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Preface

The basis for this research stemmed from my passion for computer vision, artificial intelli-

gence, and love for innovation. The combination of these led me to join a tech startup as

a co-founder and sole developer, which focused on developing computer vision technology

for use in the Norwegian salmon industry. Initially focusing on biometrical identification of

salmon, the startup pivoted over to different ideas. As my field was no longer as relevant,

I also decided to move on. Nevertheless, the idea of biometrically identifying salmon still

fascinated me. Additionally, the lack of detailed and descriptive work on this subject led me

to pursue this academically.
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Abstract

Spots form unique patterns on many different species in the animal kingdom and have been

used in combination with computer vision to identify individuals. This work creates an iden-

tification pipeline for salmon based on spot patterns located on the head of the fish. The

pipeline primarily consists of three parts: extracting biometrical features, converting these

into numerical feature vectors, and the matching algorithm itself.

The features are extracted using three different neural networks created previously. A unique

coordinate system was constructed utilizing the eye and a novel anchor point: the pectoral

fin. Location, shape, and size are extracted from the spots and saved in a database for match-

ing. An algorithm was created, achieving similar results to the current state of the art, using

less and possibly more reliable biometrical features. An experiment was conducted match-

ing the largest number of unique salmon to date, containing 1000 unique identities and

achieving a correct match percentage of 96.83%, setting a new baseline. A confidence rat-

ing was established, allowing for a customizable trade-off between precision and recall. The

work also contributes a database containing biometrical features and trained neural net-

works for future work.
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Sammendrag

Prikker danner unike mønster på mange forskjellige arter i dyreriket og har blitt brukt i kom-

binasjon med datasyn til å identifisere individer. I denne oppgaven beskrives prosessen av

å skape en identifikasjonspipeline for laksegjenkjenning basert på prikkemønster. Pipelinen

består hovedsaklig av tre deler: ekstrahering av biometriske trekk, konvertering av disse til

numeriske beskrivelsesvektorer, og gjenkjenningsalgoritmen.

Trekkene blir ekstrahert ved bruk av tre forskjellige nevrale nettverk fra tidligere arbeid. Et

unikt koordinatsystem ble konstruert ved hjelp av øye og et nytt ankerpunkt: brystfinnen

til fisken. Lokasjon, form og størrelse av prikkene blir ekstrahert og lagret i en database

for matching. En algoritme ble konstruert som oppnår lignende resultater som nåværende

state-of-the-art, men ved bruk av mindre og kanskje mer pålitelige biometriske trekk. Et

eksperiment ble gjennomført for å matche den største mengden unike laks til dags dato, 1000

unike identiteter, som oppnådde 96.83% true positive og setter dermed en ny grunnlinje.

Et sikkerhetsvurderingssystem ble opprettet som åpner for en avveining mellom precision

og recall. Dette arbeidet tilfører også en database med biometrisk data og trente nevrale

nettverk for fremtidig arbeid.



Contents

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 2

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Acronyms and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 5

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fall Project by the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Salmon Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Whale Shark Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Salmon Skin Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Useful Computer Vision Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



CONTENTS v

2.5.1 Image Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.2 Binary Morphological Operations . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.3 Histograms of Oriented Gradients . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Methods 21

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Extracting Spot Segmentation Data . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Removing noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Extracting Spot Shape and Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Spot Coordinate Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Mathematical Representation . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Coordinate Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Algorithm Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.2 Identity Distance based on Spot Properties . . . . . . . . . . . . . . . . . . 31

3.5.3 The Best Spot Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.4 Vector Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.5 Weight Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Results 39

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Match Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Match Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



CONTENTS vi

4.1.4 Match Score Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.5 Proportional Match Score Difference . . . . . . . . . . . . . . . . . . . . . 41

4.2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Match Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Confidence Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Feature Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Double vs Triple Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Decline of Match Score With More Identities . . . . . . . . . . . . . . . . . . . . . 58

5 Discussion 60

5.1 AI Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Feature Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Number of Spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Image Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusions 64

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Relational Component to Algorithm . . . . . . . . . . . . . . . . . . . . . . 65

6.2.2 Better AI networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Spot Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.2 Larger Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS vii

6.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Data and Further Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 69

A 72

A.1 Match Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.1.1 Correct Matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.1.2 Incorrect Matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



List of Figures

2.1 An example image showing the results of the eye-fin network. This network

predicts the location of the eye and fin of a fish.

Arrows: The arrows point towards the interest points in the first image for easy

spotting.

red: eye prediction.

blue: pectoral fin prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 An example image showing the results of the head network. This network pre-

dicts the location of the head of a fish. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 An example image showing the results of the segmentation network. This net-

work segments the spots on the head of the fish. Original image on top and

overlaid results on the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 An illustration by Eilertsen et al [15], edited to show how the researchers cre-

ated a coordinate system. The two anchor points are the eye and the shortest

distance from eye to the end of the skull. . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 An edited illustration from the paper [16] showing the region to be extracted.

Blue Line: Vertebrate line.

Red Line: Gill Line.

Green Box: Region of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 A comparison of the different morphological operations on an image. The orig-

inal image can be seen on top and results of the operations on the image below. 17

viii



LIST OF FIGURES ix

2.7 Figure illustrating the bucket voting system of HOG. Blue hits a bucket exactly

and therefore the entire magnitude votes for the 60 bucket. The red orientation

is split between two buckets, therefore the vote is divided. . . . . . . . . . . . . . 18

2.8 An example identity from the SINTEF dataset. Notice how this is the same fish

taken with three different cameras and angles. . . . . . . . . . . . . . . . . . . . . 19

3.1 A high level overview of the methods described in this chapter. The AI Network

part was completed during the fall project 2.2. . . . . . . . . . . . . . . . . . . . . 22

3.2 An image showing a segmentation before any post processing is done. Notice

the small specks of noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 An image showing the effect of different kernel sizes on the pattern segmenta-

tion from the segmentation network. Left most image is the original image and

then 3x3, 5x5 and 8x8 kernel size openings are shown respectively. . . . . . . . . 24

3.4 An illustration comparing some shapes. The left image is the original. The

middle image is a slightly rotated and altered version of the original. Some

distortion is very likely to happen on different images of the same spot. Right

is the comparison to a completely different shape. Notice although the scales

on the different shape metrics are different they all consider the middle shape

a better match. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Real spots returned from the segmentation network showing the large variance

and unique shape of the spots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 A comparison of the original segmentation from the AI-network and its corre-

sponding mathematical representation. Shape data is not captured in plots.

Note: Usually image coordinates start in the top left, but here the y-axis is

flipped to better compare the images. . . . . . . . . . . . . . . . . . . . . . . . . . 26



LIST OF FIGURES x

3.7 Figure showing the different coordinate systems resulting from the image pro-

cessing. The red box is the original image. The coordinates of the head, eye,

and fin are given relative to the original image’s pixel values represented by

the red vectors. The head extraction is represented by the green box. This im-

age is given to the segmentation network to locate spots. The spots (in black)

are therefore given in coordinates relative to the head extraction shown by the

green vectors. The desired coordinate system is given by the line drawn from

the eye to the fin points and the normal vector of this line. Desired spot coor-

dinates are represented by the blue vectors. . . . . . . . . . . . . . . . . . . . . . 27

3.8 An image taken from the dataset illustrating the concept from (Fig. 3.7.) . . . . 28

3.9 A side by side comparison of original spot coordinates. Note: Usually image

coordinates start in the top left, but here the y-axis is flipped to better compare

the images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 A side by side comparison of converted spot coordinates. Origin is the centre of

the large vectors. Note: The left image is rotated to better compare the images. 29

3.11 An overview of what is contained in the database. The basic relationship is that

each fish can have one to many spots but each spot can only belong to one fish. 30

3.12 The top three images show an identities spots (green) matched to spots from

the other two images (red) of the same identity. The bottom three images show

the same original identity as above but in this instance matched to two images

from different identities. The lines between spots indicate a best match relation. 33

3.13 An illustration showing the modified HOG algorithm voting on buckets. Note

that 360 degrees is equal to 0 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.14 Different c1 constant values for an experiment run with 200 identities in the

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Match percentage as progressively more identities and images are added to the

database. Notice the scale on images and identities should be scaled by 10, but

not the number of mistakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



LIST OF FIGURES xi

4.2 Results showing a strong match. Notice the difference in distance between the

correct matches and the incorrect matches marked in red called confidence.

Red: Match Score Difference. 4.1.4

Green: Green bars represent the images from the same identity.

Blue: Blue bars represent images from other identities. . . . . . . . . . . . . . . 44

4.3 Results showing a weaker match. Notice how there is a lower distance between

the correct and incorrect matches.

Green: Green bars represent the images from the same identity.

Blue: Blue bars represent images from other identities. . . . . . . . . . . . . . . 45

4.4 One of the mismatched identities showing that the actual correct matches were

very close.

Green: Green bars represent the images from the same identity. Blue: Blue

bars represent images from other identities. . . . . . . . . . . . . . . . . . . . . . 45

4.5 One of the mismatched identities showing that no correct identities were close.

Interestingly all the scores are very similar.

Blue: Blue bars represent images from other identities. . . . . . . . . . . . . . . 46

4.6 A graph showing match score difference as confidence rating. A higher rating

is better.

Green Dot: Correctly matched image.

Red Dot: Incorrectly matched image. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 A graph showing proportional match difference as confidence rating. A higher

rating is better. Red dots are incorrectly matched images.

Green Dot: Correctly matched image.

Red Dot: Incorrectly matched image. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 A cut-off set at a confidence rating just above the first mistake of the small ex-

periment. The algorithm now achieves 100% correct match rate but discards

12.8% of all images due to low confidence.

Red Line: cut-off line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 Precision-recall curve from experiment 1. Note: the scale on precision is a lot

higher than on recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



LIST OF FIGURES xii

4.10 A graph showing the match score of the components of the algorithm. All com-

ponents are in their weighted form 3.5.5. Nu, mu, and hu are all variants of the

image moment scores (shape) 2.5.1. Dist refers to matching based on a spots’

location, a simple (x, y) distance. All shape is the combined score of the nu,

mu and hu scores. All no bucket is the combined score of size, distance, and all

shape but without spot difference and bucket score 3.5.4. All no spot diff is the

combined score of all, including bucket score, but without a simple compari-

son of the number of spots 3.5.2. All is the complete algorithm. . . . . . . . . . 51

4.11 A graph showing the number of triple and double identities compared to the

number of mistakes as progressively more identities are added to the exper-

iment. Additionally the change in number of double and triple identities is

plotted as Delta Double and Delta Triple. . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 A graph showing the number of mistakes by identity type. A double identity

only contains two images from that identity. A triple identity contains three

images. More mistakes were made on identities containing three images. . . . . 54

4.13 The number of mistakes from each camera. . . . . . . . . . . . . . . . . . . . . . 55

4.14 Confidence rating given by match score difference.

Green Dot: Correctly matched image.

Red Dot: Incorrectly matched image. . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.15 Confidence rating given by proportional match score difference.

Green Dot: Correctly matched image.

Red Dot: Incorrectly matched image. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.16 Precision-recall curve from experiment 2. Note: the scale on precision is a lot

higher than on recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.17 A graph showing the decline in correct match percentage as more identities are

added to the database. The first 20 data points are taken from experiment 1 4.2,

the final data point is taken from experiment 2 4.5. . . . . . . . . . . . . . . . . . 59

5.1 The same spot is in one image connected and in another split into two. . . . . . 60

5.2 A comparison of the two head based approaches. . . . . . . . . . . . . . . . . . . 61



LIST OF FIGURES xiii

5.3 The top graph shows the number of spots in the mistaken identities. The bot-

tom graph shows the number of spots for every fish in the database. . . . . . . . 62

6.1 A visual example of what delauney triangulations look like using the spot data.

Delauney meshes are overlayed their corresponding identity. Green vectors

represent sides of a delauney triangle. Black circles represent spot locations. . . 66

A.1 The 20 best matches for a true positive identity. The x-axis shows identities,

and the y-axis shows match score distance. . . . . . . . . . . . . . . . . . . . . . . 72

A.2 The 20 best matches for a true positive identity. The x-axis shows identities,

and the y-axis shows match score distance. . . . . . . . . . . . . . . . . . . . . . . 73

A.3 The 20 best matches for a true positive identity. The x-axis shows identities,

and the y-axis shows match score distance. . . . . . . . . . . . . . . . . . . . . . . 73

A.4 The 20 best matches for a true positive identity. The x-axis shows identities,

and the y-axis shows match score distance. . . . . . . . . . . . . . . . . . . . . . . 74

A.5 The 20 best matches for a true positive identity. The x-axis shows identities,

and the y-axis shows match score distance. . . . . . . . . . . . . . . . . . . . . . . 74

A.6 The 20 best matches for a true positive identity. The x-axis shows identities,

and the y-axis shows match score distance. . . . . . . . . . . . . . . . . . . . . . . 75

A.7 The 20 best matches for a true positive identity. The x-axis shows identities,

and the y-axis shows match score distance. . . . . . . . . . . . . . . . . . . . . . . 75

A.8 The 20 best matches for a true positive identity. The x-axis shows identities,

and the y-axis shows match score distance. . . . . . . . . . . . . . . . . . . . . . . 76

A.9 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 76

A.10 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 77

A.11 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 77



LIST OF FIGURES xiv

A.12 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 78

A.13 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 78

A.14 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 79

A.15 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 79

A.16 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 80

A.17 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 80

A.18 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 81

A.19 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 81

A.20 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 82

A.21 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 82

A.22 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 83

A.23 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 83

A.24 The 20 best matches for an incorrectly matched identity. The x-axis shows

identities, and the y-axis shows match score distance. . . . . . . . . . . . . . . . 84



Acronyms and Terms

Acronyms

AI Artificial Intelligence

OpenCV Open Source Computer Vision Library

HOG Histogram of Oriented Gradients

TP True Positive

FP False Positive

FN False Negative

TN True Negative

MS Match Score

MSD Match Score Difference

PMSD Proportional Match Score Difference

1



Chapter 1

Introduction

1.1 Motivation and Background

The Atlantic Salmon (Salmo salar) is a valuable Norwegian resource with an export value of

51 billion NOK in 2018 [1]. Like many other industries, the farming of salmon is regulated

and requires health inspections and close monitoring of the fish. Today this is a manual

process, inspection of fish is done by workers who take a sample of fish out of the net and

inspect for injuries, lice, and other health criteria. Inspection is time-consuming and re-

quires resources to conduct. For example, the industry standard of measuring the number

of sea lice (Lepeophtheirus salmonis) on salmon is taking a sample of 10-25 fish out of the

net and counting manually [2]. However, the number of fish in a single farm net is around

200 000. For every net inspected, only a small fraction of the fish are sampled. The use of

high-quality cameras has become standard in most fish farms, mainly due to the need to

monitor feeding manually. Monitoring is primarily done to avoid wasting costly food for the

fish and avoid too much feed getting into the local environment around the fish farms. The

hardware technology to monitor the fish at all times is already readily available. This opened

up many commercial possibilities for the use of computer vision within the industry, already

there are claims and patents concerning everything from biomass estimations to automatic

lice counting [[3], [4], [5], [6]] as well as some scientific papers on the subjects [[7], [8]].

Another issue is that of monitoring the stress level of fish. It is a known fact that stressed

fish do not put on as much weight as non stressed fish [9], [10], the effects on salmon in fish

farms have also been looked at specifically [11]. Stressed fish show external signs [12], such

2
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as changed behavior and discoloring. Physical signs can, in theory, be detected by humans

and computers. These tasks are not necessarily reliant on knowing the identity of the fish

in question, as reasonable estimations can be done using statistical models. However, all

these tasks would benefit from knowing the identity of the fish being analyzed to give a more

accurate picture of the reality.

Although statistical models can be a replacement for identification, there are even more

compelling cases where there are good reasons for individual tracking. Individual tracking

could allow for accurately following the health and condition of an individual over time. Re-

cent studies have found that there is substantial additive genetic variation in resistance to

the sea lice [13]. Tracking which salmon are genetically less predisposed to lice in real con-

ditions could be done on a large scale with individual tracking. In general, this would enable

a whole new world of data gathering, allowing for optimization. Thousands of fish could be

tracked throughout their life cycle and investigated through computer vision. This would

allow for an increase in scientific knowledge surrounding the Atlantic Salmon and provide

the basis for commercial optimization.

1.2 Objective

This thesis sets out to use numerical algorithms to identify salmon by using spots on the

head of the fish. The main focus of the work is to provide a detailed approach to creating a

biometrical identification pipeline and investigate previously unused features that can po-

tentially also improve approaches by other researchers.

The extraction of spots has been completed in the Fall Project linked to this master the-

sis.

1.3 Acronyms and Terms

Acronyms and terms used in this report are described after the list of figures in : Acronyms

and Terms.
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1.4 Structure of the Report

This report is structured as follows: Chapter 2 contains related work, theory, and choice of

technology. Chapter 3 details the methods used during this project. Chapter 4 details the re-

sults of the detection pipeline and the investigation of the matching algorithm. Lastly chap-

ter 5 discusses details and results. Conclusions and further work are presented in chapter

6.



Chapter 2

Background and Related Work

2.1 Overview

This chapter considers related work and general theory. Parts of this chapter are taken from

the fall project on this subject by the author [14].

2.2 Fall Project by the Author

In the Fall Project leading up to this thesis, initial research was conducted [14] to establish the

foundation for the biometric data extraction. This project created three neural networks that

utilized thousands of hand-labeled images to extract the desired features for use in biometric

matching. The full project is available online [14].

The goal was to identify important biometrical features and points and create a pipeline for

extracting these features for later use in biometrical matching.

Spots on the skin of the salmon were used as the basis for biometrical identification. Specif-

ically, spots on the head of the fish as these are on the most rigid part of the fish. Therefore

they do not experience as much deformation during swimming. Additionally, the eye and

pectoral fin were identified as interesting anchor points to be used to create a unique coor-

dinate system. This enables the system to account for scaling and rotation.

The features were extracted using three separate neural networks: one for extracting the lo-

cation of the eye and the fin in the image, one for extracting the bounding box of the head,

5
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and lastly, one for segmenting spots inside the extracted bounding box. These neural net-

works were trained using hand-labeled images requiring significant labeling work.

The results of the networks were satisfactory and could potentially be used for biometrical

identification. Images of the results from the eye-fin, head and segmentation network can

be found in Figures [2.1, 2.2, 2.3] respectively. Figure 2.1 shows the results from the eye-fin

network, which finds the location of the eye and fin to be used as a basis for the unique coor-

dinate system. Figure 2.2 shows the results from the head network, which extracts the head

region of the fish, which is later passed on to the segmentation network for identifying spots.

Some results from the segmentation network can be seen in Figure 2.3, which classifies every

pixel in the head region extracted as either spot or not spot.
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Figure 2.1: An example image showing the results of the eye-fin network. This network pre-
dicts the location of the eye and fin of a fish.
Arrows: The arrows point towards the interest points in the first image for easy spotting.
red: eye prediction.
blue: pectoral fin prediction.
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Figure 2.2: An example image showing the results of the head network. This network predicts
the location of the head of a fish.
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Figure 2.3: An example image showing the results of the segmentation network. This network
segments the spots on the head of the fish. Original image on top and overlaid results on the
bottom.

2.3 Related Work

2.3.1 Salmon Identification

A study was done by Eilertsen et al. [15] to explore the possibility of identifying salmon with-

out physical contact using the pattern of spots on the skin of the salmon. An additional

objective was to explore whether the pattern on the skin is unique enough for identifica-

tion.

The researchers created a dataset using three separate cameras with slightly different angles
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and locations. This rig enabled the researchers to model slight movement and different views

of the same fish, allowing for the testing of re-identification and cross-validation. Images of

fish on a conveyor belt were collected and labeled.

To extract the skin pattern on the fish, the researchers first attempted global thresholding.

After that, they tried using a deep learning approach, which yielded better results. The eye

was also identified and used as an anchor point for a coordinate system. The second point

used to establish a coordinate system was the shortest point from the eye to the end of the

skull (see Figure 2.4). The deep learning method and network, as well as the method for

finding the eye, are not mentioned.

Figure 2.4: An illustration by Eilertsen et al [15], edited to show how the researchers created
a coordinate system. The two anchor points are the eye and the shortest distance from eye
to the end of the skull.

Using the extracted features, the researchers proposed two methods for creating identities.

First was a polar coordinate approach using the eye as a center and the head line as the

0-degree line. This meant that each spot could be mapped and compared to others. Both

location and size of the spots were used to create identity data.

The second method is the star constellation approach, used in a similar task to recognize

patterns on whale sharks by Arzoumanian et al. [16]. Originally this algorithm was used in



CHAPTER 2. THEORY 11

astronomy to match star patterns, hence the name star constellation approach [17].

"It (constellation algorithm) has been demonstrated to be reliable even when the

two lists of coordinates have as few as 25% of their points in common."

- Arzoumanian et al. [16]

The algorithm creates constellations from a list of spots, which can then be compared to find

matches.

The polar algorithm did not appear to produce promising results. Using the star constella-

tion algorithm on the extracted spots, the researchers managed to achieve a 99% accuracy

on a dataset consisting of 361 fish. This is concluded as promising for the skin pattern being

unique. The small size of the dataset is mentioned as a weakness.

2.3.2 Whale Shark Identification

In a study done by Arzoumanian et al. [16], researchers set out to create a computer-aided

identification system for identifying whale sharks. Many encounters were photographed,

but since whale sharks are not easily identifiable by humans, a numerical approach was de-

sired. Therefore the researchers set out to create a pipeline to extract the features from the

skin and create an identity from these.

The data consisted of photographs taken of encounters with whale sharks. Most of the data

was collected by the researchers themselves, but some of it was contributions from other

sources.

Feature extraction was done by an image processing pipeline, yet it is slightly unclear if any

humans are involved at any point or whether it was a fully automatic process. First, the

image is rotated by analyzing the horizontal line that outlines the vertebrate of the fish. A

region of interest is extracted behind the gills of the whale shark (see Figure 2.5). This image

is then processed to remove as much noise as possible before a blob detection algorithm is

run to extract the spots on the skin.
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Figure 2.5: An edited illustration from the paper [16] showing the region to be extracted.
Blue Line: Vertebrate line.
Red Line: Gill Line.
Green Box: Region of Interest

The biometric matching was done using a modified star constellation algorithm, which was

initially described by Groth [17]. The researchers modified the algorithm to be more robust

towards the deformation of the whale sharks’ body.

Due to the fact that an identity label has to be made by a human, the results rely on correct

human labeling. Twenty-seven images of previously identified pairs of encounters the algo-

rithm resulted in 21 strong matches and four moderate matches. The two remaining images

were unable to be matched (none were incorrectly classified). Simulations also suggest that

a successful match can be made for viewing perspectives up to 30 degrees. At the time of
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publishing, 111 pairs of previously unknown whale sharks were matched by the algorithm,

of which 96 had strong scores.

2.4 Salmon Skin Pattern

The skin on the salmon is proposed to be unique by Eilertsen et al. [15]. This reasoning is

based on the fact that there have previously been multiple studies on identifying animals

based on their skin pattern, some examples of these are for whale sharks [16] and African

penguins [18]. More instances of pattern matching and general use of biometrics in the ani-

mal kingdom is explored by a survey study [19].

2.5 Useful Computer Vision Methods

2.5.1 Image Moments

Overview

Image moments, as described by Hu [20], are weighted averages of image pixel intensities

used to describe the spatial distribution of a set of points. Several different kinds of image

moments can be used in computer vision, each with progressively more invariance.

These image moments are used to capture spatial information of blobs. A blob is an object

within an image which a corner or edge detector has separated from other objects.

Raw Moments

Raw image moments, sometimes called spatial image moments contain information about

the location and the shape of a blob. The formula for raw image moments can be written

as:

mi j =
∑

x

∑
y

xi y j I (x, y)

where m is the resulting matrix, and I is a single channel binary image. I(x,y) is the intensity

of the pixel position (x,y), which can be either 0 or 1 in the case of a binary image. Lastly, i
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and j are integers that index the order of the moment being calculated. In the case of OpenCV

moments [21] the following values (up to the third-order) are calculated for raw image mo-

ments: m00, m10, m01, m20, m11, m02, m30, m21, m12, m03.

Centroids

The center of mass of a blob can be found using the raw moments calculated in 2.5.1. This is

essentially the blob location on an image. The centroid location (x̄, ȳ) is given by the follow-

ing formula.

x̄ = m10

m00

ȳ = m01

m00

Central Moments

Central moments is an image moment that is translation invariant. This means that the

values provided by this formula will be the same for a shape no matter where it is found in the

image. This is achieved simply by subtracting the centroid from the raw moment formula.

The new formula can be written as follows:

mui j =
∑

x

∑
y

(x − x̄)i (
y − ȳ

) j I (x, y)

The OpenCV libray [21] provides support for calculating the third order central moments:

mu20, mu11, mu02, mu30, mu21, mu12, mu03.

Normalized Central Moments

Normalized central moments apply a normalization to the central moments calculated above

2.5.1. This provides invariance to scale. This means that if the same shape appears at differ-

ent scales, the normalized central moments will give the same value.



CHAPTER 2. THEORY 15

nu j i =
mu j i

m(i+ j )/2+1
00

.

The OpenCV libray [21] provides support for calculating the third order normalized central

moments: nu20, nu11, nu02, nu30, nu21, nu12, nu03.

Hu Moments

Finally, Hu moments provide additional invariance. Hu moments are invariant to transla-

tion, scale, rotation, and reflection. There are seven moments calculated, each based on

various combinations of normalized central image moments. An in-depth analysis of the

properties and theory behind Hu moments can be found in a research paper by Zhihu Huang

and Jinsong Leng [22].

hu[0] = nu20 +nu02

hu[1] = (nu20 −nu02)2 +4nu2
11

hu[2] = (nu30 −3nu12)2 + (3nu21 −nu03)2

hu[3] = (nu30 +nu12)2 + (nu21 +nu03)2

hu[4] = (nu30 −3nu12)(nu30 +nu12)[(nu30 +nu12)2 −3(nu21 +nu03)2]+ (3nu21 −nu03)(nu21 +nu03)[3(nu30 +nu12)2 − (nu21 +nu03)2]

hu[5] = (nu20 −nu02)[(nu30 +nu12)2 − (nu21 +nu03)2]+4nu11(nu30 +nu12)(nu21 +nu03)

hu[6] = (3nu21 −nu03)(nu21 +nu03)[3(nu30 +nu12)2 − (nu21 +nu03)2]− (nu30 −3nu12)(nu21 +nu03)[3(nu30 +nu12)2 − (nu21 +nu03)2]

2.5.2 Binary Morphological Operations

In this section some binary morphological operations [23] are detailed. The following no-

tation will be used: A is the binary image on which the operations are performed. B is the

kernel (also called structuring element) that is used during the operation. E is euclidean

space or an integer grid (such as an image).

Erosion

Erosion is the morphological operation of passing a kernel over an image to remove material

from a binary image.
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AªB = {z ∈ E |Bz ⊆ A}

Dilation

Dilation is the morphological operation of passing a kernel over an image to add material to

an image.

A⊕B = ⋃
b∈B

Ab

Opening

An opening operation is a compound operation consisting of an erosion operation 2.5.2 fol-

lowed by a dilation operation 2.5.2. This removes areas smaller than the kernel but leaves

larger areas relatively unchanged.

A⊕B = (AªB)⊕B

Comparison

A comparison of the different operations on an image can be found in Fig. 2.6.
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Figure 2.6: A comparison of the different morphological operations on an image. The origi-
nal image can be seen on top and results of the operations on the image below.

2.5.3 Histograms of Oriented Gradients

Histograms of Oriented Gradients, also known as HOGs, were first proposed by Dalal and

Triggs [24] for human detection. They have been widely used in computer vision for object

detection, initially for detecting humans but more recently for detecting vehicle orientation

[25] and even landmine detection in radar data [26].
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For this thesis, the focus will be on the bucket and voting system utilized by the HOG algo-

rithm. Essentially after calculating the gradients in an image, the resulting data consists of

vectors with different orientations and magnitudes.

Once the orientations and magnitudes have been calculated, a bucket system is set up. The

number of buckets can be changed. The orientation of the calculated vectors decides which

bucket receives a vote, and the vote’s strength is decided by the magnitude of the same vector.

The number of buckets is usually set to 9, which means that a score is saved for every 20

degrees up to 180. An illustration of this can be found in Fig. 2.7.

Figure 2.7: Figure illustrating the bucket voting system of HOG. Blue hits a bucket exactly and
therefore the entire magnitude votes for the 60 bucket. The red orientation is split between
two buckets, therefore the vote is divided.

2.6 Dataset

The original data for this research was generously provided by SINTEF and Eilertsen et al.

[15]. The dataset consists of images that are 5472 pixels wide and 2000 pixels high.

A camera array consisting of three cameras took pictures of fish on a conveyor belt. This gives

one identity from three slightly different perspectives. The images are marked with identity
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and camera number. Though the dataset is not representative of underwater conditions, it

provides an excellent baseline to create biometric algorithms. An example identity can be

seen in Fig. 2.8.

Figure 2.8: An example identity from the SINTEF dataset. Notice how this is the same fish
taken with three different cameras and angles.

These images have been processed by AI networks created in the Fall Project [14] to extract

important biometrical features. These features create the basis for the data used in this re-

search.
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Throughout the thesis, the identity consisting of up to three images will be referred to as a

fish’s identity. Image will hereafter refer to a single image in an identity. This means that each

identity contains up to three images, while each image only has one identity.



Chapter 3

Methods

3.1 Overview

In this chapter, the methods used to extract important biometrical information are defined,

and the approach to constructing a matching algorithm is detailed.

A general overview of the data captured by the proposed approach as well as approaches

discussed in the theory section (2.3.1, 2.3.2) can be seen in Tab. 3.1. A high-level overview

of the method for extracting and matching the biometric information can be seen in Fig.

3.1.

Table 3.1: A table showing the blob information captured by the different algorithms.
Position Shape Size Spatial Relation

SalmID - Eilertsen et al. constellation algorithm [15] YES NO NO YES
Whale Shark Identification - Arzoumanian et al. [16] YES NO NO YES
Proposed YES YES YES NO

21
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Figure 3.1: A high level overview of the methods described in this chapter. The AI Network
part was completed during the fall project 2.2.
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3.2 Extracting Spot Segmentation Data

3.2.1 Removing noise

Noise removal from images has long been a problem tackled by the visual computing com-

munity. This also means that there are many different approaches and ways to deal with the

problem. In most cases, the resulting segmentation data from the AI network contains some

noise, see Fig. 3.2.

Figure 3.2: An image showing a segmentation before any post processing is done. Notice the
small specks of noise.

To remove as much noise as possible, an opening operation performed. See theory sec-

tion 2.5.2 for more details. This morphological operation allows for noise removal in binary

images, such as those returned from the segmentation network. When using an opening

operation, a fitting kernel size has to be utilized. A too-small kernel size will result in noise

remaining in the image, and a too-large kernel size will remove actual spots from the image.

A comparison of different kernel sizes can be found in Fig. 3.3.
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Figure 3.3: An image showing the effect of different kernel sizes on the pattern segmentation
from the segmentation network. Left most image is the original image and then 3x3, 5x5 and
8x8 kernel size openings are shown respectively.

After running a few tests, the 3x3 kernel appears to provide the best results as it removes the

worst of the noise but simultaneously keeps as much information as possible.

3.3 Extracting Spot Shape and Size

Image moments and hu moments, both originally proposed by Ming-Kuei Hu [20], are an ex-

cellent tool for capturing shape information. More details can be found in the theory section

2.5.1.

OpenCV has a built-in tool for image moments and hu moments making this easy to imple-

ment. There are seven invariants calculated in each of the image moments; these can be

used to compare the spots’ shapes. OpenCV allows computation of shapes mu 2.5.1, nu 2.5.1

and hu 2.5.1 values.

For every spot on a fish, the seven mu, nu, and hu moment invariants are then saved in

the database 3.11. An example of a comparison of spot shapes using the different image

moments can be found in Fig. 3.4.
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Figure 3.4: An illustration comparing some shapes. The left image is the original. The middle
image is a slightly rotated and altered version of the original. Some distortion is very likely
to happen on different images of the same spot. Right is the comparison to a completely
different shape. Notice although the scales on the different shape metrics are different they
all consider the middle shape a better match.

The shape matching is useful due to the large variance in spot shapes on the skin of the fish.

Some examples of real spots can be found in Fig. 3.5.

Figure 3.5: Real spots returned from the segmentation network showing the large variance
and unique shape of the spots.

3.3.1 Spot Coordinate Extraction

Image moments can be utilized to extract the center of mass of a blob 2.5.1. This results in

a single XY coordinate for each blob, which is extracted alongside size and shape informa-

tion.

3.3.2 Mathematical Representation

The first step to being able to match the spots on the fish is to represent the problem math-

ematically. After passing the images through the AI-networks, 4 points and an image is re-

turned. The 4 points are the following: Eye coordinate, fin coordinate, XY-minimum of the
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head bounding box, and XY-maximum of the head bounding box. The image returned is the

segmentation of the spots on the head bounding box.

This segmentation data contains a lot of important features. Mainly the location of the spots

but also size and shape.

The resulting data can be found in Figure 3.6. Note that shape information does not translate

well to plots and, therefore, is missing in the figure.

Figure 3.6: A comparison of the original segmentation from the AI-network and its corre-
sponding mathematical representation. Shape data is not captured in plots. Note: Usually
image coordinates start in the top left, but here the y-axis is flipped to better compare the
images.

3.4 Coordinate Conversion

An essential step to comparing spots numerically is finding an invariant coordinate system

for the spots. A unique coordinate system enables the spots to be matched even if the fish is

at a different scale (further away or closer to the camera) or a different rotation. Translation

invariance is provided by the head bounding box network.

This invariant coordinate system can be achieved in a two-dimensional system by finding

two invariant points. In the fall project [14], an artificial intelligence network was created to

locate the eye and fin of the fish, which serves as the two anchor points for this coordinate

system. These anchor points are used to create two axes, the eye-fin line and its normal will

be used with the center point of the eye as the origin.

To be able to convert the spots, a few transformations are necessary. All locations extracted

by the artificial intelligence networks are given in image coordinates. The bounding box, eye,

and fin are relative to the original image, while the spots are given in coordinates relative to
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the bounding box. An illustration of this can be found in Fig. 3.7. A real example taken from

the dataset with key points marked can be found in Fig. 3.8.

Figure 3.7: Figure showing the different coordinate systems resulting from the image pro-
cessing. The red box is the original image. The coordinates of the head, eye, and fin are
given relative to the original image’s pixel values represented by the red vectors. The head
extraction is represented by the green box. This image is given to the segmentation network
to locate spots. The spots (in black) are therefore given in coordinates relative to the head
extraction shown by the green vectors. The desired coordinate system is given by the line
drawn from the eye to the fin points and the normal vector of this line. Desired spot coordi-
nates are represented by the blue vectors.
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Figure 3.8: An image taken from the dataset illustrating the concept from (Fig. 3.7.)

To convert points to the new coordinate system, three transformations have to be applied:

translation, rotation, and scaling. The translation factor can be found by subtracting the eye

location (E) from the origin of the coordinate system (O). This centers the spots in the new

coordinate system. The next step is to perform a rotation since the converted coordinate

system is rotated relative to the image coordinate system. This can be done by finding the

rotation factor (r) by finding the rotational angle between the old x-axis and the new coordi-

nate system x-axis. The last step in the coordinate conversion is correcting the scale. This is

done by measuring the magnitude of the eye-fin line and scaling it to a constant value. The

difference between this constant value and the magnitude of the eye-fin vector will be the

scaling factor (s). These factors are then represented in matrix form 3.1 and multiplied to

create the final transformation matrix 3.2.

T =


1 0 Ox −Ex

0 1 Oy −Ey

0 0 1

 R =


cos(r ) −sin(r ) 0

sin(r ) cos(r ) 0

0 0 1

 S =


s 0 0

0 s 0

0 0 1

 (3.1)

M = S ·R ·T (3.2)

The result of the coordinate transformation can be seen in Figures [3.9, 3.10].



CHAPTER 3. METHODS 29

Figure 3.9: A side by side comparison of original spot coordinates. Note: Usually image
coordinates start in the top left, but here the y-axis is flipped to better compare the images.

Figure 3.10: A side by side comparison of converted spot coordinates. Origin is the centre of
the large vectors. Note: The left image is rotated to better compare the images.

3.4.1 Database

The extracted data is saved in a database before matching. This enables rapid extraction

and efficient storage. By storing the data in the database, experiments can be performed on

numerical data without the need to pass an entire image through the AI network. The data

and structure of the database can be seen in Fig. 3.11.
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Figure 3.11: An overview of what is contained in the database. The basic relationship is that
each fish can have one to many spots but each spot can only belong to one fish.

3.5 Algorithm Construction

3.5.1 Overview

In this section, the process of constructing the matching algorithm is detailed. The algorithm

consists of three main components: Number of spots score, spot match score, and vector

similarity score.
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3.5.2 Identity Distance based on Spot Properties

Number of Spots

Before any spot comparisons are made, a simple comparison of the number of spots is made.

The number of spots on an image is compared to its potential match image, and the differ-

ence in spots is then squared to punish large differences more severely. Lastly, this value is

multiplied by a constant c0. The following score is computed:

(abs(a)−abs(b))2 ∗ c0

where a is the number of spots in identity A, and b is the number of spots in image B. Pseu-

docode for this operation can be found in Listing 3.1.

Listing 3.1: Spot Matching

total_score = 0

missing_spot_score = square ( abs (n spots A − n spots B ) ) * c0

total_score += missing_spot_score

Spot Scoring

For the spot scoring part of the algorithm, only the scores between the best matches are

saved. The algorithm is based around weighted sums of the distances between the features.

The following formula is used.

a∑
i=1
∀b

j=1max(mi n((∆di j · c1 +∆Si j · c2 +∆µi j · c3 +∆νi j · c4 ++∆hi j · c5) · c6

Si
,c7)

where a is the number of spots in the identity A and b is the number of spots in the identity

B. i and j are spots from their respective identity. ∆di j is the distance between spot i and j.

∆Si j is the difference in size between spot i and j. ∆µi j is the difference in mu value 2.5.1
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between spot i and j. ∆νi j is the difference in nu value 2.5.1 between spot i and j. ∆hi j is the

difference in hu value. The best constant values found during tuning are described in section

3.5.5.

Additionally, the entire score for a spot is weighed based on the size of the spot being matched.

The reason for this being that the segmentation network is more accurate in size, shape, and

even location on larger spots. Pseudocode for what this looks like can be found in Listing

3.2.

Listing 3.2: Spot Matching

for A_spot in identity_A

best_match = None

best_score = 99999999

for B_spot in identity_B

s i z e _ d i f f = abs ( A_spot [ " s i z e " ] − B_spot [ " s i z e " ] )

distance = abs ( A_spot [ "x" ] − B_spot [ "x" ] ) +

abs ( A_spot [ "y" ] − B_spot [ "y" ] )

hu_diff = abs ( A_spot [ "hu" ] − B_spot [ "hu" ] )

mu_diff = abs ( A_spot [ "mu" ] − B_spot [ "mu" ] )

nu_diff = abs ( A_spot [ "nu" ] − B_spot [ "nu" ] )

score = ( s i z e _ d i f f * c1 ) +

( distance * c2 ) +

( mu_diff * c3 ) +

( nu_diff * c4 ) +

( hu_diff * c5 )

# The l a r g e r the spot the l a r g e r the impact on the score

# (Remember lower score i s b e t t e r )

score = score * ( c6 / A_spot [ " s i z e " ] )
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i f score < best_score

best_score = score

best_match = B_spot

# Best score i s capped to prevent large o u t l i e r s

i f best_score > constant

best_score = constant

total_score += best_score

3.5.3 The Best Spot Match

For each spot, its best match is found based on the above calculations of size, shape, and

location. It is important to note that each spot is matched to its lowest score in this algorithm,

but this spot is not removed from the possible matches in the future. This essentially means

that each spot has one and only one best match, but can be the best match of multiple spots.

A figure showing a spot’s best matches can be seen in Fig. 3.12

Figure 3.12: The top three images show an identities spots (green) matched to spots from the
other two images (red) of the same identity. The bottom three images show the same original
identity as above but in this instance matched to two images from different identities. The
lines between spots indicate a best match relation.
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Note that the best match vectors (line indicating the best match relation between two spots

of different images 3.12) have some interesting properties. If the matches are true, they have

small magnitudes and similar directions, and in the case that they are false matches, the

vectors are large and random. These properties create the basis for the vector similarity part

of the algorithm.

3.5.4 Vector Similarity

Once the best spot match has been decided for every spot in the potential match identity,

the similarity between the match vectors is examined. This is based on properties noticed in

section 3.5.3 where true matches have similar best match vectors, while false matches more

random vectors.

Statistical Methods

To exploit the difference in vector properties observed, simple statistical methods were first

utilized.

The average of the vector magnitudes was investigated. Based on observations, a true match

would have a lower magnitude average than a false match. This did not yield significant

results.

The standard deviation of both vector magnitude and angle were investigated as well. Obser-

vations showed that vectors in true matches might not necessarily be small, but the vectors

were similar in both magnitude and angle. Comparing the standard deviation of the mag-

nitude and angle did improve the match score but was later replaced by the bucket score

system 3.5.4.

Bucket Scores

Since the more basic statistical methods yielded little results, a more robust system was at-

tempted. To utilize the vector similarity phenomenon, a bucket system was set up similar to

HOG 2.5.3. The bucket system was modified to favor vectors with a small magnitude. This

allows for finding instances where similar directional vectors with small magnitudes such

as those appearing in true matches. The modification made was essentially only subtract-

ing the magnitude from a constant value, thereby vectors with smaller magnitudes receive
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higher scores. An illustration of this can be found in Fig. 3.13.

Figure 3.13: An illustration showing the modified HOG algorithm voting on buckets. Note
that 360 degrees is equal to 0 degrees.

Empirically it seems that the magnitude does not matter as much as the angle. A modified

version that only counts the number of occurrences in a bucket instead of magnitude per-

forms similarly. Pseudocode for the bucket algorithm with constants b1 and b2 can be found

in Listing 3.3.

Listing 3.3: Spot Matching

reference_vector = [ 0 , 1]

number_of_buckets = b1

# I n s t a t i a t e array with 0 s

bucket_score = zeros ( number_of_buckets )
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for vector in v e c t o r _ l i s t

angle = get_angle_between ( vector , reference_vector )

magnitude = norm( vector )

bucket = ( angle / (360 / number_of_buckets ) )

decimal = bucket % 1

lower_bucket_score = (1 − decimal ) * ( b2 − magnitude )

higher_bucket_score = ( decimal ) * ( b2 − magnitude )

bucket_score [ int ( bucket ) ] += lower_bucket_score

bucket_score [ ( int ( bucket ) + 1) % number_of_buckets ] +=

higher_bucket_score

Summary

The three main parts of the algorithm are:

Number of Spots Score: (3.3)

Spot Matching Score: (3.4)

Vector Similarity Score: (3.5)

((abs(o)−abs(p))2 ∗ c0) (3.3)

(
o∑

i=1
∀p

j=1max(mi n((∆di j · c1 +∆Si j · c2 +∆µi j · c3 +∆νi j · c4) · c5

Si
),c7)) (3.4)

(std(mag ni tudes(V ))∗ c8 −bScor e()∗ c9) (3.5)

All constant values for the algorithm can be found in Table 3.5.5.
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3.5.5 Weight Tuning

Algorithm

All the algorithm’s components are tuned by multiplying a constant value and finding which

constant yields the best match rate. Tuning is very time consuming as multiple runs through

the entire dataset have to be performed for finding a single constant value. However, this

is essential to the performance of the algorithm. The reason this is so important is that the

values from the components come in a large scale variance, components would dispropor-

tionately affect the algorithm if they did not contain a constant value as a weight. Some

components benefit the algorithm more than others and, therefore, might need to be valued

higher. The constant values essentially work as weights for the algorithm components. A

figure showing the progression of performance with different constant values can be seen in

Fig. 3.14. All constants were tuned sequentially.

Figure 3.14: Different c1 constant values for an experiment run with 200 identities in the
database.

In the case above, the best constant value was 20. Once this value has been selected, the next
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constant value can be tuned.

Constants

After much tuning, the constant values that performed the best can be found in Table 3.5.5.

Note that the constant values do not indicate how large a role they play in the algorithm;

for this, a better comparison is made in 4.4. The constant values are a result of the best

performance from tuning 3.5.5.

Table 3.2: Constant Values
Description Constant Value
Number of spots constant c0 4
Distance constant c1 10
Size constant c2 1.5
Mu shape constant c3 0.02
Nu shape constant c4 1000
Hu shape constant c5 500
Size division constant c6 200
Score cap constant c7 420
Number of buckets
in bucket scoring

b1 8

Magnitude constant
in bucket scoring

b2 200



Chapter 4

Evaluation

4.1 Overview

In this chapter, the results are presented. Firstly match definitions, and essential metrics are

established 4.1.1. Two experiments were conducted in this thesis:

In the first experiment 4.2 a database containing 395 unique identities and 931 images was

investigated. Due to this datasets’ smaller size, it was also utilized for tuning the constants

found in section 3.5.5. A true positive rate of 98.28% was achieved. Additionally this dataset

was used to investigate the underlying mechanics of the algorithm 4.4, establish a confidence

rating system [4.2.2, 4.3] and investigate imbalances in the dataset [4.4.2, 4.4.1].

The second experiment 4.5 was conducted on the largest database of individuals matched to

date: 1000 identities and 2998 images. This experiment used the same weights as experiment

1. A true positive rate of 96.82% was achieved, and a precision-recall plot 4.16 was created

using the confidence rating system established.

Lastly, the decline in performance as more identities were added to the database was inves-

tigated 4.6.

39
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4.1.1 Match Definitions

True Positive

A match is considered a true positive (TP) when an image A is compared to the database,

and the best match (image with the lowest distance score), image B, belongs to the same

identity.

False Positive

A match is considered a false positive (FP) when an image A is compared to the database,

and the best match, image B, does not belong to the same identity.

False Negative

A match is considered a false negative (FN) when an image A is compared to the database,

and the best match, image B, belongs to the same identity, but the confidence rating was too

low, and the match was discarded incorrectly.

True Negative

A match is considered true negative (TN) when an image A is compared to the database, and

the best match, image B, does not belong to the same identity, and the confidence rating was

too low; therefore the match was discarded correctly.

4.1.2 Precision and Recall

Precision: Eq 4.1.

Recall: Eq 4.2.

pr eci si on = T P

T P +F P
(4.1)

r ecal l = T P

T P +F N
(4.2)
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4.1.3 Match Score

Match Score is the result of comparing two images using the algorithm 3.5. Since the algo-

rithm measures distance, a lower score is better.

4.1.4 Match Score Difference

Match score difference is used as a confidence measure based on the difference between

expected correct and expected incorrect matches. If an identity contains two images, a sin-

gle image is expected to be correct; the match score difference is defined as the distance

between the image with the lowest distance (expected correct) and the second-lowest score

(expected incorrect). In the case that an identity contains three images, two images are ex-

pected to be correct; the match score difference is then defined to be the distance between

the image with the second-lowest score (expected correct) and the third-lowest score (ex-

pected incorrect).

4.1.5 Proportional Match Score Difference

Proportional match score difference is a modified version of match score difference 4.1.4

that looks at the proportional difference instead of pure score difference. Proportional match

score difference was calculated using the formula below: 4.3.

P MSD = MSD(A,B)

MS(B)
(4.3)

where A is the expected correct image, and B is the expected incorrect image. MSD(A, B) is

the match score distance of images A and B. MS(B) is the match score of image B. PMSD is

the proportional match score distance.

Proportional match score difference is defined for values 0 up to 1. A higher PMSD indicates

higher confidence.
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4.2 Experiment 1

4.2.1 Results

Using the algorithm developed (see section 3.5) and with the constant values from section

3.5.5 an experiment was set up to test the matching performance and to get a sense of how

the algorithm performs with different numbers of identities. A database containing 395 iden-

tities and a total of 931 fish was used. The experiment started with 20 identities matched by

the algorithm before progressively adding 20 more for each iteration. The result of this ex-

periment can be seen in Fig. 4.1. The performance on the entire database containing 395

identities and a total of 931 fish was a true positive rate of 98.28%. Of the 931 images, only 16

images were false positives.
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Figure 4.1: Match percentage as progressively more identities and images are added to the
database. Notice the scale on images and identities should be scaled by 10, but not the num-
ber of mistakes.

4.2.2 Match Comparison

In this subsection, the 20 best matches for an image are presented in bar diagrams. The x-

axis shows identity, and the y-axis shows the match score 4.1.3. Note that a lower score is

better as it measures the distance from the identity.

in Fig. 4.2, the match was considered a true positive as the image with the lowest score is

from the same identity. The distance between the correct images and incorrect images called
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match score difference 4.1.4, can be seen as an indicator of how confident the algorithm is.

If this gap is large, then the algorithm is essentially more sure of the match. The match score

difference is marked in red on the figure 4.2.

Figure 4.2: Results showing a strong match. Notice the difference in distance between the
correct matches and the incorrect matches marked in red called confidence.
Red: Match Score Difference. 4.1.4
Green: Green bars represent the images from the same identity.
Blue: Blue bars represent images from other identities.

in Fig. 4.3 the match was also considered a true positive. However, in this case, the match is

weaker than the previous figure given that the match score difference (distance between the

second and third match) is lower.
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Figure 4.3: Results showing a weaker match. Notice how there is a lower distance between
the correct and incorrect matches.
Green: Green bars represent the images from the same identity.
Blue: Blue bars represent images from other identities.

Fig. 4.4 is an example of a false positive image. The actual true matches are close to being

correct but are not the images with the lowest scores. Interestingly the match score differ-

ence (distance between second- and third-best match) is fairly low.

Figure 4.4: One of the mismatched identities showing that the actual correct matches were
very close.
Green: Green bars represent the images from the same identity. Blue: Blue bars represent
images from other identities.
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Another example of a false positive image can be seen in Fig. 4.5. In this case, the correct

images were nowhere within the 20 best-scored images. However, it is interesting to note the

homogeneous scores and low match score difference.

Figure 4.5: One of the mismatched identities showing that no correct identities were close.
Interestingly all the scores are very similar.
Blue: Blue bars represent images from other identities.

More graphs can be found in Appendix A.1.

4.3 Confidence Rating

Based on the observations in the match comparison section 4.2.2, a confidence rating sys-

tem was created based on the match score difference 4.1.4. Each match receives a con-

fidence rating based on the distance between the expected match and the expected non-

match (match score distance). An illustration containing match score difference can be seen

in Fig. 4.2.

The match score difference is the basis for the confidence rating. A graph showing the confi-

dence rating based on match score difference can be seen in Fig. 4.6.
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Figure 4.6: A graph showing match score difference as confidence rating. A higher rating is
better.
Green Dot: Correctly matched image.
Red Dot: Incorrectly matched image.

An issue with using the match score difference as a confidence rating is that the match score

is affected by the number of spots. Images with many spots naturally receive higher scores

across the board due to more spot comparison scores. Therefore, an alternate and possibly

better way to display confidence rating is to take the difference and divide it by the first ex-

pected incorrect match (either the second- or third-best match depending on the number

of images in the identity). This metric looks at the proportional difference between match

scores and is defined as the proportional match score difference (PMSD) 4.3. The resulting

graph can be seen in Fig. 4.7.



CHAPTER 4. RESULTS 48

Figure 4.7: A graph showing proportional match difference as confidence rating. A higher
rating is better. Red dots are incorrectly matched images.
Green Dot: Correctly matched image.
Red Dot: Incorrectly matched image.

The graph that looks at the PMSD seems like the better choice based on the first mistake hap-

pening at a lower confidence than the pure match score difference-based approach.

The confidence rating can provide a customizable cut-off enabling low certainty matches to

be discarded. A high cut-off would allow for a 100% correct match rate, although this would

discard all low confidence matches, even the correct ones. A lower rating would discard the

worst mistakes but keep some incorrect matches.

A cut-off rate can be set just above the first mistake achieving a 100% match rate but discard-

ing 12.8% of all images due to low confidence. This is illustrated in Figure 4.8.
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Figure 4.8: A cut-off set at a confidence rating just above the first mistake of the small experi-
ment. The algorithm now achieves 100% correct match rate but discards 12.8% of all images
due to low confidence.
Red Line: cut-off line.

The introduction of a cut-off rate allowed for false negatives and true negatives. By using the

definitions for false negative and true negative from section 4.1.1, the precision and recall

scores were evaluated [4.1, 4.2] for the full dataset of 395 identities. The results can be seen

in Figure 4.9. Every data point after the first represents a mistake and, therefore, a change in

the precision-recall score.
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Figure 4.9: Precision-recall curve from experiment 1. Note: the scale on precision is a lot
higher than on recall.

4.4 Feature Contributions

Investigation of underlying mechanics was conducted to highlight the individual perfor-

mance of the components. The algorithm was broken down into its components. These

components were then used to match the database individually and in smaller groups. The

result of this can be seen in Fig. 4.10.
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Figure 4.10: A graph showing the match score of the components of the algorithm. All com-
ponents are in their weighted form 3.5.5. Nu, mu, and hu are all variants of the image mo-
ment scores (shape) 2.5.1. Dist refers to matching based on a spots’ location, a simple (x,
y) distance. All shape is the combined score of the nu, mu and hu scores. All no bucket is
the combined score of size, distance, and all shape but without spot difference and bucket
score 3.5.4. All no spot diff is the combined score of all, including bucket score, but without
a simple comparison of the number of spots 3.5.2. All is the complete algorithm.

The graph above 4.10 clearly demonstrates the power of the additional features. The feature

with the highest contribution on its own is the mu shape, even higher than the location con-

tribution. Only looking at the mu shape of the spots gives a correct match percentage of 60%

for 395 identities. Looking at the combined shape score (mu, nu, and hu) achieves a match

score of 70% on its own. Although it should be noted that these scores are largely a reflection
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of the algorithm, it certainly shows that there is a large potential in using both shape and size

in addition to location when matching spots.

Of all shape matching scores, the mu score 2.5.1 is the highest. The mu moments, also known

as the central image moments, are simply translation invariant. This differs from the addi-

tional scale invariance of the nu moments and the even more complex hu moments, which

are also invariant to scale, rotation, and reflection. This shows that the coordinate conver-

sion 3.4 performed on the spots is working as intended as additional invariants only cause

false matches. It can be assumed that the distance scoring strength is in part due to this

normalized coordinate system. Intuitively it makes sense that hu moments would cause

many false matches as it allows for rotated matches, which the coordinate conversion seeks

to eliminate. Additionally, hu moments allow for reflected matches, which is not advanta-

geous for spot matching.

Interestingly size is generally a bad matching feature. This can be seen as it is one of the

weakest features in the figure 4.10, additionally when combined with another score such as

size and distance or size and shape it performs worse than distance or shape respectively.

Nevertheless, this feature still improves performance in the long run. Improvement can be

seen when looking at shape and distance compared to ’all no bucket’ (see figure 4.10, ’all

no bucket’ is essentially shape, dist, and size). In the beginning, ’all no bucket’ performs

worse, but over time the addition of the size features slightly outperforms the lack of this

feature.

4.4.1 Double vs Triple Identities

Identities in the database consist of either two images or three images. As identities consist-

ing of two images have one less comparison image, they may be more likely to be matched

incorrectly. The number of identities consisting of double and triple images, as progressively

more identities are added to the experiment, can be seen in Fig. 4.11. Additionally, the num-

ber of double and triple image identities in the mistakes can be found in Fig. 4.12.
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Figure 4.11: A graph showing the number of triple and double identities compared to the
number of mistakes as progressively more identities are added to the experiment. Addition-
ally the change in number of double and triple identities is plotted as Delta Double and Delta
Triple.
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Figure 4.12: A graph showing the number of mistakes by identity type. A double identity
only contains two images from that identity. A triple identity contains three images. More
mistakes were made on identities containing three images.

The data points to no correlation between the number of images in an identity, and its like-

lihood to be mismatched. However, it is hard to draw conclusions from a small number of

mistakes.

4.4.2 Cameras

Similar to the possibility that the number of images in an identity could affect the outcome,

the camera the image was taken from could affect the result. In Figure 4.13, the number of

mistakes from their respective cameras were plotted.
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Figure 4.13: The number of mistakes from each camera.

Once again, there does not seem to be a correlation. It is possible that camera 3 is slightly

harder to match than the rest. Camera 3 is at a medium distance from the fish, and therefore,

in theory, it should not be the hardest to match. Therefore given the small amount of data

due to few mistakes, it is hard to draw a conclusion.

4.5 Experiment 2

The second experiment was conducted using a larger dataset containing 1000 identities and

2998 images. A true positive rate 4.1.1 of 96.83% was achieved. A total of 94 images were

matched to an incorrect identity; seven of these incorrectly matched images were unable

to be matched due to the segmentation network incorrectly returning a blank image (incor-

rectly returned 0 spots). 2904 images were correctly matched to their true identity.

Using the same confidence rating system as was used in the smaller experiment 4.3, the

confidence was logged for each match. In general, the confidence rate of the larger dataset

is lower than the rate of the smaller experiment. The confidence rating as difference score

can be seen in Figure 4.14 and the confidence rating as proportional difference can be seen

in Figure 4.15.
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Figure 4.14: Confidence rating given by match score difference.
Green Dot: Correctly matched image.
Red Dot: Incorrectly matched image.
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Figure 4.15: Confidence rating given by proportional match score difference.
Green Dot: Correctly matched image.
Red Dot: Incorrectly matched image.

The precision-recall curve was also calculated using the same definitions as experiment 1

[4.2]. The results can be seen in Figure 4.16. Every data point after the first represents a

mistake and, therefore, a change in the precision-recall score.
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Figure 4.16: Precision-recall curve from experiment 2. Note: the scale on precision is a lot
higher than on recall.

4.6 Decline of Match Score With More Identities

There is a noticeable decline in performance as more identities are added. This is intuitive

as more comparisons lead to more possibilities for mistakes. A graph plotting the decline

as more identities are added can be seen in Figure 4.17. The trend appears to have roughly

linear characteristics.
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Figure 4.17: A graph showing the decline in correct match percentage as more identities are
added to the database. The first 20 data points are taken from experiment 1 4.2, the final data
point is taken from experiment 2 4.5.



Chapter 5

Discussion

5.1 AI Network

As the algorithm developed attempts to find the best spot match for every spot, there are

some cases that it does not handle well. Mainly the case of split spots, this is where the

segmentation network in one image gives one connected spot and in another two split spots.

When converting the segmentation to numerical values, this causes two smaller spots to be

registered instead of a larger one. An example of what this segmentation looks like can be

found in Fig. 5.1.

Figure 5.1: The same spot is in one image connected and in another split into two.

This appears to have a significant impact on the match score of the images as the spot in

question will no longer be correctly matched. Additional punishment is added as the num-

ber of spots is no longer the same. This means that the more accurate the AI network for

extracting the spot segmentation is, the better the result for matching will be.

60
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5.2 Feature Choice

The main difference in approaches between the proposed features in this research and the

approach used by Eilertsen et al. [15] is the choice of features. This approach uses the spots

on the head while Eilertsen et al. achieved the best results with an approach that used all the

spots on the fish, including the body.

Eilertsen et al. also had an approach using only the spots on the head of the fish; this did not

yield satisfactory results. The eye was used in addition to the shortest distance between the

eye and forehead to create a polar coordinate system. A comparison of coordinate features

can be found in Fig. 5.2.

Figure 5.2: A comparison of the two head based approaches.

In the data used by this research and Eilertsen et al., the fish are presented on a conveyor belt

with a perfect sideways profile. This is not indicative of real-world use for biometric identifi-

cation of salmon as this would take place underwater with live salmon swimming. A possible

issue with using the whole body of the fish is the deformation of the body when swimming.

Fish bend their body to create thrust with their tails, which essentially means a significant

non-linear transformation of the spots on the skin of the fish. This is potentially solved using

only the head for identifying features as the head of the fish is bony and, therefore, rigid. This

means that the head of the fish suffers mostly linear transformations of spots, which can be

corrected for using the eye-fin coordinate system.
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5.3 Number of Spots

Some fish have very few spots on their head, and since this is the basis for the biometric

comparisons, it would be intuitive to think that fish with few spots are difficult to match.

The mistaken identities vs. the number of spots from experiment 1 4.2 were plotted against

the entire database to investigate this hypothesis. The results can be seen in Fig. 5.3.

Figure 5.3: The top graph shows the number of spots in the mistaken identities. The bottom
graph shows the number of spots for every fish in the database.
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The results from the figure show that the biometric algorithm is slightly more mistaken to-

wards larger numbers of spots if anything. Interestingly that means that a fish with as low

as two spots was matched correctly, showing that even with little biometric information, it is

possible to match based on location, size, shape, and the number of spots.

Another intuition that the graph shows is that mistakes happen on similar fish. Essentially, it

makes sense that 16 spot fish would be mistaken for another 16 spot fish than a two-spot fish,

and since there are many fish with around 16 spots, it is more likely to make a mistake. Addi-

tionally, the two-spot fish might be the only two-spot fish, therefore a natural match.

5.4 Image Moments

Although image moments are, in this case, used in a controlled environment due to the

unique coordinate system, they have the potential to be used in many more cases. There are

progressively more invariant image moments that can be used to match shapes and sizes in

controlled and uncontrolled environments.

Due to the nature of the coordinate system, mu moments are best suited to matching in this

environment, as explored in 4.4. However, the progressively more invariant moments, such

as the nu 2.5.1 and hu moments 2.5.1 could be beneficial even to completely unregulated

coordinate systems. Perhaps this could even be worked into the constellation algorithm,

such as the one used by Eilertsen et al. [15].



Chapter 6

Conclusions and further work

6.1 Conclusion

This research has explored biometrical features for identifying salmon and conducted exper-

iments utilizing novel spot properties. A novel biometrical feature, the pectoral fin, is also

proposed as the new standard for constructing invariant coordinate systems on fish.

An experiment was conducted with a database consisting of 931 images and 395 identities.

This experiment achieved a true positive rate of 98.29%, including an in-depth analysis of

the algorithm mechanics.

Another more extensive experiment was conducted with a database consisting of 2998 im-

ages and 1000 identities, the largest biometrical matching of salmon to date. This experi-

ment achieved a true positive rate of 96.83%.

A confidence rating was established, allowing for a trade-off between precision and recall.

The smaller database results are similar to the state of the art but require less and possibly

more reliable biometrical information. The results on the larger database may serve as the

new baseline for salmon identification. This was achieved by utilizing image moments to

extract the size, shape, and location properties of the spots. Results show that the spots’

shape may be the single best identifier for the spots on salmon due to their significant shape

variance. Image moments provide progressively more invariant alternatives, which can be

used in many different matching environments enabling them to be beneficial to most ap-

proaches at spot matching.
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6.2 Further Work

6.2.1 Relational Component to Algorithm

One of the main issues with the current approach is its lack of relational data between the

spots. Each spot is matched to others as an individual with no care of the relations between

them. Although the algorithm currently does not consider this, it is possible to add.

One attempt was made using Delauney Triangulation, which has previously been used in

things like fingerprint biometrics. This approach was loosely based on the paper on finger-

print biometrics by Wang et al. [27]. For this approach, a Delauney triangle mesh is first

calculated. This is easily done by simply feeding the spot coordinates into the scipy-spatial

library [28], which contains support for Delauney meshes. Each triangle in the mesh pro-

vides two invariants. Invar1 is the shortest side divided by the longest side. Invar2 is the

middle longest side divided by the longest side. Lastly, invar3 is the largest of the angles. A

visual representation of what Delauney meshes look like can be seen in Fig. 6.1.
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Figure 6.1: A visual example of what delauney triangulations look like using the spot data.
Delauney meshes are overlayed their corresponding identity. Green vectors represent sides
of a delauney triangle. Black circles represent spot locations.

Delauney triangulation is invariant to rotation and scale, which similar to hu shape is not

necessarily advantageous in a controlled environment provided by the coordinate conver-

sion. Although some experimentation was done using Delauney triangulation, a relational

component to the algorithm was not achieved in this project. An approach similar to De-

launey triangulation, the star constellation approach by Arzoumanian and Eilertsen [[16],
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[15]], or an entirely different spatial relation approach would undoubtedly improve the algo-

rithm.

6.2.2 Better AI networks

As mentioned in section 5.1, the AI networks are an essential aspect of the matching as they

are the foundation for the data extraction. Anecdotally a small error in the eye-fin or head

network does not seem to affect results significantly. On the other hand, the segmentation

network seems to have a more substantial impact on the results. During the second experi-

ment 4.5, seven images encountered issues when passed through the segmentation network.

This resulted in blank segmentation images; therefore, no spots could be identified.

A possible solution to the neural network issues, such as those encountered during this the-

sis, is to improve the network performance. One way to do this is to label more data, which

is effective but time-consuming.

6.3 Tuning

Tuning was done sequentially, and since there are many different weights, it is nearly im-

possible to find the optimum values. Perhaps a different approach to tuning would be more

efficient. Nevertheless, tuning all weights to their optimum would yield better matching re-

sults.

6.3.1 Spot Splitting

Another improvement that can be made is the case of splitting spots. In some instances, a

spot might get split into two spots while remaining whole on others. This poses a problem

as the two spots from the split only match the original spot in location, but not size and

shape. Improvements could be made to the segmentation network, the post-processing of

the segmentation or the algorithm to handle the splitting of spots better.

6.3.2 Larger Data set

The largest experiment conducted in this thesis contained 1000 identities. Although more

identities were available for testing on this could not be achieved in the short time frame
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due to the large amounts of computational power needed when cross-referencing an entire

database. Larger datasets can be made available for future use 6.4.

6.3.3 Optimization

The implementation of the comparison algorithm suffers from bad optimization in its cur-

rent state. Ideally, a single feature vector could be created from the many spots on a fish. One

issue that remains unsolved in this thesis is a good way to combine these spots into a single

feature vector given the variance in the number of spots on different fish.

6.4 Data and Further Use

The biometrical feature database 3.11 and trained neural networks (from fall project by the

author [14]) will be provided at request.
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Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian

Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro,

Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Funda-

mental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272,

2020.



Appendix A

A.1 Match Comparisons

A.1.1 Correct Matches

A few more examples of correct matches.

Figure A.1: The 20 best matches for a true positive identity. The x-axis shows identities, and
the y-axis shows match score distance.
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Figure A.2: The 20 best matches for a true positive identity. The x-axis shows identities, and
the y-axis shows match score distance.

Figure A.3: The 20 best matches for a true positive identity. The x-axis shows identities, and
the y-axis shows match score distance.
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Figure A.4: The 20 best matches for a true positive identity. The x-axis shows identities, and
the y-axis shows match score distance.

Figure A.5: The 20 best matches for a true positive identity. The x-axis shows identities, and
the y-axis shows match score distance.
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Figure A.6: The 20 best matches for a true positive identity. The x-axis shows identities, and
the y-axis shows match score distance.

Figure A.7: The 20 best matches for a true positive identity. The x-axis shows identities, and
the y-axis shows match score distance.
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Figure A.8: The 20 best matches for a true positive identity. The x-axis shows identities, and
the y-axis shows match score distance.

A.1.2 Incorrect Matches

All the 16 incorrect matches from the experiment.

Figure A.9: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.
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Figure A.10: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.

Figure A.11: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.
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Figure A.12: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.

Figure A.13: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.
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Figure A.14: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.

Figure A.15: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.
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Figure A.16: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.

Figure A.17: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.



APPENDIX A. 81

Figure A.18: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.

Figure A.19: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.
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Figure A.20: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.

Figure A.21: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.
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Figure A.22: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.

Figure A.23: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.
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Figure A.24: The 20 best matches for an incorrectly matched identity. The x-axis shows iden-
tities, and the y-axis shows match score distance.
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