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Abstract

OpenID Connect has become a de facto standard for managing authentication and autho-

rization in Web applications. It is however challenging for developers to understand the pro-

tocol and securely implement a client application. Even using an SDK that helps them along

the way, developers are responsible for doing data validation in a precise manner. The cor-

rectness of this validation can be ensured using security analysis and vulnerability detection

tools.

Previous solutions on security analysis and tools for vulnerability detection of OpenID

are mostly based on complex, formal models and comprehensive penetration testing frame-

works that cover the whole protocol. These often require much work to understand, develop

and use.

The objective of this thesis is to introduce a more developer-oriented way to ensure fewer

vulnerabilities in such client applications. This thesis proposes (1) a pragmatic model of the

authorization code flow, as a straightforward checklist targeted specifically at the concerns

of the developer, and (2) a demonstration that relatively simple static analysis techniques,

based on this model, can be used to find vulnerabilities related to the needed security checks.

The effectiveness of the analysis techniques is demonstrated experimentally on six open-

source clients, of which four were found to have vulnerabilities. 20 vulnerabilities regarding

incomplete or missing token validation were detected. The analyzer for token validation

had a precision of 61%, recall of 100% and a true negative rate of 90%. Its precision may be

improved further with a few weeks of engineering effort. More reliable metrics of its perfor-

mance can be found by doing a large-scale empirical study.
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Sammendrag

OpenID Connect has blitt en bransjestandard for å håndtere autentisering og autorisering

i Web-applikasjoner. Likevel er det vanskelig for utviklere å forstå protokollen og imple-

mentere en klient-applikasjon på en sikker måte. Selv om de bruker en SDK som hjelper

dem med detaljene, er utviklerne ansvarlige for å presist håndtere datavalidering. Sikkerhet-

sanalyse og automatiske verktøy for å finne svakheter kan bli brukt til å sørge for at denne

datavalideringen er gjort skikkelig.

Tidligere løsninger på sikkerhetsanlyse og automatiske detekteringsverkøy for OpenID

er for det meste bygget på komplekse, formelle modeller og helhetlige rammeverk for “pene-

tration testing”, som dekker hele protokollen. Det er ofte krevende å forstå, utvikle og bruke

disse løsningene.

Målet med denne masteroppgaven er å introdusere en mer utvikler-orientert måte for

å begrense mengden sikkerhetshull i klient-applikasjoner. Denne oppgaven presenterer (1)

en pragmatisk modell av protokollflyten, formet som en direkte sjekkliste som er rettet mot

det som angår utvikleren, og (2) viser at enkle statiske kodeanalyser som er basert på denne

modellen, kan brukes til å finne svakheter relatert til disse sikkerhetsjekkene.

Styrken til analyseteknikkene presenteres eksperimentelt på seks klienter med åpen kildekode.

Fire av disse har svakheter. 20 svakheter knyttet til usikker validering av “ID-tokens” ble

avdekket. Analysen for validering av ID-tokens fikk en precision på 61%, recall på 95% og en

falsk-negativ-rate på 90%. Presisjonen kan økes ytterligere med noen ukers ingeniørarbeid.

Mer pålitelige metrikker kan bli funnet i en stor-skala empirisk studie.
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Chapter 1

Introduction

1.1 Motivation

OpenID Connect (OIDC) is becoming increasingly common in modern Web applications

as a de facto standard for authentication and authorization with Single sign-on federation

services. Developers may use well-known Software Development Kits (SDKs) for building a

Relying Party (RP) in OIDC to connect their app with an Identity Provider (IdP). Examples of

such SDKs are the Nimbus OAuth SDK [18] and Google OAuth Client Library [38, 39].

Even if these SDKs help the developer by encapsulating several difficult implementation

details, the developer and the SDK still share a common responsibility in securing the RP

application. The SDKs give tools for managing Web-specific features, and can provide and

parse strong data types for the data delivered between the RP and the IdP. Still, the devel-

oper is responsible for establishing a trust relationship with the IdP, and correctly managing

secrets and data that are needed to ensure integrity, confidentiality, and non-repudiation in

the communication.

Listing 1.1 shows a code sample from an open-source Android-app project [102], where

the developer has written code 1 verifying the ID Token using the Google library.

1 boolean isValidIdToken(String clientId , String tokenString) {
2 if (clientId == null || tokenString == null) {
3 return false;
4 }
5 List <String > audiences = Collections.singletonList(clientId);
6 IdTokenVerifier verifier = new IdTokenVerifier
7 .Builder ()
8 .setAudience(audiences).build();
9 IdToken idToken = IdToken.parse(new GsonFactory (), tokenString);

10 return verifier.verify(idToken);
11 }

Listing 1.1: Incomplete ID Token verification in an open-source android app project [102].

1OIDCUtils.java in the Zop-App project: https://github.com/zopspace/zop-app/blob/
fc7f9a9b6f9e0f18b89612ced49d67001aa61deb/app/src/main/java/fi/aalto/legroup/zop/
authentication/OIDCUtils.java

1
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While the example may look fine at first sight, there are several risks associated with this

code. It lacks the following checks to satisfy the security requirements of the protocol speci-

fication [60, 62]:

• Cryptographic signature validation, which is important to ensure the integrity of the

token.

• Verification of the nonce parameter, preventing replay attacks.

• Issuer validation, checking the identity of the IdP that issued the token.

The audience parameter is validated here, and the IdTokenVerifier on line 6 hides a de-

fault Freshness validation (which ensures that old or expired tokens are not used). This app

is therefore vulnerable of being exposed to known threats like man-in-the-middle or replay

attacks.

To understand which threats exist in the protocol and implementations of it, existing re-

search has been doing security analyses. Security analyses of OpenID Connect can divided

along to axes: one looks at formal security analysis and modeling of the protocol, or formal

security testing [2, 33, 34, 49, 62, 80, 86, 89], while the looks at implementations of the proto-

col with automated vulnerability analysis or testing tools [11, 51, 54, 76, 95, 96, 97, 99]. These

solutions generally seek to be comprehensive and tend to look at the threat models from the

perspective of a hacker (or an attacker). Several of the automated vulnerability analysis tools

require extensive work and configuration to use for discovering vulnerabilities in an applica-

tion implementing the protocol, and detect vulnerabilities late in the software development

life cycle.

Vulnerabilities in OpenID Connect can be considered a subset of Access Control Vulnera-

bilities, the fifth highest ranking risk according to the OWASP top 10 list of Web Application

Security Risks [92]. There have been several known cases of data breaches due to insecure

Single Sign-On implementations in the later years, like the Facebook breach in 2018 [55],

where millions of access tokens were hijacked. Due to insecurely implemented Relying Par-

ties lacking proper session management, adversaries could gain access to hundreds of web-

sites outside of Facebook itself. Even though existing solutions have been made to automati-

cally detect vulnerabilities, more must be done earlier in the development stage since several

clients on the Web still have vulnerabilities in their production code.

1.2 Objectives

I hypothesize that easy-to-use incomplete static analyses can be used for mitigating vulner-

abilities in Relying Party applications, early in the development stage. Simple-to-use static

analysis tools that do not require any configuration are something developers like [88]. These

simple analyses may mitigate vulnerabilities in a large portion of the more common security-

critical steps in OpenID Connect, as the steps share similar (uncomplicated) structural and

syntactic properties. The code structure for such critical steps is likely (or at least encour-

aged) to be relatively linear and simple [3], and vulnerabilities may consequently be quite

easy to find.
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The main objectives of this thesis are to:

• Provide a more pragmatic and developer-oriented way to look at implementation of

OpenID Connect with OpenID connect SDKs,

• summarize the vulnerabilities that developers can introduce in implementing the Re-

lying Party with such SDKs, and

• explore whether these vulnerabilities can be effectively detected with simple static

analyses.

1.3 Research Questions

From the objectives, research questions were formed to direct the thesis. The research ques-

tions that this thesis seeks to answer are:

RQ1 What must a developer do to avoid introducing known security vulnerabilities, while

implementing a Relying Party with an OpenID Connect SDK?

RQ2 How can simple, explicit and intraprocedural static analysis checks be used to identify

vulnerabilities in OpenID Connect Relying Parties?

1.4 Contributions

This thesis proposes the following contributions related to RQ1:

• A pragmatic qualitative model of OpenID Connect, highlighting the RP developer’s

concerns (Chapter 5.1).

• The development checklist, which is a step-by-step development recipe rooted in a

thorough analysis of the protocol and the OpenID Connect SDKs (Chapter 5.2).

• An overview of the implementation errors that cause potential vulnerabilities by break-

ing the rules of the model (Chapter 5.3).

The suggested contributions with regard to RQ2 are as follows:

• Three simple, “peephole”-based static analyses explained in Chapter 6:

– The simplest Immediate Code Smell Detection, which detects a single JVM byte-

code instruction that indicates anti-patterns.

– The moderately simple Co-existing Invocation Enforcement, which uses the co-

occurrence of instruction patterns to infer absence of needed secure code checks.

– The slightly more complex Static Control Flow Check, which uses simple patterns

in the basic blocks of the program’s control flow graph, to detect improper re-

sponses to certain security steps.

• Code examples of the vulnerabilities and their patterns related to each of the imple-

mented static analyses, with vulnerability-specific detection strategies (Chapter 6.2).
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• An overview of which OIDC vulnerabilities can be covered by which of the different

analyses (Chapter 6.3).

• The first static analysis detecting ID token verification vulnerabilities, the Improper ID

token verification detector 2 (See Chapter 6.4.3).

• An experimental validation on six open-source Java web applications using OpenID

Connect, demonstrating the effectiveness of the analyses (Chapter 7).

– Four of the six applications had vulnerabilities. A total of 20 vulnerabilities were

found, with 19 false positives, 147 true negatives and one false negative.

– The recall of the tool in total was 95%, which means most of the known vulnerable

code was discovered. The Improper ID token verification detector had a recall of

100%.

– The tool also had a precision of 51% in total, and 61% for the Improper ID token

verification detector.

– The true negative rate was 89%, meaning that 9 out of 10 non-vulnerable cases

were correctly predicted as negatives.

This thesis explores the possibility that relatively simple and explicit static analysis tech-

niques can be used to find vulnerabilities in OpenID Connect, such as the ones in Listing 1.1.

The simple process of the analyses is demonstrated with an example. For detecting the

incomplete verification in Listing 1.1, the analyses could use something like the following

process:

1. This is a token verification method in OIDC. Another method with token request called

this method, and the method name and signature indicate token verification.

2. Here we expect that at least these n verification steps in the checklist are performed.

3. If any one of these steps is absent in the code, raise a warning.

4. The warning informs the developer of the risks associated with not performing these

checks.

The analyses are added to the Find Security Bugs plugin, which is a popular easy-to-use

static analysis tool for detecting security bugs in Java. The tool comes as an IDE plugin, which

makes the analyses easily accessible to developers implementing the protocol in real-life

web applications. It may also be used in the graphical user interface provided by SpotBugs,

giving results like shown in Figure 1.1, where a vulnerability of missing ID token validation is

raised for a method.
2This claim is supported in comparison to related work in Chapter 8.2.2
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Figure 1.1: SpotBugs GUI showing a vulnerability: The file GoogleAuthzTokenConsumer is
missing validation of the ID token.

Vulnerabilities are detected by tailoring the checks based on the protocol flow, and check-

list over what steps are needed to ensure a secure RP.

This way the developer is instructed directly of the risks associated with the code flaws

in their security checks, while they still are in the context where the check is relevant. The

focus here is vulnerabilities in code calling OpenID Connect SDKs, meaning vulnerabilities

that developers introduce when they write code that interfaces with these SDKs. To be clear,

the analyses are not concerned with looking for vulnerabilities in the SDKs themselves.

1.5 Structure of the Thesis

The rest of the thesis is structured as follows: Chapter 2 goes through background for au-

thorization (Access Control), the security protocols OAuth 2.0 and OpenID Connect, the-

ory about program analysis techniques and tools, and an overview of the architecture of the

static analysis tool Find Security Bugs. Chapter 4 shows the approach and overall research

strategy. Chapter 5 contains the analysis results and qualitative model that emerged from

RQ1, while Chapter 6 explains the implementation answering RQ2. Chapter 7 shows an ex-

perimental evaluation of the implementation. The results are discussed in Chapter 8. Finally,

Chapter 9 contains the conclusion and recommendations for further work.



Chapter 2

Background

This chapter goes into the theoretical background with explanation and definitions of topics

that are used in this thesis. OpenID Connect and OAuth 2.0 are used to ensure authentica-

tion and authorization. Therefore Section 2.1 goes through Access Control (Authorization),

with an overview of common vulnerabilities. Section 2.3 shows how the authorization pro-

tocol OAuth 2.0 works, and Section 2.4 explains the workings of the authentication protocol

OpenID Connect. Then comes an insight into program analysis techniques in Section 2.5,

and the way program analysis tools are evaluated in Section 2.6. The abilities and architec-

ture of the static analysis tool Find Security Bugs is explained in Section 2.7.

Sections 2.1, 2.2, and 2.5 contain theoretical background that was mainly outlined during

the specialization project preceding this thesis [87].

2.1 Access Control

Access Control (Authorization) within information security is according to Benantar [9, p. 1]

concerned with a system’s ability to limit computing resources to be exclusively accessible

to authorized entities. Typical terms used in this topic are user, principal, subject and ob-

ject. A user is typically defined as a person, thus an external entity, interacting with a system.

The usual user account contains information about both authentication and authorization.

Meanwhile, a principal is a reference to the internal representation of an entity in a system.

While a user may be associated with several principals, a principal refers to one unique user.

Subjects identify the running processes in a system, i.e. the programs in execution. A prin-

cipal may be associated with multiple subjects, as they can have several processes running

concurrently. An object in a system is often also referred to as a resource. A resource may be

a computing service of some kind, but could also be a passive information entity like a file or

a database record [9, p. 9].

6
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2.1.1 Access Control Models

A security policy is the set of rules in an organization that define who has access to which

resources. Thus, the security policy describes the protection states within a system. Defini-

tions of access control policies are collected in a set of paradigms or models [9, pp. 25–26].

The main access control models are Mandatory Access Control (MAC), Discretionary Access

Control (DAC), and Role-Based Access Control (RBAC). Another, newer model is Attribute-

Based Access Control (ABAC) [66]. These models have the following characteristics:

Mandatory Access Control, which is based on information sensitivity within resources, with

a formal authorization. Subjects are restrained from setting security attributes on a re-

source, and cannot pass on their access, hence the model is mandatory.

Discretionary Access Control, which is based on the identity of subjects, and what informa-

tion they need to know, in addition to group affiliation. A subject with a set of access

permissions may pass their access on to other subjects, hence the model is discre-

tionary.

Role-Based Access Control, which is based on roles within an organization, that are pro-

jected on to users and groups. Roles include collections of subjects within the orga-

nization that have a common need for access in order to perform their tasks. Access

levels or a set of permissions is formally defined for a role or group, and member sub-

jects inherit permissions.

Attribute-Based Access Control, which is based on properties of an information exchange.

The exchange may include the resource requested, the identified attributes of the re-

questing entity, or the context of the requested action or the exchange. Attributes in

the context may be time of day, location and currently evaluated threat level.

2.2 Access Control Vulnerabilities

Access control vulnerabilities have long been among the highest ranked risks in Web applica-

tions. The vulnerabilities are common, because they are not easily targeted with automatic

tests and because functional testers do not necessarily have the skills to properly test access

control mechanisms. Detection of access control vulnerabilities is not considered an easy

task for automated vulnerability detection tools. In an application the system enforces the

policy in such a way that users are restricted from acting outside of their intended permis-

sions [92].

2.2.1 Clarification of terms and definitions

Due to rapidly updated vulnerability classifications by both OWASP Top 10 [92] and Com-

mon Weakness Enumeration (CWE) [91], it is hard to get a sound classification of the scope
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in dated literature. The classifications that were made back then, no longer have a clear

definition in the newest updated lists. Inconsistent usage of terms makes it challenging to

properly classify the vulnerabilities that fall within the scope of an analyzer. Different re-

searchers tend to use their own definitions and understandings of the same terms, or use

the existing references to classifications. Access control is here viewed as any mechanism

explicitly or implicitly involved in controlling access to data in a given system. Here, the

following definitions are proposed to reason about the term “access control vulnerability”:

Definition 2.2.1. Data Leakage (DL) If some observer O can learn a piece of information I

from a software system S, and O is not supposed to be able to learn I, S has a Data Leakage.

Definition 2.2.2. Explicit Access Control Vulnerability (E ACV ) Explicit access control vul-

nerabilities are cases where the program source code explicitly fails in enforcing concrete,

program-specific access control rules, causing a data leakage.

Definition 2.2.3. Implicit Access Control Vulnerability (I ACV ) Implicit access control vulner-

abilities are any, potentially highly subtle, property of the program or software system that

can cause data leakage.

Definition 2.2.4. Access Control Vulnerability (ACV = I ACV ∪E ACV ) Access control vulner-

abilities are the union of all explicit and implicit access control vulnerabilities, causing a

subset of all possible data leakages.

Here the relation is that DL ⊇ E ACV ∪ I ACV , meaning that an DL may entail subtle weak-

nesses that fall far beyond the scope of typical web-based access checks. Therefore the fur-

ther definition for ACV needs some fine-tuning, and for the purpose of this project, mentions

of ACV will be therefore limited to ACV ≡ E ACV ∪ I ACV

2.2.2 Examples

Examples of access control vulnerabilities common access control vulnerabilities in Web ap-

plications include:

• Metadata manipulation, where attacks are done through tampering with or replaying

access token or cookie, or manipulation of a hidden field to elevate privileges.

• Privilege escalation, for example when someone acts as a user without being logged in,

or manages to perform admin level actions as a normal user.

• Modification of application state to bypass access control checks. This includes modi-

fication of internal app state, URL, the HTML page or a custom API attacking tool.
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• Improperly restricted database access, allowing someone’s primary key to be changed

into another subject’s record. This may allow other subjects to view or edit another

account.

• Cross-Origin Resource Sharing (CORS) misconfiguration which allows unauthorized

access to API endpoints. This opens for Cross-site request forgery (CSRF) attacks,

which may lead to privilege escalation. In CSRF attacks, a malicious server forges a

request pretending to be an honest party.

• Improper enforcement of POST, PUT and DELETE requests.

Other vulnerability classes in OWASP Top 10 as well as the CWE lists are used to define

different vulnerability classes can be considered relevant to access control, as for example

cross-site scripting (XSS) may lead to privilege escalation.

Modern Singe Sign-On (SSO) protocols seek to solve several of the issues with more clas-

sical Web-based vulnerabilities by leaving access management to a designated server, thus

separating identity management and delivery of resources. Even if several traditionally rooted

attacks become irrelevant with modern SSO, attacks with similar characteristics can still be

applied to applications implementing such protocols. Data must still be sanitized, and the

communications are still based on web requests.

Additionally, traditional protection mechanisms that work with a client-server model

may be circumvented if the application uses single sign-on, thus introducing novel attack

surfaces. Still, consequently if authorization is broken due to a flaw in the implemented

authorization protocol, it can be considered as an access control vulnerability as data was

leaked.

To better understand which vulnerabilities will apply when using single sign-on, Sec-

tions 2.3 and 2.4 go through the specification of the authorization protocol OAuth 2.0 and its

extension for identity management, OpenID Connect.

2.3 OAuth 2.0

A modern and widely used authorization protocol is known as OAuth 2.0, which is proposed

in RFC6749 [41], replacing and obsoleting the original OAuth protocol. The protocol was in-

troduced as a means to address the issues with traditional client-server authentication mod-

els, which suffer from limitations like the inherent weaknesses of password security, and

problematic management of third-party resources and the access they have to the restricted

resources on the server. The issues are addressed by OAuth through the introduction of an

authorization layer, and the separation of roles. In OAuth the four roles are defined:

• Resource Owner or end-user if it is a person, which is an entity that grants access to a

protected resource.

• The Resource Server, that hosts the protected resources. The server accepts and re-

sponds to protected resource requests by issuing access tokens.
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• The Client, an application that uses the resource owner’s authorization and makes

protected resource request on their behalf.

• The Authorization Server, responsible for issuing access tokens to the client after the

resource owner has been successfully authenticated and obtained authorization.

Meanwhile there are several data items that form the security properties of the protocol.

The protocol relies on the following important credentials used in the requests:

• Authorization Grant: A credential representing that the resource owner has given con-

sent allowing the client to obtain an access token.

• Access Token: A credential used to access protected resources, which is a string rep-

resenting an authorization issued to the client. This token is an abstraction layer that

replaces different authorization constructs with a single token understood by the re-

source server.

• Refresh Token: A credential used to obtain new access tokens when they expire or are

invalidated. This is an optional item to include together with the access token when

first prompted for tokens.

There are four authorization grant types that are defined in the protocol:

• Authorization code grant An authorization code is obtained with the authorization

server used as an intermediate. The resource owner is redirected to the authorization

server, which authenticates the resource owner and redirects them back with a code. A

security advantage here is that the resource owner’s credentials never are shared with

the client, and that the code never is exposed through the user agent.

• Implicit grant The implicit grant is a simplified version of the flow used in the autho-

rization code grant. Instead of a flow with round trips, the client gets an access token

directly from the authorization server, effectively skipping the step that gives a code

grant. This grant is optimized for clients that run directly in the browser (therefore us-

ing a language like Javascript). This flow introduces some security risks that must be

considered against efficiency.

• Resource Owner password grant The password credentials of the resource owner are

used directly as an authorization grant to obtain an access token, skipping the round-

trip where an authorization code is issued. The client does not need to store the re-

source owner credentials, as these are used only once and can be replaced with a long-

lived access or refresh token.

• Client credentials grant The client credentials are used directly as an authorization

grant, effectively removing the resource owner from the picture. This grant can be

used when the authorization scope is limited to protected resources that belong to the

client.
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One of the advantages of this protocol is in the way the resource server only has to un-

derstand and validate access tokens when issuing protected resources to various subjects,

instead of having to handle various other authorization constructs. Otherwise a server would

have to understand an authorization construct, where the access is defined by the resource

owner directly authenticating with her username and password. OAuth is an abstraction

layer that allows for more flexible authorization rules, where the token can get a specific du-

ration of access and possibly a more restricted access than the authorization grant that was

used to obtain the token.

2.3.1 Authorization flow

The authorization code grant flow in the protocol is illustrated in Figure 2.1. There are four

different grant types defined: authorization code, implicit grant, client credentials and re-

source owner password credentials. Requests from the authorization server to the client are

redirection-based.

Figure 2.1: The authorization code flow in OAuth 2.0 has 10 steps from the client asking for
access via the authorization server, so that the protected resource can be obtained with an
access code. Steps C and D are broken into two parts, illustrating the interaction between
the browser and the resource owner.

The following steps are included in the illustrated authorization flow in Figure 2.1, with

the client seeking to access a protected resource at the resource server:
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(A) The flow initiated by the client, redirecting the resource owner’s browser to the autho-

rization endpoint with a set of parameters.

(B) The included parameters from the client through the browser are client identifier, re-

quested scope, local state and the redirection URI, which is the location the user agent

is redirected after access is granted. The browser presents the authorization endpoint

to the resource owner.

(C) Access is requested of the resource owner via the browser.

(D) The authorization server authenticates the resource owner, who either grants or denies

access.

(E) With granted access, the redirection URI from step B is used to send the browser back

to the client. Authorization code and the local state provided in the URI in step B are

included as parameters in the redirection URI.

(F) Client receives the authorization code as the browser is directed back.

(G) The client requests to get an access token by contacting the token endpoint provid-

ing the authorization code, hence it authenticates with the authorization server. The

redirection URI returned in step C is included for verification.

(H) The authorization server validates the authorization code, authenticates the client and

verifies that the parameters in the redirection URI matches the URI used to redirect

the client during step C. It returns an access token, and may optionally return a refresh

token.

(I) Having obtained an access token from the authorization server, the client can finally

request the protected resource from the resource server.

(J) The resource server validates the access token, providing the protected resource if the

token is valid.

Note that the last two steps, I and J, are optional parts of the flow, and not encapsulated by

the standard.

Authentication request parameters

In authorization requests, the client adds a specified set of parameters to the query compo-

nent of the URI:

• response_type: Denotes what to expect in the response. This must be set as “code”.

• client_id: The unique identifier of the client, which is known by the authorization

server.

• redirect_uri: An encoded URI with the location to which the resource owner will be

redirected after authenticating with the authorization server.

• scope: The scope of the access. It represents a limitation to what kind of data the access

token can be used to obtain.

• state: An opaque string that is used to maintain a session state between the request and

the callback response. This value protects against Cross-site request forgery (CSRF)

attacks.
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The basic data transfers in the authorization code flow can then be illustrated by looking

at example HTTP requests. An authorization code request built by the client may look like

shown in Listing 2.1 (Step A). The client redirects the resource owner to the location in the

URL (Step B):

1 GET https :// authorizationserver.domain.com/authorize
2 ?response_type=code
3 &client_id=abc
4 &redirect_uri=https ://org.client.com/callback
5 &state=xyz

Listing 2.1: Step A-B: URL format for an authorization code grant request.

The authorization server then responds with a callback request after performing step C,

authenticating with the resource owner. It then redirects the resource owner back to the

redirect_uri. A callback response may be structured like in Listing 2.2

1 HTTP /1.1 302 Found
2 Location: https ://org.client.com/callback?
3 code=SplxlOBeZQQYbYS6WxSbIA
4 &state=xyz

Listing 2.2: URL format for an access token response.

Then the client validates the state parameter in step F. Upon success, proceeds to step G,

and builds a token request using the authorization code it received. A token request typically

looks like shown in Listing 2.3. This time instead of redirecting the user, the client directly

contacts the authroization server on a back channel, leaving the browser out of the picture.

1 POST https :// authorizationserver.domain.com/token?
2 grant_type=authorization_code
3 &code=SplxlOBeZQQYbYS6WxSbIA
4 &client_id=abcde
5 &client_secret=Xpbxlklk12WRlkoP
6 &scope=api.read api.write
7 &redirect_uri=https ://org.client.com/callback

Listing 2.3: URL format for an access token response.

After this, in step H, the authorization server gives a token response after receiving the

code. Token responses responses may come in the format shown in Listing 2.4:

1 HTTP /1.1 200 OK
2 Content -Type: application/json
3 {
4 "access_token ":"2 YotnFZFEjr1zCsicMWpAA",
5 "token_type ":" bearer",
6 "expires_in ":3600 ,
7 "refresh_token ":" tGzv3JOkF0XG5Qx2TlKWIA",
8 "scope": "api.read api.write"
9 }

Listing 2.4: An access token response in the JSON format.

The authorization flow is designed to ensure the access control of an application. As

such, vulnerabilities introduced in the implementation of the protocol would consequently

be classified at access control-related vulnerabilities. While OAuth is designed to issue a
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client access to protected resources, its design does not properly work to handle the integrity

of the data if used to do authentication where identity information must be obtained.

2.4 OpenID Connect

The authentication protocol OpenID Connect (OIDC) is a layer build on top of of OAuth 2.0

to handle identity management, taking the role as an industry-standard Single Sign-On (SSO)

protocol [60]. One important factor in this identity layer is that other abstractions are used as

optional terms to refer to what are somewhat the same roles. While the terms defined in the

OAuth 2.0 standard are also used in OIDC, an additional set of terms are defined to manage

the identity layer.

The OIDC roles are either new additions, correspond to, or are a subset of the OAuth

roles. These roles are shown in Table 2.1.

Table 2.1: An overview of how OAuth roles are extended or referred to with different terms in
OpenID Connect.

OAuth 2.0 Role OpenID Connect Role Addition

Resource Server The Userinfo Endpoint is exposed from the
Resource Server as a protected resource giving
information about the End-User in response
to and Access Token.

Client Relying Party refers to a Client application
which requires Claims and End-User authen-
tication from an OpenID Provider.

Authorization
Server

OpenId Provider (OP), in the industry often re-
ferred to as Identity Provider (IdP), is an au-
thorization server capable of authenticating
the End-User and providing Claims about the
Authentication event and the End-User to a
Relying Party.

There are also more data artifacts and flows that are defined in the identify layer abstrac-

tion of the protocol. OpenID Connect introduces a set of request parameters in addition to

the ones described in OAuth (See Section 2.3.1). Among these is the nonce value, which is

a randomly generated string value. This value and the state value defined in OAuth serve

similar purposes. The state value comes in the callback request with the authorization code

in step F in the flow (See Figure 2.3), and must be verified by the relying party before the

token request is initiated. It binds the authentication request to the callback authentication

response. The nonce value comes with the token response, and ensures replay attack pro-

tection by binding the authentication request with the token response.

In addition, the following concepts are introduced in OpenID Connect:

• ID Token: A token that contains identifiers of the end-user as well as identifiers of the

IdP and integrity timestamp. It also contains the nonce value, which binds the token



CHAPTER 2. BACKGROUND 15

response to the initial authentication request. This token is sent in the token response

together with the access token. ID tokens come in the JSON Web Token (JWT) format,

which is defined in RFC7519 [45].

• Standard Scopes: A standard set of scopes are defined to specify what identity infor-

mation is available in a request. This information typically includes profile and email.

OIDC requests must always include the openid scope value.

• Claims: Claims are specific sets of information about an entity, typically the identity

information of a user.

• Discovery: The Discovery process is used to establish a trust relationship between the

relying party and the Identity Provider. The relying party sends a request to the /.well-

known/openid-configuration endpoint at the IdP, and receives a JSON document which

is called the Discovery document. This document forms a contract, and contains val-

ues that are used to ensure the integrity of the communication. The Discovery process

is described in its own document which was publish alongside the OIDC specifica-

tion [61].

A chart very similar to the model of OAuth (in Figure 2.1), is shown below in Figure 2.2.

Figure 2.2: The authorization code flow in OpenID Connect is quite similar to the autho-
rization flow in OAuth (Figure 2.1) as it is built on top of the authorization flow. The main
difference lies in some different abstractions, otherwise we see the same 10 steps with added
sub-steps. This model is based on the flow described by Navas and Beltrán [62].

Like Figure 2.2 shows, the main steps in the authorization flow are essentially the same

for OpenID Connect as for OAuth 2.0 (Shown in Figure 2.1), with the round-trips redirecting
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the end-user. The details that differ mostly from OAuth have been expanded to sub-steps,

which illustrates more of the critical validation events that are included in OIDC. Addition-

ally, the responses contain IDs-specific data instead of the generalized terms that are present

in OAuth.

Step A consequently consists of three sub-steps:

• (A0) The end-user is the entity that naturally prompts the client to initiate the flow.

• (A1) The client prepares the request. In this step it is critical to include the proper

parameters, and mistakes here may compromise the client.

• (A2) When the request is ready client redirects the user to to the authorization end-

point.

Steps H and I are also expanded to highlight the validation events that are important to

ensure the integrity of the data sent between the entities.

• (G) The state parameter in the callback request is validated.

• (H) After verifying the authorization code and redirect URI, the token endpoint re-

sponds with an Access Token and ID token, and optionally a refresh token in addition.

• (I1) The RP has to validate the access token and ID token it received from the token

endpoint. Here the developer must remember to implement a specific flow, metadata-

specified algorithms and check various data entries to ensure the validity of the tokens.

This requires carefully implemented code, and is easily susceptible to errors as it relies

on the developer.

• (I2) When the tokens are validated, the RP can finally request the UserInfo endpoint

for the protected user resource, passing the access token that is associated with the ID

token.

Another perspective of this flow is presented in Figure 2.3, where the order of events flows

downwards in the chart.
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Figure 2.3: The authorization code flow in OpenID Connect in a sequence chart. This chart
is based on the flow described by Navas and Beltrán [62].

Token validation

Validation of tokens is one of the critical features in the protocol. During validation there

are several key steps that must be implemented correctly by the client developer. Table 2.2

shows the mandatory parameters in ID tokens. The ID token may contain a number of other

claims that have more identity information.
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Table 2.2: The most common ID Token parameters described [62].

Parameter Description

iss Issuer Identifier for the issuer of
the token, the IdP in format of a
case sensitive URL, using HTTPS.

sub Subject Identifier, a unique and
never reassigned identifier for the
end user within the IdP.

aud Audience the token is issued for.
An array of case sensitive strings
that at least must include the
client_id of the RP that sent the
Authentication Request.

exp Expiration time for the ID token
in Unix Epoch time. The ID token
must not be validated after this
time.

iat Issued At Time, when the ID token
was issued in Unix Epoch time.
This limits amount of time nonces
need to be stored.

2.4.1 Token validation

In the authorization code flow the ID Token must be validated in order to ensure integrity. A

correctly implemented ID token validation in OIDC must include the following steps [60, 62]:

• Token parsing: Received tokens must to be parsed into data objects so that they can

be processed further. All the required parameters must be present in the response. If

any of them is missing an appropriate error message must be produced. Following the

specification, any parameters that are not understood must be ignored.

• Origin verification: The RP receiving a token must validate the iss parameter, which is

the unique identity of the IdP. It must also check that the corresponding shared secrets,

keys, certificates, and other parameters are available and updated. These are needed

to perform further cryptographic verification.

• Audience verification: A token is intended for a single RP. Hence the aud parameter

should be checked for the correct value (the cl i ent_i d value issued from the IdP dur-

ing registration).

• Freshness validation: Validation of the token’s age to detect expired tokens. Parame-

ters such as exp and iat enables this validation. This is essential to avoid replay attacks.

• Session validation: The RP receiving a token must validate that the received nonce

parameter matches the one that was issued initially.
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• Cryptographic validation: This task involves the verification of signatures, and is usu-

ally the more time and resource consuming task. The cryptographic material (key, ci-

pher, etc.) belonging to the legitimate IdP must be used.

In addition to this, timing attacks may leak potentially useful information to an attacker.

If the code paths taken by successful or unsuccessful validation processes differ greatly, the

attacker may learn much about how the validation is structured. It is suggested to terminate

the processes and send an error message as soon as an error is found. All responses should

take similar amounts of time, whether they are successful or not [62].

Access Tokens may also be validated, but is considered an optional step in the Autho-

rization Code Flow. However using the Implicit Flow, the client must validate the access to-

ken [60] as the cryptographic integrity must be maintained as data has passed by untrusted

actors over a less secure connection.

2.5 Program analysis

This section contains background information that was found during the project preceding

this thesis [87].

One way to mitigate security vulnerabilities is through security testing. Security testing is

the act of testing an application’s behavior with regards to security. The testing can be done

manually by a person, in a combination, or automatically in written software tests or pro-

gram analysis. There are several kinds of security testing, and the most common and distinct

ones are black-box and white-box analysis. With black-box analysis, the tester evaluates the

security behavior without having access to the source code. This way, if is confirmed whether

the information that is available to outside malicious entities is enough to perform malicious

actions. White-box analysis happens with access to the source code, hence a deeper access

to information of the application’s behavior [75].

Program analysis tools (PATs) reason about a program’s behavior with regards to proper-

ties such as security vulnerabilities. Program analysis can be done as static analysis (a kind

of white-box testing), in which the program code is analyzed and the behavior is reasoned

about without execution, dynamic analysis (black-box), where the code is executed and its

run-time behavior is analyzed, or in a combination of both, which is called hybrid analysis

[64].

Several common techniques used in program analysis imply a trade-off between the ac-

curacy and the computational efficiency of the analysis [75]:

Flow-sensitive analysis (Section 2.5.1) reasons about the program with the control-flow graph

(CFG). It is usually accurate, at the expense of also being time consuming.

Path-sensitive analysis considers path throughout the program that are valid. Variable val-

ues and booleans in conditionals or loops are reasoned about, so that execution branches

that are not possible can be pruned. Like flow-sensitivity, path-sensitivity implies ac-

curacy at a computational cost.
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Context-sensitive analysis takes into account things like global variables and parameters

of a function call, which form what can be considered the context. Context-sensitive

analysis is also known as inter-procedural analysis, which comes as a contrast to intra-

procedural analysis, that uses no context when analyzing a function. Context-sensitivity

implies a larger computational cost, but with a significant gain in accuracy compared

to intra-procecural analysis.

Pattern matching analysis uses simple linear code scans in a file to power a state machine,

looking for certain patterns of instructions in the code (like the invocation of a certain

type). Heuristics can be used to approximate control-flow of the program. It is very

fast and requires little memory, at the expense of accuracy [36, 44].

2.5.1 Control Flow analysis

In control flow analysis the purpose is to extract information about which of the basic blocks

have paths to other basic blocks [64, p. 10]. Control flow analysis is often also expressed as

constraint based analysis. The flows are represented in a control flow graph (CFG), which is

a directed graph where nodes represent the basic blocks and edges represent paths in the

control flow. A basic block is set as a linear set of instructions which have only one entry

point and one exit point, which represent the start and end of the graph [4, 5]. Two examples

of control flow statements are if-else statements and while-statements, which are illustrated

in Figure 2.4 below. Another common data structure is a call graph, which differs from a CFG

in the way that it does not include returns.

Figure 2.4: CFG examples of if statement and while loop.

2.5.2 Data flow analysis

In data flow analysis, it is common to regard the program as a graph. The program com-

ponents in a certain abstraction can be seen as "elementary" or basic blocks. These blocks
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form the nodes in a page graph. The edges describe the way control may pass between basic

blocks [64, p. 5].

Figure 2.6 shows how control flow and data flow may pass through an arbitrary CFG. Data

may flow independent of the control due to global data structures [42]. Both direct data flows

E. G. (C −→ D), (D −→ E) and indirect data flows like (B −→ A) , (E −→ D).

Figure 2.5: CFG illustration of data flow and control flow

Figure 2.6 illustrates a more concrete example of the data flow in a CFG of a simple if-then

statement [21, p. 488]:

Figure 2.6: Simple if-then statement with corresponding data flow in CFG

2.5.3 Language processing

Finite state automata

Finite state automata (FSA), or state machines, are seen as a flexible tools. FSA can either be

viewed as something that defines a language (i.e. a regular language), or defining a class of

graphs. The construction of an FSA contains a finite set which is the alphabetΣ, a finite set of
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states Q, the initial state i ∈Q, the set of final states F ⊆Q, and the set of edges E . This forms

a 5-tuple 〈Σ,Q, i ,F,E〉. Figure 2.7 below shows two examples of simple finite state automata

representing all the multiples of two and three as binary numbers [78, pp. 3–5].

Figure 2.7: Binary multiples of two and three as FSA [78, p. 4]

2.5.4 Dynamic analysis techniques

Certain techniques are unique to dynamic analysis which is done testing or analyzing the

program’s behavior during run-time. The techniques may be done either in black-box or

white-box analysis, though black-box is more common.

Dynamic Information Flow Tracking (DIFT) is a run-time technique for tracking informa-

tion during the execution of a program. Information is tracked by tainting data, and piping

the taint marks throughout execution [31].

Fuzzing is a program testing technique under the discipline of black box software testing.

It consists of generating various semi-random data entries, malformed in order to test the

input validation robustness of a system [67].

Crawlers are used to gather outside information from the front-end of a website. They

can validate URLs and HTML code, and can traverse through and scan the application’s

pages. While they are most often used for indexing in search engines, their analysis capa-

bilities work well for black-box program analysis [12].

A Web proxy, or a proxy server, acts as a middle-man for requests between clients and

servers. Proxies are used for security, and their primary use is for providing access to the

internet from within a firewall. The proxy can do efficient caching of all clients connecting

to the server [53]. The information gathered from the HTTP communication that the proxy

handles, can be used to perform security analysis.

2.6 Validation of program analysis tools

2.6.1 Validation strategies

Shaw [82] presents an informative analysis of what kind of research strategies are considered

to be excellent in software engineering. Research deliveries in software engineering are clas-

sified by their types of research questions, results and validation strategy they choose. What
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kind of questions are interesting, and what kind of results can answer these questions, and

what kind of evidence demonstrates the validity of the results?

The first part is choice of questions. We can choose from pragmatic questions like method

of development on the form “How can we (better) create X” to analysis methods or design of

particular instances. In the other end of the scale we have generalization, characterization or

feasibility questions, more on the form “What is a good model for X” or “Does X even exist?”.

The more common kind of questions in international conferences tend to be of an improved

method or means of developing software, and analysis methods or testing and verification

questions.

The second component in this is the research result. The various kinds of results range

from procedure or technique, to qualitative, empirical or analytical models, tools (formal

language to support a model), specific solutions, judgments or reports of interesting obser-

vations. On one side with the models, we often look at formal results like taxonomies or

data-driven models. The work is highly constrained and often based on long and rigorous

data collection. On the other end with Specific solutions, judgments or reports, we are look-

ing at pragmatic software engineering solutions applied to problems, or careful analyses of

a system. The nature of the results in combination with the design of their evaluation tells a

lot about the validity of the research results.

A typical tendency has been that too many computer science papers contained no ex-

perimental or only informal validation of their contributions. The various choices for vali-

dation strategies differ in the value they contribute, ranging from a blatant assertion, which

is no serious evaluation of the results, to analysis, which is a thorough an time demanding

task. The choice of this strategy will impact the strength of evidence that the results of the

research are in fact sound. The two most commonly accepted methods are experience in ac-

tual use and systematic analysis. However well-chosen slice of life examples rooted in reality

are more convincing than idealized dummy examples, and reported as a common method

to use. Also Oates [65, pp.115.118] argues for the importance of real-life validation to get

convincing results.

2.6.2 Validation metrics

The metrics for validating program analysis tools or other classification problems often take

basis in computing false and true positives, and false and true negatives. Here these metrics

are defined in the context of program analysis tools reporting vulnerabilities.

• True positives (FP) are cases where the analysis reports a vulnerability, and this vul-

nerability exists.

• False positives (FN) are cases where the analysis reports a vulnerability, but no such

vulnerability exists.

• True negatives (TN) are cases where there is no vulnerability, and the analysis does not

report any vulnerability.

• False negatives (FN) are cases where existing vulnerabilities that don’t get reported.
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This can be illustrated in a confusion matrix:

Table 2.3: Confusion matrix illustrating cases of true and false positives, and true and false
negatives.

Vulnerability exists No vulnerability exists
Analysis reports vulnerability True positive False positive

Analysis reports no vulnerability False negative True negative

Soundness and completeness are properties that are normally used to quantify an analy-

sis tools. Metrics for the properties come from computing false positives and false negatives.

Soundness and completeness have various definitions, but a commonly used definition is as

follows [26]:

The soundness of a program analyzer denotes whether it reports report all the issues in

the code. A sound analyzer may have false positives, but reports all existing issues (meaning

no false negatives).

The completeness of a program analyzer denotes whether it only report true issues. A

complete analyzer may have false negatives, but all its reports are true (meaning no false

positives).

It is however pointed out by Meyer [56] that soundness and completeness are boolean

properties in the sense that, either a tool is sound, or it is not. However in the assessment of

tools it is more interesting to look at the degree to which it can achieve one of these proper-

ties. To get a more granular sense in evaluating the metrics of a tool, the properties precision

and recall are often used instead to define the degree of completeness and soundness.

• The recall of a program analyzer is the percentage of the existing vulnerabilities that

are detected, in other words how sound is the analysis.

Recal l = TP

TP+FN

• The precision of a program analyzer is the percentage of its reports which are true

cases (in other words the true positive rate). We can say that the precision denotes the

degree of how complete the analysis is.

Pr eci si on = TP

TP+FP

A factor for both the precision and recall is that they use data from both columns of the

confusion matrix. This makes them sensitive to changes in data distributions, and may give

a skewed perspective on imbalanced data [90]. If two data sets have different numbers of

positives, the data distribution quickly changes. There exist metrics than can account for

imbalance of the data.

To deal with this, the true negative rate (or specificity) is an interesting metric, which de-

notes a classification model’s ability to correctly predict true negatives. This gives another
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perspective on how it resists false positives, without having to have a large volume of posi-

tives (which is required to get a confident precision) 1. Both the identifiers in the metric lie in

the same column of the confusion matrix, so it is not sensitive to imbalanced data that easily

occur in small data sets [90]. This is because the changed values cancel each other out.

True negative rate = True negatives

False positives+True negatives

Additionally, it is common in research on static analysis to calculate the imprecision of a

tool, by calculating the false positive rate (FPR) 2. This metric is the proportion of the posi-

tive warnings that are false positives, and gives a more direct sense of how much noise the

analysis has, instead of its absence of noise. False positive rate (FPR) would in this sense be

F DR = 1−P where P is the precision.

False positive rate = False positives

False positives+True positives

There is a clear trade-off when designing a program analysis tool for soundness or com-

pleteness, as aiming for one of them will limit the capability in the other in a real-world do-

main, and no program analysis tool fulfills both criteria. Designers of program analysis tools

must reason about whether they want to sacrifice completeness (precision) or soundness

(recall) [30].

2.6.3 Choice of test-beds affecting metrics

Seng et al." [81] looked into how the quality of “security scanners” (or program analysis tools)

is quantified. An common way is to challenge its features with various targeted test-beds. A

test-bed may be a deliberately vulnerable web application with a known finite set of vul-

nerabilities in artificial code, or any other given code base with natural code. They found

that 45.6 % of experiments use open-source web application frameworks, while fewer use

educational sites or targeted test sites. The choices for test-beds range from custom-made

web applications to educational vulnerable applications, test sites, open-source applications

and real-world applications. These test-beds have different trade-offs that must be consid-

ered while quantifying an analysis tool. Deepa and Thilagam [24] show an overview of some

test that are used for evaluating scanners or prototypes. All the commonly used test-beds in

their case were open-source applications. The applications vary from content management

to e-commerce and image managements systems.

Common metrics for evaluating an analysis tool are vulnerability detection rates with

precision and recall, false positive or false negative rates, as well as scanning time and au-

1The true negative rate is also known as the specificity, which is commonly used in medical research to
quantify a testing procedure.

2FPR here means the same as what the false discovery rate (FDR) often does in statistical classification prob-
lems. Several publications related to program analysis [13, 48, 98] however, refer to False Positive Rate with the
definition given in this thesis.
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tomation level. Such metrics are more convincingly computed in a deliberate test-bed, be-

cause it is hard to know about all the vulnerabilities in a real-life code base. On the other

side, artificial test-beds risk being too far from real code-bases in terms of complexity and to

which degree they cover realistic cases.

Three ideal test case characteristics are realism, statistical significance and ground truth.

Natural code bases offer realism, and may also provide statistical significance if in large

enough volume. However they lack ground-truth (we don’t have knowledge of all their vul-

nerabilities).

Delaitre et al. [26] found the following metric applicability for real-life natural test beds

versus artificial test-beds:

• For natural test-beds, precision is applicable, while it is hard to get convincing recall

rates because of the ground truth problem.

• For artificial test-beds, both precision and recall are applicable metrics.

2.7 Architecture of the FindSecBugs plugin

Find Security Bugs [74], or often referred to as just FindSecBugs, is a security framework built

as an extension of SpotBugs [84, 93]. SpotBugs is the successor of the original open-source

FindBugs [1, 44] framework, which was developed with the concept of using simple static

analysis techniques to identify bugs based on certain bug patterns. The idea is that it will

pick up low-hanging fruits based on mistakes that may easily occur. SpotBugs has therefore

inherited the original core engine of the framework, and is build and modernized around the

original concepts. FindBugs and SpotBugs will hereafter be referred to around each other as

the same.

The overall conceptual model of the FindSecBugs extension to the SpotBugs is illustrated

in Figure 2.8.

Figure 2.8: FindSecBugs is integrated into the SpotBugs framework, utilizing its core detec-
tors [72].

The basic structure of FindSecBugs is built on two main components [69]:
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• Bug: The definition of a sensible point or a vulnerability in the application. The def-

inition of a bug exist by its presence in the project configuration files findbugs.xml
(which corresponds detectors to bug patterns) and messages.xml (which contains de-

scriptions of the bugs and suggestions for fixes). When the bug is defined in these files

it can then be reported by detectors.

• Detector: A class containing the logic to find a bug type or a set of bug types. In other

static analysis tools it is also common to refer to these as “rules”.

The building blocks for FindSecBugs lies in the core framework, SpotBugs, which in its

order is built using Java Virtual Machine (JVM) bytecode abstractions from the Apache Com-

mons Bytecode Engineering Library (BCEL) 3. Compiled Java code which is interpreted by

the Java Virtual Machine is located in .class files. FindBugs is designed to analyzed these

files.

2.7.1 The SpotBugs Core Framework

The various detector types that exist can be divided into several layers of sophistication, de-

pending on the bug pattern that is to be found. The detection strategies in the SpotBugs

detectors can be viewed in four layers as shown in Table 2.4. In implementing the Detector

interface, the visitClassContext() method is specified. The method takes an instance of

ClassContext. which serves as a cache for the results from an analyzed class, as certain

kinds of analysis is shared by many detectors. By collecting these results an increased mem-

ory cost is taken for a reduced CPU time.

3Apache commons BCEL: https://commons.apache.org/proper/commons-bcel/
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Table 2.4: Overview of the layers of the various detector types in the SpotBugs framework as
shown in the FindBugs paper by Hovemeyer and Pugh [44].

Layer Description Example Detector
1. Class structure and
inheritance

Only the structure of the analyzed
classes is inspected, without di-
rectly looking at the code.

The detector for “Use-
less Subclass Method”,
which only reasons
about the structure.

2. Linear code scan The bytecode is scanned linearly,
analyzing each of the methods.
The visited instructions are used
to power a state machine. While
not making use of complete con-
trol flow information, these use
heuristics to effectively approxi-
mate control flow.

The detector for cross-
site scripting reasons
about several key-hole
properties to find vul-
nerabilities in HTTP
communications.

3. Control sensitive
analysis

An accurate control flow graph
is constructed for the analyzed
methods.

The detector Check-
TypeQualifiers

4. Dataflow analysis Both control flow and data flow are
taken into account, making for a
deeper understanding of the pro-
gram’s properties.

Taint analysis detec-
tors for SQL injection,
and the detectors for
unreleased locks.

However for relevance these layers are mainly divided into two rough categories, visitor-

based detectors (layers 1 and 2), and CFG-based detectors(layers 3 and 4), as elaborated in

an architecture document 4 written at the time of version 0.94 of FindBugs by the project

founder, David Hovermeyer [23]. The visitor-based detectors are usually based on peep-

hole techniques, and are very computationally lightweight. The CFG-based detectors doing

control-flow and dataflow analysis are often heavier to run as they require more memory

with graph-based operations. Therefore if a peephole check is sufficient to quite confidently

classify a bug, usage of CFG-based analyses should be considered carefully. Despite this

distinction, the SpotBugs framework lays no real constraint on the way a detector is imple-

mented, and “any” analysis technique may be incorporated into a detector. In the end of the

day however, a bug detector has a very straightforward task: look at a compiled java class file

and find potential bugs, reporting them by creating a BugInstance object reporting it via

the BugReporter.

Visitor-based detectors

These visitor-based detectors often extend the class OpcodeStackDetector, which ultimately

is a subclass of DismantleBytecode. The basis behavior of these detector types is a top-

down traversal of the class file’s features, decoding the symbolic information. When the de-

4Due to the document being dated on certain points, small modifications and corrections are made, taken
from code investigation of the current github repository of SpotBugs [84].
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tector encounters a feature like a field, instruction, method or others, a callback method is

invoked by the super class.

Visitor-based detectors can inspect the class file for suspicious features by overriding

these callback methods. In visitor-based detectors, a state machine (See Section 2.5.3) rec-

ognizer that works over the sequence of instructions is introduced as an important idiom.

The method sawOpCode() is the callback method handling individual instructions. Every

invocation of this method is a single input symbol to the state machine. The state machine

is practically a finite state automaton accepting a regular language. This language is a pat-

tern that indicates trouble if it appears in the bytecode for a method. This method is quite

simple in its management with control flow, but turns out to be significantly faster than the

CFG-based analyses.

The role of the OpcodeStack class, which is present in the subclass OpcodeStackDetector,

is to maintain information about the operand stack as the instructions in a method are vis-

ited, however still in a rather unsophisticated manner. While SpotBugs does not use context-

sensitive, inter-procedural analysis, some detectors reason about global information like

fields access throughout the application or sub-type relationships [8].

CFG-based detectors

Detectors employing the second layer with linear code scans are widely used both in the

SpotBugs and the extended FindSecBugs framework. Some of the more advanced analyses

developed in the SpotBugs core that do control- and data flow flow analysis can be utilized by

FindSecBugs detectors. In this analysis, a CFG representation is built from Java methods, and

the detectors usually implement the Detector interface directly instead of inheriting from a

visitor superclass.

The fundamental behavior of the analysis is to sequentially visit each method of an ana-

lyzed class, requesting a set of analysis objects, which are end products of a certain analysis.

An analysis object records certain and probable facts about the method based on for instance

a dataflow analysis. After collecting these analyses, the detector iterates through each loca-

tion in the control flow graph. Here a location is the point in execution just next to where a

certain instruction is to be executed.

The dataflow facts are checked at every location for suspicious heuristics. For instance,

the ResourceTrackingDetector class 5 is an abstract analysis class designed to find meth-

ods in which a resource of a kind is not properly cleaned up or closed properly. In this analy-

sis the instructions creating an object are expected not to have a path through the CFG which

does not lead to a close. Such a path will be considered an “open” path, and the method will

be reported as a bug. One case in which this class can be extended is when database connec-

tions have not been properly closed in a finally block, and an exceptional control flow may

therefore lead to an unclosed connection.
5ResourceTrackingDetector in the SpotBugs project https://github.com/spotbugs/spotbugs/blob/

master/spotbugs/src/main/java/edu/umd/cs/findbugs/ResourceTrackingDetector.java
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2.7.2 Detectors in FindSecBugs

The development of new detectors follows a defined work flow inspired by test-driven devel-

opment [71]:

1. A vulnerable test code sample is added to illustrate the bug. As it is only intended to

trigger the rule defined in the detector, it does not have to be a working application.

2. Then a test case is written, asserting that the given bug pattern was reported in the

expected code location by the detector.

3. The new detector is configured by adding a detector and bug pattern to findbugs.xml.

4. Descriptions of the bugs and suggested fixes are added.

5. Finally a Detector is written, reporting the expected annotated bug patterns.

There are several detector classes that can be extended depending on the characteristics

of the bug pattern that is searched for. The main types are:

OpcodeStackDetector searching for a specific method call,

ConfiguredBasicInjectionDetector searching for injection-like vulnerabilities, and

Detector which is the basic detector that analyzes the complete class context of a java class.

The simplest detectors use methods that are relatively easy to understand. Listing 2.5

shows an example of an XML related vulnerability, and Listing 2.6 has parts of its compiled

bytecode. The bug is reported by the detector shown in Listing 2.7, which on line 10 specif-

ically looks for the invokevirtual of the constructor of the XMLDecoder (line 5 in List-

ing 2.6).

1 public class XmlDecodeUtil {
2 public static Object handleXml(InputStream in) {
3 XMLDecoder d = new XMLDecoder(in);
4 try {
5 return d.readObject (); // Deserialization happen here
6 }
7 finally {
8 d.close();
9 }

10 }
11 }

Listing 2.5: Vulnerable test code sample for usage of XML deseseralization.

1 public static java.lang.Object handleXml(java.io.InputStream);
2 Code:
3 0: new #2 // class java/beans/XMLDecoder
4 ...
5 5: invokespecial #3 // Method java/beans/XMLDecoder ."<init >":(

Ljava/io/InputStream ;)V
6 ...
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7 10: invokevirtual #4 // Method java/beans/XMLDecoder.readObject :()
Ljava/lang/Object;

8 ...
9 28: aload 4

10 30: athrow
11 ...

Listing 2.6: Bytecode of compiled vulnerable test code sample for usage of XML
deseseralization.

1 public class XmlDecoderDetector extends OpcodeStackDetector {
2 private static final String XML_DECODER = "XML_DECODER";
3 private static final InvokeMatcherBuilder XML_DECODER_CONSTRUCTOR =

invokeInstruction ().atClass("java/beans/XMLDecoder").atMethod("<init >
");

4 private BugReporter bugReporter;
5 public XmlDecoderDetector(BugReporter bugReporter) {
6 this.bugReporter = bugReporter;
7 }
8 @Override
9 public void sawOpcode(int seen) {

10 if (seen == Const.INVOKESPECIAL && XML_DECODER_CONSTRUCTOR.
matches(this)) {

11 bugReporter.reportBug(new BugInstance(this , XML_DECODER ,
Priorities.HIGH_PRIORITY) //

12 .addClass(this).addMethod(this).addSourceLine(this))
;

13 }
14 }
15 }

Listing 2.7: Detector for usage of XML deseralization.

Find Security Bugs has also introduced a taint analysis component, which may be used

by several detectors to track data between tainted sources and sinks. Several detectors in

Find Security Bugs use resource files to list their vulnerable sources and sinks, which form

inputs to the identifiers they want to check. Detectors read and use these lists when scanning

the code. This enables the community to easily update the detectors without their logic, only

their inputs. This may become useful when new vulnerabilities are discovered by the security

community. All that is needed for detecting the new vulnerability may be to add a single line

with a new identifier to the resource file. Such identifiers may also be used by other detectors

than the ones directly applying taint analysis.

2.7.3 Vulnerability coverage and usability in FindSecBugs

FindSecBugs covers a variety of defined OWASP- and CWE-defined vulnerabilities in their

detectors, as described extensively in an evaluation by Li, Beba and Karlsen [48]. However

many vulnerability detectors are not based on very modern web-based security practices,

and no coverage can be found directly for protocols like OAuth 2.0 and OpenID Connect. An

exception is the “Hard-coded password detector” observed in the source code of the plugin,

which has been extended to detect usage of hard-coded client IDs and secrets in a Spring

OIDC configuration.
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FindSecBugs has inherited the usability of FindBugs, and offers integration in IDE or

other development phases like continuous integration steps. Users of the plugin may sup-

press false positives and target their analysis towards certain packages or classes. When go-

ing through warnings, it is likely that it is quick and easy to fix, and only requires inspection

of a few lines of code [8, 74].



Chapter 3

Related Work

This chapter goes through the related work to this thesis related to the two research ques-

tions. The first part 3.1 goes through formal security analyses and models of the protocol,

which relate to RQ1. Section 3.2 summarizes automated vulnerability detection and protec-

tion tools for the protocol, which are relevant to RQ2.

Related research was obtained with informal searches for relevant keywords like OpenID

Connect, vulnerabilities, detect, static/program analysis, in Oria (The digital library at NTNU),

Google Scholar, the ACM digital library, the IEEE digital library and the relevant paper index

in the Mendeley reference manager. The references and forward citing indexes of some of

the paper were briefly scanned for more inclusions.

The previous research on OAuth and OpenID Connect is often focused on formal security

analysis and threat modeling. The research works can be considered in to factions; One

uses formal security analysis based in threat models of the specification, or manual analysis

of implementations to reason about security vulnerabilities in the specification. The other

faction uses automated penetration testing or program analysis tools to find vulnerabilities

in implemented OpenID Connect systems.

3.1 Security analysis of OAuth and OpenID Connect Specifi-

cation

This section highlight related work which relates to RQ1: What must a developer do to avoid

introducing known security vulnerabilities, while implementing a Relying Party with an OpenID

Connect SDK?

The related formal security analyses are generally using two different approaches. Some

of the look at the specification itself, inferring vulnerabilities inherent to how the protocol

standard is defined [33, 34, 62, 89]. Other formally analyze implementations of the protocol,

and use results from experiments to find possible vulnerabilities [2, 49, 50, 86]

Sun and Beshnov(2012) [86] examined implementations of the much-used OAuth IdPs

33
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of Facebook, Google and Microsoft, as well as 96 facebook-connected RPs, using manual

techniques to analyze HTTP messages. They wrote penetration tests to explore potential

exploits. Their findings include the possibility that the confidentiality of access tokens can

be broken, and the possibility to forge credentials and sending these to the sign-in endpoint

of the RP.

In 2013, Lodderstedt et al. in developed a comprehensive threat model for OAuth 2.0 [89].

The threats they present with regard to Relying Parties revolve around an attacker’s ability to

obtain secrets, injecting malicious data or acting as a man in the middle. They also high-

light cases where the developer may fail to properly protect sensitive data, or have errors in

their configuration. An attacker impersonating an IdP may be able to obtain access to pro-

tected resources if the Relying Party is insufficiently protected against CSRF attacks. Usage

of weaker grant types like Resource Owner Password Credential should be minimized as it

eliminates the strength of the token-based flow.

Li and Mitchell(2014) [49] looked into security issues in 60 Oauth 2.0 implementations

based in China, in case studies where they manually inspected the network communication.

They found two critical vulnerabilities, and provide recommendations for how IdPs and RPs

can mitigate these vulnerabilities. Their recommendations include that IdPs should take re-

sponsibility to include usage of the state parameter in the sample code in their developer

guides. They should also give proper emphasis of the potential risks, to encourage RP devel-

opers to include this value.

Fett et al. conducted two studies looking at the security properties of OAuth 2.0 in 2016 [33]

and of OpenID Connect in 2017 [34]. They analyzed the protocols in an abstract manner,

mostly ignoring implementation details. An extraction of the vulnerabilities they presented

are shown in Table 3.1, vulnerabilities 1-10.

Alaca and van Oorschot (2018)[2] analyzed and compared 14 Web SSO systems, including

Oauth 2.0 and OpenID Connect. They developed a taxonomy for SSO schemes by identifying

common design properties. They discussed how priorities related to users, RPs and IdPs im-

pact how SSO schemes are designed and deployed. They highlighted how different schemes

provide benefits for different use cases.

Li, Mitchell and Chen (2018) [50] continued their work from 2014[49], and looked deeper

into how CSRF attacks can be mitigated in OpenID Connect as well as OAuth 2.0. They

suggest including more sophisticated usage of referer headers in addition to the protocol-

specified state parameter to mitigate CSRF attacks against the redirect_uri, by tracking the

intention of the user. This mitigation is related to the findings of Fett et al. [34]. The threat is

shown as threat number 11 in Table 3.1.

In 2019, Navas and Beltrán [62] did a thorough treat modeling of the OIDC core spec-

ification, and some of its implementations. In total they identified and described over 16

different attack patterns, as well as other threats to privacy and security. Their main contri-

bution that separates them from other works is their crafted token attack, which is described

as threat 12 in Table 3.1.

Sadqi et al [80] analyzed the security properties of Single sign-on systems in 2020. They

present security implications of different protocol flows in OAuth 2.0, and an examination
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of security issues related to both the protocol specification and its implementation on the

Web. They focused on how the security parameters like state values and tokens play roles in

the security of the protocol, and how these values can be exposed. One of the threats they

highlighted is usage of the bearer token, since this does not offer data origin validation in

itself. They suggest that signature-based access tokens should be used instead. This problem

is however solved by OpenID Connect, using ID tokens. Additionally such signature-based

tokens are described in OpenID Connect as an optional part of the standard [60], for when

using the implicit flow.

3.1.1 Threats on OpenID Connect Relying Parties

When looking exclusively at the Relying Parties of the protocol, there are still many different

attack surfaces. This section summarizes the threats and vulnerabilities that have previously

been found the client or Relying Party (RP), which is especially vulnerable entity because it

is usually the one written by the non-security specialized developer.

Table 3.1 shows an overview of the threats on OpenID Connect Relying Parties identified

by related work. Threats that do not directly involve RPs are intentionally left out.
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Table 3.1: Overview of threats on OIDC Relying Parties [33, 34, 50, 62].

Threats on RP Vulnerability Mitigation
1. IdP mix-up at-
tack [33, 34]

1. RP is confused and sends cre-
dentials to attacker’s IdP.

1. IdP should put its identity
into the response, RP verifies
the identity. Applies only to Im-
plicit Flow.

2. Attack on state pa-
rameter (CSRF) [33, 34]

2. The same state parameter is
used, and can be replayed.

2. Nonce for the state is chosen
freshly on login bound to user’s
session.

3. Code/Token/State
leakage [33, 34]

3. State is leaked through
referrer header to third-party
through script/link.

3. Documents delivered at
endpoints should be vetted for
links to external resources.

4. Naïve RP session in-
tegrity attack [33, 34]

4. RP puts the IdP identity into
the redirect URI (Naïve user in-
tention tracking).

4. RP should always use ses-
sions to store user’s chosen IdP
(Explicit tracking).

5. Injection at-
tacks [33, 34]

5. Proper escaping of data
parameters in the redirection
URIs is lacking.

5. Vetting all input data from
untrusted sources, carefully es-
cape output data.

6. CSRF and third-
party login initia-
tion [33, 34]

6. A third-party can initiate lo-
gin by redirecting user to Login
initiation endpoint. This is an
optional feature bypassing the
state-based CSRF protection.

6. Login initiation endpoints
should not be implemented.

7. Server Side Re-
quest Forgery [34, 68]
: the attacker manipu-
lates the redirect URI.

7. RP is instructed to send re-
quests to a malicious discovery
party.

7. Proper filtering and mecha-
nisms to limit server-based re-
quests.

8. Third party re-
sources [33, 34]

8. Untrusted third-party re-
sources embedded in the same
origins as RP endpoints.

8. Avoid embedding third-party
resources, or demand integrity
through a specific hash match.

9. TLS security [33, 34] 9. Data is transmitted in cleart-
ext and credentials are exposed.

9. Parties in OIDC should use
and require HTTPS in URIs.

10. Bad Session Han-
dling: session fixation
attacks [33, 34]

10. The RP forgets to re-
place the session id with a fresh
nonce.

10. The RP should always use
fresh nonces after login, and
store nonces in a cookie with
the "Secure" property.

11. CSRF [50] 11.Attacker intercepts redirect,
modifies r edi r ect_ur i .

11. Use referrer header to track
intention.

12. Crafted tokens [62] 12. Attacker exploits incom-
plete token validation at the RP.

12. Properly validate all the val-
ues in the ID token.
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3.2 Automated tools for detecting OpenID Connect vulnera-

bilities

This section goes through research which is relevant for RQ2: How can simple, explicit and

intraprocedural static analysis checks be used to identify vulnerabilities in OpenID Connect

Relying Parties?

Previous research have made both dynamic- and static analysis solutions for security

verification of OpenID Connect and OAuth, with various focus areas and abstractions.

Wang et al [95] performed an analysis of three authorization and authentication SDKs in

2013, which at the time were used by 52% of the most popular Windows App store apps. They

used a semantic modeling-based approach using knowledge bases to explicate the SDKs.

The approach generates formalized assertions that are checked based on a clause of seman-

tic model properties, and detects security violations by testing proofs with a satisfiability

problem (SMT) solver. Using a symbolic execution framework for validation of the models,

analyses took between 11 and 25 hours to check the three SDKs for vulnerabilities.

In 2014, Zhou and Evans [99] introduced SSOScan, a black-box penetration testing tool

for Relying Parties, applications using SSO. They conducted a large-scale study, which is lim-

ited to RPs using Facebook’s implementation of OAuth. They detect four vulnerabilities: ac-

cess token misuse, app secret leak, user OAuth credentials leak and signed request misuse.

The former two are related to confusion regarding authorization mechanisms, while the lat-

ter two are based on failures to keep secrets confidential. SSOScan simulates a series of at-

tacks and observes the responses that come over the network. The tool has an regex-based

automated button finder on the forms in the sites that it analyzes. The tool is limited to

faking user interactions and as a black-box tool limited to vulnerabilities can be detected

through analyzing web traffic patterns.

Yang et al.(2016) [97] designed and implemented a model-based tool called OAuthTester.

They examined found major identity providers and 500 websites implementing OAuth 2.0.

In their design they use a finite State machine to model the protocol flow. They use fuzzing

(See Chapter 2.5.4) techniques to query the RP and the IdP. They mainly found vulnerabilities

related to improper management of the state parameter.

Mainka and Wich [54] proposed in 2017 an Evaluation-as-a-Service tool they call PrOfES-

SOS, which dynamically allows a tester to perform black-box penetration testing in run-time,

simulating honest and dishonest IdPs. They categorize to main classes of threats; Single-

Phase Attacks (exploit a single security check) and Cross-Phase attacks (complex attack setup

manipulating several messages in the data flow). These classes encapsulate most of the var-

ious threats summarized in Table 3.1. HTTP requests are manipulated by the tool’s IdP, and

RP reactions to different malicious requests are analyzed. Detection criteria for a vulnera-

bility is determined by successful maliciously obtained access to credentials. The analysis

requires a manual configuration to increase soundness.

Yang et al. (2018) [96] designed an automated testing tool, S3KVetter, verifying logical cor-

rectness and identifying vulnerabilities in SDKs implementing OpenId Connect or OAuth.
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Their focus is in SDKs that are used for implementing a client application, as a more specific

continuation of their previous work [97]. Their approach is based on theorem provers after

the program’s code is translated to appropriate logic predicates. The code is by dynamic

symbolic execution extracted to a symbolic predicate tree, in which all the program’s execu-

tion paths form branches in the thee, with the leaf nodes containing the end result of a given

path. The paths are explored with a scheduling algorithm that simulates various program

executions with data inputs. As their approach is focused around attacker-oriented steps

of the protocol flow, their analysis cannot reach different paths than an attacker might, and

their knowledge of the program internals is lacking. Their notion of an attacker is a malicious

“user” doing man-in-the-middle attacks. Hence their approach also assumes that the IdP is

trustworthy. The tool requires some manual setup of a sample app, and the user must mark

which functions may be reached by an attacker (functions handling user input).

Calzavara et al. (2018)[11] made a browser-side security monitor called WPSE, and a thor-

ough security analysis of Web protocols, including OAuth 2.0. Their tool is designed to ensure

compliance with the intended protocol flow, and integrity and confidentiality of messages.

In an experiment on 90 websites, they uncovered that over 61% had security flaws. This

browser extension must presumably be installed by the website’s users.

Li, Mitchell and Chen. (2019)[51] proposed at roughly the same time a security scanner

and protector, OAuthguard, which similar to WPSE provides protection for OIDC and OAuth

2.0 as a browser extension. They performed an experiment on the top 1000 RPs using the

Google single sign-on services as IdP. Like other dynamic analyses, this tool acts as a proxy,

and detects vulnerabilities by scanning HTTP messages. It may block http requests if the

request indicates unsafe token transfer (checking TLS usage), privacy leaks, impersonation

attacks and CSRF attacks.

Also in 2019, Rahat et al. [76] introduced OAuthLint, a tool using query based static anal-

ysis to find vulnerabilities in Android apps that implement the protocol using OAuth APIs.

They based their analysis on a model with anti-protocols, which denotes vulnerabilities in

the protocol. They analyze relying parties for vulnerabilities related to:

• Local storage of critical values like tokens,

• hard-coded client secrets,

• improper encryption of access tokens data in transmission,

• usage of an insecure protocol called WebView for data transactions and

• failed validation of API calls from client Android devices which should not be trusted.

Their analysis computes a control-flow graph which they query with formal logic predicates.

They evaluated their analysis on around 600 popular Android apps, and found that 32% of

the analyzed apps had at least one of the five vulnerabilities they looked for. Their analysis

achieved a high precision of 90%.
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Table 3.2: Overview of related works doing automated vulnerability detection of OpenID
Connect and OAuth 2.0.

Publication Type of analysis Description Protocol
Wang et al. (2013) [95] White-box Symbolic execution OAuth 2.0

SSOScan (2014) [99] Black-box Penetration testing OAuth 2.0

OAuthTester (2016) [97] Black-box Fuzzing OAuth 2.0

PrOfESSOS (2017) [54] Black-box Penetration testing OIDC

S3KVetter (2018) [96] White-box Symbolic execution Both

WPSE (2018) [11] Black-box Browser security
monitor

OAuth 2.0

OAuthguard (2019) [51] Black-box Browser monitor
and proxy inter-
cepting request

Both

OAuthLint (2019) [76] White-box Static analysis OAuth 2.0

3.3 Precursory thesis work

Preceding this thesis, I conducted a review [87] of relevant research in program analysis tools

for detecting access control vulnerabilities [10, 22, 25, 27, 32, 43, 46, 47, 57, 58, 59, 63, 77, 79,

83, 85, 98, 100, 101]. These provide various methods for vulnerability detection with regards

to access control. Many of the methods are designed for a more traditional client-server

based access control model, and are not directly suitable for analyzing applications using

OpenID Connect. Additionally, the precursory work includes a published research paper

written in cooperation the supervisors of this thesis [88]. This work forms an important basis

for the ideas of this project (The paper is also attached in Appendix A). Our study on software

consultants with 80 respondents had the following key results:

• Consultants have a near 50/50 distribution in preference that the static analysis tool

is fully automated (and is therefore less precise but easier to use) or requires some

annotations but more powerful.

• If the tool seamlessly integrates into their workflow, software consultants are more

likely to use it.

• The respondents answered that they generally do not think precision should be lower

than 90%.

• However, lower precision is acceptable if security code is analyzed. We found in our

study that the consultants are much more inclined towards in higher recall (or sound-

ness) than high precision if the tool looks for security-critical vulnerabilities like access
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control vulnerabilities.



Chapter 4

Research Design

4.1 Research motivation

OpenID Connect (OIDC) is becoming increasingly common in modern Java applications as

a de facto standard for authentication and authorization with Single sign-on federation ser-

vices. Vulnerabilities in OpenID Connect can be considered a subset of Access Control Vul-

nerabilities, the fifth highest ranking weaknesses according to the OWASP top 10 list of Web

Application Security Risks [92].

There have been several known cases of data breaches due to insecure Single Sign-On

implementations in the later years, like the Facebook breach in 2018 [55], where millions of

access tokens were hijacked. Due to insecurely implemented clients lacking proper session

management, adversaries could gain access to hundreds of websites outside of Facebook

itself, with no way for the users to revoke the attacker’s access. Developers may use well-

known SDKs for building a Relying Party (RP) in OIDC to connect their app with an Iden-

tity Provider (IdP) for identity management. Examples of such SDKs are the Nimbus OAuth

SDK [18] and Google OAuth Client Library [38, 39].

Even if these SDKs help the developer by encapsulating several difficult implementation

details, the developer and the SDK still share a common responsibility in securing the RP ap-

plication. The SDKs give tools for managing Web-specific features, and can provide strong

data types for the data delivered between the RP and the IdP. Still, the developer is responsi-

ble for establishing a trust relationship with the IdP, and for correctly managing secrets and

data that are needed to ensure integrity, confidentiality, and non-repudiation in the commu-

nication. Even though existing solutions have been made to automatically detect vulnera-

bilities, more must be done since several clients on the Web still have vulnerabilities in their

production code.

A large portion of the implemented protocol steps in OpenID Connect clients are likely

to share similar (uncomplicated) structural and syntactic properties. These are easy to check

with static analysis. Therefore simple analyses may be enough to mitigate a substantial part

of the vulnerabilities that can come in OpenID Connect clients.

41
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4.2 Research questions

This thesis seeks to answer the following research questions:

RQ1 What must a developer do to avoid introducing known security vulnerabilities, while

implementing a Relying Party with an OpenID Connect SDK?

RQ2 How can simple, explicit and intraprocedural static analysis checks be used to identify

vulnerabilities in OpenID Connect Relying Parties?

4.3 Research strategy

The research strategy in this thesis is formed based on guidelines from a paper by Shaw [82]

and from the book by Oates [65]. For the purpose of clarity, the terms from Shaw’s paper are

highlighted in defining the research strategy.

4.3.1 RQ1

In this thesis, RQ1 falls into the Characterization category. This means that the desired re-

sults are a form of document, list or model. The results from RQ1 are a qualitative model in

form of a well-grounded checklist and informal generalizations. The results from RQ1 are

considered input to the work in RQ2, and the validation of these results is therefore done

indirectly through the validation of the results emerging from RQ2.

4.3.2 RQ2

RQ2 is in the Design of a particular instance category for research questions. It is not seeking

a formal model or any general framework, but rather a pragmatic and concrete solutions

to a concrete problem. The validation strategy chosen in this thesis can be characterized

under the Example-based category, which implies some threats to the validity of the results

(This is discussed further in Chapter 8.3). While this is not considered as strong as the more

ideal choices, of Analysis-based or Experience-based validation strategies, well-chosen slice

of life examples can be considered somewhat successful and is fairly common in Software

Engineering research [82].

It was was considered too time-consuming for the constraints of this work to design a

statistically significant empirical validation of the results in this thesis, due to the work load

required to obtain a sufficient volume of code bases or corpus, as well as a statistically rigid

design for the experiment. Therefore a simpler alternative with slices of life were consid-

ered an acceptable plan B. As such, this research is mainly answered through what Oates

[65, pp.133–134] defines as field experiments on real-life code examples. The example-based

strategy can also according to Oates be considered a proof-by-demonstration.



CHAPTER 4. RESEARCH DESIGN 43

4.4 Data generation and analysis

Observation [65] is considered the main data generation method in this thesis.

The data generated to answer RQ1 is based on collating documents produced by the pro-

tocol specification authors, security researchers, and the code and belonging documenta-

tion of the chosen SDKs. Data from these documents were analyzed qualitatively.

To answer RQ2, the data generated are results from a field experiment running the anal-

yses on real code, with additional manual code inspection to verify and summarize the re-

sults. These data are also mainly analyzed qualitatively, as the volume of code examples

would not give statistically significant numbers if analyzed quantitatively. The quantitative

metrics of precision, recall and true negative rate are included for some reference. However

there cannot be statistical confidence in them, and they serve more of an illustrative pur-

pose rather than an absolute metric for a strict comparison. These metrics are not statis-

tically significant, both because of lacking volume of code material, and because confident

metrics requires a more controlled environment through a test-suite with known vulnerabil-

ities. Precision and recall are sensitive to imbalanced data sets, while the true negative rate

is considered more robust when facing imbalanced data [90].

The test suite was chosen mainly based on efficiency and realism. Because of time con-

straints, six open-source applications were included in the test suite, by first-and-best match-

ing in searches. How these were obtained is explained in Chapter 7.1.

4.5 Design to answer RQ1: Analysis of OpenID Connect

4.5.1 Summarizing known vulnerabilities

The work with summarizing the common vulnerabilities goes along two axes: one is to sum-

marize the identified vulnerabilities by research on vulnerability analysis of the protocols,

with focus on the vulnerabilities that concern the Relying Party. However this alone is not

sufficient to get a complete picture of the vulnerability domain, as the systems often are ad-

dressed form an abstract outside-perspective rather than on the code. Additionally for the

other axis, security analysis is narrowed to look at implementation details on the RP client-

side, with proposals for possible errors to make there. Other vulnerabilities which concern

other entities in the protocol were out of scope. Related automated vulnerability detection

tools were also looked at to get a view of the state of the art.

4.5.2 Analysis of the implementation details in RP

Two open-source SDKs with their developer guides were chosen as a basis for implemen-

tation details analysis: the Nimbus SDK by Connect2id [17, 18] and the Google API Client

SDK [38, 39]. These guides contain developer instructions which likely put some design con-

straints on the development. Based on these stripped-down code examples and the OpenID
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Connect Specification as well as research security analyses of the protocol (See Chapter 3),

code examples were constructed with the intention of having as much realism as possible,

without adding boilerplate code that can be considered out of scope for this thesis. These

code examples form the fundamental building block for the pragmatic model for develop-

ment as a means of an informational sweet-spot between the content-rich protocol, and the

quite limited developer guides.

4.6 Design to answer RQ2: Implementation of static analyses

4.6.1 Selection of tool for basis of analyses

It was necessary to select an existing tool to implement and test the new techniques pro-

posed to save configuration time in this project. The available software projects for prelimi-

nary testing and analyses were mainly written in java, another deciding factor when select-

ing tools for analysis. Li, Beba and Karlsen [48] did an experimental validation of various

open-source IDE plugins that detect security vulnerabilities. They investigated both the vul-

nerability class scope, quality of detection and user-friendliness of the tool warnings. They

found a mismatch between the claimed and actual coverage of the tools, and that high false

positive rates were present. Several tools had limited information in their output, and the

drawbacks ranged from imprecise or lacking explanations of the vulnerability itself, as well

as missing educational value.

Another issue was missing opportunity to direct the tool, and some tools only had modes

to scan the whole source code at once. Find Security Bugs [74] or FindSecBugs, an OWASP

project, came out as the highest performing open-source tool in a total evaluation, with re-

spect to usability and other quality metrics. FindSecBugs was therefore chosen as a basis for

developing analyses in on a framework that is developer-friendly and prevalent in the devel-

oper community. Implementation of detectors took inspiration in how existing analyses in

FindBugs and FindSecBugs are built, with the idea of following similar software design prin-

ciples while adapting new analyses into the tool. The vulnerability detection strategy was

based on the findings of the protocol model analysis that was done to answer RQ1. Details

about the implementation is presented in Chapter 6.

4.6.2 Validation of the analyses

The “slice of life” example-based strategy (See Section 4.3), which also can be referred to as

a quasi-experiment or field experiment, is used as basis to validate the results of this thesis.

Further details of how the experimental validation was carried out is presented in Chapter 7.



Chapter 5

RQ1 results: developer-oriented model of

secure OIDC practice

This chapter answers RQ1: What must a developer do to avoid introducing known security

vulnerabilities, while implementing a Relying Party with an OpenID Connect SDK?

The foundation of the developer-oriented model worked out in this chapter is restricted

to the Authorization Code Flow of the protocol, with basis in two SDK implementation guides.

The steps covered are metadata discovery, authorization code request, token request and to-

ken validation, which are shown as steps 0-3 in Figure 5.1.

5.1 A developer-oriented model of the OIDC flow

Many descriptions of the OpenID Connect flow include communications between user, RP

and IdP, and often stay on a “bird perspective” with brief descriptions of what the RP does.

These are seldom on a level of detail which is sufficient for developers to fully understand

what is their role implementing the RP. This model is therefore brought onto the ground

and into the implementation details of Relying Parties, looking at the protocol through the

developer’s eyes. Figure 5.1 shows a three-step flow that forms the core of the authorization

code flow in OpenID Connect, divided into three different “main steps” for the RP developer,

with a preparatory step 0, in which the Discovery process.

45
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Figure 5.1: A developer-oriented model of the authorization code flow in OIDC
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These three steps (plus the preparatory step) are inferred from a sensible division of code

into each their designated method. After step 3 naturally, the protocol would follow with a

query to the UserInfo endpoint. This is however left out of this scope. Code examples with

non-compiling Java-pseudo code of these steps are shown in listings below.

An example of the code in step 0, which is the Discovery process, is shown in Listing 5.1.

This is a preparatory step in the model. Listing 5.2 has a code example of step 1, building

the authentication request. The results from the pre-step 0 in the discovery protocol are

obtained on line 4, where the RP has sent a request to the discovery URI of the IdP, and re-

ceived the Provider Metadata Document in return to establish trust. The important things to

remember here are adding the state and nonce parameters. The rest of the parameters are

essentially required to even send a request.

Step 2 receiving callback response from the IdP is shown in Listing 5.3. Here handling an

eventual error response and validating the state parameter are the security-critical steps.

Step 3 has the most significant difference for the two SDKs analyzed in this thesis, and is

shown in two different ways using the Google library (Listing 5.4) and the Nimbus SDK(Listing 5.5).

The main difference lies in that the Google library in Listing 5.4 does not have a completed

validation encapsulated, and the developer must therefore handle details of the conditional

checks.

Nimbus in Listing 5.5 the other hand, requires the developer to set up an IDTokenValidator
object with some required parameters, and it will handle the individual checks and throw ap-

propriate exceptions if something is unexpected. Here the developer still has to pass the cor-

rect values, however, and must properly pass the correct nonce value that they have stored.

In Listing 5.1, the Discovery process in implemented with the Google library. In lines 1-7,

the RP builds the URL for the openid-configuration endpoint. Lines 10-16 contain checks to

ensure that the connection is using TLS, and that the response is of a valid HTTP response

code. Then the JSON document is retrieved in lines 17-21, and finally parsed. If the parsing

fails, an appropriate exception is thrown.

1 // Step 0
2 private Map <String , Object > discovery () {
3 try {
4 URI issuerURI = new URI("https :// provider.example.com/");
5 URL idpConfURL = issuerURI
6 .resolve("/.well -known/openid -configuration?")
7 .toURL();
8 HttpsURLConnection conn = idpConfURL.openConnection ();
9 conn.setRequestMethod("GET");

10 if(!conn.getURL ().getProtocol ().equals("https")) {
11 throw Exception ..."Discovery url not using https"
12 }
13 if(conn.getResponseCode () != HttpsURLConnection.HTTP_OK) {
14 throw Exception ..."Failed to respond with HTTP OK."
15 }
16 InputStream stream = conn.getInputStream ();
17 String providerInfo = "";
18 try (java.util.Scanner s = new java.util.Scanner(stream)) {
19 providerInfo = s.useDelimiter("\\A").next();
20 }
21 return parseJson(providerInfo);
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22 } catch (... Exception e) {
23 throw Exception ..."Failed to perform discovery"
24 }
25 }

Listing 5.1: Step 0 - The Discovery process using the Google library

Listing 5.2 shows a simplified code example of step 1, the authentication request. First in

line 4, the provider metadata document is obtained from the discovery process in step 0. The

state and nonce values are generated from methods that make opaque randomized strings

in line 5-6. These are stored in an object called OidcConfig. Then an AuthorizationCodeFlow

object is built in lines 8-11, storing values obtained from the IdP. The client id and client

secret have previously been obtained when registering the client at the IdP. Then in lines 12-

19, the authentication request URL is build. The state and nonce parameters are added to

the request. Then in lines 20-22, the requesting user agent is redirected to the authorization

end-point at the IdP.

1 // Step 1
2 public Response authenticationRequest(HttpServletRequest request) {
3 try {
4 providerMetadata = discovery (); // Step 0
5 String state = nonce (); // random string
6 String nonce = state (); // random string
7 // ... Store state and nonce in OidcConfig
8 codeFlow = new AuthorizationCodeFlow.Builder (...,
9 config.getProperty("clientSecret")),

10 config.getProperty("clientId"),
11 providerMetadata.get("authorization_endpoint")).build ();
12 requestUrl = codeFlow
13 .newAuthorizationUrl ()
14 .setResponseTypes(Collections.singleton("code"))
15 .setScopes(scopes)
16 .setRedirectUri(callbackURI)
17 .setState(state)
18 .set("nonce", nonce)
19 .set(..., ...);
20 return Response
21 .seeOther(requestUrl.toURI())
22 .build();
23 } catch (... Exception e) {
24 return Response ... UNAUTHORIZED ...;
25 }
26 }

Listing 5.2: Step 1 - Authentication request using the Google library

Listing 5.3 contains a simplified code example of step 2, where the response from the IdP is

received as a callback request. The OidcConfig for the given flow is retrieved with a unique

UID in line 5. Then, the callback response URL is parsed. In lines 7-10, the callback response

is checked for an error, and the flow is broken if it does have an error. Then comes an impor-

tant check in line 11, where the state parameter in the callback request is compared to the

stored value, and an appropriate HTTP error code is returned. After this validation, a token

request is build in lines 14-19, adding the authorization code received in the callback request
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as well as other required parameters. Then the request is executed on a back-channel con-

nection with the IdP in line 20. It returns a token response, and will throw and exception

if this is not successful. Then the token response and the oidcConfig containing the nonce

parameter are passed on to step 3.

1 // Step 2
2 public Response callback(HttpServletRequest req) {
3 try {
4 UUID uuid = UUID.fromString (... req.get(uuid));
5 OidcConfig oidcConfig = (OidcConfig)cache.get(uuid);
6 ... ResponseUrl responseUrl = new ...Url(req.getRequestURI ());
7 String error = responseUrl.getError ();
8 if(error != null) {
9 return Response ... UNAUTHORIZED ...;

10 }
11 if(! oidcConfig.state.equals(responseUrl.getState ())) {
12 return Response ... UNAUTHORIZED ...;
13 }
14 String authorizationCode = responseUrl.getCode ();
15 TokenRequest tokenRequest = codeFlow
16 .newTokenRequest(authorizationCode)
17 .setTokenServerUrl(codeFlow.getTokenServerEncodedUrl ())
18 .setClientAuth ...( codeFlow.getClientAuthentication ())
19 .setRedirectUri(redirectUri);
20 idTokenResponse = IdTokenResponse.execute(tokenRequest);
21 return validateTokens(idTokenResponse , oidcConfig);
22 } catch (... Exception e) {
23 return Response ... BAD REQUEST ...;
24 }
25 }

Listing 5.3: Step 2 - Callback request using the Google library

Step 3 using the Google library is shown in Listing 5.4. Here all the required ID token

checks 1 are implemented, using the various verify methods implemented in the IdToken

wrapper class in the Google library. The ID token is parsed in line 4. The checks in lines

5-24 are similar, retrieving appropriate stored values, each returning error responses with

the HTTP code 401 UNAUTHORIZED if the check fails. If none of the checks fail, the token

response is stored in line 25, and a success response is returned with the token as payload in

line 26.

1 // Step 3
2 public Response googleValidateTokens (... tokenResponse , ... oidcConfig) {
3 try {
4 IdToken idToken = tokenResponse.parseIdToken ();
5 if(! oidcConfig.nonce.equals(idToken ... getNonce ())) {
6 return Response ... UNAUTHORIZED ...
7 "Provided nonce did not match";
8 }
9 if(! idToken.verifySignature(publicKeyFromJwkSet ())){

10 return Response.status(Response.Status.UNAUTHORIZED)
11 "Jwt signature is not valid";
12 }
13 if(! idToken.verifyAudience(clientId)) {

1The required ID token checks are described in Chapter 2.4.1
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14 return Response ... UNAUTHORIZED ...
15 "Request not meant for this audience.";
16 }
17 if(! idToken.verifyTime(Instant.now(), TIME_SKEW_SECONDS)){
18 return Response ... UNAUTHORIZED ...
19 "Token expired.";
20 }
21 if(! idToken.verifyIssuer(providerMetadata.get("issuer"))) {
22 return Response ... UNAUTHORIZED ...
23 "The expected issuer did not match.";
24 }
25 .... createAndStoreCredential(tokenResponse , oidcConfig.appuuid);
26 return Response.ok()
27 .entity(tokenResponse)
28 } catch (... | ... | ... Exception e) {
29 return Response.status(Response.Status.BAD_REQUEST).build();
30 }
31 }

Listing 5.4: Step 3 - Correct token validation using the Google library.

In Listing 5.5, the ID token verification is written using the Nimbus SDK. This code exam-

ple is very different from the one for the Google library. In lines 5-9, the IdTokenValidator is

instanciated with the required values, including encryption algorithms and other data from

the Discovery document. The in lines 15-16, the store nonce parameter is retrieved and the

ID token is obtained from the token response. Then by calling idTokenValidator.validate,

the required checks are done by the validator, which in throws a BadJOSEException if any of

the checks failed, and a JOSEException if an error happened during the validation. If the

checks did not fail, a success response with the token request as payload is return in line 24.

It is here appropriate to use the IDTokenValidator object provided by the SDK, since it does

all the required checks if it receives the correct values from the developer.

1 // Step 3
2 public Response nimbusValidateTokens (... tokenResponse , ... oidcConfig) {
3 JWSAlgorithm metadataAlg = JWSAlgorithm.RS256;
4 try {
5 idTokenValidator = new IDTokenValidator(
6 providerMetadata.getIssuer (),
7 clientID ,
8 metadataAlg ,
9 providerMetadata.getJWKSetURI ().toURL ());

10 // JWKsetUri gives the keys from the IdP
11 } catch (MalformedURLException e) {
12 return Response ... INTERNAL_SERVER_ERROR ...
13 "The provider metadata jwkSetUri is invalid";
14 }
15 Nonce expectedNonce = oidcConfig.nonce;
16 JWT idToken = tokenResponse.getOIDCTokens ().getIDToken ();
17 try {
18 idTokenValidator.validate(idToken , expectedNonce);
19 } catch (BadJOSEException e) {
20 return Response .... UNAUTHORIZED)..."Invalid ID token";
21 } catch (JOSEException e) {
22 return Response ... BAD_REQUEST ..."Error validating ID token.";
23 }
24 return Response ...200 OK...
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25 tokenResponse.toJSONObject ();
26

27 }

Listing 5.5: Step 3 - Correct token validation using the Nimbus SDK.

5.2 Checklist for Authorization code flow implementation of

RP

Rules for correct development can be worked out based on the OpenID Connect specifica-

tion [60], the developer SDK guides by Nimbus and Google Api Client [37], and analysis of

their javadocs and open-sourced code bases. These rules form a step-wise checklist rooted

in the model in Section 5.1

5.2.1 Step 0: Establish trust with IdP

• Do Client Registration on an IdP console and registering an app client to generate keys

and thereby establish trust.

• Receive client_id and client_secret from IdP console. This would be on an admin page

on google’s IdP or for example on Azure AD console, where you register a client in the

UI. The client identifier and secret are generated by the IdP.

• Discovery process: Obtain IdP metadata (Listing 5.1).

– Ensure TLS connection. Urls MUST use https (Lines 8-12).

– Ensure only HTTP OK response from openid-configuration endpoint (Lines 13-

15).

– Proper parsing of the JSON object that is expected from the endpoint (Lines 16-

20, and the parseJson method called in Line 21 2).

– The saved JSON object is the discovery document, which is used to retrieve values

that have integrity.

5.2.2 Step 1: Authorization code request (Listing 5.2

• Create state and nonce. These are proper opaque cryptographic random-generated

strings or hashes. A sufficient entropy must be ensured. State is used to mitigate CSRF

attacks, maintaining state between the authorization request and the callback. Nonce

associates a client session with an ID token, and is used to mitigate replay attacks. The

2Example of JSON parsing is found here: https://github.com/Eliassoren/find-sec-bugs/blob/
feature/evaluation-opensource/findsecbugs-samples-java/src/test/java/testcode/oidc/
googleapiclient/OidcAuthFlowCompleteExampleGoogle.java
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value is passed through from the authorization request to the ID token, and must be

unmodified.

• Store state and nonce safely. Could probably store it in a cookie, HTTP session or for

example retrieve them from a cache using a GUID associated with the request agent.

Details about how to do this step is not in the scope of this work.

• Make an authentication request URI

– Passing at least the parameters:

* client_id

* response_type

* scope

* redirect_uri

* state

* nonce

– Using the Nimbus SDK

* Build an instance of AuthenticationRequest with the required parameters.

Use the Builder to add parameters like the login_hint (optional but recom-

mended)

– Using the Google SDK

* Make an AuthorizationCodeFlow instance, adding client identifiers and urls

for endpoints. Use AuthorizationCodeFlow.newAuthorizationUrl()

* Authentication request made in a builder pattern in difference to strict type

parameters in nimbus. A lot easier to forget state and nonce as you have to

add them manually. In nimbus you explicitly have to pass null as state and

nonce parameters to even run a request.

• Redirect the user agent with the authentication request URI to the authorization end-

point. Now the end user will log in on the IdP’s side.

5.2.3 Step 2: Parse response and Token Request (Listing 5.3)

• Parse the response from IdP which comes as a POST request from the IdP.

• Handle any errors in the response. Break the flow if we have errors and return a HTTP

401 UNAUTHORIZED response.

• Verify that the stored state parameter matches the one in the IdP response. This is a

simple equality test for the objects response.getState and stored.getState. If these are

unequal, Http response(code=401) should be returned immediately.

• Retrieve authorization code from the success response. For example Call getCode() on

the successResponse object.

• Send token request to token_endpoint with required parameters:

– code,

– client_id,
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– client_secret,

– grant_type: “authorization_code”,

– and redirect_uri

• Do proper error handling with token response: If you have error response the control

flow must be broken, return a HTTP code 401 UNAUTHORIZED.

• With successful token response, parse the token response. Pass the ID Token on to

step 3 for validation. The SDKs have implemented the parse function, use for example

TokenResponse.parse().

5.2.4 Step 3: Validate tokens (Listings 5.4 and 5.5)

In this step we have a more significant difference in use of the two SDKs for validating the

ID token. There are a set of validation steps that are required [20, 60] to ensure the integrity

of an ID token. Both the SDKs in this study have implemented an ID Token validation utility

class, but they differ somewhat in their coverage of these validations requirements.

The parsed token response contains an ID token, an access token, and optionally a re-

fresh token. Here we look at ID token validation.

• Using the Nimbus SDK:

– The developer must retrieve and pass the following parameters to set up IdTo-

kenValidator.

* Issuer,

* ClientID,

* JWS Algorithm

* JWK Set Uri (URL to the IdP’s JSON Web Key Set.)

– Retrieve parsed idToken from the token response as JWT. The SDKs handle well-

defined JOSE parsing for JSON Web Tokens.

– Retrieve the stored nonce as the expected nonce for the anti-replay protection

check.

– Call the validate function in IdTokenValidator passing the passed ID token and

the expected nonce.

– The IdTokenValidator performs the following validations for the developer [16]:

* Checks that ID token JWS algorithm matches the expected algorithm.

* Checks the ID token signature or HMAC using the provided key material,

from the client secret or JWK set URL in the discovery document.

* Checks if the ID token iss and aud parameters match the expected IdP and

client_id.

* Checks that the ID token is within the specified validity window (between iat

and exp time, given a 1 minute leeway to accommodate clock skew).

* Check the nonce value in the request matches the expected one, if one is

expected.
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* Therefore the developer does not have to perform any additional checks in

order to follow the specification. However the above checks must be per-

formed if you choose to implement them manually.

• Using the Google SDK:

– Cryptographic signature validation and nonce validation must be done manually

by the developer.

– The IdTokenVerifier can be set up with parameters issuer and client_id.

– The internal ItTokenVerifier performs the following checks [40]:

* Check if the iss and aud parameters match the expected IdP and client_id

* Checks if time is within acceptable validity window (exp and iat parameters)

using idToken, with time skew leeway.

– Even using the IdTokenVerifier the developer must either way verify:

* That the JWS algoritm matches the expected retrieved from discovery docu-

ment.

* That the ID token signature is valid using the key from the discovery docu-

ment.

* That the nonce value matches the saved (expected) one.

– Therefore for code clarity the developer should probably just validate everything

that is recommended until the SDK implements all checks in a future release. The

IdToken class 3 has implemented designated verify-methods for most of these.

* That ID token JWS algorithm matches the expected algorithm.

* The ID token signature or HMAC using the provided key material, from the

client secret or JWK set URL in the discovery document.

* If the ID token iss and audience aud parameters match the expected IdP and

client_id.

* That the ID token is within the specified validity window (between iat and

exp time, given a 1 minute leeway to accommodate clock skew).

* The nonce value matches the saved (expected) one.

Optional: validate the Access Tokens After the ID token is validated, it may be

used to obtain user info from the UserInfo endpoint.

5.2.5 Anti-patterns and bad practices

In addition to the pragmatic rules for good practice, there are also some obvious actions

that can be considered unsafe practices or anti-patterns. The following usages of artifacts

indicate smelly code or a bad practice:

• Usage of the Resource Owner Password Grant. In a later update of the OAuth stan-

dard [41], this grant is no longer considered acceptable.

3Google SDK: IdToken.java https://github.com/googleapis/google-oauth-java-client/blob/
master/google-oauth-client/src/main/java/com/google/api/client/auth/openidconnect/
IdToken.java
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• Usage of a known limited ID Token “validator” provided by an SDK, like the IdToken-

Verifier [40] of the Google library. This may trick the developer into thinking that all

needed checks are done.

Furthermore, the checklist in Section 5.2 can be reversed to a set of vulnerabilities.

5.3 Vulnerabilities breaking rules in the model

The rules suggested in the checklist are all steps proposed to ensure security in the proto-

col, either from a MUST or SHOULD proposal in the protocol specification, or from security

recommendations in other research. Breaking any one of the rules suggested here can be

considered a risk or smell, if not necessarily a direct vulnerability.

However in this thesis any broken rule is considered a vulnerability, and the model is used

to enforce a proposal of “proper practice”. It is stricter in its rules than the official specifica-

tion, which has several important values that still stand as optional ones. Instead of focusing

on the threats that are modeled from an attacker standpoint by previous works, like shown in

Table 3.1, this thesis looks more closely on vulnerabilities in form of implementation errors.

Any implementation error cannot not necessarily be directly associated with one of the

formally identified threats, but an error is still a broken implementation of how the protocol

is intended.

Table 5.1 gives an initial overview of the vulnerabilities that developers can potentially

introduce in their client code, given implementation errors. This list is not exhaustive, and

lot more vulnerabilities related to implementation details may be inferred using the model.
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Table 5.1: Potential vulnerabilities as various errors that can occur by breaking the rules in
the model.

Step in the devel-
oper model

Potential vulnerabilities

0. Discovery Not ensured HTTPS connec-
tion, and fail to break flow if not
https.
Error handling if response not
200 OK
Improper JSON parsing.

1. Authentica-
tion Request

Not obtaining IdP Metadata
with discovery protocol

Not adding state and nonce to
request or not storing state and
nonce

Not obtaining IdP Metadata
with discovery protocol

2. Callback Improper error handling

Missing State verification

Not obtaining IdP Metadata
with discovery protocol

3. Token parsing Missing required ID Token
checks

Usage of known incomplete
SDK token validator

Not obtaining IdP Metadata
with discovery protocol

Incorrect control flow in checks
with an incorrect response to a
failed condition



Chapter 6

RQ2 results: Design and implementation

The following chapter relates to RQ2: How can simple, explicit and intraprocedural static

analysis checks be used to identify vulnerabilities in OpenID Connect Relying Parties?. This

chapter goes through the design and implementation of simple static analysis techniques

for enforcing the security principles in the model for OpenID Connect (See Chapter 5.1).

The idea is that analyses of three layers can cover a lot of the security-critical protocol steps

the developer has to implement. Analyses are implemented as FindSecBugs detectors 1.

The first layer is using the OpcodeStackDetector analysis from FindBugs (See Chapter

2.7), here named the Immediate Code Smell Detection analysis, which only looks at a single

instruction in the JVM bytecode. The second layer is the Co-existing Invocation Enforcement

analysis, which reasons about each method in a class, as well as inter-procedural approxi-

mation. Lastly, the third layer is the Static Control Flow Check analysis, which analyzes the

control-flow graph.

The focus here is vulnerabilities in code calling OpenID Connect SDKs, meaning bugs

that developers may introduce when they write code that interfaces with these SDKs. The

analyses are not concerned with looking for vulnerabilities in the SDKs themselves.

6.1 Definition of analysis terms

Simple terms are established to define the scope of the analyses in this context.

Definition 6.1.1. Peephole: In this thesis, a peephole is an instruction in the program’s byte-

code, denoted as <x>, a CFG edge type or a combination of instructions in a java method.

A peephole can be considered a simple property that is used to infer a property in a more

complex flow.

Definition 6.1.2. Peephole pattern <pat>: An expected single or combined collection of

peepholes in the bytecode that indicate an action in the protocol is executed. For exam-

1The concept of detectors is described in Chapter 2.7.

57
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ple, simply the invocation of the class TokenResponse would imply that we are in a method

implementing step 3 of the code flow in Listing 5.4.

Identifiers used by the analyses are defined in Table 6.1.

Table 6.1: Definitions for identifiers that are used in the checks of the peephole analyses.

Peephole Description
<inv> Invocation <inv> is defined as a bytecode in-

voke instruction in which a certain class or
type is instantiated.

<cmp> Comparison <cmp> is defined as an if-
instruction like the ifnebytecode instruction.

<ret> Return <ret> is defined as the act of returning
a certain HTTP Response code or throwing an
exception.

<ver> b Verification <ver> of a value b either happens
with an <inv> with b.equals(), or as b passed
to another method in which an <inv> with
b.equals is called.

<comb> Combination <comb> is the coexistence of a
set of peepholes in the bytecode.

<pat> Peephole Pattern <pat> is in this context the
appearance of one of or a combination of the
attributes <cmp>, <inv>, <ver> or <ret>.

<pair> A strict pair of patterns where we expect pat-
tern b to be found if we have found pattern a.

6.2 Detector types

Some of the pattern-matching techniques defined in FindBugs and used in FindSecBugs (See

Chapter 2.7) like OpcodeStackDetector and CFG-based detector were adopted in the analy-

ses for the potential vulnerabilities. The detector types defined in this thesis are divided in

three types, with increasing sophistication level: 1), Immediate Code Smell Detection, 2) Co-

existing Invocation Enforcement, and 3) Static Control Flow Check.

6.2.1 Immediate Code Smell Detection

The immediate code smell detectors utilize the same technique as the OpcodeStackDetector

defined in FindBugs, and is the simplest of the three used in this study. This technique is not

new, but fits well together as the simplest component together with the two other analyses

proposed in this thesis. The detector is based on that the prevalence of a given peephole

pattern indicates smelly code. An assumption here is that it does not necessarily find a true

bug, we just flag some smelly code to raise warning and inform the developer. This could for
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instance just be the usage of a data type which is associated with a disallowed pattern in the

protocol.

Both its strength and its weakness lies in this simplicity. The way it is used in other parts

of FindSecBugs, we have a black-list of known functions that must never be used. For in-

stance just using the Math.random() function is something that typically must not be seen

in production code. It is therefore enough to just flag this value as a code smell, and make

sure that the developer is informed. The basic algorithm for the detector is quite simple. De-

fine a set of peephole patterns <pat>, which usually would be <pat> = {<pat1>: <inv> type A,

<pat2>: <inv> type B}. Then the typical detector is implemented like shown in Algorithm 6.1:

1 input : Code F i l e
2 output : V u l n e r a b i l i t y Reports
3 begin
4 scan opcodeStack in Code F i l e
5 foreach opcode in opcodeStack
6 i f opcode in <pat>
7 report v u l n e r a b i l i t y <pat>
8 end
9 end

10 end

Algorithm 6.1: Basic strategy for Immediate Code Smell Detection

Limitations of the analysis

This analysis is limited to very simple facts about a single instruction, and cannot infer more

complex relations between data items. It can however flag a data type that is associated with

a code smell.

6.2.2 Co-existing Invocation Enforcement

Ensure that the existence of a certain peephole pattern <patb> in a method, happens if the

peephole pattern <pata> is there. This can be described as <pai r1> = <pata> ∧ <patb>.

This detector linearly scans through the bytecode instructions in each method, and effec-

tively ignores control flow and data flow. For instance <pata> could be that we receive some

data from a http request, while <patb> is a certain verification step that is needed in the pro-

tocol. Therefore we would only expect to find <patb> if <pata> has already been satisfied.

This means that if <pata> has been satisfied, <patb> MUST also have been found while the

instructions were analyzed. This is illustrated in Algorithm 6.2:

1 input : Code F i l e
2 output : V u l n e r a b i l i t y Reports
3 begin
4 foreach method in Code F i l e
5 foreach instruct ion in method
6 i f instruct ion matches <pata >
7 found_pat_a = true
8 end
9 e l s e i f instruct ion matches <patb >

10 found_pat_b = true
11 end
12 end
13 i f found_pat_a and not found_pat_b
14 report v u l n e r a b i l i t y Missing ( <pai r1 >)
15 end
16 end
17 end
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Algorithm 6.2: Basic strategy for Co-existing Invocation Enforcement detectors.

While the analysis is inherently intra-procedural, it as has a small inter-procedural com-

ponent. It can note methods of suspicion for an additional scan with some more information

in the end of the “main” analysis. These extra pick-up-leaves analyses are central in handling

one of the most highly expected patterns in validation code - that a check is delegated to an-

other method.

Secure code enforced

Some simple examples can illustrate some of the abilities and boundaries of this analysis.

For example the analysis could expect to see that if b() has been called, somewhere c()
must follow. The code below would then be passed as safe, thereby a true negative:

void a() {

b();

... other code

c()

}

It will also let code like below pass as safe, where the call to c() is delegated to another

method d():

boolean d() {

c()

}

void a(var) {

b();

... other code

d()

}

Vulnerable code which raises warning

After b() has been called, somewhere c() must follow. However something else is there, but

c() is missing. The snippet below would then raise a warning:

void a() {

b();
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... other code

e();

return f;

}

The call to c()may be delegated to another method d(). However d() does not have any

call to c() either, even if its name and context would suggest so. This is therefore vulnerable.

boolean d() {

e(); // c() is missing!

return f;

}

void a() {

b();

... other code

return d();

}

Here the inter-procedural component will come in. In this case the subsequent enforce-

ment follow this strategy to detect that we have a broken rule:

1. Scan through the list of methods in a class.

2. Note that a() has a called on b(), which means that somewhere in this area c() must

be found.

3. Scan linearly through the method. c() was not found, but d() may have a call to c(),

indicated by its parameters and name. Save a pair of a() and d() for later inspection.

4. Scan further through the rest of the methods and finish the list. If any method contains

a call to c(), save it in a list of approved methods.

5. Scan through the methods which have a suspected call to another, which may contain

a call to c(). Then finish the list.

6. Look through the methods saved for later inspection. d() is expected to have a call to

c(). Check if d() is in the list of approved methods. If not, raise warning on a().

This component is introduced because of a much-seen code pattern where a check is not

done in-line, but delegated to a pure verify method.
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Vulnerable code which the analysis cannot pick up

The only thing the Co-existing Invocation Enforcement really does, is looking at the existence

of certain method calls in the code. It however makes no assumption on whether they are

done right in terms of control flow. The following code would be vulnerable, but come as a

false negative using the Co-existing Invocation Enforcement:

boolean isValid(data){

if(data.c() != safe) {

return true;

}

return false;

}

Here what the Co-existing Invocation Enforcement would look for is the comparison of

data.c() and another value. However the developer of this code has made a blatant mistake

and reversed the if conditional, so that in any case where data.c() is not safe, is says that

it is safe. Such cases are therefore of too a subtle nature for this analysis. To deal with easy

control-flow mistakes, the Static Control Flow Check is appropriate to use (see Section 6.2.3)

.

Limitations of the analysis

This detection strategy is simple, but is limited to detecting the appearance or absence of

usages of a certain data attribute, i.e. the state parameter or the ID token. It has a simple

inter-procedural component that covers a simple, and easy-to expect case of delegating a

check downwards to another method. However it does not reason completely about inter-

procedural artifacts, and if the methods are structured in a special way in the code, it may

miss vulnerabilities or give false positives.

Another limitation is that it is unable to tell whether the check is carried out with a proper

control flow (the check may be useless if it does not enforce what happens after the check).

However this strategy is cheaper. The absence of the checks this analysis looks for makes

a heavier control flow analysis unnecessary, since there then would be no control flow to

check. Only when the checks are present, control flow analysis can be employed to further

verify the solidity of the code.

6.2.3 Static Control Flow Check

The goal of the Static Control Flow Check is to ensure that every basic block ending with

a conditional check of a verification call leads to a block returning with a correct error re-

sponse. This is relatively naive approach to control flow and data flow, only specifying peep-

hole patterns that may be satisfied by certain basic blocks in the control flow graph. It can be



CHAPTER 6. RQ2 RESULTS: DESIGN AND IMPLEMENTATION 63

used in cases of the model where developers carefully have to ensure a proper control flow,

and is highly specialized and constrained towards what is a valid pattern. This is made in the

spirit of FindBugs [44], with the notion that developers make “dumb” mistakes like revers-

ing an if conditional or continuing running the code after a catch block where an error case

should be managed.

The initial assumption in a simple conceptual CFG is that you have a series of checks that

divide control flow. A typical pattern discovered in the validation steps of the OIDC protocol

for this model, are quite linearly placed if-conditionals that ends the program right there

with an error code or continues the flow if the check passed. This technique is applicable for

relatively linear control-flow graphs which follow one consistent green path and otherwise

break off early.

Such a graph is illustrated in Figure 6.1. Here the basic control flow of the code example

for token validation (Listing 6.11) is shown in a simplified manner. The main point of the

code in Listing 5.4 is that you have a series of if-else checks of values in the ID token. These

if-else checks can be modeled as a simple binary control-flow graph which either ends in a

leaf node or goes further down the thee.

In Figure 6.1, the green boxes represent a successful check. If one of the if-checks cor-

rectly verified the value, it will go to the next if-check. However if the checked value is invalid,

the control flow is broken. Then we end up in a red box in the modeled graph, thus ending

the control flow path and stopping the flow in the program.

During the analysis the intuition is to look for a blue block, which should be a negative

comparison like !a.equals(b). Such a block is followed by expected outgoing edges, and

the fall-through edge leads into the if-block braces. If we are inside the if-block it meant one

of the verification steps has failed, and the ID Token is invalid. We therefore expect a return

statement which takes us out of the method. This return statement is also expected to give

an appropriate HTTP error code.
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Figure 6.1: A simplified control flow graph of token verification.
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Given the above, the intuitive peephole check is a simple look at a basic block, and the

neighboring block following one of the outgoing edges. However in a code base with sev-

eral invocations, the analysis is not quite so simple as to look at a single edge between

the if-statement and the code in its following curly braces. Rather, if we return the object:

Response.status(CONSTANT...), a chain of invocations happen as we perform several

compact method calls. Therefore the reality is a more complex graph like shown in Fig-

ure 6.2. Here we actually have to traverse a series of “leaf” nodes to get to the actual leaf

node.

Figure 6.2: A closer look at the control flow graph for token verification.

This means that even a minimized peephole analysis needs to traverse the CFG to some

extent. Luckily, the control flow graph in such return statements as described above are still

relatively simple. Each of the basic blocks have usually two outgoing edges, either an excep-

tion edge if the invocation failed, or simply fall-through to the next invocation. This series of

basic blocks could therefore almost be considered parts of the edge between our two main

trigger points, namely the blue conditional block, and the final red return block. However,

simple hints may come from the instructions also inside these “fall-through” blocks. These

hints are tracked in a simple data object that is checked in the end of the analysis. Even while

traversing the CFG and performing some operations that approximate data-flow, the triggers
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of the analysis are simply a look-and-match. For certain expected instructions inside each

basic block, and a combination pattern of these basic blocks in a single method.

The detection strategy follows, as shown simply in Algorithm 6.3: Iterate the basic blocks

in the CFG. If a block contains one of our expected verification method calls, and it is an

if/else conditional block, we have triggered the analysis. Traverse linearly through the fall-

through edges following the conditional check. Pick up additional instructions in the tra-

versed basic blocks. The sum of the peepholes in the series of basic blocks determine the

peephole. If we do not find a following set of blocks that satisfies the expected return pat-

terns, but end up in a new check or a different return state, we have a control flow bug.

1 input : Code F i l e
2 output : V u l n e r a b i l i t y Reports
3 begin
4 foreach basicBlock in CFG
5 i f basicBlock instruct ions match <pata >
6 traverse neighboring blocks looking for <patb >
7 i f not found instruct ions with <patb > in neighboring blocks
8 report v u l n e r a b i l i t y
9 end

10 end
11 end
12 end

Algorithm 6.3: Detection strategy for Static Control Flow Check in token validation bugs.

Limitations of the analysis

The Static Control Flow Check analysis has some of the same limitations as the other anal-

yses. To avoid false positives, a large number of patterns are needed. It also suffers from

lacking ability to track data, and will therefore be limited in how subtle errors it can find.

A potential fourth detector type is to use data-flow analysis for another layer of sophistica-

tion. Such detectors exist in FindBugs and FindSecBugs for other vulnerabilities, and can

potentially be designed for appropriate cases in OpenID Connect. A detector such as the Re-

sourceTrackingDetector (See Chapter 2.7) may have some uses for certain cases in OpenID

Connect where it is crucial to have a comprehensive view of the data flow. That is however

beyond the scope of this study and is an interesting avenue for further work.

6.3 Detector types for different vulnerabilities

To make the production of new detectors light-weight, easy to understand and fast to imple-

ment, the minimum sophistication level needed to detect a vulnerability is selected. If, for

instance, the vulnerability is usage of an anti-pattern that can be detected by a simple invo-

cation in the bytecode, there is no need to compute a complex model of the program for the

check. In several cases a fair assumption is that if the developer has included all the required

checks, he has a good chance of doing it right. Still mistakes are easy to make, therefore in

some other cases, one might have to reason about the control-flow graph to be more certain

that a check is secure.
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The model in Chapter 5.1 proposes a developer-oriented way to think about how OpenID

Connect is to be implemented securely. Based on the model, a set of potential vulnerabilities

due to implementation bugs were inferred in Table 5.1. The three detector types are appro-

priate for different kinds of bugs in OIDC code, and similar algorithms may work for similar

issues related to different data items.

Table 6.2 shows a suggestion of which vulnerabilities can be detected by which kind of

analysis. Many of these vulnerabilities will occur for similar reasons, making similar detec-

tors appropriate for covering the whole authorization code flow. FindSecBugs detectors were

implemented for four of these inferred bugs. These implemented detectors are explained in

Section 6.2.
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Table 6.2: Suggested analyses to be implemented as detector for various errors that can occur
by breaking the rules in the model. The detectors that are implemented in this study are
highlighted with bold

OIDC step Implementation errors Detector type

0. Discovery Not ensured HTTPS connec-
tion, and fail to break flow if not
https.

Static control flow peephole.

Error handling if response not
200 OK

Static control flow peephole

Improper JSON parsing Immediate code smell
1. Authentica-
tion Request

Not obtaining IdP Metadata
with discovery protocol

Subsequent invocation

Not adding state and nonce to
request or not storing state and
nonce

Subsequent invocation

Not obtaining IdP Metadata
with discovery protocol

Subsequent invocation

2. Callback Improper error handling Static control flow peephole.

Missing State verification Subsequent invocation
(Implemented Section 6.4.2)

Not obtaining IdP Metadata
with discovery protocol

Subsequent invocation

Using insecure authorization
grant

Immediate code smell
(Implemented Section 6.4.1)

3. Token parsing Missing required ID Token
checks

Subsequent invocation
(Implemented Section 6.4.3)

Usage of known incomplete
SDK token validator

Immediate code smell

Not obtaining IdP Metadata
with discovery protocol

Subsequent invocation

Incorrect control flow in ID to-
ken verification checks with an
incorrect response to a failed
condition

Static control flow peephole
(Implemented Section 6.4.4).
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6.4 Implemented detectors

The following detectors that have been implemented for the demonstration of the three anal-

yses:

• Immediate Code Smell Detection: Insecure authorization grant detector (Auth. Gr.),

which is explained in Section 6.4.1.

• Co-existing Invocation Enforcement: Improper state verification detector (State ver.),

which is explained in Section 6.4.2.

• Co-existing Invocation Enforcement: Improper ID token verification detector (Token

ver.), which elaborated in Section 6.4.3.

• Static Control Flow Check: Token CFG (Token CFG), which is explained in Section 6.4.4.

In FindBugs, each detector reports a set of bug patterns, or in this context also referred

to as vulnerability patterns. These patterns are created based on the protocol model, and

the potential vulnerabilities in Table 5.1. A bug pattern may relate directly to these poten-

tial vulnerabilities, but do in cases offer various level of detail. This is a mapping between

the theoretical model, and practical ways to report and inform developers of their vulner-

abilities. Table 6.3 gives an overview of the main vulnerability patterns for the detectors.

Specific vulnerability patterns are presented for each implemented detector respectively, in

Tables 6.4, 6.5, 6.6 and 6.7.

Table 6.3: Overview of the main vulnerability patterns developed for the implemented de-
tectors. These are explained in more detail under each detector in Sections 6.4.1 to 6.4.4

Detector Main patterns Description
Auth. Gr. USING_PASSWORD

_GRANT_OAUTH
Usage of the Resource Owner Pass-
word Grant.

State ver. MISSING_VERIFY_OIDC_STATE Not having a check of state value in
callback.

Token ver. MISSING_VERIFY _ID_TOKEN All five token checks are missing.
INCOMPLETE_ID
_TOKEN_VERIFICATION

The developer has implemented
verification but misses some
checks.

USING_INCOMPLETE
_ID_TOKEN_VALIDATOR

Known incomplete SDK-
imlemented ID token validators
are used.

Token CFG IMPROPER_TOKEN_VERIFY
_CONTROL_FLOW

The control flow response to a se-
curity check is not as expected.

REVERSED_IF_EQUALS
_ID_TOKEN_VERIFY

Possible reversed conditional in a
security if-check.

6.4.1 Insecure authorization grant detector

Like described in Section 6.2, what this kind of detectors seeks to find is not necessarily a true

vulnerability, but rather a smell in the code, which means the developer should be informed
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in case they unknowingly use types associated with anti-patterns. The Resource Owner Pass-

word Grant is disallowed in the newer version of OAuth [41].

Secure code example

Listing 6.4 shows a secure code example of the authorization grant. The authorization code

grant is considered secure when implementing OpenID connect.

1 AuthorizationGrant codeGrant = new AuthorizationCodeGrant(
2 authorizationCode ,
3 callbackURI);
4 TokenRequest tokenReq = new TokenRequest(
5 providerMetadata.getTokenEndpointURI (),
6 clientSecretBasic ,
7 codeGrant ,
8 scopes
9 ...)

Listing 6.4: Correct usage of authorization grant, like using the authorization code grant.

Vulnerable code example

An example of a vulnerable grant flow is shown in Listing 6.5, in which the Resource Owner

Password Grant is used in line 2. The detector will raise a warning if encountered with code

where objects like the ResourceOwnerPasswordCredentialsGrant are used, because these de-

note usage of the unsafe grant type.

1 AuthorizationGrant
2 passwordGrant = new ResourceOwnerPasswordCredentialsGrant(
3 username ,
4 password);
5 TokenRequest tokenReq = new TokenRequest(
6 tokenEndpoint ,
7 clientSecretBasic ,
8 passwordGrant ,
9 scopes ,

10 ...)

Listing 6.5: Usage of the Resource Owner Password Grant.

Detection strategy

This detector simply uses the behavior of the OpCodeStackdetector (See Chapter 2.7). It

looks for a bytecode instruction which matches its blacklist, which consist of types that de-

note usage of the bad code grant. When a match comes it raises a warning. Otherwise it will

ignore everything, so it is not very prone to false positives.

Vulnerability Patterns

The Insecure authorization grant detector currently looks at one vulnerability class. This

class is reported if it notices the usage of a bad authorization grant:
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Table 6.4: Vulnerability patterns in the Insecure authorization grant detector.

Pattern Abbreviation Description
USING_PASSWORD
_GRANT_OAUTH

SECISAUTH Usage of the ResourceOwn-
erPasswordCredentialsGrant
type in the Nimbus SDK, or
the PasswordTokenRequest
in the Google library.

6.4.2 Improper state verification detector

When doing an authorization request in OpenID Connect, the client always has to verify

that the state in the response matches the state you sent with the request. If such a check is

absent, the code has a vulnerability, and can be exposed to CSRF attacks.

Secure code example

In step 1, an authentication request has added the state parameter to the authentication

request (See Listing 5.2). This value must be checked in step 2, which is receives the callback

request. A secure code example is shown in Listing 5.3.

Vulnerable code example

The error of state checking is quite simple. In the code in Listing 6.6, the state is not checked

even if we are in the callback context. Here the code proceeds to use the authorization code

in line 10.

1 public Response callback(HttpServletRequest req) {
2 try {
3 UUID uuid = UUID.fromString (... req.get(uuid));
4 OidcConfig oidcConfig = (OidcConfig)cache.get(uuid);
5 ... ResponseUrl responseUrl = new ...Url(req.getRequestURI ());
6 String error = responseUrl.getError ();
7 if(error != null) {
8 return Response ... UNAUTHORIZED ...;
9 }

10 // Missing check state!
11 String authorizationCode = responseUrl.getCode ();
12 .... token response
13 }

Listing 6.6: Vulnerable state usage. Forgets to check state!

Vulnerability Patterns

There are two vulnerability patterns defined in this detector, shown in Table 6.5.
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Table 6.5: Vulnerability patterns in the Improper state verification detector. In addition to the
blatant missing verification of the state parameter, passing the value somewhere unvalidated
is flagged as a lower-level warning.

Pattern Abbreviation Description
MISSING_VERIFY_OIDC_STATE SECVMOS Not having a check of state

value after an Authentica-
tionResponse is parsed.

EXTERNAL_CALL_POSSIBLY
_MISSING_VERIFY_OIDC_STATE

SECVMOSEXT The state value is not verified
in-line, but is passed to some
method which is unreach-
able by the detector. This
is possibly not a verification
method.

Detection strategy

To detect bugs related to improper validation of the state parameter, we have the following

strategy (which is further explained in Section 6.2): Scan through each method in the code

file, identify a method call that is an authentication response. For each such method call,

identify an action that compares an existing state string to the state parameter retrieved from

the authentication response. The absence of such a comparison means we have a potential

vulnerability, and MISSING_VERIFY_OIDC_STATE. Additionally, identify if the State object is

passed to another method. If we cannot find verification in the called method, report MISS-

ING_VERIFY_OIDC_STATE. If the called method is not in this Java class, and no checks were

found elsewhere, report EXTERNAL_CALL_POSSIBLY_MISSING_VERIFY_OIDC_STATE

Severity

This bug may lead to Replay Attacks (See Table 3.1). An attacker may impersonate a proto-

col entity by obtaining a credential value. However validation of the state parameter helps

mitigate this kind of attack, as several separate data artifacts contribute to the integrity of a

request.

6.4.3 Improper ID token verification detector

The Improper ID token verification detector detector looks for improper verification of ID

Tokens in step 3 of the model (Chapter 5.1). To enforce rules based on the model and check-

list in Chapter 5, it expects the five values in the ID token to be verified. These may either be

verified by checking the values from the ID token directly, using an SDK-developed ID token

object implementation checking these values, or an ID Token verifier utility class offered by

the SDK.
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Secure code examples

There are generally two correct ways of implementing the ID Token verification in the devel-

opment model. This step differs from SDK to SDK. In google you have two options. Either

use the token validator and check the last two (signature and nonce) yourself, or call the

validate-methods implemented on the IDToken wrapper class around JWT.

Listing 6.7 shows how the token request is constructed in the callback method, after re-

ceiving and verifying the callback request from the IdP. After running receiving the token

response from IdTokenResponse.execute(tokenRequest) in line 10, the token response

is passed to the verification method in line 11, and the process moves to step 3.

1 public Response callback(HttpServletRequest callbackRequest) {
2 try {
3 ...
4 // .. state validation and error check
5 String authorizationCode = responseUrl.getCode ();
6 TokenRequest tokenRequest = authorizationCodeFlow.

newTokenRequest(authorizationCode)
7 .setTokenServerUrl(new GenericUrl(

authorizationCodeFlow.getTokenServerEncodedUrl ()))
8 .setClientAuthentication(authorizationCodeFlow.

getClientAuthentication ())
9 .setRedirectUri(redirectUri);

10 IdTokenResponse idTokenResponse = IdTokenResponse.execute(
tokenRequest);

11 return validateTokens(idTokenResponse , oidcConfig);
12 } catch (Exception e) {
13 return Response.status(Response.Status.UNAUTHORIZED).build();
14 }
15

16 }

Listing 6.7: Step 3 - Token request with call to step 3, validateTokens.

In Listing 6.8, a correct example using the IdTokenVerifier is shown. If the developer

manages to do the other required checks in addition to the initially incomplete validator,

this is predicted as secure code.

1 // Step 3
2 public Response validateTokens (... tokenResponse , ... oidcConfig) {
3 try {
4 IdToken idToken = tokenResponse.parseIdToken (); // Parse
5 IdTokenVerifier verifier = new IdTokenVerifier.Builder ()
6 .setAudience(clientId))
7 .setIssuer(providerMetadata.get("

iss"))
8 .setAcceptableTimeScewSeconds(

TIME_SKEW_SECONDS)
9 .build();

10 IdToken idToken = IdToken.parse(new GsonFactory (), tokenString);
11 if(! oidcConfig.nonce.equals(idToken ... getNonce ())) {
12 return Response ... UNAUTHORIZED ...
13 "Provided nonce did not match";
14 }
15 if(! idToken.verifySignature(publicKeyFromJwkSet ())){
16 return Response ... UNAUTHORIZED ...
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17 "Jwt signature is not valid";
18 }
19 if(! verifier.verify(idToken)) {
20 Response ... UNAUTHORIZED ...
21 }
22 } catch (Exception e) {
23 return Response ... UNAUTHORIZED ...
24 }
25 }

Listing 6.8: Step 3 - Correct token validation using the Google library. Full example in Listing
5.4. A corresponding example using the Nimbus SDK is shown in Listing 5.5.

Vulnerable code examples

The easiest example which will yield a warning is a received and parsed ID token response,

without any following verification (all five checks missing) is shown in Listing 6.9. Verifica-

tion of the ID token is expected between line 6 and line 9. This example is a vulnerability of

type MISSING_VERIFY_ID_TOKEN.

1 public Response callback(HttpServletRequest callbackRequest) {
2 try {
3 // After verified state and parse auth code..
4 TokenRequest tokenRequest = ...
5 IdTokenResponse idTokenResponse = IdTokenResponse.execute(

tokenRequest);
6 IdToken idToken = idTokenResponse.parseIdToken ();
7 // BUG: missing verification
8 // userinfo request with ID token ...
9 return Response.ok()

10 .entity(idTokenResponse)
11 .build();
12 }
13 } catch (Exception e) {
14 // Error handling
15 }
16 return Response ... UNAUTHORIZED ...
17 }

Listing 6.9: Step 3 - Missing token validation using the Google library.

Listing 6.10 shows an example which is of type INCOMPLETE_ID_TOKEN_VERIFICATION,

as it is missing checks of the nonce and signature (How these are checked is shown in List-

ing 6.8). The vulnerability pattern USING_INCOMPLETE_ID_TOKEN_VALIDATOR will also

be raised, since the IdTokenVerifier is used without additional checks.

1

2 public Response callbackTokenVerifier(HttpServletRequest callbackRequest
) {

3 try {
4 // After verified state and parse auth. code..
5 TokenRequest tokenRequest = ...
6 IdTokenResponse idTokenResponse = IdTokenResponse.execute(

tokenRequest);
7 IdTokenVerifier
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8 idTokenVerifier = new IdTokenVerifier
9 .Builder ()

10 .setAudience(clientId))
11 .setIssuer(providerMetadata.get("iss"))
12 .setAcceptableTimeScewSeconds(

TIME_SKEW_SECONDS)
13 .build();
14 IdToken idToken = idTokenResponse.parseIdToken ();
15 if(idTokenVerifier.verify(idToken)) {
16 // BUG: verifier is missing nonce and JWT signature check
17 ... createAndStoreCredential(idTokenResponse , ...
18 return Response.ok()
19 .entity(idTokenResponse)
20 .build();
21 }
22 } catch (Exception e) {
23 // Error handling
24 return Response.status(Response.Status.UNAUTHORIZED).build();
25

26 }
27 }

Listing 6.10: Step 3 - Incomplete token validation using the Google library ID token verifier.
This is another variation where this method is called from "callback".

Vulnerability Patterns

There are seven vulnerability patterns in this detector, shown in Table 6.6.
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Table 6.6: Vulnerability Patterns in the Improper ID token verification detector. Two of them
are collector classes for the token verification parameters. Seven individual vulnerability
patterns are checked for in the detector.

Pattern Abbreviation Description
MISSING_VERIFY _ID_TOKEN SECMVIDT Collector class if all five token

checks are missing.
INCOMPLETE_ID
_TOKEN_VERIFICATION

SECIIDTV Collector class to notify that not
all checks are there.

MISSING_VERIFY_NONCE SECMVNONCE Missing check of nonce parame-
ter.

MISSING_VERIFY_TOKEN_ISS SECMVTISSU Missing check of iss parameter.
MISSING_VERIFY_TOKEN_AUD SECMVAUD Missing check of aud parameter.
MISSING_VERIFY_TOKEN_SIGN SECMVTSIGN Missing check of JWT signature.
MISSING_VERIFY_TOKEN_EXP SECMVTEXP Missing check of iss parameter.
EXTERNAL_CALL_POSSIBLY
_MISSING_VERIFY_ID_TOKEN

SECMVIDTEXT The ID token is not verified
in-line, but is passed to some
method which is unreachable by
the detector. This is possibly not
a verification method.

USING_INCOMPLETE
_ID_TOKEN_VALIDATOR

SECUIDTV Integrated immediate code
smell detector. Warns of known
incomplete SDK-imlemented
ID token verifiers. If checks are
added elsewhere in the class,
this will be suppressed.

Detection strategy

This detector also uses the Co-existing Invocation Enforcement analysis to detect vulner-

abilities. The detection strategy uses the following process visiting each method in a Java

class:

1. As we scan through the methods we collect relevant methods in a set of data structures:

• The methods that have all required token checks.

• The methods that require later inspection to search for all token checks.

• A hash map of method pairs, the caller and the called. This for an inter-procedural

approximation.

2. Look for invocations patterns that indicate that an ID token is retrieved, for example

TokenResponse.getIdToken().

3. Look for other patterns that indicate that validation is happening. We have the follow-

ing options:
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• An “IdTokenVerifier” is instantiated. If this verifier is in the black-list of incom-

plete verifiers, add the method for later inspection. If the missing checks are

implemented aside from this class, this method is considered safe. If the SDK

verifier is in the white-list of safe verifiers, the method is added to list 1.

• One of the required checks is instantiated. Add the method to list 2.

• The method passes the ID token to another method. This method and the method

calls are added to the hash map of pairs for later inspection.

4. If the ID token was retrieved, but this method is not added to a list for later inspection,

raise warning of MISSING_VERIFY_ID_TOKEN. No sign of validation was found.

5. Look through all the methods in list 2, searching for the five required checks to be

present. If any one of the required checks is absent, raise a warning of

INCOMPLETE_ID_TOKEN_VERIFICATION.

6. Look through the hash map of pairs. If the called method is not in list 1, raise a warning:

• If the called method indicates that it attempts verification, report

INCOMPLETE_ID_TOKEN_VERIFICATION.

• If the called method has no such indication, report MISSING_VERIFY_ID_TOKEN.

• If the called method is not in this Java class, and does not have a name that indi-

cates that it does verification, report

EXTERNAL_CALL_POSSIBLY_MISSING_VERIFY_ID_TOKEN. We have no other

signs of validation, and the token is passed somewhere.

Severity

This bug may lead to Replay Attacks (See Table 3.1). An attacker may impersonate an ad-

versary by obtaining a credential value. However validation of the state parameter helps

mitigate this kind of attack, as several separate data artifacts contribute to the integrity of a

request.

Limitations of the detection strategy

This detection strategy is simple, but is limited to detecting the appearance or absence of

usages of a certain data attribute, namely the State parameter. Is is not able to tell whether

the check is carried out in a proper control flow. However this strategy is cheaper, and the

existence of this vulnerability makes a heavier control flow analysis unnecessary. Only when

this bug does not exist, control flow and potentially data flow analysis can be employed to

further verify the solidity of the code.
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6.4.4 Control flow ID token verification detector

During token validation there are many things that may go wrong. The developer has to

ensure that the correct data is validated using the correct control flow, with appropriate re-

sponses to specific checks. Generally the code must be really simple, with one single green

path leading to a validated token, thus ending in a HTTP OK state and completed step. Any

deviating path must end with a broken control flow and often the return of a 401 UNAUTHO-

RIZED HTTP error code.

Secure code example

In code doing token validation, each check must be followed by a correct response. If a value

does no match, a HTTP response code 401 UNAUTHORIZED must be returned, like shown in

Listing 6.11. Here the checks are implemented as a series of similar if-checks. All the checks

use a negative comparison, meaning that the value being true means that the values do not

match. In line 4 for example, the program flow is broken and a response code is returned if

the saved nonce parameter does not match the one in the ID token.

1 public Response validateTokens (... tokenResponse , ... oidcConfig) {
2 try {
3 IdToken idToken = tokenResponse.parseIdToken ();
4 if(! oidcConfig.nonce.equals(idToken ... getNonce ())) {
5 return Response ... UNAUTHORIZED ...
6 "Provided nonce did not match";
7 }
8 if(! idToken.verifySignature(publicKeyFromJwkSet ())){
9 return Response.status(Response.Status.UNAUTHORIZED)

10 "JWT signature is not valid";
11 }
12 ... other checks
13 .... createAndStoreCredential(tokenResponse , oidcConfig.appuuid);
14 return Response.ok()
15 .entity(tokenResponse)
16 } catch (... | ... | ... Exception e) {
17 return Response.status(Response.Status.BAD_REQUEST).build();
18 }
19 }

Listing 6.11: Correct suggestion for token validation. The full example is found in Listing 5.4

Vulnerable code example

The basic error that is attempted covered with the CFG detector is cases where the developer

makes a silly mistake and for instance forgets to enforce a check properly, or accidentally

reverses a conditional. In the case in Listing 6.12 an if-check of the token signature is imple-

mented in line 5, but the program flow is not broken. As a result, the program will continue

down to line 9, where a success response is returned. In such a case, the program acciden-

tally falls back on the green path even if the signatures did not match.
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Another mistake developers may make is to write reversed logic. In line 1, the if-check is

not checking for a negative value. As a result, the code will accept an incorrect issuer value,

and an adversary impersonating an IdP might exploit this mistake.

1 if(idToken.verifyIssuer (...)){
2 // BUG: Reversed if conditional
3 return Response ... UNAUTHORIZED ...
4 }
5 if(! idToken.verifySignature(publicKey)){
6 // do something
7 // BUG: no return. Falls through to response OK.
8 }
9 ...

10 return Response.ok()
11 .entity(tokenResponse)
12 .build();

Listing 6.12: Respond incorrectly to a token verification.

Listing 6.13 shows other hypothesized ways the developer may write code that responds

to checks with an incorrect control flow. In line 5, a return or throw statement that breaks the

control flow is absent. In line 9 the developer accidentally returns a wrong response code,

instead of an error code. Lastly, in line 14, the developer returns null. This is not necessarily

a vulnerability, but is a code smell.

1 public Response validateToken(IdTokenResponse tokenResponse , OidcConfig
oidcConfig) {

2 try {
3 IdToken idToken = tokenResponse.parseIdToken (); // Parse
4 if(! oidcConfig.nonce.equals(idToken.getPayload ().getNonce ())) {
5 // BUG: no return
6 }
7 ...
8 if(! idToken.verifyAudience(Collections.singleton(clientId))) {
9 return Response.ok().build ();

10 // BUG: returns OK in wrong place
11 }
12 if(! idToken.verifyTime(Instant.now().toEpochMilli (),
13 DEFAULT_TIME_SKEW_SECONDS)){
14 return null;
15 // BUG: Smelly code returning null.
16 ...
17 ... createAndStoreCredential(tokenResponse , oidcConfig.appuuid);
18 return Response.ok()
19 .entity(tokenResponse)
20 .build();
21 } catch (... | ... | ... Exception e) {
22 return Response ... BAD_REQUEST);
23 } catch (Exception e) {
24 return Response ... INTERNAL_SERVER_ERROR);
25 }
26 }

Listing 6.13: Different ways to respond incorrectly to a token verification.
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Vulnerability Patterns

Table 6.7 shows the two vulnerability patterns used by the Control flow ID token verification

detector.

Table 6.7: Vulnerability patterns in the Control flow ID token verification detector

Pattern Abbreviation Description
IMPROPER_TOKEN_VERIFY
_CONTROL_FLOW

SECITVCF An if-check of one of the val-
ues in the ID token responds
with an incorrect control
flow.

REVERSED_IF_EQUALS
_ID_TOKEN_VERIFY

SECREQTVER An if-check expected to
check for a negative boolean
value checks for a positive
one, possibly reversing the
value it checks.

Detection strategy

This detector uses the Static Control Flow Check analysis, which is described in Section 6.2.3.

It looks for patterns of ID token validation like the Improper ID token verification detector.

It has the following outcomes when analyzing methods that do ID token verification:

• This basic block does one of the ID token checks.

• If this block does not have an ifne bytecode instruction, report

REVERSED_IF_EQUALS_ID_TOKEN_VERIFY.

• If this basic block is not followed by a block that as a return instruction that is appro-

priate, report

IMPROPER_TOKEN_VERIFY_CONTROL_FLOW.

Severity

If one of the checks does not have a correct response, or a conditional is reversed, the check

is essentially useless. The relying party will then be at risk of a token forgery attack.
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Evaluation

This chapter contains a practical demonstration and validation of the analyses. This valida-

tion of the research results uses the “slice of life” examples taken from real code bases (See

Chapter 4.3).

Section 7.1 goes through the experimental setup. Quantitative results and metrics are

presented in tables in Section 7.2. Section 7.3 contains qualitative interpretation of the re-

sults, going into some key examples with insights into why the analysis yielded false positives

or negatives, or succeeded.

7.1 Experimental setup

To validate the results of this thesis, the “slice of life” example-based strategy (See Section 4.3),

with examples drawn from the field, is used as basis. It is also referred to as a quasi-experiment

or field experiment [65, pp.133–134]. The essence of such experiments is trying to stay true

to the spirit of laboratory experiments, but rather having focus on making observations of

real-life settings, which make for a more naturally occurring experiment. Such a validation

strategy is not as strong as more rigid statistically significant studies, but are fairly common

for successful software engineering research [82].

The Example-based strategy is set in motion by using six open-source applications that

implement code resembling OpenID Connect relying parties. The analyses in this thesis are

highly specialized targeted at the OpenID Connect protocol flow, all code files in the appli-

cations waere not analyzed. Instead, the evaluation was limited to analyzing the files that

contained relevant interfacing with the SDKs, and necessary boilerplate so that the relevant

files would be altered as little as possible. Table 7.1 shows the open-source applications an-

alyzed.

81
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Table 7.1: Applications using OpenID Connect SDKs that were analyzed. Three using the
Google library, and three using the Nimbus SDK. Files denoted files included from the given
application.

Subject Application Description SDK used Files
ZopSpace [102] zop-app v0.1 Video annotation An-

droid app
Google 1

Atricore [7] atricore-idbus
v1.4.3-27

Identity federation plat-
form

Google 10

Firebase [35] firebase-admin-
java v6.13.0

Admin SDK for connect-
ing with Firebase services

Google 116

SonarQube [94] sonar-auth-oidc
v2.0.0

SonarQube SDK for au-
thentication by Vaulttec

Nimbus 5

Liferay [52] LiferayPortal
v7.3.2 GA3

Business platform for Java Nimbus 22

codice [14] ddf, version ddf-
2.24.0

Distributed Data Frame-
work: modular integra-
tion framework

Nimbus 3

Like mentioned in Chapter 6.3, detectors have not been implemented for all the steps in

the flow, and do not currently cover all the points in the checklist. For this demonstration it

suffices to show a case for each type, though two detectors are implemented for Co-existing

Invocation Enforcement. The detectors tested in the evaluation are shown in Table 7.2. The

flow steps referred to in the table are explained in Chapter 5.1.

Table 7.2: Overview of the implemented analyses as Find Security Bugs detectors used in the
evaluation.

Detector Description Type Step in flow
State validation Check callback after au-

thentication request
Subsequent Inv. 2

ID Token validation Check ID Token valida-
tion after token request

Subsequent Inv. 3

ID Token validation CFG Check that the system re-
sponds properly to code
validation checks

CFG Check 3

Authorization Grant Check whether improper
grants like Resource
Owner Password Grant is
used

Immed. Code Smell 2

The code bases used in the validation were obtained in Github open-source repositories

on 18th of May 2020. Github repositories were searched for projects containing code that

uses any of the two SDKs, the Nimbus SDK or the Google library, which are used as basis

for the analyses in this thesis. The goal for the experiment on source code bases was to ob-

tain three code bases using the Nimbus SDK, and three code bases using the Google library,

aiming at a total of six open-source projects. The search protocol on Github was as follows:
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• Extract identifiers of imports of SDKs that necessarily need to be included in OpenID

Connect code that falls in the category of the analyses in this thesis. The query strings

are as follows:

– For the Nimbus SDK:

import com.nimbusds.openid.connect.sdk

– For the Google SDK:

import com.google.api.client.auth.openidconnect.

• Perform a Github search with the given strings above, in code mode: https://github.
com/search?q=<query-string>&type=Code. This mode searches the contents of

code files.

• Scan through the first 20 pages for relevant code projects, or stop if goal is reached.

• The included code bases must satisfy the following inclusion criteria:

1. This seems like a real code base used in a production setting, and is not just an

example or a personal dummy project.

2. The file that contains the code matching the search hit indeed seems to be imple-

menting parts of, or the whole authorization code flow in a Relying Party.

The analyses were performed on a Lenovo P1 gen 2 running Ubuntu 19.04, with a Intel

Core i7-9850H processor and a Graphics adapter NVIDIA Quadro T1000 (Laptop) 4096 MB

and 32GB RAM.

Detectors were run in the FindBugs Command-Line Interface (CLI)1, based on instruc-

tions in the CLI guide at FindSecBugs [73]. The tool was built in the following way from the

root folder in the forked FindSecBugs project [28], in the evaluation-opensource branch2:

• $ mvn clean install
• $ cd cli
• $ gradle assemble
• $ gradle package

The analyzed applications were all cloned, and the files considered relevant were built to

.jar files, because the CLI interface takes compiled java as .jar files for input. Inclusion

criteria for the files was that they had imports of SDK classes that are used in OpenID Con-

nect or OAuth, or that they were linked to classes that satisfied this constraint. As few files

as possible to compile the given project without too much changes were included. Other

files than this would not trigger detectors. The analyzed files were added to the Eval and

build in the each their sub-module in the Eval project [29]. Then in the root folder of the

1Findbugs guide for running in command-line: http://findbugs.sourceforge.net/manual/running.
html

2evaluation-opensource branch: https://github.com/Eliassoren/find-sec-bugs/tree/
feature/evaluation-opensource
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Eval project, $ mvn clean install was run to get a .jar file. The file was generated to

<submodule-subject>/target.

Then in the FindSecBugs project, still in the find-sec-bugs/cli directory, each of the

subjects were analyzed by entering the following command in the find-sec-bugs/cli di-

rectory:

$ ./findsecbugs.sh

-output <subject>Results.xml

-visitors ImproperTokenValidationDetector,

TokenValidationCFGAnalysis,

InsecureAuthorizationGrantDetector,

MissingCheckStateOidcDetector

<path from root>/Eval/<subject-module>/target/<subject>-1.0-SNAPSHOT.jar

The resulting analyses came as output in the named xml file in the find-sec-bugs/cli
directory. This action runs the whole FindSecBugs plugin (also including FindBugs detec-

tors) on the targeted code, including the analyses implemented in this thesis. Only the de-

tectors that were triggered came in with specific analysis times in millisecond. The total time

that is computed was the time for the whole plugin to run analyses on the given code. The

files were reviewed manually to verify the analysis results.

The analyzed files are publicly available at the Oidc-FindSecbugs-Eval project on Github [29],

and the detectors that were run in a forked FindSecBugs repository [28], in the branch evaluation-

opensource. Most of the project files of the analyzed applications had to be altered because

they had dependency errors or would not build from their master branch, or were hard to

configure to run. These alterations mainly included commenting out internal library refer-

ences, and did not touch any code artifacts likely to affect the analysis. The projects varied

in size, and therefore required different inclusion volumes to compile without altering too

much of the code. Most changes are documented with comments in the code in the Eval

project.

The FindSecBugs plugin can normally be used in the IDE, but compatibility issues and an

outdated version of FindSecBugs made it impossible to run in the IDE at this time. Users run-

ning the plugin in normal circumstances would simply install the plugin and run it targeted

at their selected files, or on their whole project. That would make the process of running the

analysis significantly easier than the during this evaluation.

7.1.1 Metrics for evaluation

To validate the performance of the analyses, false and true positives as well as false and true

negatives were chosen, because they are common metrics in several publications. Based on
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these metrics, properties like precision, and false positive rate were selected for illustrating

performances as fractions. Recall is also included, but this metric has lower confidence be-

cause the code analyzed is real applications, which means it is hard to get ground-truths

about how many vulnerabilities exist in the applications. Still, some limited measure of the

characteristic can be included to have some reference. The most important role of these

characteristics will be to illustrate the performance of the analyses in a set of real-world

cases.

To calculate the metrics, constraints have to be set for how positives and negatives are

counted for the detectors. The following constraints are set for defining the evaluation met-

rics.

7.1.2 Definitions potential warnings for metrics

The d detectors used in the analysis each have a certain set of bug patterns Pi they may raise

as warnings in a method. A class has a population mwr methods which have the potential to

be considered potential warning-raising methods. An application A has c classes.

Definition 7.1.1. Warning-raising methods Potential warning-raising methods, mwr : meth-

ods in a class that imports the given SDK for OpenID connect, and executes an action which

belongs to the universe in which the Detector does classification from, i.e. implements a part

of OpenID Connect or OAuth 2.0. If the method for example delegates some of the verifica-

tion checks to another method, both are considered relevant.

These methods provide a benchmark, and metrics are computed on only these potential

warning-raising methods, while other boilerplate methods which would otherwise obscure

the data are excluded. Timing of detectors also includes the other files, as the plugin scans

the whole project.

Definition 7.1.2. Total potential warnings for a method The total amount of potential warn-

ings WM for a method, analyzed with d detectors each report reporting Pi patterns: Wm =∑d
i=1 Pi

Definition 7.1.3. Potential warnings for a class The total amount of potential warnings WC

for a class: WC = m ·Wm

Definition 7.1.4. Potential warnings for an application per detector The amount of poten-

tial warnings WAD for an application with c classes for a detector with P patterns: WA =
c ·mwr ·P

Definition 7.1.5. Total potential warnings for an application The total amount of potential

warnings WAT for an application with c classes: WAT = c ·Cw = c ·mwr ·WM = c ·mwr ·∑d
i=1 Pi
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True positives

The detector has a true positive if it raises warning in one of its rules is broken in a method,

and the rule is in fact broken. Some warnings may link two methods since they relate to the

same vulnerability, this is then counted as one positive. The set of true positives (T P ) for a

method is the amount of patterns P that are true rule violations.

False positives

The detector has a false positive (F P ) if it raises warning in one of its rules is broken in a

method, and the rule is followed in the code. A special case exists here. If the Improper-

TokenValidationDetector notices that the code is missing four checks, it will raise a general

warning plus each of the four instances. This is then counted as four reports. If all five checks

it looks for are missing, it will condense them into one warning saying you miss five things.

This is then counted as five positives, since the total absence of five properties raised this

special warning. The set of false positives (F P ) for a method is the amount of patterns P

raised as warnings which are not rule violations.

True negatives

The detector has a true negative (T N ) if it does not report any vulnerabilities, and the method

in a class does not have a vulnerability breaking the rule. Each method satisfying this prop-

erty is considered a true negative. The true negatives illustrate the difference between poten-

tially raised warnings and true warnings. To further clarify, for any method where a detector

can potentially report six different vulnerabilities, and none of these vulnerabilities exist in

the method, the method had six true negatives. Based on Definition 7.1.5, the following def-

inition is set for counting true negatives in the analysis results of an application:

Definition 7.1.6. Count true negatives method The total amount of true negatives T Nm for

a method with a total of potential warnings Wm is defined:

T Nm =Wm −T Pm −F Pm −F Nm

Definition 7.1.7. Count true negatives application The total amount of true negatives T NA

for an application with a total of potential warnings WAT and methods m is defined:

T NA =WAT −T P A −F P A −F NA =∑m
n=1 T Nm

False negatives

The detector has a false negative it it does not report the vulnerabilities in the code, but there

is in fact a vulnerability in the code. The set of false negatives (F N are counted with manual

review of the code, imitating the potential warnings that would have been raised by detec-

tors.
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7.2 Experimental results

This section contains the experimental results for the validation. Section 7.2.1 gives an overview

of the numbers that go into the analyses, with results on each subject in Table 7.3, and a

summary of the results in Table 7.5. Metrics based on these numbers are presented in Sec-

tion 7.1.1. The raw data to the results on each subject are in Appendix B.

7.2.1 Overview

Table 7.3: Overview of the analysis results for the four detectors on each of the six applica-
tions. Subject: the application analyzed, Files: number of source files included in analysis,
G: Google, N: Nimbus, tt : total plugin clock run time in seconds, Detector: the implemented
analysis, WA: the potential number of warnings for a detector analyzing an application, TP:
True positives (vulnerabilities found), FP: false positives, FN: false negatives, TN: true nega-
tives, t: run time as clock milliseconds,

Subject SDK tt (s) Detector WA TP FP TN FN

ZopSpace G 0.79 Auth. Gr.
State ver.
Token ver.
Token CFG

1
2
21
0

0
0
9
0

0
0
0
0

1
1
12
0

0
1
0
0

Atricore G 1.06 Auth. Gr
State ver.
Token ver.
Token CFG

1
2
5
0

0
0
5
0

0
0
0
0

1
2
2
0

0
0
0
0

Firebase G 2.82 Auth. Gr
State ver.
Token ver.
Token CFG

2
0
56
10

0
0
1
0

0
0
3
4

1
0
52
6

0
0
0
0

SonarQube N 23.1 Auth. Gr
State ver.
Token ver.
Token CFG

2
4
21
0

0
0
5
0

0
1
5
0

2
0
11
0

0
0
0
0

Liferay N 1.38 Auth. Gr
State ver.
Token ver.
Token CFG

2
6
21
0

0
0
0
0

0
1
0
0

2
0
21
0

0
0
0
0

codice N 1.09 Auth. Gr
State ver.
Token ver.
Token CFG

1
0
28
0

0
0
0
0

0
0
5
0

1
1
23
0

0
0
0
0
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Table 7.4: Total of analysis results for detectors. WAT : the total potential number of warnings
a detector may raise, TP: True positives (vulnerabilities found), FP: false positives, FN: false
negatives, TN: true negatives

Detector WAT TP FP TN FN
Auth.Gr 9 0 0 9 0
State ver. 14 0 2 10 1
Token ver. 154 20 13 121 0
Token CFG 10 0 4 6 0
SUM 187 20 19 147 1

Like Table 7.5 shows, it is the Co-existing Invocation Enforcement analysis implemented through

the ImproperTokenValidationDetector that got the highest volume of detected vulnerabili-

ties, and had the most relevant analysis points in WA.

Table 7.5: Analysis results for the performance of the detectors, grouped per SDK. WAT : the
total potential number of warnings a detector may raise in a given application, TP: True pos-
itives (vulnerabilities found), FP: false positives, FN: false negatives, TN: true negatives.

SDK Detector WAT TP FP TN FN
Google Auth.Gr 4 0 0 9 0

State ver. 4 0 0 3 1
Token ver. 84 15 3 66 0
Token CFG 10 0 4 6 0
SUM G 102 15 7 79 1

Nimbus Auth.Gr 5 0 0 5 0
State ver. 10 0 2 8 0
Token ver. 70 5 10 55 0
Token CFG 0 0 0 0 0
SUM N 85 5 12 68 0
SUM 187 20 19 147 1

7.2.2 Metrics

From the numbers of the analyses, the metrics Precision, Recall and True Negative Rate

(TNR) were computed. These are explained and defined in Chapter 2.6.

Pr eci si on = True positives

True positives+False positives

Recal l = True positives

True positives+False Negatives
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True negative rate = True negatives

False positives+True negatives

When looking at all the detectors on all the code files, the evaluation yielded an unsatis-

factory precision of 51%. With further investigation, this may be caused by certain outliers

in a subset of the analyzed applications. Two of the applications implementing the Nimbus

SDK had a code structure that lead to false positives. These outliers likely skewed the data.

Insights into these false positives are explained in Sections 7.3. When looking at the data of

the Token ver. detector for the applications in the Google API, it has a promising precision of

83%.

Table 7.6 shows the metrics for the detectors. The metrics for the results analyzing the

two different groups of applications are shown. One of the groups contains the applications

using the Google library, while the other contains the ones using the Nimbus SDK. There

were some internal differences when looking at these two groups. The total metrics for the

analysis of all the analyzed subjects is shown in the bottom of the table.

Table 7.6: Metrics for analysis results per detector and total: Precision, Recall and True Neg-
ative Rate (TNR). The totals for Google (Total G) and Nimbus (Total N) are calculated using
the complete numbers in SUM G and SUM N in Table 7.5, including numbers from all the
detectors.

SDK Detector Precision Recall TNR
Google Auth. Gr 1

State ver. 1
Token ver. 0.83 1 0.96
Token CFG 0.6
Total G 0.68 0.93 0.92

Nimbus Auth. Gr 1
State ver. 0.8
Token ver. 0.33 1 0.85
Token CFG 0.6
Total N 0.29 1 0.85

BOTH Auth. Gr 1
State ver. 0.84
Token ver. 0.61 1 0.90
Token CFG 0.6
Total 0.51 0.95 0.89

7.3 Qualitative analysis

This section goes through some qualitative analysis, interpreting some reasons for the out-

comes. Sections 7.3.1 to 7.3.3 contain analysis insights in the subjects using the Google li-

brary, while Sections 7.3.4 to 7.3.6 go through the analyzed subjects using the Nimbus SDK.
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Emphasis is put on Improper ID token verification detector, because was the detector with

the largest volume of data, and the only detector with true positives.

7.3.1 ZopSpace

ZopSpace is one of the google-library using applications, and is as the only one, an Android

app [102]. This heavily limited the inclusion of files, since Android SDKs will not easily com-

pile in an ordinary Java run-time environment. However the one relevant file was mostly

written in “ordinary” Java, and required few changes to make it compile.

When analyzing this code base, the ID token validation and partly the State validation

detector yielded the most interesting results, which illustrate both strengths and weaknesses

with the analyses.

MissingCheckStateOidcDetector

The MissingCheckStateOidcDetector looking for improper or missing validation of the state

parameter failed to pick up that this was missing in the code in this app. It only had one file

to analyze from, but the expected patterns it is currently set to look for did not exist in this

code (The patterns it looks for are covered in Chapter 6.4.2).

This means that CSRF protection is not implemented, and manual searches through the

code base found no signs of state parameter any other place in the Android-parts of the code

base either. Listing 7.3 shows the code snippet which contains code that reveals the absence

of the state parameter. In lines 5-13, the authentication request is build. The state parameter

must be included here.

1 String newAuthorizationUrl(String authorizationServerUrl ,...
2 String [] scopes) {
3

4 List <String > scopesList = Arrays.asList(scopes);
5 AuthorizationCodeFlow flow = new AuthorizationCodeFlow.Builder(
6 BearerToken.authorizationHeaderAccessMethod (),
7 new NetHttpTransport (),
8 new GsonFactory (),
9 new GenericUrl(tokenServerUrl),

10 new BasicAuthentication(clientId , clientSecret),
11 clientId ,
12 authorizationServerUrl
13 ).build();
14 AuthorizationCodeRequestUrl authUrl = flow.newAuthorizationUrl ()

;
15 authUrl.setScopes(scopesList);
16 authUrl.setRedirectUri(redirectUrl);
17 if (scopesList.contains("offline_access")) {
18 authUrl.set("prompt", "consent");
19 }
20 authUrl.set("prompt", "login");
21 authUrl.set("display", "touch");
22 return authUrl.toString ();
23 }
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Listing 7.1: Step 1 in zopspace, building the Authorization Code request URL. The URL
clearly misses addition of the state parameter.

This absence was not picked up by the MissingCheckStateOidcDetector, which uses the

callback context as its entry-point trigger for analysis. However another detector could be

added, which focuses on how the request URL is build in step 1. Such a detector is suggested

in Table 6.2. It could use the following process to detect the bug above:

1. Look for signs of instantiating an AuthorizationCodeRequestUrl type.

2. Look for the setState() method call on the request url object (which comes in some

form to allow adding the state parameter).

If the first point is satisfied, the second one must also be satisfied. Otherwise a warning

of missing state parameter is raised.

ImproperTokenValidationDetector

The Improper ID token verification detector was able to pick up 10 vulnerabilities of incom-

plete validation of the ID token in the Zop-app project. It had four true positives which were

just as expected, in the isValidIdToken method in Listing 7.2. In line 6, the IdTokenVerifier is

instantiated, and the audience parameter is added. When verifier.verify() is called in

line 10, only the freshness and audience parameter is verified. The analysis correctly reported

that this file misses validation of the nonce, signature and iss parameters. Additionally it re-

ported USING_INCOMPLETE_ID_TOKEN_VALIDATOR, which is a vulnerability pattern re-

ported when the verifier is implemented incompletely.

1 boolean isValidIdToken(String clientId , String tokenString) {
2 if (clientId == null || tokenString == null) {
3 return false;
4 }
5 List <String > audiences = Collections.singletonList(clientId);
6 IdTokenVerifier verifier = new IdTokenVerifier
7 .Builder ()
8 .setAudience(audiences).build();
9 IdToken idToken = IdToken.parse(new GsonFactory (), tokenString);

10 return verifier.verify(idToken);
11 }

Listing 7.2: Incomplete ID Token verification in an open-source android app project [102].

Interestingly, the analysis also unexpectedly picked up five true positives in refreshTokens,

even though this is currently not covered by the model. This was picked up because the de-

tector looks for token requests as pattern A, and then expects validation as B. This is however

also a true vulnerability according to the OpenID Connect specification [60], since it is re-

quired to perform a complete ID token verification if an ID token is included in the refresh

request. The example here shows that the analysis is applicable, even if its initial design was

based on a more restricted mental model.
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1

2 IdTokenResponse refreshTokens(String tokenServerUrl ,...,
3 String refreshToken) {
4 List <String > scopesList = Arrays.asList(scopes);
5 RefreshTokenRequest request = new RefreshTokenRequest(
6 new NetHttpTransport (),
7 new GsonFactory (),
8 new GenericUrl(tokenServerUrl),
9 refreshToken

10 );
11 request.setClientAuthentication (... clientId , clientSecret);
12 request.setScopes(scopesList);
13 return IdTokenResponse.execute(request);
14 }

Listing 7.3: Refresh token request. Currently not covered by the model in this thesis, but the
analysis still picked it up.

7.3.2 Atricore

Atricode-idbus, the Atricore Identity Bus Platform [7] has one file which was considered rel-

evant upon inspection, the GoogleAuthzTokenConsumerProducer which uses the Google li-

brary. Due to their complex architecture, several other files touch upon OpenID Connect

messages. These are not included, both since their relevance is limited, and because it would

require a lot of work to make these files compile.

Token validation is clearly missing in the method doProcessAuthzTokenResponse in List-

ing 7.4. After retrieving the ID token in, the code directly proceeds to retrieve user info.

1 protected void doProcessAuthzTokenResponse(CamelMediationExchange
exchange) {

2 ... correct authorization response parsing
3 ... state validation
4 request.setRedirectUri(accessTokenConsumerLocation.getLocation ());
5 IdTokenResponse idTokenResponse = (IdTokenResponse) mediator.

sendMessage(request , accessTokenConsumerLocation);
6 IdToken idToken = idTokenResponse.parseIdToken ();
7 // NO ID token validation !!
8 ... userinfo request
9 }

Listing 7.4: Steps 2-3 in atricore, token request. Token validation is missing.

This turned out to be a case which worked exactly as expected for the ImproperToken-

ValidationDetector. The trigger was a call to idTokenResponse.parseIdToken(). Then the

detector expected to find validation. Failing to find this in the method, it raised warning that

all five required checks are missing.

7.3.3 Firebase

Firebase is an open-source app development platform delivered by Google. The code an-

alyzed is their admin Java SDK [35]. Different from the other code bases, this application
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turns out to not implement the entire OpenID Connect protocol. Rather, they have they own

way of doing authorization and authentication, but are using the types of the Google OIDC

library to wrap around their JSON Web Tokens, which are used to manage identities. This

strictly means that the discovery here is not a true bug, given that they do not follow the pro-

tocol specification in the first place, and therefore are not bound by its rules. However given

the rule set of the detectors, the broken rule of missing nonce was correctly identified in the

code.

Improper ID token verification detector

Listing 7.5 contains a method which provoked three false positives in Firebase. The method

returns the IdTokenVerifier class in the Google Library, which does not completely do all the

required validation checks. The detector assumes that this method is used to validate the ID

token, and correctly identifies that this method in itself misses the signature validation and

nonce validation checks. However, this method is called elsewhere, and its result is used in a

place where the needed checks are in fact implemented.

The method in Listing 7.5 is implemented in an entirely different code file than the other

relevant code, and effectively dodges the inherent single-file analysis design of FindBugs,

which the analyses in this thesis is limited to. These false positives could be avoided by mod-

ifying the analysis to set stricter rules for the conditions that form an entry-pattern. However,

imposing such stricter rules would also yield some false negatives, in a case.

1 private static IdTokenVerifier newIdTokenVerifier(Clock clock ,
2 String issuerPrefix ,
3 String projectId) {
4 return new IdTokenVerifier.Builder ()
5 .setClock(clock)
6 .setAudience(ImmutableList.of(projectId))
7 .setIssuer(issuerPrefix + projectId)
8 .build();
9 }

Listing 7.5: A method which provoked three false positives in Firebase.

Control flow ID token verification detector

Firebase was the only application implementing code where the Control flow ID token veri-

fication detector was relevant. It yielded four false positives.

One of the false positives was the of the REVERSED_IF_EQUALS_ID_TOKEN_VERIFY

pattern, shown in method isSignatureValid in Listing 7.6. The check on line 3 is reversed

from what is expected in the model that drives the Control flow ID token verification detec-

tor, which wants to see checks like !isValidABC(). Such a negative check does indeed come

in the method that calls this method, shown in Listing 7.7 in line 3. Cases like this can proba-

bly be accounted for if the analysis is re-engineered slightly to reason about inter-procedural

heuristics like the Co-existing Invocation Enforcement analysis does.



CHAPTER 7. EVALUATION 94

1 private boolean isSignatureValid(IdToken token) throws
GeneralSecurityException , IOException {

2 for (PublicKey key : publicKeysManager.getPublicKeys ()) {
3 if (token.verifySignature(key)) {
4 return true;
5 }
6 }
7 return false;
8 }

Listing 7.6: Method in Firebase that raised reversed if-conditional check.

1 private void checkSignature(IdToken token) throws ExportedUserRecord.
FirebaseAuthException {

2 try {
3 if (! isSignatureValid(token)) {
4 throw new ExportedUserRecord.FirebaseAuthException(

ERROR_INVALID_CREDENTIAL ,
5 String.format(
6 "Failed to verify the signature of Firebase %s. %s",
7 shortName ,
8 getVerifyTokenMessage ()));
9 }

10 ...

Listing 7.7: Method in Firebase that raised reversed if conditional check warning.

The other three false positives were of the pattern

IMPROPER_TOKEN_VERIFY_CONTROL_FLOW. The idea of that vulnerability pattern is based

on the developer-oriented model, which states that a HTTP 401 should be returned after

such a failed check. If an exception is thrown this is also accepted. This turned out to be too

a narrow scope for the model. The method in Listing 7.6 gives a warning because true is

returned after the check, in line 4.

Listing 7.8 shows a validation method that raised the remaining two warnings. Two ID

token checks like the one in line 6 were identified in the method, both raising the same warn-

ing. Instead of directly returning an error with a message, an error message is appended to

a collector string. The validation method is called by the method in Listing 7.9. Here if any

check has appended something to the error message, an exception is thrown in line 5. This

code structure completely evades what was intended in the design of the Control flow ID

token verification detector. The false positives may possibly be evaded if it gets some more

patterns. Some substantial engineering work is however needed to make it account for this

structure.

1 private String getErrorIfContentInvalid(final IdToken idToken) {
2 final Header header = idToken.getHeader ();
3 final Payload payload = idToken.getPayload ();
4 String errorMessage = null;
5 ...
6 else if (! idToken.verifyAudience(idTokenVerifier.getAudience ())) {
7 errorMessage = String.format(
8 "Firebase %s has incorrect ...
9 joinWithComma(idTokenVerifier.getAudience ())...

10 }
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11 ...

Listing 7.8: Method in Firebase that raised improper control flow warning.

1 private void checkContents(final IdToken token) {
2 String errorMessage = getErrorIfContentInvalid(token);
3 if (errorMessage != null) {
4 String detailedError = String.format("%s %s", errorMessage ,

getVerifyTokenMessage ());
5 throw new ExportedUserRecord.FirebaseAuthException(

ERROR_INVALID_CREDENTIAL , detailedError);
6 }
7 }

Listing 7.9: Method in Firebase that raised improper control flow warning.

7.3.4 SonarQube

Improper state verification detector

In the admin api of SonarQube [94], the Improper state verification detector yielded a false

positive. This false positive is completely impossible for a tool like FindSecBugs to detect.

Listing 7.10 contains the step 2 callback method called getAuthorizationCode. The parse

call in line 5 is the trigger of the analysis. However the state parameter is not verified here.

Instead, it is verified in another class, in the method shown in Listing 7.11 in line 2. It verifies

the value passively, and we cannot reason about the type of the State parameter at all. The

way these have implemented their code, it is impossible for the analysis to avoid the false

positive. FindBugs detectors inherently cannot reason about facts that cross Java classes,

since they visit one and one class.

1 public AuthorizationCode getAuthorizationCode(HttpServletRequest
callbackRequest) {

2 AuthenticationResponse authResponse = null;
3 try {
4 HTTPRequest request = ServletUtils.createHTTPRequest(

callbackRequest);
5 authResponse = AuthenticationResponseParser.parse(request.getURL ()

.toURI(), request.getQueryParameters ());
6 } catch (ParseException | URISyntaxException | IOException e) {
7 throw new IllegalStateException("Error while parsing callback

request", e);
8 }
9 if (authResponse instanceof AuthenticationErrorResponse) {

10 ErrorObject error = (( AuthenticationErrorResponse) authResponse).
getErrorObject ();

11 throw new IllegalStateException("Authentication request failed: "
+ error.toJSONObject ());

12 }
13 AuthorizationCode authorizationCode = ((

AuthenticationSuccessResponse) authResponse).getAuthorizationCode ();
14 return authorizationCode;
15 }
16 }
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Listing 7.10: Callback method in SonarQube yielding a false positive for the Improper state
verification detector.

1 public void callback(CallbackContext context) {
2 context.verifyCsrfState ();
3 AuthorizationCode authorizationCode = client.getAuthorizationCode(

context.getRequest ());
4 UserInfo userInfo = client.getUserInfo(authorizationCode , context.

getCallbackUrl ());
5 UserIdentity userIdentity = userIdentityFactory.create(userInfo);
6 userIdentity.getGroups ());
7 context.authenticate(userIdentity);
8 context.redirectToRequestedPage ();
9 }

Listing 7.11: State verification happening in another class in SonarQube.

Improper ID token verification detector

Listing 7.12 shows the method that yielded five false positives in SonarQube. The analysis

incorrectly thinks this method needs five checks, because it sends token request and simply

passes its result with OIDCTokenResponseParser.parse(response) in line 7. It is however

not this method that is required to actually have checks, but rather the method that calls this

method. In this case, the method that called this one also missed the checks, and had five

true positives.

Still it is incorrect to flag getTokenResponse as a vulnerable method. However, like ex-

plained in Section 7.3.6, a case like this yields false positives even in the code correctly im-

plements checks elsewhere.

1 protected TokenResponse getTokenResponse(AuthorizationCode
authorizationCode , String callbackUrl) {

2 try {
3 URI tokenEndpointURI = getProviderMetadata ().getTokenEndpointURI ()

;
4 TokenRequest request = new TokenRequest(tokenEndpointURI , new

ClientSecretBasic(getClientId (), getClientSecret ()),
5 new AuthorizationCodeGrant(authorizationCode , new URI(

callbackUrl)));
6 HTTPResponse response = request.toHTTPRequest ().send();
7 return OIDCTokenResponseParser.parse(response);
8 } catch (URISyntaxException | ParseException e) {
9 throw new IllegalStateException("Retrieving access token failed",

e);
10 } catch (IOException e) {
11 throw new IllegalStateException("Retrieving access token failed: "
12 + "Identity provider not reachable - check network proxy

setting ’http.nonProxyHosts ’ in ’sonar.properties ’");
13 }
14 }

Listing 7.12: A method that yielded five false positive in SonarQube.
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7.3.5 Liferay

In the Liferay portal [52], the Improper state verification detector gave a false positive. This

false positive came for the same reason as for why the token validation gets a false positive

in Codice (Section 7.3.6).

The validation of the state parameter happens in a different method which calls the

method triggering the analysis, and it is not possible to eliminate this false positive with-

out the same effort described in Section 7.3.6. This is an inherent limitation of the simple

detector-baser analyses in FindBugs, which visits each class individually.

7.3.6 Codice

Listing 7.13 shows the method that yielded five false positive in Codice [14]. The analysis

incorrectly thinks this method needs five checks, because it sends token request and simply

passes its result in the end line where it returns tokenSuccessResponse.getOIDCTokens().

It is however not this location that is required to actually have checks, but the method that

calls this one.

1 public static OIDCTokens getOidcTokens(
2 AuthorizationGrant grant ,
3 OIDCProviderMetadata metadata ,
4 ClientAuthentication clientAuthentication ,
5 int connectTimeout ,
6 int readTimeout)
7 throws IOException , ParseException {
8 final TokenRequest request =
9 new TokenRequest(metadata.getTokenEndpointURI (),

clientAuthentication , grant);
10 HTTPRequest tokenHttpRequest = request.toHTTPRequest ();
11 tokenHttpRequest.setConnectTimeout(connectTimeout);
12 tokenHttpRequest.setReadTimeout(readTimeout);
13 final HTTPResponse httpResponse = tokenHttpRequest.send();
14 LOGGER.debug(
15 "Token response: status ={}, content ={}",
16 httpResponse.getStatusCode (),
17 httpResponse.getContent ());
18 final TokenResponse response = OIDCTokenResponseParser.parse(

httpResponse);
19 if (response instanceof TokenErrorResponse) {
20 throw new TechnicalException(
21 "Bad token response , error=" + (( TokenErrorResponse) response)

.getErrorObject ());
22 }
23 LOGGER.debug("Token response successful");
24 final OIDCTokenResponse tokenSuccessResponse = (OIDCTokenResponse)

response;
25 return tokenSuccessResponse.getOIDCTokens ();
26 }

Listing 7.13: A method that yielded five false positive in Codice/ddf [14].

The method that called this one was not flagged for warnings, as it passed the rules of

the analysis. This this method, which is called by the other one, gets positives. The rea-
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son for this is a limitation on how the Co-existing Invocation Enforcement analysis handles

inter-procedural heuristics. The Co-existing Invocation Enforcement uses simple heuris-

tics to approximate one piece of inter-procedural analysis, by going down in the call graph.

This was modeled for the case where a certain check is delegated down to another method.

Code structured like the pseudo code below will not give false positives, because the method

verifyB() contains the needed checks, which is then called by method getA(). Some in-

struction trigger() will alert the detector that a set of checks is required:

boolean verifyB(data) {

if check data.a;

if check data.b;

if check data....

}

Response getA() {

trigger() // a trigger that says checks are needed

if verifyB(data)

...

return response;

}

This is solved, and the initial false positive is avoided because we "put aside" verifyB()
and getA(), and do a double check after the initial screening analysis is done.getA() is then

cleared from being a potentially vulnerable method when it is verified that it is assosciated

with verifyB(), which contains the required checks. This is explained further in Chap-

ter 6.2.2.

However in the case for this set of false positives, the code has the opposite structure,

essentially requiring the analysis to be able to go upwards in the call graph. The “level” above

this current method, verification might actually happen. The code like below will give false

positives:

Trigger getTrigger(data) {

...

return trigger();

// Here the detector expected some checks!

}

Response getA() {

Trigger t = getTrigger();
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if check a;

if check b;

if check...;

return response;

}

The detector notices that the method getA() contains checks, and will correctly say that it is

safe. Still the instruction trigger() alerts the detector that some checks are needed to fol-

low the rules. However this would be a reversed association between the methods, compared

to the heuristic that is used in the other example above. The principle for detecting that these

are in fact negatives could be similar, and another set of associated methods could possibly

be put aside and checked.

To do this however, the whole analysis would need a redesign since it is inherently intra-

procedural with a simple inter-procedural check. This requires a significant amount of time,

and it might take a full month to properly extend the analysis to account for this. The “down-

ward” checks are just based on another linear verification of the code, and still keeps the de-

tector rather simple. The same might be done for the above code snippet, but this may also

have other effects on the recall of the analysis, and introduces complexity to the detector.

It would then have to approximate what happens both upwards and downwards in the

call graph with only simple heuristics. To get to this level one might as well just have to

compute a call graph, which introduces a different level of complexity, and goes beyond the

scope of the simple nature of the Co-existing Invocation Enforcement analysis.



Chapter 8

Discussion

8.1 RQ1: The developer-oriented model

This section discusses results related to RQ1: What must a developer do to avoid introducing

known security vulnerabilities, while implementing a Relying Party with an OpenID Connect

SDK?

The developer-oriented model of OpenID Connect proposed in this master thesis might

lay a foundation for two things. Firstly, it may be a step in the direction for a rather gen-

eral developer guide, but with specific, concrete steps in a checklist. Secondly, it may form

guidelines for making more static analyses for usage of SDKs.

The qualitative model presented in this thesis is still a rough one, and does not entail

all the steps that necessarily would go into the flow (refresh tokens and UserInfo requests

have not yet been covered). With further refinement it would be interesting to see whether

it could serve as a complete “angled” part of the specification, which communicates more

clearly what to do by collating the essential information for the developer, and leaving the

rest out. It would also be interesting to see whether such a model could be developed for the

counterparts, namely for the ones developing an IdP. Also here static analyses could likely be

employed to help enforce the rules.

What can be considered the main feature with such a model is to get a pragmatic, clear

and unambiguous mental model, which is explicit and shared between a vulnerability test-

ing tool and the developer. This way, as a contrary to the flexibility of the original speci-

fication, a more clear and restricted rule set can be named. Even though many security-

enhancing values and parameters are named as optional in the specification, it can be ar-

gued that a stricter rule set could at least be presented for the developers. As long as it does

not severely restrict availability, the general recommendations and requirements in OpenID

Connect should be more focused on enhancing confidentiality and integrity. This is espe-

cially relevant since the protocol is employed in more and more systems with its dominance

in the industry rising.

The specificity of the model proposed in this thesis can be considered both an advan-
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tage and a weakness. On one side, the specificity allows us to get a more clear set of rules to

enforce when performing automated analyses like the ones designed and implemented in

this thesis. The rules are rooted in explicit code examples, and the specific SDKs are likely

to be used by many applications. Hence by adding rules for more SDKs, a significant part of

the client applications on the web can be secured, as long as they use a popular and well-

known SDK to support their implementation. However the specificity also introduces some

weakness, as it can have a too narrow view for some applications, and may miss some rele-

vant vulnerabilities. There are examples of this shown in the evaluation of the implemented

static analyses (Chapter 7.3). The restrictions of the model makes the analyses prone to both

false positives and false negatives. However it is shown by the demonstration that analyses

based on the model found vulnerabilities in real-world code.

8.1.1 Comparison to related work

The existing security analyses of OpenID Connect and OAuth 2.0 elaborated in Chapter 3.1

can be described by a few common attributes: they are comprehensive and formal, they look

at the overall communication between the entities, and they tend to be attacker-oriented.

Being attacker-oriented means that their abstraction and view on the protocol is through a

certain set of eyes, from an attacker standing on the outside of the parts in the system. In

contrast, the goal of the model in this thesis is to provide an internal developer-view per-

spective, which is intended to be simple and pragmatic. This may serve to complement the

comprehensive “bird-perspective” models that are generally used or presented in security

analyses, and the specification itself.

A potential challenge with existing formal security analyses [33, 34, 62, 89] and models for

OIDC is that they seek to be complete, involving all the entities and steps in a comprehensive

model of the protocol. While such analyses and models definitely are important knowledge

frameworks, their complexity limits their relevance to ordinary software developers who just

want to add their app as a Relying Party.

Other relevant analyses are more practically oriented, looking at implementations of the

protocol [2, 49, 50, 86]. However, they still have the attacker-oriented perspective, and have

a rather formal approach to their analysis. Their advantage is that they are based on true

implementations, which may make it easier to relate to and comprehend for a developer.

Since OIDC is distributed, its complete security is arguably a shared responsibility be-

tween the developer of the SDKs, the developer of the IdP and the developer of the Relying

Party. Still it is not necessarily the RP developer’s concern to know in detail what the IdP

does on the other side. These developers could instead use a straight-forward and simplified

protocol model with a checklist of what concrete steps they need to take to ensure security

on their end, like the model presented in this thesis. Beside the comprehensive models and

the official specification, SDKs also provide developer guides which give clear and simple

instructions to the developer. Their instructions alone do however not give a comprehensive

checklist for security, but are rather focused on the simplest way of setting up a working flow.

When looking at development, implementation and usage of OpenID Connect, we can
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name several roles. In the development stage the entities of Identity Provider and Relying

Party must be developed.

The IdP is often delivered as a service or product by a large organization, and is likely to

be put under a careful testing regime, which enhances their security. The IdP organizations

often also provide their own type sets or development kits that ordinary developers can use

to integrate their app with the IdP. Nevertheless, developers implementing an their app are

not unlikely to fail in writing some critical implementation details correctly. It is apparent

by the analyses of the two SDKs and their developer guides [15, 19, 37], that the SDKs them-

selves not necessarily give all the answers regarding security practices either. Instead they

often have very simple “get-started” guides, and have limited security guidelines compared

to the protocol specification.

The steps needed to securely implement a Relying Party or any other protocol entity are

thoroughly explained in the official specification [60]. The SDKs provide developer guides [19,

37] showing simple code samples for what is needed to get started in implementing the pro-

tocol flow. Even together, the specification and guides may be confusing sources as the of-

ficial specification has loads of information, while the developer guides are rather short and

simple.

Analysis of these SDKs and the specification can be extracted to a qualitative model of the

flow containing a few concrete and simple rules for secure development of an RP, formed as

a straightforward checklist. Even with such rules at hand, it could be bothersome or hard for

a non-security competent developer to realize the gravity of failing to implement a certain

security feature. Developers are also prone to forgetting a certain check or performing a

check in the wrong way. Therefore in addition to serve as a guideline for the developers, this

model forms a knowledge framework for the simple static analyses, which in their turn help

enforce the rules of the protocol.

8.2 RQ2: Implementation of static analysis

This section relates to RQ2: How can simple, explicit and intraprocedural static analysis

checks be used to identify vulnerabilities in OpenID Connect Relying Parties?.

8.2.1 Experimental results of the detectors

In this study, four detectors were implemented to test the effectiveness of the analysis tech-

niques. The validation experiment on six open-source applications showed that these tech-

niques can find vulnerabilities in real code bases. The Improper ID token verification detec-

tor 1 found 20 vulnerabilities related to improper validation of ID tokens in the six open-

source applications.

1The Improper ID token verification detector (Chapter 6.4.3 is an implementation of the Co-existing Invoca-
tion Enforcement analysis, which is explained in Chapter 6.2.2.
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The recall of the tool in total was 95%, meaning most of the known vulnerable code was

discovered. The tool also had a precision of 51% in total, and 61% for the Improper ID token

verification detector as the only detector finding vulnerabilities. The recall looks promising,

but this precision might look unsatisfactory low at first sight, since developers generally like

precise tools [13]. While the analysis has some weaknesses in today’s implementation, there

are several arguments for why this metric should not alone be taken as a definitive measure

of the strength and potential of the tool.

Firstly, the population of the applications analyzed is not statistically significant, mean-

ing the result in total may be caused by a coincidence. If the precision had turned out to

be for instance, 85% for these applications, this is still not a metric that on its own could

confidently describe the performance of the tool. The data from the validation are arguably

more nuanced than that, and the qualitative insights are important to determine its potential

strengths and weaknesses in a small data. The only test characteristic that is fully satisfied

by this case study is realism [26].

Three out of four detectors had no positives, and this itself might skew the results. Addi-

tionally, a significant portion (50%) of the FPs came due to one factor in the code structure

of two applications. This is considered an outlier that greatly impacted the small data set,

skewing the results. It can be argued that the outlier comes due to an overly complex code

structure 2, which is an anti-pattern in security code [3].

The analysis was on a contrary rather effective on the code bases that implemented OIDC

in a way that is more similar to the developer guides given by the SDKs [19, 37]. This makes

sense since the analyses are based on the developer-oriented model, which is greatly influ-

enced by these guides.

The Improper ID token verification detector has a precision of 61% in total. On a closer

look, if disregarding the outlier, a promising 83% precision would be found for the Improper

ID token verification detector. Removed outliers would leave only three false positives than

cannot be dealt with 3. This would be in the range of what is considered acceptable for most

developers, which generally are not likely to accept a precision of any lower than 80% [13,

88].

With an intuitive reasoning from the qualitative analysis in Chapter 7.3, probably 15 of

the 20 false positives in this trial can be avoided with improvements of the details in the

analysis. Doing this requires a substantial engineering effort. It may take a few week’s work

to fix without sacrificing recall. This was not possible in the time constraints of this thesis.

Instead of concluding directly based on precision and recall, however, it is more valuable

to also emphasize the qualitative insights of the results 4.

The metrics should also be interpreted based on the limitations of the data. Precision and

recall are sensitive to imbalanced data sets [90]. In a small data set it is more useful to look

at the true negative rate (TNR) together with the precision and recall. While the precision

and recall can change significantly if exposed to outliers in small data sets, the true negative

2Outliers are described in detail in Chapters 7.3.4 and 7.3.6
3The false positives related to ID token verification that cannot be fixed are explained in Chapter 7.3.3.
4Qualitative insights into the details of the analyses are presented in Chapter 7.3.
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rate is not affected as much by coincidences. In contrast to the other two metrics, the true

negative rate is robust when facing imbalanced data [90].

The true negative rate was of 90%, meaning that 9 out of 10 non-vulnerable cases were

correctly predicted as negatives. This gives a more nuanced picture of the resistance to false

positives, and shows that in most cases, the analysis avoids giving false positives. The recall

is only an indicative metric which is more confidently calculated in controlled test suites 5

More empirical testing is however needed to learn more about how strongly the analyses

truly can perform, as all the metrics are affected by the size of the data set.

The Control flow ID token verification detector performed significantly better on the ap-

plications using the Google library than the ones using the Nimbus SDK, and 15 of the 20

discovered vulnerabilities were found in applications using the Google library. Additionally

it had significantly different results for the metrics when looking at these two groups of appli-

cations. Table 7.6 shows that precision analyzing the applications that use the Google library,

was at 68% for the current analysis.

Finally, if the total precision in should in fact turn out to be of 51% in the end, even this

might be acceptable because the code analyzed is security-critical. Sørensen et al. [88] found

that developers are more interested in finding all the vulnerabilities than having a high pre-

cision when looking at security-critical code.

But as it stands, the precision of the tool as implemented today is not likely to be satisfac-

tory for a general practitioner. However the precision can be increased significantly through

a few weeks of careful engineering efforts. This is an interesting avenue for further work.

FindSecBugs has been found to be quite precise in detection of several of the OWASP

top 10 vulnerabilities [48]. However most of such the existing detectors (especially the ones

which use similar techniques to the Improper ID token verification detector) can effectively

be fooled into yielding false positives if the logic of the methods is structured in a certain way,

similar to like the outliers found in this study. This must be considered since static analysis

is dependent on the code structure.

The detectors are implemented using FindSecBugs, which has been found to have a su-

perior usability to other known tools [48]. FindSecBugs easily integrates in the workflow of

the developer, which increases the chance that developers will use these analyses to elimi-

nate vulnerabilities [88]. Before this, no detectors for OpenID Connect vulnerabilities have

been implemented in FindSecBugs, highlighting the novelty of this work.

The other three detectors

The three other detectors gave no true positives, and thereby did not generate much data to

analyze. This might be because they are narrow, or because it is not as common for develop-

ers to make mistakes introducing these vulnerabilities in their code.

The Insecure authorization grant detector has a very limited scope, and correctly pre-

dicted 9 true negatives. It is not the most important detector, but contributes to avoiding

special code smells. Also the Control flow ID token verification detector has a very special-

5See Chapter 2.6.3 about test suites.
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ized scope, and only one of the six applications had relevant code i predicted. It had four

false positives, three of which are possible to avoid if it is extended to look for a few more

patterns. To eliminate the final false positive, it may have to get some inter-procedural at-

tributes similar to the ones in the Co-existing Invocation Enforcement analysis.

Meanwhile the Improper state verification detector had a total of two false positives,

yielding a true negative rate of 84%. The two false positives came due to the code struc-

ture in the analyzed projects. One of these cases cannot be avoided because the analysis is

bound to one class, while the other can be fixed with some efforts. The false negative, i. e.

the vulnerability the Improper state verification detector could not detect 6, will be detected

if another corresponding detector is implemented to cover step 1 in the developer-oriented

model 7.

8.2.2 Comparison to related work

Existing vulnerability analysis and testing frameworks for securing OpenID Connect are mostly

black-box tools that can only be run in a late stage of development. The main advantage of

these tools is that they are language-agnostic, and are applicable to websites that do not have

public source code. They also have a complete model of the protocol flow, and get a ground-

truth of sorts through the messages that are sent between the Web servers in the protocol.

Some of the black-box tools are browser extensions, which likely means that they only

validate the security of a client application in a late stage when it is already in production [11,

51]. Other black-box tools analyzing protocol implementations are presented as penetration

testing tools [54, 99]. These tools require manual configuration from the security tester, who

has to actively herd the tool in the certain parts of the analysis, entering URLs and helping

the tool visit the correct website.

The tool by Zhou et al. [99] offers some automatic passive features after the initial setup.

This however introduces some challenges, as they have to impose some potentially incorrect

assumptions about buttons and HTML structure of the page they analyze. For this purpose,

these tools are therefore highly specified for a designated penetration tester, and are not very

applicable tools for an ordinary developer.

Some of the existing automated analyses also use white-box techniques to secure OpenID

connect or OAuth implementations [76, 95, 96]. Two of these use symbolic execution tech-

niques to model the program’s execution paths [95, 96]. Both tools are focused on finding

vulnerabilities in SDKs, like the Nimbus SDK and Google SDK. Thus, these are not focused

on what happens when a developer uses the SDK.

These also have some other problems that are solved by introducing the analysis in this

thesis. Wang et al. [95] reported that their symbolic execution took between 11 and 25 hours

to analyze SDKs with under 2000 lines of code. Yang et al. model their symbolic execution

on paths that the attacker can see, an thereby reduce their complexity, so their analysis took

no more than five seconds even for programs with 18000 lines of code.

6The false negative of the Improper state verification detector is described in Chapter 7.3.1.
7The developer-oriented model is described in Chapter 5.1.



CHAPTER 8. DISCUSSION 106

In comparison, the static analysis in this thesis (integrated into FindSecBugs) used 2.8

seconds to analyze the largest included project, Firebase, with 7000 lines of Java code. How-

ever the analysis of SonarQube took 23 seconds since it included an unknown volume of files

from the dependencies that were package into the .jar file that was analyzed.

The solution proposed by Rahat et al. [76], OAuthLint, is the only one of the related works

that uses static analysis to detect vulnerabilities, in the OAuth protocol in Android applica-

tions. They use a formal predicate language to query a control-flow graph of the program.

The vulnerabilities they target are based on the limitations of OAuth, and they have a scope

that looks at different vulnerabilities related to transfer protocols and local storage of data.

In comparison, the analyses in this thesis seek to cover all the authorization code flow steps

in OpenID connect, with an emphasis on validation of data like the ID token and state pa-

rameters. Such vulnerabilities cannot be detected by OAuthLint.

PrOfESSOS [54] by Mainka and Wich is the only related token that scans applications for

token forgery attacks, i.e. ID token validation vulnerabilities. They tested their penetration

testing on 8 open-source Relying Party libraries. They discovered 22 ID token-related vulner-

abilities which intersect those the Improper ID token verification detector looks for. Addition-

ally, they found 8 vulnerabilities in a novel attack they have proposed, called IdP Confusion.

They do not give any information about false positives, and it is therefore not easy to reason

about the precision of their analysis.

Like mentioned above, their penetration testing tool only detects such vulnerabilities in

already running applications, and their tool requires manual configuration. In comparison,

the static analyses proposed in this thesis can mitigate these vulnerabilities during devel-

opment. The Improper ID token verification detector found 19 equivalent vulnerabilities in

six open-source code bases implementing client logic with ID tokens, plus one vulnerability

they do not cover 8. The Improper ID token verification detector is implemented in Find-

SecBugs, and can be run automatically without manual configuration.

As such, none of the other known works fills the space that this thesis proposes, as the

first static analysis tool that detects ID token validation vulnerabilities. While the other tools

are useful to detect vulnerabilities and protect already implemented applications, and assist

penetration testers in their security analysis of an application, all these tools detect vulnera-

bilities very late in the development stage.

This thesis is therefore, to the best of my knowledge, the first work that uses simple static

analysis techniques to detect vulnerabilities in OpenID Connect client applications. It also

has the static first analysis to detect ID token verification related vulnerabilities.

While the scope of the currently implemented analyses in this thesis is not as compre-

hensive as several of the penetration testing tools, the main driver for this effort is to provide

assistance to the developers. By implementing the analyses in a tool that is offered as an IDE

plugin, vulnerabilities introduced in the code by the developers can be picked up very early

in the development phase. If any vulnerabilities are impossible to find with static analysis,

these may be picked up later by penetration testing tools.

8The unique vulnerability detected in this thesis is the warning that an incomplete SDK-implemented val-
idator is used. This is described in Chapter 7.3.1.
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For other vulnerability classes like injection, static analysis tools tend to complement

penetration testing tools in what kind of vulnerabilities they find [6]. This may also be the

case for certain vulnerabilities in OpenID Connect, and this work can therefore contribute

well alongside penetration testing tools proposed. While the detectors implementing using

the techniques presented in this thesis detect a certain set of vulnerabilities, they are limited

in what information they can get about the program, and some cases are better suited for a

tool used in the run-time. The same factor goes the other way, as penetration testing tools

cannot reason about details in implementation errors.

8.2.3 Adding new detectors

An advantage of securing OpenID Connect applications with simple static analysis tech-

niques is that the techniques are simple to mass-produce. To add another Co-existing In-

vocation Enforcement detector, the core algorithm will be identical. Mostly the trigger pat-

terns and the exit patterns are what must be configured based on the data types that it is

looking for. When making a new detector of this kind, there are two things to think about:

1) What is the pattern that triggers our analysis? For instance when ensuring that the token

is validated, it must be a place in the code where these checks are relevant. 2) What are the

correct security patterns we expect in this context to exit the analysis? Here the rules in the

developer-oriented model come in. We know that if the code is requesting an ID Token, it

should verify at least the five required parameters before using the token to obtain restricted

user information.

Today, most of the logic in the existing detectors can be duplicated and specialized for

the other cases described in Table 6.2. In a future version, the vulnerability patterns may be

configured in files, allowing to easily extend the detector to cover new cases.

Such a configuration framework is implemented for the Taint analysis in FindSecBugs [70],

and should be possible to add for the detectors proposed in this thesis. If the developers of

the SDKs contributed to the definitions of vulnerability patterns, their insights of the data

types in the libraries would prove very valuable to the prodction of precise detectors.

8.2.4 General reflections on static analysis

The research question that was to be answered, RQ2, relates to how simple static analyses

can be used to cover the security of OpenID Connect. This is the prospect that really was

the driving factor of the knowledge work related to RQ1, the checklist of what to do to se-

cure the protocol, by avoiding mistakes. “Is it enough to have this simple knowledge of what

is needed, by that inferring what is missing?” Then the the spirit that originally drove Find-

Bugs [44] still stands: people make dumb mistakes. Even while implementing a modern pro-

tocol, it is still likely that developers make mistakes. These mistakes are likely to be some-

thing simple, hence many of the code defects may be easy to detect, and can be detected

early.
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Given the simplicity of the mistakes that then exist in a code base, then it has some logical

sense that we can use simple security testing to verify that these simple things are done right.

Simple static analyses have several advantages. They are often easy to use, they are easy to

produce, and they can obtain a wide coverage. Through integrating the analysis with the

popular FindSecBugs tool which has the FindBugs framework in its core, a large range of

usability is possible. One of the main arguments for using static analysis is that bugs can be

detected early in the development phase. The developer could use the tool in their IDE, or

set up the analyses with their continuous integration. In both cases, vulnerabilities can be

mitigated early in the development life cycle.

One inherent challenge with simple static analysis techniques is that they are prone to

false positives and false negatives. They are based on a simple model with a certain set of

assumptions. To some level, these assumptions must be satisfied. The analyses will be re-

stricted by which information the detectors can retrieve from the program across the code

files. If the code base is very complex and introduces many abstractions, they will no longer

be covered by a model which is originally rooted in rather simple examples.

However there is an argument that security code should be as simple as possible, and

that unnecessary complexity generally can make the code more prone to vulnerabilities [3].

If the code is too “dodgy” to pass through the analysis, one might argue that it is a sign of a

code smell, hence, the static analysis technique may also enforce a certain coding style for

the security code. Security-critical should arguably be of a higher quality, and as simple and

readable as possible. Code which is readable for a human is also likely to be more readable

for a static analyzer.

Therefore some false positives that come with the analysis can be considered style-warnings.

So even if the true bug does not exist, the complexity of a warned code base might bring up

some red lights.

8.3 Threats to validity and reliability

The threats to the internal validity of this thesis include selection bias and experimenter bias.

The selection bias comes because the applications that were taken into the experiment were

based on simple searches in the Github search engine. To cope with this, inclusion criteria

were clearly defined before the searches were done. In addition to this, only relevant files

were included from the applications, and these files had to be modified slightly, because

they could not be analyzed easily out-of-the-box. This removed some realism because the

entire code bases were not analyzed in their raw form. The inclusion criteria for relevant

code files are explained in Chapter 7.1.

The other potential threat is experimenter bias. This bias could relate to the experimenter

sub-consciously altering the methods to achieve a certain set of results. A factor here is that

the selected files had to be altered to make them compile (and they had to compile to be

analyzed at all). These alterations could have unknown impact on the results. This is at-

tempted dealt with by publishing the altered code which was analyzed, and documenting all
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the results associated with these, as well as a clear explanation of the methods used.

The external validity of the thesis is mainly threatened by the Example-based research

strategy explained in Chapter 4.3. This strategy is based on illustrating results with some

real-world examples. Results from these can not be generalized due to lack of statistical sig-

nificance, coming from a small data set. These code examples cannot confidently represent

the average code base.

Additionally, two SDKs were selected for analysis of implementation details. These SDKs

do not confidently represent all OpenID connect SDKs, and analyses related to them cannot

be generalized. While it is likely that most these SDKs have many similarities due to them

implementing the same protocol standard, differences can be many. For these two SDKs,

special cases had to be introduced in the analyses to account for a major difference in how

the same function is implemented differently.

The test-retest-reliability of the validation results is threatened by the size of the data set.

If another experiment was conducted, the results risk being very different from the ones in

this study. A proper large-scale empirical study is required to set a bench-mark for the ability

of this tool.

This internal consistency of the results is also threatened. Between the application groups

for the two SDKs, the internal correlation of subsets of the data in Table 7.6 differs greatly.



Chapter 9

Conclusions and Further Work

This thesis, has proposed a developer-oriented model of OpenID Connect. It has been im-

plemented and employed as a foundation for static analyses designed to help developers

secure the critical protocol steps. These analyses, which only cover part of the protocol, un-

covered 20 vulnerabilities in six open-source applications. The research done here resulted

in the first static analysis that detects ID token validation vulnerabilities. This demonstrates

that simple static analyses can be used to find security bugs in OpenID connect clients.

The work in this thesis could provide both industrial and scientific value. Firstly, the anal-

yses are implemented as extensions of the prevalent static analysis tool, Find Security Bugs.

This tool is easy to use and popularly downloaded, and may enable a significant number

of developers to improve the security of their OpenID Connect code. Secondly, the knowl-

edge work done in this thesis may give further research incentive to keep putting more effort

into using simple, pragmatic techniques as an avenue parallel to the complex models, for

securing modern web applications.

The precision of the tool, as implemented today, was 51% in total, and 61% for the Im-

proper ID token verification detector. Such a precision might not be satisfactory for a prac-

titioner. However, practitioners are inclined to accept a lower precision if the code analyzed

is security critical. The precision of the analyses can be increased significantly through a few

weeks of careful engineering efforts. The tool also had a True Negative Rate of 89%, meaning

that 9 out 10 negative cases were correctly predicted as negative, showing resistance to false

positives. The recall of 95% indicates that the tool is effective in picking up vulnerabilities if

they exist.

110
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9.1 Conclusion

This thesis has attempted to answer two research questions through generating a qualitative

model of OpenID Connect, and design and implementation of a software component:

RQ1 What must a developer do to avoid introducing known security vulnerabilities, while

implementing a Relying Party with an OpenID Connect SDK?

RQ2 How can simple, explicit and intraprocedural static analysis checks be used to identify

vulnerabilities in OpenID Connect Relying Parties?

It contributes to the body of knowledge by 1) providing a simple, more pragmatic model

of OpenID Connect tailored for the implementation details of the client developer’s interests,

in form of a checklist, 2) demonstrating that simple static analysis techniques can be used to

detect vulnerabilities in OpenID Connect relying parties, and 3) proposing, to the best of my

knowledge, the first static analysis that detects ID token validation vulnerabilities in Relying

Parties.

9.2 Further Work

9.2.1 Implementation and experimentation

For further work it would be interesting to implement the analyses through the rest of the

suggested detectors in Table 6.2. Covering the whole model, and then performing a large-

scale study would give statistically significant answers about the strengths and weaknesses

of the analysis techniques used in this thesis, with more conclusive metrics that more con-

fidently illustrate how the analyses perform. It would also give a better indication to what

degree the model is useful for the analyses. These improvements would give generalizable

results, with a more complete solution to fulfill the goal of mitigate a substantial part of the

vulnerabilities that may come in OpenID Connect clients.

In the validation of the results in this study, the only detector which found vulnerabilities

was the Co-existing Invocation Enforcement analysis. It is not from this known whether

the other detector types are effective if true cases occur, so their potential is yet unknown.

In addition, a fourth analysis may be added as a final detector type for the protocol. The

data flow analysis techniques that exist in FindBugs may also be used for some appropriate

cases in OpenID connect where the Static Control Flow Check comes short. This should be

investigated further.

9.2.2 Reduction of false positives and negatives

The precision of tool was not initially within a range that is generally acceptable for practi-

tioners. False positives may be reduced with a careful engineering effort of a few weeks. The
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analyses done in the validation trial in this thesis, have the potential to reach a precision of

83% if more work is put down to cover rare cases of complex code structure.

For the Improper ID token verification detector, 10 of its 13 false positives can be re-

moved. These 10 false positives came due to the way the methods in the code are structured.

It already has a check that infers inter-procedural checks in forwards analysis “down” the call

stack. If an equivalent check is implemented for backwards calls in the call stack, this can be

avoided.

The Control flow ID token verification detector had three false positives which are pos-

sible to avoid if it is extended to look for a few more patterns. To eliminate the final false

positive, its algorithm have be altered to get some inter-procedural attributes similar to the

ones in the Co-existing Invocation Enforcement analysis.

Lastly, for the Improper state verification detector the false negative that came can be

eliminated by the introduction of another detector. Generally, more detectors will likely lead

to fewer false negatives. One of its false positives can be caught if applying the same solution

as for the Improper ID token verification detector. Its last false positive is not possible to pick

up because of the limitations of FindBugs detectors.

9.2.3 Improvements to the developer-oriented model

Additionally, it would be interesting to refine the developer-oriented model, applying it to

more of the other flows in OpenID Connect. It would also be interesting to see whether

such a framework can be collated in one location for several SDKs and languages, providing

specific checklists in addition to the more general specifications.

Finally, the providers of SDKs are encourage to contribute to annotating patterns for the

analyses in FindSecBugs. Their knowledge about the quirks in their own code base might

help increase the sophistication of the analysis. A collective effort from SDK developers

would also accelerate the introduction of patterns of other SDKs that are currently not cov-

ered by the implemented detectors.
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ABSTRACT
Code enforcing access control policies often has high inherent com-
plexity, making it challenging to test using only classical review
and testing techniques. To more thoroughly test such code, it is
strategic to also use program analysis tools, which often can find
subtle, critical bugs going unnoticed to humans. These powerful
tools are however rarely used in software consultancy practice, due
to factors such as bad usability or unsatisfactory non-functional
characteristics. To encourage wider adoption of such tools, more
must be learned about how to design them to the preferences of
software consultants. Towards this goal, we conducted a survey of
Norwegian software consultants. Among our findings is a positive
relation between preference for soundness over completeness in
tools and preference for annotation-based over automated tools.
51% of the developers surveyed prefer soundness over complete-
ness when detecting access control vulnerabilities, while only 37.5%
view completeness as the more important characteristic. Qualita-
tive responses illuminate concerns regarding usability, soundness,
completeness, and performance.

CCS CONCEPTS
• Security and privacy → Vulnerability scanners; Access con-
trol; • Software and its engineering → Software testing and
debugging; Formal software verification.

KEYWORDS
program analysis, static analysis, survey, access control vulnerabili-
ties, consultants
ACM Reference Format:
Elias Brattli Sørensen, Edvard Kristoffer Karlsen, and Jingyue Li. 2020. What
Norwegian Developers Want and Need From Security-Directed Program
Analysis Tools: A Survey . In Evaluation and Assessment in Software Engi-
neering (EASE 2020), April 15–17, 2020, Trondheim, Norway. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3383219.3383293

1 INTRODUCTION
Access control vulnerabilities (ACVs) regularly result in critical
data leaks in software systems. When the application Æ, used by
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customers of the Norwegian supermarket chain REMA 1000, was
launched, its back-end API allowed unauthorized retrieval of sen-
sitive data [7]. Another example is the Facebook scandal in April
2019 [3], where user data for hundreds of millions of users was
exposed on a cloud server. ACVs often occur when code imple-
menting authentication checks or enforcing authorization rules
has faulty logic. Such subtle errors can often be found by pro-
gram analysis tools, which model and reason about the behavior of
programs. However, these tools are regrettably seldom used by soft-
ware consultants, due to factors like bad usability or unsatisfactory
non-functional characteristics1 [14, 29].

To encourage wider adoption of program analysis tools, more
must be learned about developers’ requirements to these assets.
This paper presents results from a survey of Norwegian software
consultants, aiming to investigate the following research questions:
RQ1 What non-functional requirements do consultants have for

program analysis tools for detecting ACVs?
RQ2 How does the background of consultants affect their relative

preferences for the opposing tool characteristics soundness
versus completeness and automatic versus annotation-based?

Quantitative and qualitative data support the following principal
findings for RQ1:
• High soundness is considered more important than high com-
pleteness when uncovering ACVs.

• There is a near 50/50 preference distribution between fully auto-
mated and annotation-based tools.

• Seamless workflow integration may increase the chance program
analysis tools are used.

• Most of the respondents reply false positive rates should not
exceed 10%.

Regarding RQ2, hypothesis tests show that neither degree of gen-
eral experience, experiencewith security-critical system, nor amount
of security-oriented education significantly influence developers’
relative preferences for the opposing tool characteristics soundness
versus completeness and automatic versus annotation-based.

In addition, we identify a weak, positive relation between prefer-
ence for soundness over completeness in tools and preference for
annotation-based over automated tools.

The remainder of the text is structured as follows: Section 2
presents related work. Section 3 describes the research design. Sec-
tion 4 presents quantitative results for RQ1 and RQ2, while Sec-
tion 5 presents qualitative results. Section 6 discusses the results
and threats to validity. Finally, Section 7 concludes and suggests
ideas for further work.

1For purpose of this study, we consider the important non-functional characteristics
workflow integration point, computational efficiency, and soundness and completeness.
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2 RELATEDWORK
Christakis and Bird conducted a survey targeting developers in
Microsoft [4]. They investigated developers’ requirements to static
analyzers and compiled a ranked list of barriers against their use.
Among their primary findings were:
• Developers want the opportunity to customize analyzers.
• Programmatic annotations are most preferable, before rules given
in global configuration files and annotations coded in comments.

• 90% of developers accept 5% false positives, 50% of developers
accept 15% false positives, and only 24% of developers accept
more than 20% false positives.

• There is a 50/50 distribution in preferences for soundness versus
completeness.
Thomas et al. [27] conducted a study investigating the implica-

tions of interactive code annotations within the IDE. Their main
findings were that it is easy to write annotations for access control
logic, but hard to find causes of vulnerabilities. Even non-security
people were able to describe access control policies with reasonable
effort.

Sadowski et al. [22] worked with a Google project called Tri-
corder. Their main findings include:
• Low false alarm rate is important.
• It is important to allow customization at project level, and not
only at user level.

• Analysis tools should not only find, but also fix bugs. Tools that
automatically apply fixes reduce the need for context switches.

• Program analysis tools should be shardable to ensure that analy-
ses can run at large scale.
Tripp et al. [28] present a tool called ALETHEIA. Their main

idea is to apply statistical learning to user-tailor warning output.
The tool learns from feedback on a smaller set of warnings. They
confirm the well-known finding that developers are very bothered
by an excess of false positives.

Tymchuk et al. [29] interviewed experienced developers to un-
derstand how they were influenced by an IDE tool providing just-
in-time feedback for good coding practices. Usefulness of analyzers
in different situations was assessed, and they gathered feedback
about the behavior of the tool. They found that the main negative
issues of static analyzers are false positives, unclear explanations,
annoying user experience, and annoying rules.

Li et al. [14] performed an experimental validation of various
open-source IDE plugins that detect security vulnerabilities. They
investigated vulnerability class scopes, quality of detection, and
user-friendliness of tool warnings. They found a mismatch between
the claimed and actual coverage of the tools, as well as unexpectedly
high false positive rates. Several tools had limited information in
their output, with drawbacks such as imprecise or lacking explana-
tions of vulnerabilities. Another issue was missing opportunities to
direct a tool; some tools are only able to scan full code bases, and
not smaller units.

3 RESEARCH DESIGN
To direct the design of the study, we conducted a review [26] of
relevant research in program analysis tools for detecting access
control vulnerabilities [2, 5, 6, 8–11, 13, 15–18, 20, 21, 24, 25, 31–33].

Research guidelines suggested by Kitchenam and Pfleeger [12] and
by Oates [19] were also considered in the design process. Christakis
and Bird’s survey of Microsoft developers [4] was a particularly
important influence.

Themain purpose of the questionnaire was to explore developers’
relative preferences between opposing tool characteristics, and their
thoughts on various challenges with and requirements of tools.

The questionnaire was distributed to approximately 750 consul-
tants, from seven consultancy firms. Each of the invitees received a
reminder a few days after the initial invitation, and the question-
naire was open for a week.

After reviewing relevant literature and similar surveys, six statis-
tical hypotheses, listed in Table 1, were selected. While hypotheses
1–5 lay wholly within the scope of RQ2, hypothesis 6, which does
not concern a background-specific relation, does not.

Two details concerning the formulation of the six hypotheses
should be clarified: First, many hypotheses, and survey questions,
concern the relative preference between soundness and complete-
ness, on the underlying assumption that increased performance
with regard to one attribute necessitates a decrease in performance
with the other attribute . Thus, when the phrase “prefers soundness
over completeness” is used, it means only that one is willing to sacri-
fice some degree of completeness for increased soundness, not that
one would not ideally want both. Second, for brevity, the qualifier
“software consultants” is generally omitted from the hypotheses,
and the shorthand “tools” is used to mean specifically “program
analysis tools for detecting access control vulnerabilities”.

Inferential statistical analysis involving ordinal data is a con-
tested, methodologically challenging issue [1, 23, 30]. It is especially
difficult to assess when classical parametric statistical tests are appli-
cable, and how to safely prepare ordinal data for use with such tests.
To err on the side of caution, we opted to use only non-parametric
tests in the analysis. In particular, Kendall’s Tau rank correlation
coefficient was used for the majority of hypotheses, as it is a natural
choice for investigating relationships involving ordinal variables
representing preferences. The downside of using non-parametric
tests is that they generally have lower statistical power than para-
metric ones; non-parametric tests are more likely to result in type II
errors, where one fails to reject a false null hypothesis. For purpose
of our study, we regard it preferable to err on the side of rejecting
a hypothesized relation, rather than erroneously concluding one
exists when that is not the case.

3.1 Semi-structured interviews
Three respondents were invited to semi-structured, follow-up in-
terviews after participating in the questionnaire. The focus of these
interviews was to get insight into how these respondents inter-
preted the questions and gave their responses, to discover potential
weaknesses in the survey design and enhance understanding of the
survey data and results. The qualitative responses were analyzed
semantically, though not with any formal coding framework.

4 RESULTS
Of the approximately 750 consultants invited to participate in the
questionnaire, 80 persons responded. Among these, 87% primar-
ily write and maintain (production) code, 5% work as testers, 4%
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Table 1: Statistical Hypotheses

Null hypotheses Alternative hypotheses
H10 Consultants working with security-critical systems do not tend to
have higher relative preference for annotation-based versus automated
tools than consultants who do not work with such systems.

H1 Consultants working with security-critical systems tend to have
higher relative preference for annotation-based versus automated tools
than consultants who do not work with such systems.

H20 There is not a positive relation between level of experience and
preference for completeness over soundness in tools.

H2 There is a positive relation between level of experience and prefer-
ence for completeness over soundness in tools.

H30 There is not a positive relation between level of experience work-
ing with security-critical systems and preference for soundness over
completeness in tools.

H3 There is a positive relation between level of experience working
with security-critical systems and preference for soundness over com-
pleteness in tools.

H40 There is not a positive relation between amount of security-
oriented education and preference for soundness over completeness in
tools.

H4 There is a positive relation between amount of security-oriented
education and preference for soundness over completeness in tools.

H50 There is not a positive relation between amount of security-focused
education and preference for annotation-based over automated tools.

H5 There is a positive relation between amount of security-focused
education and preference for annotation-based over automated tools.

H60 There is not a positive relation between preference for soundness
over completeness in tools and preference for annotation-based over
automated tools.

H6 There is a positive relation between preference for soundness over
completeness in tools and preference for annotation-based over auto-
mated tools.

Figure 1: Distribution of relative preference for soundness
versus completeness

work as system administrators, and the remaining 4% work with
management.

4.1 RQ1: Non-functional characteristics
The survey explored where in the development cycle consultants
would prefer to use a program analysis tool, i.e. their preferred
workflow integration point. “Direct integration in an IDE” was the
most popular option, before “integration in a Continuous Integra-
tion/Continuous Delivery (CI/CD) pipeline” and “integration in
the (local) build process”. Further, the consultants were asked to
indicate their relative preference between the conflicting attributes
soundness and completeness. The ordinal data illustrated in Fig-
ure 1 show a total of 51% preferring to find as many critical errors
as possible (soundness), while only 37.5% of the consultants viewed
having fewer false positives as the more important attribute when
detecting data leaks.

Figure 2: Joint distribution of relative preference for sound-
ness vs. completeness and accepted rate of false positives

Figure 2 displays the relation between the answers for relative
preference for soundness vs. completeness and accepted rate of
false positives.

The consultants were also asked to weigh the characteristics
“more automatic, but less precise” and “more precise, but more
work with annotations” against each other. The bar plot in Figure 3
shows that the majority of the respondents lean towards the neutral
ground, which highlights the importance of balance in the tools.

4.2 RQ2: Background-related effects

Hypothesis 1: Consultants working with security-critical systems
tend to have higher relative preference for annotation-based versus
automated tools than consultants who do not work with such systems.

Among the respondents, 49 persons work with security-critical
systems, while 19 persons do not work with such systems. To test
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Figure 3: Distribution of relative preference between the
characteristics a) “more automatic, but less precise” and
b) “more precise, but more work with annotations”

the hypothesis, the Mann–Whitney U statistic was calculated, with
input the corresponding data sets representing respondents’ rela-
tive preferences for automatic versus annotation-based tools. The
computed U value was 522.5, and the corresponding p-value 0.21.
Hence, we cannot reject the null hypothesis.

Hypothesis 2: There is a positive relation between level of expe-
rience and preference for completeness over soundness in tools.

Hypothesis 2 concerns the relation between a scalar, the length
of a respondent’s career, expressed in years, and an ordinal value
indicating relative preference between soundness and completeness.
To test the hypothesis, Kendall’s Tau-b rank correlation coefficient
was calculated. The statistic 𝜏 was 0.12, and the corresponding
p-value 0.22. Thus, we cannot reject the null hypothesis.

Hypothesis 3: There is a positive relation between level of experience
working with security-critical systems and preference for soundness
over completeness in tools.

Hypothesis 3 concerns the relation between a ordinal value repre-
senting a consultant’s length of experience working with security-
critical systems, and an ordinal value indicating relative prefer-
ence between soundness and completeness. To test the hypothesis,
Kendall’s Tau-b rank correlation coefficient was calculated. The
statistic 𝜏 was -0.14, and the corresponding p-value 0.16. Thus, we
cannot reject the null hypothesis.

Hypothesis 4: There is a positive relation between amount of
security-oriented education and preference for soundness over com-
pleteness in tools.

Hypothesis 4 concerns the relation between an ordinal value
representing a consultant’s level of security-focused education and
an ordinal value indicating relative preference between soundness
and completeness. Kendall’s Tau-b rank correlation coefficient was

Figure 4: Joint distribution of relative preferences for sound-
ness vs. completeness and for automatic vs. annotation-
based tools

calculated. The statistic 𝜏 was -0.055, and the corresponding p-value
0.57. Thus, we cannot reject the null hypothesis.

Hypothesis 5: There is a positive relation between amount of security-
focused education and preference for annotation-based over automated
tools.

Hypothesis 5 concerns the relation between an ordinal value
indicating a consultant’s level of security-focused education and an
ordinal value indicating relative preference between fully-automatic
and annotation-based tools. Kendall’s Tau-b rank correlation coeffi-
cient was calculated. The statistic 𝜏 was 0.16, and the corresponding
p-value 0.12. Thus, we cannot reject the null hypothesis.

Hypothesis 6: There is a positive relation between preference for
soundness over completeness in tools and preference for annotation-
based over automated tools.

Hypothesis 6 concerns the relation between an ordinal value
indicating relative preference between soundness and complete-
ness and an ordinal value indicating relative preference between
automatic and annotation-based tools. Kendall’s Tau-b rank cor-
relation coefficient was calculated. The statistic 𝜏 was 0.31, and
the corresponding p-value 0.002. Hence, the alternative hypothesis
was accepted. The data suggests a weak, but statistically significant
relation between the variables (𝛼 < 0.01).

Figure 4 shows a scatter plot created from the responses of the
66 persons that responded to both questions considered for this
hypothesis.

5 QUALITATIVE RESPONSES
To get further insights for answering RQ1, the questionnaire con-
tained open-ended questions asking the consultants for their thoughts
on where to fit a program analysis tool into their workflow, how
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they would like vulnerabilities reported, which other vulnerabili-
ties they find important, and what challenges they see with using
program analysis tools for security. The follow-up interviews also
gave valuable insights.

5.1 Workflow integration point
After giving their opinion on their preferred workflow integra-
tion point, each participant was asked to elaborate further. Several
interesting responses provided potentially valuable insights. One
consultant discussed possibilities of integrating program analysis
in the implementation step in the development cycle: “In the day to
day basis I would find it natural that program analysis is executed in
the build process, for example in Jenkins”.

An experienced consultant provided other perspectives in their
written response: “I think this is difficult to answer. For me it is natural
that such access control is something that is tested in integration test
and is defined in code. It should be part of an active development
of an API, and one should construct it 100% restrictively, to then
open the security following needs. For me this is a part of the craft
of doing software development. If we should have some architecture
that ‘automagically’ understands business rules, then it is nice to
have it running in the production systems, either as firewall or other
rule-based systems. But the rules must still be written?”

The last response indicates a natural skepticism, and points to the
complexity of most software systems, which makes it hard to trust
that a tool can handle such complexity. The response also suggests
a lower need for pedagogical tooling for more senior developers.
Several consultants liked the idea of using program analysis tools
during code review, or as part of a CI/CD pipeline.

5.2 Vulnerability report formats
After rating various vulnerability report methods and formats, re-
spondents were asked for their own suggestions. One developer
would like the opportunity to have access control vulnerabilities
trigger compilation errors, so the code can not execute until the
issue is fixed. Several respondents pointed out that they would
like the output of program analysis in logs. That way they may
configure dashboard-based, mail-based or other types of reporting
on their own.

An important aspect of having the tool output during build or
in CI/CD, was that the build or pipeline must break if there is a
vulnerability. Otherwise the vulnerability report could easily drown
among other log warnings. One respondent wanted the output
to result in warnings in the local build process, but to result in
errors when code is processed in a CI pipeline. It was pointed out
how program analysis could, and should, be used in harmony with
other protection methods: “Whatever can be detected automatically
should be detected as early as possible, then via either IDE, build or
CI. Meanwhile, I would believe that some things are detectable only
via a larger penetration test that is carried out by experts, who then
typically would write a report from their test.”

Others worried about the time load tools could carry with them:
“One would not like things to take a long time, so the IDE is preferable.
However, not if it heavily burdens the performance of the IDE, then it
is better to put analysis later. So the answer to the questions depends
on how high a load the tool puts on each step.” This respondent

also highlighted the importance of analyzing during run-time in
addition to static analysis. This motivation for several analysis
modes may come from that attacks vectors change over time.

5.3 Challenges with program analysis
In the end of the questionnaire the respondents were asked to
describe any challenges they could see with using program analysis
to detect access control vulnerabilities.

The following are some of the challenges with program analysis
tools that the developers in consulting mentioned:
• Properly detecting complex patterns and contexts is challenging.
• Developers may turn off an analysis if it takes too long.
• Results of analysis may appear in a hidden place, somewhere the
developer must actively seek.

• The tool may be too generic for the domain.
• Result credibility is weakened with too many false alarms.
• There is lacking trust that a tool will be able to detect errors, due
to the complexity in software development

• Poor performance in soundness or completeness is challenging.
• There are probably situations in which non-standard program
behavior is misunderstood by the tool.

• When the tool usability is too bad developers will not use it.

5.4 Follow-up interviews
Three of the consultants were taken in to follow-up interviews, in
which they got to review their questionnaire responses and provide
thoughts about the topics in question.

The following overall insights and opinions came from these
three interviews:
• High soundness and completeness is more important than where
in the workflow a tool is used.

• A tool that learns from code practices and version control history
may be valuable.

• The idea that the tool has a faster in-editor mode, and a slower
mode that runs later is acceptable.

• The false positive rate may be higher if vulnerabilities are pre-
sented in an orderly, ranked manner.

• License fees are a possible barrier from usage of program analysis
tools.

• A configurable tool sounds intriguing. However, the configura-
tion must be easily understandable, and the defaults must be
sensible.

• One of the respondents thinks a tool should focus on finding and
ranking more intricate vulnerabilities.

6 DISCUSSION
6.1 Comparison with related work
The data illustrated in Figure 1 shows that nearly 1.4 times as many
chose soundness, suggesting significant difference. 31% of the re-
spondents found soundness to be “most important” (a score of 5).
Including the scores of “most important“ and “slightly more im-
portant“ as weights, would give a preference ratio of nearly 1.5 in
the favor of soundness, which further solidifies the overall prefer-
ence. This study uses a narrower range for false positive acceptance
rates than what was used by Christakis and Bird [4], illustrated
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in Figure 2. There is a misalignment between what is considered
few false positives by participants, and what is considered few in
research [4]. This apparent cognitive dissonance may explain the
contrast that comes from the majority also viewing soundness as
the most important factor. Interestingly, as indicated by the follow-
up interviews, developers may prefer completeness in the early
stage of development, and allow soundness in the later stages to-
gether with other thorough testing. The most preferred workflow
integration point, embedding inside an IDE, aligns with the findings
of Christakis and Bird. However as indicated by interviewees, the
preference workflow integration as well as other responses depend
on where in the development process the project is. The preference
for using annotations had a near 50/50 distribution, as shown in
Figure 3. An IDE-integrated tool should be fast, while a CI-based
tool could possibly be allowed to scan code all night. Worry about
license fees is one barrier against adapting tools in consulting, as
well as lack of trust in the performance of open-source tools. These
participants’ worries are also confirmed by recent research [14].

Neither degree of general experience, experience with security-
critical system, nor amount of security-oriented education signifi-
cantly influence the relative preferences for the opposing tool char-
acteristics soundness versus completeness and automatic versus
annotation-based of developers.

The results of the hypothesis tests do not suggest any obvious,
new guidelines for tailoring an analysis tool to the preferences of
background-specific subsets of developers. However, hypothesis
test 6 suggests that there exists a subset of developers who are
positively inclined towards tools andmorewilling tomake sacrifices
to utilize their strengths in the development process. Still, most
developers will avoid using a tool that has bad usability or is lacking
in non-functional characteristics. Therefore, designers of program
analysis tools should adapt to the process of software developers
in order to provide proper value to the development, a point that
confirms ideas from related works [4, 22, 28, 29].

Several solutions in the state of the art of program analysis for
access control analysis do not have a clear usability perspective.
Even the ones claiming to use “interactive communication” as a
usability factor in their solution [33], have been found to come
with major drawbacks regarding usability and other non-functional
characteristics [14]. The worry about false positives is ever appar-
ent, and it is unclear what should be a realistic false positive rate,
though the preference towards soundness when mitigating data
leaks suggests some acceptance. The developers do not want a
strictly automatic or strictly annotation-based tool, but prefer to
use something adaptable.

6.2 Threats to validity
The internal validity of the practitioner survey is threatened by
biased and imprecise questions that still persisted after trials of
testing. Another internal limitation is different understanding of
terms. A term properly defined before the question may be missed
or skipped by the respondent. Qualitative responses were translated
from Norwegian, which carries the risks of semantics getting lost
in translation.

The external validity is mainly threatened by sampling bias. A
few consulting firms that were accessible through contacts of re-
searchers were selected, and among them most consultants were
invited. No probabilistic sampling was done, and the survey relies
on self-selection. The mass of the respondents may still be large
enough so that results can generalize to other consulting firms in
Norway. The questionnaire was sent out to around 750 consultants,
among which 400 were invited by e-mail, while the remaining 350
were invited by channel posts in work place chat services. Use of
chat service rather than email imposes a greater risk of several
potential participants never being properly exposed to the invita-
tion, as the message quickly drowns. The response rate of 10.5%
may threaten the generalizability of the study, but given that the
80 respondents come from seven different firms with various busi-
ness areas, the sample may be an acceptable representation of the
Norwegian IT consulting industry. The validity of comparison to
related work is also threatened by differences in development cul-
ture, so it is hard to draw conclusions reaching outside of Norway
for this sample. Additionally, each industry may have different soft-
ware development life cycles, standards and environments, which
means that the preferences of these consultants may not apply for
developers with slight differences regarding these factors.

7 CONCLUSION AND FURTHERWORK
This paper surveys and analyses the preferences of Norwegian
software consultants in program analysis tools for detecting access
control vulnerabilities. 80 IT consultants from seven Norwegian
consulting firms were surveyed for their opinions, with embedded
long text answers and follow-up interviews.

We find that high soundness is considered more important than
high completeness when uncovering ACVs, and observe a near
50/50 preference distribution between fully automated and annotation-
based tools. Of the developers surveyed, 51% prefer soundness over
completeness when detecting ACVs, and only 37.5% consider com-
pleteness the more important characteristic.

The quantitative analysis shows that neither degree of general
experience, experience with security-critical system, nor amount
of security-oriented education significantly influence developers’
relative preferences for the opposing tool characteristics soundness
versus completeness and automatic versus annotation-based.

However, the survey data suggests there exists a group of devel-
opers who are more positively inclined towards program analysis
tools and more willing to make sacrifices to utilize their strengths
in the development process.

The preferences regarding opposing characteristics explored in
this paper may be determined by additional context-dependent
factors, like project life cycle stage and kind of vulnerability. Hence,
an interesting avenue for future work is to delve deeper into the
various contexts to explore subtle influences over preference of
tool usage. There may also exist other relations like the one ex-
plored by hypothesis 6, which could be explored. Finally, it would
be interesting to look deeper into the statistical nature of the opin-
ions in a larger-scale study with probabilistic sampling, potentially
expanding to a wider population.
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Appendix B

Raw data from evaluation

For five of the applications, files analyzed were retrieved from the original sources [7, 14,

35, 52, 102], and had to be slightly altered so that they could be analyzed. The altered code

can be found in the Eval project [29]. The sixth application, SonarQube [94], was build and

analyzed with its original code.

B.1 Raw data evaluation: ZopSpace [102]

IX



6/16/2020 FindBugs Report

file:///home/elias/git/masterthesis/new-findsecbugs/find-sec-bugs/cli/results-html-pdf/4zopspaceFullresults.html 1/4

FindBugs Report
Project Information

Project:

FindBugs version: 3.0.1

Code analyzed:

/home/elias/git/masterthesis/new-findsecbugs/Oidc-FindSecbugs-Eval/Eval/zopspace/target/zopspace-
1.0-SNAPSHOT.jar

Metrics

0 lines of code analyzed, in 0 classes, in 1 packages.

Metric Total Density*
High Priority Warnings 1 0.00

Medium Priority Warnings 5 0.00

Total Warnings 6 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents
Security Warnings
Details

Summary
Warning Type Number
Security Warnings 6

Total 6

Warnings
Click on a warning row to see full context information.
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Security Warnings

Code Warning
SECIIDTV According the OpenID Connect specification, ID Tokens must be validated by the Relying

Party (Client). There are five values in the ID token response that must be verified todo1.

Bug type INCOMPLETE_ID_TOKEN_VERIFICATION (click for details) 
In class oidc.OIDCUtils
In method oidc.OIDCUtils.isValidIdToken(String, String)
At OIDCUtils.java:[lines 153-162]

SECMVIDT According the OpenID Connect specification, ID Tokens must be validated by the Relying
Party (Client). There are five values in the ID token response that must be verified todo2.

Bug type MISSING_VERIFY_ID_TOKEN (click for details) 
In class oidc.OIDCUtils
In method oidc.OIDCUtils.refreshTokens(String, String, String, String[], String)
At OIDCUtils.java:[lines 133-145]

SECMVNONCE
ID Tokens must be validated by the Relying Party (Client). The nonce is a
cryptographically opaque value like the state value which binds an authentiaction request
to the ID Token

Bug type MISSING_VERIFY_NONCE (click for details) 
In class oidc.OIDCUtils
In method oidc.OIDCUtils.isValidIdToken(String, String)
At OIDCUtils.java:[lines 153-162]

SECMVTISSU ID Tokens must be validated by the Relying Party (Client). iss parameter validation

Bug type MISSING_VERIFY_TOKEN_ISS (click for details) 
In class oidc.OIDCUtils
In method oidc.OIDCUtils.isValidIdToken(String, String)
At OIDCUtils.java:[lines 153-162]

SECMVTSIGN ID Tokens must be validated by the Relying Party (Client). Cryptographic validation

Bug type MISSING_VERIFY_TOKEN_SIGN (click for details) 
In class oidc.OIDCUtils
In method oidc.OIDCUtils.isValidIdToken(String, String)
At OIDCUtils.java:[lines 153-162]

SECUIDTV According the OpenID Connect specification, ID Tokens must be validated by the Relying
Party (Client). There are five values in the ID token response that must be verified.

Bug type USING_INCOMPLETE_ID_TOKEN_VALIDATOR (click for details) 
In class oidc.OIDCUtils
In method oidc.OIDCUtils.isValidIdToken(String, String)
At OIDCUtils.java:[lines 153-162]

Details
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INCOMPLETE_ID_TOKEN_VERIFICATION: Missing one or
more of ID Token validation steps.

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).
There are five values in the ID token response that must be verified. You seem to be missing one or more of
these checks. You may use an SDK-implemented validation if this implements all these checks. Otherwise it
is recommended to do these comparisons yourself.

                // todo 

            

MISSING_VERIFY_ID_TOKEN: Missing validation of ID Token.

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).

You seem to be missing such validation in the code locations where you implement the token request flow.

             There are five values in the ID token response that must be verified. 

             You may use an SDK-implemented validation if this implements all these checks.

             Otherwise it is recommended to do these comparisons yourself. 

            

MISSING_VERIFY_NONCE: Missing verify Nonce

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).
The nonce is one of the required values made to protect against replay attacks in token responses. The nonce
value serves pretty much the same purpose for the ID token response as State does for the authorization
response. Add nonce to your authentication request and store the value. Check the nonce claim of the ID
token against the stored value for validation. Error 401 must be returned if nonces do not match.

            // todo 

            

MISSING_VERIFY_TOKEN_ISS: Missing verify iss parameter in
ID Token

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client). iss
parameter validation

            // todo 

            

MISSING_VERIFY_TOKEN_SIGN: Missing verify cryprographic
signature in ID token

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).
Cryptographic validation

            // todo 

            

USING_INCOMPLETE_ID_TOKEN_VALIDATOR: Using
incomplete SDK-implemented ID Token validation.
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According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).
You seem to be using an ID token validation method implemented by an SDK which is known to be
incomplete, as it does not implement all five checks. There are five values in the ID token response that must
be verified. In Google's APIs for example, the com/google/api/client/auth/openidconnect/IdTokenVerifier
fails to implement the checks for validating the Key signatures and Nonce. Meanwhile the
com.google.api.client.googleapis.auth.oauth2.GoogleIdTokenVerifier implements crypto signature validation.
Still it misses Nonce check.(https://github.com/googleapis/google-api-java-client/blob/master/google-api-
client/src/main/java/com/google/api/client/googleapis/auth/oauth2/GoogleIdTokenVerifier.java) Otherwise it
is recommended to do these comparisons yourself.

                // todo 
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B.2 Raw data evaluation: Atricore [7]
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FindBugs Report
Project Information

Project:

FindBugs version: 3.0.1

Code analyzed:

/home/elias/git/masterthesis/new-findsecbugs/Oidc-FindSecbugs-Eval/Eval/atricore/target/atricore-1.0-SNAPSHOT.jar

Metrics

0 lines of code analyzed, in 0 classes, in 1 packages.

Metric Total Density*
High Priority Warnings 1 0.00

Medium Priority Warnings 0.00

Total Warnings 1 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents
Security Warnings
Details

Summary
Warning Type Number
Security Warnings 1

Total 1

Warnings
Click on a warning row to see full context information.

Security Warnings

Code Warning
SECMVIDT According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client). There are

five values in the ID token response that must be verified todo2.

Bug type MISSING_VERIFY_ID_TOKEN (click for details) 
In class idbus.oidc.GoogleAuthzTokenConsumerProducer
In method
idbus.oidc.GoogleAuthzTokenConsumerProducer.doProcessAuthzTokenResponse(AuthorizationCodeResponseUrl)
At GoogleAuthzTokenConsumerProducer.java:[lines 58-226]
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Details
MISSING_VERIFY_ID_TOKEN: Missing validation of ID Token.

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).

You seem to be missing such validation in the code locations where you implement the token request flow.

             There are five values in the ID token response that must be verified. 

             You may use an SDK-implemented validation if this implements all these checks. 

             Otherwise it is recommended to do these comparisons yourself. 
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B.3 Raw data evaluation: Firebase [35]
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FindBugs Report
Project Information

Project:

FindBugs version: 3.0.1

Code analyzed:

/home/elias/git/masterthesis/new-findsecbugs/Oidc-FindSecbugs-Eval/Eval/firebase/target/firebase-1.0-SNAPSHOT.jar

Metrics

0 lines of code analyzed, in 0 classes, in 1 packages.

Metric Total Density*
High Priority Warnings 3 0.00

Medium Priority Warnings 7 0.00

Total Warnings 10 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents
Security Warnings
Details

Summary
Warning Type Number
Security Warnings 10

Total 10

Warnings
Click on a warning row to see full context information.

Security Warnings

Code Warning
SECIIDTV According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client). There are

five values in the ID token response that must be verified todo1.

Bug type INCOMPLETE_ID_TOKEN_VERIFICATION (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenUtils
In method firebase.filetobeanalyzed.FirebaseTokenUtils.newIdTokenVerifier(Clock, String, String)
At FirebaseTokenUtils.java:[line 117]

SECIIDTV According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client). There are
five values in the ID token response that must be verified todo1.

Bug type INCOMPLETE_ID_TOKEN_VERIFICATION (click for details) 
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In class firebase.filetobeanalyzed.FirebaseTokenVerifierImpl
In method firebase.filetobeanalyzed.FirebaseTokenVerifierImpl.getErrorIfContentInvalid(IdToken)
At FirebaseTokenVerifierImpl.java:[lines 171-216]

SECITVCF When performing an ID token check the specification requires that you return HTTP 401.

Bug type IMPROPER_TOKEN_VERIFY_CONTROL_FLOW (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenVerifierImpl
In method firebase.filetobeanalyzed.FirebaseTokenVerifierImpl.getErrorIfContentInvalid(IdToken)
Called method com.google.api.client.auth.openidconnect.IdToken.verifyAudience(Collection)
At FirebaseTokenVerifierImpl.java:[lines 171-216]

SECITVCF When performing an ID token check the specification requires that you return HTTP 401.

Bug type IMPROPER_TOKEN_VERIFY_CONTROL_FLOW (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenVerifierImpl
In method firebase.filetobeanalyzed.FirebaseTokenVerifierImpl.getErrorIfContentInvalid(IdToken)
Called method com.google.api.client.auth.openidconnect.IdToken.verifyIssuer(Collection)
At FirebaseTokenVerifierImpl.java:[lines 171-216]

SECITVCF When performing an ID token check the specification requires that you return HTTP 401.

Bug type IMPROPER_TOKEN_VERIFY_CONTROL_FLOW (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenVerifierImpl
In method firebase.filetobeanalyzed.FirebaseTokenVerifierImpl.isSignatureValid(IdToken)
Called method com.google.api.client.auth.openidconnect.IdToken.verifySignature(PublicKey)
At FirebaseTokenVerifierImpl.java:[lines 231-236]

SECMVNONCE ID Tokens must be validated by the Relying Party (Client). The nonce is a cryptographically opaque value like the
state value which binds an authentiaction request to the ID Token

Bug type MISSING_VERIFY_NONCE (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenUtils
In method firebase.filetobeanalyzed.FirebaseTokenUtils.newIdTokenVerifier(Clock, String, String)
At FirebaseTokenUtils.java:[line 117]

SECMVNONCE ID Tokens must be validated by the Relying Party (Client). The nonce is a cryptographically opaque value like the
state value which binds an authentiaction request to the ID Token

Bug type MISSING_VERIFY_NONCE (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenVerifierImpl
In method firebase.filetobeanalyzed.FirebaseTokenVerifierImpl.getErrorIfContentInvalid(IdToken)
At FirebaseTokenVerifierImpl.java:[lines 171-216]

SECMVTEXP ID Tokens must be validated by the Relying Party (Client). Freshness validations

Bug type MISSING_VERIFY_TOKEN_EXP (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenUtils
In method firebase.filetobeanalyzed.FirebaseTokenUtils.newIdTokenVerifier(Clock, String, String)
At FirebaseTokenUtils.java:[line 117]

SECMVTSIGN ID Tokens must be validated by the Relying Party (Client). Cryptographic validation

Bug type MISSING_VERIFY_TOKEN_SIGN (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenUtils
In method firebase.filetobeanalyzed.FirebaseTokenUtils.newIdTokenVerifier(Clock, String, String)
At FirebaseTokenUtils.java:[line 117]

SECREQTVER Token validation requires proper control flow. You seems to have reversed the boolean of one of your checks.

Bug type REVERSED_IF_EQUALS_ID_TOKEN_VERIFY (click for details) 
In class firebase.filetobeanalyzed.FirebaseTokenVerifierImpl
In method firebase.filetobeanalyzed.FirebaseTokenVerifierImpl.isSignatureValid(IdToken)
Called method com.google.api.client.auth.openidconnect.IdToken.verifySignature(PublicKey)
At FirebaseTokenVerifierImpl.java:[lines 231-236]

Details
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INCOMPLETE_ID_TOKEN_VERIFICATION: Missing one or more of ID Token
validation steps.

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client). There are five values in the ID
token response that must be verified. You seem to be missing one or more of these checks. You may use an SDK-implemented
validation if this implements all these checks. Otherwise it is recommended to do these comparisons yourself.

                // todo 

            

IMPROPER_TOKEN_VERIFY_CONTROL_FLOW: Token validation control flow.

Any check failing must lead to a HTTP 401 response for proper control flow for token verification.

 

            

MISSING_VERIFY_NONCE: Missing verify Nonce

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client). The nonce is one of the
required values made to protect against replay attacks in token responses. The nonce value serves pretty much the same purpose for the
ID token response as State does for the authorization response. Add nonce to your authentication request and store the value. Check the
nonce claim of the ID token against the stored value for validation. Error 401 must be returned if nonces do not match.

            // todo 

            

MISSING_VERIFY_TOKEN_EXP: Missing verify freshness of ID token

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client). Freshness validation

            // todo 

            

MISSING_VERIFY_TOKEN_SIGN: Missing verify cryprographic signature in ID
token

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client). Cryptographic validation

            // todo 

            

REVERSED_IF_EQUALS_ID_TOKEN_VERIFY: Token validation reverse equals
in if check.

Remember that any failed verificaton of ID token is that idToken.verifyx() is false. Therefore a good patterns is a chain of if/else
conditionals with if(!verifyx()) --> unauhorize

              if(!oidcConfig.nonce.equals(idToken.getPayload().getNonce())) { 

                return Response.status(Response.Status.UNAUTHORIZED) 

                        .entity("The provided nonce did not match the one saved from the authorization request.")

                        .build(); 

            } 

            if(!idToken.verifySignature(publicKey)){ 

                return Response.status(Response.Status.UNAUTHORIZED) 

                        .entity("The jwt signature is not valid.") 

                        .build(); 

            } 

            if(!idToken.verifyAudience(Collections.singleton(config.getProperty("clientId")))) { 

                return Response.status(Response.Status.UNAUTHORIZED) 

                        .entity("This request does not seem like it was meant for this audience.") 

                        .build(); 

            } 

            if(!idToken.verifyExpirationTime(Instant.now().toEpochMilli(), DEFAULT_TIME_SKEW_SECONDS)){ 

                return Response.status(Response.Status.UNAUTHORIZED) 

                        .entity("Token expired.") 

                        .build(); 

            } 

            if(!idToken.verifyIssuer(String.valueOf(providerMetadata.get("issuer")))) { 

                return Response.status(Response.Status.UNAUTHORIZED) 

                        .entity("The expected issuer did not match.") 

                        .build(); 

            } 
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            // .... other checks 

            authorizationCodeFlow.createAndStoreCredential(tokenResponse, oidcConfig.appuuid.toString()); 

 

            return Response.ok() 

                    .entity(tokenResponse) 

                    .build(); 

            

APPENDIX B. RAW DATA FROM EVALUATION XXI



APPENDIX B. RAW DATA FROM EVALUATION XXII

B.4 Raw data evaluation: SonarQube [94]
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FindBugs Report
Project Information

Project:

FindBugs version: 3.0.1

Code analyzed:

/home/elias/git/masterthesis/new-findsecbugs/evaluation-files/sonar-auth-oidc/target/sonar-auth-oidc-plugin-2.0.1-
SNAPSHOT.jar

Metrics

0 lines of code analyzed, in 0 classes, in 3 packages.

Metric Total Density*
High Priority Warnings 10 0.00

Medium Priority Warnings 1 0.00

Total Warnings 11 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents
Security Warnings
Details

Summary
Warning Type Number
Security Warnings 11

Total 11

Warnings
Click on a warning row to see full context information.

Security Warnings

Code Warning
SECISAUTH The new update of the OAuth 2.0 standard disallows usage of this method entirely:

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-3.4

Bug type USING_PASSWORD_GRANT_OAUTH (click for details) 
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In class com.nimbusds.oauth2.sdk.ResourceOwnerPasswordCredentialsGrant
In method com.nimbusds.oauth2.sdk.ResourceOwnerPasswordCredentialsGrant.parse(Map)
At ResourceOwnerPasswordCredentialsGrant.java:[line 192]

SECMVIDT According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).
There are five values in the ID token response that must be verified todo2.

Bug type MISSING_VERIFY_ID_TOKEN (click for details) 
In class org.vaulttec.sonarqube.auth.oidc.OidcClient
In method org.vaulttec.sonarqube.auth.oidc.OidcClient.getTokenResponse(AuthorizationCode, String)
At OidcClient.java:[lines 151-161]

SECMVIDT According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).
There are five values in the ID token response that must be verified todo2.

Bug type MISSING_VERIFY_ID_TOKEN (click for details) 
In class org.vaulttec.sonarqube.auth.oidc.OidcClient
In method org.vaulttec.sonarqube.auth.oidc.OidcClient.getUserInfo(AuthorizationCode, String)
At OidcClient.java:[lines 112-146]

SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.

Bug type MISSING_VERIFY_OIDC_STATE (click for details) 
In class com.nimbusds.openid.connect.sdk.AuthenticationResponseParser
In method com.nimbusds.openid.connect.sdk.AuthenticationResponseParser.parse(HTTPRequest)
At AuthenticationResponseParser.java:[line 295]

SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.
SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.
SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.
SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.
SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.
SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.

Bug type MISSING_VERIFY_OIDC_STATE (click for details) 
In class com.nimbusds.openid.connect.sdk.AuthenticationResponseParser
In method com.nimbusds.openid.connect.sdk.AuthenticationResponseParser.parse(URI, Map)
At AuthenticationResponseParser.java:[line 71]

SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.

Bug type MISSING_VERIFY_OIDC_STATE (click for details) 
In class org.vaulttec.sonarqube.auth.oidc.OidcClient
In method org.vaulttec.sonarqube.auth.oidc.OidcClient.getAuthorizationCode(HttpServletRequest)
At OidcClient.java:[lines 93-108]

Details
USING_PASSWORD_GRANT_OAUTH: Usage of insecure authorization
grant. Use redirection flow instead.

Instead of the password grant, use proper redirect methods with for example authorization code grant.

               AuthorizationCode code = new AuthorizationCode("xyz..."); 

                URI callback = new URI("https://client.com/callback"); 

                AuthorizationGrant codeGrant = new AuthorizationCodeGrant(code, callback); 

 

                // The credentials to authenticate the client at the token endpoint 

                ClientID clientID = new ClientID("123"); 

                Secret clientSecret = new Secret("secret"); 

                ClientAuthentication clientAuth = new ClientSecretBasic(clientID, clientSecret); 

 

                // The token endpoint 
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                URI tokenEndpoint = new URI("https://c2id.com/token"); 

 

                // Make the token request 

                TokenRequest request = new TokenRequest(tokenEndpoint, clientAuth, codeGrant); 

 

                TokenResponse response = OIDCTokenResponseParser.parse(request.toHTTPRequest().send());

            

MISSING_VERIFY_ID_TOKEN: Missing validation of ID Token.

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).

You seem to be missing such validation in the code locations where you implement the token request flow.

             There are five values in the ID token response that must be verified. 

             You may use an SDK-implemented validation if this implements all these checks. 

             Otherwise it is recommended to do these comparisons yourself. 

            

MISSING_VERIFY_OIDC_STATE: State verification check is missing in
your handling of authorization code flow response from IdP.

Remember to check that the state matches to avoid CSRF attacks.

              if(!successResponse.getState().equals(state)) { 

                // Unauthorized 

              } 
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FindBugs Report
Project Information

Project:

FindBugs version: 3.0.1

Code analyzed:

/home/elias/git/masterthesis/new-findsecbugs/Oidc-FindSecbugs-Eval/Eval/liferay/target/liferay-1.0-
SNAPSHOT.jar

Metrics

0 lines of code analyzed, in 0 classes, in 1 packages.

Metric Total Density*
High Priority Warnings 1 0.00

Medium Priority Warnings 0.00

Total Warnings 1 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents
Security Warnings
Details

Summary
Warning Type Number
Security Warnings 1

Total 1

Warnings
Click on a warning row to see full context information.

Security Warnings

Code Warning
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SECVMOS The state parameter in the Authentication Response must be verified for checking integrity of the IdP.

Bug type MISSING_VERIFY_OIDC_STATE (click for details) 
In class portal.oidc.OpenIdConnectServiceHandlerImpl
In method
portal.oidc.OpenIdConnectServiceHandlerImpl.getAuthenticationSuccessResponse(HttpServletRequest)
At OpenIdConnectServiceHandlerImpl.java:[lines 278-310]

Details
MISSING_VERIFY_OIDC_STATE: State verification check is missing
in your handling of authorization code flow response from IdP.

Remember to check that the state matches to avoid CSRF attacks.

              if(!successResponse.getState().equals(state)) { 

                // Unauthorized 

              } 
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B.6 Raw data evaluation: Codice/ddf [14]
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FindBugs Report
Project Information

Project:

FindBugs version: 3.0.1

Code analyzed:

/home/elias/git/masterthesis/new-findsecbugs/Oidc-FindSecbugs-Eval/Eval/ddf/target/ddf-1.0-
SNAPSHOT.jar

Metrics

0 lines of code analyzed, in 0 classes, in 1 packages.

Metric Total Density*
High Priority Warnings 1 0.00

Medium Priority Warnings 0.00

Total Warnings 1 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents
Security Warnings
Details

Summary
Warning Type Number
Security Warnings 1

Total 1

Warnings
Click on a warning row to see full context information.
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Security Warnings

Code Warning
SECMVIDT According the OpenID Connect specification, ID Tokens must be validated by the Relying

Party (Client). There are five values in the ID token response that must be verified todo2.

Bug type MISSING_VERIFY_ID_TOKEN (click for details) 
In class oidc.resolver.OidcCredentialsResolver
In method oidc.resolver.OidcCredentialsResolver.getOidcTokens(AuthorizationGrant,
OIDCProviderMetadata, ClientAuthentication, int, int)
At OidcCredentialsResolver.java:[lines 212-231]

Details
MISSING_VERIFY_ID_TOKEN: Missing validation of ID Token.

According the OpenID Connect specification, ID Tokens must be validated by the Relying Party (Client).

You seem to be missing such validation in the code locations where you implement the token request flow.

             There are five values in the ID token response that must be verified. 

             You may use an SDK-implemented validation if this implements all these checks.

             Otherwise it is recommended to do these comparisons yourself. 
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