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Abstract

Ray tracing is a rendering technique that has until recently been considered
too expensive for real-time applications. Advances in graphics hardware
technology now allows the technique to be used in real time, but only with
a limited number of light rays per pixel, resulting in noisy images. To
produce convincing imagery with ray tracing in real-time, it is therefore
necessary to use denoising algorithms.

This thesis explores the history and development of both ray tracing
and denoising techniques that has lead to their applicability in the realm of
real-time applications. Subsequently, it presents two state-of-the-art denois-
ing algorithms in detail: Spatiotemporal Variance-Guided Filtering (SVGF)
and Blockwise Multi-Order Feature Regression (BMFR).

Then two experiments are presented: The first compares the two algo-
rithms in terms of performance and visual quality. The second experiment
tests a proposed extension to BMFR to improve the result.

From the results, it is concluded that although both algorithms have
their individual strengths and weaknesses, BMFR displays superior perfor-
mance and better visual quality in many cases. The proposed extension to
BMFR turned out to have little effect.

It is noted that modern denoising techniques have come a long way and
can create convincing results. However, a number of visual quality issues
must be adressed before ray tracing can take over as the preferred render
technique in real-time applications.
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Sammendrag

Ray tracing er en bildegjengivelsesteknikk som inntil nylig var avskrevet
som for beregningstung for sanntidsapplikasjoner. Teknologiske fremskritt
innen grafikkmaskinvare har gjort teknikken mulig å bruke i sanntid, men
kun med et begrenset antall lysstr̊aler per piksel, noe som resulterer i støyete
bilder. For å produsere mer overbevisende avbildninger med ray tracing i
sanntid, er det derfor nødvendig med støyfjerningsalgoritmer.

Denne oppgaven utforsker historien og utviklingen til b̊ade ray tracing
og støyfjerningsteknikker som har gjort det mulig å bruke dem i sanntidsapp-
likasjoner. Deretter presenterer oppgaven to moderne støyfjerningsalgoritmer
i detalj: Spatiotemporal Variance-Guided Filtering (SVGF) og Blockwise
Multi-Order Feature Regression (BMFR).

S̊a presenteres to eksperimenter: Det første sammenligner de to algo-
ritmene p̊a b̊ade ytelse og visuell kvalitet. Det andre eksperimentet un-
dersøker en foresl̊att utvidelse av BMFR for å øke kvaliteten p̊a resultat-
bildene.

Fra disse resultatene konkluderes det med at selv om begge algoritmene
har individuelle fordeler og ulemper, viser BMFR overlegen ytelse og bedre
visuell kvalitet i mange tilfeller. Den foresl̊atte utvidelsen av BMFR viste
seg å gi liten effekt.

Til slutt nevnes det at moderne støyfjerningsteknikker har kommet langt,
og kan allerede produsere overbevisende resultater. Likevel er det flere prob-
lemer med den visuelle kvaliteten som m̊a imøtekommes før ray tracing
kan ta over som den foretrukne bildegjengivelsesteknikken for sanntidsapp-
likasjoner.
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Chapter 1

Introduction

1.1 Motivation: Real-Time Ray Tracing

Real-time computer graphics applications have relied on rasterization as the
primary rendering technique for a long time. Rasterization is both fast and
flexible, and many methods have been developed to approximate real-life
effects like shadows, reflections and global illumination. However, the cost
of approximating these effects accurately is high, and usually limited to
static scenes.

Ray tracing is a family of more accurate rendering techniques which is
often deployed in rendering industrial designs and movie productions. Ray
tracing algorithms produce imagery by computing the paths of light rays to
accurately estimate the illumination of the scene. The most common type
of ray tracing algorithm is path tracing, where the key idea is to simulate
many light rays (samples) stochastically to capture as many light paths in
the scene as possible.

Ray tracing will often give more realistic-looking results than rasteriza-
tion since effects like shadows, reflection and global illumination are auto-
matically handled when simulating the light rays. However, ray tracing, and
especially path tracing, has a high computational cost. This is because the
number of samples required to capture the distribution of light accurately
is very high, often several thousands of samples per pixel. Therefore, path
tracing has long been considered infeasible, especially for real-time settings.

Recent developments in graphics hardware give hope that real-time path
tracing is rapidly approaching. The catch is that even with such new hard-
ware, the number of light rays that are feasible to simulate at real-time
framerates is very low, usually only 1 sample per pixel (spp) every frame.
Due to the stochastic nature of path tracing, such a low sample count will

1
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produce unacceptable levels of noise in the image. Thus, to make path trac-
ing feasible for real-time applications, techniques for removing the noise in
the final image is needed.

1.2 Goal of Thesis

This thesis will explore the realm of denoising techniques targetting real-
time path tracing. The objective of this document is stated through four
research goals:

• Gain an understanding of the history and development of ray tracing
and denoising techniques up to today

• Gain a thorough understanding of two specific state-of-the-art denois-
ing techniques targetting real-time path tracing

• Compare and evaluate the two state-of-the-art denoising algorithms
by conducting experiments investigating both performance and visual
quality

• Provide a proposal for extending one of the denoising algorithms and
evaluate the proposal through experiments

The structure of the thesis follows this list of goals. Chapter 2 will go
through both the history of ray tracing techniques and denoising, highlight-
ing some of the many scientific breakthroughs and contributions that have
cumulated in the state-of-the-art methods. Chapter 3 will go through two
hand-picked state-of-the-art denoising algorithms for real-time path tracing
in detail. Chapters 4 and 5 will give an explanation of the experiments that
have been conducted and their results, respectively. Lastly, chapter 6 will
summarize the take-aways from the thesis, together with its limitations and
ideas for future work.



Chapter 2

Related Work

This section will take a step back and try summarize the history behind ray
tracing, including different ideas and techniques that have been invented
and developed. It will point out some important steps up to today that has
made ray tracing feasible for real-time applications.

2.1 Early Ray Tracing

The ray casting algorithm by Arthur Appel [5] was presented in 1968 and
is recognized as the ancestor of modern ray tracing algorithms. Ray casting
involves tracing one ray for each pixel and follow it until it collides with
geometry in the scene. Then the algorithm traces a ray from the collision
point to each light source to determine the illumination at that pixel. The
illumination value is computed based on the whether the light sources were
found to be reachable by the second batch of rays.

Appel’s work targetted the 60’s display technology, which had limited
drawing capabilities compared to today’s devices. Therefore, the goal fi-
delity by his method was not absolute realism, but a visualization that
could conveye a reasonable sense of 3D geometry to the viewer. The ap-
proach mainly targetted industrial use, e.g. for visualizing machine parts.

Turner Whitted further elaborated on the concept of casting rays in
1979, and described what we today would recognize as traditional ray trac-
ing [53]. In Whitted’s algorithm, a ray from the camera that hits geometry
in the scene, can recursively create up to three new rays of different types:
A shadow ray, a refraction ray and a reflection ray. Shadow rays resem-
ble the illumination-checking ray in Appel’s algorithm – it is a ray that is
sent towards a light source. If the light source is directly visible from the
collision point, the point is illuminated by the light source. The exact illu-

3
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mination value depends on the angle of the shadow ray to the surface and
the intensity of the light source.

Refraction and reflection rays act just as the rays originating at the cam-
era. Reflection rays represent light that gets reflected off the surface, while
refraction rays represent light that travels through the material, piercing
the surface. Both of these ray types are handled in the exact same way as
the original ray, traced recursively away from the collision point and col-
liding with new surfaces. The illumination values computed from each of
these paths can be combined with material parameters to find their impact
on the final color that is propagated back to the viewer. Looking at it this
way, one can consider computing illumination at a single pixel as traversing
a tree of recursive rays and collision points, computing the final root value
by a depth-first-like approach. The recursion can terminate when a certain
depth is reached, or when the contribution to the pixel color is negligible.

Whitted only considers ideal reflection and refraction, leaving the ray
direction unambiguously determined for each of the ray types. This gives
realistic-looking effects for rendering perfectly smooth surfaces, but cannot
faithfully render most realistic surfaces. This stems from the fact that real-
life light is scattered probabilistically on surfaces, leaving many new rays
that would need to be traced.

2.2 The Rendering Equation

James Kajiya introduced the rendering equation [31] in 1986. The rendering
equation is a compact description of the amount of light that is transmitted
directcly from one surface point x′ to another point surface point x in the
scene. It is of the form

I(x, x′) = g(x, x′)

(
ε(x, x′) +

∫
S
ρ(x, x′, x′′)I(x′, x′′)dx′′

)
.

Here, I(x, x′) is the illuminaton term describing the amount of light
passing in a straight line from point x′ to x, g(x, x′) is a “geometry term”
which e.g. will be 0 when there is an object directly between x′ and x
blocking the light path. ε(x, x′) represents the light emitted from x′ towards
x and S is the union of all surface points in the scene. ρ(x, x′, x′′) is dubbed
the unoccluded three point transport reflectance from x′′ to x through x′ in
the original paper, and represents how much of the light that is transported
directly from x′′ to x′, is transported further from x′ to x.

ρ is solely the property of the surface material at x′, and is not directly
dependent on the positions of the three points. Rather, it depends the
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directions to x and x′′ from x′ relative to the surface orientation at x′. This
function is what we call the bidirectional scattering distribution function
(BSDF). It had been described earlier by Bartell et al. [7] in 1980.

BSDF is an important concept, because it fully captures how light in-
teracts with a surface at a point. For a light ray incoming from a certain
direction, the BSDF describes how much of the light is reflected back out
in every direction from the collision point.

While the render equation is very general and compact, it imposes severe
difficulties when used in computer graphics due to its integral nature. One
could attempt to use Whitted’s algorithm and, at each surface collision,
sample several new rays from the BSDF to trace recursively. The most
imminent problem is that the amount of rays grow exponentially with the
recursion depth, so that the load quickly becomes intolerable for any setting.
Furthermore, the BSDF can vary frequently across the same surface, making
aliasing a problem – tracing a single ray for every pixel may lead to a final
color that is not representative for all the surface area that the pixel covers.

2.3 Path Tracing

A solution to this computational problem, which is also discussed by Kajiya,
is to switch to an entirely Monte Carlo-based ray tracing approach which
has been known as path tracing. In short, path tracing creates many rays
from different uniformly distributed positions within each pixel. When a
ray collides with a surface, a single new ray is generated from the collision
point, its direction sampled from the BSDF. By the Law of Large Numbers,
such a simulation will generate an approximate numerical solution to the
illumination problem, given that the number of rays is large enough. In
contrast to Whitted’s algorithm, the number of rays does not increase with
depth. Intuitively, this is a reasonable sacrifice, as surfaces hit at higher
recursion depths will contribute less to the final illumination value.

While path tracing virtually guarantees a realistic-looking result for a
large enough ray count, the required computational cost can be infeasible
for practical purposes. A typical render of a scene can require several thou-
sand ray samples per pixel (spp) to arrive at a satisfactory result. This
number grows with the complexity of the scene and its surfaces. Also, as
the algorithm is stated here, every ray that does not eventually hit a light
emitting surface contributes nothing to the final image, which is detrimen-
tal to complex scenes with small light sources. Therefore, it is common to
combine ray tracing with the idea of Whitted’s shadow rays. In practice,
one can e.g. trace a shadow ray to a randomly chosen light source for every
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ray-surface-collision point, and add the illumination if the light source is
not occluded.

In the rest of this document, path tracing algorithms will be considered
as a specific class of ray tracing. Consequently, statements made about ray
tracing will also apply to path tracing – which will be the main subject of
discussion throughout the thesis.

2.4 Path Tracing Effects

One of the great advantages of ray tracing, is that it generalizes well to
naturally occuring phenomena. Cook et al. [19] described in 1984 how
a path tracing algorithm could easily modified to cope for effects such as
motion blur, depth of field, penumbra, translucency and glossiness. For
instance, depth of field can be acheived by altering the distribution of ray
directions and origins in the camera. Motion blur can be approximated by
giving each ray a timestamp uniformly chosen from the exposure period.
Every object in the scene is given a motion vector, and the ray-surface
executions are then computed using the estimated object positions in the
ray’s timestamp. No other changes are needed for these two effects, the
results are computed by relying on the same same Monte-Carlo approach
as “vanilla” path tracing.

2.5 Challenges in Path Tracing and their Solu-
tions

Ray tracing approaches give many advantages over more traditional render-
ing algorithms, but there are undoubtedly new challenges that comes with
these opportunities. A number of algorithms have been developed to tackle
different drawbacks one must expect when using path tracing. A few of
them will be listed here, to show some of the variety of different problems
that have arisen and the solutions that have emerged. Many of the topics
here are also discussed in the survey by Christensen and Jarosz [16].

2.5.1 Bounding volume Hierarchies

The first and most glaring issue with ray tracing in general, is the immense
computational load it is to trace many rays per pixel. It is therefore im-
perative that each ray is as cheap as possible. This is not trivial since, for
every ray, one must find its first intersection with geometry in the scene. A
straight-forward algorithm would be to check every ray with every primitive
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in the scene and choose the closest hit, yielding a runtime linear in both the
number of rays and the number of primitives in the scene, hardly feasible
for any but the simplest ray tracing tasks.

A better approach is to utilize a datastructure to subdivide the scene
space into smaller chunks. One such datastructure is the Bounding Volume
Hieranchy (BVH). A BVH is a tree structure where each node is associated
with a bounding volume, often an axis-aligned box, and where each node has
the property that its bounding volume contains the bounding volumes of its
children. The leaf nodes of the tree holds references to the geometry that is
contained within their bounding volumes. Naturally, it is ensured that every
piece of geometry in the scene is contained within the bounding volume of
at least one leaf node. It is not required that the bounding volumes are
disjoint.

A reasonable approach to constructing a BVH is to recursively split the
scene in two along an axis-aligned plane that puts the primitives of the
scene geometry into two evenly sized chunks. The recursion ends at a cer-
tain bounding volume size or geometric primitive count, and the remaining
primitives are put into a single leaf node.

The speedup from a BVH comes from the fact that the ray tracer can
discard large amounts of geometry at a time by checking for intersection with
the bounding volume. Starting with the root node, if the ray intersects the
bounding volume of a node, it recursively checks its children. This goes
on until it reaches a leaf node, in which case the ray is checked against all
the primitives associated with the node. The efficiency of this approach
highly depends on the scene and the camera orientation, but a reasonable
approximation is that using BVH reduces the algorithmic complexity to as
little as O(logN) per ray, N being the number of primitives in the scene.

Lauterbach et al. [35] and Wald et al. [51] show that Bounding Volume
Hierarchies can be used efficiently, even in dynamic scenes.

2.5.2 Sampling Patterns

As mentioned, ray generation in path tracing can happen through uniform
sampling of points within the pixel in question. However, when the afford-
able number of samples per pixel is limited, it is more important that the
generated rays covers the pixel sufficiently, rather than of being properly
random. In general, one would want a high-discrepancy distribution, which
is a distribution of samples that can be perceived as random, but where the
samples are guaranteed to be somewhat evenly distributed.

One simple method to generate a high-discrepancy distribution is jitter
[17]. N2 jittered samples can be constructed by dividing the pixel into
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N × N uniform tiles, and subsequently sample once uniformly at random
within each tile. A variation of this is multijitter [13], where the pixel
simultaneously is subdivided with N2 rows and columns, each of which is
only allowed to contain one sample.

In some cases, the number of required samples cannot be known prior to
computation. An alternative is to compute a sequence of high-discrepancy
samples of arbitrary length. Examples of such sequence generating algo-
rithms are Halton sequences [29] and Sobol sequences [47].

2.5.3 Bidirectional Ray Tracing

Another problem is that path tracing may require many samples or large
recursion depth to reach light sources that are small or not in direct line of
sight from the majority of the scene surface. In the latter case, even shadow
rays may not reach the light source.

A solution to this problem is Bidirectional Ray Tracing, proposed both
by Lafortune and Willems [34] and Veach and Guibas [49] independently,
in which rays are traced both from the light sources and the camera. By
sampling rays from the light source, one can treat their collision points
with the geometry as new light sources, which can be connected with the
camera rays using shadow rays as before. In cases where indirect lighting
is important, that is, where the original light source is largely hidden away,
this may drastically increase the number of rays that can contribute to the
light, thereby reducing noise while resulting in similar rendering times.

2.5.4 Memory Management

The final issue that is discussed here, is that of memory management. Ray
tracing faces severe performance problems when faced with scenes that are
too large to fit in working memory. In some traditional rendering methods,
e.g. rasterization, one can trivially render large scenes by loading in one and
one object and render them independently, only maintaining e.g. depth and
color buffers representing what’s already rendered.

Ray tracing algorithms, on the other hand, have unpredictable access
patterns due to the stochastic nature of ray sampling, meaning loading
objects in and out of memory may take up a significant portion of the run
time if performed naively.

An early approach to this was Pharr and Hanrahan’s Geometry Caching
[41] in 1996. Their algorithm assumes that the world geometry has relatively
low detail which is refined using displacement maps when rendering.
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Pharr and Hanrahan’s approach was to subdivide the scene into voxels,
each voxel holding a reference to all the geometry it contained. When a
ray travels through a voxel, all geometry within the voxel is subdivided and
refined using the displacement maps, allowing for intersection testing with
the ray. The voxels of refined geometry is maintained in a geometry cache,
so that it does not have to be recomputed if it is to be intersected with new
rays in the near future. This makes it possible to render complex scenes
with a smaller memory footprint.

Further down the line, Pharr et al. introduced Ray Reordering [42] to
produce more temporal locality in using their geometry cache. Each voxel is
given a ray queue, which rays are pushed to as they arrive at the voxel. Then
all rays in the queue is tested for intersection in the voxel simultaneously,
ensuring good utilization of the voxel.

Disney also has a ray reordering algorithm in their Hyperion engine [23].
It works by sorting rays into batches based on origin and directions, which
are then traced one by one. Their algorithm also sorts the collision points
with scene geometry before looking up texture maps, in order to make the
lookup of many texture samples as efficient as possible.

2.6 Ray Tracing in Movies

Path tracing was long considered too expensive to be used in a feature-length
film. Many early computer generated effects, as well as the first completely
computer-generated animated feature film Toy Story (1995, Pixar) used
Reyes rendering [18]. The Reyes algorithm uses ray tracing sparsely, and
only when deemed necessary.

An early movie production that was fully path traced, was the short
film Bunny by Blue Sky studios in 1998. The first feature-length film came
nearly a decade later with Monster House in 2006 [16]. Christensen et al.
have expanded upon how they extended Pixar’s rendering tool Renderman
with ray tracing capabilities for the movie Cars from the same year [14].
The authors detail how ray tracing made effects like arbitrary reflections,
motion blur and ambient occlusion more believable and straight-forward to
create. However, ray tracing was only used supplementary to the Reyes
algorithm, much due to the number of features the Reyes algorithm could
still handle sufficiently and more efficiently.

Nowadays, Pixar, Disney, and a large part of the animated movie in-
dustry largely relies on path tracing as a primary method of rendering in
feature-films [15], [11], [24]. A large part of this move in technique can be
attributed to a large increase in hardware capabilities as well as algorithmic
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improvements.

2.7 Towards Real-Time Path Tracing

Path tracing has long been considered a very expensive way of creating
images, even for industry-scale film production. Still, work in the last few
years have paved the way for path tracing in real-time settings.

An important step towards real-time ray tracing has been the utilization
of GPU hardware to cope with the heaviest computations. A work back in
2006 by Friedrich et al. [26] explored what opportunities ray tracing could
bring to game content. They show that ray tracing applications with inter-
active framerates exist at the time, but emphasize that future development
in algorithms and parallel hardware will be necessary for the adaption of
ray tracing in games.

GPU powered ray tracers were not able to outperform CPU implemen-
tations before 2007 by Popov et al. [43]. The difficulties with ray tracing on
GPUs stems from issues with utilizing the parallelism with space subdivision
data structures and thread divergence.

An important step towards the adaption of real-time ray tracing among
developers, has been the introduction of uniform software APIs to take ad-
vantage of GPU accelerated ray tracing. An early example is NVIDIA’s
OptiX [40] released in 2010, that is tightly integrated to their CUDA API.
While general-purpose real-time ray tracing still was years away, the speci-
fication of the API signifies the intention to entirely abstract away e.g. ray-
geometry intersection algorithms and make ray tracing applications portable
across GPU architectures.

More recently, similar APIs have also been introduced to already exist-
ing graphics APIs, specifically to DirectX (DirectX Raytracing [1]) and to
Vulkan, where the latter was given the capabilities both in the form of an
NVIDIA-specific extension [52] and, very recently, an official cross-platform
Vulkan extension for ray tracing [32].

In 2018, NVIDIA released their first GPUs using their Turing architec-
ture. These graphics cards have hardware cores dedicated to the task of
ray tracing [39]. The release made real-time ray tracing hardware available
for consumers, leading to the appearance of a large amount of video games
using ray tracing [2], but usually only for certain special effects.

So far, NVIDIA is the only company to have released devices that target
real-time ray tracing, but their competitor AMD has announced that their
upcoming GPU architecture RDNA will hold similar capabilities [4]. It is
tempting to predict that the increased competition will further accelerate
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the development of hardware and algorithms to make fully ray traced real-
time applications a reality in the near future.

2.8 Denoising

The most prominent problem with ray tracing, image quality-wise, is noise.
Noise is an inevitable consequence of the probabilistic nature of path trac-
ing. One important cause of visible noise is the lack of a sufficient number
of samples. In real-time ray tracing, the number of samples per pixels is
bound to be low, making the result unacceptably noisy. Therefore, denois-
ing is an integral part of any real-time ray tracing application, but denoising
algorithms are also put to use in offline settings, like movie production.

The survey given by Zwicker et al. [57] summarizes much of the de-
noising work that has been done since the start. Zwicker et al. divides the
denoising techniques into two main categories: A priori and A posteriori
techniques.

A priori techniques try to compute features of the motive, like spatial
frequency or gradients, and use this information to guide sampling. In
particular, one can compute spatial frequency in different regions of the
image and apply Nyquist’s sampling theorem to avoid aliasing. Durand et
al. demonstrated this method by analyzing the frequency of the resulting
image and were able to recontsruct the image from very sparse sampling
with bilateral filters [22]. Bilateral filters will be discussed in section 3.2.1.

The rest of the methods discussed here, belong among the a posteriori
methods. These methods sample first, and try to make a smooth image
from the noisy samples, or use them to guide future sampling.

An early example of such an a posteriori method is Don Mitchell’s
method for avoiding aliasing with low sampling density [38]. Mitchell per-
forms non-uniform sampling of the image, guided by a few initial low-density
samplings to detect regions of high spatial frequency, calling for higher
amounts of samples.

The denoising techniques are further divided into offline and real-time
denoising methods, optimized for high counts of samples per pixel (spp) and
low spp respectively.

2.8.1 Offline Denoising

Offline denoising is typical for movie production. The amount of noise in
the images is usually close to negligible, but an important task of an offline
denoiser is to ensure consistency across frames.
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Denoising methods, both offline and real-time, can usually assume ac-
cess to excess information from the rendering stage. This information may
include world positions, surface normals, albedo and material properties.
They are usually provided to the denoiser as images of the same dimensions
as the noisy image, where each pixel contains e.g. a position or a normal.
Saito and Takahashi introduced this concept as G-Buffers [45], while this
document will refer to such images as feature buffers.

Non-linearly Weighted First-order Regression (NFOR) is a powerful de-
noiser by Bitterli et al. made for denoising ray tracing in an offline setting
[9]. Their work performs an extensive analysis on previous methods, includ-
ing bilateral filters and local zero- and first-order regression with feature
buffers. Based on the analysis, they propose a method that uses a combina-
tion of several passes of local regression using NL-means [10] with weights
computed from feature buffers. They also makes an estimate of an applica-
ble kernel frequency bandwidth to optimally remove noise while preserving
detail.

An example of industry use of offline denoising is given by Vicini et
al. at Disney [50]. Their work specifically handles deep images, images
where each pixel also holds information on occluded objects, thus preserving
3D information. As deep images is quite popular with animated movie
production, it is expected that a denoiser can take advantage of them. Vicini
et al. specifically show an existing denoising technique adapted to remove
noise at different depths independently. They build their work on NL-
Mean filters which also take features such as depth and surface normals
into consideration.

2.8.2 Real-Time Denoising

Real-time denoisers have two main goals that differ from those of offline
denoisers. First of all, they must work on very sparsely sampled images,
usually 1 spp. Several works (e.g. Koskela et al. [33]) argue that the limit
of 1 sample per pixel is likely to persist for a long time, considering that real-
time applications like video games are seeing an ever-increasing demand in
geometric level of detail and display resolution, making it unlikely that any
immediate increase in computational power will benefit the sample count.
The loss of detail at this level of sampling may be so severe, that these
techniques are often said to reconstruct the image rather than remove noise
from it.

The second goal for a real-time denoiser, in order to be fit for real-time
applications, is that it must run in real-time. Needless to say, it is expected
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(a) (b)

Figure 2.1: (a) A scene path traced with 1 sample per pixel, showing a
large amount of noise. (b) The reference image, showing the same scene
path traced with 1024 samples per pixel. The scene is the Cornell Box, first
used in [28]

to be run along-side a real-time ray tracer, meaning it may have to operate
under very strict conditions in terms of hardware resources and runtime.

Figure 2.1 illustrates the sort of situation that a real-time denoising
algorithm must handle. It shows one image created with 1 spp, affordable
in real-time, and the reference image, path traced with 1024 spp, where
the noise is negligible to a human. Ideally, a real-time denoiser should take
the first image as an input and give the second as an output. In practice,
the denoiser must work with heuristics to approximate the reference image
using a limited amount of information.

Another goal is to ensure temporal stability. This goal is shared with
offline denoisers, but is a task that requires greater attention in the case
real-time denoisers, since the light intensity from a single pixel, even with
static camera and scene, can vary wildly across frames.

An early idea for denoising in general, is the use of temporal coherence
[6]. Sequential frames from any kind of movie or real-time application often
holds many similarities, since the camera position and orientation changes
slowly. Due to this temporal coherence, many of the ray traced samples from
the previous frame can be used again in the current frame. This becomes
particularily important in real-time ray tracing, as it drastically increases
the effective number of samples per pixel for most frames. Also, human
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perception is less vary of image noise shortly after the beginning of a clip
or after a change of camera, giving the application some time to gather
samples from a few frames to create a convincing result [44].

Guided filtering is a regression method for interactive denoising intro-
duced in 2011 by Bauszat et al. [8]. The main idea is to approximate small
blocks of the noisy image as a weighted sum of corresponding small blocks
of feature buffers. For each pixel, a least-square linear solution is computed
using statistical regression, which yields a set of coefficients for the best lin-
ear sum. Subsequently, the coefficients are interpolated at each pixel, and
the final illumination value is computed as a linear sum of features at that
pixel. The authors also separated direct and indirect illumination, as these
two illumination types often depend on the camera movement in different
ways.

Mara et al. introduced another real-time method in their paper An
Efficient Denoising Algorithm for Global Illumination [36]. Their method
assumes that the ray tracer traces one direct path to a surface through
the center of each pixel, equivalently to traditional rasterization. Further-
more, the second bounce is simulated using two different paths, responding
to the matte and glossy parts of the surface texture respectively. These
indirect terms are temporarily and spatially filtered separately, The filter-
ing accounts for the fact that matte reflections can tolerate much higher
blurring than glossy reflections.

Dammertz et al. introduced a method based on edge-avoiding filter-
ing [21]. This method borrows ideas from À-trous filtering and bilateral
filtering. It will be described in detail in chapter 3 as part of the SVGF
algorithm.

Another class of denoisers are those based on machine learning algo-
rithms.

One such algorithm is NVIDIA’s official OptiX denoiser by Chaitanya et
al. [12]. The algorithm is based on a neural network that is trained on noisy
images and corresponding reference (high spp) images. The network is of
the recursive neural network (RNN) architecture, which makes it capable
of taking advantage of temporal coherence. Although their achieved visual
quality is good, the algorithm is slightly slower than what one would consider
comfortable in a real-time application, with more than 50 ms of computation
time per frame, putting this in the category of “interactive” denoisers.

Intel Open Image Denoise is an open source CPU-based denoiser that
also relies on a neural network for reconstruction [30]. Its performance is
heavily restricted by the CPU implementation, and does not achieve higher
than interactive frame rates either.
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Schied et al. [46] took the edge-avoiding approach of Dammertz et al.
[21] further and combined it with spatiotemporal filtering in their algorithm
Spatiotemporal Variance-Guided Filtering (SVGF). In addition to accumu-
lating samples across several frames, Schied et al. continuously computes
the variance of the intensity at each pixel, using this as a heuristic to guide
the amount of blurring to conduct throughout the image.

Another method that was recently demonstrated by Koskela et al. to be
suitable for real-time denoising, is Blockwise Multi-Order Feature Regression
(BMFR) [33]. In their approach, they divide the image into equally-sized
blocks and perform a regression step within each of these, similarily to
Guided Filtering described above, but without interpolating the result at
each pixel.

Both SVGF and BMFR will be explained in detail in chapter 3.
Besides Zwicker et al.’s survey, Alain Galvan has also given an extensive

summary of the many flavors of modern ray tracing denoising techniques,
covering many of the approaches mentioned here [27].
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Chapter 3

Two Real-Time Denoising
Algorithms

This thesis will now present and investigate properties of two modern real-
time denoising algorithms. The chosen algorithms are Spatiotemporal Variance-
Guided Filtering (SVGF) by Schied et al. [46] and Blockwise Multi-Order
Feature Buffers by Koskela et al. [33].

The reasons for this choice of algorithms, is that they are both modern
and fairly general denoisers that have both been considered state-of-the-
art for denoising in real-time settings. Their inputs are relatively simple
to obtain, and very similar between the two, making comparisons easy.
Additionally, they both make few assumptions of the input data, meaning
that they are both fit for general-purpose real-time applications.

In addition, the two algorithms tackle the problem of denoising in two
fundamentally different ways, making for an interesting comparison in terms
of performance and output quality.

In this chapter, the two algorithms will be explained in detail. Before
diving into algorithms themselves, a short recap on feature buffers is given.
Feature buffers play a vital role in both SVGF and BMFR.

3.1 Feature Buffers

As written in section 2.8, feature buffers are images that contain extra
information about the scene, like world positions and surface normals. An
example of each of the two types is shown in figure 3.1. Other potential
feature buffers include gradients, object IDs and buffers depicting motion.

Feature buffers are valuable because they give geometric information
about the scene. This information can be used to deduce what areas of

17
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(a) (b)

Figure 3.1: Two examples of feature buffers: (a) World positions, (b) Sur-
face normals. Each feature consists of three-dimensional values, which are
visualized directly as RGB.

the image may have similar intensities of incoming light. Also, they can
usually be constructed cheaply either from the ray tracing engine itself or
a rasterizer. For the purpose of this thesis, and as is common for denoising
applications, all feature buffers are assumed to be noise free, meaning that
there is no randomness involved in the rays’ path from the camera into the
scene; the rays form a regular rectangular grid. The feature buffers used in
this work are all rasterized, which means they are automatically noise free.

3.2 Spatiotemporal Variance-Guided Filtering

At the heart of SVGF is the edge-avoiding À-Trous algorithm for denoising,
as it was presented by Dammertz et al. [21]. Therefore, we will start off by
describing their work.

3.2.1 Edge-Avoiding À-Trous Filtering

Edge-avoiding À-trous filtering combines ideas from two other filtering tech-
niques: À-trous filtering and bilateral filtering.

À-Trous Filtering

À-trous (“with holes”) filtering is a way of approximating large convolution
kernels cheaply, avoiding the quadratic dependence on kernel size. In À-
trous filtering, the same kernel is used several times iteratively, but with
more space between its coefficients for each iteration. Consider the following
simple blurring kernel:



3.2. Spatiotemporal Variance-Guided Filtering 19

h0 =

 1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 .
Subsequent kernels hi are constructed from h0 for i ∈ [1...N − 1] for a

desired N , such that the number of zeros between two neighboring coeffi-
cients in the original kernel is always 2i − 1. In this example, we would
construct h1 as

h1 =


1
16 0 1

8 0 1
16

0 0 0 0 0
1
8 0 1

4 0 1
8

0 0 0 0 0
1
16 0 1

8 0 1
16

 .
Similarily, h2 would have three zeros between each coefficient from h0,

and so on. To perform À-trous filtering with this kernel, we compute Ii+1 =
hi ∗ Ii for i ∈ [0...N ], where ∗ denotes the convolution operation and Ii are
the intermediate convoluted images, I0 being the input image and IN+1 the
final result. The effect of the À-trous filtering operation, is approximately
that of convolving by a larger kernel with a size on the order of magnitude of
that of hN . The cost is much smaller however, since the number of non-zero
coefficients stays constant.

Bilateral Filtering

Bilateral filtering resembles traditional convolution, but adds another weight
term to the input pixels which depends on the pixel at the center of the
convolution mask. In notation, traditional convolution can be described as

R(x, y) =
∑

(∆x,∆y)∈U

h(∆x,∆y)I(x+ ∆x, y + ∆y)

whereR is the resulting image, regarded as a two-dimensional function, h
is the kernel, I is the input image and U is the set of pixel positions present
in h. To be mathematically precise, this is the operation of correlation
whereas convolution would require the kernel parameters to be negated.
The distinction will be ignored here, and it is assumed that h is already
flipped or symmetric. General bilateral filtering changes this formula to

R(x, y) =
∑

(∆x,∆y)∈U

w(x, y,∆x,∆y)h(∆x,∆y)I(x+ ∆x, y + ∆y),
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where w in general will depend on I and possibly other inputs. A typical
use case of bilateral filtering is edge-preserving noise removal. The goal is to
blur out noise similarily to a Gaussian blur, but not across edges, preserving
more of the sharpness in the image. For such a use case, h can be chosen
to be the Gaussian kernel, while the weight function may be of the form

w(x, y,∆x,∆y) =
1

W (x, y)
e−
|I(x,y)−I(x+∆x,y+∆y)|

σ ,

where σ is a parameter to adjust the sensitivity and W (x, y) is a normal-
ization constant, chosen to be the sum of w(x, y,∆x,∆y)h(∆x,∆y) across
the kernel extent evaluated at the given (x, y). The general idea here is that
pixels that are more similar to the pixel at the center are given more weight.

Edge-Avoiding À-Trous Filtering

Dammertz et al. combined these concepts with the use of feature buffers
and applied them to denoising.

Their approach follows the idea of À-trous filtering, iteratively convolv-
ing with increasing mask sizes to smooth out the noise in the image. On
top of this, a weight function is applied. The weight function makes use of
the feature buffers to guide the smoothing.

The first À-trous kernel is based on the one-dimensional filter

g0 = [
1

16
,

1

4
,

3

8
,

1

4
,

1

16
],

leading to the 2-dimensional kernel h0(i, j) = g0(i) · g0(j).
The weight function is divided into three different components. The

three components account for illumination, normals and positions respec-
tively, denoted by wrt, wn and wp. All the three components share the
form

wi(x, y,∆x,∆y) = exp

(
−||Fi(x, y)− Fi(x+ ∆x, y + ∆y)||

σ2
i

)
,

where Fi is a feature buffer or noisy image, and σi is a sensitivity pa-
rameter. The final weight is computed as the product of these three, which
subsequently is multiplied with the À-trous kernel weight. Dammertz et al.
also ensures that the sensitivity parameter σrt for the noisy input image is
halved for each iteration. This way, pixels that differ more from the center
one is given even less weight, ensuring that the smoothing will focus on
small differences in illumination on the later iterations of the algorithm.
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3.2.2 The SVGF Algorithm

First, a couple of remarks about the treatment of light in SVGF:

Direct light and indirect light are treated separately. Direct light denotes
light with only one bounce; the ray from the camera hits a surface and then
a light source. Indirect light is all other light, arriving at the visible surface
from other non-emitting surfaces in the scene. The separation makes SVGF
more capable of handling e.g. mirror-like reflections correctly, because such
reflections depend on camera movement differently than diffuse scattering
from direct light does. Both input noise buffers and temporary buffers in
the algorithm (like variance) have separate versions for direct and indirect
light.

Furthermore, all light is filtered without albedo – the color of the directly
visible texture. This is done in order to not conduct unnecessary blurring
of textures. Instead, the albedo is multiplied with the computed light in
the end. The albedo buffer is also noise-free and is constructed in the same
manner as the other feature buffers. Note that this does not mean the
filtered light is scalar, the light incident on a surface may have different
values of the RGB channels.

Here follows a detailed description of the technique itself. The SVGF
algorithm is divided into three stages:

• Reprojection

• Variance computation

• À-trous filtering

Each of these will be described in turn.

Reprojection

To get the most out of the traced ray samples, it is useful to reuse the
samples of previous frames. This makes sense intuitively, since consecutive
frames often display high grade of temporal coherence. Still, one must
generally expect the camera to move a non-negligible amount between each
frame, so that reusing earlier frames becomes non-trivial.

The process of reusing previous samples has been dubbed reprojection,
and is used both by SVGF and BMFR.

Reprojection requires various inputs: First and foremost, one needs an
image containing the light intensity at each pixel in the previous frame
In−1. This will in general contain accumulated samples from earlier frames
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and can be filtered – like in SVGF – or only be an accumulation of noisy
samples – like in BMFR. Furthermore, the view-projection matrix C =
PV for the previous frame is required, with P being the projection matrix
and V the view matrix for the previous camera orientation. Additionally,
relevant feature buffers for current and previous frame are needed, including
at the very least position buffers. The output of reprojection is the current
accumulated buffer In.

For a given pixel coordinate (x, y) in the new accumulated buffer In, we
will first compute the pixel coordinates (x′, y′) in the previous frame from
which we can get the old samples. Using the world position buffer, let ppp be
the world position on coordinate (x, y). We then perform the computation[

x̂′

ŷ′

]
=

(
(Cppp)xy
(Cppp)w

)
· 0.5 +

[
0.5
0.5

]
.

Here, x̂′ and ŷ′ are the pixel positions in the previous frame, normalized
to be between 0 and 1. (Cppp)xy and (Cppp)w denote the two-dimensional
vector consisting of x- and y-coordinates of Cppp, and the scalar w-component
respectively. To get pixel coordinates, they are multiplied by the image
resolution along the x- and y-axes respectively. Coordinates outside the
previous frame are discarded.

To decide whether a sample value can be reused for the current frame,
the feature buffers are consulted for more information. The world positions
ppp at (x, y) in the current frame and ppp′ at (x′, y′) in the previous are compared
to see if the sample value originates from the same place. If ||ppp−ppp′|| is higher
than a set threshold, the previous samples are discarded. This happens e.g.
if the origin of the previous sample is occluded in the current frame. If
the positions correspond, other features like surface normals or object IDs
can also be checked. SVGF and BMFR both check surface normals as well,
which may be important because the amount of reflected light in a given
direction is very dependent on the surface normal. If all checks pass, the
sample values from the previous frame are stored in In at position (x, y).

In general, the coordinates x′ and y′ in the previous frame will not be
integers. Therefore, the samples at the four neighboring pixels (bx′c, by′c),
(bx′c+1, by′c), (bx′c, by′c+1) and (bx′c+1, by′c+1) are each evaluated and
added together using bilinear weights, which are eventually renormalized to
1 to account for discarded samples.

During reprojection, SVGF and BMFR also uses motion buffers to ac-
count for dynamic scenes. Motion buffers hold a 2D motion vector on each
pixel telling the change in screen-space position for thatpixel from the pre-
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vious frame to the current, which is crucial for reprojecting samples from
moving objects correctly.

Eventually, when the previous samples have been accumulated into the
new frame, the new noisy input is also blended in. This is done with an
exponentially moving average: I ′n(x, y) = (1−α)In(x, y) +αJn(x, y), where
I ′n is the final output image and Jn is the noisy input for the current frame.
α is a blending constant, typically chosen to be around 0.2. For the first
few samples, it is common to instead use an arithmetic mean, weighing all
samples, new and old, equally to avoid giving the first frames too much
weight.

Variance Computation

As the name suggests, Spatiotemporal Variance-Guided Filtering uses vari-
ance of light on each pixel to control the À-trous filtering. The key idea
is that pixels that display little variation should not need to be filtered as
strongly as pixels with high amounts of variation. A buffer containing the
second moment of the noisy input is maintained and reprojected along with
the accumulated buffer. The second moment is the noisy input samples
squared; Sn(x, y) = Jn(x, y)2. This value is blended and accumulated just
like the light samples are in reprojection.

The second moment buffer is used to compute an estimate of the vari-
ance using the well-known formula Var(X) = E[X2] − E[X]2. Specifically,
the variance at pixel (x, y) is S′n(x, y) − I ′n(x, y)2 where S′n(x, y) is the ac-
cumulated and blended second moment at the current frame.

When few samples have been accumulated at a given pixel, its variance
is instead computed using its neighbors by a bilateral filter with feature
weights. The temporal variance is thus only estimated by spatial variance
until a more accurate estimate has accumulated.

À-trous Filtering

This step largely follows the procedure of edge-avoiding À-trous filtering as
described earlier, with a few differences.

In the À-trous iterations, variance is computed together with and in
the same way as the new light value. The variance comes into play in the
component of the weight function that depends on incoming light: The
sensitivity parameter σrt for light is multiplied by the standard deviation,
the square root of the variance. To avoid problems with instability of the
estimate, the variance is first blurred in a small spatial neighborhood.
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Multiplying with the standard deviation serves the purpose of smooth-
ing more aggressively in areas that display high variance. As the kernel
size increases with the number of iterations, the variance at each pixel is
expected to decrease, softening the blur effect.

Another modification to the edge-avoiding À-trous algorithm is this:
Instead of feeding the bilateral weight functions with world position, they
solely use the depth of the image. Furthermore, they account for the gra-
dient of the depth image by multiplying σp, the world depth sensitivity
parameter, by the dot-product of the depth gradient and the displacement
vector from the kernel center. The depth gradient is computed in clip-space.
This step ensures that scenes that contain details at many different scales
will be handled correctly.

The output of the last À-trous iteration is the final illumination image.
SVGF keeps the output of the first À-trous iteration, this is the image that
will serve as input to the reprojection step in the next frame.

The two separate light buffers, for direct and indirect light, are combined
and multiplied (modulated) with the albedo buffer to produce the image
that is sent to the display.

3.3 Blockwise Multi-Order Feature Regression

BMFR takes a slightly different route to tackle the problem of denoising,
namely by regression. The basics of the approach is that the frame is divided
into blocks, and within each of these blocks, the algorithm tries to write the
noisy buffer as a linear sum of features. The blocks will, for all intents and
purposes, have the size 32 × 32. Before explaining BMFR step by step, a
deep-dive into this regression step is given.

3.3.1 Features and Regression

The notion of “feature” in BMFR is slightly different from that of “feature
buffers” in SVGF. Here, features are only scalar buffers. Thus each of the
different components of e.g. world position is now its own buffer. In addition
to the aforementioned feature buffers like positions and normals, features in
BMFR can include any sort of information about the scene, including mesh
IDs, material properties or gradients. Furthermore, the authors of BMFR
add common feature components raised to a power, e.g. the squared x
coordinate of the world position, as features, and also a constant buffer
where every element is 1. The purpose of adding multiple new features is to
increase the accuracy that can be achieved when approximating the noisy
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buffer with features.

Let F = {Fi | i ∈ [1, N ] ⊂ Z} denote the set of N features, each of
which is represented by a two-dimensional function. Let C denote the noisy
accumulated buffer. Let Ω be the set of pixel coordinate pairs that are
contained within some 32 × 32 block in the image. The result we want
to achieve, is a least-squares approximation of C using the features in F ,
restricted to the pixel coordinates residing in Ω. In notation we write

ααα′ = argminααα
∑

(i,j)∈Ω

C(i, j)−
∑

n∈[1,N ]

αααnFn(i, j)

2

where ααα′ is the coefficients of the optimal linear combination within the
block Ω and αααn denotes the n’th component of ααα.

To solve this, Koskela et al. writes the buffers as a matrix by reshaping
each block as a column of W elements. In this case, W = 32 · 32. The
columns vectors corresponding to each feature is then concatenated into a
single W ×N matrix T . Let Ti denote the i’th column of T . Similarily, let
ccc be a column representing the noisy buffer within the block. Then we can
restate the optimization objective as

ccc− ∑
i∈[1,N ]

αααiTi

2

(3.1)

Now we concatenate the column ccc to T , giving us a new W × (N + 1)
matrix T̂ . The matrix T̂ is factorized by QR-decomposition, T̂ = QR̂,
where Q is a W × (N + 1) matrix with orthonormal columns and R̂ is an
(N+1)×(N+1) upper-triangular matrix. Let R be the left-most (N+1)×N
matrix of R̂, and rrr the right-most (N + 1) × 1 column. Let Ri be the i’th
column of R. Then we have Ti = QRi and ccc = Qrrr. Consequently, the
optimization objective (3.1) becomes
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Qrrr − ∑
i∈[1,N ]

αααiQRi

2

=

Q
rrr − ∑

i∈[1,N ]

αααiRi

2

=

rrr − ∑
i∈[1,N ]

αααiRi

T

QTQ

rrr − ∑
i∈[1,N ]

αααiRi

 =

rrr − ∑
i∈[1,N ]

αααiRi

2

, (3.2)

where the last step follows from the orthonormality of Q. Since the
lower-most row of R is only zeros, the last component of rrr gives a lower
bound on the error of this objective function. However, ignoring the last
row, we have an upper-triangular N ×N matrix R′ and an N × 1 column
r′r′r′. It is apparent that the minimization of objective expression (3.2) must
be the solution to the equation R′ααα = r′r′r′. Since R′ is upper-triangular, the
equation is easily solved for ααα.

To reiterate on the process once more: In order to find a least-squares
approximation of C as a linear combination of buffers Fi, the pixel values
within the block are ordered into columns, which are concatenated to a W×
(N + 1) matrix T̂ . Then the QR-decomposition of T̂ is found – the authors
suggest using the Householder’s algorithm for this – and the coefficients
ααα of the linear combination can be found with a straight-forward back-
substitution using R. Since Q is irrelevant for the computation, it does not
have to be computed for the purpose of the algorithm.

Also, it is important that the matrix T̂ is not singular. To prevent this,
the authors add zero-mean noise to all the feature buffers for the linear
regression part. When computing the actual weighted sum later, the original
noise-free feature buffers are used instead.

3.3.2 The BMFR algorithm

The description of BMFR is divided into five stages:

• Accumulate noisy samples
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• Linear regression

• Compute weighted sum

• Accumulate filtered samples

• Temporal anti-aliasing

Accumulate noisy samples

This step largely follows the procedure of reprojection as described in section
3.2.2. The output of this stage is an accumulated noisy buffer which serves
as input to the next stage in the pipeline, but it also, unlike in SVGF, serves
as the accumulated buffer of reprojection in the next frame.

Linear Regression

The image is separated into regularly-sized blocks, and then the algorithm
follows the procedure outlined in section 3.3.1. The noisy buffer to be
approximated is the accumulated noisy output from the previous stage. To
avoid problems with unbounded buffers, which is typically the case for the
position buffer, a distinction is made between buffers that are to be scaled
and buffers that are to be left unscaled. The scaling happens within each
block separately and happens by computing the maximum and minimum of
each scalable buffer and normalizing it to the range [0, 1].

The result from this stage is the min-max values for each scalar buffer,
which are reused in the next stage, in addition to the coefficients for the
linear combination computed in the regression.

Compute Weighted Sum

Here, the actual linear combination is computed, and the output is a new
frame approximating the accumulated noise with the feature buffers, using
the corresponding coefficients within each block.

Accumulate Filtered Samples

At this point, the output buffer contains unacceptable “blocky” artifacts.
This step is made to get rid of these artifacts. The preparations for this
stage is done already at the separation of the image into blocks. The block
grid is given a different offset every frame, circulating through a list of 16
different coordinate offset pairs, where each coordinate is between −16 and
15.
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To take advantage of the variation in offsets, the weighted sums are also
filtered together over time. This step largely performs the same reprojec-
tion operation as the first stage, but reuses information such as discarded
samples and pixel location in previous frame, and it operates on a different
accumulated buffer.

Due to the accumulation and blending in this stage, and with the offsets
changing every frame, the blocky artifacts do not get the chance to form at
any specific location on the screen over time, even if the camera is static.

Temporal Anti-Aliasing

The purpose of temporal anti-aliasing is to, once again, reuse information
from the previous frames, but this time for the purpose of removing flickering
(“fireflies”) or excessive variance in the pixels over time. Such effects can
be very distracting to a viewer.

In essence, the reprojection phase is repeated again, but this time with-
out checking if the samples from the previous frame correspond to the same
object in this frame. The final result is a bilinear sampling of the filtered
buffer of the previous frame, clamped to a range of values based on values
in a small local neighborhood around the new filtered pixel to avoid that
it sticks out. Finally, it is blended together with the previous temporally
anti-aliased buffer.

The authors note that this stage does not actually increase the score
when evaluated with objective quality metrics, but gives “more visually
pleasing results”.



Chapter 4

Test Setup

To address the remaining research goals, two experiments will be conducted.
The goal of the first experiment is evaluate and compare SVGF and BMFR
with respect to performance and output quality. The second experiment
will evaluate the potential improvement in quality resulting from a proposed
extension to BMFR.

This section will describe the setup used for running and evaluating the
two denoising algorithms. It will discuss the construction of inputs to the
algorithms, the scenes that are used, details on the implementations, details
on metrics and finally, a description of the two experiments.

4.1 Data Construction

4.1.1 Ray Tracer Engine

In order to test denoising algorithms, there is a need for ray tracing images
with a suitable low sample count per pixel, and corresponding reference
images to compare the result of the denoising. The reference images will,
as is common in the literature, be created with the same engine, but with
a much higher sample count per pixel, e.g. 1024 spp.

When choosing an engine to use in my experiments, finding a renderer
that targets real-time applications is emphasized, to ensure that the render-
ing process holds a realistic level of simplifications and heuristics.

The chosen ray tracer engine is Will Usher’s ChameleonRT project [48].
It implements a single interface a multitude of ray tracing backends, includ-
ing Intel’s Embree [3] and OSPRay [20], NVIDIA’s OptiX [40], Microsoft’s
DirectX Ray Tracing [1] and Vulkan [32]. The project both contains a basic
interface for rendering different kinds of scenes and supports several real-

29



30 30

time rendering frameworks. While having numerous backends is a notable
freedom, it is unlikely to have noteworthy benefits to this work. The work
presented here will restrict itself to the OptiX backend in ChameleonRT,
since it is GPU-accelerated, making for relatively fast production of refer-
ence images, and has a focus on real-time applications.

4.1.2 Constructing Feature Buffers

In addition to a ray-traced input image, SVGF and BMFR requre feature
buffers. Additionally, the feature buffers must be noise-free, as has already
been mentioned.

ChameleonRT does not offer a unified interface for turning off such ran-
domization for the initial rays. In terms of performance, this is also a task
better suited to a rasterization engine. For rendering feature buffers, Sascha
Willem’s Vulkan-glTF-PBR project [54] has therefore been deployed. It is a
Vulkan-based rasterizer with support for physically-based rendering (PBR).
Full PBR shading is unnecessary for producing feature buffers, but because
the fragment shader takes many different vertex attributes as input, it is
easy to modify into displaying a variety of features of the scene.

4.1.3 Unified Data Construction Repository

The input data construction is handled by a unified code repository. The
repository includes the modified versions of the ChameleonRT and Vulkan-
glTF-PBR code repositories, plus a number of utilities. Links to the source
code can be found in the appendix.

A few modifications were made to both Vulkan-glTF-PBR and Chameleon-
RT to fit the requirements of the denoiser inputs. First and foremost, both
repositories have been modified to write high dynamic range (HDR) im-
ages to disk. Both in the case of the feature buffers and the noisy input
buffer, the output images should hold values on a floating point scale. This
is important in case of rendering HDR content, and even more important
for features in feature buffers that are not bounded, like world position.
To support the required precision, images are written in OpenEXR format
[25]. OpenEXR is a image file format that can store an arbitrary number
of channels containing 16-bit floating point values.

Furthermore, both renderers are modified so that the camera follows a
user-given path. The path is specified through a JSON file with “check-
points” describing a camera direction and position along with an integer
time stamp. Intermediate transformations are computed on each integer
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time stamp, linearly interpolating position and view direction, and an out-
put image is generated on each such transformation.

4.2 Scenes

In the experiments, three scenes are used. The scenes are Crytek Sponza,
Living Room and San Miguel 2.0, all provided by Morgan McGuire’s Com-
puter Graphics Archive [37].

The Living Room and Sponza scenes are indoor scenes with a reasonably
low polygon count, around what can be considered realistic for a real-time
application. Sponza have ornaments, some smaller objects and hanging
pieces of clothes that introduce some complexity to light paths. Living
Room is slightly more complex, containing many smaller objects.

San Miguel is significantly more complex and contains many fine-grained
details, including foilage, in the form of leaves, thin geometry in cloths and
chairs, and reflective materials in cuttlery.

Each scene is given one path for the camera to follow. The paths each
generate a series of 60 frames, where the camera is flying continuously
through the scene. A usual target framerate for real-time applications is
60 frames per second, so that the movement captured in the 60 recorded
frames are meant to represent one second worth of application time. Thus,
the movement is reasonably limited and the imagery display large amounts
of temporal coherence.

The screen resolution will be 1280× 720 for all images, including noisy
input, feature buffers and results.

Each scene is equipped with a single static rectangular light source.

4.3 Image Quality Evaluation

In addition to measuring the performance of each algorithm, the experi-
ments will evaluate the quality of their outputs. The ideal metric for this
cause is to find the resemblance between the output from the denoiser and
the reference image as perceived by a human. Naturally, this is not a quality
that is easily quantifiable, and can at best be approximated through con-
ventional similarity metrics. Multiple different metrics are deployed for the
job, in hope that they will complement each other’s weaknesses: Root mean
square error (RMSE), Structural Similarity (SSIM) [56], temporal error [46]
and Video Multi-Method Assessment Fusion (VMAF) [55]. Each of these
will be briefly explained in the following.
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4.3.1 Root Mean Square Error

The simplest metric is the root mean square error (RMSE). In this scenario,
it compares the output from the denoising procedure and the reference image
to produce the metric ERMS as follows:

ERMS(I,R) =

√∑
x,y∈Ω (I(x, y)−R(x, y))2

N
,

where I and R are the denoised image and the reference image respec-
tively, regarded as functions from pixel coordinates to a vector of e.g. RGB
values or a scalar value like luminance. Ω is the set of pixel coordinates
within I and R, which are assumed to be of equal size. N is the number of
pixels in each image, or |Ω|.

ERMS is a very simple metric, and one cannot in general assume that a
higher ERMS means that the images are perceived as more different that if
ERMS was lower. For example, changes in some areas of the image will affect
perception more than others, and the human visual system puts emphasis
on relations between neighborhoods of pixels rather than individual pixel
values, something this metric does not reflect. It will be included neverthe-
less, as it is trivial to compute and may highlight interesting characteristics
of different algorithms that are easy to overlook otherwise.

RMSE will give a score of 0 if and only if the two inputs are equal. The
maximal score is the dynamic range of the pixel values. For the purpose of
this thesis, the dynamic range for result images will be 1.0.

4.3.2 Structural Similarity

Structural Similarity (SSIM) was introduced by Wang et al. [56] and is
a method for comparing patterns within two pictures. The metric is split
into three components: Luminance, contrast and structure. The SSIM score
will be computed separately for square windows of size 11× 11 throughout
the whole image space, and finally averaged to give a single score for the
similarity between the two metrics. To avoid that the score for the images
is affected by the block structure of the windows, the contributions for
the different pixels in a window will be weighted by a normalized Gaussian
weighting function with standard deviation 1.5 pixels centered in the middle
of the window.

Now follows a description of the different components of the metric as
proposed by [56]. Let any two corresponding 11 × 11 windows in the two
pictures be denoted by I and R, with I(i) and R(i) being pixel at index
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i within the two windows, by an arbitrary but consistent ordering. wi
will denote the Gaussian weight assigned to that same pixel, and N is the
number of pixel in each window, which is always 121 in this case. The mean
and standard deviation for window I are defined as

µI =
N∑
i=1

wiI(i)

σI =

√√√√ N∑
i=1

wi(I(i)− µI)2

respectively, and µR and σR are defined analogously. The covariance
between the two windows is defined as

σIR =
N∑
i=1

wi(I(i)− µI)(R(i)− µR)

With these definitions in place, one can compute the different compo-
nents of the metric. The luminance part is computed as

l(I,R) =
2µIµR + C1

µ2
I + µ2

R + C1

where C1 is a constant added for improved stability. In work, as sug-
gested by Wang et al., C1 is defined by C1 = (K1L)2 where L is the dynamic
range for the pixel values (e.g. 255 for 8-bit colors) and K1 = 0.02. In
essence, this part indicates how well the overall light intensities in the two
windows correlate.

The contrast part of the metric is computed as

c(I,R) =
2σIσR + C2

σ2
I + σ2

R + C2
,

where C2 = (K2L)2, K2 = 0.03. The structure of this expression is
identical to the one for luminance, and indicates how well the intensity
ranges of the two windows correlate.

Finally, the structure part of the metric is computed as

s(I,R) =
σRI + C3

σRσI + C3
,

where C3 = C2/2. This expression closely resembles the expression for
statistical correlation, and its purpose is exactly that, indicating how well
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the overall pixel intensities correlate throughout the image. This is the only
part of the metric that is not restricted to the value range [0, 1], but spans
all of [−1, 1].

To conclude, the Structure Similarity between the two corresponding
windows I and R is simply

S(I,R) = l(I,R) · c(I,R) · s(I,R).

By inspection of each individual part, it can be inferred that this metric
only gives 1 as a result if the two windows matches completely, and that it
is symmetric in its arguments.

Finally, the score for the entire image will be the average of the scores
across all windows. Wang et al. propose using windows with a distance of
1 pixel from one another, meaning that the expression will be evaluated for
every possible 11×11 window in the image before eventually computing the
average.

4.3.3 Temporal Error

Schied et al. [46] constructed a metric to measure the temporal stability
of their algorithm. Here, temporal stability refers to how consistently a
reconstruction algorithm outputs the same light intensity over time in areas
where the intensity should be constant, such as purely diffuse materials in
constant lighting, or a static scenes viewed with a static camera. Their
metric has later been referred to as the temporal error metric. The metric
measures the average luminance of the absolute difference of subsequent
frames, where both the camera and the scene are static. It shares elements
with RMSE, including the fact that a score of 0 is the ideal case and a score
of 1 is the worst possible.

4.3.4 Video Multi-Method Assessment Fusion

Video Multi-Method Assessment Fusion (VMAF) is a video similarity met-
ric that aims to accurately measure the similarity as perceived by humans.
VMAF is an open-source effort initiated by Netflix, primarily meant for
evaluating the perceivable effect of video stream compression. Besides video
streaming, it is also considered useful for evaluating quality of image recon-
struction, and contrary to the other metrics discussed here, it is built on
data directly related to humans’ subjective perception.

Instead of constructing a new algorithm by hand, the authors of VMAF
combine several other similarity metrics by giving them individual weights.
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The weights are found through machine learning, using a Support Vector
Machine (SVM) regressor.

The VMAF model used here is 0.6.1. The SVM is trained by the
VMAF authors on a dataset of uncompressed and corresponding compressed
video streams, annotated with subjective similarity ratings made manually.
VMAF outputs a score between 0 and 100, where 100 indicates perfect
equality and 0 indicates no similarity. Because of the machine learning as-
pect of VMAF, its score should not be interpreted as exact. For instance,
two identical image sequences have been found to give scores around 98.

4.4 Implementations

BMFR is evaluated using the implementation published by the original au-
thors. The algorithm runs on the GPU through OpenCL. A few minor
changes to the code has been made for the sake of usability, but the algo-
rithm itself remains untouched.

SVGF is evaluated using an implementation made by myself, also using
OpenCL. This SVGF implementation closely resembles the sample program
published by the authors of the original algorithm, which was made with
Microsoft’s DirectX Ray Tracing and HLSL. This implementation simplifies
the original SVGF algorithm in several aspects, to boil down the input
requirements to match those of BMFR, easing the test process:

First, the algorithm does not take into account moving objects in the
scene, which makes its capabilities more similar to the BMFR implemen-
tation, which does not consider moving objects either. Adding support for
dynamic scenes can be done, also for BMFR, by adding supporrt for motion
vectors.

Secondly, and with practical consequences for the comparison, the im-
plementation does not separate the light into direct and indirect light. This
means that the implemented algorithm could be faster than the authors’
sample, but the difference is thought to be minimal, as the separate opera-
tions can be easily parallelized on vector arithmetic hardware. It is expected
that it will have some implications on the resulting quality.

Performance evaluation is done for each stage of the algorithms sepa-
rately. Timing is done using OpenCL-native timers to ensure that the times
are as precise as possible.

Links to the source code can be found in the appendix.

The experiments were conducted on a system with 12-core Intel Core
i7-6800K@3.40GHz and an NVIDIA TITAN X (Pascal) graphics card.
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4.5 Experiments

For this thesis, two experiments have been conducted. The first experiment
are evaluations and comparisons between the two algorithms BMFR [33]
and SVGF [46], both in terms of speed and output quality. The second
experiment concerns a modification of the BMFR algorithm. The goal of
the experiment is to analyze the impact of the modifications on output
quality.

The experiments will be described in the following.

4.5.1 Evaluating and Comparing the Algorithms

In this experiment, the goal is to evaluate and compare the effectiveness of
the two algorithms quantitively and qualitatively, in terms of computation
time and the resulting image quality. SVGF and BMFR are run wtih the
same set of noisy sample buffers and feature buffers.

The runtime for each scene combined with each algorithm will be re-
ported. It is not expected that the variation in computational cost between
scenes will be tremendous, as the scene complexity does not directly influ-
ence the denoisers’ problem size. It can still lead to some variations however,
especially since SVGF will do extra computations to compensate for regions
with low sample counts.

Subsequently, comparisons between the output of two algorithms are
made on the basis of the quality metrics described earlier. The resulting
images will also undergo manual inspection and a qualitative discussion will
be given. Note that a similar comparison has been conducted earlier by the
authors of BMFR, Koskela et al., in [33], where they used SVGF as one of
the baselines for BMFR.

4.5.2 Exploring Feature Buffers for BMFR

The second experiment is of a more exploring nature, and aims to determine
whether another choice of input buffers for the BMFR algorithm could yield
better output quality.

The original authors deviced a separate algorithm to decide the final
choice of feature buffers: First, the authors made a collection of scalar
feature buffers, each containing a single dimension from original feature
buffers, such as positions or surface normals. In addition, different orders
of these scalars were added, e.g. the squared x-component of the world
position, together with a feature buffer only containing ones. This initial
set of buffers is called the feature pool.
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The feature-choosing algorithm initializes an empty list of “active buffers”,
which is iteratively extended with new feature bufers. In each iteration, each
feature in the feature pool that is not already appended to the list of active
buffers, is evaluated as one of the feature buffers in BMFR together with
the chosen active buffers. After running BMFR with each of these unchosen
buffers, the buffer that had the most positive impact on the objective output
quality is pushed on to the list of active buffers. The algorithm continues
until the number of active buffers reaches a preset maximum.

While this greedy approach is not guaranteed to find the optimal col-
lection of feature buffers, it is likely to be a reasonable heuristic, and it will
be the algorithm of choice in the search for a better collection of feature
buffers.

There is one aspect with which extra care must be taken. The authors of
BMFR reported that they add all components of a buffer at the same time.
That is, their greedy algorithm adds e.g. all world position at the same
time, instead of adding the three components separately. This is to avoid
that the camera orientations in the image sequence that are used in choosing
feature buffers, influences the choice too much. Adding new features in that
manner with the new proposed buffer pool will be hard, since each feature is
in general a function of several components. Therefore, each scalar feature
will be treated entirely separately, which makes testing the final choice on
other scenes and camera orientations important.

The pre-determined feature maps in the original work included world
positions, surface normals and position gradients. The position gradients
were found to contribute little to the output quality, and so the final 10
feature buffers were the full set of coordinates from world positions and
surface normals, as well as the squared world positions and the constant 1.

The variation in the feature pool for the sake of this experiment will
be more extensive than that of the original work. In addition to different
integer powers of scalar components from the feature buffers, the following
will be included in the initial feature collection:

• Features raised to non-integral powers, namely the square root of the
absolute value of the feature.

• Products of different feature components, as was already suggested in
the original BMFR article.

The base features will still be the same as in the original work: World
positions and surface normals.

It was considered to add sums and differences between e.g. two different
components of the world position coordinates as its own feature, but the
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idea was halted due to two theoretical observation: They are linear functions
of several buffers, and thus can’t possibly lead to a better approximation
than those produced if the two buffers were added separately because the
linear regression step already computes the optimal linear combination of
all buffers in the pool.

Nevertheless, it was hypothesized that one feature that is the linear
combinations of two other features could replace the two features and let the
algorithm produce similar results with one less buffer, resulting in slightly
cheaper computations. However, for the geometric features discussed here,
a linear combination of any two of them would be possible to reproduce
with the two separate features by a linear transformation of the scene, like
a rotation. Thus, whether the new buffer could reproduce the same quality
when replacing the other two buffers, would be entirely dependent on the
scene and camera orientation, which is far from ideal for a general-purpose
denoising algorithm.

The greedy feature-choice algorithm also requires an objective metric to
evaluate feature buffer candidates. In this experiment, VMAF is used in
evaluation. Due to its inaccuracies it is not ideal, but it is considered the
best at capturing details that are important to human perception.
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Results and Discussion

The results of the comparison and extension experiments are presented se-
quentially. The results will be discussed both from a qualitative and quan-
titative perspective.

5.1 Comparison between SVGF and BMFR

5.1.1 Performance

Runtimes for each of the two methods run on the three different scenes are
shown in table 5.1. The times are averages over a sequence of 60 consequtive
images. For each image sequence, the average runtime is shown together
with the minimum and maximum time for a single frame. Each frame has
a resolution of 1280× 720. All measurements are given in milliseconds.

We can first note that both algorithms clearly meet the goal of a real-
time execution time. With a target framerate of 60 frames per second

Scene
SVGF (ms) BMFR (ms)

min mean max min mean max

Sponza 5.208 5.865 8.109 2.079 2.245 2.471

Living Room 4.467 5.208 8.101 2.096 2.299 2.515

San Miguel 5.319 5.908 8.139 2.083 2.282 2.502

Table 5.1: Run times for the BMFR and SVGF algorithms on three different
scenes. The reported numbers are the minimum, average and maximum time
used per frame in milliseconds, for runs on 60-frame sequences.

39
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Figure 5.1: Runtime for the SVGF algorithm, distributed on the different
stages of the algorithm. The scene in this run was Sponza.

(fps), the algorithms must use less than 16 milliseconds per frame, which
is definitely the case. Secondly, there is a significant difference in execution
time between the two algorithms. The BMFR algorithm consistently falls
under 2.6 ms execution time, whereas SVGF averages between 5 and 6 ms.

Additionally, the execution time of SVGF shows greater variation, as
the maximum run times are much higher than the average; 43.9% above the
mean score, averaged over all three scenes, as opposed to an average of 10%
above the mean score in the BMFR algorithm.

Figures 5.1 and 5.2 show the runtime of SVGF and BMFR respectively,
distributed on the different stages of the algorithm, as a function of frame
number. These numbers were generated from the path on the Sponza scene.

Focusing on the runtimes for SVGF, the figure gives more context to
the great difference between maximum and average run times. The above-
average runtimes are mostly restricted to the first frames. Furthermore,
the run time difference mainly stems from the variance stage, which is
reasonable, as the algorithm computes a local average if the number of
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Figure 5.2: Runtime for the BMFR algorithm, distributed on the different
stages of the algorithm. The scene in this run was Sponza.
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samples is found to be too small. As the frames go by and the average
number of accumulated samples increase across the image, this spike in
runtime diminishes. Another, smaller spike in the same stage can be seen
near the end of the run, probably due to less temporal coherence between
the frames.

While a severe performance variation may be detrimental to some real-
time applications such as certain video games, the above result shows that
none-average computation times are restricted to the beginning of an image
sequence, and are otherwise rather small. At the beginning of an image
sequence or at the change of camera, a user must also adapt to the change
of view, likely giving them little chance of noticing a small performance
drop, especially since the drop would only be noticable during the five first
frames or in an application that preferrably runs at 60 frames per second.

It can also be seen from figure 5.1 that the atrous stage is the most
computationally heavy part of the algorithm. This is not surprising, as this
stage performs four iterations with the À-Trous compute kernel. This sug-
gests that lowering the number of iterations with the À-Trous kernel would
be a reasonable optimization, but it will still lack severely in performance
compared to BMFR.

Shifting our attention to the performance of BMFR and figure 5.2, we
notice that the overall performance is very stable, in addition to being lower
than that of SVGF. We see clearly that the fitter stage, where the linear
regression fitting the feature data to the noisy data is performed, is the most
computation-heavy stage of the algorithm. This stage alone has a O(N2)
dependency on the number of feature buffers, suggesting that reducing the
number of feature buffers is an effective optimization performance-wise.

5.1.2 Image Quality

Table 5.2 summarizes the quantitative image quality of the output from the
two algorithms. It shows that BMFR outperforms SVGF on the Sponza
and Living Room scenes while SVGF makes a better job than BMFR on
the more complex scene San Miguel. Interestingly, BMFR seems to have
a significant drop in quality on the San Miguel scene when evaluated with
VMAF, while the two other metrics show a less significant change.

Figure 5.3 shows one of the last images in the image sequence from the
scene San Miguel. The figure shows, from top to bottom, the image re-
constructed with SVGF and BMFR and, lastly, the reference image. The
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Scene
SVGF BMFR

RMSE SSIM VMAF RMSE SSIM VMAF

Sponza 0.031 0.888 53.54 0.029 0.889 59.26

Living Room 0.045 0.841 54.49 0.035 0.872 66.51

San Miguel 0.033 0.867 51.58 0.037 0.834 36.30

Table 5.2: Average score on different image stream metrics for each com-
bination of scene and algorithm, run on a 60-frame image sequence. The
range of each metric is as follows – RMSE: [0, 1], lower is better; SSIM:
[-1, 1], higher is better; VMAF: [0, 100], higher is better.

crop-outs on the right put additional emphasize on some of the key differ-
ences between the results of the two algorithms.

For context, the camera is turning towards the left in this part of the
sequence, meaning that the left part of the image will have a lack of accu-
mulated samples. The left-most crop shows that this has the strongest effect
on the BMFR algorithm, which shows significant artifacts even though the
image region has had 4-5 frames of accumulated samples. What makes this
scenario particularily bad, is that this part of the scene receives little light
intensity overall, creating potentially large relative variation in illumination
across frames. This seems to make a bad fit for BMFR, perhaps because it
relies on blocks having a somewhat consistent illumination over time when
filtering.

The second crop shows a table with fine-detailed objects. It can seen that
BMFR picks up more of the geometric details on the table cloth. However,
it seems to blend the light reflection off the bottle and glasses too much, and
loses more detail than SVGF. SVGF probably outperforms BMFR because
it takes the variation of the pixel over time into account, which makes it
better equipped to handle specular reflections, which are highly dependent
on viewpoint. In this case, the SVGF algorithm would likely perform even
better if the separation of direct and indirect light had been implemented.

As of now, both implementations show significant differences from the
reference. It is evident that the fine details of the objects are hard to
reproduce for the two algorithms.

In figure 5.4, we see an image from the middle of the sequence from
the scene Living Room. The order is the same as before – from top to
bottom: SVGF, BMFR and reference. The left-most crop-out magnifies the
corner of the stove by the three algorithms. It is evident here that SVGF
has a harder time separating the lighting from the two different sides of the
corner, over-blurring across the edge. BMFR seems to tackle this corner case
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Figure 5.3: One of the final images from San Miguel. From top to bottom:
SVGF, BMFR, reference.



5.1. Comparison between SVGF and BMFR 45

Figure 5.4: An image from the scene Living Room. From top to bottom:
SVGF, BMFR, reference.
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better. Its biggest artifact in this crop-out stems from an uneven shadow,
and perhaps a too high emphasis on geometric detail when computing the
final illumination.

The second crop shows a more difficult case for both algorithms: The
dark region inside the living room table. SVGF again seems to over-blur
the shadow, leaving little detail in the reconstruction of the region. BMFR,
on the other hand, shows significant blocking artifacts, especially near the
edge of the table. In this frame, the end of the table has been in the field
of view for 6 frames, the camera moving towards the right, meaning the
algorithms have had some time to accumulate samples. Although BMFR
seems to reconstruct more details from the object, the artifacts it produces
is arguably more distracting than those of SVGF.

The bowl of apples atop the table also poses a challenge, since the object
contains small-scale details that are much smaller than the scale of the room.
SVGF is not able to reproduce the shadows from on the apples correctly.
BMFR seems to handle this situation much better, although the shadow
from the bowl on the table shows some slightly blocky artifacts.

In figure 5.5, we see the first image in the Sponza scene image sequence,
thus it is taken at a point where neither algorithm has had the time to
accumulate samples. While it is unrealistic that a human would perceive
artifacts in the first image of a camera sequence at a framerate of 60 fps, it
highlights some of the characteristics that were observed in the two other
scenes.

The first crop-out shows the edge of the shadow from the arc. In this
case, SVGF produces an image that resembles the reference very closely.
BMFR, however, shows a significant amount of artifacts, both at the edge
of the shadow and its interior. As the frames go by, the new samples will
be blended in and smooth out the shadow. This, together with the image
from the Living Room scene and the left-most crop-out from the San-Miguel
scene, shows that SVGF can perform perceivably better than BMFR in cases
where the sample count is low, like in early frames or dark areas.

The second crop-out reiterates another aspect we have already observed.
The edge between the two walls is blurred out by the SVGF algorithm. The
BMFR algorithm also has difficulties in this scenario, producing a small
hint of blocky artifacts on the same edge.

In general, it seems that the BMFR algorithm has a problem with re-
producing shadows on smooth surfaces, where the shape of the shadow has
no correlation with the shape of the surface. This is a natural consequence
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Figure 5.5: The first image from the scene Sponza. From top to bottom:
SVGF, BMFR, Reference.
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Figure 5.6: Detail from the last image of the Living Room image sequence.
From left to right: BMFR, SVGF and Reference. The table has been within
field of view for about 30 frames. BMFR still shows off significant amounts
of artifacts, while SVGF has converged at a slightly inaccurate but closer
lightsetting.

of the linear-regression computation that lies in the heart of BMFR: Since
the algorithm only tries to approximate the light on each pixel as a linear
sum of scene features, it cannot hope to recreate the illumination faithfully
when there are no features that correlate with the shape of the shadow.
Provided the number of samples is stable over time however, the flaw seems
to perish gradually, although often leaving an unsharp shadow.

SVGF seems to struggle more with over-blurring across edges than BMFR
in general. This can very well be a consequence of flawed parameter tuning.
Nevertheless, it has a clear advantage in settings where the number of sam-
ples is restricted, e.g. as shown on the table in the Living Room scene. To
further investigate this, a crop-out of just the table is shown in figure 5.6.
In this image, the table has been in the field of view for about 30 frames.
Still, BMFR has not converged, and shows clearly visible artifacts in the
result. Following the above train of thought, this might be attributed to
the instability in the number of samples over time.

To summarize the image quality metrics, figure 5.7 shows the VMAF
score for the three scenes as a function of frame number. As expected, both
algorithms makes a short jump early in the image sequence, as they gather
more samples and stabilize on a reconstructed image.

In the graph corresponding to the Living Room scene, SVGF shows a
significant drop in VMAF score at frame 17. The sudden drop is highly
unexpected, provided no new significant number of artifacts is shown in
this frame compared to either of its neighbors. In addition, neither SSIM
nor RMSE has a spike at this point. This frame could highlight a limitation
to the VMAF algorithm, or rather, a limitation to the use of a video stream
evaluation algorithm applied to image denoising. It therefore suggests that
one should be careful about relying on VMAF as a ground truth to human
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Figure 5.7: VMAF scores for the three different scenes as a function of
frame number.
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perception. Nevertheless, it seems to be the most accurate predictor that
is available to this project, and so it will still be used as the main image
quality estimator in these experiments, bearing its limitations in mind.

Lastly, BMFR is seen to do consistently better than SVGF on the scenes
Sponza and Living Room, but consistently worse on San Miguel. A theory
was already established earlier, considering that San Miguel is a dark scene
with a general lack of samples, in addition to the fact that the reflections
off of specular materials are handled slightly better by SVGF than BMFR.
Furthermore, San Miguel contains a high density of foliage and thin struc-
tures. The differences are not easy to spot, but figure 5.3 shows a loss of
detail in the leaves of the tree, as well as tiny blurs on the chairs in the
reconstruction by BMFR. It is clear that BMFR has important weaknesses
that should not be overlooked.

5.1.3 Temporal Error

As previously described, temporal stability will be evaluated by running
the algorithms on a static scene with a static camera and compare the
average luminance difference per pixel. Figure 5.8 shows the behavior of
the temporal error metric for the two algorithms, in addition to its behavior
on a reference image sequence.

As expected, both algorithms need time in the beginning to stabilize,
resulting in a high initial temporal error. After a short while, perhaps
surprisingly, both algorithms appear to produce results that are just as
stable, or more stable, than the reference. The cause of this could be that
both algorithms rely heavily on the samples from the previous frames to
produce the next. Additionally, both algorithms take advantage of the
neighborhoods of each pixel to smooth out the color. Consequently, the
same pixel in consecutive frames is less susceptible to temporal variation in
the noisy input.

On the contrary, the reference images are produced entirely indepen-
dently from each other. In addition, the reference images are produced with
a sample count of 4096 per pixel, which may not be enough to stabilize some
of the darker regions of the scene.

Furthermore, BMFR outperforms SVGF drastically in this experiment.
This is hardly a fair comparison, since SVGF does not contain a tempo-
ral anti-aliasing (TAA) stage. It is reasonable to believe that SVGF would
outperform the reference and behave similarily to BMFR if TAA was im-
plemented.

As was already mentioned, the authors of BMFR [33] commented that
the use of TAA in their algorithm reduced the score on the other image
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Figure 5.8: Temporal error scores for the two algorithm and the reference.
Lower score is better. The reference image sequence was made with 4096
spp.
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√
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w.z w.x2 w.y2 w.z2
√
|w.x|√

|w.y|
√
|w.z| w.x3 w.y3 w.z3

w.x · n.x w.y · n.x w.z · n.x w.x · n.y w.y · n.y
w.z · n.y w.x · n.z w.y · n.z w.z · n.z w.x · w.y
w.y · w.z w.x · w.z w.x− w.y w.y − w.z w.x− w.z

Table 5.3: The new feature buffer pool

quality metrics with dynamic camera, but they decided to include the TAA
stage because they found it to give better subjective visual quality.

5.2 Re-Evaluating the Choice of Features in BMFR

The new feature pool from which a new set of features for BMFR will be
chosen, is shown in table 5.3. Here, world position is denoted by w and
normals by n. Referencing a specific component of a vector is done through
a programming-esque dot-notation.

With the features in this new feature pool, the greedy algorithm for
feature selection described in section 4.5.2 was run. Table 5.4 shows both
the original and the new chosen features, in the order they are chosen by
the greedy algorithm. The order of the original features is only shown as a
comparison for the interested reader. The order of the original features was
determined using a feature pool consisting of these features only.

Figure 5.9 shows the VMAF score of BMFR as each of the ten original
feature buffers are added to the mix. The scene used here is Sponza, so
that the topmost line is the same as the topmost line in the left graph
of figure 5.7. It is immediately apparent that the last few buffers only
contribute marginally to the resulting quality. Therefore, shaving off a few
of these feature buffers would result in a small quality decrease, but a more
significant decrease in computation time.

Figure 5.10 shows VMAF scores with the new choice of feature buffers,
using the same image sequence as figure 5.9. On first sight, there is little
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Figure 5.9: Old choice of feature buffers: Progressive increase in image
quality of BMFR output as the number of feature buffers grows, using the
feature buffers from the original article. The algorithm is run on the Sponza
image sequence.
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Figure 5.10: New choice of feature buffers; VMAF score for each frame, for
the incremental list of feature buffers
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Original buffers New buffers

1.0 1.0

w.x2 w.x2

n.y
√
|n.x|

w.z2 w.z2

n.x w.x · n.y
w.y2 w.y2

n.z n.x

w.x n.z

w.y
√
|n.y|

w.z w.x · w.y

Table 5.4: The original and new feature buffers, given in the order they
were chosen by the greedy algorithm. The “old buffer pool” from which the
original buffers are drawn, consists solely of the buffers shown here.

Scene
BMFR with Old Features BMFR with New Features
RMSE SSIM VMAF RMSE SSIM VMAF

Sponza 0.029 0.889 59.26 0.028 0.890 60.25

Living Room 0.035 0.872 66.51 0.035 0.873 67.37

San Miguel 0.037 0.834 36.30 0.037 0.834 36.45

Table 5.5: Average scores on one image sequence from each scene, compar-
ing the new and old sets of feature buffers in BMFR.

evidence of large improvements over the original choice of buffers. In fact,
there is little evidence of any changes at all.

Figure 5.11 highlights the situation. Surprisingly, the new, larger feature
buffer pool does not strictly outperform the old one. In fact, it seems to
give worse results when the number of feature buffers are between 4 and
8. This is unexpected, since the new feature buffer pool contains all the
feature buffers in the original selection.

The only explanation of this seemingly paradoxal result, is that the
greedy optimization strategy has found a suboptimal solution for 4-8 buffers.
The extra features in the feature pool lead to a non-optimal order of buffer
selection. Nevertheless, the final score when all ten buffers are added, shows
a tiny improvement over that of the original ones.

Table 5.5 shows the RMSE, SSIM and VMAF scores for both the new
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Figure 5.11: Average VMAF score as more buffers are added, for both orig-
inal feature buffers and the new feature buffer pool.
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and the old choices of feature buffers.
The results show that the new choice of feature buffers performs just as

well or slightly better than the old ones, even on the scenes not used in the
choice process. This comes as a surprise, as the chosen features are clearly
not agnostic of camera orientation, as the original ones were. The camera
directions in the scenes have significant components along both the x- and
z-axes, meaning that BMFR with these features – though not indifferent to
camera orientation – generalizes surprisingly well to other camera directions
than those of the test scene.

However, all of the image sequences treat the positive y-axis as the
up-direction of the camera, and neither camera direction has a significant
component along the y-axis. Therefore, it would be unwise to put this choice
of feature buffers to use before properly investigating whether it is fit for a
broader range of camera orientations.
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Chapter 6

Conclusions, Limitations and
Future Work

To conclude the thesis, this chapter will summarize the key aspects of this
work, along with some take-aways based on the research goals of section
1.2.

Chapter 2 gave an introduction to ray tracing and the problem of noise,
along with the history of contributions leading up to today’s state of the
art within both ray tracing techniques and denoising algorithms.

Chapter 3 presented two different state-of-the-art algorithms, namely
Spatiotemporal Variance-Guided Filtering and Blockwise Multi-Order Fea-
ture Regression. The chapter gave a detailed walk-through of the key steps
in each algorithm, giving a deep view into different modern solutions to the
denoising problem.

Lastly, chapter 4 described the different experiments that were con-
ducted to compare the two denoising algorithms to one another. It also
presented a proposed extension to BMFR and how the proposed modifica-
tion would be evaluated. Subsequently, chapter 5 presented the results from
the conducted experiments and discussing some of the patterns that were
observed.

Based on the results from chapter 5, the following section will attempt
to draw several conclusions.

6.1 Conclusions

In the first experiment, the performance of SVGF and BMFR were com-
pared to each other both in terms of performance and visual quality. None
of the algorithms seems to be undividedly advantageous over the other.
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BMFR had a superior performance footprint in terms of both run time and
stability, as well as better objective visual quality on the majority of the
scenes, but SVGF displays better behavior in areas with few samples and
with reflective materials and foilage.

In the subsequent experiment, an extension to BMFR involving new
choices of feature buffers was evaluated using a visual quality metric. With
the proposed feature buffers, the greedy feature-picking algorithm was un-
able to choose features to significantly increase the output quality of BMFR.
In fact, the greedy algorithm would choose features that proved to be worse
than the original buffers, for some numbers of features. Therefore, it might
be the case that the algorithm is generally unable to benefit from more
non-linear functions of the same feature buffers, and that new, independent
features may give better results.

As a side-note, a mildly surprising result was that the features cho-
sen based on a single scene and camera path generalized tolerably well to
other scenes and camera orientations, even though the features were not
orientation agnostic. All in all, this seems to suggest that having varied
information about the scene in the feature buffers is more important than
that it is homogenous in every coordinate component.

These observations may have implications for the work to improve BMFR
through a better selection of feature buffers.

6.2 Limitations

Nothing is perfect, and that goes for the experiments conducted in this thesis
as well. This section will point out some of the most prominent limitations
of the presented work.

The most glaring issue with the comparison experiments, is that the
BMFR implementation was built and fine-tuned by the original authors
themselves. The SVGF implementation, although made to resemble a ref-
erence provided by the original authors, contains several simplifications as
described in section 4.4. Furthermore, even though the algorithm has been
tested with different choices of parameters for tuning, it is likely that a set
of parameters that performs better in general across scenes could be found.

It was not tested whether having more than ten feature buffers in BMFR
would improve quality further. Seeing the convergence rates of figures 5.9
and 5.10, it is tempting to assume the difference would have been insignif-
icant. Although there is room to add more buffers due to BMFR’s per-
formance, the number of buffers would be limited by the already-expensive
fitter stage’s quadratic dependency on this number.
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The number of scenes and the variety of materials and light settings
has also been limited. Each scene has only been equipped with a single
rectangular light source. A scene for real use would be expected to have
many and more general light sources. Each scene was also investigated with
only a single camera path, which further limits the variation in the data.

6.3 Future Work

It is apparent that some issues need to be fixed before path tracing can fully
replace the many years of work and experience that lies behind traditional
real-time rendering techniques. Real-time denoisers have come a long way
and are able to reconstruct realistic-looking scenery, even with the very
unreliable base of just one sample per pixel.

The two different algorithms that were examined here have been shown
to display different strengths and weaknesses. Future algorithms should
do their best to unite the strengths of each of the two approaches while
adressing their weaknesses.

One thing is certain, however. Practical real-time path tracing is closer
to becoming a reality than ever before.
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Appendix

Source Code

The unified data construction repository can be found at https://github.
com/TheVaffel/denoiser_data_constructor.

It includes the modified repositories for production of ray traced im-
ages and rasterized feature buffers as Git submodules. They can also be
accessed directly through https://github.com/TheVaffel/ChameleonRT

and https://github.com/TheVaffel/Vulkan-glTF-PBR respectively.
The self-made implementation of SVGF can be found at https://github.

com/TheVaffel/spatiotemporal-variance-guided-filtering.
The modified implementation of BMFR can be found at https://github.

com/TheVaffel/bmfr.

63

https://github.com/TheVaffel/denoiser_data_constructor
https://github.com/TheVaffel/denoiser_data_constructor
https://github.com/TheVaffel/ChameleonRT
https://github.com/TheVaffel/Vulkan-glTF-PBR
https://github.com/TheVaffel/spatiotemporal-variance-guided-filtering
https://github.com/TheVaffel/spatiotemporal-variance-guided-filtering
https://github.com/TheVaffel/bmfr
https://github.com/TheVaffel/bmfr


64 64



Bibliography

[1] D3D Team, Microsoft . Announcing microsoft directx raytrac-
ing! https://devblogs.microsoft.com/directx/announcing-

microsoft-directx-raytracing/, 2018. Accessed 2020-06-10.

[2] Martindale, Jon. Here are all the games that support nvidia’s rtx
ray tracing. https://www.digitaltrends.com/computing/games-

support-nvidia-ray-tracing/, 2020. Accessed 2020-04-23.
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