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Abstract

The modern society has grown dependant on electricity and as such the power grid has be-
come a crucial part of our infrastructure. Providing a stable power distribution network is
of utter importance, ensuring that both industry and households have a predictable source
of energy. With the advances of machine learning and storage capacities of big data, there
have emerged a wish to predict faults on the degrading power grid in order to assure sta-
bility for the users.

In this thesis we will do a thorough analysis of the data obtained from the Norwegian
Power grid, and try to find out to what extent it is possible to use this data to predict faults in
the power grid. We present different ways of representing the data, and different machine
learning methods suitable for prediction. We then look at the different data representations
to see if there are any noticeable differences between the structures in the faults and the
non-faults, and if so what might have caused these differences. We finally use the machine
learning methods to try to predict that a fault will occur within different time intervals and
forecast horizons.

We discover that using the raw waveform instead of other popular representations such
as the Fourier transform gives the best results. We also find that using a signal with a
very high resolution does not necessarily improve the performance, but that it is more
important to look at the signal over larger time intervals. Lastly we discover that there are
some differences in the structures in the data, but they are mainly caused by their origin
nodes and not whether it is a fault or not. Looking at each node separately, the differences
between the structures in the faults and non-faults become a bit more visible.

Keywords Norwegian Power Grid, Power Analysis, Fault Prediction, Machine Learning
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Sammendrag

Det moderne samfunnet har blitt avhengig av elektrisitet, og som følger av dette har
strømnettet blitt en viktig del av infrastrukturen vår. Å tilby et stabilt kraftdistribusjon-
snett er ekstremt viktig og sørger for at både industrien og husstander kan ha en forutsigbar
kilde til energi. Med fremskrittene til maskinlæring og lagringskapasitet av store data har
det oppstått et ønske om å kunne forutse feil på det forfallende strømnettet slik at man kan
sikre stabilitet for brukerne.

I denne masteroppgaven skal vi gjøre en gjennomgående analyse av data fått fra det norske
strømnettet, og prøve å finne ut til hvilken grad det er mulig å bruke denne dataen til å
predikere feil i strømnettet. Vi presenterer ulike måter å representere dataen på, og ulike
maskinlæringsmetoder passende for prediksjon. Deretter ser vi på de ulike datarepresen-
tasjonene for å se om det er noen merkbare forandringer i strukturen til feil og ikke-feil,
og om så hva som kan være årsaken til disse forandringene. Til slutt bruker vi maskin-
læringsmetodene til å prøve å predikere om en feil kommer til å inntreffe innenfor ulike
tidsintervaller og ulike tider før feilen eventuelt inntreffer.

Vi oppdager at å bruke den opprinnelige bølgeformen istedet for andre populære repre-
sentasjoner som Fourier transformasjonen gir de beste resultatene. Vi finner også ut at å
bruke et signal med veldig høy oppløsning ikke nødvendigvis forbedrer resultatene, men
at det er viktigere å se på signalet over større tidsintervaller. Til slutt oppdager vi at det
er noen forskjeller i strukturene i dataen, men at dette hovedsaklig er forårsaket av hvilke
noder dataen stammer fra, og ikke om det er en feil eller ikke. Hvis man ser på hver node
individuelt blir forskjellene mellom strukturene i feil og ikke-feil litt mer tydelige.
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Chapter 1
Introduction

This thesis is a part of the EarlyWarn project. The main purpose of EarlyWarn is to develop
surveillance systems that predicts and identifies faults and disturbances in the Norwegian
power grid. EarlyWarn is presented in more detail in Chapter 3.

This Master’s thesis is a continuation from the work done in the specialization project [Jahr
and Meen, 2019]. As the background is the same, parts of the introduction (Chapter 1) and
the background (Chapters 2, 3, and 4) in this thesis will be based on the corresponding
chapters in the specialization project.

1.1 Motivation

The modern society has grown dependant on electricity and as such the power grid has
become a crucial part of our infrastructure. This dependency has grown stronger and
stronger since Edison invented the light bulb in the late 1800’s until today where we cannot
imagine a day without our smartphones. The power grid is not only important for the daily
life of people, but also for businesses and for the government to function properly. This
has put very high quality and reliance expectations on the power grid and on the workers
that operate it. This is especially true for Norway and other northern countries as we
rely on electricity to stay warm during the winter. The Norwegian power grid amounts to
more than 130,000 km of transmission lines. Even though it already has been extensively
developed, many billions are invested annually for improvement and further expansion.
The Norwegian power grid has been subject to heavy investments since the mid 2000’s
[Statistisk Sentralbyrå, 2016]. In 2019 all the investments totalled to about 40 billion
NOK which was a small downfall from 2018, but seen in a historic perspective, it is still a
considerable sum [Statistisk Sentralbyrå, 2019a]. Number of investments for the last years
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Chapter 1. Introduction

Figure 1.1: Statistics for the period 2011-2019 showing the number of investments adjusted after
seasons (Statistisk Sentralbyrå).

can be seen in Figure 1.1. The Norwegian industry has also had a steady increase in energy
consumption over the last years [Statistisk Sentralbyrå, 2019b].

The Nordic power grids are currently undergoing the most significant changes in more
than 20 years [e24, 2018]. These changes are largely motivated by a focus on the climate
and being more Eco-friendly. We can expect to see more use of smart power measurement
devices and new technologies allowing for automatic power adjustments.

With access to data gathered from sensors placed all around the grid, and by advancements
in machine learning technologies in combination with domain knowledge of faults and
disturbances in the power grid, EarlyWarn aims to improve the overall reliability of the
power grid by being able to predict and hopefully being able to prevent faults before they
occur. By being able to take preemptive measures against possible faults, the cost of
maintenance and repairs might be reduced drastically.
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1.2 Research Questions

1.2 Research Questions

The main goal of this thesis is to do a thorough analysis of the wave signal data obtained
through the EarlyWarn project, and to find out to what extent it is possible to use this data
to predict faults in the power grid. We want to explore whether or not there are structures
in the data prior to faults occurring that can be used for prediction, and if there are other
factors than characteristics of the faults that affect the wave signal, and are apparent in
the data, for instance seasonal and geographical differences. To achieve these goals, the
following research questions have been formulated:

• RQ1: To what extent do there exist differentiable structures in the data?

• RQ2: Which data representations are the most useful for predicting faults in the
power grid?

• RQ3: How long before faults occur does the signal contain information which dif-
ferentiates them from normal behavior?

• RQ4: What prediction performances are achievable using machine learning meth-
ods?
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Chapter 2
Background - Power Grids

Parts of this chapter are based on the specialization project [Jahr and Meen, 2019], with
some added methods and analysis in Section 2.3.

In this chapter we will briefly explain the fundamental concepts of the power grid. We will
also take a look at which faults and disturbances that can occur, and the circumstances that
cause them.

2.1 Introduction

A power grid (or electrical grid) has the responsibility of transferring electric power from
a producer to a consumer, and usually consists of; generating stations (producers), sub-
stations (transforms the voltage), transmission lines (transfers the power) and consumers.
We will from here on refer to electrical power as just power. Another term that is highly
related to both power and voltage is current. Power, current and voltage are defined as
follows:

• Power (P) is the rate of energy consumption per time unit and is measured in units
of watts (joule per second).

• Current (A) is the rate of flow of electric charge past a point and is measured in
units of amperes (coulomb per second).

• Voltage (V) is the difference in potential electric energy between two points and is
measured in units of volts (joule per coulomb).
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The power grid of interest is the Norwegian power grid which is making sure that all
citizens and other consumers have access to the electricity they need. We will from here on
refer to the Norwegian power grid as just ”the power grid”. The power grid is traditionally
divided into three nets:

• The transmission net which represents the highest voltage levels (normally between
300kV to 420kV) and transmits power over huge distances throughout the country.
This also includes connections to neighbouring countries. It amounts to 11,000 km
of transmission lines.

• The regional net which represents the middle voltage levels (normally between
33kV and 132kV) and is a middle layer between the transmission net and the distri-
bution net. It amounts to 19,000 km of transmission lines.

• The distribution net which represents the lowest voltage levels (up to 22kV) and is
the final link that transmits power to the end consumer. It amounts to 100,000 km
of transmission lines. The distribution net is further separated into a high voltage
part and a low voltage part, where the separation is at 1kV and the low voltage part
usually is either 400V or 230V for normal consumption.

The three nets together amounts to a total of 130,000 km of transmission lines where
the distribution net has the biggest contribution. All the nets are different in nature and
therefore have different challenges that must be addressed. Unique of these three is the
vast distribution net which with its huge size and complex structure makes it more prone
to faults and disturbances which we will closer into later.

2.2 Fundamentals

2.2.1 Direct- and Alternating Currents

There are two types of currents; direct currents (DC) and alternating currents (AC). Direct
current is the most basic one where the current is constantly flowing in one direction.
Alternating current is, as revealed from the name, alternating the direction of the current
flow (See Figure 2.1). This means that while DC is a steady source of power, AC provides a
flow of power that is in varying in strength. How fast the direction of the flow is alternated,
the frequency, is measured in units of hertz (Hz, switches per second). The frequency is
dependant on the country and is usually either 50Hz or 60Hz. The frequency in Norway is
50Hz.

There are several benefits with using AC that makes it the preferred choice over DC when
it comes to power grids, but the main reason is that the voltage can be transformed to
higher or lower voltage levels depending on the usage. This is crucial as high voltage
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Figure 2.1: Example of a direct- and an alternating current.

levels are much more efficient when transferring power over big distances while the end
consumers only need a fraction of those voltage levels. High voltages are more efficient
because it requires less current which in turn reduces the overall power loss.

2.2.2 Mathematical Representations

The AC voltage v and current i can be described mathematically as a function of time t:

v(t) = Vm cos (ωt+ ϕv) (2.1)

i(t) = Im cos (ωt+ ϕi)

where Vm and Im is the maximum amplitude for voltage and current respectively (peak
voltage and peak current), ω is the angular frequency1 measured in units of radians per
second, and ϕv and ϕi are the phase angles between the voltage and the current.

A popular way of representing a sinusoidal wave is a concept called a phasor. A phasor
is simply put a vector representing the wave with a rotating motion in the complex plane.
To be able to represent a sinusoidal it is crucial that the amplitude, angular frequency and
phase angle are invariant to time. This is because the length of the vector is constant and
will be equal to the maximum amplitude. (See Figure 2.2 for visualization).

By using Euler’s formula:
eit = cos t+ i sin t (2.2)

1ω = 2πf where f is the cyclic frequency measured in the unit of hertz.
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Figure 2.2: The relationship between a phasor and sinusoidal wave [Vadlamudi, 2018].

where e is Euler’s number and i is the imaginary unit, we can rewrite Equation 2.1 to
[Vadlamudi, 2018]:

v(t) = Vm cos (ωt+ ϕv)

= Re(Vme
i(ωt+ϕv))

= Re(Vme
iϕveiωt) (2.3)

where Re is the real part of the complex equation. To find the vector for the phasor repre-
sentation we rewrite Equation 2.3 to:

v(t) = Re(Veiωt)

where V is the phasor representation defined as V = Vme
iϕv .

2.2.3 Three Phase Power

As explained earlier, AC is not a constant power source. It varies in strength as it goes
from the positive voltage peak Vm where it gives maximum power, and gets weaker as it
goes towards zero. It then gets stronger again until it reaches the negative voltage peak
where it also gives maximum power (in the opposite direction). This results in an uneven
flow of power which can cause problems such as flickering lights. By introducing two
more phases the instantaneous power will be constant, meaning that even though the three
phases on their own will vary, combined they will provide a constant source of power (See
Figure 2.3).
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Figure 2.3: Sinusoidal wave representation of three phase power with 2
3
π radians as phase offset.

To build a three phase generator three coils are placed 2
3π radians (120◦) apart (See Figure

2.4 around a rotating magnet. The three phases all have the same magnitude and angular
frequency for both voltages and currents. There are numerous advantages with using a
three phase power system [Vadlamudi, 2018]; Can transmit more power for same amount
of wire, can start more easily, power transfer is constant which reduces generator and
motor vibrations. There are also disadvantages as there are triple the amount of phases,
which results in a greater risk that one of them will fail and cripple the system.

As the sinusoidal wave representation of an alternating current has different values depen-
dant on the time, it would be nice with a single value independent of time to describe the
voltage. A common measurement is the average value. This is not helpful when looking
directly at the sinusoidal waves as they half the time are positive and rest of the time are
negative, which results in an average of zero (assuming you calculate over a period). RMS
avoids this problem by taking the square of the wave resulting in only positive values. RMS
is defined as:

VRMS =

√
1

T2 − T1.

∫ T2

T1

v(t)2dt

where v(t) is a sinusoidal function with period T2. The RMS can be further simplified by
substituting in the function for v(t) from Equation 2.1 (can ignore the phase angle ϕv) and

2Here the RMS is defined in respect to the voltage, but can equivalently be defined in respect to current by
replacing VRMS with IRMS and v(t) with i(t)
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Figure 2.4: Phasor diagram representation of three phase power, phases a, b and c, with 2
3
π radians

(120◦) as phase offset.

by using the trigonometric identity cos2(x) = 1
2 (1 + cos(2x)):

VRMS =

√
1

T2 − T1

∫ T2

T1

v(t)2dt

=

√
1

T2 − T1

∫ T2

T1

V 2
m cos2 (ωt)dt

= Vm

√
1

T2 − T1

∫ T2

T1

1

2
(1 + cos (2ωt))dt

= Vm

√
1

T2 − T1

[
t

2
+

sin (2ωt)

4

]T2

T1

(2.4)

where T1 and T2 are the start and ending periods respectively, such that the interval is one
complete cycle. This results in the sin terms in Equation 2.4 cancelling out, leaving:

VRMS = Vm

√
1

T2 − T1
T2 − T1

2

=
Vm√
2

Subsequently RMS gives the time-averaged power that the AC delivers which also is equal
to the power delivered by a DC voltage with matching value. RMS is very useful to observe

10



2.3 Analysis

in regards to faults and disturbances. Deviations in the RMS value imply that there might
be an error within the system. However, deviations in RMS alone are not always enough
to determine if there has been an error and might require further investigation.

2.3 Analysis

There are many different ways of looking at and representing the wave of a power signal.
Furthermore there are just as many methods for retrieving valuable information from these
representations. Now we will look at and compare some popular ways of representing the
wave of a power signal.

2.3.1 Fourier Transform

The Fourier transform is a function that decomposes a waveform into its fundamental
frequencies, and by so transforming it from the time domain to the frequency domain. The
Fourier transform f̂ can be defined as:

f̂(ω) =

∫ ∞
−∞

f(t)e−2πitωdt

where f is the input waveform, ω is the frequency and t is the time. The original waveform
f can be reconstructed by doing the inverse transform on f̂ :

f(t) =

∫ ∞
−∞

f̂(ω)e2πitωdω

Discrete Fourier Transform

As previously defined, the Fourier transform is performed on a continuous function
(thereof the integration), but in a more realistic setting we do not have the capacity/ability
to sample a function for all values of time. Instead we sample the function with a certain
time interval resulting in discrete samples in contrast to the whole continuous function.
We further define the discrete Fourier transform Xk of a series xn with N samples as:

Xk =

N−1∑
n=0

xne
− 2πi

N kn

where n is a natural number. As with the continuous transform we can also find the inverse:

xn =
1

N

N−1∑
k=0

Xke
2πi
N kn

11



Chapter 2. Background - Power Grids

(a)

(b)

Figure 2.5: (a) shows a sinusoidal function with its 3 components. (b) shows the coefficients of its
discrete Fourier transform.

12



2.3 Analysis

By using Euler’s formula (Equation 2.2) with t = 2π
N knwe can rewrite the discrete Fourier

transform as:

Xk =

N−1∑
n=0

xne
− 2πi

N kn

=

N−1∑
n=0

xn(cos (
2π

N
kn)− i sin 2π

N
kn)

=

N−1∑
n=0

xn cos (
2π

N
kn)− i

N−1∑
n=0

xn sin (
2π

N
kn)

Short Time Fourier Transform

A disadvantage of the Fourier transform is that it removes all information about changes
in regards to time. Short time Fourier transform (STFT) addresses this by reintroducing
the time domain. Explained simply, STFT divides the wave of the signal into equal-sized
segments and then computes the Fourier transform over each segment separately. By doing
this one can observe the changes in frequencies from one segment to another. The STFT
can easily be derived from either the Continious- or the discrete Fourier transform by
multiplying with a windowing function:

STFT{x(t)}(τ, ω) =
∫ ∞
−∞

x(t)w(t− τ)e−iωtdt

where x(t) is the signal, w(τ) is the windowing function and ω is the frequency
(continuous-time STFT). The discrete-time STFT is further derived by changing the con-
tinuous signal x(t) with a discrete version x[n] and the continuous time value for the
windowing function τ with a discrete time value m:

STFT{x[n]}(m,ω) =
∞∑

n=−∞
x[n]w(n−m)e−iωn

One of the main drawbacks STFT has is that is has a fixed resolution, the width of the
windowing function that segments the wave of the signal is constant and cannot be varied.
As such one must take a compromise between frequency resolution and time resolution as
illustrated in Figure 2.6. Frequency resolution describes how easy it is to tell apart compo-
nents with frequencies that are close to each other, similarly time resolution describes how
easy it is to see at which times the frequencies change. A wide window gives a low time
resolution, but a high frequency resolution and vice versa. As illustrated in Figure 2.7 the
STFT with a narrow window makes it easy to see at which points in time the frequencies
are, but the frequencies themselves are blurry. The wide window is opposite, it is easy to
see the frequencies, but it is not clear at which points in time they occur.

13
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Figure 2.6: Comparison of STFT window size. Left with small window sizes giving better time
resolution, and right with bigger window sizes giving better frequency resolution.

A visual representation of a sinusoidal function and its Fourier transform can be seen in
Figure 2.5. Figure 2.5(a) displays a sinusoidal function with components sin 2πx (fun-
damental), 1

2 sin 4πx (2nd component) and 1
3 sin 6πx (3rd component), with frequencies

2π, 4π and 6π, and amplitudes 1, 1
2 and 1

3 respectively. Figure 2.5(b) shows the Fourier
coefficients, the frequencies, with the belonging amplitudes.

2.3.2 Harmonics

In regards to electric power systems, harmonics are multiples of the fundamental frequency
of the system. They appear as both voltage and current. Harmonics are generally unwanted
as they distort the pure sinusoidal wave of the system, and can cause problems such as
increased heat dissipation.

More formally, if we have a fundamental frequency (also referred to as the 1st harmonic)
of the system f, the harmonics have a frequency of nf where n is a natural number (See
Figure 2.8 for a visual representation).

The distorted sinusoidal can be decomposed by using the discrete Fourier transform, re-
sulting in an infinite series representation of harmonic components:

v(t) = Vavg +

∞∑
k=1

Vk sin (kωt+ ϕ)

where Vavg is the average amplitude (also often referred to as the DC value) and Vk is the
amplitude of the kth harmonic.

2.3.3 Wavelet Transform

Wavelet transform is very similar to STFT in the sense that it tries to fit a number of
functions to a given segmented signal. The difference being that while the STFT tries to
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Figure 2.7: STFT spectograms of a signal with different window sizes [Kehtarnavaz, 2008].

Figure 2.8: Resultant of the 1st, 3rd, 5th and 7th harmonic.
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Figure 2.9: Some common wavelet families. There are also multiple variations within each family.

fit infinitely many sine-functions with a fixed window size, the wavelet transform tries to
fit wavelets. Wavelets are wave-like oscillations that are characterized by their amplitudes
starting and ending with 0, as well as the mean being 0. There are very many different
wavelets for different usages, some of the most common are shown in Figure 2.9. Wavelets
are defined with scaling and shifting3. The scale is related to the window length for the
STFT (See Section 2.3.1) and describes the size of the wavelet. The scale is inversely
proportional to the frequency. A higher scale helps to capture the slowly varying changes
of the signal, while a lower scale helps to capture more sudden and abrupt changes. The
shifting describes where in time the wavelet is located. An illustration of the resolutions of
the wavelet transform is shown in Figure 2.10. By varying the scale and shift it is possible
to get a representation that captures both sudden and slow changes over the entire signal.
This means it is possible to both have a high frequency resolution for small frequency
values as well as high time resolution for large frequency values. In other words, at scales
where we are interested in features dependent on time we can choose a high time resolution
and at scales where we are interested in features dependent on frequency we can choose a
high frequency resolution.

As with Fourier there are both a continuous transform and a discrete transform. Con-
tinuous wavelet transform lets scaling and shifting vary continuously, giving potentially
infinitely many wavelets. It is expressed by the following integral:

Xω(a, b) =
1

|a|1/2

∫ ∞
−∞

x(t)ψ(
t− b
a

)dt

where ψ is the complex conjugate of a given wavelet, a is the scale and b is the shift.
Discrete wavelet transform has discrete scaling and shifting. The scale increases in powers

3Many also calls shifting for translation. These are interchangeable, but we will stick to the term shifting.
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Figure 2.10: Illustration of the time and frequency resolution of the wavelet transform.

Figure 2.11: Illustration of the decomposition of the discrete wavelet transform [Devleker, 2016].
D is the coefficients from the high pass filters which together makes up the returned output. A is the
coefficients from the low pass filters that are sent down for further decomposition. At each level the
scale is multiplied by two and the number of samples are halved.

of two (1, 2, 4, 8..) and the shift is integer values (1, 2, 3, 4..). Discrete wavelet transform
decomposes the signal through filter banks, the signal is passed through a cascade of high
pass and low pass filters. At each level of the filter bank the signal is decomposed into
high and low frequencies as shown in Figure 2.11 and the scale increases by a factor of
two (meaning that the frequency decreases with a factor of two). As half of the frequencies
are removed, half of the samples can be discarded as per the Nyquist Theorem4 reducing
the computational cost. This is continued until all desired frequencies are captured or there
are no more samples left. The coefficients from the high pass filter are returned while the
coefficients from the low pass filters are sent to the next level where the process is repeated.

4The Nyquist Theorem states that for a given signal the sampling rate should be twice as large as the frequency
of its highest frequency component.
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Figure 2.12: Illustration of wavelet scattering [Mallat, 2012]. Here x is the signal, ψ is the wavelet
and φ is the averaging operator. The ? is the convolution operator, where a convolution is like an
inner product. As seen the signal is decomposed using wavelets which coefficients are being used
the modulus operator on. At each layer the averaging operator is used to calculate the value S which
together makes up the final returned output.

Wavelet Scattering

Wavelet scattering works in a similar manner to the cascading filter banks used in discrete
wavelet transform. The signal is first decomposed through a low pass filter and a high pass
filter. The output from the high pass filter is then again decomposed in the same way, and
this is repeated creating a layered network as shown in Figure 2.12. High scale wavelets
are used as low pass filters as they capture the low frequencies, and low scale wavelets
are used as high pass filters. It is possible to create as many layers as one desires, but in
practice it is enough with three as the energy dissipates at every iteration making sure that
all the energy of the wave is captured in the last layer. The coefficients that are outputted
from the low pass filters are averaged over, giving one coefficient for every set of shifts
(with a given window size) for each scale. The averages from each layer in the network
are given as the output. The wavelet scattering network is very similar to the convolutional
neural network explained in Section 4.4.5, with wavelets being the already learned filters
which do not need training, and averaging as the pooling function.

The first layer simply gives wavelet coefficients extracted from each frequency band. As
these have been made only using information from a low pass filter they do not contain
information from higher frequencies. The output from the second layer, and the layers
further down, contains information about higher frequencies as it is based on the outputs
from the first high pass filter. As the second layer uses wavelet transform on the outputs
from the first layer which also are wavelet coefficients, it is not obvious what it outputs.
As each wavelet isolates a band of frequencies, the wavelet transforms in the second layer
further isolate frequencies in the frequency bands given from the first layer. This can
be thought of as measuring the interferences/differences between the frequencies in the
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frequency bands. The third layer will then find the interferences of the interferences and
the fourth layer interferences of interferences of interferences and so forth.

2.3.4 Comparison

One of the reasons wavelets are preferred over Fourier as a signal representation is because
Fourier is not stable at high frequencies. A method being stable means that if there is a
small deformation in the signal, we expect the transformation to have a change in the same
order as the deformation (linear). This is important as signals with small deformations
might look the same to the human eye, we might perceive them as the same ”class”, but
the spectograms given by an unstable transform might represent them totally different.
A deformation can for instance be a change in the frequency or in the amplitude of the
signal. The Fourier transform is unstable at high frequencies meaning small deformations
in the frequencies of the signal give big differences in the transformation even though we
expect them to be close. A problem also arises for wavelets at the higher frequencies,
as in order to capture the high frequencies the wavelet is scaled down resulting in a high
time resolution. This makes it sensitive to changes in shifting as it is highly localized in
time. There are multiple methods for removing this sensitiveness, one of the most common
being taking the average over the coefficients at the cost of resolution. See Figures 2.13
and 2.14 for illustrations.

We do not want to lose resolution, and this is where wavelet scattering comes to the rescue.
By averaging over the low pass filters it gets invariant (stable) to local time shifting, in
addition to using high pass filters in order to retain the information lost in the low pass
filters (keeping the frequency resolution), see Figure 2.15 for an illustration. This does
however not come free and requires more processing power and storage, and one must
decide if stability at higher frequencies and time localized info are worth the added cost.
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(a)

(b)

Figure 2.13: (a) and (b) show the windowed Fourier, wavelet transform, and wavelet transform with
time averaging [Mallat, 2012]. (a) shows the difference in resolution between the three and (b) shows
the spectograms of the three transforms used on a signal and a slightly deformed signal. ψ is the
wavelet at different scales λ showed by the blue lines on the y-axis. φ is the averaging operator done
at different shifts (t − u) showed by the blue lines on the x-axis. In (a) you can see that resolution
is sacrificed when averaging, and in (b) that this sacrifice gives a more stable transformation. On the
right side of the spectograms the coefficients are plotted as curves for a point in time for both the
original signal and the deformed one, shown by a blue and red line respectively. The curves for the
Windowed Fourier are stable at lower frequencies, but as the frequency increases it is apparent that
waves get more and more different. The oscillations in the coefficients from the wavelet scattering
have disappeared in the time averaged wavelet scattering due to the averaging, and as a result the
plotted curves are much more similar for higher frequencies.
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Figure 2.14: Illustration of stability [Mallat, 2012]. The first column shows a signal x twice, with
the bottom one being slightly dilated. The middle column shows the Fourier transform, and as you
can see the frequency support of the dilated signal has moved to the right. If you were to calculate
the distance by subtracting it from the original signal, it would be considerably large relative to the
deformation. The last column shows the wavelet scattering transform, and if you were to calculate
the distance now, it would be a lot smaller as the frequency support has not moved.
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Figure 2.15: Illustration of three signals and their wavelet scattering coefficients for the first and
second layer with the two bottom spectograms being averaged over time [Mallat, 2012]. The y-axis
shows the frequencies (given by the index of the wavelet scale) and the x-axis shows time. The
red line shows the frequency that the bottom spectogram is made from. The three different signals
differ mostly in the higher frequencies, and because of that they look almost completely the same
in the first layer when averaged. However, all the inner structure and information about the higher
frequencies are preserved in the second layer and they are easy to tell apart. In the spectogram of
the second layer, most of the energy is at 18Hz. This implies that the most apparent interference
frequency given log(λ1)=1977Hz is at 18Hz.
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2.4 Faults and Disturbances

2.4 Faults and Disturbances

There are three nationwide statistics compiled annually regarding the Norwegian power
grid:

• Avbrotsstatistikk [Norges vassdrags-og energidirektorat, 2019], which is a statistic
of interrupts reported by multiple participating companies and end users. For the
year 2018 it was compiled on the basis of data from 111 reporting companies and
approx. 3.11 million end users. The total energy delivered to the end users was
approx. 121 TWh.

• “Driftsforstyrrelser, feil og planlagte utkoplinger i 1-22 kV-nettet [Statnett, 2019a],
which provides an overview of scheduled downtime due to maintenance, operational
faults and interruptions in the 1-22 kV grid (i.e. the distribution net).

• Driftsforstyrrelser og feil i 33-420 kV-nettet (inkl. driftsforstyrrelser pga. produk-
sjonsanlegg) [Statnett, 2019b], which provides an overview of scheduled downtime
due to maintenance, operational faults and interruptions in the 33-420 kV grid (i.e.
the transmission- and regional net).

According to [Norges vassdrags-og energidirektorat, 2019] power that could not be deliv-
ered due to interruptions amounted to 0.017% of the total delivered energy in 2018. This
means the power delivery reliability was 99,983%. Furthermore, according to [Statnett,
2019a] and [Statnett, 2019b] there were 10798 operational faults on the distribution net,
which were a lot more than normal, but only 740 operational faults on the transmission-
and regional net, which were very few compared to previous years. As noted earlier, there
are overwhelmingly more faults on the distribution net as it contains most of the transmis-
sion lines as well as it has a complex structure.

Faults can range from natural occurrences such as a tree falling on the line or icing in
the winter, to wear and tear of equipment. Statnett5 has made a categorization utilized
in the annual reports and can be viewed in Figure 2.16 in context of operational faults,
and in Figure 2.17 in context of undelivered power (ILE6). As can be seen in the figures,
surroundings are the biggest cause of both operational faults and ILE. The surroundings
were further categorized into subcategories as can be seen in Figure 2.18 and Figure 2.19.
Apparent from these figures is that only thunderstorms were a consistent cause in both
2018 and the mean of previous years, while vegetation was the biggest factor in 2018 and
wind for the previous years. Surprisingly wind is the dominant cause of ILE for previous
years while vegetation was the dominating cause for 2018. The reason why wind has been
the dominating cause of ILE even though thunderstorms caused most operational faults
can be explained by that faults caused by wind have done more damage in comparison,
resulting in more severe faults.

5Statnett is a Norwegian state owned enterprise responsible for owning, operating and constructing the power
grid in Norway.

6Ikke Levert Energi in Norwegian.
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Figure 2.16: Overview of operational faults on the transmission- and regional net and their causes
[Statnett, 2019b].

Figure 2.17: Overview of ILE on the transmission- and regional net and their causes [Statnett,
2019b].
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Figure 2.18: Overview of operational faults on the transmission- and regional net caused by sur-
roundings [Statnett, 2019b].

Figure 2.19: Overview of ILE on the transmission- and regional net caused by surroundings [Stat-
nett, 2019b].
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We are mostly interested in faults that have the possibility of being recognized by looking
at disturbances in the power signal. Faults like a tree falling on the transmission line or a
bird causing a shorting are therefore out of the scope of this thesis. So far we have only
discussed causes of faults in the big picture. We will now take a closer look at faults in
respect to the power signal. [Seymour, 2001] organized power disturbances into seven
different categories based on the shape of the wave:

1. Transients

2. Interruptions

3. Sag / Undervoltage

4. Swell / Overvoltage

5. Waveform distortion

6. Voltage fluctuations

7. Frequency variations

Transients, which were referred to as the potentially most damaging type of power dis-
turbance, can further be divided into two subcategories (See Figure 2.20); impulsive and
oscillatory transients. Impulsive transients are the most common type of power surge/spike
and involves a sudden increase or decrease of the voltage/current level. They usually span a
very short time interval. Causes include lightning, grounding failure and equipment faults
to name a few. Oscillatory transients cause disturbances in the power signal, making the
signal jump between low and high values, resulting in a oscillating motion. Often caused
by a sudden loss of a load.

Interruptions are defined as a complete loss of voltage/current (See Figure 2.21) and can
further be divided into four subcategories in respect to the durations; instantaneous (0.5 to
30 cycles), momentary (30 cycles to 2 seconds), temporary (2 seconds to 2 minutes) and

(a) Impulsive transient. (b) Oscillatory transient.

Figure 2.20: Example of transients [Seymour, 2001].
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Figure 2.21: Example of a momentary interruption [Seymour, 2001].

(a) Sag. (b) Undervoltage.

Figure 2.22: Examples of sag and undervoltage [Seymour, 2001].

sustained (longer than 2 minutes). You might have experienced an interruption at home,
causing all lights to go out for some time before coming back. The consequences may be
a lot more severe for a manufacturer that is dependant on having a reliable power source.

Sag / Undervoltage. A sag (See Figure 2.22a) is a reduction in voltage that lasts for 0.5
cycles up to a minute. Causes can for instance be the startup of equipment that consumes
large amounts of power, or just the system not being able to deliver enough power. Un-
dervoltages (See Figure 2.22b) are the results of sags that have lasted for longer than one
minute and can lead to serious damage of equipment. Both sags and undervoltages may
be discovered by looking at the RMS value as it will decrease.

Swell / Overvoltage. A swell (See Figure 2.23a) is the opposite of a sag, that is to say
an increase in the voltage that lasts for 0.5 cycles up to a minute. Causes can for instance
be the shutdown of equipment that consumes large amounts of power, or faulty isolation.
Overvoltages (See Figure 2.23b) are similarly the results of swells that have lasted for
longer than one minute. Both swells and overvoltages may be discovered by looking at the
RMS value as it will increase.

Waveform distortion is defined as any disturbance that affects the wave of the volt-
age/current, and can further be divided into five subcategories: DC offset, harmonic dis-
tortion, interharmonics, notching and noise.

DC offset (See Figure 2.24a) is an offset that results in the average of the wave not being
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(a) Swell. (b) Overvoltage.

Figure 2.23: Examples of swell and overvoltage [Seymour, 2001].

(a) Dc offset. (b) Harmonic distortion. (c) Interharmonics.

(d) Notching. (e) Noise.

Figure 2.24: Examples of waveform distortions [Seymour, 2001].

zero, increasing or decreasing the RMS value depending on the value of the offset. It
is often caused by failure in AC to DC converters, and may result in overheating of the
transformers.

Harmonic distortions (See Figure 2.24b) are disturbances in the harmonics excluding the
1st harmonic (the fundamental frequency). Symptoms are for instance overheating in com-
ponents and loss of synchronization on timing circuits.

Interharmonics (See Figure 2.24c) are a type of distortion that occur when a signal that
is not a harmonic is imposed on the wave. Symptoms are for instance overheating in
components and flickering lights.

Notching (See Figure 2.24d) is a periodic voltage disturbance. It is similar to the impul-
sive transient distortion, with the difference being that notching is periodic and as such
considered a waveform distortion.

Noise (See Figure 2.24e) is unwanted voltage/current which is superimposed on the wave.
Noise may be caused by poorly grounded equipment. This results in the system being
more susceptible to interference from nearby devices. Common problems caused by noise
are for instance data errors and hard disk failures.
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Figure 2.25: Example of a voltage fluctuation [Seymour, 2001].

Figure 2.26: Example of a frequency variation [Seymour, 2001].

Voltage fluctuations are series of minor, random changes in the wave of the voltage (See
Figure 2.25). The variations are usually between 95% and 105%. The cause is usually
a load exhibiting significant current variations. This can for instance result in flickering
lights and/or loss of data. A way to resolve this problem is to remove the offending load.

Frequency variations are variations of the frequency in the wave (See Figure 2.26). They
are an extremely rare type of waveform distortion. They are usually caused by an over-
loaded generator and can cause problems like system halts and flickering lights. A way to
resolve this problem is to fix the generating power source.
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Chapter 3
Background - EarlyWarn

Parts of this chapter are based on the specialization project [Jahr and Meen, 2019].

In this chapter we will introduce the EarlyWarn project that this thesis is a part of. This
chapter is mostly based on (sources from) [Santi, 2019].

3.1 Introduction

The main purpose of EarlyWarn is to develop surveillance systems that discover and iden-
tify faults and disturbances in the Norwegian power grid, including the distribution-, the
regional- and the transmission net. It is crucial that the faults and disturbances are dis-
covered before they evolve into larger problems like power outage, or cause damage to
valuable equipment in the power grid and/or equipment belonging to the end consumers.
There are many parties involved in this project, including several power grid operators,
with the most notable parties being SINTEF1 Digital and Statnett. SINTEF receives data
from various sensors placed all around the power grid from the participating power grid
operators. The data is then processed and fed into machine learning and statistical models
in order to make predictions and classifications. The desirable outcome is to get a pre-
diction with a high accuracy, and in good time before the prospective fault. With high
accuracy, we mean that when a fault is predicted, we are almost completely certain that
the fault will occur and that is has to be addressed. With good time, we mean that when
we get the prediction, we get it sufficiently in advance such that we have time to react,
inspect and understand the situation, and then take the necessary measures. The measures

1An independent research organization headquartered in Norway that conducts contract research and devel-
opment projects.
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Figure 3.1: Example of a RMS value with its wave affected by harmonic distortion sampled by a
PQA [Andresen et al., 2018].

could be to reroute the power around the area of the grid that is affected by the fault(s),
send a maintenance team to inspect the part of the power grid in question (and to perform
repairs if needed), or to simply shut down parts of the power grid in order to prevent the
fault(s) from doing damage to the system.

3.2 PQA/PMU Sensors

There are mainly two types of sensors utilized in the power grid; Power Quality Analyzers
(PQAs) and Phasor Measurement Units (PMUs). The main difference is the frequency
of the sampling rate. The PQAs have a sampling rate of up to 25kHz and higher, while
PMUs have a sampling rate of just 50Hz [Andresen et al., 2018]. This is important to
consider as the higher sampling rate makes it possible to detect distortions that would
otherwise get lost by using PMUs which have a lower sample rate. Another difference is
the data that is collected. PQAs collect data containing information covering all voltage
quality parameters, e. g. voltage variations, transients, harmonic distortions as described
in Section 2.4. PMUs on the other hand provide phasors, as described in Section 2.2.2,
constituted by an angle and a magnitude.

There are multiple pros and cons with both PQAs and PMUs, and they are both useful
in different situations. The higher resolution makes the PQAs the preffered option over
PMUs in regards to fault detection. By looking at all the different voltage quality parame-
ters, faults and disturbances that are not possible to discover by looking at the RMS value
alone can be found (See Figure 3.1). PMUs can be be synchronized very accurately using
GPS-signals [Andresen et al., 2018] and are therefore very useful for comparing signals at
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Figure 3.2: Example of frequencies from three locations sampled by a PMU. The frequency sud-
denly increases at Location 1 because of a loss of load [Andresen et al., 2018].

different locations and monitoring at the transmission-net level (See Figure 3.2).

There is also one more important factor that must be considered, there is a downside
to the higher sampling rate of the PQAs; the high data sampling rate requires compres-
sion/decompression methods when storing/reading, which adds a time-delay. Depending
on the application that uses the data, this might be inconvenient. For instance real-time
applications are time-sensitive and rely on receiving the data as soon as possible. This is
especially true when predicting faults in the power grid. The time window that the op-
erator has to react to might already be very small, thus it is important that it is not made
unnecessarily smaller by having to spend time waiting for the data to get processed. PMUs
are suited to this as the transfer protocol that is used has a very low latency and the data
can be streamed live from the sensors.

As of now all the sensors send the data to a centralised server that stores the time series for
all the participating power grid operators. This adds another point of delay as the server
has to process the data from all of the sensors. This might be improved in the future as
newer sensors [ElspecLTD, 2019] have the capability to process the data themselves before
transferring it to the server, saving the server for a lot of processing time.

3.3 Data-sets

To extract time series from the centralised server, SINTEF made an application called
Dynamic Data-set Genererator (DDG). This application lets the user specify a set of pa-
rameters in order to extract the desired data (See Table 3.1). The server contains time series
for voltages, currents, active- and reactive power, which are all aggregated by a method,
for a resolution, both set as two of the parameters. The RMS value, the waveform of the
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original signal, and up to the 512th harmonic can also be extracted.

To label the extracted time series SINTEF created an analytical tool A-HA (automatisk hen-
delsesanalyse - automatical incident analysis). The tool analyzes time series for a given
interval and returns the amount for each of four types of faults; voltage sags, grounding
faults, interruptions and rapid voltage changes. A-HA is further able to differentiate be-
tween real and false voltage sags. The application creates a list of all the incidents which
also contains references to the actual raw data such that deeper analysis may be done if
deemed necessary. To balance the data-set with both faults and non-faults, the DDG is also
able to generate non-fault time series at a ratio given by the user. There is also metadata
for each observation in the data-set (See Table 3.2).

3.4 False Negatives and False Positives

Lastly, false negatives and false positives must be addressed. Generally, a false negative
occurs when a system predicts that something is false, but in reality is true. Similarly a
false positive occurs when the system predicts that something is true, but in reality is false.
The consequences of both are different depending on the situation and the severity of what
being evaluated to true and false. In the context of faults and disturbances in the power
grid, a false negative could be when the system predicts that there are no faults and all
is good, but suddenly a power interruption happens. A false positive could be when the
system predicts that there will be a voltage sag soon, but nothing happens. In the case of
the false negative the power grid could get damage that could have been prevented if the
system was able to predict that the interruption was going to happen. In the false positive
case, the power grid operator might have wasted time doing preemptive measures against
the voltage sag which was never going to happen. By wasting time on false warnings the
operator might also lose confidence in the system, leading to the operator ignoring future
warnings. One must have to evaluate the cost of both and compare them. On the extreme
side one could avoid all false negatives by always saying there will be a fault, and avoid
all false positives by saying there are no faults at all. Saying there are no faults would be
the same as not having the predicting system at all. This means that all correctly predicted
faults serve as an added bonus, while all wrongly predicted faults serve as added cost
compared to the original system. As such, one could argue that reducing the amount of
false positives are of higher importance than reducing the amount of false negatives.
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3.4 False Negatives and False Positives

Parameter Description
Total
duration

Time duration to include in the observation

Resolution Sampling frequency of the signal in the generated observation
Time before
fault

Time window between the generated observation and the fault

Data type What data type to produce. Can choose between the wave form, the
Fourier coefficients, and the RMS values

Aggregation
method

Method used to aggregate the time series data, when the data
extraction sampling frequency is not equal to the original signal
sampling frequency. Can choose between Min, Max and Average

Specificity Which lines and phases to produce. Can be V1, V2, and V3 for the
respective phases and V12, V23, and V13 for the respective lines

Overlap
period

The overlap period used for the data-set. Overlap period is defined in
Section 7.1.1

Table 3.1: Parameters for the DDG.

Parameter Description
Fault detec-
tion

Fault or non-fault

Fault type Fault type, if any
Fault time Time of occurrence
Start time Start time of samples
End time End time of samples
Total dura-
tion (sec)

Seconds of data in the data-set

Resolution
(ms)

Time interval between each sample

Number of
samples

Number of data points for each parameter

Node Name of the node from which the sensor data is accessed
Nominal
voltage

The line voltage of the equipment at the fault location

Table 3.2: Metadata per observation.
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Chapter 4
Background - Machine Learning

Parts of this chapter are based on the specialization project [Jahr and Meen, 2019].

In this chapter we will briefly explain what machine learning is in general with empathize
on the parts that are relevant to our research. We will also show some popular methods.

4.1 Introduction

Machine learning can in short be described as to learn from data. A common definition of
what it means to learn was defined by T. Mitchell as:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E. [Mitchell, 1997]

Over the past decade machine learning has become increasingly popular and has become
a popular topic of research. There are various causes for this recent focus; the access to
huge amounts of data through the internet to train models on. Many have started to ac-
tively collect and process data which have led to a big scope of various data-sets, available
both publicly and privately. The advancement of computing components has also led to
experimenting with increasingly complex models, something which was not possible pre-
viously due to the lack of processing power and memory at the time. The transition from
doing computations on the CPU to the GPU has also made a huge impact in the processing
speed which has allowed the training of wider and deeper models. As GPUs are very good
at simple calculations on vectors/tensors they are a perfect fit for training machine learn-
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ing models. The recent research on machine learning has revealed increasingly efficient
and accurate algorithms and models, meaning that many complex problems now may be
solved in real time, putting a spotlight on the field from the commercial sector.

The study of machine learning typically involves developing algorithms and statistical
models which learn patterns and intrinsic properties in some data, with the goal of solving
a particular problem related to that data. This is in contrast to the traditional way of
problem solving, which was to use explicit instructions created by humans. By having
the machines discover the features and connections between data-points automatically, the
process gets added benefits, such as: Being less prone to human errors, the possibility of
discovering properties difficult/impossible for humans to find, time saving. The downsides
include: Demands large amounts of data, needs a lot of processing power and memory,
needs specialists to create and adjust models.

Machine learning tasks are often split into three main categories.

• Supervised learning, where the model is provided with a data-set with known cat-
egorizations, known as labels of the data. These labels are used to evaluate the pre-
dictions, as the model learns by evaluating the difference between the predictions it
makes and the label of each data point.

• Unsupervised learning, which is characterized by performing machine learning al-
gorithms on data without labels. By finding similarities between data-points, hidden
structures and patterns may be discovered, despite the lack of explicit feedback of
correctness.

• Reinforcement learning, which is characterized by the learner being given a reward
at various points in its learning process, based on the actions it has chosen. The
rewards are given based on a metric independent of the learner, and may both be
positive and negative.

4.2 Data and Generalization

Without good and/or enough data it is not possible to sufficiently train the model, let
alone give valuable output. Not only is the amount of data important, the model must
also generalize well to get a good result. That the model generalizes well means that the
model will be able to yield good results on new, unseen data, not only on the data it has
been trained on. How to process the data and generalize the model will now be discussed
further.
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4.2.1 Feature Engineering

Feature engineering is the concept of how to process the data into features that the model
can learn from. This can either be done manually by domain experts or automatically by
feature learners. There are many different methods involved in feature engineering.

• Augmentation, which is a group of methods that lets you increase the diversity
without collecting new data. This can be done by generating new data based on the
data that is already collected. A vital point is that the newly generated data should
have the same label as the data it was generated from, therefore the augmentation
method that is used must be label-preserving. Example of such methods are random
horizontal flips, cropping, small rotations, illumination changes.

• Extraction. There might also be situations where we have a huge data-set and only a
part of it is relevant to our task. Extraction encompasses methods on how to evaluate
what data is relevant as to then retrieve said data.

• Imputation, which helps with the handling of missing values. This can be done as
easy as to just drop the data which has any missing values, or the missing values can
be inferred based on the existing values and/or other data.

• Transforming, which transforms the data into a format that makes it easier/possible
for the model to learn from. If we for instance have a problem where we want to
group a set of data-points, but they are not separable in the current representation.
We can transform the data into a representation in which they are separable and
then group the data. This can for example be done by doing polynomial transform,
one-hot encoding, log transform and discrete Fourier transform.

4.2.2 Model and Parameters/Hyperparameters

There are both models with and without model parameters, called parametric- and non-
parametric models respectively. A parametric model defines a set of parameters of a fixed
size that is independent of the amount of data. First you define a function, lets say you want
to do line regression and choose a function on the form ax2+bx+c = y. Here we have the
parameters a, b and c. Said parameters are then estimated to best match the the data and we
get a predicative model that may be used to predict new data. The goal is to find a function
that is as close to the underlying true function as possible. Benefits of this approach is that
it is fast and simple and doesn’t require a lot of data in order to give reasonable output.
The downsides are that the model is constrained by the predefined function and that the
function rarely matches the underlying function. Much used parametric methods include;
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neural networks 1, naive Bayes and logistic regression.

Non-parametric functions on the other hand do not make any strong assumptions regarding
the form of the underlying function, but rather aim to find a good function form based
on the data. For instance clustering methods which might not make any assumptions
about the data except that similar data are more likely to be closer to each other (based on
some distance metric). Benefits of this approach is that the model is flexible as no strong
assumptions about the underlying function are made, and that it therefore can fit various
functional forms. Much used non-parametric methods include; clustering, support vector
machines and decision trees.

Even if a model is parametric or non-parametric, it will have hyperparameters. Hyperpa-
rameters differ from model parameters in the way that they are external to the model and
cannot be estimated directly from the data. They are set in order to help the process of es-
timating the model parameters. They are often set based on previous experiences/similar
problems, and many models have default values for them, but they might also be set using
heuristics and further tuned. Example of hyperparameters are learning rate, number of
hidden layers in a neural network and depth of a decision tree.

4.2.3 Training, Validation and Testing

The data is usually divided into three parts, a data-set for training, a data-set for validation
and a data-set for testing. There is no absolute correct ratio of how to split the data, but
it is usual that the training data-set is the largest and the test data-set is the smallest. The
data-set is split such that the data that the model learns from are different from the data
that it is evaluated on. This is to ensure that the model is not simply just memorizing the
data it is trained on, but that it is able to perform well on new unseen data, namely that
it generalizes well. The model is first trained on the training data. In this step all the
parameters in the model will be fitted as to give the best possible output, thereby requiring
the biggest amount of data. In the validation step only the hyperparameters are tuned while
the model parameters are frozen. Finally the model is evaluated against the test data-set.

4.2.4 Overfitting and Underfitting

One of the most encountered problems in machine learning is overfitting (high variance).
This occurs when the model starts to memorize the data it is trained on rather than learning
the underlying function. This often results in a complex function with more parameters

1Even though neural networks do not make any strong assumptions regards the underlying structure which
tends to be a hallmark of the non-parametric models, it is considered a parametric model as it uses a fixed
number of parameters to build the model, independent of the data size as defined in [Russell and Norvig, 2016]:
”A learning model that summarizes data with a set of parameters of fixed size (independent of the number of
training examples) is called a parametric model.” However, it is still in a ”gray area” and many consider it a
non-parametric model.

40



4.2 Data and Generalization

(a) Underfitted. (b) Balanced. (c) Overfitted.

Figure 4.1: Example of an underfitted, balanced and overfitted model.

than needed that is extremely good at representing the training data, but terrible at predict-
ing new unseen data. On the opposite side we have underfitting (high bias). This happens
when the model does not have the capacity to learn the underlying function and results
in a very simple function that does not have enough parameters and is bad at predicting
both training data and new data. A model that is either overfitted or underfitted is a model
that generalizes poorly. To get a model that performs well one should get a good balance
between variance and bias (See Figure 4.1).

There are many different approaches one can take to reduce overfitting and better general-
ize ones model.

• Increasing the amount of data. The more data the model has to train on, the better
chance it has to learn the underlying function. If the data-set is small, it is easier
affected by noise and might not be representative of the underlying function (See
Figure 4.2). This may be done by data augmenting and collecting new data. Data
augmenting can only increase the data to a certain extent before the added data gets
too redundant and does not add any new value. You could also collect new data,
which might be the best way to reduce overfitting, but as it usually is expensive and
time consuming it is not always an option.

(a) Insufficient data. The data-set is not rep-
resentative of the underlying function.

(b) Sufficient data. The data-set is able to
capture the underlying function.

Figure 4.2: Example of insufficient and sufficient data.
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• Regularization adds a penalty to large parameter values in the model. The penalty
is added as an addition to the loss function of the model. As large parameter values
are punished, complex models are discouraged which reduces the risk of overfitting.
The parameter values tend toward zero which results in a more sparse model that
more easily learns the relevant patterns in the data. The most used regularization
methods are L1- and L2 regularization, which add the absolute- and the squared
value of the parameter as the penalty respectively.

• Dropout helps generalizing the model in multiple ways. Dropout works by ran-
domly dropping nodes in a neural network, if a node is dropped it will not give any
output and is ignored. This helps reducing overfitting in the way that it forces nodes
to create new connections and to adapt as the layer structure is constantly changing.
This prevents nodes to get too reliant on some of its input and encourages nodes
to use all of their inputs. Also, by dropping out some of the nodes the model gets
simpler as the capacity is reduced, resulting in a even lower chance of overfitting.

• Early-stopping. A common learning approach is an iterative learning process. In
an iterative approach we have a repeating process where we at each step take a small
step in the direction that minimizes the loss. By doing this we minimize the error in
the final model as the iteration enables the model to correct itself whenever there is
an error. However, there is a point in this repeating process where the model stops
to learn new information about the underlying structure from the training data, and
rather starts to memorize it (assuming the model has sufficient capacity). The model
should stop training when it reaches that point, but it is not always trivial to know
when to stop. One option is to monitor the gap between the accuracy of the training
and validation data and to continue to train as long as the gap decreases, but stop
when the gap is not changing or starts to increase. This gap is also referred to as the
generalization error (which is a measure of how good a model is at predicting new
unseen data, i.e. how well the model generalizes).

4.2.5 Feature Normalization

Feature normalization is the process of scaling data from the original distribution and
region to a predefined distribution and/or region. One common way is to remove the
mean from the data and scale the variances to unit distance, creating an approximately
normally distributed data-set. Another option is linear scaling, where the data preserves
the distribution of the original data, but is scaled to unit range. Feature normalization can
improve the results of algorithms which base themselves on distance between data-points,
as it gives the same region of possible values for all features.
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4.2.6 Dimensionality Reduction

Dimensionality reduction is a process which creates new features that best preserve the
information stored in the original features of the data-set. It does this by finding a set of
principal variables, which represent the features in the original data as close as possible.
The number of new features does not surpass the number of original features, and there
are usually many fewer new features than there were originally. How closeness between
the original and reduced data is calculated depends on the method used.

t-distributed Stochastic Neighbor Embedding

t-distributed Stochastic Neighbor Embedding, hence called t-SNE, is a non-linear di-
mensionality reduction technique. The output is commonly two or three dimensions,
and as such is well suited for visualization of high-dimensional data. t-SNE gives each
data point a location in a lower-dimensional map where each data point is positioned so
that it is similar to data-points close to it, and dissimilar to data-points far away, with
a high probability. The goal of t-SNE is to minimize the Kullback-Leibler divergence
C =

∑
iKL(Pi||Qi) =

∑
i

∑
j pj|i log

pj|i
qj|i

where pj|i =
exp(−‖xi−xj‖2/2σ2

i )∑
k 6=i exp(−‖xi−xk‖2/2σ2

i )
and

qj|i =
exp(−‖yi−yj‖2)∑
k 6=i exp(−‖yi−yk‖2)

. Here x = {x1, x2, ..., xn} is the original n data-points in the

high dimensional space, and y = {y1, y2, ..., yn} is the resulting n data-points in the low
dimensional space.

It does this by first constructing a probability distribution pj|i. In other words, the proba-
bility of data point j being chosen as a neighbour of point i, proportional to the distance
of all other points in the data-set. σi is the Gaussian variance, which must be set to some
reasonable value by the user upon initialization, depending on the sparsity and distance in
the data-set. This makes it so that similar points are likely to be chosen as neighbors, while
dissimilar will have an almost infinitesimal chance of being chosen as neighbors. This is
calculated for all pairs of the high-dimensional data. These probabilities are used to decide
whether two points are neighbours or not. It then constructs a low dimensional space with
probability distribution qj|i with similar amount of points as in the original data. It then
minimizes the Kullback-Leibler divergence using gradient descent, i.e. it changes Q as to
minimize C. Once the Kullback-Leibler divergence has been minimized, Q is considered
be the probability distribution that loses the least information entropy when representing
P , i.e. it best represents the neighborhoods which are present in the original data, in the
chosen dimensions [van der Maaten and Hinton, 2008].
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4.3 Ensemble Learning

Ensemble learning is a method where multiple models are used, which together – usually
– obtain a better predictive performance than any of the models would by themselves. En-
semble learning makes use of the way supervised models attempt to find the best prediction
hypothesis for the data, in a given hypothesis space. By combining multiple prediction hy-
potheses into a single hypothesis, the ensemble model will – usually – find a hypothesis
which better suits the given data.

Ensemble learning is typically used to compensate for simple and poor learning models,
by assuring that the output model has done significant calculation on the problem. For
instance, random forest, which will be explained further down this chapter, combines hun-
dreds to thousands of decision trees, to obtain a well calculated output.

There are many forms of ensemble learning, in this thesis we will look at two, bagging
and boosting.

4.3.1 Bagging

Bootstrap aggregating, usually abbreviated to bagging, is an ensemble learning method
where multiple models are used to together determine the results of the ensemble model.
When given a data-set X with n samples, a bagging model which aims to use m models
will generate m new training-sets Xi, each containing n′ samples. Xi is created by sam-
pling from X uniformly and with replacement, causing some samples to be represented
multiple times. For large values of n and with n′ = n, each set Xi is expected to contain
roughly 1 − 1

e ≈ 63.2% unique samples. All of the m models are then fitted using their
own training-set, and majority vote decides the output of the ensemble model, giving all
the models the same predictive weight. Compared to the basic models the ensemble model
will usually have less variance in its decisions, better accuracy, and be significantly less
susceptible to overfitting.

4.3.2 Boosting

Boosting is an ensemble learning method where a series of models is used, boosting the
results of the prior model. The first model takes in the data-set X , where all samples have
equal weight. Once this model is done, the next model takes in the data-set X again, but
samples which got correctly categorized by the initial model are given a lower weight,
while samples which got incorrectly categorized are given a higher weight. Thus the new
learner focuses on correctly classifying the previously incorrectly samples. Compared to
the basic models the ensemble model will usually have less bias and variance in its deci-
sions, however it is prone to overfitting. The accuracy yielded by boosting is comparable
to, and in some cases better than, the accuracy yielded by bagging.
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4.4 Machine Learning Methods

There exists many methods which solve classification problems, here we present the ones
used in this thesis.

4.4.1 Support Vector Machines

Support Vector Machines, hence called SVMs, are supervised models which perform lin-
ear classification and regression analysis. SVMs try to separate labels in a given data-set by
linearly separating data with some number of hyperplanes, efficiently making subspaces
in the data-space containing the various separated communities of data-points. These hy-
perplanes are commonly referred to as support vectors. An example of such a hyperplane
in a two-dimensional space is given in Figure 4.3.

SVMs might be made to use either a hard or soft margin, meaning that the communities
contain only one label, or majorly one label, respectively. To generalize the subspaces in
hard margin SVMs as much as possible, each hyperplane is positioned as far as possible
from the closest point in each bordering subspace, making the gap – the margin – between
the communities as large as possible. For generalizing soft margin SVMs, the hyperplanes
are positioned so that data-points in subspaces consisting of majorly another label are as
close to the hyperplanes as possible.

SVMs can be modified to perform non-linear classification by using the kernel trick to
alter the data-space. By altering the data-space into a higher dimension, data which is
not separable by linear functions in the original dimension can be separated by higher
dimensional hyperplanes.

(a) A hard margin SVM. The blue line is the
hyperplane separating the two subspaces, and
the dotted lines denote the margin.

(b) A soft margin SVM. The blue line is the
hyperplane separating the two subspaces.

Figure 4.3: Two Support Vector Machines in R2.
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Figure 4.4: The Gaussian kernel applied to a non-linearly separable data-set in R2, but separable by
a hyperplane in R3. [Sharma, 2019].

Kernel Trick

The kernel trick is a method which utilizes the kernel methods to enable algorithms to work
in a high dimensional, feature space, without having to compute the coordinates of the data
in that feature space. Rather, the data-points are compared by computing the inner product
– used to calculate the distance between two points in the target feature space – between
the images of all pairs of data-points. This method is computationally cheaper, and takes
less memory, than transforming all points into the target space and then calculating their
inner products. The kernel trick can be applied to any linear model, making it non-linear.
SVMs are one such example, as illustrated in Figure 4.4.

The kernel trick can mathematically be explained as:

For each pair of data-points x and x′ in some input space X , calculate the
inner product k(x,x′) where k : X × X → R in some other space V . For
some problems it is simpler to write the kernel as a ”feature map”, where
ϕ : X → V and k(x,x′) = 〈ϕ(x), ϕ(x′)〉V , where 〈·, ·〉V is a proper inner
product. There is no requirement for ϕ to have an explicit representation.

4.4.2 k-Nearest Neighbors

k-nearest neighbor, hence called k-NN, is a supervised classification algorithm where each
new data-point is labeled similarly to the majority of its k closest labeled neighbours. An
example of this labeling scheme is shown in Figure 4.5. The closest neighbours are defined
as the data-points which have the shortest distance from the data-point, where distance,
denoted as D(x, y), has the following properties:

• D(x, y) ≥ 0 ∧ D(x, y) = 0⇔ x = y
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Figure 4.5: k-NN with k = 3 and k = 5, labeling the new yellow data-point as red for k = 3, and
green for k = 5.

• D(x, y) = D(y, x)

• D(x, y) ≤ D(x, z) +D(z, y)

The most common distance measure is the squared euclidean distance, D(x, y) =∑P
j=1(xj − yj)2 in a P -dimensional space where x = (x1, ..., xP ) and y = (y1, ..., yP ).

4.4.3 Decision Trees

Decision trees are supervised classification models which work by inferring rules from a
labeled data-set as to best predict what label a new, unlabeled, data-point ought to be. The
tree is made by splitting the data-set into smaller subsets by evaluating some values in the
input data, so that the information gained from the split is as high as possible. This is done
by finding the split which causes the greatest reduction in entropy, where entropy, denoted
H , is defined as

H(X) = −
l∑
i=1

pi × logbpi

where X is the data-set, l is the number of unique labels in the data, and pi is the relative
frequency of class i in X . b is the base of the logarithm, and is commonly 2.

The information gained, denoted IG, from splitting on some attribute α can then be de-
fined as

IG(X,α) = H(X)−
∑

v∈values(α)

|Sα(v)|
|S|

×H(Sα(v))

where Sα(v) denotes the subset created when choosing samples where α = v.
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Figure 4.6: A decision tree to determine what a person ought to do on a given day, based on decisions
taken about the features, ”Work to do”, ”Outlook” and ”Friends busy” [Li, 2019].

Decision trees may be naı̈vely created by splitting the data-set as dictated by information
gain until rules which perfectly categorize each sample in the data-set is made. However,
this approach will often lead to very big trees, unique rules to remove outliers, noise, and
incorrectly labeled data. In other words, it will be overfitted and fail to classify new data
correctly. The common approach to prevent this in decision trees is to (1) limit the depth
of the tree, (2) introduce a least information gain requirement to perform a split, and (3)
prune the tree. Figure 4.6 illustrated how a decision tree might look.

Random Forest

Random forest is a bagging ensemble learning model consisting of hundreds to thousands
of decision trees. The decision trees are all created equally, and function as described
above, except for what features they receive as input data. The only way random forest
differentiates from general bagging models is that it chooses n′ so that Xi contain roughly√
p features where p is the amount of features inX . This is done so that if there is a feature

pj which strongly determines the label of the sample, it will not be present in a majority of
the decision trees, as those trees would then become too correlated for the random forest
to predict well for samples not well describable by pj .
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CatBoost

CatBoost, named by combining the words ”Category” and ”Boosting”, is a boosting en-
semble learning library. It is built up of oblivious decision trees, meaning that the same
decision is used to split the data-set for for each level in the decision tree. This makes it so
that the tree only has to calculate one decision for each level, rather than 2d decisions per
level, where the root level is defined as d = 0. This greatly increases the speed of which
the tree may be made, as well as being less prone to overfitting, at the cost of accuracy
[Chepenko, 2019].

4.4.4 Neural Network

Neural network, or NN, is perhaps the most famous term and probably the first thing
that comes to mind when it comes to artificial intelligence. It is based on how the brain
works and how the cells within the brain communicate with each other. There do exist
unsupervised neural networks, but in this thesis we will mainly focus on neural networks
as supervised classification models. A neural network usually consists of an input layer,
some number of hidden layers, and an output layer at the end. Each layer has a number of
nodes with each node having a weight. The relationship between the layers depends on the
type of neural network. The first and simplest type of neural network was the feedforward
neural network, or FFNN, where the connections between the nodes cannot form a cycle.
The flow of information only moves one way, from one layer to the next. See Figure 4.7 for
an illustration. In a FFNN each node in a layer is connected to each node in the following
layer, this is called fully connected layers. The number of hidden layers are arbitrary,
but the more hidden layers there are in the network, the more complex problems can be
solved. However, there is an extra storage and computation cost for each hidden layer.
Neural networks with many hidden layers are called deep neural networks. The use and
application of hidden layers has become its own field of research, a subset of machine
learning called deep learning.

Each node in a FFNN has some inputs and an output. The inputs are given from the nodes
in the previous layer (for the first layer, the input layer, the input will be the input provided
by the user) and the output is calculated from the following formula:

Z = σ(

n∑
i=0

wixi + b)

where Z is the output, wi is the weight on the input xi from node i, b is the bias, and σ is
the activation function. The activation function is usually a non-linear function that defines
the final output of the node. See Figure 4.8 for some common activation functions. The
output(s) from the node(s) in the output layer gives the prediction of the network. There is
a node in the output layer for each class we want to classify.

Before the network can be used it has to be trained. In the training process the trainable pa-
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rameters of the network are tuned in order to minimize a given loss function. As described
in Section 4.2.3 the network is fed with a set of labeled data which is split and used for
training, validation and testing. First, the loss function compares the output of the network
with the provided label, the expected output, and calculates a loss measure. The gradient
descent algorithm then adjusts the weights in the network in order to minimize this mea-
sure by backpropagating the error through the network, calculating the contribution from
each node and adjusting their weights accordingly. For a more in-depth explanation of the
gradient descent algorithm and backpropagation see [Goodfellow et al., 2016], but in short
it calculates an error gradient and makes a small ”step” based on the learning rate in the
direction of a local minimum of the loss function.

Figure 4.7: Illustration of a feedforward neural network [Patel, 2012].

Figure 4.8: Some common activation functions.
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4.4.5 Convolutional Neural Network

Convolutional neural network, or CNN, is a deep neural network most commonly used
in image-related tasks. This is because of its ability to capture spatial dependencies and
being translation invariant. CNN is a type of FFNN, meaning the data only flows in one
direction and the layers are fully connected. The network consist of an input layer, hidden
layers and an output layer, but the difference lies in how the layers works. The hidden
layers typically consist of multiple convolutional layers. The most common activation
function is the ReLU function, and it is followed by pooling layers and fully connected
layers. In the convolution process a filter (also called a kernel) of size MxN is moved
around the input with a given step size. At each step a dot product is taken of the filter and
an equivalent sized part of the image. The sum of the dot product is then used to make
a feature map. See Figure 4.9 for an illustration. There can be multiple filters in each
convolutional layer resulting in multiple feature maps. The number of feature maps in a
layer is called its depth. For the input layer the depth is dependent on the type of input.
For instance if the input is a RGB image the depth would be three (one for each color), and
for a gray scale image the depth would be one. The filter extends through the full depth of
its input.

The feature maps from the convolutional layer are then sent to a pooling layer. The pool-
ing layer works in a similar fashion as the convolutional layer, except that instead of the
filters taking the dot product, a pooling operation is done. The pooling operation is spec-
ified rather than learned. The most common pooling operations are; Max Pooling - the
maximum value is returned, and Average Pooling - the average value is returned.

The most common size for a pooling filter is 2x2. This means that after each pooling layer
every feature map will have its size reduced by a factor of two. The main purpose of the
pooling layer is to reduce the data size in order to ease the computational load and to make
the network approximately invariant to local translation. As the pooled feature maps take

Figure 4.9: Illustration of a filter in a convolutional layer used to create a feature map.
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the average or maximum value of the input, small changes in location will not affect the
output a lot as it does not look at individual values, but at small areas.

The convolution and pooling process are then repeated. At the end there are one or more
fully connected layers. Before the data can be processed by the fully connected layer it
has to be flattened as the fully connected layer only can handle 1d data, and not 2d data
which is used by the convolutional- and pooling filters. The final fully connected layer is
the output layer. See Figure 4.10 for an illustration.

Comparison to Wavelet Scattering

As briefly discussed in Section 2.3.3 the architecture of a CNN and wavelet scattering
share many similarities, like that they use filters to create features from the input. The
most important difference is that the filters in a CNN have to be learned whereas the
filters in wavelet scattering are predefined as wavelets. There are multiple advantages and
disadvantages with both methods. The most obvious advantage for using predefined filters
is that the only thing that has to be learned are the parameters in the final classifier. This
greatly reduces the amount of data needed to get a good performance. As there is a limited
amount of data (there are hopefully not too many faults in the power grid each year) this
is a very useful feature of wavelet scattering. The downside is that there is a always a
possibility that the filters that the CNN learns are better at capturing the traits of the faults
compared to wavelets.

4.5 Evaluation Metrics

There are many methods used to evaluate performance of machine learning methods. Here
we present the one used in this thesis.

Figure 4.10: Illustration of the architecture of a convolutional neural network [Albelwi and Mah-
mood, 2017].
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4.5.1 Receiver Operating Characteristic Curves

Receiver Operating Characteristic metrics, hence called ROC, can be used to measure
classifier output quality of a balanced data-set. It takes into account the true positive, the
false positive, the true negative, and the false negative amounts, referred to as TP, FP, TN,
and FN respectively henceforth. The ROC curve is created by plotting the percentage of
TP per percentage of FP found by the classifier, i.e. TPR (True Positive Rate) on the Y
axis and FPR (False Positive Rate) on the X axis of a 2d plot. This means that being in
the top left corner is the ideal point, where FPR is 0 while TPR is 1. As this is not a
realistic goal for any classifier, the Area under the Curve (AUC) of the Receiver Operating
Characteristic Curve (ROC) is calculated to evaluate the classifier. A greater AUC-ROC
score is associated with a better classification. A perfect prediction (TPR=1 when FPR=0)
is used as a perfect score with an AUC-ROC of 1, and a linear scaling (FPR = TPR) is
used as the baseline as a truly random classifier, with an AUC-ROC of 0.5 [Zweig and
Campbell, 1993].
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Related Work

In this chapter we will introduce and compare work which is related to the work done in
this thesis. There has not been much work regarding prediction of power grid faults, but
some on classification. As classification is a much simpler task it is of limited usefulness.
It may however provide some insight into useful features and methods that might work
with prediction. There has also been very limited work on the usage of wavelet scattering
and wavelet transform for similar tasks. There has been some use of wavelet scattering and
some using the wavelet transform, but the usage of wavelet transform has mainly been to
denoise the signal and not for feature extraction. As we did not find enough resources from
research published at well-known conferences, we have also gathered inspiration from
Kaggle competitions and some blog posts. Even though such sites do not require published
work to undergo a review, Kaggle has an active community that discusses admissions and
the blog posts also have many commenters. These sources have been read with some
scepticism and mostly been used for inspiration and not as a foundation.

5.1 Work Related to EarlyWarn

Most of the work related to the EarlyWarn project has been about prediction and classifi-
cation of faults in the power grid using RMS values. There have been written two master’s
theses in collaboration with the EarlyWarn project [Santi, 2019] and [Høiem, 2019]. Both
of them had the shared goal of figuring out if it was possible to predict and classify faults
in the power grid using machine learning methods, and if so, to what extent. The back-
ground related to power grids in this thesis has mostly been based on these two theses in
addition to the sources mentioned in them. These theses differ from ours in the way that
we want to explore the usability and potential of the raw signal wave as well as compare
different feature extraction methods. From the literature search done in [Santi, 2019] it
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was concluded that both Fourier transform based methods and wavelet transform showed
potential as feature extraction methods. It does however look like only Fourier transform
was used in the experiments. As most of the harmonics had a zero value it was decided
to only use the 16 first harmonics which seemed to have most significance. It was also
discovered that the performance improved when using both the minimum and maximum
value of the harmonics rather than just the mean value. For classification methods deci-
sion trees, neural networks, SVMs and Bayesian classifiers were said to have the most
potential. In the experiments all of these were used except Bayesian Classifiers. Random
forest achieved the best performance, followed by neural networks and SVMs. SVMs had
the absolute worst performance over all the metrics. For their best performing random
forest they achieved 74% accuracy when comparing all the faults versus non-faults, 87%
for power interruptions, 70% for ground faults, 63% for voltage dips and 57% for rapid
voltage changes. However, later inspection of the data used for these experiments revealed
an error in how the DDG was using the overlap period which resulted in some observations
that had a long time duration before the fault occurred to have other faults occurring in the
same time interval. These faults were a lot easier to predict as they essentially became a
classification problem instead of predication. There were also an error with how the non-
faults in the data-sets were put together which resulted in duplicates. This is a problem
because if one of the duplicates gets put in the training data-set and one in the test data-set,
it is a lot easier to predict as the model already has trained on that particular observation.
Due to these two problems the scores might have gotten inflated and it is probably not
realistic to achieve such high scores.

[Hoffmann et al., 2019] looked into prediction using cycle-by-cycle RMS voltages. The
data that was used had 30 minutes per observation resulting in 540,000 samples per obser-
vation. In total there were 4101 observations with non-faults, 1940 with voltage sags, 132
with power interruptions, and 1433 with ground faults (observations with missing values
were excluded). They chose gradient boosted decision trees (similar to CatBoost, Section
4.4.3) as their machine learning model and made one binary classifier for each fault. They
used power spectral densities at different frequencies for features. To calculate the spec-
tra they variated over the time interval – from 40 to 1280 seconds –, forecast horizon –
from 0 to 40 seconds –, and number of frequency components – from 8 to 64–, totaling
in 264 combinations. They achieved 95% prediction rate for power interruptions with a
false positive rate of only 20%, AUC score of >0.8 for ground faults and >0.7 for voltage
sags. This validates the work in [Santi, 2019] where which found that interruptions are the
easiest to predict, followed by ground faults and voltage sags. From the analysis of the
results they concluded that it should be possible to increase the forecast horizon beyond
40 seconds, and that more samples equalled better predictive performance. The biggest
difference is that we want to focus on using the raw wave signal and not the RMS signal.
As they achieved very promising results with gradient boosted decision trees, we think
they should be worth looking into further using our data. It might also be interesting to
try multi-classification and to classify binary non-faults versus all faults collected in one
class.
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5.2 Detection of Faults

[Mahela et al., 2015] did a review on detection and classification methods used on power
quality events. First they reviewed feature extraction methods, including many of which
we think have much potential such as Fourier transform based methods (See Section 2.3.1),
S-transform based methods (S-transform is a generalized version of the STFT [See Section
2.3.1] which enables varying window sizes much like the wavelet transform [See Section
2.3.3]) and wavelet transform based methods (Section 2.3.3). They also mentioned other
methods we will not explore further in order to limit the scope, and some denoising tech-
niques. They claimed (based on experiments conducted in [Gaouda and Salama, 2009])
that the wavelet transform is better than the STFT. This claim is also backed by [Mallat,
2012]. As such it might be more interesting to focus on wavelet transform based methods
instead of STFT for the majority of our experiments. As S-transform is more or less a
wavelet transform inspired STFT, we will rather explore just the wavelet transform instead
of both to limit the scope and to get more time to experiment with other types of feature
extraction methods.

[Mahela et al., 2015] also reviewed classification techniques, including some of which we
think have much potential such as SVM based classification (See Section 4.4.1) and neural
network based classification (See Section 4.4.4). They also mentioned other methods like
Fuzzy systems which we will not go deeper into in order to limit the scope. There are
extremely many different variations of NNs, and as they did not specify the architectures
they used when doing the review, it is difficult to interpret and make use of their results.
They claimed that NN has a better capacity of knowledge representation than SVM, but
also claimed that NN is more susceptible to noise.

[Gopakumar et al., 2015] looked into transmission line fault detection using PMU (See
Section 3.2) measurements. As PMU sensors only sample at 50Hz and the data we use
are sampled with a PQA with a sampling rate greater than 25kHz, the methods they used
might not work as well with our data as the difference in frequency is too big. They did
also look into identification of location of transmission line fault. As this is out of our
scope we will ignore that part and just focus on the detection part. For feature extraction
they utilized the Fourier transform on the EVPA (Equivalent Voltage Phasor Angle). The
EVPA is under normal operating conditions, like the RMS value (See Section 2.2.3), con-
stant. By analysing the frequency domain of this value for deviations, they were able to
detect if a fault has occurred. These deviations are caused by harmonic currents which
are generated by waveform distortions occurring because of transmission line faults. They
did not specify how they did the classification. They only looked at the first 10 harmonics
and classified the faults only based on these values. It looks like they classified every-
thing which had values other than zero for any harmonic other than the 1st harmonic were
classified as a fault. The fault was then further classified looking at the other harmonics.
This model seems to completely ignore noise, and would probably not perform well in
our situation. It is not clear whether they used artificially created data or real data in their
experiments. However, classifying faults using harmonics looks promising and should be
explored further.
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5.3 Kaggle and Blog Posts

The competition in [Kaggle, 2019] challenged people to detect power line faults. The
data-set that was used came from a real environment, not simulated, and contained a lot
of background noise. Each observation contained 800,000 samples taken over 20 mil-
liseconds, giving an extremely high resolution compared to the one we are working with.
As the underlying electric grid operated at the same frequency as hours – 50Hz – each
observation covered a complete grid cycle. They also had a three phase power system
(See Section 2.2.3), as we do. They did however not have access to phase-to-phase mea-
surements, only phase-to-ground. To limit our scope we have decided to only explore
phase-to-phase measurements. There were many interesting submissions like the 1st place
[mark4h, 2019] which used simple features like RMS values and peak counts in order to
classify the faults. Peaks were defined as local maxima which were calculated over dif-
ferent window sizes, see Figure 5.1 for an illustration. To remove the phase a ”flatiron”
function was used. In short this function centered all samples around zero, see Figure 5.2
for an illustration.

Figure 5.1: Two examples of a wave and its peaks [mark4h, 2019].

Using peaks as a feature looks promising and might be worth looking more into. The
flatiron function might also be useful in order to normalize the data. Gradient boosted
decision trees gave very good results, which further strengthen our motivation to try them.

In the blog post [Ataspinar, 2018] it was attempted to use wavelet transform spectograms
in combination with a CNN (See Section 4.4.5) to classify brain activity signals. The
training-set contained 7352 observations where each observation had 128 samples and 9
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Figure 5.2: An example of a three phase power signal with the phase removed [mark4h, 2019].

components. Compared to the data we use they have a bigger data-set, but less samples
per observation. They have less components, 9 compared to our potential 12 (6 phase-
to-ground when using max and min for every phase, and 6 phase-to-phase when using
max and min for every phase). A spectogram was made from each component resulting
in 9 spectograms per observation. To be able to feed this into the CNN they were stacked
creating one single image with 9 channels (one channel for every spectogram). They used
a very simple CNN with 2 convolutional layers, 2 pooling layers and 2 fully connected
layers at the end. The use of wavelet transform spectograms combined with a CNN looks
very promising and should be looked into. There might however be a problem regarding
the size of the data-set as CNNs need a lot of data in order to achieve good performances.

5.4 Summary

For feature extraction methods Fourier transform based methods and wavelet transform
methods seem to have the most potential and should be explored further.

For classification methods [Santi, 2019] achieved good performance with random forest
and neural network, [Hoffmann et al., 2019] achieved good performance with gradient
boosted decision trees. In addition to these SVMs should be looked at for completeness.
CNNs do also seem promising and as it looks like CNNs have not been used a lot in this
field of research it might be interesting to test them and see how they perform compared
to the others.
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Data

In this chapter we will introduce the data which will be used in this thesis.

6.1 Data

The data-sets used in the experiments in this thesis are presented in Tables 6.1 through
6.26. The data-sets were created using SINTEF’s DDG, using fault lists created by their
A-HA system, and the labeling scheme explained in Section 7.1.1. As noted in Section
7.1.4, the A-HA system also categorizes ”Rapid voltage changes” as may be seen in [Santi,
2019], however, these were not explored in this thesis. To limit the scope we decided to
only use phase-to-ground and not phase-to-phase. For wavelet transform based methods
we also decided to only use the max value for the first phase.

For binary classification the data-sets used in the experiments were balanced by filtering
out random observations from the type with more observations until there was an equal
amount of each type. For multi-labeled classification all the data was used.

6.2 Preprocessing

The only thing that had to be addressed concerning the data were missing values. For the
raw signal wave data-sets all data that had missing values were removed. For the RMS
value- and Fourier coefficient data-sets all data-sets with a missing value rate above 0.01%
were removed. The missing values in the remaining RMS value- and Fourier coefficient
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Extraction parameter Value
Total Duration 60s
Number of samples 60,000
Time before fault 60s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 108

Table 6.1: Data-set 1. A 1kHz wave form data-set.

Extraction parameter Value
Total Duration 60s
Number of samples 600,000
Time before fault 60s
Resolution 10kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 108

Table 6.2: Data-set 2. A 10kHz wave form data-set.
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Extraction parameter Value
Total Duration 60s
Number of samples 1,500,000
Time before fault 60s
Resolution 25kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 108

Table 6.3: Data-set 3. A 25kHz wave form data-set.

Extraction parameter Value
Total Duration 60s
Number of samples 3,000,000
Time before fault 60s
Resolution 50kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 108

Table 6.4: Data-set 4. A 50kHz wave form data-set.
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Extraction parameter Value
Total Duration 60s
Number of samples 1,500,000
Time before fault 60s
Resolution 25kHz
Data type RMS values
Aggregation method Minimum, Maximum
Overlap period 600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 108

Table 6.5: Data-set 5. A 25kHz RMS value data-set.

Extraction parameter Value
Total Duration 60s
Number of samples 1,200,000
Time before fault 60s
Resolution 20kHz
Data type Fourier coefficients
Aggregation method Minimum, Maximum
Overlap period 600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 108

Table 6.6: Data-set 6. A 25kHz Fourier coefficient data-set.
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Extraction parameter Value
Total Duration 60s (1 second every minute)
Number of samples 60,000
Time before fault 59s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 101

Table 6.7: Data-set 7. A 1kHz wave form data-set.

Extraction parameter Value
Total Duration 60s (1 second every minute)
Number of samples 600,000
Time before fault 59s
Resolution 10kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 101

Table 6.8: Data-set 8. A 10kHz wave form data-set.
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Extraction parameter Value
Total Duration 60s (1 second every minute)
Number of samples 1,500,000
Time before fault 59s
Resolution 25kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 106

Table 6.9: Data-set 9. A 25kHz wave form data-set.

Extraction parameter Value
Total Duration 60s (1 second every minute)
Number of samples 3,000,000
Time before fault 59s
Resolution 50kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 101

Table 6.10: Data-set 10. A 50kHz wave form data-set.
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Extraction parameter Value
Total Duration 60s (1 second every minute)
Number of samples 1,500,000
Time before fault 59s
Resolution 25kHz
Data type RMS values
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 1000
Ground faults 1000
Power interruptions 101

Table 6.11: Data-set 11. A 25kHz RMS value data-set.

Extraction parameter Value
Total Duration 60s (1 second every minute)
Number of samples 1,500,000
Time before fault 59s
Resolution 25kHz
Data type Fourier coefficients
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 990
Ground faults 1000
Power interruptions 101

Table 6.12: Data-set 12. A 25kHz Fourier coefficient data-set.
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Extraction parameter Value
Total Duration 3600s
Number of samples 3,600,000
Time before fault 0s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.13: Data-set 13. A 0 minutes before fault 1kHz wave form data-set.

Extraction parameter Value
Total Duration 3540s
Number of samples 3,540,000
Time before fault 60s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.14: Data-set 14. A 1 minute before fault 1kHz wave form data-set.
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Extraction parameter Value
Total Duration 3300s
Number of samples 3,300,000
Time before fault 300s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.15: Data-set 15. A 5 minutes before fault 1kHz wave form data-set.

Extraction parameter Value
Total Duration 3000s
Number of samples 3,000,000
Time before fault 600s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.16: Data-set 16. A 10 minutes before fault 1kHz wave form data-set.

69



Chapter 6. Data

Extraction parameter Value
Total Duration 2700s
Number of samples 2,700,000
Time before fault 900s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.17: Data-set 17. A 15 minutes before fault 1kHz wave form data-set.

Extraction parameter Value
Total Duration 1800s
Number of samples 1,800,000
Time before fault 1800s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.18: Data-set 18. A 30 minutes before fault 1kHz wave form data-set.
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Extraction parameter Value
Total duration 600s
Number of samples 600,000
Time before fault 3000s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.19: Data-set 19. A 50 minutes before fault 1kHz wave form data-set.

Extraction parameter Value
Total duration 600s
Number of samples 600,000
Time before fault 0s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.20: Data-set 20. A 0 minutes before fault 1kHz wave form data-set.
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Extraction parameter Value
Total duration 600s
Number of samples 600,000
Time before fault 60s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.21: Data-set 21. A 1 minute before fault 1kHz wave form data-set.

Extraction parameter Value
Total duration 600s
Number of samples 600,000
Time before fault 300s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.22: Data-set 22. A 5 minutes before fault 1kHz wave form data-set.
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Extraction parameter Value
Total duration 600s
Number of samples 600,000
Time before fault 600s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.23: Data-set 23. A 10 minutes before fault 1kHz wave form data-set.

Extraction parameter Value
Total duration 600s
Number of samples 600,000
Time before fault 900s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.24: Data-set 24. A 15 minutes before fault 1kHz wave form data-set.
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Extraction parameter Value
Total duration 600s
Number of samples 600,000
Time before fault 1800s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.25: Data-set 25. A 30 minutes before fault 1kHz wave form data-set.

Extraction parameter Value
Total duration 600s
Number of samples 600,000
Time before fault 3000s
Resolution 1kHz
Data type Wave form
Aggregation method Minimum, Maximum
Overlap period 3600s
Specificity V1, V2, V3
Fault types Successfully extracted
Non-faults 2100
Voltage sags 939
Ground faults 1000
Power interruptions 97

Table 6.26: Data-set 26. A 50 minutes before fault 1kHz wave form data-set.
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data-sets were interpolated using linear interpolation. The pruning of the RMS value- and
Fourier coefficient data-sets was less strict because the data-sets would be too small if a
more strict pruning was done.

6.3 Feature Extraction

The feature extraction methods used in the experiments in this thesis are presented here.
The wavelet transform was implemented using the pywavelets library [Lee et al., 2019],
the spectograms were made using matplotlib [Hunter, 2007] and PILLOW [Lundh and
Clark, 1995], the scattering was implemented using the kymatio library [Andreux et al.,
2018].

6.3.1 Wavelet Transform Spectograms

In this method the signal was first transformed by a continuous wavelet transform using
2 sets of scales. The first set of scales had every scale ranging from 1 to 32. This was
chosen as the mother wavelet with these scales covered frequencies from 812Hz at scale
1, to 25Hz at scale 32, and that the most interesting noise should be in that frequency
range. The second set had every 16th scale ranging from 1 to 3750. This was chosen as
the signal had 60,000 samples and the mother wavelet had a length of 16, meaning at the
largest scale the wavelet would cover the whole signal (60,000/16 = 3750). Using every
16th scale, and not every scale was decided as we did not have the memory capacity, as
well as the processing time got unreasonably long. Different types of mother wavelets
were used:

• Morlet

• Mexican hat

• Haar

which were presented in Figure 2.9. The coefficients gotten from the transform were then
used to create a spectogram. This was done both as a grayscale spectogram and also using
various colormaps. As there were more samples than there were scales (60,000 versus
235 – 3750

16 ≈ 235 –, or 32) we tried rectangular images with a bigger width than height,
but also square images which seemed to be the norm. The output coefficients given from
the continuous wavelet transform are represented by a matrix with shape M × N where
M is the number of scales and N is the number of samples. We tried using different
image sizes with heights up to 235 and widths up to 4 times the height, limited by memory
capacity. As the spectogram image was of a smaller size than the coefficient matrix, it was
down-sampled using cubic spline interpolation.
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6.3.2 Wavelet Scattering

In this method the signal was decomposed using wavelet scattering, using a combination
of parameters:

• J: 6, 8, 12, 15

• Q: 12, 24, 48, 96

• T: 60,000, 1,500,000

where J is the maximum log-scale, meaning the maximum scale is given by 2J , Q is the
number of first-order wavelets per octave, and T is the length of the signal. As most of
the structures we are interested in are in the first and second order, we remove the zeroth
order coefficients. To increase discriminability, we took the logarithm of the coefficients
gotten from the scattering. Before taking the logarithm a small constant of 10−15 was
added in order to prevent values close to zero from getting extremely dominant. Finally
we averaged along the time dimension to make it invariant to time-shift.

6.3.3 Aggregated Values

In this method the values were aggregated to represent the different extracted features.
The aggregated values which were calculated were the minimum (min), maximum (max),
mean, standard deviation (STD), and the signal-to-noise ratio (SNR) of the normalized
signal. SNR was suggested as a possible aggregated value in [Jahr and Meen, 2019], and
is calculated as mean

STDS . The signal was normalized by dividing the values given by DDG by
the voltage of the power line.

Combined Values

In this version the values were calculated for all phases – V1, V2, and V3 – for the values
given by both the aggregation method in the data-sets – max and min – and additionally
calculated for the difference, max-min, resulting in a total of 45 values for one time-series.

Singular Values

In this version the values were calculated for all phases – V1, V2, and V3 – for the values
given by both the aggregation method in the data-sets – max and min – and additionally
calculated for the difference, max-min, for each second. Additionally, the difference be-
tween the same aggregated value was calculated for each second, resulting in a total of
45× 60 + 45× (60− 1) = 5355 values for one time-series.
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6.3.4 Fourier

In this method the signal was decomposed using the Fourier transform. Only the 16 first
harmonics were used, the rest were discarded. The 16 first harmonics were chosen based
on the reasoning from Section 5.1.
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Chapter 7
Exploration

In this chapter we present an Exploratory Data Analysis (EDA) on the reported faults and
on our data presented in Chapter 6.

7.1 Fault Distributions

We look closer at the distribution of faults in time and space to see if there is anything
major our – or other’s – project ought to take into consideration.

7.1.1 Fault Overlapping

We examine how frequently faults are reported to happen within the overlap period of
other faults. We define overlap period as:

The overlap period is the time-frame after a reported fault occurs where any
newly reported fault will be considered to be the same fault. If a fault occurs
within the overlap period of the previous fault, the overlap window is extended
as if it started at the newly reported fault. An example is given in Figure 7.1.

The results are shown in Table 7.1. It is immediately apparent that many of the reported
faults overlap to some degree. Even when looking at an overlap period of 0.1 seconds,
over half of the faults are considered overlapped. Increasing the overlap window increases
this number significantly, ground faults are the most clear example of this. While most
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(a) 1 minute overlap. No fault occurs within an-
other faults overlap period, all three faults are con-
sidered separate faults.

(b) 10 minute overlap. Fault2 occurs within the
overlap period of Fault1, ignoring it and extending
the overlap period of Fault1. Fault1 and Fault3 are
considered separate faults.

Figure 7.1: 3 reported faults occurring at 0, 6, and 20 minutes, with different overlap periods.

Faults retained with overlap period
Fault type 0.1 seconds 1 second 10 seconds 1 minute
GF 8197 (53.27%) 4210 (41.82%) 2626 (36.52%) 2080 (35.25%)
VS 5104 (33.17%) 4033 (40.06%) 3124 (43.44%) 2673 (45.30%)
GF/VS 1684 (10.94%) 1438 (14.28%) 1056 (14.69%) 775 (13.13%)
PI 176 (1.14%) 141 (1.40%) 133 (1.85%) 127 (2.15%)
RVC 120 (0.78%) 120 (1.19%) 119 (1.65%) 112 (1.90%)
RVC/VS 56 (0.36%) 56 (0.56%) 57 (0.79%) 53 (0.90%)
GF/PI 22 (0.14%) 33 (0.33%) 34 (0.47%) 31 (0.53%)
PI/VS 11 (0.07%) 15 (0.15%) 19 (0.26%) 20 (0.34%)
GF/RVC 9 (0.06%) 9 (0.09%) 9 (0.13%) 12 (0.20%)
GF/PI/VS 6 (0.04%) 10 (0.10%) 11 (0.15%) 11 (0.19%)
GF/RVC/VS 3 (0.02%) 3 (0.03%) 3 (0.04%) 6 (0.10%)
PI/RVC/VS 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (0.02%)
Total 15388 10068 7191 5901

Table 7.1: The amount of each separate fault, and the percentage of total separate faults, using
different overlap periods when using our labeling scheme. There were 34433 reported faults, where
26425 were ground faults, 7445 were voltage sags, 285 were power interruptions, 188 were rapid
voltage changes, and 90 were discarded due to containing errors. Merged faults are listed as both,
separated with a forward slash.
The abbreviations for the faults are: Voltage sag: VS, Ground fault: GF, Power interruption: PI,
Rapid voltage change: RVC.

80



7.1 Fault Distributions

Faults retained with overlap period
Fault type 0.1 seconds 1 second 10 seconds 1 minute
GF 9721 (63.17%) 5520 (54.83%) 3553 (49.41%) 2727 (46.21%)
VS 5302 (34.46%) 4218 (41.90%) 3316 (46.11%) 2870 (48.64%)
RVC 186 (1.21%) 186 (1.85%) 185 (2.57%) 174 (2.95%)
PI 179 (1.16%) 144 (1.43%) 137 (1.91%) 130 (2.20%)
Total 15388 10068 7191 5901

Table 7.2: The amount of each separate fault, and the percentage of total separate faults, using
different overlap periods when using the DDG labeling scheme. There were 34433 reported faults,
where 26425 were ground faults, 7445 were voltage sags, 285 were power interruptions, 188 were
rapid voltage changes, and 90 were discarded due to containing errors. Merged faults are listed as
both, separated with a forward slash.
The abbreviations for the faults are: Voltage sag: VS, Ground fault: GF, Power interruption: PI,
Rapid voltage change: RVC.

faults only overlap faults of the same type as themselves, or overlap nothing at all, a not
insignificant amount of the faults are overlapping other types of faults. When looking at an
overlap period of 1 minute, 15% of the separate faults are considered to be a combination
of faults. We took note that DDG will label any series of faults as the initial fault of that
overlap period. This means that for instance, if a series of faults is reported as a ground
fault and later as a power interruption, it will by DDG be labeled as a ground fault. We note
that this might cause problems for machine learning methods. For instance, if we look at
the wave leading up to a power interruption, it might carry the characteristics of this fault
type in it. However, if A-HA label the early onset signs of the power interruption as i.e. a
ground fault, our classifiers will incorrectly learn that this wave carried the characteristics
of a ground fault.

When using the DDG labeling scheme, Table 7.1 is rather displayed as Table 7.2, where
amongst other problems, almost all faults that were a combination of ground faults and
voltage sags are now labeled as ground faults. As noted earlier are a significant amount of
the separate faults a combinations of faults, and as such, we do suggest that a more strict
labeling scheme ought to be used in DDG if fault types are to be compared to each other.
For example, giving degrees of importance to different fault types, and labeling the fault as
the fault type it contains with the highest importance, such as giving the aforementioned
example a power interruption label rather than a ground fault label, due to power inter-
ruptions being a more severe type of fault than ground faults. Another method could be
to apply some kind of fuzzy labeling, where the combined fault would belong partially to
each of the fault types it contains.

7.1.2 Faults Leading Into Other Faults

Next we examine how often separate faults occur shortly after each other. We consider
faults to happen shortly after each other if they occur outside of each others overlap pe-
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Sequences found with overlap period
Sequences 0.1 seconds 1 second 10 seconds 1 minute
GF/VS→ GF 99 (1.21%) 67 (1.59%) 58 (2.21%) 44 (2.12%)
GF→ GF/VS 91 (5.40%) 64 (4.45%) 48 (4.55%) 37 (4.77%)
GF→ VS 85 (1.67%) 55 (1.36%) 46 (1.47%) 17 (0.64%)
VS→ GF 78 (0.95%) 61 (1.45%) 46 (1.75%) 23 (1.11%)
GF/VS→ VS 38 (0.74%) 37 (0.92%) 36 (1.15%) 36 (1.35%)
VS→ GF/VS 32 (1.90%) 16 (1.11%) 16 (1.52%) 21 (2.71%)
GF→ PI 18 (10.23%) 4 (2.84%) 1 (0.75%) 0 (0.00%)
VS→ PI 12 (6.82%) 7 (4.96%) 5 (3.76%) 3 (2.36%)
PI→ VS 9 (0.18%) 6 (0.15%) 3 (0.10%) 3 (0.11%)
GF→ GF/PI 7 (31.82%) 7 (21.21%) 5 (14.71%) 2 (6.45%)
GF→ RVC 7 (5.83%) 7 (5.83%) 7 (5.88%) 3 (2.68%)
GF/PI→ GF 5 (0.06%) 3 (0.07%) 3 (0.11%) 3 (0.14%)
VS→ RVC 4 (3.33%) 4 (3.33%) 3 (2.52%) 2 (1.79%)
GF/VS→ PI 3 (1.70%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
PI→ GF 3 (0.04%) 1 (0.02%) 1 (0.04%) 1 (0.05%)
RVC/VS→ GF 3 (0.04%) 3 (0.07%) 3 (0.11%) 1 (0.05%)
VS→ RVC/VS 3 (5.36%) 3 (5.36%) 2 (3.51%) 2 (3.77%)
RVC/VS→ VS 3 (0.06%) 3 (0.07%) 4 (0.13%) 2 (0.07%)
GF/VS→ GF/PI/VS 2 (33.33%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
GF/PI/VS→ GF 2 (0.02%) 2 (0.05%) 0 (0.00%) 0 (0.00%)
GF/RVC→ GF 2 (0.02%) 2 (0.05%) 2 (0.08%) 1 (0.05%)
GF→ GF/RVC 2 (22.22%) 2 (22.22%) 2 (22.22%) 1 (8.33%)
RVC/VS→ RVC 2 (1.67%) 2 (1.67%) 2 (1.68%) 2 (1.79%)
GF/RVC/VS→ GF 2 (0.02%) 2 (0.05%) 1 (0.04%) 2 (0.10%)
PI/VS→ VS 2 (0.04%) 2 (0.05%) 2 (0.06%) 1 (0.04%)
VS→ GF/PI/VS 1 (16.67%) 1 (10.00%) 2 (18.18%) 1 (9.09%)
PI/VS→ PI 1 (0.57%) 2 (1.42%) 2 (1.50%) 0 (0.00%)
GF/PI/VS→ VS 1 (0.02%) 1 (0.02%) 1 (0.03%) 2 (0.07%)
GF→ GF/PI/VS 1 (16.67%) 2 (20.00%) 1 (9.09%) 0 (0.00%)
GF/PI→ VS 1 (0.02%) 2 (0.05%) 2 (0.06%) 1 (0.04%)

Table 7.3: The frequencies of faults occurring within 5 minutes of faults of another type occurring,
with different overlap periods. Faults merged due to overlap period are listed as both, separated with
a forward slash. The percentage of the resulting faults that are caused by this sequence of faults
are listed. Only sequences which had more than one occurrence for at least one overlap period are
listed.
The abbreviations for the faults are: Voltage sag: VS, Ground fault: GF, Power interruption: PI,
Rapid voltage change: RVC.
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Sequences found with overlap period
Sequences 0.1 seconds 1 second 10 seconds 1 minute
GF/VS→ GF 110 (1.34%) 79 (1.88%) 71 (2.70%) 60 (2.88%)
GF→ GF/VS 102 (6.06%) 76 (5.29%) 61 (5.78%) 53 (6.84%)
GF→ VS 100 (1.96%) 66 (1.64%) 56 (1.79%) 24 (0.90%)
VS→ GF 95 (1.16%) 77 (1.83%) 62 (2.36%) 34 (1.63%)
GF/VS→ VS 52 (1.02%) 53 (1.31%) 53 (1.70%) 54 (2.02%)
VS→ GF/VS 41 (2.43%) 26 (1.81%) 26 (2.46%) 33 (4.26%)
GF→ PI 19 (10.80%) 5 (3.55%) 2 (1.50%) 1 (0.79%)
VS→ PI 13 (7.39%) 8 (5.67%) 6 (4.51%) 4 (3.15%)
PI→ VS 11 (0.22%) 8 (0.20%) 4 (0.13%) 4 (0.15%)
GF→ GF/PI 7 (31.82%) 7 (21.21%) 6 (17.65%) 3 (9.68%)
GF→ RVC 7 (5.83%) 7 (5.83%) 7 (5.88%) 3 (2.68%)
VS→ RVC 7 (5.83%) 7 (5.83%) 6 (5.04%) 5 (4.46%)
GF/PI→ GF 5 (0.06%) 3 (0.07%) 3 (0.11%) 3 (0.14%)
RVC/VS→ VS 4 (0.08%) 4 (0.10%) 5 (0.16%) 3 (0.11%)
GF/VS→ PI 3 (1.70%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
PI→ GF 3 (0.04%) 1 (0.02%) 1 (0.04%) 1 (0.05%)
RVC/VS→ RVC 3 (2.50%) 3 (2.50%) 3 (2.52%) 3 (2.68%)
RVC→ RVC/VS 3 (5.36%) 3 (5.36%) 3 (5.26%) 3 (5.66%)
RVC/VS→ GF 3 (0.04%) 3 (0.07%) 3 (0.11%) 1 (0.05%)
VS→ RVC/VS 3 (5.36%) 3 (5.36%) 2 (3.51%) 2 (3.77%)
RVC→ VS 3 (0.06%) 3 (0.07%) 2 (0.06%) 2 (0.07%)
GF/VS→ GF/PI/VS 2 (33.33%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
PI/VS→ PI 2 (1.14%) 3 (2.13%) 3 (2.26%) 1 (0.79%)
VS→ GF/PI/VS 2 (33.33%) 2 (20.00%) 3 (27.27%) 3 (27.27%)
GF/PI/VS→ GF 2 (0.02%) 2 (0.05%) 0 (0.00%) 0 (0.00%)
GF/RVC→ GF 2 (0.02%) 2 (0.05%) 2 (0.08%) 1 (0.05%)
GF→ GF/RVC 2 (22.22%) 2 (22.22%) 2 (22.22%) 2 (16.67%)
GF→ RVC/VS 2 (3.57%) 2 (3.57%) 2 (3.51%) 1 (1.89%)
GF/RVC/VS→ GF 2 (0.02%) 2 (0.05%) 1 (0.04%) 2 (0.10%)
PI/VS→ VS 2 (0.04%) 2 (0.05%) 2 (0.06%) 2 (0.07%)
GF/PI/VS→ GF/VS 1 (0.06%) 2 (0.14%) 2 (0.19%) 2 (0.26%)
GF/PI/VS→ VS 1 (0.02%) 1 (0.02%) 2 (0.06%) 3 (0.11%)
GF→ GF/PI/VS 1 (16.67%) 2 (20.00%) 1 (9.09%) 0 (0.00%)
GF/PI→ VS 1 (0.02%) 2 (0.05%) 2 (0.06%) 1 (0.04%)

Table 7.4: The frequencies of faults occurring within 15 minutes of faults of another type occurring,
with different overlap periods. Faults merged due to overlap period are listed as both, separated with
a forward slash. The percentage of the resulting faults that are caused by this sequence of faults
are listed. Only sequences which had more than one occurrence for at least one overlap period are
listed.
The abbreviations for the faults are: Voltage sag: VS, Ground fault: GF, Power interruption: PI,
Rapid voltage change: RVC.
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Sequences found with overlap period
Sequences 0.1 seconds 1 second 10 seconds 1 minute
GF→ VS 134 (2.63%) 99 (2.45%) 89 (2.85%) 54 (2.02%)
VS→ GF 129 (1.57%) 108 (2.57%) 93 (3.54%) 60 (2.88%)
GF/VS→ GF 122 (1.49%) 93 (2.21%) 83 (3.16%) 78 (3.75%)
GF→ GF/VS 114 (6.77%) 88 (6.12%) 73 (6.91%) 67 (8.65%)
GF/VS→ VS 65 (1.27%) 69 (1.71%) 70 (2.24%) 72 (2.69%)
VS→ GF/VS 61 (3.62%) 48 (3.34%) 47 (4.45%) 52 (6.71%)
GF→ PI 21 (11.93%) 7 (4.96%) 4 (3.01%) 3 (2.36%)
VS→ PI 16 (9.09%) 11 (7.80%) 9 (6.77%) 6 (4.72%)
PI→ VS 14 (0.27%) 11 (0.27%) 7 (0.22%) 7 (0.26%)
GF→ RVC 9 (7.50%) 9 (7.50%) 9 (7.56%) 5 (4.46%)
VS→ RVC 8 (6.67%) 8 (6.67%) 7 (5.88%) 6 (5.36%)
GF→ GF/PI 7 (31.82%) 7 (21.21%) 7 (20.59%) 4 (12.90%)
RVC/VS→ RVC 7 (5.83%) 7 (5.83%) 7 (5.88%) 7 (6.25%)
VS→ RVC/VS 7 (12.50%) 7 (12.50%) 6 (10.53%) 5 (9.43%)
GF/RVC→ GF 6 (0.07%) 6 (0.14%) 6 (0.23%) 5 (0.24%)
RVC→ VS 6 (0.12%) 6 (0.15%) 5 (0.16%) 5 (0.19%)
PI→ GF 5 (0.06%) 3 (0.07%) 3 (0.11%) 2 (0.10%)
GF/PI→ GF 5 (0.06%) 3 (0.07%) 3 (0.11%) 4 (0.19%)
RVC/VS→ VS 5 (0.10%) 5 (0.12%) 6 (0.19%) 4 (0.15%)
RVC→ RVC/VS 4 (7.14%) 4 (7.14%) 4 (7.02%) 4 (7.55%)
RVC/VS→ GF 4 (0.05%) 4 (0.10%) 4 (0.15%) 2 (0.10%)
GF/VS→ PI 3 (1.70%) 0 (0.00%) 0 (0.00%) 1 (0.79%)
GF→ GF/RVC 3 (33.33%) 3 (33.33%) 3 (33.33%) 4 (33.33%)
GF/PI→ VS 2 (0.04%) 3 (0.07%) 3 (0.10%) 2 (0.07%)
GF/PI/VS→ GF/VS 2 (0.12%) 3 (0.21%) 3 (0.28%) 3 (0.39%)
GF/VS→ GF/PI/VS 2 (33.33%) 2 (20.00%) 2 (18.18%) 2 (18.18%)
PI/VS→ PI 2 (1.14%) 3 (2.13%) 3 (2.26%) 1 (0.79%)
VS→ GF/PI/VS 2 (33.33%) 2 (20.00%) 3 (27.27%) 3 (27.27%)
GF/PI/VS→ GF 2 (0.02%) 2 (0.05%) 0 (0.00%) 0 (0.00%)
RVC→ GF 2 (0.02%) 2 (0.05%) 2 (0.08%) 2 (0.10%)
GF→ RVC/VS 2 (3.57%) 2 (3.57%) 2 (3.51%) 1 (1.89%)
GF/RVC/VS→ GF 2 (0.02%) 2 (0.05%) 1 (0.04%) 3 (0.14%)
VS→ PI/VS 2 (18.18%) 2 (13.33%) 2 (10.53%) 2 (10.00%)
PI/VS→ VS 2 (0.04%) 2 (0.05%) 3 (0.10%) 3 (0.11%)
GF/PI/VS→ VS 1 (0.02%) 1 (0.02%) 2 (0.06%) 3 (0.11%)
GF→ GF/PI/VS 1 (16.67%) 2 (20.00%) 1 (9.09%) 0 (0.00%)

Table 7.5: The frequencies of faults occurring within 1 hour of faults of another type occurring,
with different overlap periods. Faults merged due to overlap period are listed as both, separated with
a forward slash. The percentage of the resulting faults that are caused by this sequence of faults
are listed. Only sequences which had more than one occurrence for at least one overlap period are
listed.
The abbreviations for the faults are: Voltage sag: VS, Ground fault: GF, Power interruption: PI,
Rapid voltage change: RVC.
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riods, but the latter begins within X minutes of the prior ending. The results are shown
in Tables 7.3, 7.4, and 7.5, for X = 5, X = 15, and X = 60 respectively. Around 5%
of all ground faults and 5% of voltage sags occur after the converse fault. Looking at
how often ground faults happen before power interruptions with different overlap periods
signifies the impact overlap duration has on what constitutes separate faults and what con-
stitutes merged faults. It also signifies how often other faults lead into power interruptions,
highlighting further the labeling problem of DDG discussed prior.

7.1.3 Time Distribution of Faults

We inspect at what times different faults occur. Some results are presented in Figures 7.2
and 7.3. It appears that ground faults are more likely to happen during summer, while volt-
age sags appear to happen slightly more frequently around December. Power interruptions
appear to happen slightly more during morning hours. We do not conclude in this thesis
what the causes of these time distributions are, if they represent an actual tendency of the
faults, if they stem from bias in A-HA, or occur due to a lack of sufficient observations. If
a tendency actually does exist, including features representing the time of day and/or year
might prove beneficial to EarlyWarn.

7.1.4 Fault Distribution for Different Nodes

Our data is retrieved from 12 different nodes in the Norwegian power grid, we look at what
rates different faults are reported by the different nodes to see if we can see any patterns or
outliers. The findings are presented in Tables 7.6 and 7.7. It is apparent from looking at the
tables that the faults are not evenly distributed. For instance, Node2 is responsible for 45%
of all reported power interruptions, while Node3 reports 99% of all rapid voltage changes.
Some nodes, such as Node10 and Node11, report almost only voltage sags, while other,
such as Node1 and Node6, have equally many or more ground faults than voltage sags.
Nodes also report significantly different amount of faults. Node9, Node10, and Node11
each contribute less than 1% of the total number of faults, while Node0 contributes almost
19% of all faults. It is not completely clear whether these differences are the result of
natural causes, or if it is caused by a bias or fault in the reporting system. Taking into
consideration the statistics presented in Figure 2.16 and Figure 2.18, we can see that most
of the operational faults are caused by surroundings (thunderstorms, vegetation, wind)
and equipment. As some locations are more vulnerable to some forms of weather and
that faulty equipment might be more prone to have reoccurring faults, we think it is fair
to assume that the imbalance in reported faults are mostly due to natural causes and not
only, if at all, due to bias in A-HA. No matter the cause, the nodes report noticeably
different fault rates, and as such it might be reasonable to try to predict faults for each node
individually, rather than combined. When mixing faults from all nodes, characteristics
associated with e.g. 300kV nets might become correlated with voltage sags, a correlation
which the model would have no use for on the other nets, and might even negatively affect
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(a) Ground faults (b) Voltage sags

(c) Power interruptions (d) Rapid voltage changes

(e) Combined

Figure 7.2: Hourly distribution of faults for all merged faults with overlap period of 1 minute.
Faults that were combinations of faults are included in all relevant plots. I.e. a ground fault / voltage
sag fault is included in both (a) and (b).
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(a) Ground faults (b) Voltage sags

(c) Power interruptions (d) Rapid voltage changes

(e) Combined

Figure 7.3: Monthly distribution of faults for all merged faults with overlap period of 1 minute.
Faults that were combinations of faults are included in all relevant plots. I.e. a ground fault / voltage
sag fault is included in both (a) and (b).
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Instances Local% Global% Global% of this fault
Node0 15kV
Ground faults 467 36.26% 6.84% 16.02%
Power interruptions 3 0.23% 0.04% 1.58%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 818 63.51% 11.98% 23.11%

Node1 18kV
Ground faults 427 58.02% 6.25% 14.65%
Power interruptions 18 2.45% 0.26% 9.47%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 291 39.54% 4.26% 8.22%

Node2 22kV
Ground faults 282 38.42% 4.13% 9.67%
Power interruptions 87 11.85% 1.27% 45.79%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 365 49.73% 5.35% 10.31%

Node3 22kV
Ground faults 310 30.27% 4.54% 10.63%
Power interruptions 7 0.68% 0.10% 3.68%
Rapid voltage changes 182 17.77% 2.67% 98.91%
Voltage sags 525 51.27% 7.69% 14.83%

Node4 22kV
Ground faults 304 55.07% 4.45% 10.43%
Power interruptions 5 0.91% 0.07% 2.63%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 243 44.02% 3.56% 6.87%

Node5 22kV
Ground faults 177 43.60% 2.59% 6.07%
Power interruptions 18 4.43% 0.26% 9.47%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 211 51.97% 3.09% 5.96%

Table 7.6: Fault distribution of faults for all merged faults for nodes with overlap period of 1 minute.
Local% indicates how many of that node’s fault is of this fault type, Global% indicates how many of
all the node’s faults that are this node and fault type, and Global% of this fault indicates how many
of this fault type occurred at this node. Faults that were combinations of faults are included in all
relevant lines. I.e. a ground fault / voltage sag fault is counted both as a voltage sad and a ground
fault for that node. 1/2
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Instances Local% Global% Global% of this fault
Node6 66kV
Ground faults 536 54.47% 7.85% 18.39%
Power interruptions 19 1.93% 0.28% 10.00%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 429 43.60% 6.28% 12.12%

Node7 66kV
Ground faults 306 43.71% 4.48% 10.50%
Power interruptions 6 0.86% 0.09% 3.16%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 388 55.43% 5.68% 10.96%

Node8 132kV
Ground faults 93 39.08% 1.36% 3.19%
Power interruptions 24 10.08% 0.35% 12.63%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 121 50.84% 1.77% 3.42%

Node9 300kV
Ground faults 13 22.81% 0.19% 0.45%
Power interruptions 1 1.75% 0.01% 0.53%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 43 75.44% 0.63% 1.22%

Node10 300kV
Ground faults 0 0.00% 0.00% 0.00%
Power interruptions 1 1.49% 0.01% 0.53%
Rapid voltage changes 0 0.00% 0.00% 0.00%
Voltage sags 66 98.51% 0.97% 1.86%

Node11 300kV
Ground faults 0 0.00% 0.00% 0.00%
Power interruptions 1 2.38% 0.01% 0.53%
Rapid voltage changes 2 4.76% 0.03% 1.09%
Voltage sags 39 92.86% 0.57% 1.10%

Table 7.7: Fault distribution of faults for all merged faults for nodes with overlap period of 1 minute.
Local% indicates how many of that node’s fault is of this fault type, Global% indicates how many of
all the node’s faults that are this node and fault type, and Global% of this fault indicates how many
of this fault type occurred at this node. Faults that were combinations of faults are included in all
relevant lines. I.e. a ground fault / voltage sag fault is counted both as a voltage sad and a ground
fault for that node. 2/2
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(a) A wave not related to a fault (b) A wave 1 minute before a power interruption

Figure 7.4: Sinus waves where there is a sudden change in measured voltage. The red wave is
the sub-sample containing the change. The blue wave is the prior sub-sample, and the green is the
following.

its ability to classify voltage sags on non-300kV nets .

7.2 Inspection of the Waves

We examine different waves to see if we can visually see any changes in the waveform or
the frequency of the sinus wave. We do this both per time-step prior to singular faults, and
when comparing waves leading up to different fault types, but we cannot see any noticeable
differences. As there are no obvious differences between the waves for the different fault
types, we suggest that machine learning or other statistical methods should be used to try
to differentiate the waves leading up to the different fault types.

7.2.1 Sample Errors

While inspecting the waves we found many sample errors, such as the ones shown in
Figure 7.4. Erroneous samples appear to be equal to one of the extremum of the prior
wave(s), and were equally frequent in waves without upcoming faults, as waves before
power interruptions. The sample errors occurred once in about 75% of the files containing
one minute of wave data, rarely more. This leads us to believe that these errors are not
related to occurring faults, but rather an error related to the PQA samplers. This might be
necessary to take into consideration however, as it might cause peaks – or other errors –
in values used in machine learning and statistical methods learning the data, which might
become falsely correlated to different fault types.
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7.2 Inspection of the Waves

(a) 500Hz (b) 700Hz

(c) 1000Hz (d) 8500Hz

Figure 7.5: Sinus waves where there is a sudden change in measured voltage at different frequencies.
The red wave is the sub-sample containing the change. The blue wave is the prior sub-sample, and
the green is the following.
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7.2.2 Sample Errors and Sampling Frequency Correlation

We examined whether these sampling errors were dependant on sampling frequency, but
found no such correlation. An example is shown in Figure 7.5, where there is only one
sampling error, occurring at the same time, across different sampling frequencies.

7.3 Clustering

We look at how t-SNE plots look for different data-sets present in Section 6.1, using the
aggregation methods presented Section 6.3.3. We inspect t-SNE as this was the dimen-
sionality reduction method that gave the best results in [Jahr and Meen, 2019].

First we inspect how wave form, RMS values and Fourier coefficients compare using t-
SNE plots when looking at the combined aggregated values for the data-sets sampled each
second for one minute one minute before the faults. The clustering using the wave form
shows clear clusters as shown Figure 7.6, but apart from the majority of power interrup-
tions being in one group, the clusters seem to be fairly balanced in what fault types they
consist of. The power interruption cluster also appears to contain many non-faults, which
might suggest this cluster displays a characteristic of Node2, rather than the fault itself.
Using the RMS values does not appear to create any good clusters as shown in Figure
7.7. The clustering using the Fourier coefficients shown in Figure 7.8 creates some lines
which appears to be separable from the main cluster, but both the lines and the main cluster
appear to be fairly balanced.

When we inspect the data-sets with data sampled one second each minute an hour leading
up to the faults, we get the figures shown in Figures 7.9, 7.10, and 7.11. Wave form
and RMS values have very similar results to the data-sets sampled each second for one
minute one minute before the faults, while Fourier coefficients appear to create a cluster
of majority ground faults, as well as one of majority non-faults, aside from its balanced
main cluster.

Because of these results, we assume classifiers using the wave form will be the best choice
for separating power interruptions from the rest of the data, and RMS values to perform
generally worst, as the data does not appear to be easy to separate, which might indicate
that classifiers will struggle to differentiate the various faults.

We investigate whether singular values will give better clusters than combined values. The
results are shown in Figures 7.12, 7.13, and 7.14. The wave form appears to be rather
similar to the plot using combined values, while RMS values and Fourier coefficients
clearly fails to form good clusters, only finding an apparent trait of some observations
which separates the observations in the middle cluster from the observations of the outer
ring. This might suggest that singular values contain too many features, such that the t-
SNE method is unable to find any distinct difference or similarity between most of the
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7.3 Clustering

Figure 7.6: t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz wave
form data-set presented in Table 6.3.

Figure 7.7: t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz RMS
value data-set presented in Table 6.5.
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Figure 7.8: t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz Fourier
coefficient data-set presented in Table 6.6.

Figure 7.9: t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz wave
form data-set presented in Table 6.9.
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7.3 Clustering

Figure 7.10: t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz RMS
value data-set presented in Table 6.11.

Figure 7.11: t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz Fourier
coefficient data-set presented in Table 6.12.
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Figure 7.12: t-SNE plot with perplexity 45, using singular aggregated values on the 25kHz wave
form data-set presented in Table 6.9.

Figure 7.13: t-SNE plot with perplexity 45, using singular aggregated values on the 25kHz RMS
value data-set presented in Table 6.11.
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7.4 Line Plots

observations.

We look at how reducing from 25kHz to 1kHz affects the clustering of the wave form, but
Figures 7.15 and 7.16 appear to be just as separable as their 25kHz counterparts.

Lastly we inspect how changing the time before the fault occurs affects the t-SNE plots.
The results are shown in Figures 7.17, 7.18, and 7.19. When looking up until zero minutes
before the fault, almost all ground faults form one big cluster, suggesting they behave
mostly similar and distinctly from other faults. There are some voltage sag observations
in the ground fault cluster, but this might be a result of the DDG labeling scheme. Voltage
sags mainly populate clusters shared with non-faults, suggesting that they do not contain
any signature of the fault at all. Power interruptions surprisingly appear mostly in the
ground fault cluster, and the leftmost cluster, mainly consisting of non-faults, which might
again suggest that this cluster shows a tendency of Node2 rather than of the fault itself.
When we look at one minute and 50 minutes before the fault, the ground fault cluster
disappears, and spreads evenly between the other clusters. Also here we see one of the
clusters containing most of the power interruptions, in addition to mostly non- and ground
faults.

7.4 Line Plots

We inspect how aggregated values change as a value of time, when looking prior to faults
occurring, for some of the data-sets presented in Section 6.1. Our goal is to see if we
can see the characteristics t-SNE found, and that the classifiers might use to differentiate
faults. Some plots being more differentiable than others will also suggest if it is better to
focus on some attributes more than others. An example is shown in Figure 7.20. As most
of the values are very close we decided to rather look at the 5th, 50th and 95th percentiles,
turning the aforementioned figure into Figure 7.21. The other aggregated values are shown
in Figure 7.22. Once again power interruptions stand out as an outlier, but apart from
that there appear to be no noticeable changes in the aggregated values prior to the fault
occurring, where the min and max values change significantly. STD and SNR appear to be
somewhat different for the different fault types, and might be differentiable for classifiers.

Looking at the min aggregation or the max aggregation for V2 and V3 – shown in Figures
7.23, 7.24, and 7.25 respectively – reveals no additional information. We also compare the
wave form, RMS value, and Fourier coefficient plots, presented in Figures 7.26, 7.27, and
7.28 respectively. Aside from power interruptions being an outlier, and slightly different
ceilings for the max values for the different types, do we not see anything notable, akin to
what we found for Figure 7.22.
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Figure 7.14: t-SNE plot with perplexity 45, using singular aggregated values on the 25kHz Fourier
coefficient data-set presented in Table 6.12.

Figure 7.15: t-SNE plot with perplexity 45, using combined aggregated values on the 1kHz wave
form data-set presented in Table 6.1.
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Figure 7.16: t-SNE plot with perplexity 45, using combined aggregated values on the 1kHz wave
form data-set presented in Table 6.7.

Figure 7.17: t-SNE plot with perplexity 45, using combined aggregated values on the 0 minutes
before fault 1kHz wave form data-set presented in Table 6.13.

99



Chapter 7. Exploration

Figure 7.18: t-SNE plot with perplexity 45, using combined aggregated values on the 1 minute
before fault 1kHz wave form data-set presented in Table 6.14.

Figure 7.19: t-SNE plot with perplexity 45, using combined aggregated values on the 50 minutes
before fault 1kHz wave form data-set presented in Table 6.19.
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Figure 7.20: The aggregated mean given from the V1 max aggregation method on the 0 minutes
before fault 1kHz wave form data-set presented in Table 6.13.

Figure 7.21: The 5th, 50th and 95th percentile of the aggregated mean given from the V1 max
aggregation method on the 0 minutes before fault 1kHz wave form data-set presented in Table 6.13.
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(a) Min (b) Max

(c) STD (d) SNR

Figure 7.22: The 5th, 50th and 95th percentile of various aggregated values given from the V1 max
aggregation method on the 0 minutes before fault 1kHz wave form data-set presented in Table 6.13.
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(a) Min (b) Max

(c) STD (d) SNR

(e) Mean

Figure 7.23: The 5th, 50th and 95th percentile of various aggregated values given from the V1 min
aggregation method on the 0 minutes before fault 1kHz wave form data-set presented in Table 6.13.
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(a) Min (b) Max

(c) STD (d) SNR

(e) Mean

Figure 7.24: The 5th, 50th and 95th percentile of various aggregated values given from the V2 max
aggregation method on the 0 minutes before fault 1kHz wave form data-set presented in Table 6.13.
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(a) Min (b) Max

(c) STD (d) SNR

(e) Mean

Figure 7.25: The 5th, 50th and 95th percentile of various aggregated values given from the V3 max
aggregation method on the 0 minutes before fault 1kHz wave form data-set presented in Table 6.13.
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(a) Min (b) Max

(c) STD (d) SNR

(e) Mean

Figure 7.26: The 5th, 50th and 95th percentile of various aggregated values given from the V1 max
aggregation method on the 25kHz wave form data-set presented in Table 6.3.
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(a) Min (b) Max

(c) STD (d) SNR

(e) Mean

Figure 7.27: The 5th, 50th and 95th percentile of various aggregated values given from the V1 max
aggregation method on the 25kHz RMS value data-set presented in Table 6.5.
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(a) Min (b) Max

(c) STD (d) SNR

(e) Mean

Figure 7.28: The 5th, 50th and 95th percentile of various aggregated values given from the V1 max
aggregation method on the 25kHz Fourier coefficient data-set presented in Table 6.6.
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7.5 Distribution of Nodes

We take note of the frequency of some power interruptions clustering together with non-
faults in the t-SNE plots, and the imbalance discussed in Section 7.1.4. One possible
explanation for this tendency could be that the t-SNE finds characteristics of the various
nodes, not of the faults themselves. We therefore try to label the t-SNE plots based on the
origin node, rather than the fault types. As t-SNE is unsupervised, this would reveal if the
differences between the various nodes are greater than the differences between fault types
within the nodes, and if using unsupervised models on this data serve any purpose other
than finding underlying structure between the nodes.

We recreate Figures 7.6, 7.7, and 7.8 as Figures 7.29, 7.30, and 7.31, with nodes as labels.
It is clear that what t-SNE finds to be similar between observations are mainly the nodes,
not the fault type, especially for the wave form. The tendency is also present in the RMS
value and Fourier coefficient plots, albeit to a lesser degree. The reason the effect is most
prominent in the wave form data-sets is likely due to RMS values and Fourier coefficients
being approximations of the waves rather than the wave itself, removing some characteris-
tics of the wave in their approximations. For wave form the vast majority of observations
are grouped primarily with observations from the same node, seemingly independent of
the voltage used by the node. We recreate the zero minutes before fault plot shown in Fig-
ure 7.17, which is the plot with the highest likelihood of successfully separating based on
fault types. The recreation, shown in Figure 7.32, shows that while there are more outliers,
mainly in the ground fault cluster of the former, the vast majority of observations are still
more differentiable when looking at their node rather than their fault type, including the
power interruptions being a part of the Node2 cluster as previously suspected.

7.5.1 Clustering for Each Node

We attempt to recreate the clusters of the different faults for each node using t-SNE. We
again recreate the zero minutes before fault plot shown in Figure 7.17. This recreation,
displayed as 12 separate t-SNE plots, are shown in Figures 7.33 and 7.34. Here we again
see ground faults clearly separating from non-faults, and when we look at Node2, power
interruptions appear to group more with ground fault than other types. This indicates that
there are clear differences between the different fault types, even though they are less
prominent than the differences between different nodes. We recreate Figures 7.6, 7.7,
and 7.8 as Figures 7.35, 7.36, and 7.37, but we cannot see any clustering of fault types,
for any of the aggregation methods or nodes, indicating that the differences between the
underlying structures of the fault types are slim when we look at periods not including the
start of the fault.
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Figure 7.29: Recreation of Figure 7.6 with nodes as labels.
t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz wave form data-set
presented in Table 6.3.

Figure 7.30: Recreation of Figure 7.7 with nodes as labels.
t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz RMS value data-set
presented in Table 6.5.
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Figure 7.31: Recreation of Figure 7.8 with nodes as labels.
t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz Fourier coefficient
data-set presented in Table 6.6.

Figure 7.32: Recreation of Figure 7.17 with nodes as labels.
t-SNE plot with perplexity 45, using combined aggregated values on the 0 minutes before fault 1kHz
wave form data-set presented in Table 6.13.
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(a) Node0 (b) Node1

(c) Node2 (d) Node3

(e) Node4 (f) Node5

Figure 7.33: Recreation of Figure 7.17 with t-SNE for each individual node.
t-SNE plot with perplexity 45, using combined aggregated values on the 0 minutes before fault 1kHz
wave form data-set presented in Table 6.13. 1/2
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(a) Node6 (b) Node7

(c) Node8 (d) Node9

(e) Node10 (f) Node11

Figure 7.34: Recreation of Figure 7.17 with t-SNE for each individual node.
t-SNE plot with perplexity 45, using combined aggregated values on the 0 minutes before fault 1kHz
wave form data-set presented in Table 6.13. 2/2
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(a) Node0 (b) Node1

(c) Node2 (d) Node4

(e) Node6 (f) Node7

Figure 7.35: Recreation of Figure 7.6 with t-SNE for a selection of individual nodes.
t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz wave form data-set
presented in Table 6.3.
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(a) Node0 (b) Node1

(c) Node2 (d) Node4

(e) Node6 (f) Node7

Figure 7.36: Recreation of Figure 7.7 with t-SNE for a selection of individual nodes.
t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz RMS value data-set
presented in Table 6.5.
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(a) Node0 (b) Node1

(c) Node2 (d) Node4

(e) Node6 (f) Node7

Figure 7.37: Recreation of Figure 7.8 with t-SNE for a selection of individual nodes.
t-SNE plot with perplexity 45, using combined aggregated values on the 25kHz Fourier coefficient
data-set presented in Table 6.6.
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7.6 Wavelets

7.6.1 Wavelet Scattering

We inspect how the wavelet scattering coefficients of faults and non-faults look like and if
there are any noticeable differences that are visible to the human eye. An illustration of the
wavelet scattering coefficients of a ground fault and a non-fault from the same node can
be seen in Figure 7.38. The bright yellow line visible at the order 1 coefficients is 50Hz.
There are some visible differences in all levels. These differences might not necessarily be
traits of the fault, they could be variations common between all signals or just noise, but
it looks like there is some potential here. The time-averaged coefficients for both the final
levels do not seem to differ significantly, which might suggest that the differences seen are
common variations or noise.

7.6.2 Wavelet Transform Spectograms

We inspect how the wavelet transform spectograms of faults and non-faults look like and
if there are any noticeable differences that are visible to the human eye. An illustration of
the continuous wavelet transform of a ground fault and a non-fault from the same node can
be seen in Figure 7.39. The data used was the same as in Figure 7.38. We can see that most
of the power is centered around 50Hz, but as in Figure 7.38 with wavelet scattering there
are no obvious differences in the structure between the ground fault and the non-fault.
Considering that we only are looking at a one minute interval one minute before the fault
occurs, this might suggest that there are no traits of the fault appearing in this interval that
differentiates it from the non-fault, and if they appear they are very weak or not extractable
by the wavelet transform.
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(a) Ground fault (b) Non-fault

Figure 7.38: Wavelet scattering coefficients for the first three levels of a ground fault (a) and a non-
fault (b) sampled from the same node. The data used is the 1kHz wave form data-set presented in
Table 6.1, only the V1 max aggregation was used. For the wavelet scattering the parameters used
were J=8 and Q=12. For the order 1 and order 2 coefficients the time-averaged coefficients are also
plotted, i.e. they are averaged over the x-axis which is the time-axis.
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(a) Ground fault

(b) Non-fault

Figure 7.39: Spectograms of the continuous wavelet transform of a ground fault (a) and a non-fault
(b) sampled from the same node. The data used is the 1kHz wave form data-set presented in Table
6.1, only the V1 max aggregation was used. For the transform the scales used were from 1 to 32 and
the mother wavelet used was the Morlet wavelet.
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Chapter 8
Experiments

In this chapter we will introduce the experiments we will carry out on the data presented
in Chapter 6.

8.1 Classifiers

The classifiers used in the experiments in this thesis use their default parameters, apart
from the parameters presented in Table 8.1. SVM, k-NN, and random forest were im-
plemented using sklearn [Pedregosa et al., 2011], CatBoost is a stand alone project at
catboost.ai [Prokhorenkova et al., 2017], CNN was implemented using pytorch [Paszke
et al., 2019] and FFNN was implemented using keras [Chollet et al., 2020].

8.2 Experiments

8.2.1 Experiment 1

In this experiment we wish to explore whether aggregating the pure wave data give com-
parable results to aggregating Fourier coefficients of the wave, or aggregating the RMS
values of the wave.
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Method Parameters
SVM Kernel = linear, sigmoid, rbf, poly

Degree (poly only) = 2, 3, 4, 5, 6
Probability = True
Max iterations = 50,000

RF Estimators = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500
Max depth = 5, 10, 15, 20, 25, 30, None

CatBoost Eval metric = AUC
Iterations = 1000
Learning rate = 0.1
Early stopping = 150

k-NN k = 3
FFNN Layer 1 size = 64 (Aggregated values) 1024 (Wavelets)

Layer 2 size = 32 (Aggregated values) 512 (Wavelets)
Layer 3 size = 16 (Aggregated values) 256 (Wavelets)
Layer 4 as output layer
Activation function = ReLU
Optimizer = Adam
Learning rate = 0.001
Loss function = Cross Entropy Loss
Batch size = 128 (Aggregated values) 32 (Wavelets)
Number of epochs = 300 (Aggregated values) 150 (Wavelets)

CNN Convolution layer 1 size = 32
Convolution layer 1 kernel size = 5× 5
Pooling layer 1 type = maximum
Pooling layer 1 kernel size = 2× 2
Convolution layer 2 output = 64
Convolution layer 2 kernel size = 3× 3
Fully connected layer 1 size = 256 or 4096
Fully connected layer 2 size = 84 or 512
Fully connected layer 3 as output layer
Activation layer function = ReLU
Optimizer = Adam
Learning rate = 0.001
Loss function = Cross Entropy Loss
Batch size = 32
Number of epochs = 150

Table 8.1: Classifiers with their parameters.
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Data

The 25kHz data-sets shown in Tables 6.3, 6.5, and 6.6, using the combined aggregated
values.

Note

There was a bug with DDG which caused it to retrieve 20kHz rather than 25kHz for the
Fourier coefficient data-set given in Table 6.6, this was discovered too late to make new
data, and as so we have used the 20kHz data in place of the intended 25kHz data. We do
not think this error invalidates our results, but it should be noted that Fourier coefficients
might have reached slightly different results if it was sampled at the intended frequency.

Method

For each data-set, train a SVM, a random forest, a FFNN, and a CatBoost model using the
parameters in Table 8.1, compare the results.

8.2.2 Experiment 2

In this experiment we wish to explore whether aggregating the pure wave data using sin-
gular aggregated values gives comparable results to Experiment 1.

Data

The 25kHz data-sets shown in Tables 6.3, 6.5, and 6.6, using both singular and combined
aggregated values.

Method

For each data-set, train a SVM, a random forest, a FFNN, and a CatBoost model using the
parameters in Table 8.1, compare the results.

8.2.3 Experiment 3

In this experiment we wish to explore whether looking at data-sets with data sampled one
second each minute an hour leading up to the faults, gives comparable results to Experi-
ment 1 and 2.
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Data

The 25kHz data-sets shown in Tables 6.3, 6.5, and 6.6, and the data-sets in Tables 6.9,
6.11, and 6.12, using both singular and combined aggregated values.

Method

For each data-set, train a SVM, a random forest, a FFNN, and a CatBoost model using the
parameters in Table 8.1, compare the results.

8.2.4 Experiment 4

In this experiment we wish to explore whether using wavelet scattering gives comparable
results to Experiment 1, 2, and 3.

Data

The 25kHz wave form data-set shown in Table 6.3, using wavelet scattering and both com-
bined and singular aggregated values. For wavelet scattering only the V1 max aggregation
was used to limit the scope.

Method

Train a CatBoost model, a k-NN, a FFNN for wavelet scattering using the parameters in
Table 8.1, compare the results.

8.2.5 Experiment 5

In this experiment we wish to explore the importance of sampling frequency, and if it is
easier to distinguish faults using a signal sampled at a high frequency compared to a signal
sampled at a low frequency.

Data

The wave form data-sets shown in Tables 6.1, 6.2, 6.3, and 6.4, using the combined aggre-
gated values.
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Method

For each data-set, train a SVM, a random forest, a FFNN, and a CatBoost model using the
parameters in Table 8.1, compare the results.

8.2.6 Experiment 6

In this experiment we wish to explore whether aggregating the different frequencies using
singular aggregated values gives comparable results to Experiment 5.

Data

The wave form data-sets shown in Tables 6.1, 6.2, 6.3, and 6.4, using both singular and
combined aggregated values.

Method

For each data type, train a SVM, a random forest, a FFNN, and a CatBoost model using
the parameters in Table 8.1, compare the results.

8.2.7 Experiment 7

In this experiment we wish to explore whether looking at data-sets with data sampled one
second each minute an hour leading up to the faults, gives comparable results to Experi-
ment 5 and 6.

Data

The wave form data-sets shown in Tables 6.1, 6.2, 6.3, and 6.4, 6.7, 6.8, 6.9 and 6.10,
using both singular and combined aggregated values.

Method

For each data-set, train a SVM, a random forest, a FFNN, and a CatBoost model using the
parameters in Table 8.1, compare the results.
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8.2.8 Experiment 8

In this experiment we wish to explore whether using wavelet scattering gives comparable
results to Experiment 5, 6, and 7.

Data

The wave form data-set shown in Tables 6.1 and 6.3, using wavelet scattering and both
combined and singular aggregated values.

Method

Train a CatBoost model, a k-NN, a FFNN for wavelet scattering using the parameters in
Table 8.1, compare the results.

8.2.9 Experiment 9

In this experiment we wish to examine how prediction results change when we look at the
wave at different times before the fault occurs.

Data

The wave form data-set shown in Tables 6.13, 6.14, 6.15, 6.17, 6.18, and 6.19, using
combined aggregated values.

Method

For each data type, train a SVM, a random forest, a FFNN, and a CatBoost model using
the parameters in Table 8.1, compare the results.

8.2.10 Experiment 10

In this experiment we wish to examine how prediction results change when we look at
the wave at different times before the fault occurs with a fixed number of samples, and
compare the results to Experiment 9.
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Data

The wave form data-set shown in Tables 6.13, 6.14, 6.15, 6.17, 6.18, 6.19, 6.20, 6.21, 6.23,
6.24, 6.25, and 6.26, using combined aggregated values.

Method

For each data type, train a SVM, a random forest, a FFNN, and a CatBoost model using
the parameters in Table 8.1, compare the results.

8.2.11 Experiment 11

In this experiment we wish to compare wavelet transform spectograms to wavelet scatter-
ing.

Data

The 1kHz wave form data-set shown in Table 6.1.

Method

Train a CNN for the spectograms, and a CatBoost model, a k-NN, a FFNN for the wavelet
scattering using the parameters in Table 8.1, compare the results.
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Chapter 9
Results

In this chapter we present and discuss the results from the experiments defined in Chapter
8.

9.1 Experiment 1

In Experiment 1 we examined whether aggregating the pure wave data gave comparable
results to aggregating the Fourier coefficients and the RMS values of the wave, when look-
ing at each second for one minute one minute before the faults occur. We compared non-
faults to various faults, the results are presented in Table 9.1. Aside from ground faults,
where Fourier coefficients achieved the best score, wave form performed best. Which
model was the best alternated between CatBoost and random forest, depending on fault
type. For general fault versus non-fault random forest appears to be the best suited model.
We inspect the ROC curves for fault versus non-fault in Figures 9.1, 9.2, and 9.3. Wave
form and RMS values appear to have an equally steep start, while Fourier coefficients do
not. This indicates that aggregated values on the wave form and RMS values are able to
identify a minority of the faults very well, while aggregated values on Fourier coefficients
do not share this attribute. This means that even though RMS values reach a lower score
than Fourier coefficients, it might be more suited for prediction, depending on what false
positive rate is allowed. Even the best model have a high amount of incorrectly classified
observations, as shown in Figure 9.4.
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Figure 9.1: ROC curves for the combined aggregated values for faults versus non-faults for the
25kHz wave form data-set presented in Table 6.3.

Figure 9.2: ROC curves for the combined aggregated values for faults versus non-faults for the
25kHz RMS value data-set presented in Table 6.5.

130



9.1 Experiment 1

Figure 9.3: ROC curves for the combined aggregated values for faults versus non-faults for the
25kHz Fourier coefficient data-set presented in Table 6.6.

Figure 9.4: The confusion matrix for the combined aggregated values for faults versus non-faults
for the 25kHz wave form data-set presented in Table 6.3.
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9.2 Experiment 2

In Experiment 2 we examined whether aggregating the various data types using singular
values gave comparable results to aggregating them using combined values. The results
are presented in Table 9.2. Singular values scored convincingly lower than the combined
values discussed in Experiment 1 for almost all data types and fault types. For singular
values Fourier coefficients achieved the best score for fault versus non-fault, mostly due
to the significant reduction in AUC-ROC score achieved with the wave form. Ground
faults versus non-faults saw the only increase in score for the wave form, making this the
highest scorer for that fault type thus far. It is reasonable to assume that the reduction in
scores across the board is a consequence of overfitting, as singular values might contain
too many features for the models to handle. Inspecting the training logs we find that the
models get very high training accuracies while the validation- and test accuracies stay
relatively low. This indicates that the models have the capacity to learn the data, which
means that underfitting is not the issue. While the intent of preserving changes in time
for the various aggregated values might be good, the implementation, or models used, are
seemingly not.

9.3 Experiment 3

In Experiment 3 we examined whether looking at one second every minute for one hour
before faults occurred gave similar results to looking at 60 consecutive seconds one minute
before faults occurred. The results are presented in Tables 9.3 and 9.4 for combined and
singular aggregated values respectively. For combined values Fourier coefficients achieve
a similar score to the results in Experiment 1, while wave form and RMS score higher
across the board, making wave form the best scorer for all comparisons. For singular
values we see a similar trend, although this time Fourier also experience an increase in
score. The increase is however not enough to offset the difference between combined and
singular values already discussed in Experiment 2.

Wave form appears to be the data type best suited for predictions, despite the tendencies
discussed in Chapter 7. Looking at the wave form one second every minute for one hour
before the fault using combined values achieved the best score. That one second every
minute for one hour before the fault achieved a better score than 60 seconds one minute
before the fault suggests that there are indicators that a fault will happen hidden in the
change of the wave for a long time prior to the fault, not just immediately before it, which
are caught even when only looking at minor subsets over the period.
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9.4 Experiment 4

9.4 Experiment 4

In Experiment 4 we examined whether using wavelet scattering as feature extraction would
give results comparable to those achieved by using aggregates values as features. The
results are presented in Table 9.5. CatBoost achieved the best performance for all types of
faults except ground faults where FFNN outperformed it. k-NN had the worst performance
overall, not achieving a single best score for any fault type. Compared to the results from
Experiments 1 and 2 presented in Tables 9.1 and 9.2 which used the same data-set, we
can see that for the same data type – Wave form –, aggregated values outperform wavelet
scattering significantly for all fault types. Comparing to the other data types and to the
results presented in Tables 9.3 and 9.4 which used different data-sets, we can see that
wavelet scattering is outperformed for all fault types.

We inspect the ROC curves for CatBoost in Figure 9.5. Comparing the general faults
versus non-faults to the ROC curves plotted in Figures 9.1, 9.2 and 9.3, we can see that the
the curve for wavelet scattering is not very steep, mostly resembling the curve in Figure
9.3. As mentioned in Experiment 1 this suggests that wavelet scattering with CatBoost is
not very suited for prediction as even the top predictions are not too probable.

These results indicate that wavelet scattering is not as good as aggregation at capturing the
features that characterize faults. It did however outperform aggregation when Fourier and
RMS were used, but this was expected as the previous experiments have found wave form
to achieve the best results. This might indicate that the faults are easier to identify by look-
ing at simpler features than the more complex representation that the wavelet scattering
creates. Wavelet scattering might capture some features that represent uninteresting noise
or bias which are not captured by the simpler aggregation. It is also worth noting that the
parameters for the wavelet scattering were not optimized as we only had time to test one
pair of J and Q, meaning that other pairs might have yielded better results.
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(a) Wave form

Figure 9.5: ROC curves for the wavelet scattering for the 25kHz wave form data-set presented in
Table 6.3.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

25kHz Wave form Combined

CatBoost 0.6757 (0.6238) 0.6534 (0.5900) 0.6292 (0.5750) 0.7986 (0.7500)
FFNN 0.5686 (0.5083) 0.6148 (0.6000) 0.5615 (0.5125) 0.7211 (0.6364)

RF 0.6860 (0.6250)
MD=25,E=150

0.6422 (0.6025)
MD=15,E=50

0.6208 (0.5725)
MD=None,E=50

0.7686 (0.7045)
MD=5,E=250

SVM 0.4964 (0.5190)
K=sigmoid

0.5050 (0.4950)
K=rbf

0.4947 (0.5000)
K=sigmoid

0.8017 (0.6818)
K=linear

25kHz RMS
values Combined

CatBoost 0.5432 (0.5214) 0.6365 (0.5900) 0.5908 (0.5750) 0.7541 (0.6591)
FFNN 0.5144 (0.5143) 0.5795 (0.5525) 0.6032 (0.5700) 0.5475 (0.5455)

RF 0.5777 (0.5548)
MD=None,E=100

0.6184 (0.5850)
MD=20,E=500

0.6121 (0.5750)
MD=None,E=50

0.6756 (0.6818)
MD=15,E=150

SVM 0.5012 (0.4964)
K=sigmoid

0.4689 (0.4450)
K=poly,D=6

0.5683 (0.5400)
K=rbf

0.4329 (0.3864)
K=poly,D=6

25kHz Fourier
coefficients Combined

CatBoost 0.6141 (0.5929) 0.7001 (0.6425) 0.6071 (0.5800) 0.7355 (0.7273)
FFNN 0.5626 (0.5369) 0.6272 (0.6075) 0.5082 (0.5150) 0.7087 (0.7273)

RF 0.6408 (0.6024)
MD=15,E=350

0.6773 (0.6100)
MD=5,E=150

0.6127 (0.5925)
MD=25,E=300

0.6942 (0.6818)
MD=5,E=400

SVM 0.4883 (0.5012)
K=poly,D=2

0.4999 (0.4900)
K=poly,D=2

0.4888 (0.5150)
K=sigmoid

0.5537 (0.5455)
K=rbf

Table 9.1: AUC-ROC scores for comparing balanced data-sets for various fault types using combined aggregated values on the 25kHz data-sets presented
in Tables 6.3, 6.5, and 6.6. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across Tables 9.1 and
9.5 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but due to the lack of
instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

25kHz Wave form Singular

CatBoost 0.5471 (0.5298) 0.6528 (0.5950) 0.6105 (0.5775) 0.7624 (0.7045)
FFNN 0.4720 (0.4810) 0.5096 (0.5025) 0.5705 (0.5275) 0.6384 (0.5227)

RF 0.5553 (0.5417)
MD=30,E=50

0.6822 (0.6500)
MD=30,E=100

0.5515 (0.5400)
MD=25,E=50

0.7707 (0.8182)
MD=25,E=200

SVM 0.4930 (0.4964)
K=linear

0.4748 (0.5600)
K=rbf

0.5000 (0.5000)
K=sigmoid

0.5351 (0.6136)
K=poly,D=5

25kHz RMS
values Singular

CatBoost 0.5532 (0.5286) 0.5752 (0.5750) 0.5111 (0.5075) 0.5248 (0.5682)
FFNN 0.5088 (0.5214) 0.5463 (0.5275) 0.4814 (0.4975) 0.5103 (0.4545)

RF 0.5678 (0.5429)
MD=15,E=50

0.5917 (0.5775)
MD=15,E=50

0.5712 (0.5525)
MD=25,E=450

0.5103 (0.5227)
MD=15,E=100

SVM 0.5343 (0.5369)
K=linear

0.4788 (0.5025)
K=sigmoid

0.4875 (0.4975)
K=rbf

0.5083 (0.5682)
K=rbf

25kHz Fourier
coefficients Singular

CatBoost 0.5662 (0.5548) 0.6415 (0.6050) 0.5505 (0.5350) 0.6281 (0.5909)
FFNN 0.4770 (0.5071) 0.5677 (0.5600) 0.5504 (0.5600) 0.4442 (0.5455)

RF 0.6092 (0.5774)
MD=25,E=350

0.6537 (0.6000)
MD=30,E=400

0.5194 (0.5025)
MD=20,E=50

0.6395 (0.6591)
MD=10,E=300

SVM 0.5005 (0.5250)
K=sigmoid

0.5344 (0.5050)
K=rbf

0.4832 (0.5025)
K=sigmoid

0.3781 (0.3409)
K=poly,D=2

Table 9.2: AUC-ROC scores for comparing balanced data-sets for various fault types using singular aggregated values on the 25kHz data-sets presented
in Tables 6.3, 6.5, and 6.6. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across Tables 9.1 and
9.5 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but due to the lack of
instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

25kHz Wave form Combined

CatBoost 0.6743 (0.6179) 0.7001 (0.6475) 0.6660 (0.6350) 0.7457 (0.6977)
FFNN 0.5742 (0.5631) 0.7162 (0.6525) 0.5495 (0.5400) 0.7965 (0.7209)

RF 0.7063 (0.6488)
MD=30,E=200

0.7154 (0.6575)
MD=25,E=450

0.6491 (0.6075)
MD=25,E=250

0.7446 (0.7209)
MD=5,E=100

SVM 0.5355 (0.5345)
K=linear

0.5887 (0.5175)
K=poly,D=2

0.5048 (0.4900)
K=poly,D=2

0.7381 (0.6977)
K=linear

25kHz RMS
values Combined

CatBoost 0.5937 (0.5500) 0.6443 (0.5925) 0.6043 (0.5775) 0.6107 (0.6098)
FFNN 0.5763 (0.5440) 0.5736 (0.5500) 0.5874 (0.5450) 0.5238 (0.5122)

RF 0.6182 (0.5762)
MD=None,E=150

0.6299 (0.5825)
MD=15,E=50

0.6339 (0.5875)
MD=20,E=100

0.6952 (0.6098)
MD=None,E=100

SVM 0.5379 (0.5286)
K=rbf

0.5609 (0.4575)
K=sigmoid

0.5738 (0.5750)
K=poly,D=6

0.5226 (0.5854)
K=poly,D=3

25kHz Fourier
coefficients Combined

CatBoost 0.6341 (0.5998) 0.7010 (0.6300) 0.5933 (0.5556) 0.7048 (0.6585)
FFNN 0.6044 (0.5663) 0.6549 (0.6150) 0.5713 (0.5480) 0.6619 (0.6341)

RF 0.6317 (0.5986)
MD=5,E=100

0.6869 (0.6175)
MD=5,E=50

0.5904 (0.5783)
MD=5,E=500

0.7310 (0.7073)
MD=5,E=150

SVM 0.5171 (0.5090)
K=poly,D=6

0.6085 (0.5825)
K=poly,D=6

0.5000 (0.5379)
K=sigmoid

0.7238 (0.6829)
K=poly,D=2

Table 9.3: AUC-ROC scores for comparing balanced data-sets for various fault types using combined aggregated values on the 25kHz data-sets presented
in Tables 6.9, 6.11, and 6.12. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across Tables 9.1
and 9.5 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but due to the lack
of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

25kHz Wave form Singular

CatBoost 0.5711 (0.5524) 0.5864 (0.5950) 0.5469 (0.5325) 0.6667 (0.5814)
FFNN 0.4966 (0.4917) 0.5239 (0.5125) 0.4824 (0.5025) 0.6320 (0.5349)

RF 0.6167 (0.5738)
MD=30,E=50

0.6897 (0.6700)
MD=25,E=350

0.5719 (0.5350)
MD=25,E=50

0.7879 (0.7209)
MD=15,E=150

SVM 0.4817 (0.5060)
K=sigmoid

0.5000 (0.5050)
K=sigmoid

0.4767 (0.4925)
K=linear

0.2641 (0.6512)
K=poly,D=5

25kHz RMS
values Singular

CatBoost 0.5696 (0.5476) 0.5880 (0.5500) 0.5607 (0.5325) 0.6500 (0.6829)
FFNN 0.5004 (0.5083) 0.5648 (0.5275) 0.5582 (0.5625) 0.4714 (0.4390)

RF 0.5568 (0.5357)
MD=20,E=100

0.5557 (0.5475)
MD=25,E=50

0.5293 (0.5075)
MD=15,E=50

0.6702 (0.6585)
MD=15,E=300

SVM 0.5165 (0.5167)
K=poly,D=3

0.5382 (0.5150)
K=linear

0.5728 (0.5725)
K=linear

0.5774 (0.5366)
K=linear

25kHz Fourier
coefficients Singular

CatBoost 0.6225 (0.5878) 0.6515 (0.6150) 0.6040 (0.5707) 0.5405 (0.5366)
FFNN 0.4930 (0.5006) 0.5316 (0.5225) 0.4488 (0.4798) 0.4238 (0.3902)

RF 0.6468 (0.6093)
MD=25,E=150

0.6455 (0.6050)
MD=5,E=150

0.5775 (0.5556)
MD=15,E=50

0.7190 (0.6098)
MD=5,E=50

SVM 0.5076 (0.4982)
K=sigmoid

0.5439 (0.5400)
K=rbf

0.4970 (0.5152)
K=linear

0.4619 (0.5366)
K=rbf

Table 9.4: AUC-ROC scores for comparing balanced data-sets for various fault types using singular aggregated values on the 25kHz data-sets presented
in Tables 6.9, 6.11, and 6.12. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across Tables 9.1
and 9.5 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but due to the lack
of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

25kHz Wave form
Wavelet
scattering
J=12,Q=12

CatBoost 0.6063 (0.5641) 0.6440 (0.6025) 0.5627 (0.5525) 0.7650 (0.8000)
FFNN 0.5220 (0.5310) 0.6932 (0.6325) 0.5210 (0.5100) 0.7526 (0.6500)
k-NN 0.5191 (0.4989) 0.5995 (0.5871) 0.5551 (0.5525) 0.7002 (0.6667)

Table 9.5: AUC-ROC scores for comparing balanced data-sets for various fault types using wavelet scattering on the 25kHz wave form data-set presented
in Table 6.3. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across Tables 9.1 and 9.5 is
highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but due to the lack of
instances of power interruptions, these scores ought to be considered an indicator more than a result.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Chapter 9. Results

Figure 9.6: The best AUC-ROC scores for different frequencies for Table 9.6.

9.5 Experiment 5

In Experiment 5 we examined whether aggregating the pure wave data using combined
values on different frequencies gave notable differences in predictability. The results are
presented in Table 9.6, and the best scores for each frequency are presented in Figure 9.6.
While there are significant variances in the scores between the different frequencies, we
see no clear pattern of scores neither increasing nor decreasing as frequency increases.

9.6 Experiment 6

In Experiment 6 we examined whether aggregating the pure wave data using singular
values on different frequencies gave notable differences in predictability, and differed from
the results when using combined aggregated values. The results are presented in Table 9.7,
and the best scores for each frequency are presented in Figure 9.7. In contrast to the results
from Experiment 5 we see a upwards trend in scores as frequency increases. This likely
stems from singular values aggregating over smaller time windows, which allows noise
to have a noticeable impact on the calculated values, while combined values considers
too many points, which makes the noise vanish. Despite the upwards trend combined
values still have better scores than singular values, for the same reason as that discussed in
Experiment 2.
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9.7 Experiment 7

Figure 9.7: The best AUC-ROC scores for different frequencies for Table 9.7.

9.7 Experiment 7

In Experiment 7 we examined whether looking at one second every minute for one hour
before faults occurred gave similar results to looking at 60 consecutive seconds a minute
before faults occurred for different frequencies. The results are presented in Tables 9.8 and
9.9, and the best scores are presented in Figures 9.8 and 9.9. Again we see no clear pat-
tern of scores neither increasing nor decreasing as frequency increases, even for singular
values, which showed such a tendency in Experiment 6. This might suggest that noise in-
creases noticeably shortly prior to a fault, but not to an impactful degree before that. While
there is some variance in the AUC-ROC scores, there is no consistency in which duration
scores best. We see no indication that looking at 60 seconds one minute before the fault
gives neither better nor worse predictability than looking at one second every minute for
one hour before the fault, but that one minute one minute before the fault contains more
information which is better utilized at higher frequencies.

9.8 Experiment 8

In Experiment 8 we examined whether using wavelet scattering on different frequencies
gave notable differences in predictability. The results are presented in Table 9.10. Cat-
Boost achieved the overall best performance for both frequencies, with FFNN outperform-
ing it on Ground faults for 1kHz and 25kHz, and on power interruptions for 1kHz. k-NN
had the worst performance overall, not achieving a single best score for any fault type.
Compared to the results from Experiments 5, 6 and 7 presented in Tables 9.6, 9.7, 9.8 and
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Figure 9.8: The best AUC-ROC scores for different frequencies for Table 9.8.

Figure 9.9: The best AUC-ROC scores for different frequencies for Table 9.9.
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9.8 Experiment 8

9.9, we can see that also for wavelet scattering there is not a frequency that dominates the
other in terms of performance. A higher frequency does not seem to either improve nor
worsen the performance.

That the sampled frequency did not have any significant impact on the results suggests
that there is not much useful information to gain from looking at minor static or high
frequency noise, but that the fault rather ought to be detected by looking at changes in the
characteristics of the wave over a longer period of time.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

1kHz Wave form Combined

CatBoost 0.6675 (0.6310) 0.6895 (0.6275) 0.6674 (0.6150) 0.6942 (0.6818)
FFNN 0.5385 (0.5202) 0.5922 (0.5825) 0.4974 (0.5050) 0.6467 (0.6364)

RF 0.6736 (0.6405)
MD=30,E=300

0.6713 (0.6225)
MD=None,E=150

0.6516 (0.6275)
MD=25,E=100

0.6952 (0.6591)
MD=25,E=100

SVM 0.5795 (0.5548)
K=linear

0.4546 (0.5000)
K=rbf

0.5060 (0.5175)
K=sigmoid

0.7314 (0.7045)
K=poly,D=6

10kHz Wave form Combined

CatBoost 0.6477 (0.6226) 0.7271 (0.6575) 0.6072 (0.6000) 0.7686 (0.6591)
FFNN 0.5702 (0.5583) 0.5722 (0.5650) 0.5018 (0.5125) 0.6033 (0.5909)

RF 0.6710 (0.6274)
MD=30,E=100

0.7113 (0.6425)
MD=None,E=50

0.6170 (0.6175)
MD=15,E=50

0.7810 (0.7045)
MD=5,E=200

SVM 0.5000 (0.4988)
K=sigmoid

0.4392 (0.5350)
K=rbf

0.4837 (0.5000)
K=sigmoid

0.7603 (0.7273)
K=linear

25kHz Wave form Combined

CatBoost 0.6757 (0.6238) 0.6534 (0.5900) 0.6292 (0.5750) 0.7986 (0.7500)
FFNN 0.5686 (0.5083) 0.6148 (0.6000) 0.5615 (0.5125) 0.7211 (0.6364)

RF 0.6860 (0.6250)
MD=25,E=150

0.6422 (0.6025)
MD=15,E=50

0.6208 (0.5725)
MD=None,E=50

0.7686 (0.7045)
MD=5,E=250

SVM 0.4964 (0.5190)
K=sigmoid

0.5050 (0.4950)
K=rbf

0.4947 (0.5000)
K=sigmoid

0.8017 (0.6818)
K=linear

50kHz Wave form Combined

CatBoost 0.6249 (0.5940) 0.7111 (0.6500) 0.6172 (0.5725) 0.7397 (0.6818)
FFNN 0.5334 (0.5262) 0.5195 (0.5150) 0.4970 (0.5075) 0.5145 (0.5455)

RF 0.6554 (0.6155)
MD=None,E=50

0.6938 (0.6325)
MD=5,E=50

0.6599 (0.6200)
MD=30,E=250

0.7355 (0.7045)
MD=10,E=50

SVM 0.5312 (0.5238)
K=linear

0.5025 (0.6025)
K=linear

0.5001 (0.4975)
K=sigmoid

0.7996 (0.7727)
K=linear

Table 9.6: AUC-ROC scores for comparing balanced data-sets for various fault types using combined aggregated values on the wave form data-sets
presented in Tables 6.1, 6.2, 6.3, and 6.4. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across
Tables 9.6 and 9.10 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but
due to the lack of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

1kHz Wave form Singular

CatBoost 0.5552 (0.5452) 0.6594 (0.6175) 0.5738 (0.5650) 0.7169 (0.6364)
FFNN 0.5173 (0.5060) 0.5615 (0.5400) 0.5126 (0.5100) 0.5909 (0.5455)

RF 0.5877 (0.5726)
MD=20,E=50

0.6493 (0.6175)
MD=30,E=50

0.5819 (0.5525)
MD=25,E=50

0.6188 (0.5455)
MD=15,E=250

SVM 0.5000 (0.5024)
K=linear

0.5527 (0.5625)
K=poly,D=2

0.4819 (0.4800)
K=linear

0.5702 (0.5000)
K=linear

10kHz Wave form Singular

CatBoost 0.5453 (0.5333) 0.6774 (0.6250) 0.5197 (0.5250) 0.6839 (0.6591)
FFNN 0.5165 (0.4976) 0.4519 (0.4625) 0.4821 (0.5125) 0.6798 (0.5682)

RF 0.5702 (0.5440)
MD=25,E=150

0.6878 (0.6400)
MD=30,E=250

0.5760 (0.5525)
MD=None,E=50

0.7479 (0.6136)
MD=10,E=50

SVM 0.5036 (0.5131)
K=linear

0.5342 (0.4700)
K=rbf

0.5133 (0.4975)
K=sigmoid

0.3781 (0.6364)
K=linear

25kHz Wave form Singular

CatBoost 0.5471 (0.5298) 0.6528 (0.5950) 0.6105 (0.5775) 0.7624 (0.7045)
FFNN 0.4720 (0.4810) 0.5096 (0.5025) 0.5705 (0.5275) 0.6384 (0.5227)

RF 0.5553 (0.5417)
MD=30,E=50

0.6822 (0.6500)
MD=30,E=100

0.5515 (0.5400)
MD=25,E=50

0.7707 (0.8182)
MD=25,E=200

SVM 0.4930 (0.4964)
K=linear

0.4748 (0.5600)
K=rbf

0.5000 (0.5000)
K=sigmoid

0.5351 (0.6136)
K=poly,D=5

50kHz Wave form Singular

CatBoost 0.6127 (0.5845) 0.7256 (0.6625) 0.5850 (0.5950) 0.8326 (0.8182)
FFNN 0.4979 (0.5071) 0.5734 (0.5100) 0.4723 (0.4850) 0.4752 (0.4773)

RF 0.5869 (0.5548)
MD=30,E=50

0.7287 (0.6600)
MD=25,E=150

0.5791 (0.5550)
MD=15,E=50

0.8419 (0.7727)
MD=30,E=350

SVM 0.5000 (0.5083)
K=rbf

0.5058 (0.4975)
K=linear

0.5126 (0.5075)
K=poly,D=2

0.5919 (0.6136)
K=linear

Table 9.7: AUC-ROC scores for comparing balanced data-sets for various fault types using singular aggregated values on the wave form data-sets
presented in Tables 6.1, 6.2, 6.3, and 6.4. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across
Tables 9.6 and 9.10 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but
due to the lack of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

1kHz Wave form Combined

CatBoost 0.6679 (0.6321) 0.7431 (0.6725) 0.6041 (0.5700) 0.7143 (0.6341)
FFNN 0.5803 (0.5202) 0.6943 (0.6775) 0.5354 (0.5250) 0.5238 (0.4634)

RF 0.6611 (0.6238)
MD=20,E=50

0.7104 (0.6650)
MD=5,E=50

0.5981 (0.5550)
MD=15,E=100

0.6405 (0.5854)
MD=5,E=100

SVM 0.5107 (0.5131)
K=poly,D=2

0.6581 (0.6175)
K=linear

0.4954 (0.4950)
K=poly,D=4

0.6571 (0.6341)
K=linear

10kHz Wave form Combined

CatBoost 0.6454 (0.6060) 0.7148 (0.6525) 0.5758 (0.5500) 0.7905 (0.7317)
FFNN 0.5709 (0.5619) 0.6298 (0.5400) 0.5017 (0.5275) 0.5738 (0.4878)

RF 0.6533 (0.6298)
MD=None,E=200

0.7147 (0.6650)
MD=None,E=50

0.5993 (0.5925)
MD=None,E=200

0.8452 (0.7073)
MD=None,E=300

SVM 0.4931 (0.5071)
K=rbf

0.5000 (0.4875)
K=linear

0.5060 (0.4875)
K=poly,D=3

0.7524 (0.7073)
K=linear

25kHz Wave form Combined

CatBoost 0.6743 (0.6179) 0.7001 (0.6475) 0.6660 (0.6350) 0.7457 (0.6977)
FFNN 0.5742 (0.5631) 0.7162 (0.6525) 0.5495 (0.5400) 0.7965 (0.7209)

RF 0.7063 (0.6488)
MD=30,E=200

0.7154 (0.6575)
MD=25,E=450

0.6491 (0.6075)
MD=25,E=250

0.7446 (0.7209)
MD=5,E=100

SVM 0.5355 (0.5345)
K=linear

0.5887 (0.5175)
K=poly,D=2

0.5048 (0.4900)
K=poly,D=2

0.7381 (0.6977)
K=linear

50kHz Wave form Combined

CatBoost 0.6421 (0.6095) 0.6727 (0.6450) 0.6190 (0.5850) 0.6952 (0.6829)
FFNN 0.5167 (0.5262) 0.5324 (0.5325) 0.4836 (0.5000) 0.5881 (0.5366)

RF 0.6319 (0.6071)
MD=None,E=50

0.7026 (0.6400)
MD=20,E=150

0.6226 (0.5775)
MD=30,E=200

0.6905 (0.6585)
MD=5,E=100

SVM 0.5266 (0.4952)
K=rbf

0.4282 (0.5150)
K=rbf

0.4440 (0.5075)
K=rbf

0.6286 (0.5610)
K=poly,D=6

Table 9.8: AUC-ROC scores for comparing balanced data-sets for various fault types using combined aggregated values on the wave form data-sets
presented in Tables 6.7, 6.8, 6.9, and 6.10. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across
Tables 9.6 and 9.10 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but
due to the lack of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

1kHz Wave form Singular

CatBoost 0.5692 (0.5345) 0.6499 (0.5950) 0.5685 (0.5325) 0.6000 (0.5854)
FFNN 0.5000 (0.5012) 0.5309 (0.5325) 0.5219 (0.5125) 0.6940 (0.6341)

RF 0.6101 (0.5726)
MD=25,E=350

0.6627 (0.6050)
MD=25,E=100

0.5849 (0.5525)
MD=25,E=100

0.6702 (0.6829)
MD=None,E=100

SVM 0.5102 (0.5012)
K=linear

0.5447 (0.5125)
K=linear

0.5437 (0.4975)
K=sigmoid

0.6679 (0.6585)
K=linear

10kHz Wave form Singular

CatBoost 0.5949 (0.5845) 0.6436 (0.5900) 0.5647 (0.5375) 0.8976 (0.8049)
FFNN 0.4964 (0.5036) 0.5699 (0.5500) 0.4999 (0.5100) 0.7429 (0.6341)

RF 0.5998 (0.5595)
MD=30,E=50

0.7009 (0.6375)
MD=10,E=400

0.5466 (0.5225)
MD=15,E=50

0.9083 (0.8049)
MD=25,E=50

SVM 0.4980 (0.4952)
K=sigmoid

0.5371 (0.4950)
K=rbf

0.5000 (0.5000)
K=linear

0.6690 (0.7317)
K=linear

25kHz Wave form Singular

CatBoost 0.5711 (0.5524) 0.5864 (0.5950) 0.5469 (0.5325) 0.6667 (0.5814)
FFNN 0.4966 (0.4917) 0.5239 (0.5125) 0.4824 (0.5025) 0.6320 (0.5349)

RF 0.6167 (0.5738)
MD=30,E=50

0.6897 (0.6700)
MD=25,E=350

0.5719 (0.5350)
MD=25,E=50

0.7879 (0.7209)
MD=15,E=150

SVM 0.4817 (0.5060)
K=sigmoid

0.5000 (0.5050)
K=sigmoid

0.4767 (0.4925)
K=linear

0.2641 (0.6512)
K=poly,D=5

50kHz Wave form Singular

CatBoost 0.5325 (0.5214) 0.6419 (0.6175) 0.5617 (0.5325) 0.7357 (0.7073)
FFNN 0.4725 (0.4988) 0.5558 (0.4975) 0.4865 (0.5150) 0.6857 (0.7073)

RF 0.5864 (0.5595)
MD=None,E=50

0.6755 (0.6450)
MD=30,E=50

0.5663 (0.5300)
MD=15,E=50

0.7857 (0.7317)
MD=None,E=400

SVM 0.4931 (0.4988)
K=linear

0.5164 (0.4875)
K=linear

0.5125 (0.4900)
K=poly,D=2

0.6762 (0.6829)
K=linear

Table 9.9: AUC-ROC scores for comparing balanced data-sets for various fault types using singular aggregated values on the wave form data-sets
presented in Tables 6.7, 6.8, 6.9, and 6.10. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across
Tables 9.6 and 9.10 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but
due to the lack of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

1kHz Wave form Wavelet
scattering

CatBoost 0.5855 (0.5570)
J=15,Q=12

0.6652 (0.6275)
J=15,Q=24

0.5948 (0.6025)
J=12,Q=96

0.7675 (0.7250)
J=6,Q=48

FFNN 0.5230 (0.4917)
J=6,Q=12

0.6798 (0.6275)
J=8,Q=12

0.5505 (0.5575)
J=8,Q=12

0.7734 (0.7000)
J=15,Q=12

k-NN 0.5508 (0.5357)
J=12,Q=12

0.6101 (0.5676)
J=8,Q=12

0.5604 (0.5691)
J=12,Q=12

0.7057 (0.6667)
J=12,Q=24

25kHz Wave form
Wavelet
scattering
J=12,Q=12

CatBoost 0.6063 (0.5641) 0.6440 (0.6025) 0.5627 (0.5525) 0.7650 (0.8000)
FFNN 0.5220 (0.5310) 0.6932 (0.6325) 0.5210 (0.5100) 0.7526 (0.6500)
k-NN 0.5191 (0.4989) 0.5995 (0.5871) 0.5551 (0.5525) 0.7002 (0.6667)

Table 9.10: AUC-ROC scores for comparing balanced data-sets for various fault types using wavelet scattering on the wave form data-sets presented in
Tables 6.1 and 6.3. The best AUC-ROC score for each data-set is presented in bold, and the best score for each comparison across Tables 9.6 and 9.10
is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for completeness, but due to the lack of
instances of power interruptions, these scores ought to be considered an indicator more than a result.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
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9.9 Experiment 9

Figure 9.10: The best AUC-ROC scores for different times until fault for Table 9.11 and 9.12.

9.9 Experiment 9

In Experiment 9 we examined how looking at different times before the fault occurred
affected our results. The results are presented in Tables 9.11 and 9.12, and the best scores
are presented in Figure 9.10. For most faults the difference between removing one minute
before the fault occurs, and 50 minutes before the fault occurs, is quite small. It appears
that looking at data up until 10 to 15 minutes before the fault occurs gives some of the
better results. Ground faults and power interruptions appear to be very differentiable from
non-faults when looking at 0 minutes before the fault, while the difference between 1
minute and 50 minutes before the fault is comparably small, as was suggested in Section
7.3.

There is a sudden drop in the AUC-ROC for power interruptions at 1 minute before the
fault occurs. This seems a bit counter-intuitive as more data should not worsen the result
by such a big amount. To see what might cause the drops we look at the features the
classifiers are using for the different forecast horizons. The V1 max aggregation for data
sampled over one second each minute an hour leading up to the faults is shown in Figure
9.11. We can see that the 95th percentile for power interruptions is clearly separated
from the other faults until around 5 minutes before the fault occurs, where it suddenly
jumps up to the same values as the other faults. This makes it harder to differentiate when
looking at this feature and explains why it is harder to classify it when this time interval
is included. As the features used are aggregations which simplifies the data, looking at
a too big time interval might worsen the performance as seen here, as some features that
are easy to distinguish at some time intervals might get overwritten by some that are less
differentiating.
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Chapter 9. Results

Figure 9.11: The V1 max aggregation using the combined aggregated values on the 1kHz wave form
data-sets presented in Tables 6.13, 6.14, 6.15, 6.17, 6.18, and 6.19. The data is aggregated using the
maximum function, and at x minutes before the fault the data is aggregated from 60 minutes before
the fault up to x minutes before the fault, resulting in the same feature that the classifiers are using.
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Time until
fault Data duration Classifier F vs NF GF vs NF VS vs NF PI vs NF

0 min 60 min

CatBoost 0.8577 (0.7914) 0.9576 (0.8950) 0.6786 (0.6170) 0.9947 (0.9487)
FFNN 0.8593 (0.8098) 0.9447 (0.8875) 0.5634 (0.5346) 1.0000 (0.9744)

RF 0.8357 (0.7840)
MD=5,E=500

0.9489 (0.8950)
MD=10,E=200

0.7022 (0.6516)
MD=25,E=500

1.0000 (1.0000)
MD=10,E=50

SVM 0.8289 (0.7239)
K=poly,D=6

0.9134 (0.8900)
K=linear

0.6610 (0.6303)
K=linear

0.9921 (0.9231)
K=linear

1 min 59 min

CatBoost 0.6718 (0.6221) 0.7462 (0.6675) 0.6330 (0.6011) 0.7263 (0.6410)
FFNN 0.5513 (0.5227) 0.6125 (0.5825) 0.5524 (0.5824) 0.5737 (0.5385)

RF 0.6785 (0.6196)
MD=None,E=150

0.7546 (0.6850)
MD=10,E=50

0.6575 (0.6170)
MD=25,E=50

0.7487 (0.6667)
MD=10,E=500

SVM 0.5455 (0.5301)
K=rbf

0.4729 (0.5150)
K=rbf

0.6260 (0.5638)
K=linear

0.6934 (0.6410)
K=linear

5 min 55 min

CatBoost 0.6333 (0.5939) 0.6795 (0.6125) 0.6164 (0.5585) 0.8553 (0.7949)
FFNN 0.5755 (0.5558) 0.5680 (0.5250) 0.5833 (0.5585) 0.6868 (0.5897)

RF 0.6493 (0.6110)
MD=25,E=450

0.6869 (0.6475)
MD=25,E=250

0.6712 (0.6250)
MD=None,E=100

0.8789 (0.7692)
MD=15,E=50

SVM 0.5196 (0.5178)
K=poly,D=2

0.4072 (0.5025)
K=linear

0.5000 (0.5080)
K=linear

0.7316 (0.6667)
K=linear

10 min 50 min

CatBoost 0.6597 (0.6147) 0.7484 (0.6850) 0.6999 (0.6489) 0.8105 (0.7179)
FFNN 0.4888 (0.5043) 0.6110 (0.5600) 0.6236 (0.5665) 0.5474 (0.5128)

RF 0.6826 (0.6331)
MD=25,E=150

0.7473 (0.6800)
MD=15,E=150

0.6960 (0.6676)
MD=25,E=400

0.8461 (0.7179)
MD=5,E=50

SVM 0.4986 (0.5264)
K=linear

0.6154 (0.5900)
K=rbf

0.5000 (0.5000)
K=sigmoid

0.7592 (0.6923)
K=poly,D=6

Table 9.11: AUC-ROC scores for comparing balanced data-sets for various fault types using combined aggregated values on the 1kHz wave form data-
sets presented in Tables 6.13, 6.14, 6.15, 6.17, 6.18, and 6.19. The best AUC-ROC score for each data-set is presented in bold, and the best score for each
comparison across Tables 9.11 and 9.12 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for
completeness, but due to the lack of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI. 1/2
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Time until
fault Data duration Classifier F vs NF GF vs NF VS vs NF PI vs NF

15 min 45 min

CatBoost 0.6607 (0.6135) 0.7473 (0.6725) 0.6764 (0.6170) 0.7000 (0.6410)
FFNN 0.5643 (0.5595) 0.5086 (0.5250) 0.5773 (0.5505) 0.6658 (0.6410)

RF 0.6677 (0.6061)
MD=None,E=450

0.7487 (0.6850)
MD=10,E=50

0.6960 (0.6569)
MD=None,E=200

0.7171 (0.6410)
MD=5,E=50

SVM 0.4722 (0.5055)
K=linear

0.3816 (0.5150)
K=rbf

0.5261 (0.5053)
K=poly,D=6

0.6474 (0.6410)
K=linear

30 min 30 min

CatBoost 0.6318 (0.5951) 0.6925 (0.6525) 0.6261 (0.6090) 0.7658 (0.6923)
FFNN 0.5691 (0.5387) 0.5181 (0.5600) 0.5716 (0.5186) 0.6000 (0.5128)

RF 0.6519 (0.6098)
MD=None,E=50

0.6940 (0.6550)
MD=10,E=50

0.6067 (0.5851)
MD=20,E=250

0.7855 (0.6923)
MD=15,E=50

SVM 0.5005 (0.5055)
K=linear

0.4517 (0.5100)
K=rbf

0.4559 (0.5160)
K=sigmoid

0.8382 (0.8205)
K=linear

50 min 10 min

CatBoost 0.6262 (0.6025) 0.6860 (0.6350) 0.6303 (0.5878) 0.6987 (0.7179)
FFNN 0.5400 (0.5313) 0.5199 (0.5200) 0.4785 (0.4894) 0.6447 (0.6154)

RF 0.6221 (0.5890)
MD=20,E=150

0.6934 (0.6525)
MD=30,E=50

0.6366 (0.5878)
MD=20,E=50

0.7237 (0.7436)
MD=25,E=100

SVM 0.5000 (0.4994)
K=poly,D=2

0.6642 (0.6025)
K=rbf

0.4776 (0.5532)
K=poly,D=2

0.7211 (0.6667)
K=linear

Table 9.12: AUC-ROC scores for comparing balanced data-sets for various fault types using combined aggregated values on the 1kHz wave form data-
sets presented in Tables 6.13, 6.14, 6.15, 6.17, 6.18, and 6.19. The best AUC-ROC score for each data-set is presented in bold, and the best score for each
comparison across Tables 9.11 and 9.12 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for
completeness, but due to the lack of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI. 2/2
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Figure 9.12: The best AUC-ROC scores for different times until fault for Table 9.13 and 9.14.

9.10 Experiment 10

In Experiment 10 we examined how looking at different times before the fault occurred
affected our results when we have a fixed number of samples per observation. The results
are presented in Tables 9.13 and 9.14, and the best scores are presented in Figure 9.12. The
results appear to mirror those found in Experiment 9, suggesting once again that looking
10 to 15 minutes before the fault occurs gives some of the better results, even when the
data duration is only 10 minutes. Also similar to Experiment 9 there are some drops in
AUC-ROC as the time until the fault occurs decreases. The cause of this can be explained
in the same way as it was in Experiment 9.
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Time until
fault Data duration Classifier F vs NF GF vs NF VS vs NF PI vs NF

0 min 10 min

CatBoost 0.8433 (0.7804) 0.9559 (0.9300) 0.7231 (0.6330) 1.0000 (0.9487)
FFNN 0.8464 (0.7742) 0.9619 (0.9200) 0.6614 (0.5931) 1.0000 (1.0000)

RF 0.8131 (0.7595)
MD=5,E=500

0.9623 (0.9325)
MD=15,E=250

0.7319 (0.6569)
MD=25,E=400

1.0000 (0.9744)
MD=15,E=50

SVM 0.8205 (0.7755)
K=linear

0.9393 (0.9250)
K=linear

0.6575 (0.5904)
K=sigmoid

1.0000 (0.9744)
K=linear

1 min 10 min

CatBoost 0.6793 (0.6245) 0.6797 (0.6400) 0.6322 (0.5878) 0.8263 (0.7179)
FFNN 0.6121 (0.5877) 0.5593 (0.5600) 0.5857 (0.5691) 0.6263 (0.5641)

RF 0.7046 (0.6466)
MD=None,E=200

0.6947 (0.6450)
MD=15,E=50

0.6500 (0.5931)
MD=None,E=150

0.7079 (0.5897)
MD=15,E=100

SVM 0.4579 (0.5067)
K=poly,D=2

0.4206 (0.5125)
K=rbf

0.5000 (0.5080)
K=sigmoid

0.4737 (0.7949)
K=linear

5 min 10 min

CatBoost 0.6093 (0.5730) 0.6404 (0.6000) 0.5689 (0.5585) 0.8645 (0.8205)
FFNN 0.5035 (0.5117) 0.5280 (0.5150) 0.4591 (0.4814) 0.4842 (0.4615)

RF 0.6441 (0.6049)
MD=20,E=100

0.6907 (0.6400)
MD=None,E=50

0.5907 (0.5585)
MD=None,E=50

0.8053 (0.7179)
MD=15,E=50

SVM 0.6121 (0.5767)
K=linear

0.5505 (0.4550)
K=sigmoid

0.5000 (0.5000)
K=sigmoid

0.3737 (0.7436)
K=linear

10 min 10 min

CatBoost 0.6462 (0.6012) 0.7212 (0.6500) 0.6748 (0.6170) 0.6789 (0.6154)
FFNN 0.5799 (0.5620) 0.6210 (0.5225) 0.5672 (0.5372) 0.5684 (0.5128)

RF 0.6753 (0.6258)
MD=None,E=500

0.6873 (0.6200)
MD=5,E=50

0.6864 (0.6356)
MD=None,E=350

0.7132 (0.6154)
MD=5,E=100

SVM 0.5919 (0.5656)
K=poly,D=2

0.5000 (0.5000)
K=sigmoid

0.4754 (0.5000)
K=sigmoid

0.6842 (0.6667)
K=linear

Table 9.13: AUC-ROC scores for comparing balanced data-sets for various fault types using combined aggregated values on the 1kHz wave form data-
sets presented in Tables 6.20, 6.21, 6.23, 6.24, 6.25, and 6.26. The best AUC-ROC score for each data-set is presented in bold, and the best score for each
comparison across Tables 9.13 and 9.14 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for
completeness, but due to the lack of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI. 1/2
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Time until
fault Data duration Classifier F vs NF GF vs NF VS vs NF PI vs NF

15 min 10 min

CatBoost 0.6306 (0.5914) 0.6781 (0.6425) 0.6153 (0.5824) 0.6961 (0.7179)
FFNN 0.5549 (0.5374) 0.5467 (0.5125) 0.5250 (0.5213) 0.5974 (0.5385)

RF 0.6430 (0.5926)
MD=30,E=50

0.6716 (0.6275)
MD=10,E=150

0.6814 (0.6250)
MD=25,E=250

0.8211 (0.7179)
MD=5,E=100

SVM 0.4880 (0.4945)
K=poly,D=2

0.5332 (0.4825)
K=sigmoid

0.4717 (0.4973)
K=poly,D=3

0.7211 (0.7436)
K=linear

30 min 10 min

CatBoost 0.6238 (0.6025) 0.6500 (0.5950) 0.5706 (0.5452) 0.6224 (0.6154)
FFNN 0.5871 (0.5362) 0.6334 (0.5675) 0.4562 (0.4973) 0.6316 (0.5128)

RF 0.6500 (0.6049)
MD=None,E=150

0.6715 (0.6250)
MD=None,E=150

0.6372 (0.5984)
MD=20,E=150

0.6211 (0.5897)
MD=5,E=450

SVM 0.4727 (0.4994)
K=poly,D=2

0.5025 (0.4975)
K=linear

0.5000 (0.5399)
K=poly,D=3

0.4974 (0.6410)
K=linear

50 min 10 min

CatBoost 0.6363 (0.5963) 0.7276 (0.6650) 0.6358 (0.5851) 0.7395 (0.7692)
FFNN 0.5520 (0.5276) 0.5004 (0.5125) 0.4552 (0.4867) 0.6237 (0.5897)

RF 0.6605 (0.6294)
MD=20,E=150

0.7442 (0.6775)
MD=30,E=50

0.6520 (0.6064)
MD=20,E=50

0.7500 (0.6923)
MD=25,E=100

SVM 0.4810 (0.4994)
K=poly,D=2

0.6894 (0.6275)
K=rbf

0.4371 (0.5399)
K=poly,D=2

0.8684 (0.8205)
K=linear

Table 9.14: AUC-ROC scores for comparing balanced data-sets for various fault types using combined aggregated values on the 1kHz wave form data-
sets presented in Tables 6.20, 6.21, 6.23, 6.24, 6.25, and 6.26. The best AUC-ROC score for each data-set is presented in bold, and the best score for each
comparison across Tables 9.13 and 9.14 is highlighted in red, the accuracy is given in parentheses. Power interruptions versus non-faults is included for
completeness, but due to the lack of instances of power interruptions, these scores ought to be considered an indicator more than a result.
The classifier parameters are abbreviated as: Max depth: MD, Estimators: E, Kernel: K, and Degree: D.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI. 2/2
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9.11 Experiment 11

In Experiment 11 we examined how wavelet transform spectograms compared to wavelet
scattering. The results are presented in Table 9.11. It is apparent that the CNN is not
able to learn the data at all and achieves baseline performance. The reason may be that
the spectograms are not able to capture any traits of the faults like the scattering is – as
suggested in Section 7.6.2 – resulting in the CNN just classifying all the observations as
one of the fault types. As scattering is both cheaper and faster to calculate, and is able to
extract useful features, it seems like it is the superior feature extraction method of the two.

156



9.11
E

xperim
ent11

Freq Data type Features Classifier F vs NF GF vs NF VS vs NF PI vs NF

1kHz Wave form Wavelet
scattering

CatBoost 0.5855 (0.5570)
J=15,Q=12

0.6652 (0.6275)
J=15,Q=24

0.5948 (0.6025)
J=12,Q=96

0.7675 (0.7250)
J=6,Q=48

FFNN 0.5230 (0.4917)
J=6,Q=12

0.6798 (0.6275)
J=8,Q=12

0.5505 (0.5575)
J=8,Q=12

0.7734 (0.7000)
J=15,Q=12

k-NN 0.5508 (0.5357)
J=12,Q=12

0.6101 (0.5676)
J=8,Q=12

0.5604 (0.5691)
J=12,Q=12

0.7057 (0.6667)
J=12,Q=24

1kHz Wave form WTS CNN 0.500 (0.500) 0.500 (0.500) 0.500 (0.500) 0.500 (0.500)

Table 9.15: AUC-ROC scores for comparing balanced data-sets for various fault types using wavelet scattering and wavelet transform spectograms
(WTS) on the 1kHz wave form data-set presented in Table 6.1. The best AUC-ROC score for each data-set is presented in bold, the accuracy is given
in parentheses. Power interruptions versus non-faults is included for completeness, but due to the lack of instances of power interruptions, these scores
ought to be considered an indicator more than a result.
The fault types are abbreviated as: Faults: F, Non-faults: NF, Ground faults: GF, Voltage sags: VS, and Power interruptions: PI.
Wavelet transform spectograms are abbreviated as WTS.
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Chapter 10
Future Work

In this chapter we present topics, ideas, and methods which we think could be beneficial
to explore further in future work regarding the EarlyWarn project.

10.1 Improving the Labeling Scheme

In Section 7.1.1 the current labeling scheme used by DDG was discussed, and some im-
provements were suggested. Implementing an improved labeling scheme can give a better
basis for classification, especially when comparing different types of faults.

10.1.1 Fault Overlap and Fault Sequences

Once an improved labeling scheme has been implemented, fault overlap times and fault se-
quences discussed in Sections 7.1.1 and 7.1.2 should be revisited, especially the tendency
of ground faults and voltage sags to overlap and lead into each other.

10.2 Time and Date Features

In Section 7.1.3 we noted that some fault types appear to happen more frequently at some
times of day and year. There might be other tendencies for when different faults occur,
and exploring this further might give access to information which can be used to improve
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accuracy of models. There might be knowledge to gain in redoing this exploration for
individual nodes, as some might be more susceptible to seasonal changes than others.

10.3 Node Specific Learning

As discussed in Section 7.1.4, the distribution of faults is skewed between the different
nodes. As further explored in Section 7.5, the difference between nodes also greater than
that between faults. Due to this we suggest that learning to classify faults for specific
nodes might yield better results than trying to learn a general model for all of them, as a
general model will become subject to bias.

10.3.1 Synthetic Data Generation

As few nodes report enough faults to achieve a well trained model on them alone, synthe-
sising data might be necessary, especially if a balanced data-set is desired.

10.3.2 Transfer Learning

If synthesising data is not desirable, creating a transfer learning environment might be
a good alternative. In the transfer learning environment the model would first learn on
all nodes – as we have done in this thesis – but after having been trained, it would be
further trained on data solely from the node in focus. By doing this the model will learn
general characteristics of fault types first – with the node bias discussed – to then later
try to remove the associations between nodes and fault types, leaving a model which only
classifies on characteristics of fault types.

10.3.3 Further Exploration of Node Characteristics

Doing further exploration of what characterises the different nodes might reveal the impact
of, and new ways to combat, the bias discussed in Section 7.5, where fault types such as
power interruptions might be linked to characteristics of Node2.
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10.4 Wavelet Scattering

10.4 Wavelet Scattering

10.4.1 Bigger Parameter Scope

For the 1kHz data-sets, which had 60,000 samples per observation, we were able to
try 4x4=16 different combinations of J and Q. However for the 25kHz data-sets, with
60,000x25=1,500,000 samples per observation, we did not have time as making wavelet
scattering coefficients for each combination of J and Q took a significantly long time to
calculate. We limited the scope by choosing the combination that had the best performance
averaged over all the classifiers for 1kHz. To fully explore the potential of wavelet scat-
tering on the 25kHz data-sets we therefore suggest an extensive parameter search trying a
bigger variety of Js and Qs.

10.4.2 Optimizing for Real-time

As of now the wavelet scattering had to be calculated for each interval in order to predict
whether or not a fault is going to occur. This is very costly and might not be possible to
do constantly, and pauses might have to be inserted between the calculations, especially
for high frequency signals with duration over one minute. To make this more effective one
could for instance try to aggregate the coefficients over smaller time intervals in the same
fashion that we aggregated the wave signal. This would make the calculation a lot faster
as for every time we want to predict a fault, we only have to calculate the scattering for the
new unseen time interval, and we can reuse the previous calculated coefficients instead of
recalculating everything in order to cover the new data.

One could also try to sample smaller parts of the wave signal over a larger time interval in
order to get a wider coverage of samples without increasing the amount. This might be a
drawback as each part would be considerably shorter that just looking at one continuous
interval, and the fault might only be detectable looking at longer continuous intervals. This
would also create a lot of noise in the intersections where the segmented signal transitions
from one interval to another as it would not be continuous.

10.5 Data

In this thesis we only used phase-to-ground phases and not the phase-to-phase phases.
These should also be considered included for a higher chance of finding traits unique to
the faults.
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10.6 Other Aggregation Methods

In this thesis we used very simple aggregation methods as features such as the max, min
and mean value. Other aggregation methods as mentioned in Section 5.3 should be con-
sidered.

10.7 Other Models

While singular aggregated values score consistently worse than combined aggregated val-
ues, they did show a tendency which suggests there might be more information to be found
when looking at smaller windows of time prior to the fault. In this thesis we used models
which were not suited to consider temporal changes, which is why the original data-set
containing 45 values over 60 seconds was changed as described in Section 6.3.3. Using a
model which can take temporal changes into account, so that the original data can be used
without modification, might remove the tendency of overfitting described in Experiment 2,
while additionally retaining the ability to let noise affect the calculated aggregated values,
as described in Experiment 6.

10.8 Weighted Sampling

In this thesis we attempted to sample each second for one minute one minute before the
fault, and one second each minute an hour leading up to the fault. Other sampling methods
should be tested out, one suggestion is a weighted sampling method, where the duration
between each sample gets longer as the samples gets farther away from when the fault
occurs. One example could be to sample every second one minute prior to the fault, then
every other second the minute before that, every third second the minute before that, and
so forth.
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Chapter 11
Conclusion

We conclude this thesis by answering the research questions presented in Chapter 1.

RQ1: To what extent do there exist differentiable structures in the data?

Section 7.5 revealed the most differentiable structure in the data to be the origin node.
When looking at the wave up until the fault for a single node, ground faults and power
interruptions were both found to be noticeably unique, and separated from the rest of the
observations. Voltage sags did not share this characteristic to as high a degree, and tended
to group up with non-faults. This relation came up again in our experiments, where voltage
sags tended to be the hardest to differentiate from non-faults, even in Experiments 9 and
10, which included data up until the occurrence of the fault.

The fact that the most differentiable structure in the data is the origin nodes, suggests that
the classifying models used in the EarlyWarn project ought to take into account the origin
of the retrieved data, ways to do this was suggested in Section 10.3. The faults reported and
the distribution of the reported faults for each node vary significantly, as noted in Section
7.1.4. This when combined with the apparent differences between the different nodes, can
create significant bias in classifiers if not taken into consideration.

RQ2: Which data representations are the most useful for predicting faults in the power
grid?

There are many different ways of representing wave signals, the Fourier transform is one
natural choice as the data in theory should be a stationary sinus wave with noise in the form
of harmonics which can be used to identify the occurring faults. The wavelet transform
is another representation which in some ways is an improvement of the Fourier transform
and has shown a lot of promise as discussed in Chapter 5. There is also the option of using
the raw wave as is, and the RMS values. In regard to the raw wave a sampling frequency
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has to be chosen which will decide how accurately the wave is represented.

Our results from Experiments 1 through 3 showed that aggregating values based on the raw
waveform, rather than the Fourier transform and RMS values of the wave, gave the best
results. Experiment 4 revealed that aggregation, rather than wavelets, gave better results.
Experiment 6 showed some positive impact of sampling at higher frequencies, but for the
noise which is present in higher frequencies to be captured in the aggregated values, more
suited aggregation methods than max, min, mean, STD and SNR is needed. In Experiment
3 it was shown that looking at fewer samples of the wave over one hour contains better
classifying information than looking at the full minute one minute before the occurrence
of the fault.

In sum, the data representation which is most useful for predicting faults in the power
grid appears to be aggregated values of the wave form over longer time intervals at high
frequencies, given that the aggregated values manage to express the presence of eventual
noise, or are invariant to frequency when this is not the case.

RQ3: How long before faults occur does the signal contain information which differenti-
ates them from normal behavior?

To be able to predict the faults it is useful to know when the faults first start to appear
in the wave signal and if there are some specific time intervals in which they are more
visible. The results from Experiments 9 and 10 showed that it is somewhat possible to
predict faults looking at the signal up to 50 minutes before the fault occurred, but that it
got easier to predict as data from time intervals closer to the fault were included. Based
on this, it seems like some faults start to show themselves at least 50 minutes before they
occur, but that the strongest traits appear closer to the actual occurrence of the faults. This
means that even though it is not reliable to predict faults looking only at time intervals
long before the fault occurs, those intervals still contain useful information. This could be
better taken advantage of by using a weighed scheme as suggested in Section 10.8.

RQ4: What prediction performances are achievable using machine learning methods?

We evaluate the most promising machine learning methods discussed in Chapter 5: Ran-
dom forest, k-NN, CatBoost, SVM, FFNN and CNN. Looking at the results from all the
experiments done, random forest and CatBoost have had the overall best performances.
SVM has without question performed the worst. Feedforward neural network have had
some okay scores, but have mostly been outshone by random forest and CatBoost. For
Experiments 1 through 4 all of the classifiers had one top score each, even though SVM’s
top score was for power interruptions which is not that trustworthy because of the lacking
data-set size. Looking at different frequencies in Experiments 5 through 8, and differ-
ent forecast horizons in Experiments 9 and 10, the top scores were mostly split between
random forest and CatBoost. For wavelet scattering, CatBoost and feedforward neural net-
work performed the best. For the wavelet transform spectograms we only tried CNN, but
as the wavelet transform was not able to capture any useful features we cannot say much
about its performance.
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Random forest achieved the best AUC-ROC of 0.7063 and an accuracy of 0.6488 for faults
versus non-faults.
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