This represents our baseline.

2. The  Reweighing  algorithm  +  SVM:  The  pre-processing  bias  mitigation
technique called Reweighing will be performed on the training data before it is
used to train the classifier. Reweighing is part of the aif360 toolkit.

3. Optimized Pre-processing + SVM: The pre-processing bias mitigation technique
called  Optimized  Pre-processing  from  the  aif360 toolkit  is  applied  on  the
training data before it is used to train the classifier.

4. Disparate  Impact  Remover  +  SVM:  The  pre-processing  bias  mitigation
technique called Disparate Impact Remover from the  aif360 toolkit is used on
the training data before it is used to train the classifier.

For each of the approaches,  the genetic algorithm NSGA-II is  used to optimize the
feature selection and classifier parameters. As mentioned, all three mitigation techniques
are pre-processing methods. The methods are described in section 2.6.
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5.2.6  Setup Summary
Table 5.3 summarizes the experimental setup.

Parameter Values Description

Dataset The COMPAS dataset See section 5.2.1

Protected / 
sensitive 
attribute

Race Privileged: Caucasian

Unprivileged: Non-
caucasian

Algorithms SVM alone

Reweighing + SVM

Disparate Impact Remover + SVM

Optimized Pre-Processing + SVM

The algorithms along 
with their respective 
bias mitigation 
strategies.

Performance
metric

Accuracy See section 2.1

Fairness 
metrics

Statistical Parity Difference,
Theil Index, 
Equal Opportunity Index, 
Disparate Impact,
Average Odds Difference

See section 2.4

NSGA-II 
parameters

Generations: 100
Population size: 100
Mutation rate: 0.1
Crossover rate: 0.8

The parameters used for
the genetic algorithm.

Table 5.3: Summary of experimental setup
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5.3   Results and Analysis
We  used  four  different  algorithms  for  our  experiments:  a  baseline,  no-mitigation
approach (an SVM classifier alone), and three SVM classifiers trained on data that was
pre-processed  by  three  different  pre-processing  mitigation  methods.  For  a  short
description of the algorithms, see section 2.6, and for an in-depth description of the
architecture used to perform the experiment, see section 4.3. The experiments were run
for five different scenarios, one for each of the fairness metrics we wish to optimize for
(see table 5.4).

Scenario name Accuracy metric vs. fairness metric

Scenario 1 Binary Accuracy vs.  Statistical Parity Difference

Scenario 2 Binary Accuracy vs. Theil Index

Scenario 3 Binary Accuracy vs. Equal Opportunity Difference

Scenario 4 Binary Accuracy vs. Disparate Impact

Scenario 5 Binary Accuracy vs. Average Odds Difference
Table 5.4: The scenarios in our experiments

In scenarios 1, 3, 4, and 5, we optimize for group fairness metrics: Statistical Parity,
Equal  Opportunity,  Disparate  Impact,  and Average Odds Difference,  respectively.  In
scenario 2, we optimize for the individual fairness metric Theil Index. See table 2.2 for
an explanation of each of the metrics. While the aif360 tool outputs the optimal score
for all the fairness metrics as zero, we have chosen to reverse this in our plots, such that
all figures display the score as [1 - fairness score], leading to 1 being the best possible
fairness score obtainable. Likewise, 1 is the best score for accuracy as well. Hence the
perfect score would be (1, 1), in the upper right corner of the plots.

The performance of multi-objective optimizers are often compared using hypervolumes,
also called S-metrics, or Lebesgue-measures. However, our results are easy to interpret
by visual inspection of the plotted graphs, so we will limit ourselves to that.
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Some runs of the algorithms produced clearly sub-optimal Pareto fronts, so we decided
to discard those, and to run each algorithm enough times that we would be able to select
four good Pareto fronts for each algorithm and each fairness metric to present in this
paper.

The reason we wanted four good Pareto fronts for each algorithm for each scenario, is
twofold:  (1)  to  show  that  the  hyperparameter  settings  we  described  in  chapter  5.2
produce sufficiently consistent results for us to be able to make conclusions based on
our experiments, and (2) to illustrate an important point: that even when running the
algorithms numerous times and selecting the "best" Pareto fronts, the results of applying
the mitigation methods vary. In other words, the mitigation methods do not produce
consistently good bias mitigation. Sometimes the results are good, but sometimes there
is very little, or even no, fairness enhancement compared to the baseline no-mitigation
approach.

Figure 5.1 shows the results for the four algorithms for scenario 1, with Accuracy along
the  x-axis,  and  Statistical  Parity  Difference  along  the  y-axis.  Figure  5.2  shows  the
results for the four algorithms for scenario 2; with Accuracy along the x-axis and Theil
Index along the y-axis. Figure 5.3 shows the results for the four algorithms for scenario
3; with Accuracy along the x-axis and Equal Opportunity Difference along the y-axis.
Figure 5.4 shows the results for the four algorithms for scenario 4; with Accuracy along
the x-axis and Disparate Impact along the y-axis. In all four figures, the upper left plot,
(a), shows the baseline SVM algorithm run alone on the COMPAS dataset, with no bias
mitigation method. Plot (b) shows the results of four runs where the Reweighing bias
mitigation method is applied on the data before the SVM classification. Plot (c) shows
the results of four runs where Disparate Impact Remover is applied before the SVM,
and finally, plot (d) shows the results of four runs where Optimized Pre-processing is
applied before the SVM. Each point on the Pareto fronts represents one chromosome /
solution, and because of the nature of Pareto fronts, they all represent non-dominated
accuracy-fairness combinations. Although some of the plots may look like they are not,
all the plotted Pareto fronts are strictly decreasing.

Immediately, it can be seen in figures 5.1-5.4, that for all five scenarios, the frontiers for
the  pure SVM algorithm follow each other  rather  closely,  giving  us  the answer we
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hoped for,  namely that  the NSGA-II parameters we have chosen produce consistent
results.

a) No mitigation approach, just baseline SVM b) Reweighing + SVM

c) Disparate Impact Remover + SVM d) Optimized Pre-processing + SVM

Figure 5.1: Pareto fronts for Binary Accuracy vs. Statistical Parity Difference on the
COMPAS dataset. Four runs for each bias mitigation approach.
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a) No mitigation approach, just baseline SVM b) Reweighing + SVM

c) Disparate Impact Remover + SVM d) Optimized Pre-processing + SVM

Figure 5.2: Pareto fronts for Binary Accuracy vs. Theil Index on the COMPAS dataset.
Four runs for each bias mitigation approach.
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a) No mitigation approach, just baseline SVM b) Reweighing + SVM

c) Disparate Impact Remover + SVM d) Optimized Pre-processing + SVM

Figure 5.3: Pareto fronts for Binary Accuracy vs. Equal Opportunity on the COMPAS
dataset. Four runs for each bias mitigation approach.
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a) No mitigation approach, just baseline SVM b) Reweighing + SVM

c) Disparate Impact Remover + SVM d) Optimized Pre-processing + SVM

Figure 5.4: Pareto fronts for Binary Accuracy vs. Disparate Impact on the COMPAS
dataset. Four runs for each bias mitigation approach.
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Next,  for  each  of  the  five  scenarios,  we  chose  one  frontier  for  each  algorithm for
comparison between the approaches. When deciding which frontier to choose, we tried
to pick one that dominates the others as much as possible, and if two frontiers dominate
each other  in  separate  parts  along  the  x-axis,  we favored  the  frontier  that  tends  to
dominate the other for higher accuracies.

Figure 5.5 shows the four frontiers plotted together for scenario 1: Binary Accuracy vs.
Statistical Parity Difference.
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The plots in figure 5.5 show that the Reweighing+SVM option outperforms all the other
strategies in terms of fairness. The figure also shows that the bias mitigation approaches
all  lead to a  clear accuracy penalty,  just  like the theory we reviewed in section 3.3
predicts.  The highest  accuracy achieved in  this  run of  the Reweighing algorithm is
around 0.685, and at that accuracy, the fairness is no better than what the no-mitigation
approach achieves at the same level of accuracy. The no-mitigation approach achieves a
maximum accuracy of around 0.7, but if one is willing to reduce the prediction accuracy
to  around  0.68,  one  can  achieve  a  very  large  fairness  enhancement  by  using  the
Reweighing algorithm. This is in line with published findings [43] from the researchers
behind  the  aif360 tool,  who  have  found  that  Reweighing  and  the  post-processing
method called Reject option classification were the best fairness tools in their toolkit for
the COMPAS dataset, and that the Reweighing mitigation method is able to achieve
good fairness enhancement on the COMPAS data without much penalty in accuracy.
Our finding is  also  in  perfect  harmony with the findings  from the Haas study  [35],
where they found similar effects between fairness and AUC.

The plots in figure 5.5 also show that the Disparate Impact Remover approach succeeds
in increasing fairness with respect to Statistical Parity compared to the baseline SVM,
but at a slightly higher accuracy cost. One needs to drop accuracy to about 0.625 in
order to get good fairness enhancement with this method. Optimized Pre-processing,
however, makes the outcomes less fair than the no-mitigation approach, indicating that
this mitigation approach is not a viable choice for this particular fairness metric and this
particular dataset and prediction task.

Interestingly, given that Statistical Parity Difference is defined as the difference in the
probability of favorable outcomes between the protected and non-protected groups, if
our model simply accepts everyone, there will be no discrimination according to this
metric. It can be observed that most runs of the algorithms in scenario 1 generate Pareto
fronts  with  one solution  with a  perfect  fairness  score  of  1.0,  and an accompanying
accuracy value around 54-55%. For the COMPAS dataset, approximately 55% of the
labels are positive labels (the exact number depends on the training/test-split), which
means that very likely, these "perfect fairness" solutions were achieved by the model
simply predicting everyone as belonging to the positive class. This idea is strengthened
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by the fact that none of the algorithms achieve perfect fairness with respect to the Theil
index (see figure 5.6).

For our individual fairness metric, Theil Index, the experimental results again verify the
theory that fairness enhancement comes at an accuracy cost. This can be seen in figure
5.6, where the Pareto fronts for the four algorithms are plotted against each other. Two
of the three mitigation approaches; Reweighing + SVM, and Disparate Impact Remover
+ SVM, are able to produce better fairness than the no-mitigation, SVM-only approach,
but only at accuracies that are lower than the maximum accuracy that can be achieved
by  the  no-mitigation  approach.  Optimized  Pre-processing  +  SVM,  however,  again
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performs worse  than  the  no-mitigation  approach with  respect  to  fairness,  just  as  in
scenario 1. Notably, fairness enhancements are not as large for the Theil metric as they
were for the Statistical Parity metric in scenario 1, and the Pareto fronts are overlapping
and much more similar. This is in line with the results obtained in the Haas study [35],
and indicates that individual fairness is harder to achieve on this dataset, or perhaps
even in general.

Results  for  the  four  mitigation  approaches  for  Accuracy  vs.  Equal  Opportunity
Difference is shown in figure 5.7. Again the results show a clear accuracy penalty when
applying bias mitigation strategies. Against this fairness metric, it seems that one needs
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to reduce accuracy to 0.65 before the Reweighing and the Disparate Impact Remover
approaches clearly outperform the no-mitigation approach in terms of fairness. The no-
mitigation approach again is able to reach an accuracy of about 0.7. We notice that for
the first time in our experiments so far the Optimized Pre-processing approach is able to
produce fairness-enhancement compared to the baseline SVM, but it comes at a hefty
accuracy cost: one needs to drop accuracy all the way to about 0.58 to achieve this,
making the algorithm only slightly more accurate than a coin toss.
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Accuracy vs. Disparate Impact
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Figure  5.8  shows  the  plots  for  all  algorithms  for  scenario  4:  binary  accuracy  vs.
Disparate Impact. The plots show improved fairness from the Reweighing approach and
from the Disparate Impact Remover approach if one is willing to accept a reduction in
accuracy to around 0.67, from the 0.7 accuracy that the pure SVM approach is able to
achieve.  Somewhat  surprisingly,  the  Disparate  Impact  Remover  algorithm  did  not
achieve the best fairness results even though the fairness metric is precisely Disparate
Impact. We do not know why that is so, but it is a testament to the strength of the
Reweighing algorithm for the COMPAS dataset. Like in scenario 1, the Optimized Pre-
processing approach makes the fairness worse than the no-mitigation approach, making
it an unsuitable mitigation approach for this particular dataset & fairness metric.
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Figure 5.9: Pareto fronts for the COMPAS dataset for all algorithms for scenario 5: 
Accuracy vs. Average Odds Difference



An Exploration of Discrimination and Fairness-Accuracy Trade-offs in Algorithmic Decision Making 

Results for the final scenario, Accuracy vs. Average Odds Difference, is shown in figure
5.9. The plots show more of what we have already seen: the Reweighing algorithm
outperforming the others, the Optimized Pre-processing algorithm being useless, and
the  Reweighing  algorithm  and  the  Disparate  Impact  Remover  algorithm  both
outperforming the no-mitigation approach at a slight accuracy penalty. This particular
fairness  metric,  defined as the average of  difference in  false  positive rates and true
positive rates between protected and non-protected groups, is particularly interesting for
the COMPAS dataset, as the criticism towards the COMPAS system is that it produce
more false positives for blacks (the protected group) than for the non-protected group.

All  our  results  show  that  trade-offs  between  fairness  and  accuracy  can  clearly  be
demonstrated, and these trade-offs are visualized in figures 5.5 - 5.9. All five scenarios
illustrate that if one is willing to accept slightly lower accuracy, very large gains in
fairness can sometimes be achieved.

Our  investigations  indicate  that  our  approach,  as  laid  out  in  chapter  4,  works  as
intended. All the plots we have generated show Pareto fronts that can be helpful when
making decisions about what type of algorithm / mitigation method and metrics to use
when building algorithmic decision systems. By applying the Haas framework [35] on
other metrics and datasets than what they used in their study, we have added validity to
their results. Even though the Haas framework can perhaps not be said to be a state of
the art framework for investigating fairness-accuracy trade-offs, it is the closest to such
that we have found, and our results clearly show that their framework is a useful tool
when  investigating  fairness-accuracy  trade-offs.  Our  investigations  also  support
previous work about fairness-accuracy trade-offs, e.g., by Menon and Williamson [34],
Zliobaite [96], and Corbett-Davies et al. [31].

With that, we have answered research question 3 (see section 1.3), and hence we have
now concluded the task of answering all three research questions in our thesis. In the
next chapter, chapter 6, we will present our concluding thoughts, as well as ideas for
future work.
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Chapter 6

Discussion                                                

This chapter will present our concluding thoughts. Section 6.1 summarizes our results,
and section 6.2 discusses our contributions, while section 6.3 provides exciting avenues
for future research.

6.1   Summary
The field of fair ML continues to be a hot topic in research and the popular press alike.
During the time of this writing (May 2020), for example, the US Department of Justice
is being criticized for using a machine learning risk assessment tool called PATTERN,
known for racial bias, to decide which prisoners are sent home early from US prisons to
reduce population size due to COVID-19 concerns [103], and news just broke that even
medical diagnosis systems are subject to biases that lead to adverse outcomes for certain
groups [20]. 

Detecting bias in algorithmic systems has proven to be hard, and it is usually not done
until  well  after  systems  have  been  deployed  in  real-life  settings  for  some  time.
Mitigating known biases is also hard, and usually comes at the cost of reducing the
accuracy of algorithmic systems. On that backdrop, we set out to answer three research
questions (see section 1.3), intended to contribute to the understanding of causes of bias
and unfairness in classifiers, and to contribute to the understanding of how current state
of the art bias mitigation methods affect algorithmic performance.

To answer research question 1, which asks what bias in algorithms and datasets cause
unfair outcomes in machine learning systems, we reviewed literature and proposed a
taxonomy of bias types. The results of this work were presented in section 3.1 and 3.2.
The two sections collectively answer research question 1.
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Research question 2 asked what the state of the art methods for investigating trade-offs
between  fairness  and  accuracy  in  machine  learning  classification  systems  are.  We
performed a literature review that (a) showed that such trade-offs do in fact exist, and
(b)  looked  for  state-of-the-art  frameworks  to  investigate  the  trade-offs  further  (see
section 3.3). We failed to find a clear, agreed-upon state-of-the-art framework, but we
decided that  the  Haas  framework  [35] is  a  good candidate.  In  order  to  confirm or
disprove the usefulness of the Haas framework, we implemented it, designed a set of
experiments  to  test  it,  and  applied  it  on  a  different  dataset  and  with  different  bias
mitigation methods and against different fairness metrics than Haas used in their paper.
These experiments intended to help us answer research question 3, which asked whether
we can apply the method(s) or framework(s) identified in RQ2 on new problem settings,
and what conclusions can we draw from that? Our results and analysis, along with our
answer to research question 3, were presented in section 5.3.

6.2   Contributions
Solving  the  problem  of  bias  and  unfairness  in  machine  learning  requires  an
interdisciplinary approach, and papers related to the field are published by researchers
from diverse disciplines such as law, ethics, philosophy, statistics, machine learning, and
social  sciences.  Each  of  these  disciplines  brings  their  own  nomenclature,  and
consequently, the fair ML literature is somewhat chaotic. Fair ML terminology is not
aligned, sometimes even conflicting, with definitions that are too broad to be useful, and
papers that often lack the necessary shared terminology to be understandable outside of
specialty fields. Our proposed taxonomy of common bias types may contribute to an
increased  understanding  of  the  problem  state.  This  is  one  of  the  most  important
contributions of this paper. The attempts that have been made in previous papers to
present a full taxonomy of fairness-related bias types have, in our opinion, been lacking,
and so our approach to bias, which is presented in section 3.2, fills a gap in the ML
fairness literature.

A thorough understanding of fairness-related bias is  essential  for several reasons. In
recent years, several open-source libraries and tool-kits for detecting and mitigating bias
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in  algorithms have  been made  public.  While  this  is  a  good thing,  over-reliance  on
libraries and de-biasing tools may give a false sense of security that a system is fair,
when in fact,  all  that is  achieved is  a reasonable certainty that the system does not
violate the specific fairness metrics that the tool looks for. Therefore, developers still
need a good understanding of fairness and bias issues.

Also, it is a known fact that de-biasing a system after it has been trained is hard, often
leading to bad trade-offs between fairness and accuracy [104]. This has been confirmed
in our own experiments in this thesis. Therefore, attempts should go into making models
bias-free from the start of the development process, similarly to what is common in
related fields such as computer security or privacy. To understand, detect, and mitigate
unfairness  in  algorithmic  systems,  AI  developers  need a  good understanding of  the
concept of bias, and how unfairness can enter systems.

Another contribution of the thesis is to add support to leading theories about the trade-
offs between fairness and accuracy in machine learning models (see section 3.3). Also,
to add validity to the usefulness of the Haas framework [35] for evaluating trade-offs
between various fairness and performance metrics. It is well documented that there is a
reproducibility crisis in AI research, so being able to reproduce results from the Haas
study is a research contribution in and of itself. In addition, our experiments extended
their results on new datasets, other mitigation methods, and more fairness metrics, thus
allowing us  to  cement  their  findings  further.  We believe  that  our  results  show that
engineers and decision-makers should be able to evaluate different approaches for bias
mitigation against each other by using MOO, and to use that approach to identify which
models  and  methods  work  best  for  their  use  case,  choice  of  fairness  metrics,  and
datasets.  Given  the  extremely  high  impact  on  peoples'  lives  that  many  algorithmic
decision-making systems have, such investigations should be well worth the effort.

The Haas paper that we have modeled our experiments after was not published until
December 2019, and we did not become aware of it right away. Therefore, the direction
our  applied  experiments  took  was  determined  rather  late  in  the  master's  project.
Additionally,  the  applied  experiments  were  somewhat  hindered  by  the  covid-19
situation that led to the closing down of the University in mid-March. Given more time
and access to better computing power, we would have liked to extend our investigations
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to other ML learning algorithms, as well as perform our experiments on more datasets,
with more bias mitigation methods. Nevertheless, we feel that the experiments we did
perform led to clear outcomes, and we are pleased with the theoretical understanding of
the problem area that we have gained during the last year, and that we have hopefully
been able to express parts of in this thesis.

6.2   Future Work
At the end of the previous section, we mentioned a few ways that our research might be
extended in future work. Here we will propose some exciting avenues for future work
that are not directly related to the work in this thesis, but which we find interesting
based on our current understanding of the field.

Like we have shown, de-biasing a system after it has been trained is hard and will often
lead to bad trade-offs between fairness and accuracy. Instead, attempts should go into
making systems bias-free from the start  of the development process instead.  A very
exciting avenue for future research is, therefore,  to look into how fairness and non-
discrimination can be included as part of the objectives that machine learning models
are evaluated on during training.

Even if ML models are trained with fairness in mind, it is unlikely that all bias issues
can be anticipated in advance, so it is still important to test systems thoroughly before
they  are  employed.  Adversarial  testing,  both  pre-  and  post-launch,  might  be  an
interesting avenue for future research [105].

Finally, our third suggestion for future research is related to causal models, based on the
work of Judea Pearl. Part of the problem with unfairness in algorithmic decision-making
systems  is  that  many  such  systems  turn  correlative  insights  into  causal  scoring
mechanisms,  without  there  being  any  true  causation  behind  the  correlation.  For
example, in recidivism prediction, an algorithm may find correlations in historical crime
data between where a person lives and recidivism risk, but the system does not know
whether the person's address actually has a causal effect on crime, yet may base its
predictions on precisely that. Several papers have been published during the last couple
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of years that investigate causal, or so-called counterfactual, fairness, and we believe this
is one of the most promising roads forward for the field.
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