
Database Management Systems in
Smart Cities: Requirements for IoT
and Time-Series Data

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Mari Fredriksen

2020
M

ari Fredriksen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

Database Management Systems in Smart
Cities: Requirements for IoT and Time-
Series Data

Mari Fredriksen

Computer Science
Submission date: June 2020
Supervisor: Svein Erik Bratsberg

Norwegian University of Science and Technology
Department of Computer Science

Abstract

The emerge of the Internet of Things (IoT) has opened endless opportunities as well as
challenges. Smart city is a domain utilizing IoT and has been a phenomenon for almost a
decade. More cities across the world are becoming ”smart” every year. Smart cities collect
data that can make cities smarter both in the prospect of infrastructure and life quality,
but also sustainability. To achieve this vast amounts of data are collected throughout the
city and are processed, stored, and analyzed. In this thesis, three database systems, one
relational database, MySQL, and two non-relational databases, Cassandra, and MongoDB
are presented and reviewed in light of the requirements for IoT data management found in
literature. Through experiments, and evaluation of theory based on a literature review, this
thesis shows the potential of the three database systems of being suited for smart city data
in a time-series format. MongoDB has promising results as it performs almost perfectly in
terms of theoretical requirements. Cassandra shows great potential in terms of time-series
storage because of its architecture, but have some limitations when handling aggregations.
MySQL, have some large drawbacks based on the requirements but performed equally well
as MongoDB for execution times, which shows that on limited data amounts, MySQL can
work with IoT data. It is concluded that, as expected, none of the studied database systems
are perfect for IoT and each has limitations and possibilities.

i

Sammendrag

Fremveksten av ”Internet of Things” (IoT) de siste årene har åpnet opp endeløse mu-
ligheter, men kommer også med en del utfordringer. Smarte byer har vært et fenomen
i snart et tiår og stadig flere byer rundt om i verden blir ”smarte”. Smarte byer sam-
ler inn data som kan brukes for å gjøre byer ”smartere” både med tanke på infrastruktur
og livskvalitet, men også med tanke på bærekraft. For å oppnå dette må store mengder
data samles inn, prosesseres, lagres og analyseres. I denne masteroppgaven presenteres
tre databasesystemer, MySQL, MongoDB og Cassandra. De blir studert med tanke på
krav til håndtering av IoT data og tidsseriedata, som er funnet i et innledende litter-
aturstudie. Gjennom evaluering av eksperimenter og teori funnet i litteraturstudiet, viser
dette prosjektet hvilke databasesystemer som kan passe for IoT data på et tidsserie for-
mat. MongoDB har et stort potensiale for dette ved å dekke nesten alle kravene for
datahåndtering og databasesystemer funnet i teorien. Cassandra har gode resultater for
spørringer hvor et tidsintervall hentes ut av databasen, men har problemer med aggregering
av data. MySQL har noen store mangler med tanke på krav til datahåndtering, men resul-
tatene av eksperimentene viser at MySQL gjør det omtrent like bra som MongoDB. Dette
antyder at databasen kan bli brukt i IoT dersom mengden data er begrenset. Det konklud-
eres med at ingen av databasene som er studert i denne oppgaven er perfekte til bruk for
IoT tidsseriedata i smarte byer, men alle har sine muligheter og begrensninger.

ii

Acknowledgements

First, I would like to thank Svein Erik Bratsberg for being the supervisor of this thesis.
Also, I would like to thank my partner for being the best friend and support-team through-
out this semester.

iii

iv

Table of Contents

Abstract i

Sammendrag ii

Acknowledgements iii

Table of Contents vii

List of Tables x

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Background and motivation . 2
1.2 Research questions . 2
1.3 Research method and research design 2

1.3.1 Theory and Related Work . 3
1.3.2 Implementation and Experiments 3

1.4 Research scope . 3
1.5 Limitations . 4
1.6 Disposition . 4

2 Background 5
2.1 Smart Cities . 5

2.1.1 ICT Architecture in Smart Cities 6
2.1.2 Zero Emission Neighborhoods 7

2.2 Internet of Things . 8
2.2.1 Time-Series Data . 10
2.2.2 Big Data and IoT . 10
2.2.3 Data Management Requirements 11

v

2.3 Storage Systems . 13
2.3.1 RDBMS . 14
2.3.2 NoSQL . 16
2.3.3 Time-Series Database Systems 23
2.3.4 IoT requirements on database systems 25
2.3.5 Database systems in smart cities 28
2.3.6 Cloud . 30

2.4 Related work . 31

3 Methodology 35
3.1 Research Strategies . 35

3.1.1 Literature Review . 35
3.1.2 Experiments . 35
3.1.3 Data Analysis . 36

4 Experiments and experimental set up 39
4.1 Experimental set up . 39

4.1.1 Dataset Overview . 39
4.1.2 Repetition of Experiments . 41
4.1.3 Recording Execution Time . 42

4.2 Experiments . 43
4.2.1 Query 1 . 43
4.2.2 Query 2 . 44
4.2.3 Query 3 . 44
4.2.4 Query 4 . 44

5 Evaluation 45
5.1 Goals and expected results . 45

5.1.1 MySQL . 45
5.1.2 MongoDB . 46
5.1.3 Cassandra . 46

5.2 Results . 46
5.2.1 Query 1 . 46
5.2.2 Query 2 . 46
5.2.3 Query 3 . 49
5.2.4 Query 4 . 50

5.3 Discussion . 51
5.3.1 Experiences . 53

6 Conclusion 55
6.1 Research Questions . 55
6.2 Conclusion . 56
6.3 Future work . 57

6.3.1 A Benchmark test for IoT data management requirements 57
6.3.2 Expanding the researched databases 57
6.3.3 Experiments with indexes . 57

vi

6.3.4 Cloud . 58

Bibliography 59

Appendix A 66

Appendix B 68

Appendix C 70

vii

viii

List of Tables

2.1 Overview of relational (SQL) and non-relational (NoSQL) database, as
presented in [53]. 18

2.2 Overview of requirements for IoT data management related to the database
systems MySQL, MongoDB and Cassandra. 25

2.3 Overview of requirements for data management of time-series data, related
to the database systems MySQL, MongoDB and Cassandra. 25

2.4 Overview of storage systems used in different smart city platforms. 30
2.5 Summary of database systems from literature that have been evaluated for

IoT usage. Databases that where considered for usage is marked with X
and the selected database system in the paper is marked with V. 34

4.1 Versions used in the experiments. 39

5.1 The maximum and minimum execution time of Query 1 in MySQL, Cas-
sandra and MongoDB in seconds. 47

5.2 The variance and standard deviation of Query 1 in MySQL, Cassandra and
MongoDB. 47

5.3 The maximum and minimum execution time of Query 2 in MySQL, Cas-
sandra and MongoDB in seconds. 48

5.4 The variance and standard deviation of Query 2 in MySQL, Cassandra and
MongoDB. 49

5.5 The maximum and minimum execution time of Query 3 in MySQL, Cas-
sandra and MongoDB in seconds. 49

5.6 Variance and Standard Deviation of Query 3 in MySQL, Cassandra and
MongoDB. 50

5.7 Variance and Standard Deviation of Query 4 in MySQL, Cassandra and
MongoDB. 50

5.8 The maximum and minimum execution time of Query 4 in MySQL, Cas-
sandra and MongoDB in seconds. 50

5.9 Summary of mean execution times in seconds for each query in the exper-
iments. 52

ix

x

List of Figures

2.1 Illustration of IoT architecture. 8
2.2 The relationship between big data and smart city. 11
2.3 CAP theorem illustration. 14
2.4 Model of storing data for a single measurement per row in Cassandra. . . 20
2.5 Model of storing data per date and associated measurements in rows in

Cassandra. 20

3.1 Model of approaches for a research process, from [67]. The red outline
indicates the strategy used in this master thesis. 36

4.1 A fraction of the csv file downloaded from NYC TLC. 40

5.1 Mean execution time of 30 repetitions of Query 1. 47
5.2 Execution time for each repetition of Query 1. 47
5.3 Mean execution time of 30 repetitions of Query 2. 48
5.4 Execution time for each repetition of Query 2. 48
5.5 Mean execution time of 30 repetitions of Query 3. 49
5.6 Execution time for each repetition of Query 3. 50
5.7 Mean execution time of 30 repetitions of Query 4. 51
5.8 Execution time for each repetition of Query 4. 51

xi

Abbreviations

IoT = Internet of Things
GHG = Green House Gas
ICT = Information and Communication Technology
ZEN = Zero Emission Neighbourhoods
NTNU = Norwegian University of Science and Technology
IT = Information Technology
D2C = Distributed-to-Centralized
F2C = Fog-to-Cloud
QoS = Quality of Service
WSN = Wireless Sensor Networks
RDBMS = Relational Database Management System
SQL = Structured Query Language
NoSQL = Non-Relation Database
TSDB = Time Series Database System
OLTP = Online Transaction Processing
XML = Extensible Markup Language
JSON = JavaScript Object Notation
CQL = Cassandra Query Language

xii

Chapter 1
Introduction

According to the United Nations Population Fund, there were approximately 7.7 billion
people in the world in 2019. By 2050, the population is expected to approach 10 billion and
an estimated 70 percent of these people will be living in urban areas [65]. Cities consume
between 60 and 80 percent of energy worldwide and are responsible for large shares of
the Green House Gas (GHG) emissions [4]. To meet new demands of sustainability, but
at the same time maintain quality of life in cities, new systems to manage and build smart
cities is required. The term ”smart city” is an approach to handle these new challenges by
making use of Information and Communication Technology (ICT).

At the same time as the population is growing, increasing amounts of people can ac-
cess the internet. At the end of 2019, about 60 percent of the world’s population were
internet users. In Europe, the number is heading towards 90 percent. Besides, the number
of devices each person is connecting to the internet is growing. With the emerge of IoT,
not only computers and smartphones are connected to the internet, watches, smart home
devices, and even refrigerators or coffee makers are connected to the internet. Also, sen-
sors and monitoring devices can be found everywhere for instance in locks, parking, or
traffic lights. According to [37], in 2020, 24 billion ”things” are on the internet.

Both increased population, increase in people accessing the internet and increased
number of devices each person is connecting to the internet, the amounts of data, is dra-
matically increasing. How these huge amounts of data are handled will be an important
factor in the coming years, and will also be an important success factor as to how valuable
this data proves to be. The time-series format of much of the data generated by smart cities
and IoT creates some additional challenges as storing this data needs some new considera-
tions. Choosing an appropriate database management system to store and manage the data
generated by a smart city is important because it can have a large impact on the efficiency
and intelligence of smart city platforms.

1

Chapter 1. Introduction

1.1 Background and motivation
Smart cities are cities utilizing ICT to be smarter and to achieve higher quality of living
and sustainability. The Zero Emissions Neighbourhood (ZEN) 1 center at NTNU aims to
create Zero Emission Neighbourhoods contributing to a more sustainable society facing
climate change. In a research project in collaboration with ZEN researchers, in the fall of
2019, the author of this thesis investigated ICT architecture in smart cities with a focus
on data management [36]. Wanting to continue within the same research area, this thesis
extends the research in [36] by looking further into database systems that can be suited
for the data gathered by smart cities. IoT has emerged as the most important technology
within smart cities and thousands of sensors within cities are every minute and second
gathering enormous amounts of heterogeneous data, often in a time-series format. This
data needs to be stored and handled efficiently to produce value. Researching ways to
handle this has gained popularity over the recent years as the handling of these amounts
of data has shown to be complex. With a theoretical background from database systems
and with a background on smart cities and IoT, there is a hope that this master thesis can
be a positive contributor to the research field of smart cities and IoT, contributing to the
database system domain.

1.2 Research questions
The research questions defined below will be answered in Chapter 6. The questions have
been motivated by the background described in the section above and will work as moti-
vation and guidelines for the research in this thesis.

RQ1 What database systems are researched in the literature about IoT data in smart
cities and time-series data?

RQ2 What are the requirements for IoT and time-series data management in database
systems?

RQ3 What databases are suited for IoT and time-series data based on the requirements
found in literature, in RQ2?

RQ4 How do the databases from RQ3 perform in experiments testing the requirements
for data management in IoT related to smart city use, compared to the expected perfor-
mance from literature?

1.3 Research method and research design
To answer the research questions they will be followed from the top down. First, there will
be conducted a literature review to gain an understanding of the theory which is relevant

1https://fmezen.no/

2

1.4 Research scope

for the thesis, trying to answer research questions RQ1 and RQ2. Secondly, a study to
understand the capabilities and architecture of three popular open-source database systems
is conducted related to the findings in the literature about the requirements of IoT data
management in RQ3. Finally, a scientific experiment investigating the fitness of the three
databases in light of IoT requirements will be performed and analyzed.

1.3.1 Theory and Related Work
It is important to gain a deeper understanding of several aspects to be able to make some
recommendations about database systems suited for smart cities. Firstly, knowledge about
smart cites, how they operate, and characteristics are needed. Second, an understanding of
IoT and what types of data that is handled in IoT is important to take on the next part which
is database systems. Database systems and some important concepts will be discussed to
know which best fits the characteristics of IoT data in smart cities. A literature review
of databases will be conducted to find the most relevant databases and storage systems in
theory. This will form the basis for the next phase of the project.

1.3.2 Implementation and Experiments
In this phase, there will be important to do experiments relevant to the research found in
the first phase of the project. Testing relevant queries to find which database performs best
under the given requirements. It is important to find a dataset that is similar to the one
that will be found in smart city scenario so that the experiments will have real value. The
research is limited to finding out what database performs better in the case that the data is
inserted into the database as they are with limited use of manipulation and handling of the
data. MySQL 2 and the two NoSQL databases, Apache Cassandra 3 and MongoDB 4 is
tested in the experiments. By conducting the experiments the hope is to answer research
question RQ4.

1.4 Research scope
The main scope of this thesis is to gain an understanding of what database system is suit-
able for storing IoT data from smart cities, which typically is in the format of time-series.
More specifically, this research concentrate on the centralized data management part of the
ICT architecture, where all the city data will be stored. Firstly a literature study is done to
(1) Find relevant research in literature about database systems used in smart cities and IoT.
(2) Requirements for managing data in IoT and time-series data are research in theory in
the relevant literature. Three popular open-source database systems, MySQL, MongoDB,
and Cassandra, are evaluated in detail on the requirement found in the literature review.
Finally, experiments evaluating the performance of the three database systems in terms
of execution times are presented. The experiments are limited to the case that minimal
processing and managing of the data is done to the data before entering the database.

2https://www.mysql.com/
3http://cassandra.apache.org/
4https://www.mongodb.com/

3

Chapter 1. Introduction

1.5 Limitations
One limitation of the research in this thesis is the number of databases researched in detail.
Before the research, there was already an idea of wanting to investigate MongoDB in par-
ticular, as well as Cassandra. As a result of this, the literature review has been dragged in
that direction. A broader analysis of all relevant databases could be a solution to overcome
this limitation. This is mentioned as a recommendation for future work. Another limita-
tion that is related to the previous point, is the execution of the research strategy ”literature
review”. Though search terms were developed before doing the research and the studied
articles were saved, no technique for conducting a literature review was followed in detail.
As a result, the process might have been both more time consuming for the author, but also
some interesting papers might not have been studied.

1.6 Disposition
In Chapter 2, the background information and literature review of relevant information is
presented. Section 2.1 contains definitions of some relevant theory and ICT architecture
related to smart cities. In Section 2.2, IoT and time-series data is defined. Also, the
requirements of data management in IoT are presented. Storage systems are presented and
discussed related to IoT and time-series data storage in MySQL, MongoDB and Cassandra
in Section 2.3. The data management requirements found in Section 2.2.3 is discussed in
light of the three database systems MySQL, MongoDB, and Cassandra in Section 2.3.4.
Finally, Chapter 2 ends with a review of related work. In Chapter 3, the methodology
and research strategies used in the thesis is presented. Furthermore, in Chapter 4 the
experimental setup is explained for the performed experiments. Chapter 5 contains an
evaluation of the work and the goals and expected results are discussed up against the
literature. Finally, Chapter 6 answers the research questions, shows the conclusions made
in the thesis, and discusses some future work prospects.

4

Chapter 2
Background

2.1 Smart Cities
A single definition of the term ”Smart City” has not yet been agreed upon, despite being
popular among researchers the recent years. The properties that must be fulfilled for a
city to be considered ”smart” is developing as new technologies and opportunities arise
each year. Several surveys are trying to make a common understanding of the term and
to find a single definition for the expression [4, 38], jet no clear and consistent definition
of a smart city among different stakeholders exists to this day. The term smart city was
first introduced in the 1990s and at that time the focus was on the significance of new ICT
concerning modern infrastructures within cities [4]. A common understanding of the term
smart city was in 2012 stated by the European Commission: ”to use diverse technologies
to help in achieving sustainability in smart cities and a general goal of smart cities is to
improve sustainability with help of technologies,” [2].

Because the population on earth and especially urban populations are growing fast,
cities have a huge impact on the environment. In 2020 about 80 percent of the population
of the world is living in urban areas [4] and cities together consume between 60 and 80
percent of energy worldwide and are responsible for large shares of the Green House Gas
(GHG) emissions. Pollution and sustainable living have become a large problem in many
large cities and the need for systems regulating all aspects of city living is growing. Smart
cities aim to tackle these problems with the use of ICT. A short description of possible
domains within a smart city is listed below, from [78]:

• Smart Parking: Monitoring of available parking in a city.

• Structural Health: Monitoring of material conditions in buildings, bridges, and
historical monuments.

• Noise Urban Maps: Monitoring of noise from bar areas or traffic.

• Traffic Congestion: Monitoring of vehicles and public transport to optimize driv-
ing, bicycling, and walking routes.

5

Chapter 2. Background

• Smart Lightning: Intelligent and weather adaptive street lights.

• Waste Management: Detection of rubbish levels in containers to optimize trash
collection routes.

• Intelligent Transportation System: Smart roads and intelligent highways with
warning messages and diversions according to climate conditions and unexpected
events like accidents or traffic jams.

Smart city initiatives are being developed in cities all over the world, many of them
still being in an early pilot stage. The ZEN center at NTNU and SmartSantander, in the
city of Santander in Germany, are two examples of smart city pilot platforms.

2.1.1 ICT Architecture in Smart Cities

Information and communications technology (ICT) architecture is an extended term of in-
formation technology (IT). ICT involves hardware, software, network devices as well as
any product that will store, retrieve, manipulate, transmit, or receive information electron-
ically or digitally. ICT architecture involves the description, coordination, and structuring
of an enterprise’s ICT systems. ”The goal of using ICT is to improve existing systems and
functionalities by making them more efficient, user-friendly, or in general more citizen-
centric,” [36]. In smart cities, ICT architecture is a popular research field because of the
importance of well structured, and efficient architecture to handle the complex manage-
ment of the technology in cities generating vasts amounts of data. In the preceding subsec-
tions, popular ICT architecture used in state-of-the-art smart city platforms are explained.

Centralized computing

Centralized computing, also referred to as cloud computing, is a schema where all the
computing hardware is located in one same geographical location. Based on NIST 1

definition ”cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources such as networks,
servers, storage, applications, and services, that can be rapidly provisioned and released
with minimal management effort or service provider interaction,” [51]. Having this large
computational resource is cheap and leads to the shared utilization of equipment. It also
opens up huge opportunities for utilizing big data. The main drawback of cloud computing
is the high latency which may occur between IoT devices and a cloud that is located far
away from each other. The cloud could be located in another county, or even in another
continent. Other concerns in cloud computing are safety. Because all the resources are
located at the same spot it could be easier for an attacker to compromise a large volume
of data. However, most cloud providers have a high focus on security and offer built-in
security services for the user’s applications.

1U.S. National Institute of Standards and Technology

6

2.1 Smart Cities

Distributed-to-centralized computing

In an initial work on database management systems and ICT architecture in smart cities,
[36], the following was explained about distributed-to-centralized ICT architecture.
”Distributed-to-centralized (D2C) computing also called fog-to-cloud (F2C) computing
is a relatively new concept that can be seen as an extension of cloud computing. Cloud
computing lacks efficient support for the development of IoT services with strong require-
ments in latency, security while minimizing the traffic load in the network” [48]. In D2C
architecture the computation is moved closer to the edge of the network. A cloud is still
included in the architecture, but data that requires low latency are moved to the edge of
the network. At the same time, the processing time of the cloud is reduced because the
fog relieves the cloud. In smart cities, the use of IoT is a must these days. Utilizing fog
architecture in IoT applications can lead to several advantages:

• Provide low latency services.

• Offers location-aware services.

• Provides better scalability which supports a widely geographically distributed ap-
plication.

• Offers better Quality of Service (QoS). Fog nodes can support the QoS requirements
of services locally.

• Provides more efficient communication with other systems either through the cloud
or other fogs.

• Supports better mobility and access control for different types of mobile devices
as they travel around the city. The ”traveling” mobile device can connect to more
nodes around the city.

2.1.2 Zero Emission Neighborhoods

The ZEN Research Center is a smart city initiative at NTNU, which aims to reduce green-
house gas emissions of neighborhoods towards zero within its life cycle. Four points have
been developed as keys to achieve this goal:

1. Plan, design and operate buildings and associated infrastructure components toward
zero life cycle GHG emissions.

2. Become highly energy-efficient and powered by a high share of renewable energy
in the neighborhood energy supply system.

3. Manage energy flows and exchanges with the surrounding energy system smartly
and flexibly.

4. Promote sustainable transport patterns and smart mobility systems.

7

Chapter 2. Background

Recently a high focus of the ZEN center has been on D2C computing. Traditionally,
data management in smart cities has focused on centralized facilities based on cloud com-
puting technologies, but to benefit from the advantages discussed in the section above, the
D2C architecture is being developed in the ZEN pilot. Managing the data in this type of
architecture is highly complex and the ZEN center still lacks research on databases that
are suited for the data that is gathered and stored from cities. In [36], preliminary research
was initiated on databases that are suited for ZEN center: ”What is important when se-
lecting the database is that it must be able to handle large amounts of data from the city.
It needs to be scalable as cities are growing and there is an increased use of IoT devices
which again increases the volumes of data. The database must handle multiple data types
[77, 18], coming from several different IoT devices generating heterogeneous data [31], it
must be able to handle both historical and real-time data [31, 64, 7, 18]. Also, the database
must be able to integrate with some data processing platform that can provide even more
analytic processing power to handle big data management, like Spark or similar systems
[77, 19, 18].”

2.2 Internet of Things

Figure 2.1: Illustration of IoT architecture.

In 2014, The Gartner Group predicted that by this year, 26 billion things are connected
to the internet [67]. These days, there are not only computers and laptops that are con-

8

2.2 Internet of Things

nected to the internet. Also, smartphones, smartwatches, home lighting, or even coffee
makers or fridges can be connected to the internet. The same goes for devices on a com-
munal level, such as traffic lights, surveillance cameras, parking spots, etc. The sum of
all these devices results in a continuous stream of large amounts of data. This raises the
challenge of storing and processing the data efficiently.

The applications of IoT are endless. In [78], an overview of the applications of IoT
is presented. They divide the applications into 14 domains: Transportation, Smart Home,
Smart City, Lifestyle, Retail, Agriculture, Smart Factory, Supply chain, Emergency, Health
care, User interaction, Culture and Tourism, Environment, and Energy. Among them, we
can find smart homes, and smart cities which were described in more detail in Section 2.1.

In Figure 2.1, the architecture for IoT is described. In the bottom layer, the ”things” are
collecting data, such as sensors or cameras, or even data from social media platforms such
as Twitter or Facebook. The second layer is the network communication layer connecting
the devices to the above layer that is the middleware layer containing the storage and
analytic power. In the top layer, is the application layer which can be applied to several
different domains which are discussed below, for instance, smart city.

Because of all the different sources of data in IoT, there are a huge number of different
types of data. Some data is discrete, some are continuous, some data is automatically
generated and some might be generated by humans. In [20], IoT data is classified in the
following areas:

• Radio Frequency Identification (RFID): This is identification and tracking using
radio waves where RFID tags can be inserted into objects and used to transmit and
receive information.

• Addresses/Unique Identifiers: Objects in IoT need to be uniquely identified with
IP addresses. As the number of IoT devices grows, so does the number of IP ad-
dresses that are needed.

• Descriptive data about objects, processes, and systems: Metadata is data about
data and is essential to enable users to find and access the appropriate data. Metadata
is not just collected about objects, but also about processes and systems.

• Positional Data and Pervasive Environmental Data: Provides the location of par-
ticular objects with GPS or a local positioning system.

• Sensor data - Multidimensional Time-Series Data: Much of the data in IoT is
collected from sensors and enters through wireless sensor networks (WSNs). Sensor
data is most often at a format of time-series because data about the environmental
status at a location is captured at a specific time. Often data from sensors are also
wanted to be queried related to a certain time interval.

• Historical Data: As time passes data captured from the sensors becomes histor-
ical. Volumes become a challenge and therefore it is important to decide which
data should be kept in the systems. Data can be archived in data warehouses if it is
needed frequently and stored in less accessible structures if data is rarely accessed.

9

Chapter 2. Background

• Physics Models - Models that are templates for reality: Physics models will need
to be represented so that they can be accessed and used in algorithms as needed by
the applications.

2.2.1 Time-Series Data
Time-series data is data that is collected over a time interval as points over a sequence of
time. Often the time-series data is stored in the database with indexing on the timestamp
rather than an id. Though time-series data comes in many different formats like expressed
earlier, some properties are true for all times series [44]:

• The time-series data have no relations to each other. Though a lot of the time-series
data can highly correlate.

• The data points are immutable. This means that as the data is generated and stored,
there is no need for updating or modifying of the data points.

• Data points typically arrive in a timely order, so that the functionalities of the storage
mechanisms only needs an append functionality.

• Time is the dominant and primary index, and the time interval between the data
points is usually in a regular and fixed interval.

One of the most dominant sources of data in IoT is sensors. Sensor data enters IoT
through WSN [20]. WSNs are easy to set up for monitoring all sorts of events and stan-
dards have been developed to support the setup of these.

Some sensors continuously monitor the status of some environmental phenomena, for
example, temperature or air conditions. In this case, decisions have to be made on how
frequently the data should be captured, at every measurement, or at certain time intervals.
In some cases, it might be useful to obtain data only when the sensor is queried.

2.2.2 Big Data and IoT
Big data became a popular term a few years ago, as more applications are continuously
generating more data. A set of data is considered ”big” when it meets the “three Vs”
requirements: Volume, Variety, Velocity [33]. Two other characteristics have been added
to the V’s, Veracity, and Value. The five Vs of big data is explained below:

• Volume: The volume of data refers to the size of data managed by the system. Data
that is generated automatically, like data from IoT devices or sensors are typically
voluminous. Also, data generated from other fields withing smart cities can be con-
sidered voluminous, such as traffic congestion with monitoring of vehicles or public
transport.

• Variety: Big data includes structured, semi-structured, and unstructured data. The
sources of data are coming in from all types of places, such as click-streams on
social media, location data, image data from satellites, e-mails, or videos to name
some. In smart cities, this is most definitely the case as already explained in Section
2.1.

10

2.2 Internet of Things

• Velocity: Velocity refers to the speed at which data is created, accumulated, in-
gested, and processed. For the data to be considered as big data, the velocity of the
generated data must be large and the time intervals at which new data is generated
is small.

• Veracity: Veracity has two features: the credibility of the source, and the suitability
of data for its target audience. The data coming in from numerous sensors and
devices have a variety of trustworthiness. The data must go through some degree of
quality testing and credibility analysis. Many sources can be uncertain, incomplete,
and inaccurate, this goes for especially sensors, which often generate low quality
and untrustworthy data.

• Value: The data that are generated and analyzed by the system must be able to
generate some value for the organization which gathered the data to be considered
as big data. In a world where data is gathered everywhere, the question if the data
can generate value might only be dependent on the techniques of processing and
analyzing the data, though the credibility of data sources can decrease its value.

Figure 2.2: The relationship between big data and smart city.

IoT may be classified as big data as all the first three properties described above is
present. Big data is an important domain within smart cities as well. In Figure 2.2 the
relationships between big data systems and smart city applications, such as smart trans-
portation, smart grid, and energy is demonstrated. Though big data have almost endless
capabilities, it comes with a set of issues and challenges. In the next section, requirements
for the management of IoT data are presented and discussed.

2.2.3 Data Management Requirements
As IoT is a complex research field, many properties must be present to manage the IoT
data. In this section, requirements for the management of the IoT data relevant to database
systems are presented. Seven requirements for data management in IoT applications were
considered in [6].

11

Chapter 2. Background

1. Data heterogeneity: As already mentioned in the section on IoT the data coming
from IoT devices is highly heterogeneous. The database systems that are used in
IoT applications must be able to handle this.

2. Semantic interoperability: Different devices, agents, and applications in IoT must
be able to exchange data and knowledge. In IoT, the same data can be used in many
applications. Hence, the database should be easily understood by the user to that
they should have a uniform format with modeling languages, query languages, and
so on.

3. Scalability: A scalable data management system is a system that can execute large
requests with low response times and redistribute data on the new hardware if nec-
essary.

4. Real-Time Processing: IoT applications are often reliable for processing real-time
data. The data will need to be stored and processed in a highly responsive manner,
which means that performance is important.

5. Security: Privacy and security are important in IoT data management because the
data which is gathered by IoT devices might contain private and sensitive informa-
tion.

6. Spatial data handling: A lot of the data in IoT are data generated by moving
devices, such as mobile phones. Hence there is a need for being able to handle
geospatial data describing the devices with relation to the geographic location in a
spatial referencing system (e.g GPS).

7. Data aggregation: Aggregation of data coming from multiple sources are required
to both analyze the data and generate valuable information, and to eliminate redun-
dancy so that only the most critical and useful data is stored.

In this thesis, the handling of spatial data is not the focus and the will not be investi-
gated any further than to chart the capabilities of the databases to handle this. Furthermore,
some other characteristics have been established in [82]. The following properties of IoT
data must be treated by the database system to improve the efficiency of the storage:

1. Massive data: This point has already been mentioned in the above requirements.

2. Data is ordered: This point is closely related to time-series data, as data from for
instance sensors often are marked with a timestamp. It is natural to order this data
and insert it in the correct order in the database.

3. Time based data retrieval: Typically queries on IoT data are related to time and
the database system should be able to handle queries based on time intervals.

4. Data rarely changes: After a sensor or other IoT devices have read data and is
inserted into the database, there is rarely a need to change it. This means that con-
sistency is typically not an issue, because the user will very unlikely want to retrieve
old data instead of new data.

12

2.3 Storage Systems

5. IoT data expires: As previously mentioned, IoT data is most often used to monitor
and detect specific events. When this is the case old data is not useful and can be
deleted or aggregated.

Another research examining the functionalities required by an IoT database system is
found in [10].

1. Simultaneous users support: The applications which contain the IoT data, often
require to be used by a large number of users simultaneously. The database system
must be of a type that can handle high workloads and multiple requests at the same
time.

2. Clustering, management tools: A cluster management tool is a software program
that helps manage a group of clusters through a graphical user interface or by ac-
cessing a command line. With this tool, it is possible to monitor nodes in the cluster,
configure services, and administer the entire cluster server [3]. In IoT, this is impor-
tant because of the vast amount of data and the need to monitor nodes in the cluster
to make sure that the data is managed properly.

3. Asynchronous notifications: In IoT database system asynchronous notifications
are important so that a server is not blocked for long periods, waiting for receivers
to complete notification handling.

4. Triggers and Stored procedures: A trigger in a database system is a stored proce-
dure that runs automatically when various events happen, such as an update, insert,
or delete. Stored procedures are a defined set of SQL statements stored in a rela-
tional database management system so that it can be used by multiple programs.

5. Transactions and transaction rollbacks: Rollbacks are important for a database
system to be able to recover from a crash. By rolling back the database can the
restored to a consistent state.

6. JSON data types: There are several advantages of utilizing JSON data types. The
syntax is widely known and easy to use, in addition to providing fast responses. It
has a wide range of supported browser compatibility and the applications made with
the coding of JSON does not require much effort to make it all browser compatible.
Furthermore, JSON is a well-suited tool for sharing data of any size, even videos,
and audio, which proves to be well suitable for a smart city domain with highly
heterogeneous data.

7. Aggregation functions: Are already discussed in previous requirements.

2.3 Storage Systems
In this section, different types of storage systems are introduced. First, the relational
database MySQL is presented. IoT in relational databases is discussed before NoSQL
databases are defined. The two NoSQL databases Cassandra and MongoDB are presented
before providing a short section about Time-Series Database Systems (TSDB). The IoT

13

Chapter 2. Background

data management requirements, and requirements for time-series data, found in Section
2.2.3 and Section 2.3.3 are summarized in Table 2.2 and 2.3 and discussed concerning
MySQL, MongoDB and Cassandra. Furthermore, database systems found in smart city
literature is presented. Finally, IoT and cloud computing is discussed and some popular
cloud platforms are mentioned.

Figure 2.3: CAP theorem illustration.

CAP Theorem CAP is used to describe some desired properties of databases with repli-
cation. Each letter refers to one desired property, Consistency (among replicated copies),
Availability (in the system for reading and write operations) and partition tolerance (in the
face of the nodes in the system being partitioned by a network fault)[32, p. 889]. The
CAP theorem states that it is not possible to achieve all three of the desirable properties
- Consistency, Availability, and Partition tolerance, in Figure 2.3 - at the same time in a
distributed system with data replications [32, p. 889]. In a system with data replication as
the ones in NoSQL systems, concurrency control is much more complex and thereby also
keeping up the ACID properties of transactions that are running concurrently. In NoSQL
systems, one would, therefore, need to choose two of the properties which are the most
important for your application. Many NoSQL systems choose to exclude the consistency
property and rely on the system being eventually consistent. Recall in Section 2.2.3, it was
mentioned that for applications relying on time series data, the consistency was not seen
as an important factor.

2.3.1 RDBMS

Relational databases are widely known as SQL databases, named after the query language
used in relational databases [45]. The main construct of representing data in the relational
model is a relation. A relation consists of a relation schema and a relation instance. The
relation instance is a table, and the relation schema describes the column heads for the
table [70].

14

2.3 Storage Systems

MySQL

MySQL is one of the most popular Relational Database Management Systems (RDBMS).
It is open-source and is used by many big companies across the globe. MySQL enables
users to deliver high-performance and scalable Online Transaction Processing (OLTP) ap-
plications. ”MySQL is an ACID-compliant database and aims to deliver reliability, per-
formance, and ease of use,” [22].

Indexing is an important feature in MySQL. Indexes are used to find rows with specific
column values quickly. Without an index, MySQL must begin with the first row and then
read through the entire table to find the relevant rows. The larger the table, the more these
costs [24]. Most MySQL indexes are stored in B-trees, except indexes on spatial data
types, that use R-trees. Spatial data in relational databases can be saved according to ded-
icated projects and needs, even by adding additional columns with coordinates describing
the facts gathered. In [68], standards are explored to minimize problems that might occur
when using this method in databases. These problems can involve difficulties in exchang-
ing or transferring data. Most relational databases have extensions for handling spatial
data, such as Oracle Spatial. MySQL uses MySQL Spatial extension, which implements a
standard OpenGIS and only provides 2D dimensions without reference sets [68]. New in
MySQL is an Enterprise Edition that enables users to interact with the database through
Document Store, making the database able to handle both SQL and NoSQL [23]. This
function will not be investigated further in this thesis as open-source software is the focus.
But it is worth mentioning because this new addition to the MySQL system could have a
big potential within IoT data management.

Storing time-series in MySQL

Whenever new data is added to a MySQL or relational database, a new record is created.
For time-series data this new record will have the timestamp as a key. This leads to in-
creased cardinality of the table whenever new data is added [28]. The more data that is
stored in the tables the bigger the table gets, which again increases the cardinality as each
update to the database is an update of a new time-series entering the storage. One approach
that has proven to be reliable for handling high cardinality in time-series data, is using a
B-tree structure for indexing of data.

IoT in relational databases

Though NoSQL databases are widely accepted as the norm for IoT data management,
relational databases have been studied for IoT applications by many researchers. In Section
2.3.5 about database management systems in smart cities, some smart city platforms have
implemented their pilots with relational databases such as MySQL. [31] even found that
the performance of MySQL and MongoDB on their platform performed equally well.

In IoT, an important factor, which already have been established is the importance of
having scalable applications. The database management system needs to scale well as the
data entering IoT applications are increasing. In relational databases, vertical scalability
is supported. Vertical refers to the ability to increase the performance of a single node
by adding resources such as memory or processors to the already existing node. The

15

Chapter 2. Background

main advantage of vertical scalability is that it consumes less power compared to running
on multiple servers and reduces administrative efforts as we need to handle and manage
only on system. ”Moreover, the implementation is easier, reduces software costs and
application comparability is retained,” [37].

Another property that is important to handle within IoT is faster data retrieval. In
relational databases, tables are linked together. To retrieve queries, join operations have to
be made, creating views. This process is time-consuming, unlike NoSQL databases which
often store data in the form of objects that are retrieved with all related data, eliminating
the time-consuming join process.

Many IoT applications are gathering and responsible for storing sensitive data that
need to be protected. Properties like security, authentication, and integrity are important
for the database management system to handle so that sensitive data are not compromised.
As relational databases are experienced and mature, most of these issues are already taken
care of in SQL. Such security concerns may not be addressed in many NoSQL systems,
according to [72].

2.3.2 NoSQL

Non-relational databases have grown in popularity the recent years and are generally re-
ferred to as Not Only SQL. Most NoSQL systems are distributed storage systems and have
a high focus on performance, availability, data replication, and scalability as opposed to an
emphasis on immediate data consistency, powerful query languages, and structured data
storage [32, p.883], like relational systems as described in the section above.

Below, characteristics of NoSQL systems from [32] are defined and discussed whether
they are relevant to IoT data in this thesis:

• Scalability: Two types of scalability exist for distributed systems. Vertical and
horizontal scalability. In NoSQL systems, horizontal scalability is used and when
the system needs expanding, more nodes are added to expand data storage as the
volume grows. On the other hand, vertical scalability refers to utilizing the same
number of nodes to expand. This was already explained in Section 2.3.1. In IoT,
some applications might find that the amounts of data at some point, will exceed the
capacity of the fixed number of nodes and there is a need for horizontal scalability.

• Availability: Many systems using NoSQL databases are reliable for being highly
available. To meet these requirements, data is replicated over two or more nodes to
make sure that if one node fails, data is still available on other nodes. Replicating
data over several nodes can also improve read performance, but on the other hand,
write performance might be compromised because each update must be applied to
multiple nodes. This can be solved by not requiring serializable consistency, so
eventual consistency can be used.

• Replication Models: In NoSQL systems either master-slave or master-master repli-
cation is used. Each technique has its advantages and disadvantages which can affect
the consistency of the database similar to the previous point.

16

2.3 Storage Systems

• Sharding of Files: Sharding, also known as horizontal partitioning is used com-
bined with replicating the shards to improve load balancing. Besides, it can improve
data availability. In many NoSQL applications, files can have millions of records
and these records can be accessed concurrently by thousands of users. To offset the
load on one single node, the records are partitioned on several nodes.

• High-Performance Data Access: To achieve higher efficiency of finding individual
records among millions of data records in a file, either range partitioning or hashing
on object keys is used.

• Not requiring a schema: In most NoSQL systems a semi-structured, self-describing
data is used to provide higher flexibility as opposed to relational systems. In IoT,
this point is a very important as data from IoT devices is highly heterogeneous.

• Less powerful query language: Many applications using NoSQL systems do not
require powerful queries. Many only require the CRUD (Create, Read, Update,
Delete) operations, and having the rich query language such as MySQL for relational
databases might not be necessary for IoT.

• Versioning: Some NoSQL systems require functionality to store the timestamps
of when the data was created. In IoT, especially time-series data, a timestamp is
already existing related to the data being created when the data is recorded by, for
instance, a measuring device.

In Table 2.1, an overview of relational and non-relational databases is shown. It
demonstrates what types of systems the database systems are most suited for, scenarios
in which they are suited for, how they scale, as well as different data models, which are
already mentioned in the above sections. Note that IoT applications are listed in the sce-
narios of use of NoSQL applications, whereas for SQL the use case scenarios are more
centered around management systems.

Categories of NoSQL systems

Though there are some common properties for all NoSQL databases as demonstrated
above in Table 2.1, four main categories of NoSQL systems exist. Each of these has
different properties and are suited to serve different applications:

• Document-based NoSQL systems: In document-based NoSQL systems data is
stored as collections of similar documents. There is no requirement to specify
schema, the documents are specified as self-describing data. The documents can
have different data elements and they can be stored in various formats, such as XML
(Extensible Markup Language) or JSON (JavaScript Object Notation) [32, p.890].
MongoDB or CouchDB 2 are examples of document-based NoSQL systems. Be-
cause of the flexibility of the schema of document-based NoSQL systems, they can
are initially seen as a good fit for highly complex IoT data.

2https://couchdb.apache.org/

17

Chapter 2. Background

Table 2.1: Overview of relational (SQL) and non-relational (NoSQL) database, as presented in [53].

NoSQL or non-relational SQL or relational

BEST FOR

• Handling large, unrelated, indetermi-
nate, or rapidly changing data.

• Schema-agnostic data or schema dic-
tated by the app.

• Apps where performance and avail-
ability are more important than
strong consistency.

• Always-on apps that serve users
around the world.

• Handling data that is relational and
has logical and discrete requirements
that can be identified in advance.

• Schema that must be maintained and
kept in sync between the app and
database.

• Legacy systems built for relational
structures.

• Apps requiring complex querying or
multi-row transactions.

SCENARIOS

• Mobile apps.

• Real-time analytics.

• Content management.

• Penalization.

• IoT applications.

• Database migration.

• Accounting, finance, and banking
systems.

• Inventory management systems.

• Transaction management systems.

SCALE • Scales data horizontally by sharding
across servers.

• Scales data vertically by increasing
server load.

DATA MODEL

• Database types: key:value, docu-
ment, column, and graph databases.

• Stores data depending on database
type.

• Database type: tables of rows,
grouped into relations.

• Uses Structured Query Language
(SQL).

• Stores data as rows in tables; related
data stored separately and joined for
complex queries.

• NoSQL key-value stores: The idea behind key-value stores is relatively simple, the
key is a unique identifier associated with a data item and is used to locate this data
item rapidly. The value is the data and can have a different format for each database
system. In many key-value stores, there is no query language but rather a set of
operations that can be used by the application programmers [32, p.896]. Examples
of key-value data stores are DynamoDB 3 and Voldemort 4.

• Column-based or wide column NoSQL systems: The basic idea behind column-
oriented databases is that one attribute of a set of datasets is stored in one unit (in
columns), as opposed to row-oriented store (like in SQL) where the attributes are

3https://aws.amazon.com/dynamodb/
4https://www.project-voldemort.com/voldemort/

18

2.3 Storage Systems

stored in one unit [50]. An example of column-based NoSQL systems is Hbase 5.

• Graph-based NoSQL systems: In graph databases, the data is represented as a
graph. A graph is a collection of nodes and edges representing the types of entities
and relationships they represent. Neo4j 6 is an example of a graph-based NoSQL
system [32, p.904].

In the preceding section, the focus is on two open-source NoSQL databases, which of-
ten are researched when studying IoT data management, Cassandra and MongoDB. Some
important architectural features are explained as well as a discussion related to IoT and
time-series data.

Apache Cassandra

Cassandra is a database that is hard to categorize into one of the four categories of NoSQL
systems mentioned above. It is an open-source distributed database that is written in Java.
Cassandra can fit both structured and unstructured data because of its ability to scale elas-
tically as well as linearly [71]. Cassandra Query Language (CQL) is the query language
of the Cassandra database. The syntax of CQL closely resembles the syntax of MySQL.
The performance of Cassandra increases as the number of nodes in the cluster increases.
One of the main strengths of Cassandra is the fast write speed while not sacrificing read
efficiency [30].

Cassandra is one of the databases that are derived from BigTable among HBase and
RocksDB etc. [29]. The storage structure that is used in these systems is called Memtables.
In Memtables recently inserted data stays in memory. The Memtables are not flushed
to disk until it is either full, reached the maximum age, or the user specifies to do so.
After the flush, the data is put into Sorted-String Tables (SSTables) on disk. This structure
provides Cassandra with high write performance. Compaction of SSTables is the operation
of merging two or more SSTables. It is primarily necessary so that when a read operation
is performed, there is no need to seek multiple SSTables. Because the SSTables are already
sorted, the operation is I/O bound. That being said, if compaction is performed frequently,
it becomes much too I/O intensive which might affect the system performance.

Another important feature of Cassandra is indexing. An index makes it possible to
access data in Cassandra using attributes other than the partition key. Using indexes pro-
vides benefits such as fast, efficient lookup of data matching a given condition [27]. The
indexes provide fast retrieval of data when queried by the row key without the need of cre-
ating explicit indexes. In Cassandra, each node maintains all indexes of tables it manages.
Besides, each node knows the range of keys that are managed by the other nodes. This
way requested rows are located using only relevant nodes. The indexes are located in a
separate table from the data in which they belong to. Another important thing to know is
that additional indexes can be made over different fields [1].

Storing Time-Series Data in Cassandra Cassandra has several patterns for storing
time-series data and is often mentioned as one of the primary choices when using NoSQL

5https://hbase.apache.org/
6https://neo4j.com/

19

Chapter 2. Background

databases to store time-series data in the literature. Data in Cassandra is written sequen-
tially to disk. The simplest model for storing time-series data is creating a wide row of data
for each measurement [63]. By storing data this way, in a partition, cells are by default
naturally ordered by the cell’s name. So the time-series data will get data sorted ”for free”
[66]. Here each new timestamp and measurements get its column. E.g.:

SensorID , { t imes tamp1 , v a l u e 1 } , { t imes tamp2 , v a l u e 2 }
. . . { t imestampN , valueN }

A Figure demonstrating how this is stored in Cassandra is shown in Figure 2.4.
Cassandra has a feature that enables the possibility of limiting the row size. This is

useful if the time interval at which the data is stored into the database is very small. If
this is the case it can be difficult to store the entire data in one single row, because the
number of columns would be endless as time goes. To handle this problem it is possible
to split a row into multiple rows, e.g. rows with the same ID, but a new row for each date
to be added to the primary key, in case the number of measurements each day is large. An
illustration of how this is done is shown in Figure 2.5 and below:

SensorID , Date { t imes tamp1 , v a l u e 1 } , { t imes tamp2 , v a l u e 2 }
. . . { t imes tamp24 , valueN }

Another useful feature when handling IoT data is to be able to remove no longer needed
data. In Cassandra, a feature is offered to handle this automatically [71]. In [63], this
functionality is referred to as the roll-back function. This can be useful in the case that the
storage is limited. In Cassandra, this feature is implemented with a Time To Live (TTL)
feature. The TTL can be created upon data insertion. When the TTL is up, the data will
be deleted from the database.

Figure 2.4: Model of storing data for a single measurement per row in Cassandra.

Figure 2.5: Model of storing data per date and associated measurements in rows in Cassandra.

Limitations Cassandra is known for its fast writes, but some problems are still related to
the write performance of Cassandra. As insert/append operations perform extremely well,
updates are conceptually missing in Cassandra, though an update function exists. When

20

2.3 Storage Systems

a value needs to be updated, in reality, a new entry is added with a younger timestamp.
Having this done many times over will take up much space. Also, it can affect read per-
formance as Cassandra might have to read through a lot a data on a single key to check
for the newest replica. That being said, compaction is performed to merge such data and
free up space. Also, Cassandra has some problems regarding reads. Querying data that is
not a partition key creates problems. The problem is that secondary indexes and SSTable
Attached Secondary Index (SASIs) don’t contain the partition key, which means there’s
no way to know what node stores the indexed data. It leads to searching for the data on all
nodes in the cluster, which is neither cheap nor quick. Another possible problem of reads
in Cassandra is the use of bloom filters. Though this storage structure can help retrieve
IoT queries faster, it can also lead to a waste of time and resources while searching in the
wrong places because of their probabilistic nature. Finally, Cassandra has a problem with
reading tables with many columns. If there are thousands of columns stored, the reads will
be very slow or might even not be possible to be performed at all [14].

MongoDB

Like previously mentioned MongoDB is a document-based NoSQL database that is highly
scalable and available. Documents are stored in collections and the documents provide
high flexibility of storage. Also, MongoDB has a rich query language compared to other
NoSQL databases, it implements many features of relational databases, such as sorting,
secondary indexing, range queries, and nested document querying [47].

When new files are created in MongoDB everything is flushed to disc, releasing mem-
ory. To increase the performance of MongoDB indexing of documents, is used. All doc-
uments are indexed automatically, but additionally, the user can specify indexes. All in-
dexes uses a B-tree structure [1]. Although indexing is important to achieve highly ef-
ficient reads, it may harm insert performance. Different types of indexes are offered in
MongoDB. Single field index, compound indexes, multikey index, hash index, and text
indexing.

The two most important capabilities of MongoDB is durability and concurrency. Dura-
bility is enabled by the creation of replicas. Master-slave replication is the replication strat-
egy used in MongoDB. The master can read or write, while the slave serves as a backup.
If the master node goes down, a slave with more recent data is promoted to master. The
replication of data from the master to slave is asynchronous, which means that all updates
are not done immediately.

Writes in MongoDB can either be done by INSERT, DELETE, or UPDATE operation.
For INSERT and DELETE, MongoDB either inserts or removes the corresponding docu-
ment keys from each index in the target collection. An UPDATE operation may result in
updates to a subset of the index on the collection, depending on the keys affected by the
update [62].

In MongoDB, like in Cassandra a feature making it possible to remove data that is no
longer useful is implemented. The model to do so is implemented by adding a ”Capped”
feature which is a parameter based on the number of records. This feature is specified
during the creation of a collection in contrast to Cassandra. Capped is a Boolean feature
that can be viewed as a fixed-sized collection that supports high-throughput operations.
Once the fixed-size collection is filled up, the oldest documents can be overwritten by

21

Chapter 2. Background

newer documents.

Storing time-series Data in MongoDB There are some different strategies when storing
time-series data in MongoDB. We already know that in MongoDB, data is stored in doc-
uments. One strategy that would most resemble the model utilized by RDBMS is storing
one document per event.

{ t imes t amp : ”2020 −02 −12 2 2 : 0 4 : 2 3 ” ,
t y p e : ” Tempera tu r e ” ,
v a l u e : 2 1 . 1} ,

{ t imes t amp : ”2020 −02 −12 2 2 : 0 4 : 2 4 ” ,
t y p e : ” Tempera tu r e ” ,
v a l u e : 2 0 . 9} ,

{ t imes t amp : ”2020 −02 −12 2 2 : 0 4 : 2 5 ” ,
t y p e : ” Tempera tu r e ” ,
v a l u e : 20 .8}

Using this strategy would lead to complications when reading data from the database.
Reading one minute of data would take 3600 seconds which would cause a lot of reading
latency if using a sensor transmitting data every second like in the example above [49].

Another strategy, taking advantage of embedding within a document is to store one
document per minute. An example of how this can be done is shown below. When using
this strategy, the number of reads would be eliminated drastically and latency would de-
crease. Besides, it is optimized for storage because writes will be faster as: for updates
(one per second) than for inserts (one per minute). Because instead of allocating a new
insert, a smaller update using the update() method in MongoDB, of the existing document
will take place.

{ t i m e s t a m p m i n u t e : ”2020 −02 −12 2 2 : 0 4 : 2 3 ” ,
t y p e : ” Tempera tu r e ” ,
v a l u e s : { 0 : 2 1 . 1 , 1 : 2 0 . 9 , 2 : 2 0 . 8 , . . . , 5 9 : 2 1 . 0}}

Two strategies can be used if data needs to be stored in a more compact format, with
one document per hour. In the first strategy, seconds are stored from 0 to 3599 for an
hour. With this approach, there is an extra workload during update operations. Another
approach is storing data at an hourly level in documents, but with nesting documents for
each minute. This approach is shown in an example below. It requires much fewer steps
for updates that the first approach.

{ t i m e s t a m p h o u r : ”2020 −02 −12 2 2 : 0 4 : 2 3 ” ,
t y p e : ” Tempera tu r e ” ,
v a l u e s : {

0 : { 0 : 2 1 . 1 , 1 : 2 0 . 9 , 2 : 2 0 . 8 , . . . , 5 9 : 2 1 . 0} ,
. . . ,
58 : { 0 : 2 0 . 1 , 1 : 2 0 . 2 , 2 : 2 0 . 3 , . . . , 5 9 : 2 0 . 0} ,
59 : { 0 : 2 0 . 0 , 1 : 2 0 . 1 , 2 : 2 0 . 3 , . . . , 5 9 : 2 1 . 0}
}

}

22

2.3 Storage Systems

Other advantages of using this compound method are not just the read latency, but the
collection size. The size of the collections is according to [57] up to ten times the size if
you store 28 days of time-series data in seconds as opposed to minutes. Also, the size of
indexes leads to poor scalability if time-series data are stored per second, where the storing
of minutes is 60 times smaller than per second.

Limitations According to [43], MongoDB reports scalability constraints as the amount
of data reaches hundreds of GigaBytes (GB). For the case of IoT and smart city time-series
data, this could show to be a problem. Another limitation of MongoDB is the memory
consumption of MongoDB due to the setup of MongoDB which stores the key name along
with every document. Besides, unlike in relational databases, joins are not possible in
MongoDB so in the case that joins are important to the application, this could be a huge
drawback. That being said, in IoT applications, like already discussed, queries are often
not too complex, and joins might not even be required.

2.3.3 Time-Series Database Systems
Time-series data is generated in IoT by devices at a large scale from billions of devices all
over the world. Some properties are special when handling time-series workloads com-
pared to typical database online transaction processing (OLTP) workloads. The writes in
time-series data are typically insets and not updates. Hence, the writes are insert-heavy
and are related to recent time ranges. Reads are typically on continuous time-ranges, not
random, and usually happen independently of writes and rarely in the same transaction.
Also, time-series insert volumes tend to be huge and are accumulated more quickly than
OLTP [80]. These properties, together with the characteristics presented in Section 2.2.1,
make the handling of time-series data different than OLTP. Because of this, the database
system might need some other characteristics than traditional databases. In [34], a list of
requirements for a database that stores data recorded as time-series has been made. The
requirements are listed below:

1. In-memory for value alerting: As the time-series data arrive in the system, the data
have to be compared to a trigger immediately to ensure that any threshold number
is not met. An example is a temperature measurement device, which could trigger
an alarm if the temperature reaches over 30 degrees.

2. In-memory for trend alerting: Data arriving at the database could also be com-
pared to previous values to detect trends. In the case of the previous example, an
alarm could be triggered in the case that a temperature sensor reports more that 10
degrees increase in a small amount of time.

3. In-memory for applications and dashboards: Applications and dashboards need
live data in memory to support rapid and continual display updates.

4. Fast access for real-time analytic, machine learning and AI: Business intelli-
gence programs, machine learning algorithms and AI programs need fast respon-
siveness from the data store. This may require data to be in-memory, heavily cached,
or efficiently accessed from a combination of memory and disk.

23

Chapter 2. Background

5. High concurrent for real-time analytic: A wide range of people need to be able
to access the latest readings of time-series data (which might be the most valuable
data) at the same time without the limitation of how many queries that arrive at once.

6. High capacity: The database storing the time-series needs to be both fast and scal-
able to accommodate huge amounts of data.

7. Standard SQL functions: The SQL standards are well defined and the authors of
this article argue that the SQL-standard has a wide and optimized performance that
is shared across companies. High performance for these SQL standards are thereby
a key asset for a time-series database.

8. Custom time-series functions: In addition to the SQL standards, time-series databases
can benefit from having custom time-series functions that are not supported by SQL.
Examples include functions to toss incoming data where sensor reading has not
changed significantly, to save space, or to only return the records with the lowest
and the highest reading from large datasets of records to limit the amount of data
that needs to be fetched from the database.

Some of the above-mentioned points can be argued upon, depending on the need for
the applications that will be using the time-series data. Point number three could vary, as
some applications will need consciously update, while others may only need to take out a
report every hour or once every 24 hours etc.

Also, some additional points that can be made are the possibility of querying the sen-
sors creating the data directly, and getting reports with the status of the devices only on
query demand.

The emerge of IoT has lead to the need for database systems to handle time-series
data. The recent years, databases dedicated to handling time-series data have become
popular. Below some time-series database systems are mentioned. OpenTSDB was one
of the first technologies to address the need to store time-series data on a very large scale.
The database is schema-free and built on Apache HBase. According to [41], writes have
milliseconds precision and scales to millions of writes per second. It can increase capacity
by adding nodes. Another time-series database that is worth mentioning is InfluxDB [11].
InfluxDB is also open-source and is optimized for heavy writing loads. It is schema-free
and built upon NoSQL principles.

Amazon has developed a fast, scalable, and fully managed time-series database for
IoT applications that make it easy to analyze and store data. Built-in the application is
analytic functions such as smoothing, approximation, and interpolation. According to [5],
Timestream gives scale and speed to process trillions of events a day, with up to 1000 times
faster query performance at 1/10th the cost of relational databases. The data is organized
by time intervals, unlike relational databases which reduce the amount of data that needs
to be scanned to answer a query. To improve performance, inserts and queries are executed
in separate processing tiers which eliminates resource contention. Other technologies to
handle time-series data have also emerged the recent years, such as the Chronos Software,
an in-memory background-based time database for key-value pairs [79].

Another database system built to handle time-series data is TimescaleDB. ”TimescaleDB
is an open-source database built for analyzing time-series data with the power and conve-
nience of SQL — on-premise, at the edge, or in the cloud,” [81]. It is implemented as

24

2.3 Storage Systems

an extension of PostgreSQL. The TimescaleDB allows the database to take advantage of
many of the attributes of PostgreSQL such as reliability, security, and connectivity to a
wide range of third-party tools.

2.3.4 IoT requirements on database systems

Table 2.2: Overview of requirements for IoT data management related to the database systems
MySQL, MongoDB and Cassandra.

Requirements/ Database Systems MySQL MongoDB Cassandra
Data heterogeneity
Semantic interoperability
Scalability Vertical Horizontal Horizontal
Real time processing
Security
Spatial Data Handling
Data aggregation
Data is ordered (based on time stamp) Partially
Time based data retrieval

Table 2.3: Overview of requirements for data management of time-series data, related to the
database systems MySQL, MongoDB and Cassandra.

Requirements/ Database Systems MySQL MongoDB Cassandra
Expired data should be deleted
Compare to threshold
Compare with recent data
Possibility of viewing and dashboards
Analytic services
Many users access at the same time
Built in time-series functionality

In this section, a summary of the requirements for database systems to handle IoT and
time-series data is presented. A table listing the requirements found in the literature review
is given for the database systems MongoDB, Cassandra, and MySQL. They are compared
in light of the requirements in Table 2.2 and Table 2.3. See Section 2.2.3 to see a detailed
definition on each of the points in the tables.

Data heterogeneity is important within IoT because of the need to handle different
types of data. MySQL and relational databases have a less flexible format because of
tabular relations. On the other hand, the main idea behind NoSQL database systems is
scalability and flexibility. For non-relational databases, different categories have different
properties. For instance, document-based databases, such as MongoDB, shown in Table
2.2, or Key-Value stores, have high support for heterogeneous data by providing schema-
less structure. However, the NoSQL database Cassandra, also shown with a check-mark

25

Chapter 2. Background

in Table 2.2, have less flexible schema and have lower support for heterogeneous data
because of the column-oriented structure of the system.

An issue closely related to data heterogeneity is semantic interoperability. Data het-
erogeneity can create problems with interoperability and integration of different systems.
”Interoperability among components of large-scale, distributed systems is the ability to
exchange services and data with one another. It is based on agreements between re-
questers and providers on, for example, message passing protocols, procedure names, error
codes, and argument types. Semantic interoperability ensures that these exchanges make
sense—that the requester and the provider have a common understanding of the “mean-
ings” of the requested services and data,” [40]. As seen in Table 2.2 all three database
systems are capable of providing semantic interoperability. MySQL has completed inter-
operability requirements, and is by nature semantic, as data is must be stored in predefined
columns and which provides unambiguous meaning. In all NoSQL databases, semantic
interoperability can be achieved by using for instance ontologies [6].

As previously explained, MySQL, and NoSQL databases offer different types of scal-
ability. Though MySQL offers vertical scalability, we argue that horizontal scalability is
ultimately required in IoT as the amount of data generated is continuously growing, and
adding resources such as hardware or additional storage can only get you so far. Though
MongoDB is considered a highly scalable database system, in [1], researchers found that
when the number of records in storage escalates, Cassandra outperforms MongoDB in
terms of execution time. That being said, experiments done in the above-mentioned re-
search, was not performed using time-series data, which might change the outcome.

MySQL has no support for processing real-time data coming in a large scale. Mon-
goDB has support for real-time analytics and writes on its web page that the tool provides
”Lightweight, low-latency analytics. Integrated into your operational database. In real-
time.” [60]. To this day Cassandra does not support real-time analytics, but, can easily
provide this functionality by using tools such as Spark [16]. Spark paired together with
Cassandra will be able to offer functionalities that are not provided either by Spark or
Cassandra alone [16].

Security is an increasingly important factor within databases. Especially within the
IoT domain, security and privacy mechanisms is important because of sensitive data. In
[72], authors argue that in terms of security, relational databases and SQL are better off
than NoSQL database systems because of the system maturity of RDBMS. This article
was written in 2015 and since then NoSQL database systems have matured. Cassandra
reports having functionalities for TLS/SSL encryption clients and inter-node communica-
tion, client authentication, and authorization [35]. The same functionalities can be found
in MongoDB [61].

As already mentioned in the section about MySQL, this database system, among other
relational database systems, has extensions that make them able to handle spatial data.
Most NoSQL databases, including Cassandra are according to [15], missing a feature to
handle spatial data indexing and retrieval. Also, the Cassandra Query Language (CQL)
is missing a spatial query feature. This makes the handling of spatial data in Cassandra
highly inconvenient. In [15], a framework is designed and implemented to extend the CQL
with spatial queries. A CQL-like syntax is defined to enable spatial functions while keep-
ing the native CQL query syntax. In MongoDB, spatial data is handled by storing data as

26

2.3 Storage Systems

a format named GeoJSON. GeoJSON is a format for encoding a variety of geographical
data structures [47]. By following the GeoJSON format, MongoDB is enabled to com-
pute a geospatial index on the geographic information by computing a geo-hash for the
coordinate pairs.

Aggregation operations process data records and return completed results. In MySQL,
aggregation functions are provided by the operations MIN, MAX, COUNT, SUM and
AVG. The same aggregation functions can be found in Cassandra (CQL). However, in
Cassandra there are limited possibilities of what can be aggregated. For a column to be
aggregated, it has to be contained in the partitioning key of the table. This functionality
ensures that Cassandra maintains high performance in terms of execution times of queries,
but limits the possibilities of aggregation functions. MongoDB provides much more pow-
erful data aggregation functions than Cassandra. In MongoDB, values are grouped from
multiple documents and a variety of operations on the grouped data can be performed to
return a single result. There are three ways to perform aggregations in MongoDB [58].
The aggregation pipeline, the map-reduce function, and single-purpose aggregation meth-
ods. In the aggregation, pipeline documents enter a multi-stage pipeline that transforms the
documents into an aggregated result. Map-reduce operations have two phases. The map
phase processes each document and emits one or more objects for each input document.
The reduce phase that combines the output of the map operation. Finally single-purpose
operation aggregate documents from a single collection.

Time-based data retrieval is possible for all three databases. That being said, for all
the systems, this has the possibility of being a time-consuming task. However, Cassandra
has one property that provides the database with an advantage compared to the other two
databases. In Section 2.3.2, it was mentioned that the records in Cassandra where naturally
ordered by the timestamp. This might give Cassandra an advantage of querying time-based
data over MongoDB and MySQL. Closely related to this property is the possibility of the
database system to order the rows or documents in the natural order of the time-series being
created. It has already been mentioned that Cassandra has this property, but a functionality
like this, is not known to the author for MongoDB and MySQL.

The first requirement in Table 2.3, the possibility of the database systems to delete
data from the system, is achieved by all three systems. The second point is easy for
any programmer or developer to check the data toward a threshold before insertion in the
database. The third point in the table, on comparing the newest data point with recent data,
might be a bit more complex. Now the most recent data must have the possibility of being
kept in memory or cache of the systems so that the system does not have to scan through
all time-series to find the data with the most recent timestamps. In MySQL, one technique
of making this more efficient is by implementing a sharding policy and a script that can
move older data from the active list to the archive node and updating the timestamps as the
data is moved, as described in [75, p. 554]. In Cassandra, most recent updates are kept in
memory, in a Memtable until its flushed to disk. When comparing the new measurement
towards the most recent measurement, Cassandra can read from memory, without having
to utilize I/O. One solution to handling this in MongoDB, is by using change streams like
described in [55].

Viewings and dashboards are important in terms of time-series data, to be able to see
the development and monitoring of time-series. MongoDB has developed a service, Mon-

27

Chapter 2. Background

goDB Atlas [59], which is a cloud MongoDB service. ”Dashboards are a collection of
charts assembled to create a single unified display of data. Each chart shows data from
a single MongoDB collection or view, so dashboards are essential to attain insight into
multiple focal points of data in a single display,” [59]. Some of these properties can be ac-
cessed using the explain() operator. Cassandra has a command-line tool to that can access
similar properties and characteristics. Also editing the configuration files of Cassandra
can modify the configurations and clusters of the database. To the knowledge of the au-
thor of this thesis, MySQL has no viewing or dashboard functionality built-in. However,
there might exist other external services making viewings and dashboards without having
to program them.

Because of the nature of IoT systems, several intuitions, users or systems have to be
able to connect to the database simultaneously. In MySQL, the maximum allowed simul-
taneous connections is 100000 [25]. Cassandra, has the availability property of the CAP
theorem explained in Section 2.3 and Figure 2.3. Cassandra achieves this by replication
sets. MongoDB also has replica sets and though it is not known for having the availability
property of the CAP theorem, rather the focus is on consistency and partition tolerance.
This might lead to less support for availability in MongoDB than for Cassandra.

The final requirement listed in Table 2.3, is having built-in functions for time-series.
MySQL provides a set of functions for manipulating dates and timestamps, such as gen-
erating the hour based on a timestamp. However, it misses support for taking advantage
of ordered data. Though, trough the provided functionalities, MySQL can obtain simple
queries, on larger datasets, the execution times will likely be slow. The same function-
alities are available in MongoDB, but Cassandra lacks support for efficient access to the
attributes of timestamps. Further functionalities are missing in the two NoSQL databases
as well. Being able to handle time-series data in database systems that are not specifically
dedicated to this purpose, such as TSDB, is more about cleverly structuring the data so
that the time-series can be retrieved efficiently.

2.3.5 Database systems in smart cities
In this section, database systems in existing smart city platforms are reviewed. In the pre-
vious project [36], though investigating a set of smart city platforms from several different
locations across the world, the description of database systems being used in the pilots
is missing for most smart city platforms. Much focus in the smart city research commu-
nity has been concentrated on the ICT architecture, with the newer research focusing on
technology management in D2C architecture. Below related platforms are presented.

The SmartSantander project in the city of Santander in Spain [74], initially created
their platform with a relational database. As the project matured the researchers have re-
placed the relational database system with a non-relational database system. Their chosen
database was MongoDB to handle heterogeneous data more flexibly as well as the need
for better performance.

An IoT-Fog-Cloud based architecture for Smart City is discussed in [31]. The authors
describe a prototype in the case for a smart building scenario where the cloud solution
has been implemented with both a relational and non-relational database. MySQL and
MongoDB are chosen from each of the two types of database systems and through ex-
periments using the IoT-Fog-Cloud architecture it was found that the performance of both

28

2.3 Storage Systems

SQL database and MongoDB performed equally well.
Another proposed smart city architecture using the F2C architecture can be found in

[12]. The storage must store and stack up the data from IoT devices after the processing
which are used by a decision-making server later. Data storing and processing play a
vital role in the comprehension of a smart city. Hence, the proposed architecture of [12]
makes use of several techniques, HDFS 7, HBase, HIVE 8, to make the data storing and
processing easily.

In [17], a big data platform for smart cities is initiated. The big data platform is made
on top of the existing smart city platform Smart Santander,[74], described above. After
finding that the Santander platform did not provide the capability of storing, analyzing
and processing generated data from the sensors collected from the city of Santander. The
author implies that this is a research field that is lacking in most smart city platforms even
though it is an important subject. The research that does exist tends to concentrate on pre-
senting a high-level platform architecture design. Sensor data collected from IoT agents
are in this platform saved in a NoSQL database as JSON documents. After investigat-
ing different NoSQL databases, the authors were left with the following candidates for
the chosen database: CouchDB, CouchBase 9, MongoDB, and HBase. A document-based
database was chosen because all the data from the SmartSantander testbed is wrapped up as
JSON objects [17]. The following reasons behind in the final version selecting CouchDB
was given by the authors: ”CouchDB can support incremental map-reduce for real-time
processing. This means that view results can be updated incrementally as the database
changes. This is a feature that is missing in MongoDB, there, MapReduce results are writ-
ten to a collection on disk and or resulted in the query and not updated unless the associated
jobs get executed again. Second, external documents can be notified with changed doc-
uments real-time, given a special feature in CouchDB called changes notifications.” Both
these features are listed as important to the architecture design of the system and have
therefore been important when selecting a database for the system. An additional layer,
for even more intensive and scalable data processing can be added to the architecture.

A new software, OpenFog, proposed in [8], from 2019, mentions the use of Microsoft
database services for handling the IoT data from sensors. Azure SQL Database Edge 10 is
a tool that aims to move the analytic power closer to the edge of the network, providing
AI capabilities and enables the system to process data at the edge before forwarding it to
the data center and cloud storage to optimize both network bandwidth and cost [52].

Another solution is chosen in [13]. For the database on the edge some type of relational
database system is preferred to provide ACID properties. For the central database system,
new SQL databases, should be considered because of the huge amounts of data gener-
ated across many data centers and its aggregation will require big data technologies for
management. To offer fast and efficient retrieval of data, it provides across zone services.
New SQL databases are preferred over traditional relational databases and even NoSQL
databases. Among this class of database systems we find databases such as Google Span-

7http://hadoop.apache.org/
8https://hive.apache.org/
9https://www.couchbase.com/

10https://azure.microsoft.com/en-us/services/sql-database-edge/

29

Chapter 2. Background

ner 11 or ClustrixDB 12.
Like initiated at the beginning of this section, there is not a whole lot of literature about

the specifics about storage systems in smart city research. One reason for this might be that
many smart city platforms are still in an early stage, a lot a the platforms are early-stage
pilots that have not jet generated the amount of data that makes distributed storage systems
necessary. In Table 2.4, an overview of the database systems in the smart city platforms
above, is presented to give an overview of databases used in smart cities.

Table 2.4: Overview of storage systems used in different smart city platforms.

Author Database System
L.Sanchez et al., 2014 Went from using SQL to using NoSQL
J. Dutta, S. Roy., 2017 SQL and NoSQL performs equally well
M. Babar, F. Arif., 2017 HBase, HDFS, HIVE
B. Cheng et al., 2015 NoSQL Document based - using CouchDB
M. Antonini et al., 2019 Microsoft database services
N. Z. Bawany, J. A. Shamsi., 2015 Google Spanner, ClustrixDB

2.3.6 Cloud

The recent years it has become apparent that cloud computing is a crucial component of
IoT and that the cloud can provide valuable application-specific services in many applica-
tion domains. ”Cloud computing has in many ways been one of the most significant shifts
in modern ICT and service for enterprise applications,” [39]. According to [73], ”Cloud
computing is a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources that can be rapidly provisioned and
released with minimal management effort or service provider interaction.” Several cloud
providers are entering the market to offer application-specific IoT based services in their
clouds [73]. In 2016, [73], claims that there are at least 49 different IoT cloud platforms
in the global market. In the previous four years, one can only assume that this number
has risen. The same author has surveyed several popular IoT clouds. They are discussed
in light of solving several service domains that are relevant in the IoT domain, such as
application development, device management, system management, heterogeneity man-
agement, data management, tools for analysis, deployment, monitoring, visualization, and
research.

But why is the cloud suitable for IoT? As the number of IoT devices is growing each
day and the amounts of data are increasing as a result of that, there is a demand for in-
creased storage and processing power. Companies drifting IoT applications and platforms
must rely on scalable IT infrastructure in which they initially had to develop, build, and
support in-house. Nowadays, it is increasingly popular for companies to buy these ser-
vices from companies with expertise in cloud computing to ensure quality, availability,
and maintenance of this IT infrastructure. ”Cloud computing provides fundamental sup-

11https://cloud.google.com/spanner
12https://mariadb.com/products/clustrixdb/

30

2.4 Related work

port to address the challenges with shared computing resources including computing, stor-
age, networking, and analytical software; the application of these resources has fostered
impressive big data advancements”, [83]. Cloud-based technology has to cope with this
new environment because dealing with big data for concurrent processing has become in-
creasingly complicated. MapReduce is an example of processing in a cloud environment,
it allows for the processing of many datasets stored in parallel in a cluster [39]. Cloud
storage services offer virtually unlimited storage with high fault tolerance which provides
potential solutions to address big data storage challenges. However, hosting big bata on
the cloud is expensive given the size of data volume [83], because the cloud providers
often make the companies pay for the data storage and processing power that is used.

Some popular databases are developed by big technology companies and some of these
are also the most well know. Companies such as Microsoft have developed Azure which
has almost unlimited services, also for IoT with their IoT Hub 13 which is said to fit no
matter the industry or size of the organization. Azure IoT offers devices, tools, data an-
alytic as well as security capabilities. Also, Azure has developed more specific services
to deal with the new and complex IoT paradigm like the Azure SQL Database Edge [52]
or Azure IoT Edge 14. The first was briefly mentioned in Section 2.3.5. These services
are at the time of writing this only available as a preview edition, but it illustrates that
the industry is realizing the need for technologies specific to IoT related issues and do-
mains. Another popular cloud provider is Amazon Web Services (AWS)15 which claims
to be compatible whether you are looking for computing power, database storage, content
delivery, or further functionality, and can help build applications with increased flexibility,
scalability, and reliability. Other technology companies with popular IoT cloud platforms
include IBM Watson IoT Platform 16, Google Cloud Platform 17, Oracle IoT Cloud Service
18 and Cisco IoT Cloud Connect 19. Some of these cloud providers have built-in databases
to function seamlessly. As an example, Amazon has their DynamoDB which is a man-
aged NoSQL database, or Amazon key-space which is optimized for Apache Cassandra.
Azure has developed their CosmosDB 20 which have APIs to integrate easily with SQL,
MongoDB, and Cassandra among others.

2.4 Related work
In this section, some related work on experiments and performance testing of databases
used in IoT, smart cities and time-series data is presented. In [71], Cassandra and Mon-
goDB are compared to provide efficient storage of discrete time-series data. The authors
conclude that Cassandra would be the best choice for collecting and analyzing large vol-
umes of time-series data in sequence as the data is inserted into the database sequentially.
This property provides fast retrieval of data when queried by the row key without the need

13https://azure.microsoft.com/en-in/services/iot-hub/
14https://azure.microsoft.com/en-us/services/iot-edge/
15https://aws.amazon.com/
16https://www.ibm.com/internet-of-things/solutions/iot-platform/watson-iot-platform
17https://cloud.google.com/solutions/iot/
18https://docs.oracle.com/en/cloud/paas/iot-cloud/index.html
19https://www.cisco.com/c/en/us/solutions/service-provider/iot-cloud-connect/index.html
20https://docs.microsoft.com/en-us/azure/cosmos-db

31

Chapter 2. Background

for creating explicit indexes. Cassandra is a good fit in case of the time interval between
data gathering is very low and the amount of data to be stored is high because the database
system provides easy scalability. On the other hand, the authors mention that MongoDB
by its rich query language, is also a good choice for storing time-series data by provid-
ing good scalability which is an important requirement. In this research the conclusions
where drawn based on theoretical backgrounds for how to store discrete time-series data
in MongoDB and Cassandra, and no experiments where provided.

A database system performance evaluation for IoT applications is done in [10]. This re-
search focuses on open-source databases using the three database systems MySQL, Mon-
goDB, and PostgreSQL. MongoDB showed promising results for handling IoT data as
opposed to MySQL. According to experiments provided by authors of [10], for a small
number of records inserted, PostgreSQL outperforms MySQL as well as MongoDB. How-
ever, for a large number of inserted records, MongoDB does better than the other two. For
insert queries, PostgreSQL performs best for inserts of a large number of records with
the lowest execution time. The authors conclude that MongoDB is not a good option for
aggregation function execution of IoT data.

Authors of [72], have conducted experiments on MongoDB and MySQL to compare
them for IoT applications. The study is based on the time to execute Select and Insert
queries against a varying number of records and threads. The research finds that in some
scenarios MongoDB required less response time compared to MySQL, but in other cases
MySQL responses where stable compared to MongoDB. This is why the authors conclude
that choosing a database for IoT depends on which query is mostly used and the require-
ments of the application.

Another paper researching performance of NoSQL and relational database manage-
ment systems for large IoT data are [42]. The authors have selected MongoDB and
MySQL for performance testing. Experiments of inserting of data showed that MongoDB
has almost four times better throughput than MySQL. MongoDB also performs better in
terms of reads. The NoSQL system MongoDB provided better performance for both stor-
ing and processing the data is concluded by authors.

Which NoSQL database that is best suited for IoT applications is investigated in [6]
by comparing five of the most popular NoSQL databases; Redis 21, Cassandra, MongoDB,
Couchbase, and Neo4j. They find that all the five database systems mentioned above
had covered many of the data management requirements. This comparison shows that
Couchbase, followed by MongoDB and Neo4j provides the best capabilities, as Redis has
issues with scalability and Cassandra, some issues with handling spatial data.

Performance evaluation of MongoDB, Cassandra, and HBase for heterogeneous IoT
data storage is done in [69]. The results showed that in MongoDB structured data types
have superior run-time performance and throughput in comparison to the two other databases.
Cassandra showed better run-time and throughput for the unstructured data. In terms of
resource use, MongoDB showed the best performance with both data types. According to
[69], about 80 percent of data generated by IoT devices in the form of unstructured data.
This means that it cannot be stored in relational, SQL format. Unstructured data can be
anything from text, images, video, or emails. JSON format is considered to be structured
data which in the conducted experiments was generated by a sensor measuring air quality.

21https://redis.io/

32

2.4 Related work

MongoDB and Cassandra are compared and evaluated by a set of different experiments
in [1]. The characteristics that were analyzed are data loading, only reads, reads, and
update mix and read-modify-write, and only updates. The results of the research showed
that with an increase in data size MongoDB started to reduce its performance. Meanwhile,
Cassandra got faster as the data increased. After running experiments on read/update
performance, the author concludes that Cassandra performs better than MongoDB in terms
of updates, providing lower execution times independently of the database used in the
evaluation. MongoDB fell short with increasing amounts of records, while Cassandra
seemed to perform better and the authors conclude that Cassandra performed better in
almost all scenarios tested.

In [30], the main focus of the work was to investigate if Cassandra could provide good
performance in an IoT system. Queries of an IoT real-time environment is used to test the
querying processing time by comparing two different types of architectures in Cassandra.
The first keeping all the data in one Cassandra table, and the second, keeping multiple
tables for each specific application that sends events. From a theoretical viewpoint, we
know that the best way of organizing the data is through the creation of one table per
application because the table will have much less data per table and less data will have to
be filtered and the memory will not be full. The results of the research showed exactly
what the researchers had assumed, for all three types of queries tested, the strategy of
storing data in separate tables outperformed the other strategy. The authors write in their
conclusion of their study that: ” we can conclude that Cassandra can be used on an IoT
platform as the main database system because it contains the necessary characteristics to
handle the overall requirements of these platforms” [30].

In another study of Cassandra for IoT workloads, Cassandra was compared with ”the
latest generation re-design of Cassandra, ScyllaDB, meant to deliver bleeding-edge per-
formance on modern multi-core machines”, [46]. The authors found through their experi-
ments that ScyllaDB has a 10 times improvement in throughput over Cassandra. However,
given more write-intensive IoT workloads, Cassandra may be more amenable to IoT ap-
plications as results of experiments showed that both the number of writes per second and
the write latency, was better in Cassandra than ScyllaDB.

Table 2.5 summarizes the findings from the related work on IoT and time-series data
from the literature.

33

Chapter 2. Background

Ta
bl

e
2.

5:
Su

m
m

ar
y

of
da

ta
ba

se
sy

st
em

s
fr

om
lit

er
at

ur
e

th
at

ha
ve

be
en

ev
al

ua
te

d
fo

r
Io

T
us

ag
e.

D
at

ab
as

es
th

at
w

he
re

co
ns

id
er

ed
fo

r
us

ag
e

is
m

ar
ke

d
w

ith
X

an
d

th
e

se
le

ct
ed

da
ta

ba
se

sy
st

em
in

th
e

pa
pe

ri
s

m
ar

ke
d

w
ith

V.

A
ut

ho
r

M
yS

Q
L

Po
st

gr
eS

Q
L

M
on

go
D

B
C

as
sa

nd
ra

R
ed

is
C

ou
ch

D
B

N
eo

4j
H

B
as

e
C

.A
si

m
in

id
is

et
al

.,
20

18
X

X
V

S.
R

au
tm

ar
e,

D
.B

ha
le

ra
o,

20
16

V
V

G
.K

ir
az

,C
.T

og
ay

X
V

S.
A

m
gh

ar
et

al
.

2.
X

X
1.

3.
E

.S
.P

ra
m

uk
an

to
ro

et
al

.2
01

9
V

X
X

D
.R

am
es

h,
20

16
X

V

34

Chapter 3
Methodology

In this chapter, the methodology and the research strategies used in this project will be
presented. An approach from [67] is used to define the research methodology in this
thesis.

3.1 Research Strategies
In this research, 4 research questions have been defined. To answer each one of the re-
search questions, different research strategies are used. In the coming sections, the re-
search strategies used in this thesis are explained. Figure 3.1, shows the model of ap-
proaches for the overall research process with the research strategies used in this thesis
outlined in red.

3.1.1 Literature Review
The first part of a literature review is to research ideas and to discover relevant material
about possible research topics within the selected research area. In this thesis, initial lit-
erature was researched to find a more specific field within smart cities and IoT and to
gain an understanding of what databases should be reviewed in more detail. ”The second
part of a literature review is to gather and present evidence to support the claim that there
have been created some new knowledge,” [67]. Some objectives of a literature review
are placing the research in the thesis in a context of research that has already been pub-
lished. Also, objectives include, pointing to strengths and weaknesses in work that have
already been published, point to gaps that have not previously been identified or address
by researchers[67].

3.1.2 Experiments
”An experiment is a strategy that investigates cause and effect relationships, seeking to
prove or disapprove a causal link between a factor and an observed outcome,” [67]. The

35

Chapter 3. Methodology

Figure 3.1: Model of approaches for a research process, from [67]. The red outline indicates the
strategy used in this master thesis.

experiments in this thesis are based on previous work and experiments found in the lit-
erature review. Also, the experiments are based on the requirements of database systems
within IoT. The research strategy involves the following steps:

1. Observation and measurement: precise measurements of the execution times of
queries are recorded.

2. Manipulation of circumstances: four different queries are tested to obtain broader
measurements of the database system performance.

3. Repetition: the experiments are repeated many times to be certain that the measured
outcomes are not caused by some arbitrary factors.

4. Explanation and prediction: the results can be explained from the theory from
which the hypothesis was derived from.

3.1.3 Data Analysis
To be able to draw some conclusions based on the generated data, the data must be ana-
lyzed. The idea behind data analysis is to look for patterns in the data and draw conclu-
sions. In the case of this study, only quantitative data is generated. Hence, quantitative
data analysis will be performed.

Quantitative Data Analysis

Quantitative data are data that are gathered typically from experiments or surveys, in this
project’s case, experiments, and is data based on numbers. ”A typical and simple way to

36

3.1 Research Strategies

analyze quantitative data is to use tables, charts, or graphs. This makes it easier for the
reader to observe patterns in the data, [67].”

More patterns can be found by providing simple statistical techniques, such as finding
the average value of a set of measurements. The average value will be obtained in this
work, from the repeating of the same experiments several times to exclude arbitrary factors
from the final results, as explained in the previous section.

37

Chapter 3. Methodology

38

Chapter 4
Experiments and experimental set
up

In this chapter, the experimental set up will be described in detail. A description of the
dataset used in the experiments is explained. Also, the experiments and the queries are
explained for both MongoDB, Cassandra, and MySQL.

4.1 Experimental set up
The experimental setup was created with the following characteristics: (1) The operating
system was macOS Catalina Version 10.15.3; (2) The machine had a 1.6 GHz dual-core
Intel Core i5 with 3MB shared L3 cache, and 4GB of RAM. (4) The dataset will be ac-
counted for in the next section.

To set up the experiments, Python has been used. To integrate the databases with
Python, Cassandra-driver, Pymongo, and MySQL cursor for Pyhton was setup. See Table
4.1 for the version used for Pyhton and each of the three databases.

Table 4.1: Versions used in the experiments.

Database Version
Pyhton 3.6.3
MySQL 8.0.19
MongoDB 4.2.3
Cassandra 3.11.6

4.1.1 Dataset Overview
When finding a dataset to use in the experiments, it was important that is was on the
form of time-series data and had a large number of records. In this experiment, a dataset

39

Chapter 4. Experiments and experimental set up

provided by the NYC Taxi and Limousine Commission (TLC) has been used. The data
in the dataset was collected by technology providers authorized under Taxicab & Liberty
Passenger Enhancement Programs (TPEP/LPEP) 1.

The dataset on the webpage includes monthly records of all the yellow cab rides from
2009-2019. Each month having approximately seven million records. In the experiments,
records from January 2019 are downloaded and used. To simulate the properties of time-
series data defined in Section 2.2.1, duplicate records containing the same time-stamps
have been removed, so inserted into the database is 2 million records. A screenshot to
illustrate the format of the dataset is illustrated in 4.1.

Figure 4.1: A fraction of the csv file downloaded from NYC TLC.

The dataset has a total of 18 properties, shown below.

• VendorID

• tpep pickup datetime

• tpep dropoff datetime

• passanger count

• trip distance

• RatecodeID

• store and fwd flag

• PULocationID

• DOLocationID

• payment type

• fare amount

• extra
1NYC Taxi and Limousine Commission - Trip Record Data. 2020 Retrieved from

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

40

4.1 Experimental set up

• mta tax

• tip amount

• tolls amount

• improvement surcharge

• total amount

• congestion surcharge

4.1.2 Repetition of Experiments

Experiments are typically repeated many times to be certain that the measured outcomes
are not caused by some arbitrary factor [67]. In [10], 10 repetitions are applied to the ex-
periments, and [42], reports having done ”more than three repetitions”. Other experimental
works researched in the literature in this thesis, have either not repeated the experiments
or not mentioned the number of repetitions. Performing too many repetitions can rarely be
a disadvantage other than being time-consuming for time-consuming queries. The exper-
iments in this research are repeated 30 times to make sure that eventual irregularities are
minimized.

When doing experiments with database testing and the experiments are repeated sev-
eral times, it is important to avoid that the results from previous experiments are cached
in memory. In the case that previous results are cached, the run times for the experiments
might end up being smaller. Several steps have been done to try to eliminate the caching
results, demonstrated below. Also, between each repetition of the queries, ten records are
inserted into the database to avoid that the last handled data in the database is the data read
by the previous repetition.

Caching

In MongoDB, this is a functionality that is enabled to retrieve data quicker. To make sure
the experiments give the correct results we make sure that none of the previous results are
cached. MongoDB keeps the most recently used data in RAM. If indexes are created and
the working dataset fits in RAM, MongoDB serves all queries from memory. MongoDB
does not cache the query results to return the cached results for identical queries [54].
Besides, MongoDB might cache the query plan. This can be disabled by clearing the
execution cache plan of all collections by the following query:

>db . c o l l l c t i o n n a m e . g e t P l a n C a c h e () . c l e a r ()

Cassandra includes integrated caching and distributes cache data around the cluster.
In Cassandra, one can use CQL to enable or disable caching by configuring the caching
table property. Configuring caching in Cassandra determines how much space in memory
Cassandra allocates to store rows from the most frequently read partitions of the table. The
cache option can be disabled in Cassandra config file, as well [26].

41

Chapter 4. Experiments and experimental set up

WITH c a c h i n g = {
’ keys ’ : ’NONE’ ,
’ r o w s p e r p a r t i t i o n ’ : ’NONE’

}

In the cassandra.yaml configuration file, the caching settings is set to 0 to disable the
caching of rows.

r o w c a c h e s i z e i n m b = 0

In MySQL, the query cache stores the text of a SELECT statement together with the
corresponding result that was sent to the client. If an identical statement is received later,
the server retrieves the results from the query cache rather than parsing and executing the
statement again. The query cache is shared among sessions, so a result set generated by
one client can be sent in response to the same query issued by another client. The query
cache can be useful in an environment where tables that do not change very often and for
which the server receives many identical queries. That being said, according to [21], the
query cache is removed from MySQL version 8.0.

Data Analyzis

Because the experiments are repeated, the formulas below are used to calculate the mean
(Equation 4.1), variance (Equation 4.2), and standard deviation (Equation 4.3) to analyze
the experiments.

Formula for calculating the mean of a set of measurements, where N is the total set of
measurements and µ is the mean of the N measurements.

µ =
1

N

N∑
i=1

xi (4.1)

Formula for calculating variance (σ2). How spread out the measurements are from the
mean value.

σ2 =

N∑
i=1

(xi − µ)
N

(4.2)

Standard deviation (σ) is the square root of the variance.

σ =

√√√√ N∑
i=1

(xi − µ)
N

(4.3)

4.1.3 Recording Execution Time

To measure the performance of the queries in the experiments, the execution times are
recorded. To retrieve the execution times the following have been done:

42

4.2 Experiments

MySQL

The below code demonstrates that the execution time in MySQL is obtained by using the
profiling property.

m y s q l s e s s i o n . e x e c u t e (” S e t p r o f i l i n g = 1 ”)
m y s q l s e s s i o n . e x e c u t e (”SHOW PROFILES ”)

MongoDB

In MongoDB, the explain method is used to obtain the execution time of the queries. The
following is used to reterieve the execution time in milliseconds.

mongodb time = mongo cur so r . e x p l a i n ()
[” e x e c u t i o n S t a t s ”] [” e x e c u t i o n T i m e M i l l i s ”]

Cassandra

The execution time in Cassandra, is obtained by enabling the TRACE property, as showed
below.

c a s s a n d r a t i m e = c a s s a n d r a s e s s i o n .
e x e c u t e (query , t r a c e =True)

t r a c e = q . g e t q u e r y t r a c e ()
c a s s a n d r a t i m e = t r a c e . d u r a t i o n . t o t a l s e c o n d s ()

Some webpages argue that the use of the TRACE property in Cassandra can increase the
execution time. Because a lack of better possibilities, the TRACING property has still
been used in the experiments.

4.2 Experiments

The experiments in this project consist of four queries, related to the theory in the liter-
ature. The queries are explained below and are listed in the Appendixes. Appendix A
demonstrates how records are inserted in MySQL, Appendix B shows MongoDB queries
and Appendix C lists the insertion and queries in Cassandra.

4.2.1 Query 1

In Section 2.2, it was mentioned that often data from sensors are wanted to be queried
over a certain time interval. Also, in Table 2.2, time-based data retrieval is listed as a
requirement for IoT data management. Query 1 aims to test this requirement on the three
databases by querying a time interval of seven days from the dataset described above.

43

Chapter 4. Experiments and experimental set up

4.2.2 Query 2
Query 2, is testing the database’s ability to perform aggregation functions over a large set
of records. Data aggregation is often listed as a requirement in the literature on IoT data
management, and is therefore included in the experiments in this project. Query 2 finds
the sum of the attribute tipamount from all records in the dataset.

4.2.3 Query 3
When analyzing data, it is interesting to see the average or a sum for a specific time inter-
val. In Query 3, we want to find out if the time interval together with aggregation functions
could affect the performances of the databases. The aggregation functions are tested, but
unlike Query 2, fewer records are aggregated. The average of the attribute tripddistance
over the same time interval from Query 1 is retrieved.

4.2.4 Query 4
Finally, Query 4, performs a grouping operation, as well as an aggregation function on the
grouped data. A typical query in a smart city could be to group data from each sensor to-
gether. That is why, in this experiment, the vendors with the same VendorID, which could
resemble a sensor ID in a sensor dataset, are grouped and aggregated on the tipamount
attribute over all records in the dataset.

44

Chapter 5
Evaluation

This chapter contains a description of the goals and expected results for the experiments in
this project. The results of each query are presented with a column diagram demonstrating
the mean execution times. Furthermore, a graph representing the execution time of every
repetition of the experiments is shown to be able to observe irregularities and evaluate
the results. Also, tables showing the maximum and minimum execution times, as well as
the variance and standard deviation for each database in each of the queries. Finally, the
results are discussed in light of the expected results and literature from Chapter 2.

5.1 Goals and expected results

The overall goal of the experiments in this thesis is to gain an understanding of what
database can be suited for IoT data. In this project, the focus is on the management of time-
series data and testing the three databases MySQL, Cassandra, and MongoDB for typical
queries that can be relevant for a smart city use case, and also testing the requirements for
data management of IoT data. Below the expected results of the databases are discussed.

5.1.1 MySQL

For Query 1, MySQL is not expected to perform particularly well. In MySQL, the pri-
mary keys are not ordered by default. This means that to find the queried time interval,
MySQL has to scan through all rows in the table. The same is true for the other queries
as well, where MySQL has to scan through all the two million records to select the rows
for aggregation, which is a time-consuming task in itself. Also, according to [21], the
MySQL version used in the experiments in this project does not use caching of recent
results. Hence, the execution times are expected to remain poor.

45

Chapter 5. Evaluation

5.1.2 MongoDB
Similar for all the four queries in MongoDB is that it is expected that it will not live up to
its full potential in terms of performance, due to not using indexes. However, MongoDB
keeps the most recently used query in memory. Because of this, MongoDB is expected
to perform relatively well, because it does not have to scan through all the documents to
retrieve the query results. To try to diminish this advantage, as mentioned earlier, some
additional documents are inserted into the databases between each repetition of the exper-
iment, to put some other results in this memory. Looking at the literature in this thesis,
in Section 2.4, MongoDB has performed relatively well for similar types and amounts of
data. This could be an indicator that MongoDB will have adequate execution times in the
experiments in this project as well.

5.1.3 Cassandra
Cassandra has the property of the cells by default being naturally ordered by the cell’s
name. This means that the time-series data will get data sorted ”for free” [66], as men-
tioned in Section 2.3.2. Hence, Cassandra is expected to perform well for the queries
retrieving the time intervals (Query 1 and Query3). However, Query 3 contains an ag-
gregation of data, along with Query 2, and because there is no partition key or clustering
key on either properties to be aggregated, the performance of the aggregations is expected
to be slow. For Query 4, to be able to perform the GROUP BY operation, in Casandra,
V endorID was set to be a clustering key. This can be seen in Appendix C. Because of
this Cassandra might perform better as the clustering key provides the ordering of data on
the clustering key.

5.2 Results

5.2.1 Query 1
The results of Query 1 shows that the mean execution time for Cassandra when retriev-
ing time intervals only, outperforms the other two databases. Figure 5.1, illustrates the
mean execution time after 30 repetitions of Query 1, with a mean execution time of 0.100
seconds for Cassandra, while MongoDB has a mean value of 3.005 seconds, and MySQL
5.829 seconds. In Figure 5.2, it can be seen that the execution time of MySQL makes
some large jumps and from Table 5.1 it is apparent that there is a large difference be-
tween the minimum and maximum execution times. These might have come from some
unknown factor, and in Table 5.2, the variance, and standard deviation are demonstrated
and the standard deviation for MySQL is quite high when seen in relation with the mean
execution time.

5.2.2 Query 2
An interesting shift of what database that performs the best in terms of execution time is
shown in this experiment. Query 2 finds the sum over all rows or documents in the dataset.
Interestingly, the execution times are the opposite than the ones in the previous query.

46

5.2 Results

Figure 5.1: Mean execution time of 30 repetitions of Query 1.

Figure 5.2: Execution time for each repetition of Query 1.

Table 5.1: The maximum and minimum execution time of Query 1 in MySQL, Cassandra and
MongoDB in seconds.

MySQL Cassandra MongoDB
Max execution time 10.118 0.267 4.909
Min execution time 4.944 0.050 2.528

Table 5.2: The variance and standard deviation of Query 1 in MySQL, Cassandra and MongoDB.

MySQL Cassandra MongoDB
Variance 1.240 0.002 0.248
Standard deviation 1.114 0.050 0.498

Cassandra now has the larges mean execution time with 18.748 seconds, while MySQL,
executes the queries with an average of 2.345 seconds. From Figure 5.3, it is clear that
MongoDB execution time is better than Cassandra and is closer to MySQL execution time

47

Chapter 5. Evaluation

with a mean of 3.171 seconds. Notice that even the best execution time of Cassandra is
more than double the worst execution times of MySQL and MongoDB. In Figure 5.4, it
can be seen that in some repetitions MongoDB even performs better than MySQL. Though
the execution times of Cassandra varies a lot in each repetition, because all of them do, the
standard deviation in Table 5.4, is not too high. Table 5.3 shows that for all the queries the
difference between the lowest and highest execution times is large.

Figure 5.3: Mean execution time of 30 repetitions of Query 2.

Figure 5.4: Execution time for each repetition of Query 2.

Table 5.3: The maximum and minimum execution time of Query 2 in MySQL, Cassandra and
MongoDB in seconds.

MySQL Cassandra MongoDB
Max execution time 7.562 29.371 6.383
Min execution time 0.744 13.988 2.589

48

5.2 Results

Table 5.4: The variance and standard deviation of Query 2 in MySQL, Cassandra and MongoDB.

MySQL Cassandra MongoDB
Variance 3.164 17.613 0.589
Standard Deviation 1.779 4.197 0.768

5.2.3 Query 3
In Figure 5.5, the mean execution time of Query 3 is shown for MySQL, Cassandra and
MongoDB. The chart shows the same tendency from Query 2, where MySQL has the best
performance in terms of execution time with 1.211 seconds, followed by MongoDB at a
mean execution time of 1.944 seconds, and finally Cassandra, 3.976 seconds. Notice that
the execution time of all databases is less than the previous query, but the one that stands
out is Cassandra, with an improvement of 14.772 seconds compared to Query 2. MySQL
have a large drop in execution time after around seven repetitions, in Figure 5.6. This might
be because of some caching mechanism in MySQL, which might have lead to improved
execution time in MySQL when compared to MongoDB and Cassandra. In Table 5.5,
this can also be observed with the difference of 3.599 seconds in maximum and minimum
execution time in MySQL. As a result of these irregularities in the measurements, the
standard deviation of MySQL measurements is high, Table 5.6. This could indicate that
the results of this particular experiment might be considered to be repeated or at least
looked at with a critical eye.

Figure 5.5: Mean execution time of 30 repetitions of Query 3.

Table 5.5: The maximum and minimum execution time of Query 3 in MySQL, Cassandra and
MongoDB in seconds.

MySQL Cassandra MongoDB
Max execution time 4.055 6.404 3.732
Min execution time 0.456 3.186 1.656

49

Chapter 5. Evaluation

Figure 5.6: Execution time for each repetition of Query 3.

Table 5.6: Variance and Standard Deviation of Query 3 in MySQL, Cassandra and MongoDB.

MySQL Cassandra MongoDB
Variance 1.061 0.841 0.226
Standard Deviation 1.030 0.917 0.476

5.2.4 Query 4
In Figure 5.7, it can be seen that the mean execution times of the three database systems
are 2.951 seconds for MongoDB, which have the best performance for this query, followed
by MySQL with a mean of 3.645 seconds and Cassandra execution time five times worse
than MongoDB, with 14.809 seconds. From Figure 5.8, MySQL execution time stabilised
after about 15 repetitions. This is why MySQL, like in the previous query has a relatively
high standard deviation, which can be seen in Table 5.8. In Table 5.7 we see that execution
times of MongoDB remain more stable than the other two database systems. MySQL has
a difference of almost 9 seconds between the maximum and minimum execution times,
while MongoDB, only has a difference a little above 2 seconds.

Table 5.7: Variance and Standard Deviation of Query 4 in MySQL, Cassandra and MongoDB.

MySQL Cassandra MongoDB
Max execution time 10.548 19.083 4.901
Min execution time 1.352 13.342 2.760

Table 5.8: The maximum and minimum execution time of Query 4 in MySQL, Cassandra and
MongoDB in seconds.

MySQL Cassandra MongoDB
Variance 8.889 1.631 0.178
Standard Deviation 2.981 1.277 0.422

50

5.3 Discussion

Figure 5.7: Mean execution time of 30 repetitions of Query 4.

Figure 5.8: Execution time for each repetition of Query 4.

5.3 Discussion

Recall at the beginning of this chapter it was stated that the overall goal in this thesis was
to gain an understanding of what database can be suited for IoT data. More specifically,
for time-series data which is a typical format the data in smart cities and IoT generates. To
do so, literature on IoT and time-series data management was investigated, related to the
database systems, MySQL, MongoDB, and Cassandra. Also, literature about related work
on smart cities and IoT was reviewed to see what other researchers have been investigating.

First, Table 2.4 in Section 2.3.5, summarize the database systems used in literature
about smart cities. Firstly, during the literature review, a lack of research on this specific
field was noticed. Some of the articles shortly discuss the usage of databases, but it is
poorly documented as well as few conducted experiments. However, one thing that seems
to be common throughout the literature that does exist, is the need for scalable and flex-
ible storage, and therefore it seems that the research community is headed towards using
NoSQL systems, or at least, distributed database systems. This is in line with the trends in

51

Chapter 5. Evaluation

the related work on IoT and database systems performance in Section 2.4, where NoSQL
systems were highly represented. Another point to notice is that MongoDB was consid-
ered in all the IoT related work in Table 2.5. Though it did not always show the best
performance under the conditions set up by the authors, it is interesting to notice that it
is always up for consideration and shows that there is some acceptance in the community
that MongoDB is a top competitor when it comes to IoT data management.

Furthermore, to summarize the requirements of IoT data management and time-series
data, Table 2.2, and Table 2.3 where presented in Section 2.3.4. All three database systems
show some positive and negative traits. MySQL is the only relational database among the
three, and checks of fewer requirements than the other two systems. Also, the missing
requirements, are properties that are of high importance for the database systems’ ability
to handle IoT data workloads. MySQL disability of handling heterogeneous data is a huge
drawback, as well as not being able to scale horizontally.

MongoDB checks off on almost all requirements in the discussed tables, and shows
great promise as a storage system being able to handle IoT requirements. The one point
that is missing, is the property that data is naturally ordered on timestamp. To compensate
for this, MongoDB indexing can provide efficient retrieval of data anyways, if the indexes
are designed carefully. Cassandra, having some additional limitations when compared to
MongoDB in terms of Table 2.2 and Table 2.3, still shows potential for being a database
system that can work with IoT and time-series data. The limitations such as missing real-
time processing can easily be provided seamlessly together with external systems, to fully
cover the IoT requirements discussed in this work.

Table 5.9: Summary of mean execution times in seconds for each query in the experiments.

MySQL Cassandra MongoDB
Query 1 5.829 0.100 3.005
Query 2 2.345 18.748 3.171
Query 3 1.211 3.976 1.944
Query 4 3.645 14.809 2.951

Now that a theoretical background about the databases has been established, experi-
ments on queries related to the requirements on IoT and time-series data management is
conducted. The results were presented in the previous section and in Table 5.9, the mean
execution times for each query in the experiments are shown. In Section 4.1.3, it was
mentioned that the TRACING property can contribute to higher execution times in Cas-
sandra. Taking this into consideration, one might think that one factor of why the results
of Query 2 and Query 4 are high is because of this. However, we argue that this is not the
case, as Query 1 execution times are low, also when having the TRACING property in the
query. Furthermore, as expected, for Query 1, Cassandra performed well. Cassandra out-
performed the two other database systems with a mean execution time of 0.1 seconds. This
implies that as expected, the retrieval of the time intervals in Cassandra is, indeed ordered,
and the database does not have to scan through the entire table. The same tendency is seen
in Query 3, also as expected, but with an increase of execution time, presumably, because
of the aggregation function is a time-consuming task in Cassandra without the aggregated
attribute as a primary key. The results imply that in terms of storing time-series, Cassandra

52

5.3 Discussion

could be a promising candidate.
MongoDB, shows quite stable results for all the queries. However, MongoDB was

expected to perform better for the execution times after the literature review, and also, it
was expected to perform better than MySQL. For Query 1 and 4, the mean execution times
were better than MySQL, and for query 3 and 4, though MySQL ended up with a lower
mean execution time, from Table 5.4 and Table 5.6, it can be seen that the execution times
of each repetition varied among which has the lowest execution time. One explanation
of why MongoDB performs worse than expected is that indexes on time-stamps are not
utilized and therefore does not live up to its full potential.

MySQL surprised positively in terms of execution times. Above, it was mentioned
that MongoDB was expected to perform better than MySQL for all the queries. Similar
to MongoDB, the performance showed to be quite stable throughout the queries, though
execution times were generally not very low. Another thing that can be mentioned about
the results of the MySQL experiments is that the execution times varied a lot. In Figure
5.6 and Figure 5.8, observe that execution times dropped drastically after approximately
8-9 and 15 repetitions. This could be an indicator that MySQL has a cache mechanism that
is not accounted for in this project. Though the experiments in this thesis show promising
results, MySQL has many theoretical drawbacks that have not fully been exploited through
the experiments in this thesis.

5.3.1 Experiences
Through working with both the literature and the experiments, some observations have
been made along the way. First, when searching for literature about the use cases of IoT
data both in general and more specific to smart cities, there were not a lot of research
to find. It seems as the literature and research diminish the user aspects of IoT while
focusing on techniques, algorithms, and architecture to make the applications or platforms
more efficient. A recommendation for the research community of this field is therefore
to study or survey the actual use cases for the data that the systems are built upon, before
deciding on design principals etc. about the IoT platforms.

Second, when working with the datasets to set up experiments, it was generally a more
user-friendly experience working with MongoDB than the other two systems. The in-
sertion of data into the database was faster, easier, and takes less coding. This conforms
with the literature about MongoDB being more flexible, while Cassandra and MySQL take
more effort with setup and restrictions when inserting and working with the databases in
general. However, the SQL syntax is known to most people in the programming commu-
nity and can be easier for most people to use.

53

Chapter 5. Evaluation

54

Chapter 6
Conclusion

In this section, the conclusion of the research in this thesis is presented. First, the research
questions are answered to the best extent. Second, the conclusion of the work is presented.
Finally, a section mentioning some future work directions is discussed.

6.1 Research Questions
In Chapter 1, four research questions were presented. Throughout this thesis, answering
these questions has worked as guidelines for the research. In this section, a summary of
the answers to the research questions is presented.

RQ1 What database systems are researched in the literature about IoT data in smart
cities and time-series data?

Smart cities lack research about database management in general. The research
tends to focus more on ICT architecture and data management of the D2C archi-
tecture. In newer studies, a popular research filed is how cloud computing can
be used with big data. More generally, in research on IoT, NoSQL databases are
largely represented and it seems as document-based systems, often MongoDB,
are popular based on their flexible nature, as well as Cassandra because of its
write-performance and high scalability. However, many researchers often com-
pare different NoSQL databases with relational databases, most often MySQL,
but also database systems such as PostgreSQL. In terms of time-series data,
though some literature mention MongoDB with indexing on timestamp rather
than ID, Cassandra is heavily represented and mentioned as a good choice. Dif-
ferent patterns for storing time-series in Cassandra have been studied as well as
comparing Cassandra towards popular TSDM systems.

RQ2 What are the requirements for IoT and time-series data management in database
systems?

55

Chapter 6. Conclusion

Many studies have investigated the requirements of data management of IoT.
These requirements are described in Chapter 2, in Section 2.2.3. Some prop-
erties that are mentioned several times are scalability, data heterogeneity, and
data aggregation. In Section 2.3.3, requirements for databases that store data
recorded as time-series are listed. In Section 6.3, some future work direction
regarding the requirements for IoT data management is presented.

RQ3 What databases are suited for IoT and time-series data based on the require-
ments found in literature, in RQ2?

Based on the databases considered in the literature, two NoSQL database sys-
tems where selected, one document-based, MongoDB, and Apache Cassandra,
as well as one relational database, MySQL. These three databases were investi-
gated in detail and are summarized in Section 2.3.4in terms of the requirements
found in RQ2. MongoDB showed to satisfy all the requirements except one,
and thereby showing a great foundation for being suitable for IoT. Cassandra,
having some shortcomings, the missing properties are properties that can be
provided by using external systems for properties such as real-time processing
and analytics. Finally, MySQL showed less potential for being suitable for IoT
by missing several properties that is considered important such as horizontal
scalability and support for data heterogeneity as mentioned in RQ2.

RQ4 How do the databases from RQ3 perform in experiments testing the require-
ments for data management in IoT related to smart city use, compared to the
expected performance from literature?

The results of the experiments are summarized in Chapter 5. MongoDB and
MySQL execution times where quite similar for all four queries. MongoDB
was expected to perform better despite not using indexing because recent results
are kept in memory in MongoDB. MySQL was on the other hand expected
to have slower execution times, than the results recorded in the experiments.
Cassandra’s execution times of aggregation functions performed extremely bad,
however, as expected, Cassandra has great results for retrieving time-interval
only, outperforming the other two databases.

6.2 Conclusion
The need for database management systems to handle IoT data is demonstrated through an
example of smart city usage in this thesis. Through a literature review, it was found that the
research community tends to lean towards the standard of using a NoSQL database. Mon-
goDB is heavily represented among this research, but when time-series data is discussed,
Cassandra is often mentioned as a top competitor. However, MySQL was represented in

56

6.3 Future work

a lot of the literature as well, and this is why it was decided to look deeper into these
three systems in terms of IoT and time-series requirements for data management. Again,
MongoDB is a top contender in terms of the requirements by satisfying almost all desired
properties reviewed in this work. Cassandra, which also had many important properties,
had some limitations when compared with MongoDB. MySQL was also missing some
important properties such as heterogeneity and horizontal scalability.

The results shown in Chapter 5, validates what has been shown in literature, that Cas-
sandra is a good choice when handling time-series, and MongoDB giving promising re-
sults, even without using indexes. Besides, the results of experiments on MySQL shows
that MySQL can be considered for IoT data for smaller domains or organizations.

6.3 Future work
Throughout this work, several aspects have been notices to be potential future work. In
this section, future research areas are explained.

6.3.1 A Benchmark test for IoT data management requirements
In Chapter 2, Section 2.2.3, data management requirements for IoT was explored. Fur-
ther work on IoT requirements on data management, could include continued work on
these requirements to include all applications in the IoT domain and work as a standard-
ized benchmark test for all IoT applications. In literature, many benchmarks have been
developed in the IoT domain. A benchmark for streaming IoT applications have been de-
veloped [76]. IoTAbench is a benchmarking toolkit for IoT Big Data scenarios, which
can be expanded to multiple IoT use cases [9]. However, few of these focus on the data
management requirements to help support the evaluating of database systems. This is why
there has been identified a need for a benchmark to be used as a standard for any IoT
applications to evaluate any database system.

6.3.2 Expanding the researched databases
First, in this thesis, only the databases, MySQL, MongoDB, and Cassandra are researched
in detail and compared to IoT and time-series requirements. Hence, only those three
databases were researched in the experiments. Future work would be to include several
other NoSQL databases in the comparisons of requirements and experiments. Even TSDB
could be included to test the performance of these when compared with NoSQL systems
both theoretical and with experiments.

6.3.3 Experiments with indexes
As the experiments in this thesis were conducted with data inserted as close as possible
to their original format, future research should include testing whether the same results of
execution times would appear with the use of indexes. Indexing can drastically improve
performance. ”Without indexes, MongoDB must perform a collection scan, i.e. scan every
document in a collection, to select those documents that match the query statement,” [56].

57

Chapter 6. Conclusion

The same goes for MySQL. In Cassandra, the data model should be designed after the
queries that are necessary for the applications to achieve high performance.

Because the experiments in this thesis are executed using minimal setups such as keys,
indexes, and caches, they can be used as a basis for a benchmark for the performance in
the future work mentioned above.

6.3.4 Cloud
Finally, in Chapter 2 and Section 2.3.6, cloud computing was discussed related to IoT. In
the future, using cloud technologies will be a must for many organizations in IoT. Many
cloud providers have emerged the recent years and many big companies have popular
cloud platforms. Testing the IoT requirements and experiments on the cloud providers
database technologies to test their performance with IoT data could be interesting future
research. Apart from providing highly scalable options, cloud providers can open up ad-
ditional opportunities of utilizing for instance big data and other systems together with the
database to further satisfy the requirements of IoT data management.

58

Bibliography

[1] V. Abramova and J. Bernardino. Nosql databases: Mongodb vs cassandra. In Pro-
ceedings of the international C* conference on computer science and software engi-
neering, pages 14–22, 2013.

[2] H. Ahvenniemi, A. Huovila, I. Pinto-Seppä, and M. Airaksinen. What are the differ-
ences between sustainable and smart cities? Cities, 60:234–245, 2017.

[3] A. Akela. 4 cluster management tools to compare, 2016. URL https://dzone.
com/articles/4-cluster-management-tools-to-compare. Last
accessed 10 June 2020.

[4] V. Albino, U. Berardi, and R. M. Dangelico. Smart cities: Definitions, dimensions,
performance, and initiatives. Journal of urban Researching information systems and
computingtechnology, 22(1):3–21, 2015.

[5] Amazon. Amazon timestream, 2020. URL https://aws.amazon.com/
timestream/. Last accessed 4 May 2020.

[6] S. Amghar, S. Cherdal, and S. Mouline. Which nosql database for iot applications?
In 2018 International Conference on Selected Topics in Mobile and Wireless Net-
working (MoWNeT), pages 131–137. IEEE, 2018.

[7] G. Anastasi, M. Antonelli, A. Bechini, S. Brienza, E. D’Andrea, D. De Guglielmo,
P. Ducange, B. Lazzerini, F. Marcelloni, and A. Segatori. Urban and social sensing
for sustainable mobility in smart cities. In 2013 Sustainable Internet and ICT for
Sustainability (SustainIT), pages 1–4. IEEE, 2013.

[8] M. Antonini, M. Vecchio, and F. Antonelli. Fog computing architectures: A reference
for practitioners. IEEE Internet of Things Magazine, 2(3):19–25, 2019.

[9] M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and B. Vandiver. Iotabench:
an internet of things analytics benchmark. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, pages 133–144, 2015.

59

https://dzone.com/articles/4-cluster-management-tools-to-compare
https://dzone.com/articles/4-cluster-management-tools-to-compare
https://aws.amazon.com/timestream/
https://aws.amazon.com/timestream/

[10] C. Asiminidis, G. Kokkonis, and S. Kontogiannis. Database systems performance
evaluation for iot applications. International Journal of Database Management Sys-
tems (IJDMS) Vol, 10, 2018.

[11] T. O. Authors. Real-time visibility into stacks, sensors and systems, 2020. URL
https://www.influxdata.com/. Last accessed 14 May 2020.

[12] M. Babar and F. Arif. Smart urban planning using big data analytics to contend with
the interoperability in internet of things. Future Generation Computer Systems, 77:
65–76, 2017.

[13] N. Z. Bawany and J. A. Shamsi. Smart city architecture: Vision and challenges.
International Journal of Advanced Computer Science and Applications, 6(11), 2015.

[14] A. Bekker. Cassandra performance: The most comprehensive overview
you’ll ever see, 2018. URL https://www.scnsoft.com/blog/
cassandra-performance. Last accessed 10 June 2020.

[15] M. B. Brahim, W. Drira, F. Filali, and N. Hamdi. Spatial data extension for cassandra
nosql database. Journal of Big Data, 3(1):11, 2016.

[16] A. A. Chaudhari and P. Mulay. Scsi: real-time data analysis with cassandra and spark.
In Big Data Processing Using Spark in Cloud, pages 237–264. Springer, 2019.

[17] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs. Building a big data platform
for smart cities: Experience and lessons from santander. In 2015 IEEE International
Congress on Big Data, pages 592–599. IEEE, 2015.

[18] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs. Building a big data platform
for smart cities: Experience and lessons from santander. In 2015 IEEE International
Congress on Big Data, pages 592–599. IEEE, 2015.

[19] A. Clemm. Network management fundamentals. Cisco Press, 2006.

[20] J. Cooper and A. James. Challenges for database management in the internet of
things. IETE Technical Review, 26(5):320–329, 2009.

[21] O. Corporation. The mysql query cache, 2020. URL https://dev.mysql.
com/doc/refman/5.7/en/query-cache.html. Last accessed 1 June
2020.

[22] O. Corporation. Mysql standard edition, 2020. URL https://www.mysql.
com/products/standard/. Last accessed 23 March 2020.

[23] O. Corporation. Mysql enterprise edition, 2020. URL https://www.mysql.
com/products/enterprise/. Last accessed 23 March 2020.

[24] O. Corporation. How mysql uses indexes, 2020. URL https://dev.mysql.
com/doc/refman/8.0/en/mysql-indexes.html. Last accessed 7 May
2020.

60

https://www.influxdata.com/
https://www.scnsoft.com/blog/cassandra-performance
https://www.scnsoft.com/blog/cassandra-performance
https://dev.mysql.com/doc/refman/5.7/en/query-cache.html
https://dev.mysql.com/doc/refman/5.7/en/query-cache.html
https://www.mysql.com/products/standard/
https://www.mysql.com/products/standard/
https://www.mysql.com/products/enterprise/
https://www.mysql.com/products/enterprise/
https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html

[25] O. Corporation. 5.1.8 server system variables, 2020. URL https://dev.
mysql.com/doc/refman/8.0/en/server-system-variables.
html#sysvar_max_connections. Last accessed 15 June 2020.

[26] DataStax. Data caching, 2020. URL https://docs.datastax.
com/en/cassandra-oss/3.0/cassandra/operations/
opsDataCachingTOC.html. Last accessed 1 June 2020.

[27] I. DataStax. Indexing, 2020. URL https://docs.datastax.com/en/
cql-oss/3.3/cql/cql_using/usePrimaryIndex.html. Last accessed
7 May 2020.

[28] L. Deri, S. Mainardi, and F. Fusco. tsdb: A compressed database for time se-
ries. In International Workshop on Traffic Monitoring and Analysis, pages 143–156.
Springer, 2012.

[29] L. B. Dias, M. Holanda, R. C. Huacarpuma, and R. T. de Sousa Jr. Nosql database
performance tuning for iot data. Proceedings of the 3rd International Conference on
Internet of Things, Big Data and Security (IoTBDS 2018), pages 277–284, 2018.

[30] A. Duarte and J. Bernardino. Cassandra for internet of things: An experimental
evaluation. In IoTBD, pages 49–56, 2016.

[31] J. Dutta and S. Roy. Iot-fog-cloud based architecture for smart city: Prototype of
a smart building. In 2017 7th International Conference on Cloud Computing, Data
Science & Engineering-Confluence, pages 237–242. IEEE, 2017.

[32] R. Elmasri and S. Navathe. Fundamentals of database systems, chapter 24, 1992.

[33] R. Elmasri and S. Navathe. Fundamentals of database systems, chapter 25, 1992.

[34] M. I. Floyd Smith. Time series - choosing a time series
database, 2020. URL https://www.memsql.com/blog/
choosing-a-time-series-database/. Last accessed 8 May 2020.

[35] T. A. S. Foundation. Security, 2020. URL https://cassandra.apache.
org/doc/latest/operating/security.html. Last accessed 14 May
2020.

[36] M. Fredriksen. Ict architecture in large scale smart cities. Project report in TDT4501,
Department of Computer Science Technology, NTNU – Norwegian University of
Science and Technology, Dec. 2019.

[37] A. Gupta, R. Christie, and P. Manjula. Scalability in internet of things: features,
techniques and research challenges. Int. J. Comput. Intell. Res, 13(7):1617–1627,
2017.

[38] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak,
and P. Williams. Foundations for smarter cities. IBM Journal of research and devel-
opment, 54(4):1–16, 2010.

61

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/operations/opsDataCachingTOC.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/operations/opsDataCachingTOC.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/operations/opsDataCachingTOC.html
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/usePrimaryIndex.html
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/usePrimaryIndex.html
https://www.memsql.com/blog/choosing-a-time-series-database/
https://www.memsql.com/blog/choosing-a-time-series-database/
https://cassandra.apache.org/doc/latest/operating/security.html
https://cassandra.apache.org/doc/latest/operating/security.html

[39] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan. The
rise of “big data” on cloud computing: Review and open research issues. Information
systems, 47:98–115, 2015.

[40] S. Heiler. Semantic interoperability. ACM Computing Surveys (CSUR), 27(2):271–
273, 1995.

[41] I. Inc. The scalable time series database, 2020. URL http://opentsdb.net/.
Last accessed 14 May 2020.

[42] G. Kiraz and C. Toğay. Iot data storage: Relational & non-relational database man-
agement systems performance comparison. A. Yazici & C. Turhan (Eds.), 34:48–52,
2017.

[43] R. Kumar, S. Charu, and S. Bansal. Effective way to handling big data problems
using nosql database (mongodb). J. Adv. Database Manag. Syst, 2(2):42–48, 2015.

[44] K. K. Larsen. Timetable: Dynamic time series data store utilizing managed cloud
services. Master thesis, Department of Computer Science Technology, NTNU –
Norwegian University of Science and Technology, June 2018.

[45] Y. Li and S. Manoharan. A performance comparison of sql and nosql databases.
In 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pages 15–19. IEEE, 2013.

[46] A. Mahgoub, S. Ganesh, F. Meyer, A. Grama, and S. Chaterji. Suitability of nosql
systems—cassandra and scylladb—for iot workloads. In 2017 9th International Con-
ference on Communication Systems and Networks (COMSNETS), pages 476–479.
IEEE, 2017.

[47] A. Makris, K. Tserpes, G. Spiliopoulos, and D. Anagnostopoulos. Performance eval-
uation of mongodb and postgresql for spatio-temporal data. In EDBT/ICDT Work-
shops, 2019.

[48] X. Masip-Bruin, E. Marı́n-Tordera, A. Alonso, and J. Garcia. Fog-to-cloud comput-
ing (f2c): The key technology enabler for dependable e-health services deployment.
In 2016 Mediterranean ad hoc networking workshop (Med-Hoc-Net), pages 1–5.
IEEE, 2016.

[49] N. Q. Mehmood, R. Culmone, and L. Mostarda. Modeling temporal aspects of sensor
data for mongodb nosql database. Journal of Big Data, 4(1):8, 2017.

[50] A. Meier and M. Kaufmann. Nosql databases. In SQL & NoSQL Databases, pages
201–218. Springer, 2019.

[51] P. Mell, T. Grance, et al. The nist definition of cloud computing. NIST Special
Publication 800-145, 2011.

[52] Microsoft. Azure sql database edge, 2020. URL https://azure.microsoft.
com/en-us/services/sql-database-edge/. Last accessed 4 May 2020.

62

http://opentsdb.net/
https://azure.microsoft.com/en-us/services/sql-database-edge/
https://azure.microsoft.com/en-us/services/sql-database-edge/

[53] Microsoft. Nosql databases: An overview for getting started, 2020. URL https:
//azure.microsoft.com/en-us/overview/nosql-database/. Last
accessed 19 March 2020.

[54] I. MongoDB. Mongodb manual, 2008. URL https://docs.
mongodb.com/manual/reference/explain-results/#explain.
executionStats. Last accessed 1 June 2020.

[55] I. MongoDB. Change streams, 2008. URL https://docs.mongodb.com/
manual/changeStreams/. Last accessed 15 June 2020.

[56] I. MongoDB. Indexes, 2008. URL https://docs.mongodb.com/manual/
indexes/. Last accessed 25 June 2020.

[57] I. MongoDB. Time series data and mongodb, 2019.
URL https://www.mongodb.com/blog/post/
time-series-data-and-mongodb-part-2-schema-design-best-practices/.
Last accessed 25 May 2020.

[58] I. MongoDB. Aggregation, 2020. URL https://docs.mongodb.com/
manual/aggregation/. Last accessed 13 May 2020.

[59] I. MongoDB. Mongodb atlas, 2020. URL https://www.mongodb.com/
cloud/atlas. Last accessed 15 June 2020.

[60] I. MongoDB. Real-time analytics, 2020. URL https://www.mongodb.com/
use-cases/real-time-analytics. Last accessed 13 May 2020.

[61] I. MongoDB. Security, 2020. URL https://docs.mongodb.com/manual/
security/. Last accessed 14 May 2020.

[62] I. MongoDB. Write operation performance, 2020. URL https://docs.
mongodb.com/v3.4/core/write-performance/. Last accessed 14 May
2020.

[63] D. Namiot. Time series databases. DAMDID/RCDL, 1536:132–137, 2015.

[64] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya. Focan: A
fog-supported smart city network architecture for management of applications in the
internet of everything environments. Journal of Parallel and Distributed Computing,
132:274–283, 2019.

[65] U. Nations. News - world population projected to reach 9.8 billion in 2050, and 11.2
billion in 2100, 2017. URL https://www.un.org/development/desa/
en/news/population/world-population-prospects-2017.html.
Last accessed 12 May 2020.

[66] N. Neeraj. Mastering Apache Cassandra. Packt Publishing Ltd, 2013.

[67] B. J. Oates. Researching information systems and computing. Sage, 2005.

63

https://azure.microsoft.com/en-us/overview/nosql-database/
https://azure.microsoft.com/en-us/overview/nosql-database/
https://docs.mongodb.com/manual/reference/explain-results/#explain.executionStats
https://docs.mongodb.com/manual/reference/explain-results/#explain.executionStats
https://docs.mongodb.com/manual/reference/explain-results/#explain.executionStats
https://docs.mongodb.com/manual/changeStreams/
https://docs.mongodb.com/manual/changeStreams/
https://docs.mongodb.com/manual/indexes/
https://docs.mongodb.com/manual/indexes/
https://www.mongodb.com/blog/post/time-series-data-and-mongodb-part-2-schema-design-best-practices/
https://www.mongodb.com/blog/post/time-series-data-and-mongodb-part-2-schema-design-best-practices/
https://docs.mongodb.com/manual/aggregation/
https://docs.mongodb.com/manual/aggregation/
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/use-cases/real-time-analytics
https://www.mongodb.com/use-cases/real-time-analytics
https://docs.mongodb.com/manual/security/
https://docs.mongodb.com/manual/security/
https://docs.mongodb.com/v3.4/core/write-performance/
https://docs.mongodb.com/v3.4/core/write-performance/
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

[68] A. Piórkowski et al. Mysql spatial and postgis–implementations of spatial data stan-
dards. Electronic journal of Polish agricultural universities, 14(1):1–8, 2011.

[69] E. S. Pramukantoro, D. P. Kartikasari, and R. A. Siregar. Performance evaluation of
mongodb, cassandra, and hbase for heterogenous iot data storage. In 2019 2nd Inter-
national Conference on Applied Information Technology and Innovation (ICAITI),
pages 203–206. IEEE, 2019.

[70] R. Ramakrishnan and J. Gehrke. Database management systems. McGraw Hill,
2000.

[71] D. Ramesh, A. Sinha, and S. Singh. Data modelling for discrete time series data using
cassandra and mongodb. In 2016 3rd international conference on recent advances in
information technology (RAIT), pages 598–601. IEEE, 2016.

[72] S. Rautmare and D. Bhalerao. Mysql and nosql database comparison for iot applica-
tion. In 2016 IEEE International Conference on Advances in Computer Applications
(ICACA), pages 235–238. IEEE, 2016.

[73] P. P. Ray. A survey of iot cloud platforms. Future Computing and Informatics Jour-
nal, 1(1-2):35–46, 2016.

[74] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez, R. Ramd-
hany, A. Gluhak, S. Krco, E. Theodoridis, et al. Smartsantander: Iot experimentation
over a smart city testbed. Computer Networks, 61:217–238, 2014.

[75] B. Schwartz, P. Zaitsev, and V. Tkachenko. High performance MySQL: optimization,
backups, and replication. ” O’Reilly Media, Inc.”, 2012.

[76] A. Shukla and Y. Simmhan. Benchmarking distributed stream processing platforms
for iot applications. In Technology Conference on Performance Evaluation and
Benchmarking, pages 90–106. Springer, 2016.

[77] A. Sinaeepourfard, J. Krogstie, S. A. Petersen, and D. Ahlers. F2c2c-dm: a fog-
to-cloudlet-to-cloud data management architecture in smart city. In 2019 IEEE 5th
World Forum on Internet of Things (WF-IoT), pages 590–595. IEEE, 2019.

[78] I. G. Smith. The Internet of things 2012: new horizons. CASAGRAS2, 2012.

[79] M. Tahmassebpour. A new method for time-series big data effective storage. Ieee
Access, 5:10694–10699, 2017.

[80] I. Timescale. Building a distributed time-series database on post-
gresql, 2019. URL https://blog.timescale.com/blog/
building-a-distributed-time-series-database-on-postgresql/.
Last accessed 14 May 2020.

[81] I. Timescale. All of your time-series data, instantly accessible, 2020. URL https:
//www.timescale.com/. Last accessed 14 May 2020.

64

https://blog.timescale.com/blog/building-a-distributed-time-series-database-on-postgresql/
https://blog.timescale.com/blog/building-a-distributed-time-series-database-on-postgresql/
https://www.timescale.com/
https://www.timescale.com/

[82] D. G. Waddington and C. Lin. A fast lightweight time-series store for iot data. arXiv
preprint arXiv:1605.01435, 2016.

[83] C. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu. Big data and cloud computing: inno-
vation opportunities and challenges. International Journal of Digital Earth, 10(1):
13–53, 2017.

65

Appendix A

import d a t e t i m e
from mysql . c o n n e c t o r import c o n n e c t

DB = ’ m a s t e r ’
COLL = ’ s e n s o r ’
mysql db = c o n n e c t (h o s t = ’ l o c a l h o s t ’ , u s e r = ’ r o o t ’ ,
password = ’ ’)

m y s q l c u r s o r . e x e c u t e (f ”””
CREATE TABLE IF NOT EXISTS {COLL} (

VendorID i n t ,
t p e p p i c k u p d a t e t i m e t i m e s t a m p PRIMARY KEY ,
t p e p d r o p o f f d a t e t i m e t imes tamp ,
p a s s e n g e r c o u n t i n t ,
t r i p d i s t a n c e double ,
RatecodeID i n t ,
s t o r e a n d f w d f l a g t e x t ,
PULocationID i n t ,
DOLocationID i n t ,
p a y m e n t t y p e i n t ,
f a r e a m o u n t double ,
e x t r a double ,
m t a t a x double ,
t i p a m o u n t double ,
t o l l s a m o u n t double ,
i m p r o v e m e n t s u r c h a r g e double ,
t o t a l a m o u n t double ,
c o n g e s t i o n s u r c h a r g e d oub l e
)

”””)

def que ry1 mysq l () :
m y s q l s e s s i o n = mysql db . c u r s o r ()
m y s q l s e s s i o n . e x e c u t e (f ”USE {DB}”)
m y s q l s e s s i o n . e x e c u t e (” S e t p r o f i l i n g = 1 ”)
que ry = f ”””
SELECT * FROM {COLL}
WHERE ‘ t p e p p i c k u p d a t e t i m e ‘ >= ”{ s t a r t t i m e }” and

66

‘ t p e p p i c k u p d a t e t i m e ‘ < ”{ e n d t i m e }”
”””
m y s q l s e s s i o n . e x e c u t e (que ry)

def que ry2 mysq l () :
m y s q l s e s s i o n = mysql db . c u r s o r ()
m y s q l s e s s i o n . e x e c u t e (f ”USE {DB}”)
m y s q l s e s s i o n . e x e c u t e (” S e t p r o f i l i n g = 1 ”)
que ry = f ”””
SELECT SUM(t i p a m o u n t) FROM {COLL}
”””
m y s q l s e s s i o n . e x e c u t e (que ry)

def que ry3 mysq l () :
m y s q l s e s s i o n = mysql db . c u r s o r ()
m y s q l s e s s i o n . e x e c u t e (f ”USE {DB}”)
m y s q l s e s s i o n . e x e c u t e (” S e t p r o f i l i n g = 1 ”)
que ry = f ”””
SELECT AVG(t r i p d i s t a n c e) FROM {COLL}
WHERE t p e p p i c k u p d a t e t i m e >= ”{ s t a r t t i m e }” and
t p e p p i c k u p d a t e t i m e < ”{ e n d t i m e }”
”””
m y s q l s e s s i o n . e x e c u t e (que ry)

def que ry4 mysq l () :
m y s q l s e s s i o n = mysql db . c u r s o r ()
m y s q l s e s s i o n . e x e c u t e (f ”USE {DB}”)
m y s q l s e s s i o n . e x e c u t e (” S e t p r o f i l i n g = 1 ”)
que ry = f ”””
SELECT SUM(t i p a m o u n t) as t i p s s u m FROM {COLL}
GROUP BY VendorID
”””
m y s q l s e s s i o n . e x e c u t e (que ry)

67

Appendix B

The data in MongoDB is inserted as presented in the dataset.

def query1 mongodb () :
mongo cur so r = mongo db . f i n d (

{” t p e p p i c k u p d a t e t i m e ” :
{” $ g t e ” : s t a r t t i m e , ” $ l t ” : e n d t i m e }}

)

def query2 mongodb () :
p i p e l i n e = [

{” $match ” : {}} ,
{” $group ” : {” i d ” : None , ” t o t a l ” :
{”$sum” : ” $ t i p a m o u n t ” }}}

]
agg cmd = SON(

[(” a g g r e g a t e ” , COLL) , (” p i p e l i n e ” , p i p e l i n e) ,
(” c u r s o r ” , {})]

)
r e s u l t = mongo db . a g g r e g a t e (p i p e l i n e)

def query3 mongodb () :
p i p e l i n e = [

{” $match ” : {” t p e p p i c k u p d a t e t i m e ” :
{” $ g t e ” : s t a r t t i m e , ” $ l t ” : e n d t i m e }}} ,
{” $group ” : {” i d ” : None , ” a v r a g e ” :
{” $avg ” : ” $ t r i p d i s t a n c e ” }}}

]
agg cmd = SON(

[(” a g g r e g a t e ” , COLL) , (” p i p e l i n e ” , p i p e l i n e) ,
(” c u r s o r ” , {})]

)
r e s u l t = mongo db . a g g r e g a t e (p i p e l i n e)

def query4 mongodb () :
p i p e l i n e = [

{” $match ” : {}} ,
{” $group ” : {” i d ” : ” $VendorID ” , ”sum” :
{”$sum” : ” $ t i p a m o u n t ” }}}

]

68

agg cmd = SON(
[(” a g g r e g a t e ” , COLL) , (” p i p e l i n e ” , p i p e l i n e) ,
(” c u r s o r ” , {})]

)

r e s u l t = mongo db . a g g r e g a t e (p i p e l i n e)

69

Appendix C

import d a t e t i m e
from c a s s a n d r a . c l u s t e r
import C l u s t e r , B a t c h S t a t e m e n t , E x e c u t i o n P r o f i l e

DB = ’ m a s t e r ’
COLL = ’ s e n s o r ’

c a s s a n d r a d b = C l u s t e r ()
c a s s a n d r a d b . d e f a u l t t i m e o u t = 60

c a s s a n d r a s e s s i o n . e x e c u t e (
f ”””
CREATE KEYSPACE IF NOT EXISTS {DB}
WITH r e p l i c a t i o n = {{

’ c l a s s ’ : ’ S i m p l e S t r a t e g y ’ , ’ r e p l i c a t i o n f a c t o r ’ : ’3 ’
}}
”””

)

c a s s a n d r a s e s s i o n . s e t k e y s p a c e (DB)
c a s s a n d r a s e s s i o n . e x e c u t e (

f ”””
CREATE TABLE IF NOT EXISTS {COLL} (

VendorID i n t ,
t p e p p i c k u p d a t e t i m e t imes tamp ,
t p e p d r o p o f f d a t e t i m e t imes tamp ,
p a s s e n g e r c o u n t i n t ,
t r i p d i s t a n c e double ,
RatecodeID i n t ,
s t o r e a n d f w d f l a g t e x t ,
PULocationID i n t ,
DOLocationID i n t ,
p a y m e n t t y p e i n t ,
f a r e a m o u n t double ,
e x t r a double ,
m t a t a x double ,
t i p a m o u n t double ,
t o l l s a m o u n t double ,

70

i m p r o v e m e n t s u r c h a r g e double ,
t o t a l a m o u n t double ,
c o n g e s t i o n s u r c h a r g e double ,
PRIMARY KEY ((VendorID) , t p e p p i c k u p d a t e t i m e)

)
WITH c a c h i n g = {{

’ k e y s ’ : ’NONE ’ ,
’ r o w s p e r p a r t i t i o n ’ : ’NONE’ }}

”””
)

def q u e r y 1 c a s s a n d r a () :
c a s s a n d r a s e s s i o n = c a s s a n d r a d b . c o n n e c t ()
c a s s a n d r a s e s s i o n . s e t k e y s p a c e (DB)
que ry = f ”””
SELECT * FROM {COLL}
WHERE ” t p e p p i c k u p d a t e t i m e ” >= ’{ s t a r t t i m e } ’ and
” t p e p p i c k u p d a t e t i m e ” < ’{ e n d t i m e } ’
ALLOW FILTERING
”””
q = c a s s a n d r a s e s s i o n . e x e c u t e (query , t r a c e =True)

def q u e r y 2 c a s s a n d r a () :
c a s s a n d r a s e s s i o n = c a s s a n d r a d b . c o n n e c t ()
c a s s a n d r a s e s s i o n . d e f a u l t t i m e o u t = 60
c a s s a n d r a s e s s i o n . s e t k e y s p a c e (DB)
name = ” r sum ”
query = f ”””
SELECT SUM(t i p a m o u n t) AS {name} FROM {COLL}
”””
q = c a s s a n d r a s e s s i o n . e x e c u t e (query , t r a c e =True ,
t i m e o u t =60)

def q u e r y 3 c a s s a n d r a () :
c a s s a n d r a s e s s i o n = c a s s a n d r a d b . c o n n e c t ()
c a s s a n d r a s e s s i o n . d e f a u l t t i m e o u t = 60
c a s s a n d r a s e s s i o n . s e t k e y s p a c e (DB)
a v r a g e = ” a v r ”
que ry = f ”””
SELECT AVG(t r i p d i s t a n c e) AS { avrage } FROM {COLL}
WHERE t p e p p i c k u p d a t e t i m e >= ’{ s t a r t t i m e } ’ and
t p e p p i c k u p d a t e t i m e < ’{ e n d t i m e } ’
ALLOW FILTERING
”””
q = c a s s a n d r a s e s s i o n . e x e c u t e (query , t r a c e =True)

71

def q u e r y 4 c a s s a n d r a () :
c a s s a n d r a s e s s i o n = c a s s a n d r a d b . c o n n e c t ()
c a s s a n d r a s e s s i o n . d e f a u l t t i m e o u t = 60
c a s s a n d r a s e s s i o n . s e t k e y s p a c e (DB)
t i p sum = ”sum”
query = f ”””
SELECT SUM(t i p a m o u n t) AS { t i p s u m } FROM {COLL}
GROUP BY VendorID
”””
q = c a s s a n d r a s e s s i o n . e x e c u t e (query , t r a c e =True)

72

